[XFS] 971064 Various fixups for xfs_bulkstat().
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
7989cb8e 37static kmem_zone_t *xfs_buf_zone;
a6867a68 38STATIC int xfsbufd(void *);
27496a8c 39STATIC int xfsbufd_wakeup(int, gfp_t);
ce8e922c 40STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
8e1f936b
RR
41static struct shrinker xfs_buf_shake = {
42 .shrink = xfsbufd_wakeup,
43 .seeks = DEFAULT_SEEKS,
44};
23ea4032 45
7989cb8e 46static struct workqueue_struct *xfslogd_workqueue;
0829c360 47struct workqueue_struct *xfsdatad_workqueue;
1da177e4 48
ce8e922c 49#ifdef XFS_BUF_TRACE
1da177e4 50void
ce8e922c
NS
51xfs_buf_trace(
52 xfs_buf_t *bp,
1da177e4
LT
53 char *id,
54 void *data,
55 void *ra)
56{
ce8e922c
NS
57 ktrace_enter(xfs_buf_trace_buf,
58 bp, id,
59 (void *)(unsigned long)bp->b_flags,
60 (void *)(unsigned long)bp->b_hold.counter,
61 (void *)(unsigned long)bp->b_sema.count.counter,
1da177e4
LT
62 (void *)current,
63 data, ra,
ce8e922c
NS
64 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66 (void *)(unsigned long)bp->b_buffer_length,
1da177e4
LT
67 NULL, NULL, NULL, NULL, NULL);
68}
ce8e922c
NS
69ktrace_t *xfs_buf_trace_buf;
70#define XFS_BUF_TRACE_SIZE 4096
71#define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
1da177e4 73#else
ce8e922c 74#define XB_TRACE(bp, id, data) do { } while (0)
1da177e4
LT
75#endif
76
ce8e922c
NS
77#ifdef XFS_BUF_LOCK_TRACKING
78# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 81#else
ce8e922c
NS
82# define XB_SET_OWNER(bp) do { } while (0)
83# define XB_CLEAR_OWNER(bp) do { } while (0)
84# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
85#endif
86
ce8e922c
NS
87#define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 90
ce8e922c
NS
91#define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 93
ce8e922c
NS
94#define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96#define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4
LT
98
99/*
ce8e922c 100 * Page Region interfaces.
1da177e4 101 *
ce8e922c
NS
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
1da177e4 105 *
ce8e922c 106 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 107 *
ce8e922c
NS
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
111 */
112#if (BITS_PER_LONG == 32)
113#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114#elif (BITS_PER_LONG == 64)
115#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
116#else
117#error BITS_PER_LONG must be 32 or 64
118#endif
119#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
122
123STATIC unsigned long
124page_region_mask(
125 size_t offset,
126 size_t length)
127{
128 unsigned long mask;
129 int first, final;
130
131 first = BTOPR(offset);
132 final = BTOPRT(offset + length - 1);
133 first = min(first, final);
134
135 mask = ~0UL;
136 mask <<= BITS_PER_LONG - (final - first);
137 mask >>= BITS_PER_LONG - (final);
138
139 ASSERT(offset + length <= PAGE_CACHE_SIZE);
140 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142 return mask;
143}
144
7989cb8e 145STATIC_INLINE void
1da177e4
LT
146set_page_region(
147 struct page *page,
148 size_t offset,
149 size_t length)
150{
4c21e2f2
HD
151 set_page_private(page,
152 page_private(page) | page_region_mask(offset, length));
153 if (page_private(page) == ~0UL)
1da177e4
LT
154 SetPageUptodate(page);
155}
156
7989cb8e 157STATIC_INLINE int
1da177e4
LT
158test_page_region(
159 struct page *page,
160 size_t offset,
161 size_t length)
162{
163 unsigned long mask = page_region_mask(offset, length);
164
4c21e2f2 165 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
166}
167
168/*
ce8e922c 169 * Mapping of multi-page buffers into contiguous virtual space
1da177e4
LT
170 */
171
172typedef struct a_list {
173 void *vm_addr;
174 struct a_list *next;
175} a_list_t;
176
7989cb8e
DC
177static a_list_t *as_free_head;
178static int as_list_len;
179static DEFINE_SPINLOCK(as_lock);
1da177e4
LT
180
181/*
ce8e922c 182 * Try to batch vunmaps because they are costly.
1da177e4
LT
183 */
184STATIC void
185free_address(
186 void *addr)
187{
188 a_list_t *aentry;
189
7f015072
JF
190#ifdef CONFIG_XEN
191 /*
192 * Xen needs to be able to make sure it can get an exclusive
193 * RO mapping of pages it wants to turn into a pagetable. If
194 * a newly allocated page is also still being vmap()ed by xfs,
195 * it will cause pagetable construction to fail. This is a
196 * quick workaround to always eagerly unmap pages so that Xen
197 * is happy.
198 */
199 vunmap(addr);
200 return;
201#endif
202
7b04d717 203 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
1da177e4
LT
204 if (likely(aentry)) {
205 spin_lock(&as_lock);
206 aentry->next = as_free_head;
207 aentry->vm_addr = addr;
208 as_free_head = aentry;
209 as_list_len++;
210 spin_unlock(&as_lock);
211 } else {
212 vunmap(addr);
213 }
214}
215
216STATIC void
217purge_addresses(void)
218{
219 a_list_t *aentry, *old;
220
221 if (as_free_head == NULL)
222 return;
223
224 spin_lock(&as_lock);
225 aentry = as_free_head;
226 as_free_head = NULL;
227 as_list_len = 0;
228 spin_unlock(&as_lock);
229
230 while ((old = aentry) != NULL) {
231 vunmap(aentry->vm_addr);
232 aentry = aentry->next;
233 kfree(old);
234 }
235}
236
237/*
ce8e922c 238 * Internal xfs_buf_t object manipulation
1da177e4
LT
239 */
240
241STATIC void
ce8e922c
NS
242_xfs_buf_initialize(
243 xfs_buf_t *bp,
1da177e4 244 xfs_buftarg_t *target,
204ab25f 245 xfs_off_t range_base,
1da177e4 246 size_t range_length,
ce8e922c 247 xfs_buf_flags_t flags)
1da177e4
LT
248{
249 /*
ce8e922c 250 * We don't want certain flags to appear in b_flags.
1da177e4 251 */
ce8e922c
NS
252 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
253
254 memset(bp, 0, sizeof(xfs_buf_t));
255 atomic_set(&bp->b_hold, 1);
256 init_MUTEX_LOCKED(&bp->b_iodonesema);
257 INIT_LIST_HEAD(&bp->b_list);
258 INIT_LIST_HEAD(&bp->b_hash_list);
259 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
260 XB_SET_OWNER(bp);
261 bp->b_target = target;
262 bp->b_file_offset = range_base;
1da177e4
LT
263 /*
264 * Set buffer_length and count_desired to the same value initially.
265 * I/O routines should use count_desired, which will be the same in
266 * most cases but may be reset (e.g. XFS recovery).
267 */
ce8e922c
NS
268 bp->b_buffer_length = bp->b_count_desired = range_length;
269 bp->b_flags = flags;
270 bp->b_bn = XFS_BUF_DADDR_NULL;
271 atomic_set(&bp->b_pin_count, 0);
272 init_waitqueue_head(&bp->b_waiters);
273
274 XFS_STATS_INC(xb_create);
275 XB_TRACE(bp, "initialize", target);
1da177e4
LT
276}
277
278/*
ce8e922c
NS
279 * Allocate a page array capable of holding a specified number
280 * of pages, and point the page buf at it.
1da177e4
LT
281 */
282STATIC int
ce8e922c
NS
283_xfs_buf_get_pages(
284 xfs_buf_t *bp,
1da177e4 285 int page_count,
ce8e922c 286 xfs_buf_flags_t flags)
1da177e4
LT
287{
288 /* Make sure that we have a page list */
ce8e922c
NS
289 if (bp->b_pages == NULL) {
290 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291 bp->b_page_count = page_count;
292 if (page_count <= XB_PAGES) {
293 bp->b_pages = bp->b_page_array;
1da177e4 294 } else {
ce8e922c
NS
295 bp->b_pages = kmem_alloc(sizeof(struct page *) *
296 page_count, xb_to_km(flags));
297 if (bp->b_pages == NULL)
1da177e4
LT
298 return -ENOMEM;
299 }
ce8e922c 300 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
301 }
302 return 0;
303}
304
305/*
ce8e922c 306 * Frees b_pages if it was allocated.
1da177e4
LT
307 */
308STATIC void
ce8e922c 309_xfs_buf_free_pages(
1da177e4
LT
310 xfs_buf_t *bp)
311{
ce8e922c
NS
312 if (bp->b_pages != bp->b_page_array) {
313 kmem_free(bp->b_pages,
314 bp->b_page_count * sizeof(struct page *));
1da177e4
LT
315 }
316}
317
318/*
319 * Releases the specified buffer.
320 *
321 * The modification state of any associated pages is left unchanged.
ce8e922c 322 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
323 * hashed and refcounted buffers
324 */
325void
ce8e922c 326xfs_buf_free(
1da177e4
LT
327 xfs_buf_t *bp)
328{
ce8e922c 329 XB_TRACE(bp, "free", 0);
1da177e4 330
ce8e922c 331 ASSERT(list_empty(&bp->b_hash_list));
1da177e4 332
1fa40b01 333 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
334 uint i;
335
ce8e922c
NS
336 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
337 free_address(bp->b_addr - bp->b_offset);
1da177e4 338
948ecdb4
NS
339 for (i = 0; i < bp->b_page_count; i++) {
340 struct page *page = bp->b_pages[i];
341
1fa40b01
CH
342 if (bp->b_flags & _XBF_PAGE_CACHE)
343 ASSERT(!PagePrivate(page));
948ecdb4
NS
344 page_cache_release(page);
345 }
ce8e922c 346 _xfs_buf_free_pages(bp);
1da177e4
LT
347 }
348
ce8e922c 349 xfs_buf_deallocate(bp);
1da177e4
LT
350}
351
352/*
353 * Finds all pages for buffer in question and builds it's page list.
354 */
355STATIC int
ce8e922c 356_xfs_buf_lookup_pages(
1da177e4
LT
357 xfs_buf_t *bp,
358 uint flags)
359{
ce8e922c
NS
360 struct address_space *mapping = bp->b_target->bt_mapping;
361 size_t blocksize = bp->b_target->bt_bsize;
362 size_t size = bp->b_count_desired;
1da177e4 363 size_t nbytes, offset;
ce8e922c 364 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
365 unsigned short page_count, i;
366 pgoff_t first;
204ab25f 367 xfs_off_t end;
1da177e4
LT
368 int error;
369
ce8e922c
NS
370 end = bp->b_file_offset + bp->b_buffer_length;
371 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 372
ce8e922c 373 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
374 if (unlikely(error))
375 return error;
ce8e922c 376 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 377
ce8e922c
NS
378 offset = bp->b_offset;
379 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 380
ce8e922c 381 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
382 struct page *page;
383 uint retries = 0;
384
385 retry:
386 page = find_or_create_page(mapping, first + i, gfp_mask);
387 if (unlikely(page == NULL)) {
ce8e922c
NS
388 if (flags & XBF_READ_AHEAD) {
389 bp->b_page_count = i;
390 for (i = 0; i < bp->b_page_count; i++)
391 unlock_page(bp->b_pages[i]);
1da177e4
LT
392 return -ENOMEM;
393 }
394
395 /*
396 * This could deadlock.
397 *
398 * But until all the XFS lowlevel code is revamped to
399 * handle buffer allocation failures we can't do much.
400 */
401 if (!(++retries % 100))
402 printk(KERN_ERR
403 "XFS: possible memory allocation "
404 "deadlock in %s (mode:0x%x)\n",
405 __FUNCTION__, gfp_mask);
406
ce8e922c 407 XFS_STATS_INC(xb_page_retries);
23ea4032 408 xfsbufd_wakeup(0, gfp_mask);
3fcfab16 409 congestion_wait(WRITE, HZ/50);
1da177e4
LT
410 goto retry;
411 }
412
ce8e922c 413 XFS_STATS_INC(xb_page_found);
1da177e4
LT
414
415 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
416 size -= nbytes;
417
948ecdb4 418 ASSERT(!PagePrivate(page));
1da177e4
LT
419 if (!PageUptodate(page)) {
420 page_count--;
421 if (blocksize >= PAGE_CACHE_SIZE) {
ce8e922c
NS
422 if (flags & XBF_READ)
423 bp->b_locked = 1;
1da177e4
LT
424 } else if (!PagePrivate(page)) {
425 if (test_page_region(page, offset, nbytes))
426 page_count++;
427 }
428 }
429
ce8e922c 430 bp->b_pages[i] = page;
1da177e4
LT
431 offset = 0;
432 }
433
ce8e922c
NS
434 if (!bp->b_locked) {
435 for (i = 0; i < bp->b_page_count; i++)
436 unlock_page(bp->b_pages[i]);
1da177e4
LT
437 }
438
ce8e922c
NS
439 if (page_count == bp->b_page_count)
440 bp->b_flags |= XBF_DONE;
1da177e4 441
ce8e922c 442 XB_TRACE(bp, "lookup_pages", (long)page_count);
1da177e4
LT
443 return error;
444}
445
446/*
447 * Map buffer into kernel address-space if nessecary.
448 */
449STATIC int
ce8e922c 450_xfs_buf_map_pages(
1da177e4
LT
451 xfs_buf_t *bp,
452 uint flags)
453{
454 /* A single page buffer is always mappable */
ce8e922c
NS
455 if (bp->b_page_count == 1) {
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 bp->b_flags |= XBF_MAPPED;
458 } else if (flags & XBF_MAPPED) {
1da177e4
LT
459 if (as_list_len > 64)
460 purge_addresses();
ce8e922c
NS
461 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
462 VM_MAP, PAGE_KERNEL);
463 if (unlikely(bp->b_addr == NULL))
1da177e4 464 return -ENOMEM;
ce8e922c
NS
465 bp->b_addr += bp->b_offset;
466 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
467 }
468
469 return 0;
470}
471
472/*
473 * Finding and Reading Buffers
474 */
475
476/*
ce8e922c 477 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
478 * a given range of an inode. The buffer is returned
479 * locked. If other overlapping buffers exist, they are
480 * released before the new buffer is created and locked,
481 * which may imply that this call will block until those buffers
482 * are unlocked. No I/O is implied by this call.
483 */
484xfs_buf_t *
ce8e922c 485_xfs_buf_find(
1da177e4 486 xfs_buftarg_t *btp, /* block device target */
204ab25f 487 xfs_off_t ioff, /* starting offset of range */
1da177e4 488 size_t isize, /* length of range */
ce8e922c
NS
489 xfs_buf_flags_t flags,
490 xfs_buf_t *new_bp)
1da177e4 491{
204ab25f 492 xfs_off_t range_base;
1da177e4
LT
493 size_t range_length;
494 xfs_bufhash_t *hash;
ce8e922c 495 xfs_buf_t *bp, *n;
1da177e4
LT
496
497 range_base = (ioff << BBSHIFT);
498 range_length = (isize << BBSHIFT);
499
500 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 501 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 502 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4
LT
503
504 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
505
506 spin_lock(&hash->bh_lock);
507
ce8e922c
NS
508 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
509 ASSERT(btp == bp->b_target);
510 if (bp->b_file_offset == range_base &&
511 bp->b_buffer_length == range_length) {
1da177e4 512 /*
ce8e922c 513 * If we look at something, bring it to the
1da177e4
LT
514 * front of the list for next time.
515 */
ce8e922c
NS
516 atomic_inc(&bp->b_hold);
517 list_move(&bp->b_hash_list, &hash->bh_list);
1da177e4
LT
518 goto found;
519 }
520 }
521
522 /* No match found */
ce8e922c
NS
523 if (new_bp) {
524 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 525 range_length, flags);
ce8e922c
NS
526 new_bp->b_hash = hash;
527 list_add(&new_bp->b_hash_list, &hash->bh_list);
1da177e4 528 } else {
ce8e922c 529 XFS_STATS_INC(xb_miss_locked);
1da177e4
LT
530 }
531
532 spin_unlock(&hash->bh_lock);
ce8e922c 533 return new_bp;
1da177e4
LT
534
535found:
536 spin_unlock(&hash->bh_lock);
537
538 /* Attempt to get the semaphore without sleeping,
539 * if this does not work then we need to drop the
540 * spinlock and do a hard attempt on the semaphore.
541 */
ce8e922c
NS
542 if (down_trylock(&bp->b_sema)) {
543 if (!(flags & XBF_TRYLOCK)) {
1da177e4 544 /* wait for buffer ownership */
ce8e922c
NS
545 XB_TRACE(bp, "get_lock", 0);
546 xfs_buf_lock(bp);
547 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
548 } else {
549 /* We asked for a trylock and failed, no need
550 * to look at file offset and length here, we
ce8e922c
NS
551 * know that this buffer at least overlaps our
552 * buffer and is locked, therefore our buffer
553 * either does not exist, or is this buffer.
1da177e4 554 */
ce8e922c
NS
555 xfs_buf_rele(bp);
556 XFS_STATS_INC(xb_busy_locked);
557 return NULL;
1da177e4
LT
558 }
559 } else {
560 /* trylock worked */
ce8e922c 561 XB_SET_OWNER(bp);
1da177e4
LT
562 }
563
ce8e922c
NS
564 if (bp->b_flags & XBF_STALE) {
565 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
566 bp->b_flags &= XBF_MAPPED;
2f926587 567 }
ce8e922c
NS
568 XB_TRACE(bp, "got_lock", 0);
569 XFS_STATS_INC(xb_get_locked);
570 return bp;
1da177e4
LT
571}
572
573/*
ce8e922c 574 * Assembles a buffer covering the specified range.
1da177e4
LT
575 * Storage in memory for all portions of the buffer will be allocated,
576 * although backing storage may not be.
577 */
578xfs_buf_t *
ce8e922c 579xfs_buf_get_flags(
1da177e4 580 xfs_buftarg_t *target,/* target for buffer */
204ab25f 581 xfs_off_t ioff, /* starting offset of range */
1da177e4 582 size_t isize, /* length of range */
ce8e922c 583 xfs_buf_flags_t flags)
1da177e4 584{
ce8e922c 585 xfs_buf_t *bp, *new_bp;
1da177e4
LT
586 int error = 0, i;
587
ce8e922c
NS
588 new_bp = xfs_buf_allocate(flags);
589 if (unlikely(!new_bp))
1da177e4
LT
590 return NULL;
591
ce8e922c
NS
592 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
593 if (bp == new_bp) {
594 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
595 if (error)
596 goto no_buffer;
597 } else {
ce8e922c
NS
598 xfs_buf_deallocate(new_bp);
599 if (unlikely(bp == NULL))
1da177e4
LT
600 return NULL;
601 }
602
ce8e922c
NS
603 for (i = 0; i < bp->b_page_count; i++)
604 mark_page_accessed(bp->b_pages[i]);
1da177e4 605
ce8e922c
NS
606 if (!(bp->b_flags & XBF_MAPPED)) {
607 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
608 if (unlikely(error)) {
609 printk(KERN_WARNING "%s: failed to map pages\n",
610 __FUNCTION__);
611 goto no_buffer;
612 }
613 }
614
ce8e922c 615 XFS_STATS_INC(xb_get);
1da177e4
LT
616
617 /*
618 * Always fill in the block number now, the mapped cases can do
619 * their own overlay of this later.
620 */
ce8e922c
NS
621 bp->b_bn = ioff;
622 bp->b_count_desired = bp->b_buffer_length;
1da177e4 623
ce8e922c
NS
624 XB_TRACE(bp, "get", (unsigned long)flags);
625 return bp;
1da177e4
LT
626
627 no_buffer:
ce8e922c
NS
628 if (flags & (XBF_LOCK | XBF_TRYLOCK))
629 xfs_buf_unlock(bp);
630 xfs_buf_rele(bp);
1da177e4
LT
631 return NULL;
632}
633
634xfs_buf_t *
635xfs_buf_read_flags(
636 xfs_buftarg_t *target,
204ab25f 637 xfs_off_t ioff,
1da177e4 638 size_t isize,
ce8e922c 639 xfs_buf_flags_t flags)
1da177e4 640{
ce8e922c
NS
641 xfs_buf_t *bp;
642
643 flags |= XBF_READ;
644
645 bp = xfs_buf_get_flags(target, ioff, isize, flags);
646 if (bp) {
647 if (!XFS_BUF_ISDONE(bp)) {
648 XB_TRACE(bp, "read", (unsigned long)flags);
649 XFS_STATS_INC(xb_get_read);
650 xfs_buf_iostart(bp, flags);
651 } else if (flags & XBF_ASYNC) {
652 XB_TRACE(bp, "read_async", (unsigned long)flags);
1da177e4
LT
653 /*
654 * Read ahead call which is already satisfied,
655 * drop the buffer
656 */
657 goto no_buffer;
658 } else {
ce8e922c 659 XB_TRACE(bp, "read_done", (unsigned long)flags);
1da177e4 660 /* We do not want read in the flags */
ce8e922c 661 bp->b_flags &= ~XBF_READ;
1da177e4
LT
662 }
663 }
664
ce8e922c 665 return bp;
1da177e4
LT
666
667 no_buffer:
ce8e922c
NS
668 if (flags & (XBF_LOCK | XBF_TRYLOCK))
669 xfs_buf_unlock(bp);
670 xfs_buf_rele(bp);
1da177e4
LT
671 return NULL;
672}
673
1da177e4 674/*
ce8e922c
NS
675 * If we are not low on memory then do the readahead in a deadlock
676 * safe manner.
1da177e4
LT
677 */
678void
ce8e922c 679xfs_buf_readahead(
1da177e4 680 xfs_buftarg_t *target,
204ab25f 681 xfs_off_t ioff,
1da177e4 682 size_t isize,
ce8e922c 683 xfs_buf_flags_t flags)
1da177e4
LT
684{
685 struct backing_dev_info *bdi;
686
ce8e922c 687 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
688 if (bdi_read_congested(bdi))
689 return;
690
ce8e922c 691 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
1da177e4
LT
692 xfs_buf_read_flags(target, ioff, isize, flags);
693}
694
695xfs_buf_t *
ce8e922c 696xfs_buf_get_empty(
1da177e4
LT
697 size_t len,
698 xfs_buftarg_t *target)
699{
ce8e922c 700 xfs_buf_t *bp;
1da177e4 701
ce8e922c
NS
702 bp = xfs_buf_allocate(0);
703 if (bp)
704 _xfs_buf_initialize(bp, target, 0, len, 0);
705 return bp;
1da177e4
LT
706}
707
708static inline struct page *
709mem_to_page(
710 void *addr)
711{
712 if (((unsigned long)addr < VMALLOC_START) ||
713 ((unsigned long)addr >= VMALLOC_END)) {
714 return virt_to_page(addr);
715 } else {
716 return vmalloc_to_page(addr);
717 }
718}
719
720int
ce8e922c
NS
721xfs_buf_associate_memory(
722 xfs_buf_t *bp,
1da177e4
LT
723 void *mem,
724 size_t len)
725{
726 int rval;
727 int i = 0;
728 size_t ptr;
729 size_t end, end_cur;
730 off_t offset;
731 int page_count;
732
733 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
734 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
735 if (offset && (len > PAGE_CACHE_SIZE))
736 page_count++;
737
738 /* Free any previous set of page pointers */
ce8e922c
NS
739 if (bp->b_pages)
740 _xfs_buf_free_pages(bp);
1da177e4 741
ce8e922c
NS
742 bp->b_pages = NULL;
743 bp->b_addr = mem;
1da177e4 744
ce8e922c 745 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
746 if (rval)
747 return rval;
748
ce8e922c 749 bp->b_offset = offset;
1da177e4
LT
750 ptr = (size_t) mem & PAGE_CACHE_MASK;
751 end = PAGE_CACHE_ALIGN((size_t) mem + len);
752 end_cur = end;
753 /* set up first page */
ce8e922c 754 bp->b_pages[0] = mem_to_page(mem);
1da177e4
LT
755
756 ptr += PAGE_CACHE_SIZE;
ce8e922c 757 bp->b_page_count = ++i;
1da177e4 758 while (ptr < end) {
ce8e922c
NS
759 bp->b_pages[i] = mem_to_page((void *)ptr);
760 bp->b_page_count = ++i;
1da177e4
LT
761 ptr += PAGE_CACHE_SIZE;
762 }
ce8e922c 763 bp->b_locked = 0;
1da177e4 764
ce8e922c
NS
765 bp->b_count_desired = bp->b_buffer_length = len;
766 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
767
768 return 0;
769}
770
771xfs_buf_t *
ce8e922c 772xfs_buf_get_noaddr(
1da177e4
LT
773 size_t len,
774 xfs_buftarg_t *target)
775{
1fa40b01
CH
776 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
777 int error, i;
1da177e4 778 xfs_buf_t *bp;
1da177e4 779
ce8e922c 780 bp = xfs_buf_allocate(0);
1da177e4
LT
781 if (unlikely(bp == NULL))
782 goto fail;
ce8e922c 783 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 784
1fa40b01
CH
785 error = _xfs_buf_get_pages(bp, page_count, 0);
786 if (error)
1da177e4
LT
787 goto fail_free_buf;
788
1fa40b01
CH
789 for (i = 0; i < page_count; i++) {
790 bp->b_pages[i] = alloc_page(GFP_KERNEL);
791 if (!bp->b_pages[i])
792 goto fail_free_mem;
1da177e4 793 }
1fa40b01 794 bp->b_flags |= _XBF_PAGES;
1da177e4 795
1fa40b01
CH
796 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
797 if (unlikely(error)) {
798 printk(KERN_WARNING "%s: failed to map pages\n",
799 __FUNCTION__);
1da177e4 800 goto fail_free_mem;
1fa40b01 801 }
1da177e4 802
ce8e922c 803 xfs_buf_unlock(bp);
1da177e4 804
1fa40b01 805 XB_TRACE(bp, "no_daddr", len);
1da177e4 806 return bp;
1fa40b01 807
1da177e4 808 fail_free_mem:
1fa40b01
CH
809 while (--i >= 0)
810 __free_page(bp->b_pages[i]);
ca165b88 811 _xfs_buf_free_pages(bp);
1da177e4 812 fail_free_buf:
ca165b88 813 xfs_buf_deallocate(bp);
1da177e4
LT
814 fail:
815 return NULL;
816}
817
818/*
1da177e4
LT
819 * Increment reference count on buffer, to hold the buffer concurrently
820 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
821 * Must hold the buffer already to call this function.
822 */
823void
ce8e922c
NS
824xfs_buf_hold(
825 xfs_buf_t *bp)
1da177e4 826{
ce8e922c
NS
827 atomic_inc(&bp->b_hold);
828 XB_TRACE(bp, "hold", 0);
1da177e4
LT
829}
830
831/*
ce8e922c
NS
832 * Releases a hold on the specified buffer. If the
833 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
834 */
835void
ce8e922c
NS
836xfs_buf_rele(
837 xfs_buf_t *bp)
1da177e4 838{
ce8e922c 839 xfs_bufhash_t *hash = bp->b_hash;
1da177e4 840
ce8e922c 841 XB_TRACE(bp, "rele", bp->b_relse);
1da177e4 842
fad3aa1e
NS
843 if (unlikely(!hash)) {
844 ASSERT(!bp->b_relse);
845 if (atomic_dec_and_test(&bp->b_hold))
846 xfs_buf_free(bp);
847 return;
848 }
849
ce8e922c
NS
850 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
851 if (bp->b_relse) {
852 atomic_inc(&bp->b_hold);
1da177e4 853 spin_unlock(&hash->bh_lock);
ce8e922c
NS
854 (*(bp->b_relse)) (bp);
855 } else if (bp->b_flags & XBF_FS_MANAGED) {
1da177e4 856 spin_unlock(&hash->bh_lock);
1da177e4 857 } else {
ce8e922c
NS
858 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
859 list_del_init(&bp->b_hash_list);
1da177e4 860 spin_unlock(&hash->bh_lock);
ce8e922c 861 xfs_buf_free(bp);
1da177e4 862 }
2f926587
DC
863 } else {
864 /*
865 * Catch reference count leaks
866 */
ce8e922c 867 ASSERT(atomic_read(&bp->b_hold) >= 0);
1da177e4
LT
868 }
869}
870
871
872/*
873 * Mutual exclusion on buffers. Locking model:
874 *
875 * Buffers associated with inodes for which buffer locking
876 * is not enabled are not protected by semaphores, and are
877 * assumed to be exclusively owned by the caller. There is a
878 * spinlock in the buffer, used by the caller when concurrent
879 * access is possible.
880 */
881
882/*
ce8e922c
NS
883 * Locks a buffer object, if it is not already locked.
884 * Note that this in no way locks the underlying pages, so it is only
885 * useful for synchronizing concurrent use of buffer objects, not for
886 * synchronizing independent access to the underlying pages.
1da177e4
LT
887 */
888int
ce8e922c
NS
889xfs_buf_cond_lock(
890 xfs_buf_t *bp)
1da177e4
LT
891{
892 int locked;
893
ce8e922c 894 locked = down_trylock(&bp->b_sema) == 0;
1da177e4 895 if (locked) {
ce8e922c 896 XB_SET_OWNER(bp);
1da177e4 897 }
ce8e922c
NS
898 XB_TRACE(bp, "cond_lock", (long)locked);
899 return locked ? 0 : -EBUSY;
1da177e4
LT
900}
901
902#if defined(DEBUG) || defined(XFS_BLI_TRACE)
1da177e4 903int
ce8e922c
NS
904xfs_buf_lock_value(
905 xfs_buf_t *bp)
1da177e4 906{
ce8e922c 907 return atomic_read(&bp->b_sema.count);
1da177e4
LT
908}
909#endif
910
911/*
ce8e922c
NS
912 * Locks a buffer object.
913 * Note that this in no way locks the underlying pages, so it is only
914 * useful for synchronizing concurrent use of buffer objects, not for
915 * synchronizing independent access to the underlying pages.
1da177e4 916 */
ce8e922c
NS
917void
918xfs_buf_lock(
919 xfs_buf_t *bp)
1da177e4 920{
ce8e922c
NS
921 XB_TRACE(bp, "lock", 0);
922 if (atomic_read(&bp->b_io_remaining))
923 blk_run_address_space(bp->b_target->bt_mapping);
924 down(&bp->b_sema);
925 XB_SET_OWNER(bp);
926 XB_TRACE(bp, "locked", 0);
1da177e4
LT
927}
928
929/*
ce8e922c 930 * Releases the lock on the buffer object.
2f926587 931 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 932 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
933 * take a reference for the delwri queue because the unlocker is going to
934 * drop their's and they don't know we just queued it.
1da177e4
LT
935 */
936void
ce8e922c
NS
937xfs_buf_unlock(
938 xfs_buf_t *bp)
1da177e4 939{
ce8e922c
NS
940 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
941 atomic_inc(&bp->b_hold);
942 bp->b_flags |= XBF_ASYNC;
943 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
944 }
945
ce8e922c
NS
946 XB_CLEAR_OWNER(bp);
947 up(&bp->b_sema);
948 XB_TRACE(bp, "unlock", 0);
1da177e4
LT
949}
950
951
952/*
953 * Pinning Buffer Storage in Memory
ce8e922c 954 * Ensure that no attempt to force a buffer to disk will succeed.
1da177e4
LT
955 */
956void
ce8e922c
NS
957xfs_buf_pin(
958 xfs_buf_t *bp)
1da177e4 959{
ce8e922c
NS
960 atomic_inc(&bp->b_pin_count);
961 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
1da177e4
LT
962}
963
1da177e4 964void
ce8e922c
NS
965xfs_buf_unpin(
966 xfs_buf_t *bp)
1da177e4 967{
ce8e922c
NS
968 if (atomic_dec_and_test(&bp->b_pin_count))
969 wake_up_all(&bp->b_waiters);
970 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
1da177e4
LT
971}
972
973int
ce8e922c
NS
974xfs_buf_ispin(
975 xfs_buf_t *bp)
1da177e4 976{
ce8e922c 977 return atomic_read(&bp->b_pin_count);
1da177e4
LT
978}
979
ce8e922c
NS
980STATIC void
981xfs_buf_wait_unpin(
982 xfs_buf_t *bp)
1da177e4
LT
983{
984 DECLARE_WAITQUEUE (wait, current);
985
ce8e922c 986 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
987 return;
988
ce8e922c 989 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
990 for (;;) {
991 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 992 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 993 break;
ce8e922c
NS
994 if (atomic_read(&bp->b_io_remaining))
995 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
996 schedule();
997 }
ce8e922c 998 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
999 set_current_state(TASK_RUNNING);
1000}
1001
1002/*
1003 * Buffer Utility Routines
1004 */
1005
1da177e4 1006STATIC void
ce8e922c 1007xfs_buf_iodone_work(
c4028958 1008 struct work_struct *work)
1da177e4 1009{
c4028958
DH
1010 xfs_buf_t *bp =
1011 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 1012
0bfefc46
DC
1013 /*
1014 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
1015 * ordered flag and reissue them. Because we can't tell the higher
1016 * layers directly that they should not issue ordered I/O anymore, they
1017 * need to check if the ordered flag was cleared during I/O completion.
1018 */
1019 if ((bp->b_error == EOPNOTSUPP) &&
1020 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1021 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1022 bp->b_flags &= ~XBF_ORDERED;
1023 xfs_buf_iorequest(bp);
1024 } else if (bp->b_iodone)
ce8e922c
NS
1025 (*(bp->b_iodone))(bp);
1026 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
1027 xfs_buf_relse(bp);
1028}
1029
1030void
ce8e922c
NS
1031xfs_buf_ioend(
1032 xfs_buf_t *bp,
1da177e4
LT
1033 int schedule)
1034{
ce8e922c
NS
1035 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1036 if (bp->b_error == 0)
1037 bp->b_flags |= XBF_DONE;
1da177e4 1038
ce8e922c 1039 XB_TRACE(bp, "iodone", bp->b_iodone);
1da177e4 1040
ce8e922c 1041 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1042 if (schedule) {
c4028958 1043 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1044 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1045 } else {
c4028958 1046 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1047 }
1048 } else {
ce8e922c 1049 up(&bp->b_iodonesema);
1da177e4
LT
1050 }
1051}
1052
1da177e4 1053void
ce8e922c
NS
1054xfs_buf_ioerror(
1055 xfs_buf_t *bp,
1056 int error)
1da177e4
LT
1057{
1058 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c
NS
1059 bp->b_error = (unsigned short)error;
1060 XB_TRACE(bp, "ioerror", (unsigned long)error);
1da177e4
LT
1061}
1062
1063/*
ce8e922c
NS
1064 * Initiate I/O on a buffer, based on the flags supplied.
1065 * The b_iodone routine in the buffer supplied will only be called
1da177e4 1066 * when all of the subsidiary I/O requests, if any, have been completed.
1da177e4
LT
1067 */
1068int
ce8e922c
NS
1069xfs_buf_iostart(
1070 xfs_buf_t *bp,
1071 xfs_buf_flags_t flags)
1da177e4
LT
1072{
1073 int status = 0;
1074
ce8e922c 1075 XB_TRACE(bp, "iostart", (unsigned long)flags);
1da177e4 1076
ce8e922c
NS
1077 if (flags & XBF_DELWRI) {
1078 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1079 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1080 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1081 return status;
1082 }
1083
ce8e922c
NS
1084 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1085 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1086 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1087 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1da177e4 1088
ce8e922c 1089 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1da177e4
LT
1090
1091 /* For writes allow an alternate strategy routine to precede
1092 * the actual I/O request (which may not be issued at all in
1093 * a shutdown situation, for example).
1094 */
ce8e922c
NS
1095 status = (flags & XBF_WRITE) ?
1096 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1da177e4
LT
1097
1098 /* Wait for I/O if we are not an async request.
1099 * Note: async I/O request completion will release the buffer,
1100 * and that can already be done by this point. So using the
1101 * buffer pointer from here on, after async I/O, is invalid.
1102 */
ce8e922c
NS
1103 if (!status && !(flags & XBF_ASYNC))
1104 status = xfs_buf_iowait(bp);
1da177e4
LT
1105
1106 return status;
1107}
1108
7989cb8e 1109STATIC_INLINE int
ce8e922c
NS
1110_xfs_buf_iolocked(
1111 xfs_buf_t *bp)
1da177e4 1112{
ce8e922c
NS
1113 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1114 if (bp->b_flags & XBF_READ)
1115 return bp->b_locked;
1da177e4
LT
1116 return 0;
1117}
1118
7989cb8e 1119STATIC_INLINE void
ce8e922c
NS
1120_xfs_buf_ioend(
1121 xfs_buf_t *bp,
1da177e4
LT
1122 int schedule)
1123{
ce8e922c
NS
1124 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1125 bp->b_locked = 0;
1126 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1127 }
1128}
1129
782e3b3b 1130STATIC void
ce8e922c 1131xfs_buf_bio_end_io(
1da177e4 1132 struct bio *bio,
1da177e4
LT
1133 int error)
1134{
ce8e922c
NS
1135 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1136 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1137 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1138
1da177e4 1139 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
ce8e922c 1140 bp->b_error = EIO;
1da177e4 1141
eedb5530 1142 do {
1da177e4
LT
1143 struct page *page = bvec->bv_page;
1144
948ecdb4 1145 ASSERT(!PagePrivate(page));
ce8e922c
NS
1146 if (unlikely(bp->b_error)) {
1147 if (bp->b_flags & XBF_READ)
eedb5530 1148 ClearPageUptodate(page);
ce8e922c 1149 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1150 SetPageUptodate(page);
1151 } else if (!PagePrivate(page) &&
ce8e922c 1152 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1153 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1154 }
1155
eedb5530
NS
1156 if (--bvec >= bio->bi_io_vec)
1157 prefetchw(&bvec->bv_page->flags);
1158
ce8e922c 1159 if (_xfs_buf_iolocked(bp)) {
1da177e4
LT
1160 unlock_page(page);
1161 }
eedb5530 1162 } while (bvec >= bio->bi_io_vec);
1da177e4 1163
ce8e922c 1164 _xfs_buf_ioend(bp, 1);
1da177e4 1165 bio_put(bio);
1da177e4
LT
1166}
1167
1168STATIC void
ce8e922c
NS
1169_xfs_buf_ioapply(
1170 xfs_buf_t *bp)
1da177e4
LT
1171{
1172 int i, rw, map_i, total_nr_pages, nr_pages;
1173 struct bio *bio;
ce8e922c
NS
1174 int offset = bp->b_offset;
1175 int size = bp->b_count_desired;
1176 sector_t sector = bp->b_bn;
1177 unsigned int blocksize = bp->b_target->bt_bsize;
1178 int locking = _xfs_buf_iolocked(bp);
1da177e4 1179
ce8e922c 1180 total_nr_pages = bp->b_page_count;
1da177e4
LT
1181 map_i = 0;
1182
ce8e922c
NS
1183 if (bp->b_flags & XBF_ORDERED) {
1184 ASSERT(!(bp->b_flags & XBF_READ));
f538d4da 1185 rw = WRITE_BARRIER;
51bdd706
NS
1186 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1187 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1188 bp->b_flags &= ~_XBF_RUN_QUEUES;
1189 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1190 } else {
1191 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1192 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1193 }
1194
ce8e922c 1195 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1196 * we populate up the whole page, and hence the other metadata
1197 * in the same page. This optimization is only valid when the
ce8e922c 1198 * filesystem block size is not smaller than the page size.
1da177e4 1199 */
ce8e922c
NS
1200 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1201 (bp->b_flags & XBF_READ) && locking &&
1202 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1203 bio = bio_alloc(GFP_NOIO, 1);
1204
ce8e922c 1205 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1206 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1207 bio->bi_end_io = xfs_buf_bio_end_io;
1208 bio->bi_private = bp;
1da177e4 1209
ce8e922c 1210 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1211 size = 0;
1212
ce8e922c 1213 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1214
1215 goto submit_io;
1216 }
1217
1218 /* Lock down the pages which we need to for the request */
ce8e922c 1219 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1da177e4
LT
1220 for (i = 0; size; i++) {
1221 int nbytes = PAGE_CACHE_SIZE - offset;
ce8e922c 1222 struct page *page = bp->b_pages[i];
1da177e4
LT
1223
1224 if (nbytes > size)
1225 nbytes = size;
1226
1227 lock_page(page);
1228
1229 size -= nbytes;
1230 offset = 0;
1231 }
ce8e922c
NS
1232 offset = bp->b_offset;
1233 size = bp->b_count_desired;
1da177e4
LT
1234 }
1235
1236next_chunk:
ce8e922c 1237 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1238 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1239 if (nr_pages > total_nr_pages)
1240 nr_pages = total_nr_pages;
1241
1242 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1243 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1244 bio->bi_sector = sector;
ce8e922c
NS
1245 bio->bi_end_io = xfs_buf_bio_end_io;
1246 bio->bi_private = bp;
1da177e4
LT
1247
1248 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1249 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1250
1251 if (nbytes > size)
1252 nbytes = size;
1253
ce8e922c
NS
1254 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1255 if (rbytes < nbytes)
1da177e4
LT
1256 break;
1257
1258 offset = 0;
1259 sector += nbytes >> BBSHIFT;
1260 size -= nbytes;
1261 total_nr_pages--;
1262 }
1263
1264submit_io:
1265 if (likely(bio->bi_size)) {
1266 submit_bio(rw, bio);
1267 if (size)
1268 goto next_chunk;
1269 } else {
1270 bio_put(bio);
ce8e922c 1271 xfs_buf_ioerror(bp, EIO);
1da177e4
LT
1272 }
1273}
1274
1da177e4 1275int
ce8e922c
NS
1276xfs_buf_iorequest(
1277 xfs_buf_t *bp)
1da177e4 1278{
ce8e922c 1279 XB_TRACE(bp, "iorequest", 0);
1da177e4 1280
ce8e922c
NS
1281 if (bp->b_flags & XBF_DELWRI) {
1282 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1283 return 0;
1284 }
1285
ce8e922c
NS
1286 if (bp->b_flags & XBF_WRITE) {
1287 xfs_buf_wait_unpin(bp);
1da177e4
LT
1288 }
1289
ce8e922c 1290 xfs_buf_hold(bp);
1da177e4
LT
1291
1292 /* Set the count to 1 initially, this will stop an I/O
1293 * completion callout which happens before we have started
ce8e922c 1294 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1295 */
ce8e922c
NS
1296 atomic_set(&bp->b_io_remaining, 1);
1297 _xfs_buf_ioapply(bp);
1298 _xfs_buf_ioend(bp, 0);
1da177e4 1299
ce8e922c 1300 xfs_buf_rele(bp);
1da177e4
LT
1301 return 0;
1302}
1303
1304/*
ce8e922c
NS
1305 * Waits for I/O to complete on the buffer supplied.
1306 * It returns immediately if no I/O is pending.
1307 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1308 */
1309int
ce8e922c
NS
1310xfs_buf_iowait(
1311 xfs_buf_t *bp)
1da177e4 1312{
ce8e922c
NS
1313 XB_TRACE(bp, "iowait", 0);
1314 if (atomic_read(&bp->b_io_remaining))
1315 blk_run_address_space(bp->b_target->bt_mapping);
1316 down(&bp->b_iodonesema);
1317 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1318 return bp->b_error;
1da177e4
LT
1319}
1320
ce8e922c
NS
1321xfs_caddr_t
1322xfs_buf_offset(
1323 xfs_buf_t *bp,
1da177e4
LT
1324 size_t offset)
1325{
1326 struct page *page;
1327
ce8e922c
NS
1328 if (bp->b_flags & XBF_MAPPED)
1329 return XFS_BUF_PTR(bp) + offset;
1da177e4 1330
ce8e922c
NS
1331 offset += bp->b_offset;
1332 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1333 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1334}
1335
1336/*
1da177e4
LT
1337 * Move data into or out of a buffer.
1338 */
1339void
ce8e922c
NS
1340xfs_buf_iomove(
1341 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1342 size_t boff, /* starting buffer offset */
1343 size_t bsize, /* length to copy */
1344 caddr_t data, /* data address */
ce8e922c 1345 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1346{
1347 size_t bend, cpoff, csize;
1348 struct page *page;
1349
1350 bend = boff + bsize;
1351 while (boff < bend) {
ce8e922c
NS
1352 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1353 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1354 csize = min_t(size_t,
ce8e922c 1355 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1356
1357 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1358
1359 switch (mode) {
ce8e922c 1360 case XBRW_ZERO:
1da177e4
LT
1361 memset(page_address(page) + cpoff, 0, csize);
1362 break;
ce8e922c 1363 case XBRW_READ:
1da177e4
LT
1364 memcpy(data, page_address(page) + cpoff, csize);
1365 break;
ce8e922c 1366 case XBRW_WRITE:
1da177e4
LT
1367 memcpy(page_address(page) + cpoff, data, csize);
1368 }
1369
1370 boff += csize;
1371 data += csize;
1372 }
1373}
1374
1375/*
ce8e922c 1376 * Handling of buffer targets (buftargs).
1da177e4
LT
1377 */
1378
1379/*
ce8e922c
NS
1380 * Wait for any bufs with callbacks that have been submitted but
1381 * have not yet returned... walk the hash list for the target.
1da177e4
LT
1382 */
1383void
1384xfs_wait_buftarg(
1385 xfs_buftarg_t *btp)
1386{
1387 xfs_buf_t *bp, *n;
1388 xfs_bufhash_t *hash;
1389 uint i;
1390
1391 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1392 hash = &btp->bt_hash[i];
1393again:
1394 spin_lock(&hash->bh_lock);
ce8e922c
NS
1395 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1396 ASSERT(btp == bp->b_target);
1397 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1da177e4 1398 spin_unlock(&hash->bh_lock);
2f926587
DC
1399 /*
1400 * Catch superblock reference count leaks
1401 * immediately
1402 */
ce8e922c 1403 BUG_ON(bp->b_bn == 0);
1da177e4
LT
1404 delay(100);
1405 goto again;
1406 }
1407 }
1408 spin_unlock(&hash->bh_lock);
1409 }
1410}
1411
1412/*
ce8e922c
NS
1413 * Allocate buffer hash table for a given target.
1414 * For devices containing metadata (i.e. not the log/realtime devices)
1415 * we need to allocate a much larger hash table.
1da177e4
LT
1416 */
1417STATIC void
1418xfs_alloc_bufhash(
1419 xfs_buftarg_t *btp,
1420 int external)
1421{
1422 unsigned int i;
1423
1424 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1425 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1426 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
93c189c1 1427 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1da177e4
LT
1428 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1429 spin_lock_init(&btp->bt_hash[i].bh_lock);
1430 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1431 }
1432}
1433
1434STATIC void
1435xfs_free_bufhash(
1436 xfs_buftarg_t *btp)
1437{
ce8e922c 1438 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1da177e4
LT
1439 btp->bt_hash = NULL;
1440}
1441
a6867a68 1442/*
ce8e922c 1443 * buftarg list for delwrite queue processing
a6867a68 1444 */
e6a0e9cd 1445static LIST_HEAD(xfs_buftarg_list);
7989cb8e 1446static DEFINE_SPINLOCK(xfs_buftarg_lock);
a6867a68
DC
1447
1448STATIC void
1449xfs_register_buftarg(
1450 xfs_buftarg_t *btp)
1451{
1452 spin_lock(&xfs_buftarg_lock);
1453 list_add(&btp->bt_list, &xfs_buftarg_list);
1454 spin_unlock(&xfs_buftarg_lock);
1455}
1456
1457STATIC void
1458xfs_unregister_buftarg(
1459 xfs_buftarg_t *btp)
1460{
1461 spin_lock(&xfs_buftarg_lock);
1462 list_del(&btp->bt_list);
1463 spin_unlock(&xfs_buftarg_lock);
1464}
1465
1da177e4
LT
1466void
1467xfs_free_buftarg(
1468 xfs_buftarg_t *btp,
1469 int external)
1470{
1471 xfs_flush_buftarg(btp, 1);
f4a9f28a 1472 xfs_blkdev_issue_flush(btp);
1da177e4 1473 if (external)
ce8e922c 1474 xfs_blkdev_put(btp->bt_bdev);
1da177e4 1475 xfs_free_bufhash(btp);
ce8e922c 1476 iput(btp->bt_mapping->host);
a6867a68 1477
ce8e922c
NS
1478 /* Unregister the buftarg first so that we don't get a
1479 * wakeup finding a non-existent task
1480 */
a6867a68
DC
1481 xfs_unregister_buftarg(btp);
1482 kthread_stop(btp->bt_task);
1483
1da177e4
LT
1484 kmem_free(btp, sizeof(*btp));
1485}
1486
1da177e4
LT
1487STATIC int
1488xfs_setsize_buftarg_flags(
1489 xfs_buftarg_t *btp,
1490 unsigned int blocksize,
1491 unsigned int sectorsize,
1492 int verbose)
1493{
ce8e922c
NS
1494 btp->bt_bsize = blocksize;
1495 btp->bt_sshift = ffs(sectorsize) - 1;
1496 btp->bt_smask = sectorsize - 1;
1da177e4 1497
ce8e922c 1498 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1499 printk(KERN_WARNING
1500 "XFS: Cannot set_blocksize to %u on device %s\n",
1501 sectorsize, XFS_BUFTARG_NAME(btp));
1502 return EINVAL;
1503 }
1504
1505 if (verbose &&
1506 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1507 printk(KERN_WARNING
1508 "XFS: %u byte sectors in use on device %s. "
1509 "This is suboptimal; %u or greater is ideal.\n",
1510 sectorsize, XFS_BUFTARG_NAME(btp),
1511 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1512 }
1513
1514 return 0;
1515}
1516
1517/*
ce8e922c
NS
1518 * When allocating the initial buffer target we have not yet
1519 * read in the superblock, so don't know what sized sectors
1520 * are being used is at this early stage. Play safe.
1521 */
1da177e4
LT
1522STATIC int
1523xfs_setsize_buftarg_early(
1524 xfs_buftarg_t *btp,
1525 struct block_device *bdev)
1526{
1527 return xfs_setsize_buftarg_flags(btp,
1528 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1529}
1530
1531int
1532xfs_setsize_buftarg(
1533 xfs_buftarg_t *btp,
1534 unsigned int blocksize,
1535 unsigned int sectorsize)
1536{
1537 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1538}
1539
1540STATIC int
1541xfs_mapping_buftarg(
1542 xfs_buftarg_t *btp,
1543 struct block_device *bdev)
1544{
1545 struct backing_dev_info *bdi;
1546 struct inode *inode;
1547 struct address_space *mapping;
f5e54d6e 1548 static const struct address_space_operations mapping_aops = {
1da177e4 1549 .sync_page = block_sync_page,
e965f963 1550 .migratepage = fail_migrate_page,
1da177e4
LT
1551 };
1552
1553 inode = new_inode(bdev->bd_inode->i_sb);
1554 if (!inode) {
1555 printk(KERN_WARNING
1556 "XFS: Cannot allocate mapping inode for device %s\n",
1557 XFS_BUFTARG_NAME(btp));
1558 return ENOMEM;
1559 }
1560 inode->i_mode = S_IFBLK;
1561 inode->i_bdev = bdev;
1562 inode->i_rdev = bdev->bd_dev;
1563 bdi = blk_get_backing_dev_info(bdev);
1564 if (!bdi)
1565 bdi = &default_backing_dev_info;
1566 mapping = &inode->i_data;
1567 mapping->a_ops = &mapping_aops;
1568 mapping->backing_dev_info = bdi;
1569 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1570 btp->bt_mapping = mapping;
1da177e4
LT
1571 return 0;
1572}
1573
a6867a68
DC
1574STATIC int
1575xfs_alloc_delwrite_queue(
1576 xfs_buftarg_t *btp)
1577{
1578 int error = 0;
1579
1580 INIT_LIST_HEAD(&btp->bt_list);
1581 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1582 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1583 btp->bt_flags = 0;
1584 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1585 if (IS_ERR(btp->bt_task)) {
1586 error = PTR_ERR(btp->bt_task);
1587 goto out_error;
1588 }
1589 xfs_register_buftarg(btp);
1590out_error:
1591 return error;
1592}
1593
1da177e4
LT
1594xfs_buftarg_t *
1595xfs_alloc_buftarg(
1596 struct block_device *bdev,
1597 int external)
1598{
1599 xfs_buftarg_t *btp;
1600
1601 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1602
ce8e922c
NS
1603 btp->bt_dev = bdev->bd_dev;
1604 btp->bt_bdev = bdev;
1da177e4
LT
1605 if (xfs_setsize_buftarg_early(btp, bdev))
1606 goto error;
1607 if (xfs_mapping_buftarg(btp, bdev))
1608 goto error;
a6867a68
DC
1609 if (xfs_alloc_delwrite_queue(btp))
1610 goto error;
1da177e4
LT
1611 xfs_alloc_bufhash(btp, external);
1612 return btp;
1613
1614error:
1615 kmem_free(btp, sizeof(*btp));
1616 return NULL;
1617}
1618
1619
1620/*
ce8e922c 1621 * Delayed write buffer handling
1da177e4 1622 */
1da177e4 1623STATIC void
ce8e922c
NS
1624xfs_buf_delwri_queue(
1625 xfs_buf_t *bp,
1da177e4
LT
1626 int unlock)
1627{
ce8e922c
NS
1628 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1629 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1630
ce8e922c
NS
1631 XB_TRACE(bp, "delwri_q", (long)unlock);
1632 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1633
a6867a68 1634 spin_lock(dwlk);
1da177e4 1635 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1636 if (!list_empty(&bp->b_list)) {
1637 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1638 if (unlock)
1639 atomic_dec(&bp->b_hold);
1640 list_del(&bp->b_list);
1da177e4
LT
1641 }
1642
ce8e922c
NS
1643 bp->b_flags |= _XBF_DELWRI_Q;
1644 list_add_tail(&bp->b_list, dwq);
1645 bp->b_queuetime = jiffies;
a6867a68 1646 spin_unlock(dwlk);
1da177e4
LT
1647
1648 if (unlock)
ce8e922c 1649 xfs_buf_unlock(bp);
1da177e4
LT
1650}
1651
1652void
ce8e922c
NS
1653xfs_buf_delwri_dequeue(
1654 xfs_buf_t *bp)
1da177e4 1655{
ce8e922c 1656 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1657 int dequeued = 0;
1658
a6867a68 1659 spin_lock(dwlk);
ce8e922c
NS
1660 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1661 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1662 list_del_init(&bp->b_list);
1da177e4
LT
1663 dequeued = 1;
1664 }
ce8e922c 1665 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1666 spin_unlock(dwlk);
1da177e4
LT
1667
1668 if (dequeued)
ce8e922c 1669 xfs_buf_rele(bp);
1da177e4 1670
ce8e922c 1671 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1da177e4
LT
1672}
1673
1674STATIC void
ce8e922c 1675xfs_buf_runall_queues(
1da177e4
LT
1676 struct workqueue_struct *queue)
1677{
1678 flush_workqueue(queue);
1679}
1680
1da177e4 1681STATIC int
23ea4032 1682xfsbufd_wakeup(
15c84a47
NS
1683 int priority,
1684 gfp_t mask)
1da177e4 1685{
da7f93e9 1686 xfs_buftarg_t *btp;
a6867a68
DC
1687
1688 spin_lock(&xfs_buftarg_lock);
da7f93e9 1689 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
ce8e922c 1690 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
a6867a68 1691 continue;
ce8e922c 1692 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
a6867a68
DC
1693 wake_up_process(btp->bt_task);
1694 }
1695 spin_unlock(&xfs_buftarg_lock);
1da177e4
LT
1696 return 0;
1697}
1698
585e6d88
DC
1699/*
1700 * Move as many buffers as specified to the supplied list
1701 * idicating if we skipped any buffers to prevent deadlocks.
1702 */
1703STATIC int
1704xfs_buf_delwri_split(
1705 xfs_buftarg_t *target,
1706 struct list_head *list,
5e6a07df 1707 unsigned long age)
585e6d88
DC
1708{
1709 xfs_buf_t *bp, *n;
1710 struct list_head *dwq = &target->bt_delwrite_queue;
1711 spinlock_t *dwlk = &target->bt_delwrite_lock;
1712 int skipped = 0;
5e6a07df 1713 int force;
585e6d88 1714
5e6a07df 1715 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1716 INIT_LIST_HEAD(list);
1717 spin_lock(dwlk);
1718 list_for_each_entry_safe(bp, n, dwq, b_list) {
1719 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1720 ASSERT(bp->b_flags & XBF_DELWRI);
1721
1722 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1723 if (!force &&
585e6d88
DC
1724 time_before(jiffies, bp->b_queuetime + age)) {
1725 xfs_buf_unlock(bp);
1726 break;
1727 }
1728
1729 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1730 _XBF_RUN_QUEUES);
1731 bp->b_flags |= XBF_WRITE;
1732 list_move_tail(&bp->b_list, list);
1733 } else
1734 skipped++;
1735 }
1736 spin_unlock(dwlk);
1737
1738 return skipped;
1739
1740}
1741
1da177e4 1742STATIC int
23ea4032 1743xfsbufd(
585e6d88 1744 void *data)
1da177e4 1745{
585e6d88
DC
1746 struct list_head tmp;
1747 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1748 int count;
1749 xfs_buf_t *bp;
1da177e4 1750
1da177e4
LT
1751 current->flags |= PF_MEMALLOC;
1752
1da177e4 1753 do {
3e1d1d28 1754 if (unlikely(freezing(current))) {
ce8e922c 1755 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1756 refrigerator();
abd0cf7a 1757 } else {
ce8e922c 1758 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1759 }
1da177e4 1760
15c84a47
NS
1761 schedule_timeout_interruptible(
1762 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1da177e4 1763
585e6d88 1764 xfs_buf_delwri_split(target, &tmp,
5e6a07df 1765 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1da177e4 1766
585e6d88 1767 count = 0;
1da177e4 1768 while (!list_empty(&tmp)) {
ce8e922c
NS
1769 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1770 ASSERT(target == bp->b_target);
1da177e4 1771
ce8e922c
NS
1772 list_del_init(&bp->b_list);
1773 xfs_buf_iostrategy(bp);
585e6d88 1774 count++;
1da177e4
LT
1775 }
1776
1777 if (as_list_len > 0)
1778 purge_addresses();
f07c2250
NS
1779 if (count)
1780 blk_run_address_space(target->bt_mapping);
1da177e4 1781
4df08c52 1782 } while (!kthread_should_stop());
1da177e4 1783
4df08c52 1784 return 0;
1da177e4
LT
1785}
1786
1787/*
ce8e922c
NS
1788 * Go through all incore buffers, and release buffers if they belong to
1789 * the given device. This is used in filesystem error handling to
1790 * preserve the consistency of its metadata.
1da177e4
LT
1791 */
1792int
1793xfs_flush_buftarg(
585e6d88
DC
1794 xfs_buftarg_t *target,
1795 int wait)
1da177e4 1796{
585e6d88
DC
1797 struct list_head tmp;
1798 xfs_buf_t *bp, *n;
1799 int pincount = 0;
1da177e4 1800
ce8e922c
NS
1801 xfs_buf_runall_queues(xfsdatad_workqueue);
1802 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1803
5e6a07df
DC
1804 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1805 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1da177e4
LT
1806
1807 /*
1808 * Dropped the delayed write list lock, now walk the temporary list
1809 */
ce8e922c 1810 list_for_each_entry_safe(bp, n, &tmp, b_list) {
585e6d88 1811 ASSERT(target == bp->b_target);
1da177e4 1812 if (wait)
ce8e922c 1813 bp->b_flags &= ~XBF_ASYNC;
1da177e4 1814 else
ce8e922c 1815 list_del_init(&bp->b_list);
1da177e4 1816
ce8e922c 1817 xfs_buf_iostrategy(bp);
1da177e4
LT
1818 }
1819
f07c2250
NS
1820 if (wait)
1821 blk_run_address_space(target->bt_mapping);
1822
1da177e4
LT
1823 /*
1824 * Remaining list items must be flushed before returning
1825 */
1826 while (!list_empty(&tmp)) {
ce8e922c 1827 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1da177e4 1828
ce8e922c
NS
1829 list_del_init(&bp->b_list);
1830 xfs_iowait(bp);
1831 xfs_buf_relse(bp);
1da177e4
LT
1832 }
1833
1da177e4
LT
1834 return pincount;
1835}
1836
04d8b284 1837int __init
ce8e922c 1838xfs_buf_init(void)
1da177e4 1839{
ce8e922c
NS
1840#ifdef XFS_BUF_TRACE
1841 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
04d8b284
CH
1842#endif
1843
8758280f
NS
1844 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1845 KM_ZONE_HWALIGN, NULL);
ce8e922c 1846 if (!xfs_buf_zone)
04d8b284
CH
1847 goto out_free_trace_buf;
1848
b4337692 1849 xfslogd_workqueue = create_workqueue("xfslogd");
23ea4032 1850 if (!xfslogd_workqueue)
04d8b284 1851 goto out_free_buf_zone;
1da177e4 1852
b4337692 1853 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1854 if (!xfsdatad_workqueue)
1855 goto out_destroy_xfslogd_workqueue;
1da177e4 1856
8e1f936b 1857 register_shrinker(&xfs_buf_shake);
23ea4032 1858 return 0;
1da177e4 1859
23ea4032
CH
1860 out_destroy_xfslogd_workqueue:
1861 destroy_workqueue(xfslogd_workqueue);
23ea4032 1862 out_free_buf_zone:
ce8e922c 1863 kmem_zone_destroy(xfs_buf_zone);
04d8b284 1864 out_free_trace_buf:
ce8e922c
NS
1865#ifdef XFS_BUF_TRACE
1866 ktrace_free(xfs_buf_trace_buf);
23ea4032 1867#endif
8758280f 1868 return -ENOMEM;
1da177e4
LT
1869}
1870
1da177e4 1871void
ce8e922c 1872xfs_buf_terminate(void)
1da177e4 1873{
8e1f936b 1874 unregister_shrinker(&xfs_buf_shake);
04d8b284
CH
1875 destroy_workqueue(xfsdatad_workqueue);
1876 destroy_workqueue(xfslogd_workqueue);
ce8e922c
NS
1877 kmem_zone_destroy(xfs_buf_zone);
1878#ifdef XFS_BUF_TRACE
1879 ktrace_free(xfs_buf_trace_buf);
1da177e4 1880#endif
1da177e4 1881}
e6a0e9cd
TS
1882
1883#ifdef CONFIG_KDB_MODULES
1884struct list_head *
1885xfs_get_buftarg_list(void)
1886{
1887 return &xfs_buftarg_list;
1888}
1889#endif
This page took 0.406628 seconds and 5 git commands to generate.