xfs: improve sync behaviour in the face of aggressive dirtying
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
fd074841 25#include "xfs_trans_priv.h"
fe4fa4b8
DC
26#include "xfs_sb.h"
27#include "xfs_ag.h"
fe4fa4b8
DC
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
fe4fa4b8
DC
30#include "xfs_inode.h"
31#include "xfs_dinode.h"
32#include "xfs_error.h"
fe4fa4b8
DC
33#include "xfs_filestream.h"
34#include "xfs_vnodeops.h"
fe4fa4b8 35#include "xfs_inode_item.h"
7d095257 36#include "xfs_quota.h"
0b1b213f 37#include "xfs_trace.h"
1a387d3b 38#include "xfs_fsops.h"
fe4fa4b8 39
a167b17e
DC
40#include <linux/kthread.h>
41#include <linux/freezer.h>
42
c6d09b66
DC
43struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
44
78ae5256
DC
45/*
46 * The inode lookup is done in batches to keep the amount of lock traffic and
47 * radix tree lookups to a minimum. The batch size is a trade off between
48 * lookup reduction and stack usage. This is in the reclaim path, so we can't
49 * be too greedy.
50 */
51#define XFS_LOOKUP_BATCH 32
52
e13de955
DC
53STATIC int
54xfs_inode_ag_walk_grab(
55 struct xfs_inode *ip)
56{
57 struct inode *inode = VFS_I(ip);
58
1a3e8f3d
DC
59 ASSERT(rcu_read_lock_held());
60
61 /*
62 * check for stale RCU freed inode
63 *
64 * If the inode has been reallocated, it doesn't matter if it's not in
65 * the AG we are walking - we are walking for writeback, so if it
66 * passes all the "valid inode" checks and is dirty, then we'll write
67 * it back anyway. If it has been reallocated and still being
68 * initialised, the XFS_INEW check below will catch it.
69 */
70 spin_lock(&ip->i_flags_lock);
71 if (!ip->i_ino)
72 goto out_unlock_noent;
73
74 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 goto out_unlock_noent;
77 spin_unlock(&ip->i_flags_lock);
78
e13de955
DC
79 /* nothing to sync during shutdown */
80 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 return EFSCORRUPTED;
82
e13de955
DC
83 /* If we can't grab the inode, it must on it's way to reclaim. */
84 if (!igrab(inode))
85 return ENOENT;
86
87 if (is_bad_inode(inode)) {
88 IRELE(ip);
89 return ENOENT;
90 }
91
92 /* inode is valid */
93 return 0;
1a3e8f3d
DC
94
95out_unlock_noent:
96 spin_unlock(&ip->i_flags_lock);
97 return ENOENT;
e13de955
DC
98}
99
75f3cb13
DC
100STATIC int
101xfs_inode_ag_walk(
102 struct xfs_mount *mp,
5017e97d 103 struct xfs_perag *pag,
75f3cb13
DC
104 int (*execute)(struct xfs_inode *ip,
105 struct xfs_perag *pag, int flags),
65d0f205 106 int flags)
75f3cb13 107{
75f3cb13
DC
108 uint32_t first_index;
109 int last_error = 0;
110 int skipped;
65d0f205 111 int done;
78ae5256 112 int nr_found;
75f3cb13
DC
113
114restart:
65d0f205 115 done = 0;
75f3cb13
DC
116 skipped = 0;
117 first_index = 0;
78ae5256 118 nr_found = 0;
75f3cb13 119 do {
78ae5256 120 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 121 int error = 0;
78ae5256 122 int i;
75f3cb13 123
1a3e8f3d 124 rcu_read_lock();
65d0f205 125 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
126 (void **)batch, first_index,
127 XFS_LOOKUP_BATCH);
65d0f205 128 if (!nr_found) {
1a3e8f3d 129 rcu_read_unlock();
75f3cb13 130 break;
c8e20be0 131 }
75f3cb13 132
65d0f205 133 /*
78ae5256
DC
134 * Grab the inodes before we drop the lock. if we found
135 * nothing, nr == 0 and the loop will be skipped.
65d0f205 136 */
78ae5256
DC
137 for (i = 0; i < nr_found; i++) {
138 struct xfs_inode *ip = batch[i];
139
140 if (done || xfs_inode_ag_walk_grab(ip))
141 batch[i] = NULL;
142
143 /*
1a3e8f3d
DC
144 * Update the index for the next lookup. Catch
145 * overflows into the next AG range which can occur if
146 * we have inodes in the last block of the AG and we
147 * are currently pointing to the last inode.
148 *
149 * Because we may see inodes that are from the wrong AG
150 * due to RCU freeing and reallocation, only update the
151 * index if it lies in this AG. It was a race that lead
152 * us to see this inode, so another lookup from the
153 * same index will not find it again.
78ae5256 154 */
1a3e8f3d
DC
155 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 continue;
78ae5256
DC
157 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 done = 1;
e13de955 160 }
78ae5256
DC
161
162 /* unlock now we've grabbed the inodes. */
1a3e8f3d 163 rcu_read_unlock();
e13de955 164
78ae5256
DC
165 for (i = 0; i < nr_found; i++) {
166 if (!batch[i])
167 continue;
168 error = execute(batch[i], pag, flags);
169 IRELE(batch[i]);
170 if (error == EAGAIN) {
171 skipped++;
172 continue;
173 }
174 if (error && last_error != EFSCORRUPTED)
175 last_error = error;
75f3cb13 176 }
c8e20be0
DC
177
178 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
179 if (error == EFSCORRUPTED)
180 break;
181
78ae5256 182 } while (nr_found && !done);
75f3cb13
DC
183
184 if (skipped) {
185 delay(1);
186 goto restart;
187 }
75f3cb13
DC
188 return last_error;
189}
190
fe588ed3 191int
75f3cb13
DC
192xfs_inode_ag_iterator(
193 struct xfs_mount *mp,
194 int (*execute)(struct xfs_inode *ip,
195 struct xfs_perag *pag, int flags),
65d0f205 196 int flags)
75f3cb13 197{
16fd5367 198 struct xfs_perag *pag;
75f3cb13
DC
199 int error = 0;
200 int last_error = 0;
201 xfs_agnumber_t ag;
202
16fd5367 203 ag = 0;
65d0f205
DC
204 while ((pag = xfs_perag_get(mp, ag))) {
205 ag = pag->pag_agno + 1;
206 error = xfs_inode_ag_walk(mp, pag, execute, flags);
5017e97d 207 xfs_perag_put(pag);
75f3cb13
DC
208 if (error) {
209 last_error = error;
210 if (error == EFSCORRUPTED)
211 break;
212 }
213 }
214 return XFS_ERROR(last_error);
215}
216
5a34d5cd
DC
217STATIC int
218xfs_sync_inode_data(
219 struct xfs_inode *ip,
75f3cb13 220 struct xfs_perag *pag,
5a34d5cd
DC
221 int flags)
222{
223 struct inode *inode = VFS_I(ip);
224 struct address_space *mapping = inode->i_mapping;
225 int error = 0;
226
227 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
228 goto out_wait;
229
230 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
231 if (flags & SYNC_TRYLOCK)
232 goto out_wait;
233 xfs_ilock(ip, XFS_IOLOCK_SHARED);
234 }
235
236 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
0cadda1c 237 0 : XBF_ASYNC, FI_NONE);
5a34d5cd
DC
238 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
239
240 out_wait:
b0710ccc 241 if (flags & SYNC_WAIT)
5a34d5cd
DC
242 xfs_ioend_wait(ip);
243 return error;
244}
245
845b6d0c
CH
246STATIC int
247xfs_sync_inode_attr(
248 struct xfs_inode *ip,
75f3cb13 249 struct xfs_perag *pag,
845b6d0c
CH
250 int flags)
251{
252 int error = 0;
253
254 xfs_ilock(ip, XFS_ILOCK_SHARED);
255 if (xfs_inode_clean(ip))
256 goto out_unlock;
257 if (!xfs_iflock_nowait(ip)) {
258 if (!(flags & SYNC_WAIT))
259 goto out_unlock;
260 xfs_iflock(ip);
261 }
262
263 if (xfs_inode_clean(ip)) {
264 xfs_ifunlock(ip);
265 goto out_unlock;
266 }
267
c854363e 268 error = xfs_iflush(ip, flags);
845b6d0c 269
ee58abdf
DC
270 /*
271 * We don't want to try again on non-blocking flushes that can't run
272 * again immediately. If an inode really must be written, then that's
273 * what the SYNC_WAIT flag is for.
274 */
275 if (error == EAGAIN) {
276 ASSERT(!(flags & SYNC_WAIT));
277 error = 0;
278 }
279
845b6d0c
CH
280 out_unlock:
281 xfs_iunlock(ip, XFS_ILOCK_SHARED);
282 return error;
283}
284
075fe102
CH
285/*
286 * Write out pagecache data for the whole filesystem.
287 */
64c86149 288STATIC int
075fe102
CH
289xfs_sync_data(
290 struct xfs_mount *mp,
291 int flags)
683a8970 292{
075fe102 293 int error;
fe4fa4b8 294
b0710ccc 295 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
fe4fa4b8 296
65d0f205 297 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
075fe102
CH
298 if (error)
299 return XFS_ERROR(error);
e9f1c6ee 300
a14a348b 301 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
075fe102
CH
302 return 0;
303}
e9f1c6ee 304
075fe102
CH
305/*
306 * Write out inode metadata (attributes) for the whole filesystem.
307 */
64c86149 308STATIC int
075fe102
CH
309xfs_sync_attr(
310 struct xfs_mount *mp,
311 int flags)
312{
313 ASSERT((flags & ~SYNC_WAIT) == 0);
75f3cb13 314
65d0f205 315 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
fe4fa4b8
DC
316}
317
5d77c0dc 318STATIC int
2af75df7 319xfs_sync_fsdata(
df308bcf 320 struct xfs_mount *mp)
2af75df7
CH
321{
322 struct xfs_buf *bp;
2af75df7
CH
323
324 /*
df308bcf
CH
325 * If the buffer is pinned then push on the log so we won't get stuck
326 * waiting in the write for someone, maybe ourselves, to flush the log.
327 *
328 * Even though we just pushed the log above, we did not have the
329 * superblock buffer locked at that point so it can become pinned in
330 * between there and here.
2af75df7 331 */
df308bcf
CH
332 bp = xfs_getsb(mp, 0);
333 if (XFS_BUF_ISPINNED(bp))
334 xfs_log_force(mp, 0);
2af75df7 335
df308bcf 336 return xfs_bwrite(mp, bp);
e9f1c6ee
DC
337}
338
339/*
a4e4c4f4
DC
340 * When remounting a filesystem read-only or freezing the filesystem, we have
341 * two phases to execute. This first phase is syncing the data before we
342 * quiesce the filesystem, and the second is flushing all the inodes out after
343 * we've waited for all the transactions created by the first phase to
344 * complete. The second phase ensures that the inodes are written to their
345 * location on disk rather than just existing in transactions in the log. This
346 * means after a quiesce there is no log replay required to write the inodes to
347 * disk (this is the main difference between a sync and a quiesce).
348 */
349/*
350 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
351 * so we flush delwri and delalloc buffers here, then wait for all I/O to
352 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
353 * transactions can still occur here so don't bother flushing the buftarg
354 * because it'll just get dirty again.
e9f1c6ee
DC
355 */
356int
357xfs_quiesce_data(
358 struct xfs_mount *mp)
359{
df308bcf 360 int error, error2 = 0;
e9f1c6ee 361
8b5403a6 362 xfs_qm_sync(mp, SYNC_TRYLOCK);
7d095257 363 xfs_qm_sync(mp, SYNC_WAIT);
e9f1c6ee 364
33b8f7c2
CH
365 /* force out the newly dirtied log buffers */
366 xfs_log_force(mp, XFS_LOG_SYNC);
367
a4e4c4f4 368 /* write superblock and hoover up shutdown errors */
df308bcf
CH
369 error = xfs_sync_fsdata(mp);
370
371 /* make sure all delwri buffers are written out */
372 xfs_flush_buftarg(mp->m_ddev_targp, 1);
373
374 /* mark the log as covered if needed */
375 if (xfs_log_need_covered(mp))
c58efdb4 376 error2 = xfs_fs_log_dummy(mp);
e9f1c6ee 377
a4e4c4f4 378 /* flush data-only devices */
e9f1c6ee
DC
379 if (mp->m_rtdev_targp)
380 XFS_bflush(mp->m_rtdev_targp);
381
df308bcf 382 return error ? error : error2;
2af75df7
CH
383}
384
76bf105c
DC
385STATIC void
386xfs_quiesce_fs(
387 struct xfs_mount *mp)
388{
389 int count = 0, pincount;
390
c854363e 391 xfs_reclaim_inodes(mp, 0);
76bf105c 392 xfs_flush_buftarg(mp->m_ddev_targp, 0);
76bf105c
DC
393
394 /*
395 * This loop must run at least twice. The first instance of the loop
396 * will flush most meta data but that will generate more meta data
397 * (typically directory updates). Which then must be flushed and
c854363e
DC
398 * logged before we can write the unmount record. We also so sync
399 * reclaim of inodes to catch any that the above delwri flush skipped.
76bf105c
DC
400 */
401 do {
c854363e 402 xfs_reclaim_inodes(mp, SYNC_WAIT);
075fe102 403 xfs_sync_attr(mp, SYNC_WAIT);
76bf105c
DC
404 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
405 if (!pincount) {
406 delay(50);
407 count++;
408 }
409 } while (count < 2);
410}
411
412/*
413 * Second stage of a quiesce. The data is already synced, now we have to take
414 * care of the metadata. New transactions are already blocked, so we need to
25985edc 415 * wait for any remaining transactions to drain out before proceeding.
76bf105c
DC
416 */
417void
418xfs_quiesce_attr(
419 struct xfs_mount *mp)
420{
421 int error = 0;
422
423 /* wait for all modifications to complete */
424 while (atomic_read(&mp->m_active_trans) > 0)
425 delay(100);
426
427 /* flush inodes and push all remaining buffers out to disk */
428 xfs_quiesce_fs(mp);
429
5e106572
FB
430 /*
431 * Just warn here till VFS can correctly support
432 * read-only remount without racing.
433 */
434 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
435
436 /* Push the superblock and write an unmount record */
437 error = xfs_log_sbcount(mp, 1);
438 if (error)
4f10700a 439 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
76bf105c
DC
440 "Frozen image may not be consistent.");
441 xfs_log_unmount_write(mp);
442 xfs_unmountfs_writesb(mp);
443}
444
c6d09b66
DC
445static void
446xfs_syncd_queue_sync(
447 struct xfs_mount *mp)
a167b17e 448{
c6d09b66
DC
449 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
450 msecs_to_jiffies(xfs_syncd_centisecs * 10));
a167b17e
DC
451}
452
aacaa880 453/*
df308bcf
CH
454 * Every sync period we need to unpin all items, reclaim inodes and sync
455 * disk quotas. We might need to cover the log to indicate that the
1a387d3b 456 * filesystem is idle and not frozen.
aacaa880 457 */
a167b17e
DC
458STATIC void
459xfs_sync_worker(
c6d09b66 460 struct work_struct *work)
a167b17e 461{
c6d09b66
DC
462 struct xfs_mount *mp = container_of(to_delayed_work(work),
463 struct xfs_mount, m_sync_work);
a167b17e
DC
464 int error;
465
aacaa880 466 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
aacaa880 467 /* dgc: errors ignored here */
1a387d3b
DC
468 if (mp->m_super->s_frozen == SB_UNFROZEN &&
469 xfs_log_need_covered(mp))
c58efdb4
DC
470 error = xfs_fs_log_dummy(mp);
471 else
472 xfs_log_force(mp, 0);
c58efdb4 473 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
fd074841
DC
474
475 /* start pushing all the metadata that is currently dirty */
476 xfs_ail_push_all(mp->m_ail);
aacaa880 477 }
c6d09b66
DC
478
479 /* queue us up again */
480 xfs_syncd_queue_sync(mp);
a167b17e
DC
481}
482
a7b339f1
DC
483/*
484 * Queue a new inode reclaim pass if there are reclaimable inodes and there
485 * isn't a reclaim pass already in progress. By default it runs every 5s based
486 * on the xfs syncd work default of 30s. Perhaps this should have it's own
487 * tunable, but that can be done if this method proves to be ineffective or too
488 * aggressive.
489 */
490static void
491xfs_syncd_queue_reclaim(
492 struct xfs_mount *mp)
a167b17e 493{
a167b17e 494
a7b339f1
DC
495 /*
496 * We can have inodes enter reclaim after we've shut down the syncd
497 * workqueue during unmount, so don't allow reclaim work to be queued
498 * during unmount.
499 */
500 if (!(mp->m_super->s_flags & MS_ACTIVE))
501 return;
a167b17e 502
a7b339f1
DC
503 rcu_read_lock();
504 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
505 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
506 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
a167b17e 507 }
a7b339f1
DC
508 rcu_read_unlock();
509}
a167b17e 510
a7b339f1
DC
511/*
512 * This is a fast pass over the inode cache to try to get reclaim moving on as
513 * many inodes as possible in a short period of time. It kicks itself every few
514 * seconds, as well as being kicked by the inode cache shrinker when memory
515 * goes low. It scans as quickly as possible avoiding locked inodes or those
516 * already being flushed, and once done schedules a future pass.
517 */
518STATIC void
519xfs_reclaim_worker(
520 struct work_struct *work)
521{
522 struct xfs_mount *mp = container_of(to_delayed_work(work),
523 struct xfs_mount, m_reclaim_work);
524
525 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
526 xfs_syncd_queue_reclaim(mp);
527}
528
89e4cb55
DC
529/*
530 * Flush delayed allocate data, attempting to free up reserved space
531 * from existing allocations. At this point a new allocation attempt
532 * has failed with ENOSPC and we are in the process of scratching our
533 * heads, looking about for more room.
534 *
535 * Queue a new data flush if there isn't one already in progress and
536 * wait for completion of the flush. This means that we only ever have one
537 * inode flush in progress no matter how many ENOSPC events are occurring and
538 * so will prevent the system from bogging down due to every concurrent
539 * ENOSPC event scanning all the active inodes in the system for writeback.
540 */
541void
542xfs_flush_inodes(
543 struct xfs_inode *ip)
544{
545 struct xfs_mount *mp = ip->i_mount;
546
547 queue_work(xfs_syncd_wq, &mp->m_flush_work);
548 flush_work_sync(&mp->m_flush_work);
549}
550
551STATIC void
552xfs_flush_worker(
553 struct work_struct *work)
554{
555 struct xfs_mount *mp = container_of(work,
556 struct xfs_mount, m_flush_work);
557
558 xfs_sync_data(mp, SYNC_TRYLOCK);
559 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
a167b17e
DC
560}
561
562int
563xfs_syncd_init(
564 struct xfs_mount *mp)
565{
89e4cb55 566 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
c6d09b66 567 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
a7b339f1
DC
568 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
569
c6d09b66 570 xfs_syncd_queue_sync(mp);
a7b339f1 571 xfs_syncd_queue_reclaim(mp);
c6d09b66 572
a167b17e
DC
573 return 0;
574}
575
576void
577xfs_syncd_stop(
578 struct xfs_mount *mp)
579{
c6d09b66 580 cancel_delayed_work_sync(&mp->m_sync_work);
a7b339f1 581 cancel_delayed_work_sync(&mp->m_reclaim_work);
89e4cb55 582 cancel_work_sync(&mp->m_flush_work);
a167b17e
DC
583}
584
bc990f5c
CH
585void
586__xfs_inode_set_reclaim_tag(
587 struct xfs_perag *pag,
588 struct xfs_inode *ip)
589{
590 radix_tree_tag_set(&pag->pag_ici_root,
591 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
592 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
593
594 if (!pag->pag_ici_reclaimable) {
595 /* propagate the reclaim tag up into the perag radix tree */
596 spin_lock(&ip->i_mount->m_perag_lock);
597 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
598 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
599 XFS_ICI_RECLAIM_TAG);
600 spin_unlock(&ip->i_mount->m_perag_lock);
a7b339f1
DC
601
602 /* schedule periodic background inode reclaim */
603 xfs_syncd_queue_reclaim(ip->i_mount);
604
16fd5367
DC
605 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
606 -1, _RET_IP_);
607 }
9bf729c0 608 pag->pag_ici_reclaimable++;
bc990f5c
CH
609}
610
11654513
DC
611/*
612 * We set the inode flag atomically with the radix tree tag.
613 * Once we get tag lookups on the radix tree, this inode flag
614 * can go away.
615 */
396beb85
DC
616void
617xfs_inode_set_reclaim_tag(
618 xfs_inode_t *ip)
619{
5017e97d
DC
620 struct xfs_mount *mp = ip->i_mount;
621 struct xfs_perag *pag;
396beb85 622
5017e97d 623 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1a427ab0 624 spin_lock(&pag->pag_ici_lock);
396beb85 625 spin_lock(&ip->i_flags_lock);
bc990f5c 626 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 627 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 628 spin_unlock(&ip->i_flags_lock);
1a427ab0 629 spin_unlock(&pag->pag_ici_lock);
5017e97d 630 xfs_perag_put(pag);
396beb85
DC
631}
632
081003ff
JW
633STATIC void
634__xfs_inode_clear_reclaim(
396beb85
DC
635 xfs_perag_t *pag,
636 xfs_inode_t *ip)
637{
9bf729c0 638 pag->pag_ici_reclaimable--;
16fd5367
DC
639 if (!pag->pag_ici_reclaimable) {
640 /* clear the reclaim tag from the perag radix tree */
641 spin_lock(&ip->i_mount->m_perag_lock);
642 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
643 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
644 XFS_ICI_RECLAIM_TAG);
645 spin_unlock(&ip->i_mount->m_perag_lock);
646 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
647 -1, _RET_IP_);
648 }
396beb85
DC
649}
650
081003ff
JW
651void
652__xfs_inode_clear_reclaim_tag(
653 xfs_mount_t *mp,
654 xfs_perag_t *pag,
655 xfs_inode_t *ip)
656{
657 radix_tree_tag_clear(&pag->pag_ici_root,
658 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
659 __xfs_inode_clear_reclaim(pag, ip);
660}
661
e3a20c0b
DC
662/*
663 * Grab the inode for reclaim exclusively.
664 * Return 0 if we grabbed it, non-zero otherwise.
665 */
666STATIC int
667xfs_reclaim_inode_grab(
668 struct xfs_inode *ip,
669 int flags)
670{
1a3e8f3d
DC
671 ASSERT(rcu_read_lock_held());
672
673 /* quick check for stale RCU freed inode */
674 if (!ip->i_ino)
675 return 1;
e3a20c0b
DC
676
677 /*
1a3e8f3d 678 * do some unlocked checks first to avoid unnecessary lock traffic.
e3a20c0b
DC
679 * The first is a flush lock check, the second is a already in reclaim
680 * check. Only do these checks if we are not going to block on locks.
681 */
682 if ((flags & SYNC_TRYLOCK) &&
683 (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
684 return 1;
685 }
686
687 /*
688 * The radix tree lock here protects a thread in xfs_iget from racing
689 * with us starting reclaim on the inode. Once we have the
690 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
691 *
692 * Due to RCU lookup, we may find inodes that have been freed and only
693 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
694 * aren't candidates for reclaim at all, so we must check the
695 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
696 */
697 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
698 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
699 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
700 /* not a reclaim candidate. */
e3a20c0b
DC
701 spin_unlock(&ip->i_flags_lock);
702 return 1;
703 }
704 __xfs_iflags_set(ip, XFS_IRECLAIM);
705 spin_unlock(&ip->i_flags_lock);
706 return 0;
707}
708
777df5af
DC
709/*
710 * Inodes in different states need to be treated differently, and the return
711 * value of xfs_iflush is not sufficient to get this right. The following table
712 * lists the inode states and the reclaim actions necessary for non-blocking
713 * reclaim:
714 *
715 *
716 * inode state iflush ret required action
717 * --------------- ---------- ---------------
718 * bad - reclaim
719 * shutdown EIO unpin and reclaim
720 * clean, unpinned 0 reclaim
721 * stale, unpinned 0 reclaim
c854363e
DC
722 * clean, pinned(*) 0 requeue
723 * stale, pinned EAGAIN requeue
724 * dirty, delwri ok 0 requeue
725 * dirty, delwri blocked EAGAIN requeue
726 * dirty, sync flush 0 reclaim
777df5af
DC
727 *
728 * (*) dgc: I don't think the clean, pinned state is possible but it gets
729 * handled anyway given the order of checks implemented.
730 *
c854363e
DC
731 * As can be seen from the table, the return value of xfs_iflush() is not
732 * sufficient to correctly decide the reclaim action here. The checks in
733 * xfs_iflush() might look like duplicates, but they are not.
734 *
735 * Also, because we get the flush lock first, we know that any inode that has
736 * been flushed delwri has had the flush completed by the time we check that
737 * the inode is clean. The clean inode check needs to be done before flushing
738 * the inode delwri otherwise we would loop forever requeuing clean inodes as
739 * we cannot tell apart a successful delwri flush and a clean inode from the
740 * return value of xfs_iflush().
741 *
742 * Note that because the inode is flushed delayed write by background
743 * writeback, the flush lock may already be held here and waiting on it can
744 * result in very long latencies. Hence for sync reclaims, where we wait on the
745 * flush lock, the caller should push out delayed write inodes first before
746 * trying to reclaim them to minimise the amount of time spent waiting. For
747 * background relaim, we just requeue the inode for the next pass.
748 *
777df5af
DC
749 * Hence the order of actions after gaining the locks should be:
750 * bad => reclaim
751 * shutdown => unpin and reclaim
c854363e
DC
752 * pinned, delwri => requeue
753 * pinned, sync => unpin
777df5af
DC
754 * stale => reclaim
755 * clean => reclaim
c854363e
DC
756 * dirty, delwri => flush and requeue
757 * dirty, sync => flush, wait and reclaim
777df5af 758 */
75f3cb13 759STATIC int
c8e20be0 760xfs_reclaim_inode(
75f3cb13
DC
761 struct xfs_inode *ip,
762 struct xfs_perag *pag,
c8e20be0 763 int sync_mode)
fce08f2f 764{
1bfd8d04 765 int error;
777df5af 766
1bfd8d04
DC
767restart:
768 error = 0;
c8e20be0 769 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
770 if (!xfs_iflock_nowait(ip)) {
771 if (!(sync_mode & SYNC_WAIT))
772 goto out;
773 xfs_iflock(ip);
774 }
7a3be02b 775
777df5af
DC
776 if (is_bad_inode(VFS_I(ip)))
777 goto reclaim;
778 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
779 xfs_iunpin_wait(ip);
780 goto reclaim;
781 }
c854363e
DC
782 if (xfs_ipincount(ip)) {
783 if (!(sync_mode & SYNC_WAIT)) {
784 xfs_ifunlock(ip);
785 goto out;
786 }
777df5af 787 xfs_iunpin_wait(ip);
c854363e 788 }
777df5af
DC
789 if (xfs_iflags_test(ip, XFS_ISTALE))
790 goto reclaim;
791 if (xfs_inode_clean(ip))
792 goto reclaim;
793
1bfd8d04
DC
794 /*
795 * Now we have an inode that needs flushing.
796 *
797 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
798 * reclaim as we can deadlock with inode cluster removal.
799 * xfs_ifree_cluster() can lock the inode buffer before it locks the
800 * ip->i_lock, and we are doing the exact opposite here. As a result,
801 * doing a blocking xfs_itobp() to get the cluster buffer will result
802 * in an ABBA deadlock with xfs_ifree_cluster().
803 *
804 * As xfs_ifree_cluser() must gather all inodes that are active in the
805 * cache to mark them stale, if we hit this case we don't actually want
806 * to do IO here - we want the inode marked stale so we can simply
807 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
808 * just unlock the inode, back off and try again. Hopefully the next
809 * pass through will see the stale flag set on the inode.
810 */
811 error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
c854363e 812 if (sync_mode & SYNC_WAIT) {
1bfd8d04
DC
813 if (error == EAGAIN) {
814 xfs_iunlock(ip, XFS_ILOCK_EXCL);
815 /* backoff longer than in xfs_ifree_cluster */
816 delay(2);
817 goto restart;
818 }
c854363e
DC
819 xfs_iflock(ip);
820 goto reclaim;
c8e20be0
DC
821 }
822
c854363e
DC
823 /*
824 * When we have to flush an inode but don't have SYNC_WAIT set, we
825 * flush the inode out using a delwri buffer and wait for the next
826 * call into reclaim to find it in a clean state instead of waiting for
827 * it now. We also don't return errors here - if the error is transient
828 * then the next reclaim pass will flush the inode, and if the error
f1d486a3 829 * is permanent then the next sync reclaim will reclaim the inode and
c854363e
DC
830 * pass on the error.
831 */
f1d486a3 832 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 833 xfs_warn(ip->i_mount,
c854363e
DC
834 "inode 0x%llx background reclaim flush failed with %d",
835 (long long)ip->i_ino, error);
836 }
837out:
838 xfs_iflags_clear(ip, XFS_IRECLAIM);
839 xfs_iunlock(ip, XFS_ILOCK_EXCL);
840 /*
841 * We could return EAGAIN here to make reclaim rescan the inode tree in
842 * a short while. However, this just burns CPU time scanning the tree
843 * waiting for IO to complete and xfssyncd never goes back to the idle
844 * state. Instead, return 0 to let the next scheduled background reclaim
845 * attempt to reclaim the inode again.
846 */
847 return 0;
848
777df5af
DC
849reclaim:
850 xfs_ifunlock(ip);
c8e20be0 851 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
852
853 XFS_STATS_INC(xs_ig_reclaims);
854 /*
855 * Remove the inode from the per-AG radix tree.
856 *
857 * Because radix_tree_delete won't complain even if the item was never
858 * added to the tree assert that it's been there before to catch
859 * problems with the inode life time early on.
860 */
1a427ab0 861 spin_lock(&pag->pag_ici_lock);
2f11feab
DC
862 if (!radix_tree_delete(&pag->pag_ici_root,
863 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
864 ASSERT(0);
081003ff 865 __xfs_inode_clear_reclaim(pag, ip);
1a427ab0 866 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
867
868 /*
869 * Here we do an (almost) spurious inode lock in order to coordinate
870 * with inode cache radix tree lookups. This is because the lookup
871 * can reference the inodes in the cache without taking references.
872 *
873 * We make that OK here by ensuring that we wait until the inode is
874 * unlocked after the lookup before we go ahead and free it. We get
875 * both the ilock and the iolock because the code may need to drop the
876 * ilock one but will still hold the iolock.
877 */
878 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
879 xfs_qm_dqdetach(ip);
880 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
881
882 xfs_inode_free(ip);
c854363e
DC
883 return error;
884
7a3be02b
DC
885}
886
65d0f205
DC
887/*
888 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
889 * corrupted, we still want to try to reclaim all the inodes. If we don't,
890 * then a shut down during filesystem unmount reclaim walk leak all the
891 * unreclaimed inodes.
892 */
893int
894xfs_reclaim_inodes_ag(
895 struct xfs_mount *mp,
896 int flags,
897 int *nr_to_scan)
898{
899 struct xfs_perag *pag;
900 int error = 0;
901 int last_error = 0;
902 xfs_agnumber_t ag;
69b491c2
DC
903 int trylock = flags & SYNC_TRYLOCK;
904 int skipped;
65d0f205 905
69b491c2 906restart:
65d0f205 907 ag = 0;
69b491c2 908 skipped = 0;
65d0f205
DC
909 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
910 unsigned long first_index = 0;
911 int done = 0;
e3a20c0b 912 int nr_found = 0;
65d0f205
DC
913
914 ag = pag->pag_agno + 1;
915
69b491c2
DC
916 if (trylock) {
917 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
918 skipped++;
f83282a8 919 xfs_perag_put(pag);
69b491c2
DC
920 continue;
921 }
922 first_index = pag->pag_ici_reclaim_cursor;
923 } else
924 mutex_lock(&pag->pag_ici_reclaim_lock);
925
65d0f205 926 do {
e3a20c0b
DC
927 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
928 int i;
65d0f205 929
1a3e8f3d 930 rcu_read_lock();
e3a20c0b
DC
931 nr_found = radix_tree_gang_lookup_tag(
932 &pag->pag_ici_root,
933 (void **)batch, first_index,
934 XFS_LOOKUP_BATCH,
65d0f205
DC
935 XFS_ICI_RECLAIM_TAG);
936 if (!nr_found) {
b2232219 937 done = 1;
1a3e8f3d 938 rcu_read_unlock();
65d0f205
DC
939 break;
940 }
941
942 /*
e3a20c0b
DC
943 * Grab the inodes before we drop the lock. if we found
944 * nothing, nr == 0 and the loop will be skipped.
65d0f205 945 */
e3a20c0b
DC
946 for (i = 0; i < nr_found; i++) {
947 struct xfs_inode *ip = batch[i];
948
949 if (done || xfs_reclaim_inode_grab(ip, flags))
950 batch[i] = NULL;
951
952 /*
953 * Update the index for the next lookup. Catch
954 * overflows into the next AG range which can
955 * occur if we have inodes in the last block of
956 * the AG and we are currently pointing to the
957 * last inode.
1a3e8f3d
DC
958 *
959 * Because we may see inodes that are from the
960 * wrong AG due to RCU freeing and
961 * reallocation, only update the index if it
962 * lies in this AG. It was a race that lead us
963 * to see this inode, so another lookup from
964 * the same index will not find it again.
e3a20c0b 965 */
1a3e8f3d
DC
966 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
967 pag->pag_agno)
968 continue;
e3a20c0b
DC
969 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
970 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
971 done = 1;
972 }
65d0f205 973
e3a20c0b 974 /* unlock now we've grabbed the inodes. */
1a3e8f3d 975 rcu_read_unlock();
e3a20c0b
DC
976
977 for (i = 0; i < nr_found; i++) {
978 if (!batch[i])
979 continue;
980 error = xfs_reclaim_inode(batch[i], pag, flags);
981 if (error && last_error != EFSCORRUPTED)
982 last_error = error;
983 }
984
985 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 986
e3a20c0b 987 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 988
69b491c2
DC
989 if (trylock && !done)
990 pag->pag_ici_reclaim_cursor = first_index;
991 else
992 pag->pag_ici_reclaim_cursor = 0;
993 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
994 xfs_perag_put(pag);
995 }
69b491c2
DC
996
997 /*
998 * if we skipped any AG, and we still have scan count remaining, do
999 * another pass this time using blocking reclaim semantics (i.e
1000 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1001 * ensure that when we get more reclaimers than AGs we block rather
1002 * than spin trying to execute reclaim.
1003 */
1004 if (trylock && skipped && *nr_to_scan > 0) {
1005 trylock = 0;
1006 goto restart;
1007 }
65d0f205
DC
1008 return XFS_ERROR(last_error);
1009}
1010
7a3be02b
DC
1011int
1012xfs_reclaim_inodes(
1013 xfs_mount_t *mp,
7a3be02b
DC
1014 int mode)
1015{
65d0f205
DC
1016 int nr_to_scan = INT_MAX;
1017
1018 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
1019}
1020
1021/*
a7b339f1
DC
1022 * Inode cache shrinker.
1023 *
1024 * When called we make sure that there is a background (fast) inode reclaim in
1025 * progress, while we will throttle the speed of reclaim via doiing synchronous
1026 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1027 * them to be cleaned, which we hope will not be very long due to the
1028 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 1029 */
9bf729c0
DC
1030static int
1031xfs_reclaim_inode_shrink(
7f8275d0 1032 struct shrinker *shrink,
1495f230 1033 struct shrink_control *sc)
9bf729c0
DC
1034{
1035 struct xfs_mount *mp;
1036 struct xfs_perag *pag;
1037 xfs_agnumber_t ag;
16fd5367 1038 int reclaimable;
1495f230
YH
1039 int nr_to_scan = sc->nr_to_scan;
1040 gfp_t gfp_mask = sc->gfp_mask;
9bf729c0 1041
70e60ce7 1042 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
9bf729c0 1043 if (nr_to_scan) {
fd074841 1044 /* kick background reclaimer and push the AIL */
a7b339f1 1045 xfs_syncd_queue_reclaim(mp);
fd074841 1046 xfs_ail_push_all(mp->m_ail);
a7b339f1 1047
9bf729c0
DC
1048 if (!(gfp_mask & __GFP_FS))
1049 return -1;
1050
a7b339f1
DC
1051 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT,
1052 &nr_to_scan);
65d0f205 1053 /* terminate if we don't exhaust the scan */
70e60ce7
DC
1054 if (nr_to_scan > 0)
1055 return -1;
1056 }
9bf729c0 1057
16fd5367
DC
1058 reclaimable = 0;
1059 ag = 0;
65d0f205
DC
1060 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1061 ag = pag->pag_agno + 1;
70e60ce7
DC
1062 reclaimable += pag->pag_ici_reclaimable;
1063 xfs_perag_put(pag);
9bf729c0 1064 }
9bf729c0
DC
1065 return reclaimable;
1066}
1067
9bf729c0
DC
1068void
1069xfs_inode_shrinker_register(
1070 struct xfs_mount *mp)
1071{
70e60ce7
DC
1072 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
1073 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
1074 register_shrinker(&mp->m_inode_shrink);
9bf729c0
DC
1075}
1076
1077void
1078xfs_inode_shrinker_unregister(
1079 struct xfs_mount *mp)
1080{
70e60ce7 1081 unregister_shrinker(&mp->m_inode_shrink);
fce08f2f 1082}
This page took 0.170717 seconds and 5 git commands to generate.