xfs: kill xfs_qmops
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_bmap_btree.h"
31#include "xfs_alloc_btree.h"
32#include "xfs_ialloc_btree.h"
33#include "xfs_btree.h"
34#include "xfs_dir2_sf.h"
35#include "xfs_attr_sf.h"
36#include "xfs_inode.h"
37#include "xfs_dinode.h"
38#include "xfs_error.h"
39#include "xfs_mru_cache.h"
40#include "xfs_filestream.h"
41#include "xfs_vnodeops.h"
42#include "xfs_utils.h"
43#include "xfs_buf_item.h"
44#include "xfs_inode_item.h"
45#include "xfs_rw.h"
7d095257 46#include "xfs_quota.h"
fe4fa4b8 47
a167b17e
DC
48#include <linux/kthread.h>
49#include <linux/freezer.h>
50
fe4fa4b8 51/*
683a8970
DC
52 * Sync all the inodes in the given AG according to the
53 * direction given by the flags.
fe4fa4b8 54 */
683a8970
DC
55STATIC int
56xfs_sync_inodes_ag(
fe4fa4b8 57 xfs_mount_t *mp,
683a8970 58 int ag,
2030b5ab 59 int flags)
fe4fa4b8 60{
683a8970 61 xfs_perag_t *pag = &mp->m_perag[ag];
683a8970 62 int nr_found;
8c38ab03 63 uint32_t first_index = 0;
683a8970
DC
64 int error = 0;
65 int last_error = 0;
fe4fa4b8 66
fe4fa4b8 67 do {
bc60a993 68 struct inode *inode;
bc60a993 69 xfs_inode_t *ip = NULL;
455486b9 70 int lock_flags = XFS_ILOCK_SHARED;
bc60a993 71
fe4fa4b8 72 /*
683a8970
DC
73 * use a gang lookup to find the next inode in the tree
74 * as the tree is sparse and a gang lookup walks to find
75 * the number of objects requested.
fe4fa4b8 76 */
683a8970
DC
77 read_lock(&pag->pag_ici_lock);
78 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
79 (void**)&ip, first_index, 1);
fe4fa4b8 80
683a8970
DC
81 if (!nr_found) {
82 read_unlock(&pag->pag_ici_lock);
83 break;
fe4fa4b8
DC
84 }
85
8c38ab03
DC
86 /*
87 * Update the index for the next lookup. Catch overflows
88 * into the next AG range which can occur if we have inodes
89 * in the last block of the AG and we are currently
90 * pointing to the last inode.
91 */
683a8970 92 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
8c38ab03
DC
93 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
94 read_unlock(&pag->pag_ici_lock);
95 break;
96 }
fe4fa4b8 97
683a8970 98 /* nothing to sync during shutdown */
cb56a4b9 99 if (XFS_FORCED_SHUTDOWN(mp)) {
683a8970 100 read_unlock(&pag->pag_ici_lock);
fe4fa4b8
DC
101 return 0;
102 }
103
104 /*
455486b9
DC
105 * If we can't get a reference on the inode, it must be
106 * in reclaim. Leave it for the reclaim code to flush.
fe4fa4b8 107 */
455486b9
DC
108 inode = VFS_I(ip);
109 if (!igrab(inode)) {
683a8970 110 read_unlock(&pag->pag_ici_lock);
455486b9
DC
111 continue;
112 }
113 read_unlock(&pag->pag_ici_lock);
114
6307091f
DC
115 /* avoid new or bad inodes */
116 if (is_bad_inode(inode) ||
117 xfs_iflags_test(ip, XFS_INEW)) {
455486b9
DC
118 IRELE(ip);
119 continue;
fe4fa4b8 120 }
bc60a993 121
fe4fa4b8
DC
122 /*
123 * If we have to flush data or wait for I/O completion
455486b9 124 * we need to hold the iolock.
fe4fa4b8 125 */
a8d770d9
DC
126 if (flags & SYNC_DELWRI) {
127 if (VN_DIRTY(inode)) {
128 if (flags & SYNC_TRYLOCK) {
129 if (xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
130 lock_flags |= XFS_IOLOCK_SHARED;
131 } else {
132 xfs_ilock(ip, XFS_IOLOCK_SHARED);
133 lock_flags |= XFS_IOLOCK_SHARED;
134 }
135 if (lock_flags & XFS_IOLOCK_SHARED) {
136 error = xfs_flush_pages(ip, 0, -1,
137 (flags & SYNC_WAIT) ? 0
138 : XFS_B_ASYNC,
139 FI_NONE);
140 }
141 }
142 if (VN_CACHED(inode) && (flags & SYNC_IOWAIT))
25e41b3d 143 xfs_ioend_wait(ip);
683a8970 144 }
455486b9 145 xfs_ilock(ip, XFS_ILOCK_SHARED);
fe4fa4b8 146
683a8970 147 if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) {
fe4fa4b8
DC
148 if (flags & SYNC_WAIT) {
149 xfs_iflock(ip);
683a8970
DC
150 if (!xfs_inode_clean(ip))
151 error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
152 else
153 xfs_ifunlock(ip);
fe4fa4b8 154 } else if (xfs_iflock_nowait(ip)) {
683a8970
DC
155 if (!xfs_inode_clean(ip))
156 error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
157 else
158 xfs_ifunlock(ip);
fe4fa4b8
DC
159 }
160 }
455486b9 161 xfs_iput(ip, lock_flags);
fe4fa4b8 162
683a8970 163 if (error)
fe4fa4b8 164 last_error = error;
fe4fa4b8
DC
165 /*
166 * bail out if the filesystem is corrupted.
167 */
683a8970 168 if (error == EFSCORRUPTED)
fe4fa4b8 169 return XFS_ERROR(error);
fe4fa4b8 170
683a8970 171 } while (nr_found);
fe4fa4b8 172
683a8970
DC
173 return last_error;
174}
fe4fa4b8 175
683a8970
DC
176int
177xfs_sync_inodes(
178 xfs_mount_t *mp,
2030b5ab 179 int flags)
683a8970
DC
180{
181 int error;
182 int last_error;
183 int i;
e9f1c6ee 184 int lflags = XFS_LOG_FORCE;
fe4fa4b8 185
683a8970
DC
186 if (mp->m_flags & XFS_MOUNT_RDONLY)
187 return 0;
188 error = 0;
189 last_error = 0;
fe4fa4b8 190
e9f1c6ee
DC
191 if (flags & SYNC_WAIT)
192 lflags |= XFS_LOG_SYNC;
193
683a8970
DC
194 for (i = 0; i < mp->m_sb.sb_agcount; i++) {
195 if (!mp->m_perag[i].pag_ici_init)
196 continue;
2030b5ab 197 error = xfs_sync_inodes_ag(mp, i, flags);
683a8970
DC
198 if (error)
199 last_error = error;
200 if (error == EFSCORRUPTED)
201 break;
202 }
e9f1c6ee
DC
203 if (flags & SYNC_DELWRI)
204 xfs_log_force(mp, 0, lflags);
205
fe4fa4b8
DC
206 return XFS_ERROR(last_error);
207}
208
2af75df7
CH
209STATIC int
210xfs_commit_dummy_trans(
211 struct xfs_mount *mp,
212 uint log_flags)
213{
214 struct xfs_inode *ip = mp->m_rootip;
215 struct xfs_trans *tp;
216 int error;
217
218 /*
219 * Put a dummy transaction in the log to tell recovery
220 * that all others are OK.
221 */
222 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
223 error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
224 if (error) {
225 xfs_trans_cancel(tp, 0);
226 return error;
227 }
228
229 xfs_ilock(ip, XFS_ILOCK_EXCL);
230
231 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
232 xfs_trans_ihold(tp, ip);
233 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
234 /* XXX(hch): ignoring the error here.. */
235 error = xfs_trans_commit(tp, 0);
236
237 xfs_iunlock(ip, XFS_ILOCK_EXCL);
238
239 xfs_log_force(mp, 0, log_flags);
240 return 0;
241}
242
e9f1c6ee 243int
2af75df7
CH
244xfs_sync_fsdata(
245 struct xfs_mount *mp,
246 int flags)
247{
248 struct xfs_buf *bp;
249 struct xfs_buf_log_item *bip;
250 int error = 0;
251
252 /*
253 * If this is xfssyncd() then only sync the superblock if we can
254 * lock it without sleeping and it is not pinned.
255 */
256 if (flags & SYNC_BDFLUSH) {
257 ASSERT(!(flags & SYNC_WAIT));
258
259 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
260 if (!bp)
261 goto out;
262
263 bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
264 if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
265 goto out_brelse;
266 } else {
267 bp = xfs_getsb(mp, 0);
268
269 /*
270 * If the buffer is pinned then push on the log so we won't
271 * get stuck waiting in the write for someone, maybe
272 * ourselves, to flush the log.
273 *
274 * Even though we just pushed the log above, we did not have
275 * the superblock buffer locked at that point so it can
276 * become pinned in between there and here.
277 */
278 if (XFS_BUF_ISPINNED(bp))
279 xfs_log_force(mp, 0, XFS_LOG_FORCE);
280 }
281
282
283 if (flags & SYNC_WAIT)
284 XFS_BUF_UNASYNC(bp);
285 else
286 XFS_BUF_ASYNC(bp);
287
288 return xfs_bwrite(mp, bp);
289
290 out_brelse:
291 xfs_buf_relse(bp);
292 out:
293 return error;
e9f1c6ee
DC
294}
295
296/*
a4e4c4f4
DC
297 * When remounting a filesystem read-only or freezing the filesystem, we have
298 * two phases to execute. This first phase is syncing the data before we
299 * quiesce the filesystem, and the second is flushing all the inodes out after
300 * we've waited for all the transactions created by the first phase to
301 * complete. The second phase ensures that the inodes are written to their
302 * location on disk rather than just existing in transactions in the log. This
303 * means after a quiesce there is no log replay required to write the inodes to
304 * disk (this is the main difference between a sync and a quiesce).
305 */
306/*
307 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
308 * so we flush delwri and delalloc buffers here, then wait for all I/O to
309 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
310 * transactions can still occur here so don't bother flushing the buftarg
311 * because it'll just get dirty again.
e9f1c6ee
DC
312 */
313int
314xfs_quiesce_data(
315 struct xfs_mount *mp)
316{
317 int error;
318
319 /* push non-blocking */
320 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
7d095257 321 xfs_qm_sync(mp, SYNC_BDFLUSH);
e9f1c6ee
DC
322 xfs_filestream_flush(mp);
323
324 /* push and block */
325 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
7d095257 326 xfs_qm_sync(mp, SYNC_WAIT);
e9f1c6ee 327
a4e4c4f4 328 /* write superblock and hoover up shutdown errors */
e9f1c6ee
DC
329 error = xfs_sync_fsdata(mp, 0);
330
a4e4c4f4 331 /* flush data-only devices */
e9f1c6ee
DC
332 if (mp->m_rtdev_targp)
333 XFS_bflush(mp->m_rtdev_targp);
334
335 return error;
2af75df7
CH
336}
337
76bf105c
DC
338STATIC void
339xfs_quiesce_fs(
340 struct xfs_mount *mp)
341{
342 int count = 0, pincount;
343
344 xfs_flush_buftarg(mp->m_ddev_targp, 0);
1dc3318a 345 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
76bf105c
DC
346
347 /*
348 * This loop must run at least twice. The first instance of the loop
349 * will flush most meta data but that will generate more meta data
350 * (typically directory updates). Which then must be flushed and
351 * logged before we can write the unmount record.
352 */
353 do {
354 xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
355 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
356 if (!pincount) {
357 delay(50);
358 count++;
359 }
360 } while (count < 2);
361}
362
363/*
364 * Second stage of a quiesce. The data is already synced, now we have to take
365 * care of the metadata. New transactions are already blocked, so we need to
366 * wait for any remaining transactions to drain out before proceding.
367 */
368void
369xfs_quiesce_attr(
370 struct xfs_mount *mp)
371{
372 int error = 0;
373
374 /* wait for all modifications to complete */
375 while (atomic_read(&mp->m_active_trans) > 0)
376 delay(100);
377
378 /* flush inodes and push all remaining buffers out to disk */
379 xfs_quiesce_fs(mp);
380
5e106572
FB
381 /*
382 * Just warn here till VFS can correctly support
383 * read-only remount without racing.
384 */
385 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
386
387 /* Push the superblock and write an unmount record */
388 error = xfs_log_sbcount(mp, 1);
389 if (error)
390 xfs_fs_cmn_err(CE_WARN, mp,
391 "xfs_attr_quiesce: failed to log sb changes. "
392 "Frozen image may not be consistent.");
393 xfs_log_unmount_write(mp);
394 xfs_unmountfs_writesb(mp);
395}
396
a167b17e
DC
397/*
398 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
399 * Doing this has two advantages:
400 * - It saves on stack space, which is tight in certain situations
401 * - It can be used (with care) as a mechanism to avoid deadlocks.
402 * Flushing while allocating in a full filesystem requires both.
403 */
404STATIC void
405xfs_syncd_queue_work(
406 struct xfs_mount *mp,
407 void *data,
e43afd72
DC
408 void (*syncer)(struct xfs_mount *, void *),
409 struct completion *completion)
a167b17e 410{
a8d770d9 411 struct xfs_sync_work *work;
a167b17e 412
a8d770d9 413 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
a167b17e
DC
414 INIT_LIST_HEAD(&work->w_list);
415 work->w_syncer = syncer;
416 work->w_data = data;
417 work->w_mount = mp;
e43afd72 418 work->w_completion = completion;
a167b17e
DC
419 spin_lock(&mp->m_sync_lock);
420 list_add_tail(&work->w_list, &mp->m_sync_list);
421 spin_unlock(&mp->m_sync_lock);
422 wake_up_process(mp->m_sync_task);
423}
424
425/*
426 * Flush delayed allocate data, attempting to free up reserved space
427 * from existing allocations. At this point a new allocation attempt
428 * has failed with ENOSPC and we are in the process of scratching our
429 * heads, looking about for more room...
430 */
431STATIC void
a8d770d9 432xfs_flush_inodes_work(
a167b17e
DC
433 struct xfs_mount *mp,
434 void *arg)
435{
436 struct inode *inode = arg;
a8d770d9
DC
437 xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK);
438 xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK | SYNC_IOWAIT);
a167b17e
DC
439 iput(inode);
440}
441
442void
a8d770d9 443xfs_flush_inodes(
a167b17e
DC
444 xfs_inode_t *ip)
445{
446 struct inode *inode = VFS_I(ip);
e43afd72 447 DECLARE_COMPLETION_ONSTACK(completion);
a167b17e
DC
448
449 igrab(inode);
e43afd72
DC
450 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
451 wait_for_completion(&completion);
a167b17e
DC
452 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
453}
454
aacaa880
DC
455/*
456 * Every sync period we need to unpin all items, reclaim inodes, sync
457 * quota and write out the superblock. We might need to cover the log
458 * to indicate it is idle.
459 */
a167b17e
DC
460STATIC void
461xfs_sync_worker(
462 struct xfs_mount *mp,
463 void *unused)
464{
465 int error;
466
aacaa880
DC
467 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
468 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
1dc3318a 469 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
aacaa880 470 /* dgc: errors ignored here */
7d095257 471 error = xfs_qm_sync(mp, SYNC_BDFLUSH);
aacaa880
DC
472 error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
473 if (xfs_log_need_covered(mp))
474 error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
475 }
a167b17e
DC
476 mp->m_sync_seq++;
477 wake_up(&mp->m_wait_single_sync_task);
478}
479
480STATIC int
481xfssyncd(
482 void *arg)
483{
484 struct xfs_mount *mp = arg;
485 long timeleft;
a8d770d9 486 xfs_sync_work_t *work, *n;
a167b17e
DC
487 LIST_HEAD (tmp);
488
489 set_freezable();
490 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
491 for (;;) {
492 timeleft = schedule_timeout_interruptible(timeleft);
493 /* swsusp */
494 try_to_freeze();
495 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
496 break;
497
498 spin_lock(&mp->m_sync_lock);
499 /*
500 * We can get woken by laptop mode, to do a sync -
501 * that's the (only!) case where the list would be
502 * empty with time remaining.
503 */
504 if (!timeleft || list_empty(&mp->m_sync_list)) {
505 if (!timeleft)
506 timeleft = xfs_syncd_centisecs *
507 msecs_to_jiffies(10);
508 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
509 list_add_tail(&mp->m_sync_work.w_list,
510 &mp->m_sync_list);
511 }
512 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
513 list_move(&work->w_list, &tmp);
514 spin_unlock(&mp->m_sync_lock);
515
516 list_for_each_entry_safe(work, n, &tmp, w_list) {
517 (*work->w_syncer)(mp, work->w_data);
518 list_del(&work->w_list);
519 if (work == &mp->m_sync_work)
520 continue;
e43afd72
DC
521 if (work->w_completion)
522 complete(work->w_completion);
a167b17e
DC
523 kmem_free(work);
524 }
525 }
526
527 return 0;
528}
529
530int
531xfs_syncd_init(
532 struct xfs_mount *mp)
533{
534 mp->m_sync_work.w_syncer = xfs_sync_worker;
535 mp->m_sync_work.w_mount = mp;
e43afd72 536 mp->m_sync_work.w_completion = NULL;
a167b17e
DC
537 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
538 if (IS_ERR(mp->m_sync_task))
539 return -PTR_ERR(mp->m_sync_task);
540 return 0;
541}
542
543void
544xfs_syncd_stop(
545 struct xfs_mount *mp)
546{
547 kthread_stop(mp->m_sync_task);
548}
549
fce08f2f 550int
1dc3318a 551xfs_reclaim_inode(
fce08f2f
DC
552 xfs_inode_t *ip,
553 int locked,
554 int sync_mode)
555{
556 xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino);
557
558 /* The hash lock here protects a thread in xfs_iget_core from
559 * racing with us on linking the inode back with a vnode.
560 * Once we have the XFS_IRECLAIM flag set it will not touch
561 * us.
562 */
563 write_lock(&pag->pag_ici_lock);
564 spin_lock(&ip->i_flags_lock);
565 if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
566 !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
567 spin_unlock(&ip->i_flags_lock);
568 write_unlock(&pag->pag_ici_lock);
569 if (locked) {
570 xfs_ifunlock(ip);
571 xfs_iunlock(ip, XFS_ILOCK_EXCL);
572 }
573 return 1;
574 }
575 __xfs_iflags_set(ip, XFS_IRECLAIM);
576 spin_unlock(&ip->i_flags_lock);
577 write_unlock(&pag->pag_ici_lock);
578 xfs_put_perag(ip->i_mount, pag);
579
580 /*
581 * If the inode is still dirty, then flush it out. If the inode
582 * is not in the AIL, then it will be OK to flush it delwri as
583 * long as xfs_iflush() does not keep any references to the inode.
584 * We leave that decision up to xfs_iflush() since it has the
585 * knowledge of whether it's OK to simply do a delwri flush of
586 * the inode or whether we need to wait until the inode is
587 * pulled from the AIL.
588 * We get the flush lock regardless, though, just to make sure
589 * we don't free it while it is being flushed.
590 */
591 if (!locked) {
592 xfs_ilock(ip, XFS_ILOCK_EXCL);
593 xfs_iflock(ip);
594 }
595
596 /*
597 * In the case of a forced shutdown we rely on xfs_iflush() to
598 * wait for the inode to be unpinned before returning an error.
599 */
600 if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
601 /* synchronize with xfs_iflush_done */
602 xfs_iflock(ip);
603 xfs_ifunlock(ip);
604 }
605
606 xfs_iunlock(ip, XFS_ILOCK_EXCL);
607 xfs_ireclaim(ip);
608 return 0;
609}
610
11654513
DC
611/*
612 * We set the inode flag atomically with the radix tree tag.
613 * Once we get tag lookups on the radix tree, this inode flag
614 * can go away.
615 */
396beb85
DC
616void
617xfs_inode_set_reclaim_tag(
618 xfs_inode_t *ip)
619{
620 xfs_mount_t *mp = ip->i_mount;
621 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
622
623 read_lock(&pag->pag_ici_lock);
624 spin_lock(&ip->i_flags_lock);
625 radix_tree_tag_set(&pag->pag_ici_root,
626 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
11654513 627 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85
DC
628 spin_unlock(&ip->i_flags_lock);
629 read_unlock(&pag->pag_ici_lock);
630 xfs_put_perag(mp, pag);
631}
632
633void
634__xfs_inode_clear_reclaim_tag(
635 xfs_mount_t *mp,
636 xfs_perag_t *pag,
637 xfs_inode_t *ip)
638{
639 radix_tree_tag_clear(&pag->pag_ici_root,
640 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
641}
642
643void
644xfs_inode_clear_reclaim_tag(
645 xfs_inode_t *ip)
646{
647 xfs_mount_t *mp = ip->i_mount;
648 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
649
650 read_lock(&pag->pag_ici_lock);
651 spin_lock(&ip->i_flags_lock);
652 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
653 spin_unlock(&ip->i_flags_lock);
654 read_unlock(&pag->pag_ici_lock);
655 xfs_put_perag(mp, pag);
656}
657
7a3be02b
DC
658
659STATIC void
660xfs_reclaim_inodes_ag(
fce08f2f 661 xfs_mount_t *mp,
7a3be02b
DC
662 int ag,
663 int noblock,
fce08f2f
DC
664 int mode)
665{
7a3be02b
DC
666 xfs_inode_t *ip = NULL;
667 xfs_perag_t *pag = &mp->m_perag[ag];
668 int nr_found;
8c38ab03 669 uint32_t first_index;
7a3be02b 670 int skipped;
fce08f2f
DC
671
672restart:
7a3be02b
DC
673 first_index = 0;
674 skipped = 0;
675 do {
676 /*
677 * use a gang lookup to find the next inode in the tree
678 * as the tree is sparse and a gang lookup walks to find
679 * the number of objects requested.
680 */
681 read_lock(&pag->pag_ici_lock);
682 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
683 (void**)&ip, first_index, 1,
684 XFS_ICI_RECLAIM_TAG);
685
686 if (!nr_found) {
687 read_unlock(&pag->pag_ici_lock);
688 break;
689 }
690
8c38ab03
DC
691 /*
692 * Update the index for the next lookup. Catch overflows
693 * into the next AG range which can occur if we have inodes
694 * in the last block of the AG and we are currently
695 * pointing to the last inode.
696 */
7a3be02b 697 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
8c38ab03
DC
698 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
699 read_unlock(&pag->pag_ici_lock);
700 break;
701 }
7a3be02b 702
7a3be02b
DC
703 /* ignore if already under reclaim */
704 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
705 read_unlock(&pag->pag_ici_lock);
706 continue;
707 }
708
fce08f2f 709 if (noblock) {
7a3be02b
DC
710 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
711 read_unlock(&pag->pag_ici_lock);
fce08f2f 712 continue;
7a3be02b 713 }
fce08f2f
DC
714 if (xfs_ipincount(ip) ||
715 !xfs_iflock_nowait(ip)) {
716 xfs_iunlock(ip, XFS_ILOCK_EXCL);
7a3be02b 717 read_unlock(&pag->pag_ici_lock);
fce08f2f
DC
718 continue;
719 }
720 }
7a3be02b
DC
721 read_unlock(&pag->pag_ici_lock);
722
723 /*
724 * hmmm - this is an inode already in reclaim. Do
725 * we even bother catching it here?
726 */
1dc3318a 727 if (xfs_reclaim_inode(ip, noblock, mode))
7a3be02b
DC
728 skipped++;
729 } while (nr_found);
730
731 if (skipped) {
732 delay(1);
fce08f2f
DC
733 goto restart;
734 }
7a3be02b
DC
735 return;
736
737}
738
739int
740xfs_reclaim_inodes(
741 xfs_mount_t *mp,
742 int noblock,
743 int mode)
744{
745 int i;
746
747 for (i = 0; i < mp->m_sb.sb_agcount; i++) {
748 if (!mp->m_perag[i].pag_ici_init)
749 continue;
750 xfs_reclaim_inodes_ag(mp, i, noblock, mode);
751 }
fce08f2f
DC
752 return 0;
753}
754
755
This page took 0.073647 seconds and 5 git commands to generate.