xfs: split inode flushing from xfs_sync_inodes_ag
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_bmap_btree.h"
31#include "xfs_alloc_btree.h"
32#include "xfs_ialloc_btree.h"
33#include "xfs_btree.h"
34#include "xfs_dir2_sf.h"
35#include "xfs_attr_sf.h"
36#include "xfs_inode.h"
37#include "xfs_dinode.h"
38#include "xfs_error.h"
39#include "xfs_mru_cache.h"
40#include "xfs_filestream.h"
41#include "xfs_vnodeops.h"
42#include "xfs_utils.h"
43#include "xfs_buf_item.h"
44#include "xfs_inode_item.h"
45#include "xfs_rw.h"
7d095257 46#include "xfs_quota.h"
fe4fa4b8 47
a167b17e
DC
48#include <linux/kthread.h>
49#include <linux/freezer.h>
50
5a34d5cd
DC
51
52STATIC int
53xfs_sync_inode_data(
54 struct xfs_inode *ip,
55 int flags)
56{
57 struct inode *inode = VFS_I(ip);
58 struct address_space *mapping = inode->i_mapping;
59 int error = 0;
60
61 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
62 goto out_wait;
63
64 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
65 if (flags & SYNC_TRYLOCK)
66 goto out_wait;
67 xfs_ilock(ip, XFS_IOLOCK_SHARED);
68 }
69
70 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
71 0 : XFS_B_ASYNC, FI_NONE);
72 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
73
74 out_wait:
75 if (flags & SYNC_IOWAIT)
76 xfs_ioend_wait(ip);
77 return error;
78}
79
845b6d0c
CH
80STATIC int
81xfs_sync_inode_attr(
82 struct xfs_inode *ip,
83 int flags)
84{
85 int error = 0;
86
87 xfs_ilock(ip, XFS_ILOCK_SHARED);
88 if (xfs_inode_clean(ip))
89 goto out_unlock;
90 if (!xfs_iflock_nowait(ip)) {
91 if (!(flags & SYNC_WAIT))
92 goto out_unlock;
93 xfs_iflock(ip);
94 }
95
96 if (xfs_inode_clean(ip)) {
97 xfs_ifunlock(ip);
98 goto out_unlock;
99 }
100
101 error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
102 XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);
103
104 out_unlock:
105 xfs_iunlock(ip, XFS_ILOCK_SHARED);
106 return error;
107}
108
fe4fa4b8 109/*
683a8970
DC
110 * Sync all the inodes in the given AG according to the
111 * direction given by the flags.
fe4fa4b8 112 */
683a8970
DC
113STATIC int
114xfs_sync_inodes_ag(
fe4fa4b8 115 xfs_mount_t *mp,
683a8970 116 int ag,
2030b5ab 117 int flags)
fe4fa4b8 118{
683a8970 119 xfs_perag_t *pag = &mp->m_perag[ag];
683a8970 120 int nr_found;
8c38ab03 121 uint32_t first_index = 0;
683a8970
DC
122 int error = 0;
123 int last_error = 0;
fe4fa4b8 124
fe4fa4b8 125 do {
bc60a993 126 struct inode *inode;
bc60a993
DC
127 xfs_inode_t *ip = NULL;
128
fe4fa4b8 129 /*
683a8970
DC
130 * use a gang lookup to find the next inode in the tree
131 * as the tree is sparse and a gang lookup walks to find
132 * the number of objects requested.
fe4fa4b8 133 */
683a8970
DC
134 read_lock(&pag->pag_ici_lock);
135 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
136 (void**)&ip, first_index, 1);
fe4fa4b8 137
683a8970
DC
138 if (!nr_found) {
139 read_unlock(&pag->pag_ici_lock);
140 break;
fe4fa4b8
DC
141 }
142
8c38ab03
DC
143 /*
144 * Update the index for the next lookup. Catch overflows
145 * into the next AG range which can occur if we have inodes
146 * in the last block of the AG and we are currently
147 * pointing to the last inode.
148 */
683a8970 149 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
8c38ab03
DC
150 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
151 read_unlock(&pag->pag_ici_lock);
152 break;
153 }
fe4fa4b8 154
683a8970 155 /* nothing to sync during shutdown */
cb56a4b9 156 if (XFS_FORCED_SHUTDOWN(mp)) {
683a8970 157 read_unlock(&pag->pag_ici_lock);
fe4fa4b8
DC
158 return 0;
159 }
160
161 /*
455486b9
DC
162 * If we can't get a reference on the inode, it must be
163 * in reclaim. Leave it for the reclaim code to flush.
fe4fa4b8 164 */
455486b9
DC
165 inode = VFS_I(ip);
166 if (!igrab(inode)) {
683a8970 167 read_unlock(&pag->pag_ici_lock);
455486b9
DC
168 continue;
169 }
170 read_unlock(&pag->pag_ici_lock);
171
6307091f
DC
172 /* avoid new or bad inodes */
173 if (is_bad_inode(inode) ||
174 xfs_iflags_test(ip, XFS_INEW)) {
455486b9
DC
175 IRELE(ip);
176 continue;
fe4fa4b8 177 }
bc60a993 178
fe4fa4b8
DC
179 /*
180 * If we have to flush data or wait for I/O completion
455486b9 181 * we need to hold the iolock.
fe4fa4b8 182 */
5a34d5cd
DC
183 if (flags & SYNC_DELWRI)
184 error = xfs_sync_inode_data(ip, flags);
fe4fa4b8 185
845b6d0c
CH
186 if (flags & SYNC_ATTR)
187 error = xfs_sync_inode_attr(ip, flags);
188
189 IRELE(ip);
fe4fa4b8 190
683a8970 191 if (error)
fe4fa4b8 192 last_error = error;
fe4fa4b8
DC
193 /*
194 * bail out if the filesystem is corrupted.
195 */
683a8970 196 if (error == EFSCORRUPTED)
fe4fa4b8 197 return XFS_ERROR(error);
fe4fa4b8 198
683a8970 199 } while (nr_found);
fe4fa4b8 200
683a8970
DC
201 return last_error;
202}
fe4fa4b8 203
683a8970
DC
204int
205xfs_sync_inodes(
206 xfs_mount_t *mp,
2030b5ab 207 int flags)
683a8970
DC
208{
209 int error;
210 int last_error;
211 int i;
e9f1c6ee 212 int lflags = XFS_LOG_FORCE;
fe4fa4b8 213
683a8970
DC
214 if (mp->m_flags & XFS_MOUNT_RDONLY)
215 return 0;
216 error = 0;
217 last_error = 0;
fe4fa4b8 218
e9f1c6ee
DC
219 if (flags & SYNC_WAIT)
220 lflags |= XFS_LOG_SYNC;
221
683a8970
DC
222 for (i = 0; i < mp->m_sb.sb_agcount; i++) {
223 if (!mp->m_perag[i].pag_ici_init)
224 continue;
2030b5ab 225 error = xfs_sync_inodes_ag(mp, i, flags);
683a8970
DC
226 if (error)
227 last_error = error;
228 if (error == EFSCORRUPTED)
229 break;
230 }
e9f1c6ee
DC
231 if (flags & SYNC_DELWRI)
232 xfs_log_force(mp, 0, lflags);
233
fe4fa4b8
DC
234 return XFS_ERROR(last_error);
235}
236
2af75df7
CH
237STATIC int
238xfs_commit_dummy_trans(
239 struct xfs_mount *mp,
240 uint log_flags)
241{
242 struct xfs_inode *ip = mp->m_rootip;
243 struct xfs_trans *tp;
244 int error;
245
246 /*
247 * Put a dummy transaction in the log to tell recovery
248 * that all others are OK.
249 */
250 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
251 error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
252 if (error) {
253 xfs_trans_cancel(tp, 0);
254 return error;
255 }
256
257 xfs_ilock(ip, XFS_ILOCK_EXCL);
258
259 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
260 xfs_trans_ihold(tp, ip);
261 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
262 /* XXX(hch): ignoring the error here.. */
263 error = xfs_trans_commit(tp, 0);
264
265 xfs_iunlock(ip, XFS_ILOCK_EXCL);
266
267 xfs_log_force(mp, 0, log_flags);
268 return 0;
269}
270
e9f1c6ee 271int
2af75df7
CH
272xfs_sync_fsdata(
273 struct xfs_mount *mp,
274 int flags)
275{
276 struct xfs_buf *bp;
277 struct xfs_buf_log_item *bip;
278 int error = 0;
279
280 /*
281 * If this is xfssyncd() then only sync the superblock if we can
282 * lock it without sleeping and it is not pinned.
283 */
284 if (flags & SYNC_BDFLUSH) {
285 ASSERT(!(flags & SYNC_WAIT));
286
287 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
288 if (!bp)
289 goto out;
290
291 bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
292 if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
293 goto out_brelse;
294 } else {
295 bp = xfs_getsb(mp, 0);
296
297 /*
298 * If the buffer is pinned then push on the log so we won't
299 * get stuck waiting in the write for someone, maybe
300 * ourselves, to flush the log.
301 *
302 * Even though we just pushed the log above, we did not have
303 * the superblock buffer locked at that point so it can
304 * become pinned in between there and here.
305 */
306 if (XFS_BUF_ISPINNED(bp))
307 xfs_log_force(mp, 0, XFS_LOG_FORCE);
308 }
309
310
311 if (flags & SYNC_WAIT)
312 XFS_BUF_UNASYNC(bp);
313 else
314 XFS_BUF_ASYNC(bp);
315
316 return xfs_bwrite(mp, bp);
317
318 out_brelse:
319 xfs_buf_relse(bp);
320 out:
321 return error;
e9f1c6ee
DC
322}
323
324/*
a4e4c4f4
DC
325 * When remounting a filesystem read-only or freezing the filesystem, we have
326 * two phases to execute. This first phase is syncing the data before we
327 * quiesce the filesystem, and the second is flushing all the inodes out after
328 * we've waited for all the transactions created by the first phase to
329 * complete. The second phase ensures that the inodes are written to their
330 * location on disk rather than just existing in transactions in the log. This
331 * means after a quiesce there is no log replay required to write the inodes to
332 * disk (this is the main difference between a sync and a quiesce).
333 */
334/*
335 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
336 * so we flush delwri and delalloc buffers here, then wait for all I/O to
337 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
338 * transactions can still occur here so don't bother flushing the buftarg
339 * because it'll just get dirty again.
e9f1c6ee
DC
340 */
341int
342xfs_quiesce_data(
343 struct xfs_mount *mp)
344{
345 int error;
346
347 /* push non-blocking */
348 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
7d095257 349 xfs_qm_sync(mp, SYNC_BDFLUSH);
e9f1c6ee
DC
350 xfs_filestream_flush(mp);
351
352 /* push and block */
353 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
7d095257 354 xfs_qm_sync(mp, SYNC_WAIT);
e9f1c6ee 355
a4e4c4f4 356 /* write superblock and hoover up shutdown errors */
e9f1c6ee
DC
357 error = xfs_sync_fsdata(mp, 0);
358
a4e4c4f4 359 /* flush data-only devices */
e9f1c6ee
DC
360 if (mp->m_rtdev_targp)
361 XFS_bflush(mp->m_rtdev_targp);
362
363 return error;
2af75df7
CH
364}
365
76bf105c
DC
366STATIC void
367xfs_quiesce_fs(
368 struct xfs_mount *mp)
369{
370 int count = 0, pincount;
371
372 xfs_flush_buftarg(mp->m_ddev_targp, 0);
1dc3318a 373 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
76bf105c
DC
374
375 /*
376 * This loop must run at least twice. The first instance of the loop
377 * will flush most meta data but that will generate more meta data
378 * (typically directory updates). Which then must be flushed and
379 * logged before we can write the unmount record.
380 */
381 do {
382 xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
383 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
384 if (!pincount) {
385 delay(50);
386 count++;
387 }
388 } while (count < 2);
389}
390
391/*
392 * Second stage of a quiesce. The data is already synced, now we have to take
393 * care of the metadata. New transactions are already blocked, so we need to
394 * wait for any remaining transactions to drain out before proceding.
395 */
396void
397xfs_quiesce_attr(
398 struct xfs_mount *mp)
399{
400 int error = 0;
401
402 /* wait for all modifications to complete */
403 while (atomic_read(&mp->m_active_trans) > 0)
404 delay(100);
405
406 /* flush inodes and push all remaining buffers out to disk */
407 xfs_quiesce_fs(mp);
408
5e106572
FB
409 /*
410 * Just warn here till VFS can correctly support
411 * read-only remount without racing.
412 */
413 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
414
415 /* Push the superblock and write an unmount record */
416 error = xfs_log_sbcount(mp, 1);
417 if (error)
418 xfs_fs_cmn_err(CE_WARN, mp,
419 "xfs_attr_quiesce: failed to log sb changes. "
420 "Frozen image may not be consistent.");
421 xfs_log_unmount_write(mp);
422 xfs_unmountfs_writesb(mp);
423}
424
a167b17e
DC
425/*
426 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
427 * Doing this has two advantages:
428 * - It saves on stack space, which is tight in certain situations
429 * - It can be used (with care) as a mechanism to avoid deadlocks.
430 * Flushing while allocating in a full filesystem requires both.
431 */
432STATIC void
433xfs_syncd_queue_work(
434 struct xfs_mount *mp,
435 void *data,
e43afd72
DC
436 void (*syncer)(struct xfs_mount *, void *),
437 struct completion *completion)
a167b17e 438{
a8d770d9 439 struct xfs_sync_work *work;
a167b17e 440
a8d770d9 441 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
a167b17e
DC
442 INIT_LIST_HEAD(&work->w_list);
443 work->w_syncer = syncer;
444 work->w_data = data;
445 work->w_mount = mp;
e43afd72 446 work->w_completion = completion;
a167b17e
DC
447 spin_lock(&mp->m_sync_lock);
448 list_add_tail(&work->w_list, &mp->m_sync_list);
449 spin_unlock(&mp->m_sync_lock);
450 wake_up_process(mp->m_sync_task);
451}
452
453/*
454 * Flush delayed allocate data, attempting to free up reserved space
455 * from existing allocations. At this point a new allocation attempt
456 * has failed with ENOSPC and we are in the process of scratching our
457 * heads, looking about for more room...
458 */
459STATIC void
a8d770d9 460xfs_flush_inodes_work(
a167b17e
DC
461 struct xfs_mount *mp,
462 void *arg)
463{
464 struct inode *inode = arg;
a8d770d9
DC
465 xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK);
466 xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK | SYNC_IOWAIT);
a167b17e
DC
467 iput(inode);
468}
469
470void
a8d770d9 471xfs_flush_inodes(
a167b17e
DC
472 xfs_inode_t *ip)
473{
474 struct inode *inode = VFS_I(ip);
e43afd72 475 DECLARE_COMPLETION_ONSTACK(completion);
a167b17e
DC
476
477 igrab(inode);
e43afd72
DC
478 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
479 wait_for_completion(&completion);
a167b17e
DC
480 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
481}
482
aacaa880
DC
483/*
484 * Every sync period we need to unpin all items, reclaim inodes, sync
485 * quota and write out the superblock. We might need to cover the log
486 * to indicate it is idle.
487 */
a167b17e
DC
488STATIC void
489xfs_sync_worker(
490 struct xfs_mount *mp,
491 void *unused)
492{
493 int error;
494
aacaa880
DC
495 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
496 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
1dc3318a 497 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
aacaa880 498 /* dgc: errors ignored here */
7d095257 499 error = xfs_qm_sync(mp, SYNC_BDFLUSH);
aacaa880
DC
500 error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
501 if (xfs_log_need_covered(mp))
502 error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
503 }
a167b17e
DC
504 mp->m_sync_seq++;
505 wake_up(&mp->m_wait_single_sync_task);
506}
507
508STATIC int
509xfssyncd(
510 void *arg)
511{
512 struct xfs_mount *mp = arg;
513 long timeleft;
a8d770d9 514 xfs_sync_work_t *work, *n;
a167b17e
DC
515 LIST_HEAD (tmp);
516
517 set_freezable();
518 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
519 for (;;) {
520 timeleft = schedule_timeout_interruptible(timeleft);
521 /* swsusp */
522 try_to_freeze();
523 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
524 break;
525
526 spin_lock(&mp->m_sync_lock);
527 /*
528 * We can get woken by laptop mode, to do a sync -
529 * that's the (only!) case where the list would be
530 * empty with time remaining.
531 */
532 if (!timeleft || list_empty(&mp->m_sync_list)) {
533 if (!timeleft)
534 timeleft = xfs_syncd_centisecs *
535 msecs_to_jiffies(10);
536 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
537 list_add_tail(&mp->m_sync_work.w_list,
538 &mp->m_sync_list);
539 }
540 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
541 list_move(&work->w_list, &tmp);
542 spin_unlock(&mp->m_sync_lock);
543
544 list_for_each_entry_safe(work, n, &tmp, w_list) {
545 (*work->w_syncer)(mp, work->w_data);
546 list_del(&work->w_list);
547 if (work == &mp->m_sync_work)
548 continue;
e43afd72
DC
549 if (work->w_completion)
550 complete(work->w_completion);
a167b17e
DC
551 kmem_free(work);
552 }
553 }
554
555 return 0;
556}
557
558int
559xfs_syncd_init(
560 struct xfs_mount *mp)
561{
562 mp->m_sync_work.w_syncer = xfs_sync_worker;
563 mp->m_sync_work.w_mount = mp;
e43afd72 564 mp->m_sync_work.w_completion = NULL;
a167b17e
DC
565 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
566 if (IS_ERR(mp->m_sync_task))
567 return -PTR_ERR(mp->m_sync_task);
568 return 0;
569}
570
571void
572xfs_syncd_stop(
573 struct xfs_mount *mp)
574{
575 kthread_stop(mp->m_sync_task);
576}
577
fce08f2f 578int
1dc3318a 579xfs_reclaim_inode(
fce08f2f
DC
580 xfs_inode_t *ip,
581 int locked,
582 int sync_mode)
583{
584 xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino);
585
586 /* The hash lock here protects a thread in xfs_iget_core from
587 * racing with us on linking the inode back with a vnode.
588 * Once we have the XFS_IRECLAIM flag set it will not touch
589 * us.
590 */
591 write_lock(&pag->pag_ici_lock);
592 spin_lock(&ip->i_flags_lock);
593 if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
594 !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
595 spin_unlock(&ip->i_flags_lock);
596 write_unlock(&pag->pag_ici_lock);
597 if (locked) {
598 xfs_ifunlock(ip);
599 xfs_iunlock(ip, XFS_ILOCK_EXCL);
600 }
601 return 1;
602 }
603 __xfs_iflags_set(ip, XFS_IRECLAIM);
604 spin_unlock(&ip->i_flags_lock);
605 write_unlock(&pag->pag_ici_lock);
606 xfs_put_perag(ip->i_mount, pag);
607
608 /*
609 * If the inode is still dirty, then flush it out. If the inode
610 * is not in the AIL, then it will be OK to flush it delwri as
611 * long as xfs_iflush() does not keep any references to the inode.
612 * We leave that decision up to xfs_iflush() since it has the
613 * knowledge of whether it's OK to simply do a delwri flush of
614 * the inode or whether we need to wait until the inode is
615 * pulled from the AIL.
616 * We get the flush lock regardless, though, just to make sure
617 * we don't free it while it is being flushed.
618 */
619 if (!locked) {
620 xfs_ilock(ip, XFS_ILOCK_EXCL);
621 xfs_iflock(ip);
622 }
623
624 /*
625 * In the case of a forced shutdown we rely on xfs_iflush() to
626 * wait for the inode to be unpinned before returning an error.
627 */
628 if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
629 /* synchronize with xfs_iflush_done */
630 xfs_iflock(ip);
631 xfs_ifunlock(ip);
632 }
633
634 xfs_iunlock(ip, XFS_ILOCK_EXCL);
635 xfs_ireclaim(ip);
636 return 0;
637}
638
11654513
DC
639/*
640 * We set the inode flag atomically with the radix tree tag.
641 * Once we get tag lookups on the radix tree, this inode flag
642 * can go away.
643 */
396beb85
DC
644void
645xfs_inode_set_reclaim_tag(
646 xfs_inode_t *ip)
647{
648 xfs_mount_t *mp = ip->i_mount;
649 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
650
651 read_lock(&pag->pag_ici_lock);
652 spin_lock(&ip->i_flags_lock);
653 radix_tree_tag_set(&pag->pag_ici_root,
654 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
11654513 655 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85
DC
656 spin_unlock(&ip->i_flags_lock);
657 read_unlock(&pag->pag_ici_lock);
658 xfs_put_perag(mp, pag);
659}
660
661void
662__xfs_inode_clear_reclaim_tag(
663 xfs_mount_t *mp,
664 xfs_perag_t *pag,
665 xfs_inode_t *ip)
666{
667 radix_tree_tag_clear(&pag->pag_ici_root,
668 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
669}
670
671void
672xfs_inode_clear_reclaim_tag(
673 xfs_inode_t *ip)
674{
675 xfs_mount_t *mp = ip->i_mount;
676 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
677
678 read_lock(&pag->pag_ici_lock);
679 spin_lock(&ip->i_flags_lock);
680 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
681 spin_unlock(&ip->i_flags_lock);
682 read_unlock(&pag->pag_ici_lock);
683 xfs_put_perag(mp, pag);
684}
685
7a3be02b
DC
686
687STATIC void
688xfs_reclaim_inodes_ag(
fce08f2f 689 xfs_mount_t *mp,
7a3be02b
DC
690 int ag,
691 int noblock,
fce08f2f
DC
692 int mode)
693{
7a3be02b
DC
694 xfs_inode_t *ip = NULL;
695 xfs_perag_t *pag = &mp->m_perag[ag];
696 int nr_found;
8c38ab03 697 uint32_t first_index;
7a3be02b 698 int skipped;
fce08f2f
DC
699
700restart:
7a3be02b
DC
701 first_index = 0;
702 skipped = 0;
703 do {
704 /*
705 * use a gang lookup to find the next inode in the tree
706 * as the tree is sparse and a gang lookup walks to find
707 * the number of objects requested.
708 */
709 read_lock(&pag->pag_ici_lock);
710 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
711 (void**)&ip, first_index, 1,
712 XFS_ICI_RECLAIM_TAG);
713
714 if (!nr_found) {
715 read_unlock(&pag->pag_ici_lock);
716 break;
717 }
718
8c38ab03
DC
719 /*
720 * Update the index for the next lookup. Catch overflows
721 * into the next AG range which can occur if we have inodes
722 * in the last block of the AG and we are currently
723 * pointing to the last inode.
724 */
7a3be02b 725 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
8c38ab03
DC
726 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
727 read_unlock(&pag->pag_ici_lock);
728 break;
729 }
7a3be02b 730
7a3be02b
DC
731 /* ignore if already under reclaim */
732 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
733 read_unlock(&pag->pag_ici_lock);
734 continue;
735 }
736
fce08f2f 737 if (noblock) {
7a3be02b
DC
738 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
739 read_unlock(&pag->pag_ici_lock);
fce08f2f 740 continue;
7a3be02b 741 }
fce08f2f
DC
742 if (xfs_ipincount(ip) ||
743 !xfs_iflock_nowait(ip)) {
744 xfs_iunlock(ip, XFS_ILOCK_EXCL);
7a3be02b 745 read_unlock(&pag->pag_ici_lock);
fce08f2f
DC
746 continue;
747 }
748 }
7a3be02b
DC
749 read_unlock(&pag->pag_ici_lock);
750
751 /*
752 * hmmm - this is an inode already in reclaim. Do
753 * we even bother catching it here?
754 */
1dc3318a 755 if (xfs_reclaim_inode(ip, noblock, mode))
7a3be02b
DC
756 skipped++;
757 } while (nr_found);
758
759 if (skipped) {
760 delay(1);
fce08f2f
DC
761 goto restart;
762 }
7a3be02b
DC
763 return;
764
765}
766
767int
768xfs_reclaim_inodes(
769 xfs_mount_t *mp,
770 int noblock,
771 int mode)
772{
773 int i;
774
775 for (i = 0; i < mp->m_sb.sb_agcount; i++) {
776 if (!mp->m_perag[i].pag_ici_init)
777 continue;
778 xfs_reclaim_inodes_ag(mp, i, noblock, mode);
779 }
fce08f2f
DC
780 return 0;
781}
782
783
This page took 0.068999 seconds and 5 git commands to generate.