[XFS] fix uninitialised variable bug in dquot release
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_bmap_btree.h"
31#include "xfs_alloc_btree.h"
32#include "xfs_ialloc_btree.h"
33#include "xfs_btree.h"
34#include "xfs_dir2_sf.h"
35#include "xfs_attr_sf.h"
36#include "xfs_inode.h"
37#include "xfs_dinode.h"
38#include "xfs_error.h"
39#include "xfs_mru_cache.h"
40#include "xfs_filestream.h"
41#include "xfs_vnodeops.h"
42#include "xfs_utils.h"
43#include "xfs_buf_item.h"
44#include "xfs_inode_item.h"
45#include "xfs_rw.h"
46
a167b17e
DC
47#include <linux/kthread.h>
48#include <linux/freezer.h>
49
fe4fa4b8 50/*
683a8970
DC
51 * Sync all the inodes in the given AG according to the
52 * direction given by the flags.
fe4fa4b8 53 */
683a8970
DC
54STATIC int
55xfs_sync_inodes_ag(
fe4fa4b8 56 xfs_mount_t *mp,
683a8970 57 int ag,
2030b5ab 58 int flags)
fe4fa4b8 59{
683a8970 60 xfs_perag_t *pag = &mp->m_perag[ag];
683a8970 61 int nr_found;
8c38ab03 62 uint32_t first_index = 0;
683a8970
DC
63 int error = 0;
64 int last_error = 0;
65 int fflag = XFS_B_ASYNC;
fe4fa4b8 66
fe4fa4b8
DC
67 if (flags & SYNC_DELWRI)
68 fflag = XFS_B_DELWRI;
69 if (flags & SYNC_WAIT)
70 fflag = 0; /* synchronous overrides all */
71
fe4fa4b8 72 do {
bc60a993 73 struct inode *inode;
bc60a993 74 xfs_inode_t *ip = NULL;
455486b9 75 int lock_flags = XFS_ILOCK_SHARED;
bc60a993 76
fe4fa4b8 77 /*
683a8970
DC
78 * use a gang lookup to find the next inode in the tree
79 * as the tree is sparse and a gang lookup walks to find
80 * the number of objects requested.
fe4fa4b8 81 */
683a8970
DC
82 read_lock(&pag->pag_ici_lock);
83 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
84 (void**)&ip, first_index, 1);
fe4fa4b8 85
683a8970
DC
86 if (!nr_found) {
87 read_unlock(&pag->pag_ici_lock);
88 break;
fe4fa4b8
DC
89 }
90
8c38ab03
DC
91 /*
92 * Update the index for the next lookup. Catch overflows
93 * into the next AG range which can occur if we have inodes
94 * in the last block of the AG and we are currently
95 * pointing to the last inode.
96 */
683a8970 97 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
8c38ab03
DC
98 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
99 read_unlock(&pag->pag_ici_lock);
100 break;
101 }
fe4fa4b8 102
683a8970 103 /* nothing to sync during shutdown */
cb56a4b9 104 if (XFS_FORCED_SHUTDOWN(mp)) {
683a8970 105 read_unlock(&pag->pag_ici_lock);
fe4fa4b8
DC
106 return 0;
107 }
108
109 /*
455486b9
DC
110 * If we can't get a reference on the inode, it must be
111 * in reclaim. Leave it for the reclaim code to flush.
fe4fa4b8 112 */
455486b9
DC
113 inode = VFS_I(ip);
114 if (!igrab(inode)) {
683a8970 115 read_unlock(&pag->pag_ici_lock);
455486b9
DC
116 continue;
117 }
118 read_unlock(&pag->pag_ici_lock);
119
120 /* bad inodes are dealt with elsewhere */
121 if (is_bad_inode(inode)) {
122 IRELE(ip);
123 continue;
fe4fa4b8 124 }
bc60a993 125
fe4fa4b8
DC
126 /*
127 * If we have to flush data or wait for I/O completion
455486b9 128 * we need to hold the iolock.
fe4fa4b8 129 */
bc60a993 130 if ((flags & SYNC_DELWRI) && VN_DIRTY(inode)) {
455486b9
DC
131 xfs_ilock(ip, XFS_IOLOCK_SHARED);
132 lock_flags |= XFS_IOLOCK_SHARED;
683a8970
DC
133 error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE);
134 if (flags & SYNC_IOWAIT)
135 vn_iowait(ip);
683a8970 136 }
455486b9 137 xfs_ilock(ip, XFS_ILOCK_SHARED);
fe4fa4b8 138
683a8970 139 if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) {
fe4fa4b8
DC
140 if (flags & SYNC_WAIT) {
141 xfs_iflock(ip);
683a8970
DC
142 if (!xfs_inode_clean(ip))
143 error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
144 else
145 xfs_ifunlock(ip);
fe4fa4b8 146 } else if (xfs_iflock_nowait(ip)) {
683a8970
DC
147 if (!xfs_inode_clean(ip))
148 error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
149 else
150 xfs_ifunlock(ip);
fe4fa4b8
DC
151 }
152 }
455486b9 153 xfs_iput(ip, lock_flags);
fe4fa4b8 154
683a8970 155 if (error)
fe4fa4b8 156 last_error = error;
fe4fa4b8
DC
157 /*
158 * bail out if the filesystem is corrupted.
159 */
683a8970 160 if (error == EFSCORRUPTED)
fe4fa4b8 161 return XFS_ERROR(error);
fe4fa4b8 162
683a8970 163 } while (nr_found);
fe4fa4b8 164
683a8970
DC
165 return last_error;
166}
fe4fa4b8 167
683a8970
DC
168int
169xfs_sync_inodes(
170 xfs_mount_t *mp,
2030b5ab 171 int flags)
683a8970
DC
172{
173 int error;
174 int last_error;
175 int i;
e9f1c6ee 176 int lflags = XFS_LOG_FORCE;
fe4fa4b8 177
683a8970
DC
178 if (mp->m_flags & XFS_MOUNT_RDONLY)
179 return 0;
180 error = 0;
181 last_error = 0;
fe4fa4b8 182
e9f1c6ee
DC
183 if (flags & SYNC_WAIT)
184 lflags |= XFS_LOG_SYNC;
185
683a8970
DC
186 for (i = 0; i < mp->m_sb.sb_agcount; i++) {
187 if (!mp->m_perag[i].pag_ici_init)
188 continue;
2030b5ab 189 error = xfs_sync_inodes_ag(mp, i, flags);
683a8970
DC
190 if (error)
191 last_error = error;
192 if (error == EFSCORRUPTED)
193 break;
194 }
e9f1c6ee
DC
195 if (flags & SYNC_DELWRI)
196 xfs_log_force(mp, 0, lflags);
197
fe4fa4b8
DC
198 return XFS_ERROR(last_error);
199}
200
2af75df7
CH
201STATIC int
202xfs_commit_dummy_trans(
203 struct xfs_mount *mp,
204 uint log_flags)
205{
206 struct xfs_inode *ip = mp->m_rootip;
207 struct xfs_trans *tp;
208 int error;
209
210 /*
211 * Put a dummy transaction in the log to tell recovery
212 * that all others are OK.
213 */
214 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
215 error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
216 if (error) {
217 xfs_trans_cancel(tp, 0);
218 return error;
219 }
220
221 xfs_ilock(ip, XFS_ILOCK_EXCL);
222
223 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
224 xfs_trans_ihold(tp, ip);
225 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
226 /* XXX(hch): ignoring the error here.. */
227 error = xfs_trans_commit(tp, 0);
228
229 xfs_iunlock(ip, XFS_ILOCK_EXCL);
230
231 xfs_log_force(mp, 0, log_flags);
232 return 0;
233}
234
e9f1c6ee 235int
2af75df7
CH
236xfs_sync_fsdata(
237 struct xfs_mount *mp,
238 int flags)
239{
240 struct xfs_buf *bp;
241 struct xfs_buf_log_item *bip;
242 int error = 0;
243
244 /*
245 * If this is xfssyncd() then only sync the superblock if we can
246 * lock it without sleeping and it is not pinned.
247 */
248 if (flags & SYNC_BDFLUSH) {
249 ASSERT(!(flags & SYNC_WAIT));
250
251 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
252 if (!bp)
253 goto out;
254
255 bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
256 if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
257 goto out_brelse;
258 } else {
259 bp = xfs_getsb(mp, 0);
260
261 /*
262 * If the buffer is pinned then push on the log so we won't
263 * get stuck waiting in the write for someone, maybe
264 * ourselves, to flush the log.
265 *
266 * Even though we just pushed the log above, we did not have
267 * the superblock buffer locked at that point so it can
268 * become pinned in between there and here.
269 */
270 if (XFS_BUF_ISPINNED(bp))
271 xfs_log_force(mp, 0, XFS_LOG_FORCE);
272 }
273
274
275 if (flags & SYNC_WAIT)
276 XFS_BUF_UNASYNC(bp);
277 else
278 XFS_BUF_ASYNC(bp);
279
280 return xfs_bwrite(mp, bp);
281
282 out_brelse:
283 xfs_buf_relse(bp);
284 out:
285 return error;
e9f1c6ee
DC
286}
287
288/*
a4e4c4f4
DC
289 * When remounting a filesystem read-only or freezing the filesystem, we have
290 * two phases to execute. This first phase is syncing the data before we
291 * quiesce the filesystem, and the second is flushing all the inodes out after
292 * we've waited for all the transactions created by the first phase to
293 * complete. The second phase ensures that the inodes are written to their
294 * location on disk rather than just existing in transactions in the log. This
295 * means after a quiesce there is no log replay required to write the inodes to
296 * disk (this is the main difference between a sync and a quiesce).
297 */
298/*
299 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
300 * so we flush delwri and delalloc buffers here, then wait for all I/O to
301 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
302 * transactions can still occur here so don't bother flushing the buftarg
303 * because it'll just get dirty again.
e9f1c6ee
DC
304 */
305int
306xfs_quiesce_data(
307 struct xfs_mount *mp)
308{
309 int error;
310
311 /* push non-blocking */
312 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
313 XFS_QM_DQSYNC(mp, SYNC_BDFLUSH);
314 xfs_filestream_flush(mp);
315
316 /* push and block */
317 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
318 XFS_QM_DQSYNC(mp, SYNC_WAIT);
319
a4e4c4f4 320 /* write superblock and hoover up shutdown errors */
e9f1c6ee
DC
321 error = xfs_sync_fsdata(mp, 0);
322
a4e4c4f4 323 /* flush data-only devices */
e9f1c6ee
DC
324 if (mp->m_rtdev_targp)
325 XFS_bflush(mp->m_rtdev_targp);
326
327 return error;
2af75df7
CH
328}
329
76bf105c
DC
330STATIC void
331xfs_quiesce_fs(
332 struct xfs_mount *mp)
333{
334 int count = 0, pincount;
335
336 xfs_flush_buftarg(mp->m_ddev_targp, 0);
1dc3318a 337 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
76bf105c
DC
338
339 /*
340 * This loop must run at least twice. The first instance of the loop
341 * will flush most meta data but that will generate more meta data
342 * (typically directory updates). Which then must be flushed and
343 * logged before we can write the unmount record.
344 */
345 do {
346 xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
347 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
348 if (!pincount) {
349 delay(50);
350 count++;
351 }
352 } while (count < 2);
353}
354
355/*
356 * Second stage of a quiesce. The data is already synced, now we have to take
357 * care of the metadata. New transactions are already blocked, so we need to
358 * wait for any remaining transactions to drain out before proceding.
359 */
360void
361xfs_quiesce_attr(
362 struct xfs_mount *mp)
363{
364 int error = 0;
365
366 /* wait for all modifications to complete */
367 while (atomic_read(&mp->m_active_trans) > 0)
368 delay(100);
369
370 /* flush inodes and push all remaining buffers out to disk */
371 xfs_quiesce_fs(mp);
372
373 ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0);
374
375 /* Push the superblock and write an unmount record */
376 error = xfs_log_sbcount(mp, 1);
377 if (error)
378 xfs_fs_cmn_err(CE_WARN, mp,
379 "xfs_attr_quiesce: failed to log sb changes. "
380 "Frozen image may not be consistent.");
381 xfs_log_unmount_write(mp);
382 xfs_unmountfs_writesb(mp);
383}
384
a167b17e
DC
385/*
386 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
387 * Doing this has two advantages:
388 * - It saves on stack space, which is tight in certain situations
389 * - It can be used (with care) as a mechanism to avoid deadlocks.
390 * Flushing while allocating in a full filesystem requires both.
391 */
392STATIC void
393xfs_syncd_queue_work(
394 struct xfs_mount *mp,
395 void *data,
396 void (*syncer)(struct xfs_mount *, void *))
397{
398 struct bhv_vfs_sync_work *work;
399
400 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
401 INIT_LIST_HEAD(&work->w_list);
402 work->w_syncer = syncer;
403 work->w_data = data;
404 work->w_mount = mp;
405 spin_lock(&mp->m_sync_lock);
406 list_add_tail(&work->w_list, &mp->m_sync_list);
407 spin_unlock(&mp->m_sync_lock);
408 wake_up_process(mp->m_sync_task);
409}
410
411/*
412 * Flush delayed allocate data, attempting to free up reserved space
413 * from existing allocations. At this point a new allocation attempt
414 * has failed with ENOSPC and we are in the process of scratching our
415 * heads, looking about for more room...
416 */
417STATIC void
418xfs_flush_inode_work(
419 struct xfs_mount *mp,
420 void *arg)
421{
422 struct inode *inode = arg;
423 filemap_flush(inode->i_mapping);
424 iput(inode);
425}
426
427void
428xfs_flush_inode(
429 xfs_inode_t *ip)
430{
431 struct inode *inode = VFS_I(ip);
432
433 igrab(inode);
434 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
435 delay(msecs_to_jiffies(500));
436}
437
438/*
439 * This is the "bigger hammer" version of xfs_flush_inode_work...
440 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
441 */
442STATIC void
443xfs_flush_device_work(
444 struct xfs_mount *mp,
445 void *arg)
446{
447 struct inode *inode = arg;
448 sync_blockdev(mp->m_super->s_bdev);
449 iput(inode);
450}
451
452void
453xfs_flush_device(
454 xfs_inode_t *ip)
455{
456 struct inode *inode = VFS_I(ip);
457
458 igrab(inode);
459 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
460 delay(msecs_to_jiffies(500));
461 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
462}
463
aacaa880
DC
464/*
465 * Every sync period we need to unpin all items, reclaim inodes, sync
466 * quota and write out the superblock. We might need to cover the log
467 * to indicate it is idle.
468 */
a167b17e
DC
469STATIC void
470xfs_sync_worker(
471 struct xfs_mount *mp,
472 void *unused)
473{
474 int error;
475
aacaa880
DC
476 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
477 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
1dc3318a 478 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
aacaa880
DC
479 /* dgc: errors ignored here */
480 error = XFS_QM_DQSYNC(mp, SYNC_BDFLUSH);
481 error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
482 if (xfs_log_need_covered(mp))
483 error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
484 }
a167b17e
DC
485 mp->m_sync_seq++;
486 wake_up(&mp->m_wait_single_sync_task);
487}
488
489STATIC int
490xfssyncd(
491 void *arg)
492{
493 struct xfs_mount *mp = arg;
494 long timeleft;
495 bhv_vfs_sync_work_t *work, *n;
496 LIST_HEAD (tmp);
497
498 set_freezable();
499 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
500 for (;;) {
501 timeleft = schedule_timeout_interruptible(timeleft);
502 /* swsusp */
503 try_to_freeze();
504 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
505 break;
506
507 spin_lock(&mp->m_sync_lock);
508 /*
509 * We can get woken by laptop mode, to do a sync -
510 * that's the (only!) case where the list would be
511 * empty with time remaining.
512 */
513 if (!timeleft || list_empty(&mp->m_sync_list)) {
514 if (!timeleft)
515 timeleft = xfs_syncd_centisecs *
516 msecs_to_jiffies(10);
517 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
518 list_add_tail(&mp->m_sync_work.w_list,
519 &mp->m_sync_list);
520 }
521 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
522 list_move(&work->w_list, &tmp);
523 spin_unlock(&mp->m_sync_lock);
524
525 list_for_each_entry_safe(work, n, &tmp, w_list) {
526 (*work->w_syncer)(mp, work->w_data);
527 list_del(&work->w_list);
528 if (work == &mp->m_sync_work)
529 continue;
530 kmem_free(work);
531 }
532 }
533
534 return 0;
535}
536
537int
538xfs_syncd_init(
539 struct xfs_mount *mp)
540{
541 mp->m_sync_work.w_syncer = xfs_sync_worker;
542 mp->m_sync_work.w_mount = mp;
543 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
544 if (IS_ERR(mp->m_sync_task))
545 return -PTR_ERR(mp->m_sync_task);
546 return 0;
547}
548
549void
550xfs_syncd_stop(
551 struct xfs_mount *mp)
552{
553 kthread_stop(mp->m_sync_task);
554}
555
fce08f2f 556int
1dc3318a 557xfs_reclaim_inode(
fce08f2f
DC
558 xfs_inode_t *ip,
559 int locked,
560 int sync_mode)
561{
562 xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino);
563
564 /* The hash lock here protects a thread in xfs_iget_core from
565 * racing with us on linking the inode back with a vnode.
566 * Once we have the XFS_IRECLAIM flag set it will not touch
567 * us.
568 */
569 write_lock(&pag->pag_ici_lock);
570 spin_lock(&ip->i_flags_lock);
571 if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
572 !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
573 spin_unlock(&ip->i_flags_lock);
574 write_unlock(&pag->pag_ici_lock);
575 if (locked) {
576 xfs_ifunlock(ip);
577 xfs_iunlock(ip, XFS_ILOCK_EXCL);
578 }
579 return 1;
580 }
581 __xfs_iflags_set(ip, XFS_IRECLAIM);
582 spin_unlock(&ip->i_flags_lock);
583 write_unlock(&pag->pag_ici_lock);
584 xfs_put_perag(ip->i_mount, pag);
585
586 /*
587 * If the inode is still dirty, then flush it out. If the inode
588 * is not in the AIL, then it will be OK to flush it delwri as
589 * long as xfs_iflush() does not keep any references to the inode.
590 * We leave that decision up to xfs_iflush() since it has the
591 * knowledge of whether it's OK to simply do a delwri flush of
592 * the inode or whether we need to wait until the inode is
593 * pulled from the AIL.
594 * We get the flush lock regardless, though, just to make sure
595 * we don't free it while it is being flushed.
596 */
597 if (!locked) {
598 xfs_ilock(ip, XFS_ILOCK_EXCL);
599 xfs_iflock(ip);
600 }
601
602 /*
603 * In the case of a forced shutdown we rely on xfs_iflush() to
604 * wait for the inode to be unpinned before returning an error.
605 */
606 if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
607 /* synchronize with xfs_iflush_done */
608 xfs_iflock(ip);
609 xfs_ifunlock(ip);
610 }
611
612 xfs_iunlock(ip, XFS_ILOCK_EXCL);
613 xfs_ireclaim(ip);
614 return 0;
615}
616
11654513
DC
617/*
618 * We set the inode flag atomically with the radix tree tag.
619 * Once we get tag lookups on the radix tree, this inode flag
620 * can go away.
621 */
396beb85
DC
622void
623xfs_inode_set_reclaim_tag(
624 xfs_inode_t *ip)
625{
626 xfs_mount_t *mp = ip->i_mount;
627 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
628
629 read_lock(&pag->pag_ici_lock);
630 spin_lock(&ip->i_flags_lock);
631 radix_tree_tag_set(&pag->pag_ici_root,
632 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
11654513 633 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85
DC
634 spin_unlock(&ip->i_flags_lock);
635 read_unlock(&pag->pag_ici_lock);
636 xfs_put_perag(mp, pag);
637}
638
639void
640__xfs_inode_clear_reclaim_tag(
641 xfs_mount_t *mp,
642 xfs_perag_t *pag,
643 xfs_inode_t *ip)
644{
645 radix_tree_tag_clear(&pag->pag_ici_root,
646 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
647}
648
649void
650xfs_inode_clear_reclaim_tag(
651 xfs_inode_t *ip)
652{
653 xfs_mount_t *mp = ip->i_mount;
654 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
655
656 read_lock(&pag->pag_ici_lock);
657 spin_lock(&ip->i_flags_lock);
658 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
659 spin_unlock(&ip->i_flags_lock);
660 read_unlock(&pag->pag_ici_lock);
661 xfs_put_perag(mp, pag);
662}
663
7a3be02b
DC
664
665STATIC void
666xfs_reclaim_inodes_ag(
fce08f2f 667 xfs_mount_t *mp,
7a3be02b
DC
668 int ag,
669 int noblock,
fce08f2f
DC
670 int mode)
671{
7a3be02b
DC
672 xfs_inode_t *ip = NULL;
673 xfs_perag_t *pag = &mp->m_perag[ag];
674 int nr_found;
8c38ab03 675 uint32_t first_index;
7a3be02b 676 int skipped;
fce08f2f
DC
677
678restart:
7a3be02b
DC
679 first_index = 0;
680 skipped = 0;
681 do {
682 /*
683 * use a gang lookup to find the next inode in the tree
684 * as the tree is sparse and a gang lookup walks to find
685 * the number of objects requested.
686 */
687 read_lock(&pag->pag_ici_lock);
688 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
689 (void**)&ip, first_index, 1,
690 XFS_ICI_RECLAIM_TAG);
691
692 if (!nr_found) {
693 read_unlock(&pag->pag_ici_lock);
694 break;
695 }
696
8c38ab03
DC
697 /*
698 * Update the index for the next lookup. Catch overflows
699 * into the next AG range which can occur if we have inodes
700 * in the last block of the AG and we are currently
701 * pointing to the last inode.
702 */
7a3be02b 703 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
8c38ab03
DC
704 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
705 read_unlock(&pag->pag_ici_lock);
706 break;
707 }
7a3be02b
DC
708
709 ASSERT(xfs_iflags_test(ip, (XFS_IRECLAIMABLE|XFS_IRECLAIM)));
710
711 /* ignore if already under reclaim */
712 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
713 read_unlock(&pag->pag_ici_lock);
714 continue;
715 }
716
fce08f2f 717 if (noblock) {
7a3be02b
DC
718 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
719 read_unlock(&pag->pag_ici_lock);
fce08f2f 720 continue;
7a3be02b 721 }
fce08f2f
DC
722 if (xfs_ipincount(ip) ||
723 !xfs_iflock_nowait(ip)) {
724 xfs_iunlock(ip, XFS_ILOCK_EXCL);
7a3be02b 725 read_unlock(&pag->pag_ici_lock);
fce08f2f
DC
726 continue;
727 }
728 }
7a3be02b
DC
729 read_unlock(&pag->pag_ici_lock);
730
731 /*
732 * hmmm - this is an inode already in reclaim. Do
733 * we even bother catching it here?
734 */
1dc3318a 735 if (xfs_reclaim_inode(ip, noblock, mode))
7a3be02b
DC
736 skipped++;
737 } while (nr_found);
738
739 if (skipped) {
740 delay(1);
fce08f2f
DC
741 goto restart;
742 }
7a3be02b
DC
743 return;
744
745}
746
747int
748xfs_reclaim_inodes(
749 xfs_mount_t *mp,
750 int noblock,
751 int mode)
752{
753 int i;
754
755 for (i = 0; i < mp->m_sb.sb_agcount; i++) {
756 if (!mp->m_perag[i].pag_ici_init)
757 continue;
758 xfs_reclaim_inodes_ag(mp, i, noblock, mode);
759 }
fce08f2f
DC
760 return 0;
761}
762
763
This page took 0.060753 seconds and 5 git commands to generate.