writeback: add bg_threshold parameter to __bdi_update_bandwidth()
[deliverable/linux.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
25e41b3d
CH
41
42/*
43 * Prime number of hash buckets since address is used as the key.
44 */
45#define NVSYNC 37
46#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
47static wait_queue_head_t xfs_ioend_wq[NVSYNC];
48
49void __init
50xfs_ioend_init(void)
51{
52 int i;
53
54 for (i = 0; i < NVSYNC; i++)
55 init_waitqueue_head(&xfs_ioend_wq[i]);
56}
57
58void
59xfs_ioend_wait(
60 xfs_inode_t *ip)
61{
62 wait_queue_head_t *wq = to_ioend_wq(ip);
63
64 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
65}
66
67STATIC void
68xfs_ioend_wake(
69 xfs_inode_t *ip)
70{
71 if (atomic_dec_and_test(&ip->i_iocount))
72 wake_up(to_ioend_wq(ip));
73}
74
0b1b213f 75void
f51623b2
NS
76xfs_count_page_state(
77 struct page *page,
78 int *delalloc,
f51623b2
NS
79 int *unwritten)
80{
81 struct buffer_head *bh, *head;
82
20cb52eb 83 *delalloc = *unwritten = 0;
f51623b2
NS
84
85 bh = head = page_buffers(page);
86 do {
20cb52eb 87 if (buffer_unwritten(bh))
f51623b2
NS
88 (*unwritten) = 1;
89 else if (buffer_delay(bh))
90 (*delalloc) = 1;
91 } while ((bh = bh->b_this_page) != head);
92}
93
6214ed44
CH
94STATIC struct block_device *
95xfs_find_bdev_for_inode(
046f1685 96 struct inode *inode)
6214ed44 97{
046f1685 98 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
99 struct xfs_mount *mp = ip->i_mount;
100
71ddabb9 101 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
102 return mp->m_rtdev_targp->bt_bdev;
103 else
104 return mp->m_ddev_targp->bt_bdev;
105}
106
f6d6d4fc
CH
107/*
108 * We're now finished for good with this ioend structure.
109 * Update the page state via the associated buffer_heads,
110 * release holds on the inode and bio, and finally free
111 * up memory. Do not use the ioend after this.
112 */
0829c360
CH
113STATIC void
114xfs_destroy_ioend(
115 xfs_ioend_t *ioend)
116{
f6d6d4fc 117 struct buffer_head *bh, *next;
583fa586 118 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
119
120 for (bh = ioend->io_buffer_head; bh; bh = next) {
121 next = bh->b_private;
7d04a335 122 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 123 }
583fa586
CH
124
125 /*
126 * Volume managers supporting multiple paths can send back ENODEV
127 * when the final path disappears. In this case continuing to fill
128 * the page cache with dirty data which cannot be written out is
129 * evil, so prevent that.
130 */
131 if (unlikely(ioend->io_error == -ENODEV)) {
132 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
133 __FILE__, __LINE__);
b677c210 134 }
583fa586 135
25e41b3d 136 xfs_ioend_wake(ip);
0829c360
CH
137 mempool_free(ioend, xfs_ioend_pool);
138}
139
932640e8
DC
140/*
141 * If the end of the current ioend is beyond the current EOF,
142 * return the new EOF value, otherwise zero.
143 */
144STATIC xfs_fsize_t
145xfs_ioend_new_eof(
146 xfs_ioend_t *ioend)
147{
148 xfs_inode_t *ip = XFS_I(ioend->io_inode);
149 xfs_fsize_t isize;
150 xfs_fsize_t bsize;
151
152 bsize = ioend->io_offset + ioend->io_size;
153 isize = MAX(ip->i_size, ip->i_new_size);
154 isize = MIN(isize, bsize);
155 return isize > ip->i_d.di_size ? isize : 0;
156}
157
ba87ea69 158/*
77d7a0c2
DC
159 * Update on-disk file size now that data has been written to disk. The
160 * current in-memory file size is i_size. If a write is beyond eof i_new_size
161 * will be the intended file size until i_size is updated. If this write does
162 * not extend all the way to the valid file size then restrict this update to
163 * the end of the write.
164 *
165 * This function does not block as blocking on the inode lock in IO completion
166 * can lead to IO completion order dependency deadlocks.. If it can't get the
167 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 168 */
77d7a0c2 169STATIC int
ba87ea69
LM
170xfs_setfilesize(
171 xfs_ioend_t *ioend)
172{
b677c210 173 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 174 xfs_fsize_t isize;
ba87ea69 175
ba87ea69 176 if (unlikely(ioend->io_error))
77d7a0c2
DC
177 return 0;
178
179 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
180 return EAGAIN;
ba87ea69 181
932640e8
DC
182 isize = xfs_ioend_new_eof(ioend);
183 if (isize) {
55fb25d5 184 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
ba87ea69 185 ip->i_d.di_size = isize;
66d834ea 186 xfs_mark_inode_dirty(ip);
ba87ea69
LM
187 }
188
189 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
190 return 0;
191}
192
193/*
209fb87a 194 * Schedule IO completion handling on the final put of an ioend.
77d7a0c2
DC
195 */
196STATIC void
197xfs_finish_ioend(
209fb87a 198 struct xfs_ioend *ioend)
77d7a0c2
DC
199{
200 if (atomic_dec_and_test(&ioend->io_remaining)) {
209fb87a
CH
201 if (ioend->io_type == IO_UNWRITTEN)
202 queue_work(xfsconvertd_workqueue, &ioend->io_work);
203 else
204 queue_work(xfsdatad_workqueue, &ioend->io_work);
77d7a0c2 205 }
ba87ea69
LM
206}
207
0829c360 208/*
5ec4fabb 209 * IO write completion.
f6d6d4fc
CH
210 */
211STATIC void
5ec4fabb 212xfs_end_io(
77d7a0c2 213 struct work_struct *work)
0829c360 214{
77d7a0c2
DC
215 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
216 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 217 int error = 0;
ba87ea69 218
5ec4fabb
CH
219 /*
220 * For unwritten extents we need to issue transactions to convert a
221 * range to normal written extens after the data I/O has finished.
222 */
34a52c6c 223 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 224 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
225
226 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
227 ioend->io_size);
228 if (error)
229 ioend->io_error = error;
230 }
ba87ea69 231
5ec4fabb
CH
232 /*
233 * We might have to update the on-disk file size after extending
234 * writes.
235 */
a206c817
CH
236 error = xfs_setfilesize(ioend);
237 ASSERT(!error || error == EAGAIN);
77d7a0c2
DC
238
239 /*
240 * If we didn't complete processing of the ioend, requeue it to the
241 * tail of the workqueue for another attempt later. Otherwise destroy
242 * it.
243 */
244 if (error == EAGAIN) {
245 atomic_inc(&ioend->io_remaining);
209fb87a 246 xfs_finish_ioend(ioend);
77d7a0c2
DC
247 /* ensure we don't spin on blocked ioends */
248 delay(1);
fb511f21
CH
249 } else {
250 if (ioend->io_iocb)
251 aio_complete(ioend->io_iocb, ioend->io_result, 0);
77d7a0c2 252 xfs_destroy_ioend(ioend);
fb511f21 253 }
c626d174
DC
254}
255
209fb87a
CH
256/*
257 * Call IO completion handling in caller context on the final put of an ioend.
258 */
259STATIC void
260xfs_finish_ioend_sync(
261 struct xfs_ioend *ioend)
262{
263 if (atomic_dec_and_test(&ioend->io_remaining))
264 xfs_end_io(&ioend->io_work);
265}
266
0829c360
CH
267/*
268 * Allocate and initialise an IO completion structure.
269 * We need to track unwritten extent write completion here initially.
270 * We'll need to extend this for updating the ondisk inode size later
271 * (vs. incore size).
272 */
273STATIC xfs_ioend_t *
274xfs_alloc_ioend(
f6d6d4fc
CH
275 struct inode *inode,
276 unsigned int type)
0829c360
CH
277{
278 xfs_ioend_t *ioend;
279
280 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
281
282 /*
283 * Set the count to 1 initially, which will prevent an I/O
284 * completion callback from happening before we have started
285 * all the I/O from calling the completion routine too early.
286 */
287 atomic_set(&ioend->io_remaining, 1);
7d04a335 288 ioend->io_error = 0;
f6d6d4fc
CH
289 ioend->io_list = NULL;
290 ioend->io_type = type;
b677c210 291 ioend->io_inode = inode;
c1a073bd 292 ioend->io_buffer_head = NULL;
f6d6d4fc 293 ioend->io_buffer_tail = NULL;
b677c210 294 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
295 ioend->io_offset = 0;
296 ioend->io_size = 0;
fb511f21
CH
297 ioend->io_iocb = NULL;
298 ioend->io_result = 0;
0829c360 299
5ec4fabb 300 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
301 return ioend;
302}
303
1da177e4
LT
304STATIC int
305xfs_map_blocks(
306 struct inode *inode,
307 loff_t offset,
207d0416 308 struct xfs_bmbt_irec *imap,
a206c817
CH
309 int type,
310 int nonblocking)
1da177e4 311{
a206c817
CH
312 struct xfs_inode *ip = XFS_I(inode);
313 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 314 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
315 xfs_fileoff_t offset_fsb, end_fsb;
316 int error = 0;
a206c817
CH
317 int bmapi_flags = XFS_BMAPI_ENTIRE;
318 int nimaps = 1;
319
320 if (XFS_FORCED_SHUTDOWN(mp))
321 return -XFS_ERROR(EIO);
322
8ff2957d 323 if (type == IO_UNWRITTEN)
a206c817 324 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
325
326 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
327 if (nonblocking)
328 return -XFS_ERROR(EAGAIN);
329 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
330 }
331
8ff2957d
CH
332 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
333 (ip->i_df.if_flags & XFS_IFEXTENTS));
a206c817 334 ASSERT(offset <= mp->m_maxioffset);
8ff2957d 335
a206c817
CH
336 if (offset + count > mp->m_maxioffset)
337 count = mp->m_maxioffset - offset;
338 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
339 offset_fsb = XFS_B_TO_FSBT(mp, offset);
a206c817
CH
340 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
341 bmapi_flags, NULL, 0, imap, &nimaps, NULL);
8ff2957d 342 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 343
8ff2957d
CH
344 if (error)
345 return -XFS_ERROR(error);
a206c817 346
8ff2957d
CH
347 if (type == IO_DELALLOC &&
348 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
349 error = xfs_iomap_write_allocate(ip, offset, count, imap);
350 if (!error)
351 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 352 return -XFS_ERROR(error);
a206c817
CH
353 }
354
8ff2957d
CH
355#ifdef DEBUG
356 if (type == IO_UNWRITTEN) {
357 ASSERT(nimaps);
358 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
359 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
360 }
361#endif
362 if (nimaps)
363 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
364 return 0;
1da177e4
LT
365}
366
b8f82a4a 367STATIC int
558e6891 368xfs_imap_valid(
8699bb0a 369 struct inode *inode,
207d0416 370 struct xfs_bmbt_irec *imap,
558e6891 371 xfs_off_t offset)
1da177e4 372{
558e6891 373 offset >>= inode->i_blkbits;
8699bb0a 374
558e6891
CH
375 return offset >= imap->br_startoff &&
376 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
377}
378
f6d6d4fc
CH
379/*
380 * BIO completion handler for buffered IO.
381 */
782e3b3b 382STATIC void
f6d6d4fc
CH
383xfs_end_bio(
384 struct bio *bio,
f6d6d4fc
CH
385 int error)
386{
387 xfs_ioend_t *ioend = bio->bi_private;
388
f6d6d4fc 389 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 390 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
391
392 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
393 bio->bi_private = NULL;
394 bio->bi_end_io = NULL;
f6d6d4fc 395 bio_put(bio);
7d04a335 396
209fb87a 397 xfs_finish_ioend(ioend);
f6d6d4fc
CH
398}
399
400STATIC void
401xfs_submit_ioend_bio(
06342cf8
CH
402 struct writeback_control *wbc,
403 xfs_ioend_t *ioend,
404 struct bio *bio)
f6d6d4fc
CH
405{
406 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
407 bio->bi_private = ioend;
408 bio->bi_end_io = xfs_end_bio;
409
932640e8
DC
410 /*
411 * If the I/O is beyond EOF we mark the inode dirty immediately
412 * but don't update the inode size until I/O completion.
413 */
414 if (xfs_ioend_new_eof(ioend))
66d834ea 415 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 416
721a9602 417 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
418}
419
420STATIC struct bio *
421xfs_alloc_ioend_bio(
422 struct buffer_head *bh)
423{
f6d6d4fc 424 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 425 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
426
427 ASSERT(bio->bi_private == NULL);
428 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
429 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
430 return bio;
431}
432
433STATIC void
434xfs_start_buffer_writeback(
435 struct buffer_head *bh)
436{
437 ASSERT(buffer_mapped(bh));
438 ASSERT(buffer_locked(bh));
439 ASSERT(!buffer_delay(bh));
440 ASSERT(!buffer_unwritten(bh));
441
442 mark_buffer_async_write(bh);
443 set_buffer_uptodate(bh);
444 clear_buffer_dirty(bh);
445}
446
447STATIC void
448xfs_start_page_writeback(
449 struct page *page,
f6d6d4fc
CH
450 int clear_dirty,
451 int buffers)
452{
453 ASSERT(PageLocked(page));
454 ASSERT(!PageWriteback(page));
f6d6d4fc 455 if (clear_dirty)
92132021
DC
456 clear_page_dirty_for_io(page);
457 set_page_writeback(page);
f6d6d4fc 458 unlock_page(page);
1f7decf6
FW
459 /* If no buffers on the page are to be written, finish it here */
460 if (!buffers)
f6d6d4fc 461 end_page_writeback(page);
f6d6d4fc
CH
462}
463
464static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
465{
466 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
467}
468
469/*
d88992f6
DC
470 * Submit all of the bios for all of the ioends we have saved up, covering the
471 * initial writepage page and also any probed pages.
472 *
473 * Because we may have multiple ioends spanning a page, we need to start
474 * writeback on all the buffers before we submit them for I/O. If we mark the
475 * buffers as we got, then we can end up with a page that only has buffers
476 * marked async write and I/O complete on can occur before we mark the other
477 * buffers async write.
478 *
479 * The end result of this is that we trip a bug in end_page_writeback() because
480 * we call it twice for the one page as the code in end_buffer_async_write()
481 * assumes that all buffers on the page are started at the same time.
482 *
483 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 484 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
485 */
486STATIC void
487xfs_submit_ioend(
06342cf8 488 struct writeback_control *wbc,
f6d6d4fc
CH
489 xfs_ioend_t *ioend)
490{
d88992f6 491 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
492 xfs_ioend_t *next;
493 struct buffer_head *bh;
494 struct bio *bio;
495 sector_t lastblock = 0;
496
d88992f6
DC
497 /* Pass 1 - start writeback */
498 do {
499 next = ioend->io_list;
221cb251 500 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 501 xfs_start_buffer_writeback(bh);
d88992f6
DC
502 } while ((ioend = next) != NULL);
503
504 /* Pass 2 - submit I/O */
505 ioend = head;
f6d6d4fc
CH
506 do {
507 next = ioend->io_list;
508 bio = NULL;
509
510 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
511
512 if (!bio) {
513 retry:
514 bio = xfs_alloc_ioend_bio(bh);
515 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 516 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
517 goto retry;
518 }
519
520 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 521 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
522 goto retry;
523 }
524
525 lastblock = bh->b_blocknr;
526 }
527 if (bio)
06342cf8 528 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 529 xfs_finish_ioend(ioend);
f6d6d4fc
CH
530 } while ((ioend = next) != NULL);
531}
532
533/*
534 * Cancel submission of all buffer_heads so far in this endio.
535 * Toss the endio too. Only ever called for the initial page
536 * in a writepage request, so only ever one page.
537 */
538STATIC void
539xfs_cancel_ioend(
540 xfs_ioend_t *ioend)
541{
542 xfs_ioend_t *next;
543 struct buffer_head *bh, *next_bh;
544
545 do {
546 next = ioend->io_list;
547 bh = ioend->io_buffer_head;
548 do {
549 next_bh = bh->b_private;
550 clear_buffer_async_write(bh);
551 unlock_buffer(bh);
552 } while ((bh = next_bh) != NULL);
553
25e41b3d 554 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
555 mempool_free(ioend, xfs_ioend_pool);
556 } while ((ioend = next) != NULL);
557}
558
559/*
560 * Test to see if we've been building up a completion structure for
561 * earlier buffers -- if so, we try to append to this ioend if we
562 * can, otherwise we finish off any current ioend and start another.
563 * Return true if we've finished the given ioend.
564 */
565STATIC void
566xfs_add_to_ioend(
567 struct inode *inode,
568 struct buffer_head *bh,
7336cea8 569 xfs_off_t offset,
f6d6d4fc
CH
570 unsigned int type,
571 xfs_ioend_t **result,
572 int need_ioend)
573{
574 xfs_ioend_t *ioend = *result;
575
576 if (!ioend || need_ioend || type != ioend->io_type) {
577 xfs_ioend_t *previous = *result;
f6d6d4fc 578
f6d6d4fc
CH
579 ioend = xfs_alloc_ioend(inode, type);
580 ioend->io_offset = offset;
581 ioend->io_buffer_head = bh;
582 ioend->io_buffer_tail = bh;
583 if (previous)
584 previous->io_list = ioend;
585 *result = ioend;
586 } else {
587 ioend->io_buffer_tail->b_private = bh;
588 ioend->io_buffer_tail = bh;
589 }
590
591 bh->b_private = NULL;
592 ioend->io_size += bh->b_size;
593}
594
87cbc49c
NS
595STATIC void
596xfs_map_buffer(
046f1685 597 struct inode *inode,
87cbc49c 598 struct buffer_head *bh,
207d0416 599 struct xfs_bmbt_irec *imap,
046f1685 600 xfs_off_t offset)
87cbc49c
NS
601{
602 sector_t bn;
8699bb0a 603 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
604 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
605 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 606
207d0416
CH
607 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
608 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 609
e513182d 610 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 611 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 612
046f1685 613 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
614
615 bh->b_blocknr = bn;
616 set_buffer_mapped(bh);
617}
618
1da177e4
LT
619STATIC void
620xfs_map_at_offset(
046f1685 621 struct inode *inode,
1da177e4 622 struct buffer_head *bh,
207d0416 623 struct xfs_bmbt_irec *imap,
046f1685 624 xfs_off_t offset)
1da177e4 625{
207d0416
CH
626 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
627 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 628
207d0416 629 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
630 set_buffer_mapped(bh);
631 clear_buffer_delay(bh);
f6d6d4fc 632 clear_buffer_unwritten(bh);
1da177e4
LT
633}
634
1da177e4 635/*
10ce4444
CH
636 * Test if a given page is suitable for writing as part of an unwritten
637 * or delayed allocate extent.
1da177e4 638 */
10ce4444
CH
639STATIC int
640xfs_is_delayed_page(
641 struct page *page,
f6d6d4fc 642 unsigned int type)
1da177e4 643{
1da177e4 644 if (PageWriteback(page))
10ce4444 645 return 0;
1da177e4
LT
646
647 if (page->mapping && page_has_buffers(page)) {
648 struct buffer_head *bh, *head;
649 int acceptable = 0;
650
651 bh = head = page_buffers(page);
652 do {
f6d6d4fc 653 if (buffer_unwritten(bh))
34a52c6c 654 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 655 else if (buffer_delay(bh))
a206c817 656 acceptable = (type == IO_DELALLOC);
2ddee844 657 else if (buffer_dirty(bh) && buffer_mapped(bh))
a206c817 658 acceptable = (type == IO_OVERWRITE);
f6d6d4fc 659 else
1da177e4 660 break;
1da177e4
LT
661 } while ((bh = bh->b_this_page) != head);
662
663 if (acceptable)
10ce4444 664 return 1;
1da177e4
LT
665 }
666
10ce4444 667 return 0;
1da177e4
LT
668}
669
1da177e4
LT
670/*
671 * Allocate & map buffers for page given the extent map. Write it out.
672 * except for the original page of a writepage, this is called on
673 * delalloc/unwritten pages only, for the original page it is possible
674 * that the page has no mapping at all.
675 */
f6d6d4fc 676STATIC int
1da177e4
LT
677xfs_convert_page(
678 struct inode *inode,
679 struct page *page,
10ce4444 680 loff_t tindex,
207d0416 681 struct xfs_bmbt_irec *imap,
f6d6d4fc 682 xfs_ioend_t **ioendp,
2fa24f92 683 struct writeback_control *wbc)
1da177e4 684{
f6d6d4fc 685 struct buffer_head *bh, *head;
9260dc6b
CH
686 xfs_off_t end_offset;
687 unsigned long p_offset;
f6d6d4fc 688 unsigned int type;
24e17b5f 689 int len, page_dirty;
f6d6d4fc 690 int count = 0, done = 0, uptodate = 1;
9260dc6b 691 xfs_off_t offset = page_offset(page);
1da177e4 692
10ce4444
CH
693 if (page->index != tindex)
694 goto fail;
529ae9aa 695 if (!trylock_page(page))
10ce4444
CH
696 goto fail;
697 if (PageWriteback(page))
698 goto fail_unlock_page;
699 if (page->mapping != inode->i_mapping)
700 goto fail_unlock_page;
701 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
702 goto fail_unlock_page;
703
24e17b5f
NS
704 /*
705 * page_dirty is initially a count of buffers on the page before
c41564b5 706 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
707 *
708 * Derivation:
709 *
710 * End offset is the highest offset that this page should represent.
711 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
712 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
713 * hence give us the correct page_dirty count. On any other page,
714 * it will be zero and in that case we need page_dirty to be the
715 * count of buffers on the page.
24e17b5f 716 */
9260dc6b
CH
717 end_offset = min_t(unsigned long long,
718 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
719 i_size_read(inode));
720
24e17b5f 721 len = 1 << inode->i_blkbits;
9260dc6b
CH
722 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
723 PAGE_CACHE_SIZE);
724 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
725 page_dirty = p_offset / len;
24e17b5f 726
1da177e4
LT
727 bh = head = page_buffers(page);
728 do {
9260dc6b 729 if (offset >= end_offset)
1da177e4 730 break;
f6d6d4fc
CH
731 if (!buffer_uptodate(bh))
732 uptodate = 0;
733 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
734 done = 1;
1da177e4 735 continue;
f6d6d4fc
CH
736 }
737
2fa24f92
CH
738 if (buffer_unwritten(bh) || buffer_delay(bh) ||
739 buffer_mapped(bh)) {
9260dc6b 740 if (buffer_unwritten(bh))
34a52c6c 741 type = IO_UNWRITTEN;
2fa24f92 742 else if (buffer_delay(bh))
a206c817 743 type = IO_DELALLOC;
2fa24f92
CH
744 else
745 type = IO_OVERWRITE;
9260dc6b 746
558e6891 747 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 748 done = 1;
9260dc6b
CH
749 continue;
750 }
751
ecff71e6
CH
752 lock_buffer(bh);
753 if (type != IO_OVERWRITE)
2fa24f92 754 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
755 xfs_add_to_ioend(inode, bh, offset, type,
756 ioendp, done);
757
9260dc6b
CH
758 page_dirty--;
759 count++;
760 } else {
2fa24f92 761 done = 1;
1da177e4 762 }
7336cea8 763 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 764
f6d6d4fc
CH
765 if (uptodate && bh == head)
766 SetPageUptodate(page);
767
89f3b363 768 if (count) {
efceab1d
DC
769 if (--wbc->nr_to_write <= 0 &&
770 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 771 done = 1;
1da177e4 772 }
89f3b363 773 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
774
775 return done;
10ce4444
CH
776 fail_unlock_page:
777 unlock_page(page);
778 fail:
779 return 1;
1da177e4
LT
780}
781
782/*
783 * Convert & write out a cluster of pages in the same extent as defined
784 * by mp and following the start page.
785 */
786STATIC void
787xfs_cluster_write(
788 struct inode *inode,
789 pgoff_t tindex,
207d0416 790 struct xfs_bmbt_irec *imap,
f6d6d4fc 791 xfs_ioend_t **ioendp,
1da177e4 792 struct writeback_control *wbc,
1da177e4
LT
793 pgoff_t tlast)
794{
10ce4444
CH
795 struct pagevec pvec;
796 int done = 0, i;
1da177e4 797
10ce4444
CH
798 pagevec_init(&pvec, 0);
799 while (!done && tindex <= tlast) {
800 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
801
802 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 803 break;
10ce4444
CH
804
805 for (i = 0; i < pagevec_count(&pvec); i++) {
806 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 807 imap, ioendp, wbc);
10ce4444
CH
808 if (done)
809 break;
810 }
811
812 pagevec_release(&pvec);
813 cond_resched();
1da177e4
LT
814 }
815}
816
3ed3a434
DC
817STATIC void
818xfs_vm_invalidatepage(
819 struct page *page,
820 unsigned long offset)
821{
822 trace_xfs_invalidatepage(page->mapping->host, page, offset);
823 block_invalidatepage(page, offset);
824}
825
826/*
827 * If the page has delalloc buffers on it, we need to punch them out before we
828 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
829 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
830 * is done on that same region - the delalloc extent is returned when none is
831 * supposed to be there.
832 *
833 * We prevent this by truncating away the delalloc regions on the page before
834 * invalidating it. Because they are delalloc, we can do this without needing a
835 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
836 * truncation without a transaction as there is no space left for block
837 * reservation (typically why we see a ENOSPC in writeback).
838 *
839 * This is not a performance critical path, so for now just do the punching a
840 * buffer head at a time.
841 */
842STATIC void
843xfs_aops_discard_page(
844 struct page *page)
845{
846 struct inode *inode = page->mapping->host;
847 struct xfs_inode *ip = XFS_I(inode);
848 struct buffer_head *bh, *head;
849 loff_t offset = page_offset(page);
3ed3a434 850
a206c817 851 if (!xfs_is_delayed_page(page, IO_DELALLOC))
3ed3a434
DC
852 goto out_invalidate;
853
e8c3753c
DC
854 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
855 goto out_invalidate;
856
4f10700a 857 xfs_alert(ip->i_mount,
3ed3a434
DC
858 "page discard on page %p, inode 0x%llx, offset %llu.",
859 page, ip->i_ino, offset);
860
861 xfs_ilock(ip, XFS_ILOCK_EXCL);
862 bh = head = page_buffers(page);
863 do {
3ed3a434 864 int error;
c726de44 865 xfs_fileoff_t start_fsb;
3ed3a434
DC
866
867 if (!buffer_delay(bh))
868 goto next_buffer;
869
c726de44
DC
870 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
871 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
872 if (error) {
873 /* something screwed, just bail */
e8c3753c 874 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 875 xfs_alert(ip->i_mount,
3ed3a434 876 "page discard unable to remove delalloc mapping.");
e8c3753c 877 }
3ed3a434
DC
878 break;
879 }
880next_buffer:
c726de44 881 offset += 1 << inode->i_blkbits;
3ed3a434
DC
882
883 } while ((bh = bh->b_this_page) != head);
884
885 xfs_iunlock(ip, XFS_ILOCK_EXCL);
886out_invalidate:
887 xfs_vm_invalidatepage(page, 0);
888 return;
889}
890
1da177e4 891/*
89f3b363
CH
892 * Write out a dirty page.
893 *
894 * For delalloc space on the page we need to allocate space and flush it.
895 * For unwritten space on the page we need to start the conversion to
896 * regular allocated space.
89f3b363 897 * For any other dirty buffer heads on the page we should flush them.
1da177e4 898 */
1da177e4 899STATIC int
89f3b363
CH
900xfs_vm_writepage(
901 struct page *page,
902 struct writeback_control *wbc)
1da177e4 903{
89f3b363 904 struct inode *inode = page->mapping->host;
f6d6d4fc 905 struct buffer_head *bh, *head;
207d0416 906 struct xfs_bmbt_irec imap;
f6d6d4fc 907 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 908 loff_t offset;
f6d6d4fc 909 unsigned int type;
1da177e4 910 __uint64_t end_offset;
bd1556a1 911 pgoff_t end_index, last_index;
ed1e7b7e 912 ssize_t len;
a206c817 913 int err, imap_valid = 0, uptodate = 1;
89f3b363 914 int count = 0;
a206c817 915 int nonblocking = 0;
89f3b363
CH
916
917 trace_xfs_writepage(inode, page, 0);
918
20cb52eb
CH
919 ASSERT(page_has_buffers(page));
920
89f3b363
CH
921 /*
922 * Refuse to write the page out if we are called from reclaim context.
923 *
d4f7a5cb
CH
924 * This avoids stack overflows when called from deeply used stacks in
925 * random callers for direct reclaim or memcg reclaim. We explicitly
926 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363
CH
927 *
928 * This should really be done by the core VM, but until that happens
929 * filesystems like XFS, btrfs and ext4 have to take care of this
930 * by themselves.
931 */
d4f7a5cb 932 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
b5420f23 933 goto redirty;
1da177e4 934
89f3b363 935 /*
680a647b
CH
936 * Given that we do not allow direct reclaim to call us, we should
937 * never be called while in a filesystem transaction.
89f3b363 938 */
680a647b 939 if (WARN_ON(current->flags & PF_FSTRANS))
b5420f23 940 goto redirty;
89f3b363 941
1da177e4
LT
942 /* Is this page beyond the end of the file? */
943 offset = i_size_read(inode);
944 end_index = offset >> PAGE_CACHE_SHIFT;
945 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
946 if (page->index >= end_index) {
947 if ((page->index >= end_index + 1) ||
948 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 949 unlock_page(page);
19d5bcf3 950 return 0;
1da177e4
LT
951 }
952 }
953
f6d6d4fc 954 end_offset = min_t(unsigned long long,
20cb52eb
CH
955 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
956 offset);
24e17b5f 957 len = 1 << inode->i_blkbits;
24e17b5f 958
24e17b5f 959 bh = head = page_buffers(page);
f6d6d4fc 960 offset = page_offset(page);
a206c817
CH
961 type = IO_OVERWRITE;
962
dbcdde3e 963 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 964 nonblocking = 1;
f6d6d4fc 965
1da177e4 966 do {
6ac7248e
CH
967 int new_ioend = 0;
968
1da177e4
LT
969 if (offset >= end_offset)
970 break;
971 if (!buffer_uptodate(bh))
972 uptodate = 0;
1da177e4 973
3d9b02e3 974 /*
ece413f5
CH
975 * set_page_dirty dirties all buffers in a page, independent
976 * of their state. The dirty state however is entirely
977 * meaningless for holes (!mapped && uptodate), so skip
978 * buffers covering holes here.
3d9b02e3
ES
979 */
980 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
981 imap_valid = 0;
982 continue;
983 }
984
aeea1b1f
CH
985 if (buffer_unwritten(bh)) {
986 if (type != IO_UNWRITTEN) {
987 type = IO_UNWRITTEN;
988 imap_valid = 0;
1da177e4 989 }
aeea1b1f
CH
990 } else if (buffer_delay(bh)) {
991 if (type != IO_DELALLOC) {
992 type = IO_DELALLOC;
993 imap_valid = 0;
1da177e4 994 }
89f3b363 995 } else if (buffer_uptodate(bh)) {
a206c817
CH
996 if (type != IO_OVERWRITE) {
997 type = IO_OVERWRITE;
85da94c6
CH
998 imap_valid = 0;
999 }
aeea1b1f
CH
1000 } else {
1001 if (PageUptodate(page)) {
1002 ASSERT(buffer_mapped(bh));
1003 imap_valid = 0;
6c4fe19f 1004 }
aeea1b1f
CH
1005 continue;
1006 }
d5cb48aa 1007
aeea1b1f
CH
1008 if (imap_valid)
1009 imap_valid = xfs_imap_valid(inode, &imap, offset);
1010 if (!imap_valid) {
1011 /*
1012 * If we didn't have a valid mapping then we need to
1013 * put the new mapping into a separate ioend structure.
1014 * This ensures non-contiguous extents always have
1015 * separate ioends, which is particularly important
1016 * for unwritten extent conversion at I/O completion
1017 * time.
1018 */
1019 new_ioend = 1;
1020 err = xfs_map_blocks(inode, offset, &imap, type,
1021 nonblocking);
1022 if (err)
1023 goto error;
1024 imap_valid = xfs_imap_valid(inode, &imap, offset);
1025 }
1026 if (imap_valid) {
ecff71e6
CH
1027 lock_buffer(bh);
1028 if (type != IO_OVERWRITE)
aeea1b1f
CH
1029 xfs_map_at_offset(inode, bh, &imap, offset);
1030 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1031 new_ioend);
1032 count++;
1da177e4 1033 }
f6d6d4fc
CH
1034
1035 if (!iohead)
1036 iohead = ioend;
1037
1038 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1039
1040 if (uptodate && bh == head)
1041 SetPageUptodate(page);
1042
89f3b363 1043 xfs_start_page_writeback(page, 1, count);
1da177e4 1044
558e6891 1045 if (ioend && imap_valid) {
bd1556a1
CH
1046 xfs_off_t end_index;
1047
1048 end_index = imap.br_startoff + imap.br_blockcount;
1049
1050 /* to bytes */
1051 end_index <<= inode->i_blkbits;
1052
1053 /* to pages */
1054 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1055
1056 /* check against file size */
1057 if (end_index > last_index)
1058 end_index = last_index;
8699bb0a 1059
207d0416 1060 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1061 wbc, end_index);
1da177e4
LT
1062 }
1063
f6d6d4fc 1064 if (iohead)
06342cf8 1065 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1066
89f3b363 1067 return 0;
1da177e4
LT
1068
1069error:
f6d6d4fc
CH
1070 if (iohead)
1071 xfs_cancel_ioend(iohead);
1da177e4 1072
b5420f23
CH
1073 if (err == -EAGAIN)
1074 goto redirty;
1075
20cb52eb 1076 xfs_aops_discard_page(page);
89f3b363
CH
1077 ClearPageUptodate(page);
1078 unlock_page(page);
1da177e4 1079 return err;
f51623b2 1080
b5420f23 1081redirty:
f51623b2
NS
1082 redirty_page_for_writepage(wbc, page);
1083 unlock_page(page);
1084 return 0;
f51623b2
NS
1085}
1086
7d4fb40a
NS
1087STATIC int
1088xfs_vm_writepages(
1089 struct address_space *mapping,
1090 struct writeback_control *wbc)
1091{
b3aea4ed 1092 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1093 return generic_writepages(mapping, wbc);
1094}
1095
f51623b2
NS
1096/*
1097 * Called to move a page into cleanable state - and from there
89f3b363 1098 * to be released. The page should already be clean. We always
f51623b2
NS
1099 * have buffer heads in this call.
1100 *
89f3b363 1101 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1102 */
1103STATIC int
238f4c54 1104xfs_vm_releasepage(
f51623b2
NS
1105 struct page *page,
1106 gfp_t gfp_mask)
1107{
20cb52eb 1108 int delalloc, unwritten;
f51623b2 1109
89f3b363 1110 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1111
20cb52eb 1112 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1113
89f3b363 1114 if (WARN_ON(delalloc))
f51623b2 1115 return 0;
89f3b363 1116 if (WARN_ON(unwritten))
f51623b2
NS
1117 return 0;
1118
f51623b2
NS
1119 return try_to_free_buffers(page);
1120}
1121
1da177e4 1122STATIC int
c2536668 1123__xfs_get_blocks(
1da177e4
LT
1124 struct inode *inode,
1125 sector_t iblock,
1da177e4
LT
1126 struct buffer_head *bh_result,
1127 int create,
f2bde9b8 1128 int direct)
1da177e4 1129{
a206c817
CH
1130 struct xfs_inode *ip = XFS_I(inode);
1131 struct xfs_mount *mp = ip->i_mount;
1132 xfs_fileoff_t offset_fsb, end_fsb;
1133 int error = 0;
1134 int lockmode = 0;
207d0416 1135 struct xfs_bmbt_irec imap;
a206c817 1136 int nimaps = 1;
fdc7ed75
NS
1137 xfs_off_t offset;
1138 ssize_t size;
207d0416 1139 int new = 0;
a206c817
CH
1140
1141 if (XFS_FORCED_SHUTDOWN(mp))
1142 return -XFS_ERROR(EIO);
1da177e4 1143
fdc7ed75 1144 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1145 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1146 size = bh_result->b_size;
364f358a
LM
1147
1148 if (!create && direct && offset >= i_size_read(inode))
1149 return 0;
1150
a206c817
CH
1151 if (create) {
1152 lockmode = XFS_ILOCK_EXCL;
1153 xfs_ilock(ip, lockmode);
1154 } else {
1155 lockmode = xfs_ilock_map_shared(ip);
1156 }
f2bde9b8 1157
a206c817
CH
1158 ASSERT(offset <= mp->m_maxioffset);
1159 if (offset + size > mp->m_maxioffset)
1160 size = mp->m_maxioffset - offset;
1161 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1162 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1163
1164 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1165 XFS_BMAPI_ENTIRE, NULL, 0, &imap, &nimaps, NULL);
1da177e4 1166 if (error)
a206c817
CH
1167 goto out_unlock;
1168
1169 if (create &&
1170 (!nimaps ||
1171 (imap.br_startblock == HOLESTARTBLOCK ||
1172 imap.br_startblock == DELAYSTARTBLOCK))) {
1173 if (direct) {
1174 error = xfs_iomap_write_direct(ip, offset, size,
1175 &imap, nimaps);
1176 } else {
1177 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1178 }
1179 if (error)
1180 goto out_unlock;
1181
1182 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1183 } else if (nimaps) {
1184 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1185 } else {
1186 trace_xfs_get_blocks_notfound(ip, offset, size);
1187 goto out_unlock;
1188 }
1189 xfs_iunlock(ip, lockmode);
1da177e4 1190
207d0416
CH
1191 if (imap.br_startblock != HOLESTARTBLOCK &&
1192 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1193 /*
1194 * For unwritten extents do not report a disk address on
1da177e4
LT
1195 * the read case (treat as if we're reading into a hole).
1196 */
207d0416
CH
1197 if (create || !ISUNWRITTEN(&imap))
1198 xfs_map_buffer(inode, bh_result, &imap, offset);
1199 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1200 if (direct)
1201 bh_result->b_private = inode;
1202 set_buffer_unwritten(bh_result);
1da177e4
LT
1203 }
1204 }
1205
c2536668
NS
1206 /*
1207 * If this is a realtime file, data may be on a different device.
1208 * to that pointed to from the buffer_head b_bdev currently.
1209 */
046f1685 1210 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1211
c2536668 1212 /*
549054af
DC
1213 * If we previously allocated a block out beyond eof and we are now
1214 * coming back to use it then we will need to flag it as new even if it
1215 * has a disk address.
1216 *
1217 * With sub-block writes into unwritten extents we also need to mark
1218 * the buffer as new so that the unwritten parts of the buffer gets
1219 * correctly zeroed.
1da177e4
LT
1220 */
1221 if (create &&
1222 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1223 (offset >= i_size_read(inode)) ||
207d0416 1224 (new || ISUNWRITTEN(&imap))))
1da177e4 1225 set_buffer_new(bh_result);
1da177e4 1226
207d0416 1227 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1228 BUG_ON(direct);
1229 if (create) {
1230 set_buffer_uptodate(bh_result);
1231 set_buffer_mapped(bh_result);
1232 set_buffer_delay(bh_result);
1233 }
1234 }
1235
2b8f12b7
CH
1236 /*
1237 * If this is O_DIRECT or the mpage code calling tell them how large
1238 * the mapping is, so that we can avoid repeated get_blocks calls.
1239 */
c2536668 1240 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1241 xfs_off_t mapping_size;
1242
1243 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1244 mapping_size <<= inode->i_blkbits;
1245
1246 ASSERT(mapping_size > 0);
1247 if (mapping_size > size)
1248 mapping_size = size;
1249 if (mapping_size > LONG_MAX)
1250 mapping_size = LONG_MAX;
1251
1252 bh_result->b_size = mapping_size;
1da177e4
LT
1253 }
1254
1255 return 0;
a206c817
CH
1256
1257out_unlock:
1258 xfs_iunlock(ip, lockmode);
1259 return -error;
1da177e4
LT
1260}
1261
1262int
c2536668 1263xfs_get_blocks(
1da177e4
LT
1264 struct inode *inode,
1265 sector_t iblock,
1266 struct buffer_head *bh_result,
1267 int create)
1268{
f2bde9b8 1269 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1270}
1271
1272STATIC int
e4c573bb 1273xfs_get_blocks_direct(
1da177e4
LT
1274 struct inode *inode,
1275 sector_t iblock,
1da177e4
LT
1276 struct buffer_head *bh_result,
1277 int create)
1278{
f2bde9b8 1279 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1280}
1281
209fb87a
CH
1282/*
1283 * Complete a direct I/O write request.
1284 *
1285 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1286 * need to issue a transaction to convert the range from unwritten to written
1287 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1288 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1289 * request this handler is called from interrupt context, from which we
1290 * can't start transactions. In that case offload the I/O completion to
1291 * the workqueues we also use for buffered I/O completion.
1292 */
f0973863 1293STATIC void
209fb87a
CH
1294xfs_end_io_direct_write(
1295 struct kiocb *iocb,
1296 loff_t offset,
1297 ssize_t size,
1298 void *private,
1299 int ret,
1300 bool is_async)
f0973863 1301{
209fb87a 1302 struct xfs_ioend *ioend = iocb->private;
2d2422ae 1303 struct inode *inode = ioend->io_inode;
f0973863
CH
1304
1305 /*
209fb87a
CH
1306 * blockdev_direct_IO can return an error even after the I/O
1307 * completion handler was called. Thus we need to protect
1308 * against double-freeing.
f0973863 1309 */
209fb87a
CH
1310 iocb->private = NULL;
1311
ba87ea69
LM
1312 ioend->io_offset = offset;
1313 ioend->io_size = size;
209fb87a
CH
1314 if (private && size > 0)
1315 ioend->io_type = IO_UNWRITTEN;
1316
1317 if (is_async) {
1318 /*
1319 * If we are converting an unwritten extent we need to delay
1320 * the AIO completion until after the unwrittent extent
1321 * conversion has completed, otherwise do it ASAP.
1322 */
1323 if (ioend->io_type == IO_UNWRITTEN) {
fb511f21
CH
1324 ioend->io_iocb = iocb;
1325 ioend->io_result = ret;
fb511f21 1326 } else {
209fb87a 1327 aio_complete(iocb, ret, 0);
fb511f21 1328 }
209fb87a 1329 xfs_finish_ioend(ioend);
f0973863 1330 } else {
209fb87a 1331 xfs_finish_ioend_sync(ioend);
f0973863 1332 }
72c5052d
CH
1333
1334 /* XXX: probably should move into the real I/O completion handler */
2d2422ae 1335 inode_dio_done(inode);
f0973863
CH
1336}
1337
1da177e4 1338STATIC ssize_t
e4c573bb 1339xfs_vm_direct_IO(
1da177e4
LT
1340 int rw,
1341 struct kiocb *iocb,
1342 const struct iovec *iov,
1343 loff_t offset,
1344 unsigned long nr_segs)
1345{
209fb87a
CH
1346 struct inode *inode = iocb->ki_filp->f_mapping->host;
1347 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1348 ssize_t ret;
1349
1350 if (rw & WRITE) {
a206c817 1351 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
209fb87a 1352
eafdc7d1
CH
1353 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1354 offset, nr_segs,
1355 xfs_get_blocks_direct,
1356 xfs_end_io_direct_write, NULL, 0);
209fb87a
CH
1357 if (ret != -EIOCBQUEUED && iocb->private)
1358 xfs_destroy_ioend(iocb->private);
1359 } else {
eafdc7d1
CH
1360 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1361 offset, nr_segs,
1362 xfs_get_blocks_direct,
1363 NULL, NULL, 0);
209fb87a 1364 }
f0973863 1365
f0973863 1366 return ret;
1da177e4
LT
1367}
1368
fa9b227e
CH
1369STATIC void
1370xfs_vm_write_failed(
1371 struct address_space *mapping,
1372 loff_t to)
1373{
1374 struct inode *inode = mapping->host;
1375
1376 if (to > inode->i_size) {
c726de44
DC
1377 /*
1378 * punch out the delalloc blocks we have already allocated. We
1379 * don't call xfs_setattr() to do this as we may be in the
1380 * middle of a multi-iovec write and so the vfs inode->i_size
1381 * will not match the xfs ip->i_size and so it will zero too
1382 * much. Hence we jus truncate the page cache to zero what is
1383 * necessary and punch the delalloc blocks directly.
1384 */
1385 struct xfs_inode *ip = XFS_I(inode);
1386 xfs_fileoff_t start_fsb;
1387 xfs_fileoff_t end_fsb;
1388 int error;
1389
1390 truncate_pagecache(inode, to, inode->i_size);
1391
1392 /*
1393 * Check if there are any blocks that are outside of i_size
1394 * that need to be trimmed back.
1395 */
1396 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1397 end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1398 if (end_fsb <= start_fsb)
1399 return;
1400
1401 xfs_ilock(ip, XFS_ILOCK_EXCL);
1402 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1403 end_fsb - start_fsb);
1404 if (error) {
1405 /* something screwed, just bail */
1406 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 1407 xfs_alert(ip->i_mount,
c726de44
DC
1408 "xfs_vm_write_failed: unable to clean up ino %lld",
1409 ip->i_ino);
1410 }
1411 }
1412 xfs_iunlock(ip, XFS_ILOCK_EXCL);
fa9b227e
CH
1413 }
1414}
1415
f51623b2 1416STATIC int
d79689c7 1417xfs_vm_write_begin(
f51623b2 1418 struct file *file,
d79689c7
NP
1419 struct address_space *mapping,
1420 loff_t pos,
1421 unsigned len,
1422 unsigned flags,
1423 struct page **pagep,
1424 void **fsdata)
f51623b2 1425{
155130a4
CH
1426 int ret;
1427
1428 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1429 pagep, xfs_get_blocks);
fa9b227e
CH
1430 if (unlikely(ret))
1431 xfs_vm_write_failed(mapping, pos + len);
1432 return ret;
1433}
1434
1435STATIC int
1436xfs_vm_write_end(
1437 struct file *file,
1438 struct address_space *mapping,
1439 loff_t pos,
1440 unsigned len,
1441 unsigned copied,
1442 struct page *page,
1443 void *fsdata)
1444{
1445 int ret;
155130a4 1446
fa9b227e
CH
1447 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1448 if (unlikely(ret < len))
1449 xfs_vm_write_failed(mapping, pos + len);
155130a4 1450 return ret;
f51623b2 1451}
1da177e4
LT
1452
1453STATIC sector_t
e4c573bb 1454xfs_vm_bmap(
1da177e4
LT
1455 struct address_space *mapping,
1456 sector_t block)
1457{
1458 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1459 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1460
cca28fb8 1461 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1462 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1463 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1464 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1465 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1466}
1467
1468STATIC int
e4c573bb 1469xfs_vm_readpage(
1da177e4
LT
1470 struct file *unused,
1471 struct page *page)
1472{
c2536668 1473 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1474}
1475
1476STATIC int
e4c573bb 1477xfs_vm_readpages(
1da177e4
LT
1478 struct file *unused,
1479 struct address_space *mapping,
1480 struct list_head *pages,
1481 unsigned nr_pages)
1482{
c2536668 1483 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1484}
1485
f5e54d6e 1486const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1487 .readpage = xfs_vm_readpage,
1488 .readpages = xfs_vm_readpages,
1489 .writepage = xfs_vm_writepage,
7d4fb40a 1490 .writepages = xfs_vm_writepages,
238f4c54
NS
1491 .releasepage = xfs_vm_releasepage,
1492 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1493 .write_begin = xfs_vm_write_begin,
fa9b227e 1494 .write_end = xfs_vm_write_end,
e4c573bb
NS
1495 .bmap = xfs_vm_bmap,
1496 .direct_IO = xfs_vm_direct_IO,
e965f963 1497 .migratepage = buffer_migrate_page,
bddaafa1 1498 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1499 .error_remove_page = generic_error_remove_page,
1da177e4 1500};
This page took 0.74354 seconds and 5 git commands to generate.