xfs: remove xfs_cancel_ioend
[deliverable/linux.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
0b1b213f 39void
f51623b2
NS
40xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
f51623b2
NS
43 int *unwritten)
44{
45 struct buffer_head *bh, *head;
46
20cb52eb 47 *delalloc = *unwritten = 0;
f51623b2
NS
48
49 bh = head = page_buffers(page);
50 do {
20cb52eb 51 if (buffer_unwritten(bh))
f51623b2
NS
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56}
57
6214ed44
CH
58STATIC struct block_device *
59xfs_find_bdev_for_inode(
046f1685 60 struct inode *inode)
6214ed44 61{
046f1685 62 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
63 struct xfs_mount *mp = ip->i_mount;
64
71ddabb9 65 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69}
70
f6d6d4fc
CH
71/*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
0829c360
CH
77STATIC void
78xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80{
f6d6d4fc
CH
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
7d04a335 85 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 86 }
583fa586 87
0829c360
CH
88 mempool_free(ioend, xfs_ioend_pool);
89}
90
fc0063c4
CH
91/*
92 * Fast and loose check if this write could update the on-disk inode size.
93 */
94static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95{
96 return ioend->io_offset + ioend->io_size >
97 XFS_I(ioend->io_inode)->i_d.di_size;
98}
99
281627df
CH
100STATIC int
101xfs_setfilesize_trans_alloc(
102 struct xfs_ioend *ioend)
103{
104 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
105 struct xfs_trans *tp;
106 int error;
107
108 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109
3d3c8b52 110 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df 111 if (error) {
4906e215 112 xfs_trans_cancel(tp);
281627df
CH
113 return error;
114 }
115
116 ioend->io_append_trans = tp;
117
d9457dc0 118 /*
437a255a 119 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
120 * we released it.
121 */
bee9182d 122 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
123 /*
124 * We hand off the transaction to the completion thread now, so
125 * clear the flag here.
126 */
127 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
128 return 0;
129}
130
ba87ea69 131/*
2813d682 132 * Update on-disk file size now that data has been written to disk.
ba87ea69 133 */
281627df 134STATIC int
ba87ea69 135xfs_setfilesize(
2ba66237
CH
136 struct xfs_inode *ip,
137 struct xfs_trans *tp,
138 xfs_off_t offset,
139 size_t size)
ba87ea69 140{
ba87ea69 141 xfs_fsize_t isize;
ba87ea69 142
aa6bf01d 143 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 144 isize = xfs_new_eof(ip, offset + size);
281627df
CH
145 if (!isize) {
146 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 147 xfs_trans_cancel(tp);
281627df 148 return 0;
ba87ea69
LM
149 }
150
2ba66237 151 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
152
153 ip->i_d.di_size = isize;
154 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
156
70393313 157 return xfs_trans_commit(tp);
77d7a0c2
DC
158}
159
2ba66237
CH
160STATIC int
161xfs_setfilesize_ioend(
162 struct xfs_ioend *ioend)
163{
164 struct xfs_inode *ip = XFS_I(ioend->io_inode);
165 struct xfs_trans *tp = ioend->io_append_trans;
166
167 /*
168 * The transaction may have been allocated in the I/O submission thread,
169 * thus we need to mark ourselves as being in a transaction manually.
170 * Similarly for freeze protection.
171 */
172 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 173 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 174
5cb13dcd
Z
175 /* we abort the update if there was an IO error */
176 if (ioend->io_error) {
177 xfs_trans_cancel(tp);
178 return ioend->io_error;
179 }
180
2ba66237
CH
181 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
182}
183
77d7a0c2 184/*
209fb87a 185 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
186 *
187 * If there is no work to do we might as well call it a day and free the
188 * ioend right now.
77d7a0c2
DC
189 */
190STATIC void
191xfs_finish_ioend(
209fb87a 192 struct xfs_ioend *ioend)
77d7a0c2
DC
193{
194 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
195 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
196
0d882a36 197 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 198 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
2ba66237 199 else if (ioend->io_append_trans)
aa6bf01d 200 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
201 else
202 xfs_destroy_ioend(ioend);
77d7a0c2 203 }
ba87ea69
LM
204}
205
0829c360 206/*
5ec4fabb 207 * IO write completion.
f6d6d4fc
CH
208 */
209STATIC void
5ec4fabb 210xfs_end_io(
77d7a0c2 211 struct work_struct *work)
0829c360 212{
77d7a0c2
DC
213 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
214 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 215 int error = 0;
ba87ea69 216
04f658ee 217 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 218 ioend->io_error = -EIO;
04f658ee
CH
219 goto done;
220 }
04f658ee 221
5ec4fabb
CH
222 /*
223 * For unwritten extents we need to issue transactions to convert a
224 * range to normal written extens after the data I/O has finished.
5cb13dcd
Z
225 * Detecting and handling completion IO errors is done individually
226 * for each case as different cleanup operations need to be performed
227 * on error.
5ec4fabb 228 */
0d882a36 229 if (ioend->io_type == XFS_IO_UNWRITTEN) {
5cb13dcd
Z
230 if (ioend->io_error)
231 goto done;
437a255a
DC
232 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
233 ioend->io_size);
281627df 234 } else if (ioend->io_append_trans) {
2ba66237 235 error = xfs_setfilesize_ioend(ioend);
84803fb7 236 } else {
281627df 237 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 238 }
ba87ea69 239
04f658ee 240done:
437a255a 241 if (error)
2451337d 242 ioend->io_error = error;
aa6bf01d 243 xfs_destroy_ioend(ioend);
c626d174
DC
244}
245
0829c360
CH
246/*
247 * Allocate and initialise an IO completion structure.
248 * We need to track unwritten extent write completion here initially.
249 * We'll need to extend this for updating the ondisk inode size later
250 * (vs. incore size).
251 */
252STATIC xfs_ioend_t *
253xfs_alloc_ioend(
f6d6d4fc
CH
254 struct inode *inode,
255 unsigned int type)
0829c360
CH
256{
257 xfs_ioend_t *ioend;
258
259 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
260
261 /*
262 * Set the count to 1 initially, which will prevent an I/O
263 * completion callback from happening before we have started
264 * all the I/O from calling the completion routine too early.
265 */
266 atomic_set(&ioend->io_remaining, 1);
7d04a335 267 ioend->io_error = 0;
f6d6d4fc
CH
268 ioend->io_list = NULL;
269 ioend->io_type = type;
b677c210 270 ioend->io_inode = inode;
c1a073bd 271 ioend->io_buffer_head = NULL;
f6d6d4fc 272 ioend->io_buffer_tail = NULL;
0829c360
CH
273 ioend->io_offset = 0;
274 ioend->io_size = 0;
281627df 275 ioend->io_append_trans = NULL;
0829c360 276
5ec4fabb 277 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
278 return ioend;
279}
280
1da177e4
LT
281STATIC int
282xfs_map_blocks(
283 struct inode *inode,
284 loff_t offset,
207d0416 285 struct xfs_bmbt_irec *imap,
988ef927 286 int type)
1da177e4 287{
a206c817
CH
288 struct xfs_inode *ip = XFS_I(inode);
289 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 290 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
291 xfs_fileoff_t offset_fsb, end_fsb;
292 int error = 0;
a206c817
CH
293 int bmapi_flags = XFS_BMAPI_ENTIRE;
294 int nimaps = 1;
295
296 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 297 return -EIO;
a206c817 298
0d882a36 299 if (type == XFS_IO_UNWRITTEN)
a206c817 300 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 301
988ef927 302 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
303 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
304 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 305 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 306
d2c28191
DC
307 if (offset + count > mp->m_super->s_maxbytes)
308 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
309 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
310 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
311 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
312 imap, &nimaps, bmapi_flags);
8ff2957d 313 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 314
8ff2957d 315 if (error)
2451337d 316 return error;
a206c817 317
0d882a36 318 if (type == XFS_IO_DELALLOC &&
8ff2957d 319 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 320 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
321 if (!error)
322 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 323 return error;
a206c817
CH
324 }
325
8ff2957d 326#ifdef DEBUG
0d882a36 327 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
328 ASSERT(nimaps);
329 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
330 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
331 }
332#endif
333 if (nimaps)
334 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
335 return 0;
1da177e4
LT
336}
337
b8f82a4a 338STATIC int
558e6891 339xfs_imap_valid(
8699bb0a 340 struct inode *inode,
207d0416 341 struct xfs_bmbt_irec *imap,
558e6891 342 xfs_off_t offset)
1da177e4 343{
558e6891 344 offset >>= inode->i_blkbits;
8699bb0a 345
558e6891
CH
346 return offset >= imap->br_startoff &&
347 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
348}
349
f6d6d4fc
CH
350/*
351 * BIO completion handler for buffered IO.
352 */
782e3b3b 353STATIC void
f6d6d4fc 354xfs_end_bio(
4246a0b6 355 struct bio *bio)
f6d6d4fc
CH
356{
357 xfs_ioend_t *ioend = bio->bi_private;
358
77a78806
LT
359 if (!ioend->io_error)
360 ioend->io_error = bio->bi_error;
f6d6d4fc
CH
361
362 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
363 bio->bi_private = NULL;
364 bio->bi_end_io = NULL;
f6d6d4fc 365 bio_put(bio);
7d04a335 366
209fb87a 367 xfs_finish_ioend(ioend);
f6d6d4fc
CH
368}
369
370STATIC void
371xfs_submit_ioend_bio(
06342cf8
CH
372 struct writeback_control *wbc,
373 xfs_ioend_t *ioend,
374 struct bio *bio)
f6d6d4fc
CH
375{
376 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
377 bio->bi_private = ioend;
378 bio->bi_end_io = xfs_end_bio;
721a9602 379 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
380}
381
382STATIC struct bio *
383xfs_alloc_ioend_bio(
384 struct buffer_head *bh)
385{
b54ffb73 386 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
f6d6d4fc
CH
387
388 ASSERT(bio->bi_private == NULL);
4f024f37 389 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 390 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
391 return bio;
392}
393
394STATIC void
395xfs_start_buffer_writeback(
396 struct buffer_head *bh)
397{
398 ASSERT(buffer_mapped(bh));
399 ASSERT(buffer_locked(bh));
400 ASSERT(!buffer_delay(bh));
401 ASSERT(!buffer_unwritten(bh));
402
403 mark_buffer_async_write(bh);
404 set_buffer_uptodate(bh);
405 clear_buffer_dirty(bh);
406}
407
408STATIC void
409xfs_start_page_writeback(
410 struct page *page,
f6d6d4fc
CH
411 int clear_dirty,
412 int buffers)
413{
414 ASSERT(PageLocked(page));
415 ASSERT(!PageWriteback(page));
0d085a52
DC
416
417 /*
418 * if the page was not fully cleaned, we need to ensure that the higher
419 * layers come back to it correctly. That means we need to keep the page
420 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
421 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
422 * write this page in this writeback sweep will be made.
423 */
424 if (clear_dirty) {
92132021 425 clear_page_dirty_for_io(page);
0d085a52
DC
426 set_page_writeback(page);
427 } else
428 set_page_writeback_keepwrite(page);
429
f6d6d4fc 430 unlock_page(page);
0d085a52 431
1f7decf6
FW
432 /* If no buffers on the page are to be written, finish it here */
433 if (!buffers)
f6d6d4fc 434 end_page_writeback(page);
f6d6d4fc
CH
435}
436
c7c1a7d8 437static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
438{
439 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
440}
441
442/*
d88992f6
DC
443 * Submit all of the bios for all of the ioends we have saved up, covering the
444 * initial writepage page and also any probed pages.
445 *
446 * Because we may have multiple ioends spanning a page, we need to start
447 * writeback on all the buffers before we submit them for I/O. If we mark the
448 * buffers as we got, then we can end up with a page that only has buffers
449 * marked async write and I/O complete on can occur before we mark the other
450 * buffers async write.
451 *
452 * The end result of this is that we trip a bug in end_page_writeback() because
453 * we call it twice for the one page as the code in end_buffer_async_write()
454 * assumes that all buffers on the page are started at the same time.
455 *
456 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 457 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
458 *
459 * If @fail is non-zero, it means that we have a situation where some part of
460 * the submission process has failed after we have marked paged for writeback
461 * and unlocked them. In this situation, we need to fail the ioend chain rather
462 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
463 */
464STATIC void
465xfs_submit_ioend(
06342cf8 466 struct writeback_control *wbc,
7bf7f352
DC
467 xfs_ioend_t *ioend,
468 int fail)
f6d6d4fc 469{
d88992f6 470 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
471 xfs_ioend_t *next;
472 struct buffer_head *bh;
473 struct bio *bio;
474 sector_t lastblock = 0;
475
d88992f6
DC
476 /* Pass 1 - start writeback */
477 do {
478 next = ioend->io_list;
221cb251 479 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 480 xfs_start_buffer_writeback(bh);
d88992f6
DC
481 } while ((ioend = next) != NULL);
482
483 /* Pass 2 - submit I/O */
484 ioend = head;
f6d6d4fc
CH
485 do {
486 next = ioend->io_list;
487 bio = NULL;
488
7bf7f352
DC
489 /*
490 * If we are failing the IO now, just mark the ioend with an
491 * error and finish it. This will run IO completion immediately
492 * as there is only one reference to the ioend at this point in
493 * time.
494 */
495 if (fail) {
2451337d 496 ioend->io_error = fail;
7bf7f352
DC
497 xfs_finish_ioend(ioend);
498 continue;
499 }
500
f6d6d4fc 501 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
502
503 if (!bio) {
504 retry:
505 bio = xfs_alloc_ioend_bio(bh);
506 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 507 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
508 goto retry;
509 }
510
c7c1a7d8 511 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 512 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
513 goto retry;
514 }
515
516 lastblock = bh->b_blocknr;
517 }
518 if (bio)
06342cf8 519 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 520 xfs_finish_ioend(ioend);
f6d6d4fc
CH
521 } while ((ioend = next) != NULL);
522}
523
f6d6d4fc
CH
524/*
525 * Test to see if we've been building up a completion structure for
526 * earlier buffers -- if so, we try to append to this ioend if we
527 * can, otherwise we finish off any current ioend and start another.
528 * Return true if we've finished the given ioend.
529 */
530STATIC void
531xfs_add_to_ioend(
532 struct inode *inode,
533 struct buffer_head *bh,
7336cea8 534 xfs_off_t offset,
f6d6d4fc
CH
535 unsigned int type,
536 xfs_ioend_t **result,
537 int need_ioend)
538{
539 xfs_ioend_t *ioend = *result;
540
541 if (!ioend || need_ioend || type != ioend->io_type) {
542 xfs_ioend_t *previous = *result;
f6d6d4fc 543
f6d6d4fc
CH
544 ioend = xfs_alloc_ioend(inode, type);
545 ioend->io_offset = offset;
546 ioend->io_buffer_head = bh;
547 ioend->io_buffer_tail = bh;
548 if (previous)
549 previous->io_list = ioend;
550 *result = ioend;
551 } else {
552 ioend->io_buffer_tail->b_private = bh;
553 ioend->io_buffer_tail = bh;
554 }
555
556 bh->b_private = NULL;
557 ioend->io_size += bh->b_size;
558}
559
87cbc49c
NS
560STATIC void
561xfs_map_buffer(
046f1685 562 struct inode *inode,
87cbc49c 563 struct buffer_head *bh,
207d0416 564 struct xfs_bmbt_irec *imap,
046f1685 565 xfs_off_t offset)
87cbc49c
NS
566{
567 sector_t bn;
8699bb0a 568 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
569 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
570 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 571
207d0416
CH
572 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
573 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 574
e513182d 575 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 576 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 577
046f1685 578 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
579
580 bh->b_blocknr = bn;
581 set_buffer_mapped(bh);
582}
583
1da177e4
LT
584STATIC void
585xfs_map_at_offset(
046f1685 586 struct inode *inode,
1da177e4 587 struct buffer_head *bh,
207d0416 588 struct xfs_bmbt_irec *imap,
046f1685 589 xfs_off_t offset)
1da177e4 590{
207d0416
CH
591 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
592 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 593
207d0416 594 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
595 set_buffer_mapped(bh);
596 clear_buffer_delay(bh);
f6d6d4fc 597 clear_buffer_unwritten(bh);
1da177e4
LT
598}
599
1da177e4 600/*
a49935f2
DC
601 * Test if a given page contains at least one buffer of a given @type.
602 * If @check_all_buffers is true, then we walk all the buffers in the page to
603 * try to find one of the type passed in. If it is not set, then the caller only
604 * needs to check the first buffer on the page for a match.
1da177e4 605 */
a49935f2 606STATIC bool
6ffc4db5 607xfs_check_page_type(
10ce4444 608 struct page *page,
a49935f2
DC
609 unsigned int type,
610 bool check_all_buffers)
1da177e4 611{
a49935f2
DC
612 struct buffer_head *bh;
613 struct buffer_head *head;
1da177e4 614
a49935f2
DC
615 if (PageWriteback(page))
616 return false;
617 if (!page->mapping)
618 return false;
619 if (!page_has_buffers(page))
620 return false;
1da177e4 621
a49935f2
DC
622 bh = head = page_buffers(page);
623 do {
624 if (buffer_unwritten(bh)) {
625 if (type == XFS_IO_UNWRITTEN)
626 return true;
627 } else if (buffer_delay(bh)) {
805eeb8e 628 if (type == XFS_IO_DELALLOC)
a49935f2
DC
629 return true;
630 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 631 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
632 return true;
633 }
1da177e4 634
a49935f2
DC
635 /* If we are only checking the first buffer, we are done now. */
636 if (!check_all_buffers)
637 break;
638 } while ((bh = bh->b_this_page) != head);
1da177e4 639
a49935f2 640 return false;
1da177e4
LT
641}
642
1da177e4
LT
643/*
644 * Allocate & map buffers for page given the extent map. Write it out.
645 * except for the original page of a writepage, this is called on
646 * delalloc/unwritten pages only, for the original page it is possible
647 * that the page has no mapping at all.
648 */
f6d6d4fc 649STATIC int
1da177e4
LT
650xfs_convert_page(
651 struct inode *inode,
652 struct page *page,
10ce4444 653 loff_t tindex,
207d0416 654 struct xfs_bmbt_irec *imap,
f6d6d4fc 655 xfs_ioend_t **ioendp,
2fa24f92 656 struct writeback_control *wbc)
1da177e4 657{
f6d6d4fc 658 struct buffer_head *bh, *head;
9260dc6b
CH
659 xfs_off_t end_offset;
660 unsigned long p_offset;
f6d6d4fc 661 unsigned int type;
24e17b5f 662 int len, page_dirty;
f6d6d4fc 663 int count = 0, done = 0, uptodate = 1;
9260dc6b 664 xfs_off_t offset = page_offset(page);
1da177e4 665
10ce4444
CH
666 if (page->index != tindex)
667 goto fail;
529ae9aa 668 if (!trylock_page(page))
10ce4444
CH
669 goto fail;
670 if (PageWriteback(page))
671 goto fail_unlock_page;
672 if (page->mapping != inode->i_mapping)
673 goto fail_unlock_page;
a49935f2 674 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
10ce4444
CH
675 goto fail_unlock_page;
676
24e17b5f
NS
677 /*
678 * page_dirty is initially a count of buffers on the page before
c41564b5 679 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
680 *
681 * Derivation:
682 *
683 * End offset is the highest offset that this page should represent.
684 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
685 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
686 * hence give us the correct page_dirty count. On any other page,
687 * it will be zero and in that case we need page_dirty to be the
688 * count of buffers on the page.
24e17b5f 689 */
9260dc6b
CH
690 end_offset = min_t(unsigned long long,
691 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
692 i_size_read(inode));
693
480d7467
DC
694 /*
695 * If the current map does not span the entire page we are about to try
696 * to write, then give up. The only way we can write a page that spans
697 * multiple mappings in a single writeback iteration is via the
698 * xfs_vm_writepage() function. Data integrity writeback requires the
699 * entire page to be written in a single attempt, otherwise the part of
700 * the page we don't write here doesn't get written as part of the data
701 * integrity sync.
702 *
703 * For normal writeback, we also don't attempt to write partial pages
704 * here as it simply means that write_cache_pages() will see it under
705 * writeback and ignore the page until some point in the future, at
706 * which time this will be the only page in the file that needs
707 * writeback. Hence for more optimal IO patterns, we should always
708 * avoid partial page writeback due to multiple mappings on a page here.
709 */
710 if (!xfs_imap_valid(inode, imap, end_offset))
711 goto fail_unlock_page;
712
24e17b5f 713 len = 1 << inode->i_blkbits;
9260dc6b
CH
714 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
715 PAGE_CACHE_SIZE);
716 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
717 page_dirty = p_offset / len;
24e17b5f 718
a49935f2
DC
719 /*
720 * The moment we find a buffer that doesn't match our current type
721 * specification or can't be written, abort the loop and start
722 * writeback. As per the above xfs_imap_valid() check, only
723 * xfs_vm_writepage() can handle partial page writeback fully - we are
724 * limited here to the buffers that are contiguous with the current
725 * ioend, and hence a buffer we can't write breaks that contiguity and
726 * we have to defer the rest of the IO to xfs_vm_writepage().
727 */
1da177e4
LT
728 bh = head = page_buffers(page);
729 do {
9260dc6b 730 if (offset >= end_offset)
1da177e4 731 break;
f6d6d4fc
CH
732 if (!buffer_uptodate(bh))
733 uptodate = 0;
734 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
735 done = 1;
a49935f2 736 break;
f6d6d4fc
CH
737 }
738
2fa24f92
CH
739 if (buffer_unwritten(bh) || buffer_delay(bh) ||
740 buffer_mapped(bh)) {
9260dc6b 741 if (buffer_unwritten(bh))
0d882a36 742 type = XFS_IO_UNWRITTEN;
2fa24f92 743 else if (buffer_delay(bh))
0d882a36 744 type = XFS_IO_DELALLOC;
2fa24f92 745 else
0d882a36 746 type = XFS_IO_OVERWRITE;
9260dc6b 747
a49935f2
DC
748 /*
749 * imap should always be valid because of the above
750 * partial page end_offset check on the imap.
751 */
752 ASSERT(xfs_imap_valid(inode, imap, offset));
9260dc6b 753
ecff71e6 754 lock_buffer(bh);
0d882a36 755 if (type != XFS_IO_OVERWRITE)
2fa24f92 756 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
757 xfs_add_to_ioend(inode, bh, offset, type,
758 ioendp, done);
759
9260dc6b
CH
760 page_dirty--;
761 count++;
762 } else {
2fa24f92 763 done = 1;
a49935f2 764 break;
1da177e4 765 }
7336cea8 766 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 767
f6d6d4fc
CH
768 if (uptodate && bh == head)
769 SetPageUptodate(page);
770
89f3b363 771 if (count) {
efceab1d
DC
772 if (--wbc->nr_to_write <= 0 &&
773 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 774 done = 1;
1da177e4 775 }
89f3b363 776 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
777
778 return done;
10ce4444
CH
779 fail_unlock_page:
780 unlock_page(page);
781 fail:
782 return 1;
1da177e4
LT
783}
784
785/*
786 * Convert & write out a cluster of pages in the same extent as defined
787 * by mp and following the start page.
788 */
789STATIC void
790xfs_cluster_write(
791 struct inode *inode,
792 pgoff_t tindex,
207d0416 793 struct xfs_bmbt_irec *imap,
f6d6d4fc 794 xfs_ioend_t **ioendp,
1da177e4 795 struct writeback_control *wbc,
1da177e4
LT
796 pgoff_t tlast)
797{
10ce4444
CH
798 struct pagevec pvec;
799 int done = 0, i;
1da177e4 800
10ce4444
CH
801 pagevec_init(&pvec, 0);
802 while (!done && tindex <= tlast) {
803 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
804
805 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 806 break;
10ce4444
CH
807
808 for (i = 0; i < pagevec_count(&pvec); i++) {
809 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 810 imap, ioendp, wbc);
10ce4444
CH
811 if (done)
812 break;
813 }
814
815 pagevec_release(&pvec);
816 cond_resched();
1da177e4
LT
817 }
818}
819
3ed3a434
DC
820STATIC void
821xfs_vm_invalidatepage(
822 struct page *page,
d47992f8
LC
823 unsigned int offset,
824 unsigned int length)
3ed3a434 825{
34097dfe
LC
826 trace_xfs_invalidatepage(page->mapping->host, page, offset,
827 length);
828 block_invalidatepage(page, offset, length);
3ed3a434
DC
829}
830
831/*
832 * If the page has delalloc buffers on it, we need to punch them out before we
833 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
834 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
835 * is done on that same region - the delalloc extent is returned when none is
836 * supposed to be there.
837 *
838 * We prevent this by truncating away the delalloc regions on the page before
839 * invalidating it. Because they are delalloc, we can do this without needing a
840 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
841 * truncation without a transaction as there is no space left for block
842 * reservation (typically why we see a ENOSPC in writeback).
843 *
844 * This is not a performance critical path, so for now just do the punching a
845 * buffer head at a time.
846 */
847STATIC void
848xfs_aops_discard_page(
849 struct page *page)
850{
851 struct inode *inode = page->mapping->host;
852 struct xfs_inode *ip = XFS_I(inode);
853 struct buffer_head *bh, *head;
854 loff_t offset = page_offset(page);
3ed3a434 855
a49935f2 856 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
857 goto out_invalidate;
858
e8c3753c
DC
859 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
860 goto out_invalidate;
861
4f10700a 862 xfs_alert(ip->i_mount,
3ed3a434
DC
863 "page discard on page %p, inode 0x%llx, offset %llu.",
864 page, ip->i_ino, offset);
865
866 xfs_ilock(ip, XFS_ILOCK_EXCL);
867 bh = head = page_buffers(page);
868 do {
3ed3a434 869 int error;
c726de44 870 xfs_fileoff_t start_fsb;
3ed3a434
DC
871
872 if (!buffer_delay(bh))
873 goto next_buffer;
874
c726de44
DC
875 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
876 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
877 if (error) {
878 /* something screwed, just bail */
e8c3753c 879 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 880 xfs_alert(ip->i_mount,
3ed3a434 881 "page discard unable to remove delalloc mapping.");
e8c3753c 882 }
3ed3a434
DC
883 break;
884 }
885next_buffer:
c726de44 886 offset += 1 << inode->i_blkbits;
3ed3a434
DC
887
888 } while ((bh = bh->b_this_page) != head);
889
890 xfs_iunlock(ip, XFS_ILOCK_EXCL);
891out_invalidate:
d47992f8 892 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
893 return;
894}
895
150d5be0
DC
896static int
897xfs_writepage_submit(
898 struct xfs_ioend *ioend,
899 struct xfs_ioend *iohead,
900 struct writeback_control *wbc,
901 int status)
902{
903 struct blk_plug plug;
904
905 /* Reserve log space if we might write beyond the on-disk inode size. */
906 if (!status && ioend && ioend->io_type != XFS_IO_UNWRITTEN &&
907 xfs_ioend_is_append(ioend))
908 status = xfs_setfilesize_trans_alloc(ioend);
909
910 if (iohead) {
911 blk_start_plug(&plug);
912 xfs_submit_ioend(wbc, iohead, status);
913 blk_finish_plug(&plug);
914 }
915 return status;
916}
917
1da177e4 918/*
89f3b363
CH
919 * Write out a dirty page.
920 *
921 * For delalloc space on the page we need to allocate space and flush it.
922 * For unwritten space on the page we need to start the conversion to
923 * regular allocated space.
89f3b363 924 * For any other dirty buffer heads on the page we should flush them.
1da177e4 925 */
1da177e4 926STATIC int
89f3b363
CH
927xfs_vm_writepage(
928 struct page *page,
929 struct writeback_control *wbc)
1da177e4 930{
89f3b363 931 struct inode *inode = page->mapping->host;
f6d6d4fc 932 struct buffer_head *bh, *head;
207d0416 933 struct xfs_bmbt_irec imap;
f6d6d4fc 934 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 935 loff_t offset;
f6d6d4fc 936 unsigned int type;
1da177e4 937 __uint64_t end_offset;
bd1556a1 938 pgoff_t end_index, last_index;
ed1e7b7e 939 ssize_t len;
a206c817 940 int err, imap_valid = 0, uptodate = 1;
89f3b363 941 int count = 0;
89f3b363 942
34097dfe 943 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 944
20cb52eb
CH
945 ASSERT(page_has_buffers(page));
946
89f3b363
CH
947 /*
948 * Refuse to write the page out if we are called from reclaim context.
949 *
d4f7a5cb
CH
950 * This avoids stack overflows when called from deeply used stacks in
951 * random callers for direct reclaim or memcg reclaim. We explicitly
952 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 953 *
94054fa3
MG
954 * This should never happen except in the case of a VM regression so
955 * warn about it.
89f3b363 956 */
94054fa3
MG
957 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
958 PF_MEMALLOC))
b5420f23 959 goto redirty;
1da177e4 960
89f3b363 961 /*
680a647b
CH
962 * Given that we do not allow direct reclaim to call us, we should
963 * never be called while in a filesystem transaction.
89f3b363 964 */
448011e2 965 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 966 goto redirty;
89f3b363 967
1da177e4
LT
968 /* Is this page beyond the end of the file? */
969 offset = i_size_read(inode);
970 end_index = offset >> PAGE_CACHE_SHIFT;
971 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
8695d27e
JL
972
973 /*
974 * The page index is less than the end_index, adjust the end_offset
975 * to the highest offset that this page should represent.
976 * -----------------------------------------------------
977 * | file mapping | <EOF> |
978 * -----------------------------------------------------
979 * | Page ... | Page N-2 | Page N-1 | Page N | |
980 * ^--------------------------------^----------|--------
981 * | desired writeback range | see else |
982 * ---------------------------------^------------------|
983 */
984 if (page->index < end_index)
985 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
986 else {
987 /*
988 * Check whether the page to write out is beyond or straddles
989 * i_size or not.
990 * -------------------------------------------------------
991 * | file mapping | <EOF> |
992 * -------------------------------------------------------
993 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
994 * ^--------------------------------^-----------|---------
995 * | | Straddles |
996 * ---------------------------------^-----------|--------|
997 */
6b7a03f0
CH
998 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
999
1000 /*
ff9a28f6
JK
1001 * Skip the page if it is fully outside i_size, e.g. due to a
1002 * truncate operation that is in progress. We must redirty the
1003 * page so that reclaim stops reclaiming it. Otherwise
1004 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1005 *
1006 * Note that the end_index is unsigned long, it would overflow
1007 * if the given offset is greater than 16TB on 32-bit system
1008 * and if we do check the page is fully outside i_size or not
1009 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1010 * will be evaluated to 0. Hence this page will be redirtied
1011 * and be written out repeatedly which would result in an
1012 * infinite loop, the user program that perform this operation
1013 * will hang. Instead, we can verify this situation by checking
1014 * if the page to write is totally beyond the i_size or if it's
1015 * offset is just equal to the EOF.
6b7a03f0 1016 */
8695d27e
JL
1017 if (page->index > end_index ||
1018 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1019 goto redirty;
6b7a03f0
CH
1020
1021 /*
1022 * The page straddles i_size. It must be zeroed out on each
1023 * and every writepage invocation because it may be mmapped.
1024 * "A file is mapped in multiples of the page size. For a file
8695d27e 1025 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1026 * memory is zeroed when mapped, and writes to that region are
1027 * not written out to the file."
1028 */
1029 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
1030
1031 /* Adjust the end_offset to the end of file */
1032 end_offset = offset;
1da177e4
LT
1033 }
1034
24e17b5f 1035 len = 1 << inode->i_blkbits;
24e17b5f 1036
24e17b5f 1037 bh = head = page_buffers(page);
f6d6d4fc 1038 offset = page_offset(page);
0d882a36 1039 type = XFS_IO_OVERWRITE;
a206c817 1040
1da177e4 1041 do {
6ac7248e
CH
1042 int new_ioend = 0;
1043
1da177e4
LT
1044 if (offset >= end_offset)
1045 break;
1046 if (!buffer_uptodate(bh))
1047 uptodate = 0;
1da177e4 1048
3d9b02e3 1049 /*
ece413f5
CH
1050 * set_page_dirty dirties all buffers in a page, independent
1051 * of their state. The dirty state however is entirely
1052 * meaningless for holes (!mapped && uptodate), so skip
1053 * buffers covering holes here.
3d9b02e3
ES
1054 */
1055 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1056 imap_valid = 0;
1057 continue;
1058 }
1059
aeea1b1f 1060 if (buffer_unwritten(bh)) {
0d882a36
AR
1061 if (type != XFS_IO_UNWRITTEN) {
1062 type = XFS_IO_UNWRITTEN;
aeea1b1f 1063 imap_valid = 0;
1da177e4 1064 }
aeea1b1f 1065 } else if (buffer_delay(bh)) {
0d882a36
AR
1066 if (type != XFS_IO_DELALLOC) {
1067 type = XFS_IO_DELALLOC;
aeea1b1f 1068 imap_valid = 0;
1da177e4 1069 }
89f3b363 1070 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1071 if (type != XFS_IO_OVERWRITE) {
1072 type = XFS_IO_OVERWRITE;
85da94c6
CH
1073 imap_valid = 0;
1074 }
aeea1b1f 1075 } else {
7d0fa3ec 1076 if (PageUptodate(page))
aeea1b1f 1077 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1078 /*
1079 * This buffer is not uptodate and will not be
1080 * written to disk. Ensure that we will put any
1081 * subsequent writeable buffers into a new
1082 * ioend.
1083 */
1084 imap_valid = 0;
aeea1b1f
CH
1085 continue;
1086 }
d5cb48aa 1087
aeea1b1f
CH
1088 if (imap_valid)
1089 imap_valid = xfs_imap_valid(inode, &imap, offset);
1090 if (!imap_valid) {
1091 /*
1092 * If we didn't have a valid mapping then we need to
1093 * put the new mapping into a separate ioend structure.
1094 * This ensures non-contiguous extents always have
1095 * separate ioends, which is particularly important
1096 * for unwritten extent conversion at I/O completion
1097 * time.
1098 */
1099 new_ioend = 1;
988ef927 1100 err = xfs_map_blocks(inode, offset, &imap, type);
aeea1b1f
CH
1101 if (err)
1102 goto error;
1103 imap_valid = xfs_imap_valid(inode, &imap, offset);
1104 }
1105 if (imap_valid) {
ecff71e6 1106 lock_buffer(bh);
0d882a36 1107 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1108 xfs_map_at_offset(inode, bh, &imap, offset);
1109 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1110 new_ioend);
1111 count++;
1da177e4 1112 }
f6d6d4fc
CH
1113
1114 if (!iohead)
1115 iohead = ioend;
1116
1117 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1118
1119 if (uptodate && bh == head)
1120 SetPageUptodate(page);
1121
89f3b363 1122 xfs_start_page_writeback(page, 1, count);
1da177e4 1123
7bf7f352
DC
1124 /* if there is no IO to be submitted for this page, we are done */
1125 if (!ioend)
1126 return 0;
1127
1128 ASSERT(iohead);
150d5be0 1129 ASSERT(err == 0);
7bf7f352
DC
1130
1131 /*
1132 * Any errors from this point onwards need tobe reported through the IO
1133 * completion path as we have marked the initial page as under writeback
1134 * and unlocked it.
1135 */
1136 if (imap_valid) {
bd1556a1
CH
1137 xfs_off_t end_index;
1138
1139 end_index = imap.br_startoff + imap.br_blockcount;
1140
1141 /* to bytes */
1142 end_index <<= inode->i_blkbits;
1143
1144 /* to pages */
1145 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1146
1147 /* check against file size */
1148 if (end_index > last_index)
1149 end_index = last_index;
8699bb0a 1150
207d0416 1151 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1152 wbc, end_index);
1da177e4
LT
1153 }
1154
150d5be0 1155 return xfs_writepage_submit(ioend, iohead, wbc, 0);
281627df 1156
150d5be0 1157error:
7bf7f352 1158 /*
150d5be0
DC
1159 * On error, we have to fail the iohead here because we buffers locked
1160 * in the ioend chain. If we don't do this, we'll deadlock invalidating
1161 * the page as that tries to lock the buffers on the page. Also, because
1162 * we may have set pages under writeback, we have to run IO completion to
1163 * mark the error state of the IO appropriately, so we can't cancel the
1164 * ioend directly here. That means we have to mark this page as under
1165 * writeback if we included any buffers from it in the ioend chain.
7bf7f352 1166 */
150d5be0
DC
1167 if (count)
1168 xfs_start_page_writeback(page, 0, count);
1169 xfs_writepage_submit(ioend, iohead, wbc, err);
f6d6d4fc 1170
150d5be0
DC
1171 /*
1172 * We can only discard the page we had the IO error on if we haven't
1173 * included it in the ioend above. If it has already been errored out,
1174 * the it is unlocked and we can't touch it here.
1175 */
1176 if (!count) {
1177 xfs_aops_discard_page(page);
1178 ClearPageUptodate(page);
1179 unlock_page(page);
1180 }
1181 mapping_set_error(page->mapping, err);
1da177e4 1182 return err;
f51623b2 1183
b5420f23 1184redirty:
f51623b2
NS
1185 redirty_page_for_writepage(wbc, page);
1186 unlock_page(page);
1187 return 0;
f51623b2
NS
1188}
1189
7d4fb40a
NS
1190STATIC int
1191xfs_vm_writepages(
1192 struct address_space *mapping,
1193 struct writeback_control *wbc)
1194{
b3aea4ed 1195 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1196 return generic_writepages(mapping, wbc);
1197}
1198
f51623b2
NS
1199/*
1200 * Called to move a page into cleanable state - and from there
89f3b363 1201 * to be released. The page should already be clean. We always
f51623b2
NS
1202 * have buffer heads in this call.
1203 *
89f3b363 1204 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1205 */
1206STATIC int
238f4c54 1207xfs_vm_releasepage(
f51623b2
NS
1208 struct page *page,
1209 gfp_t gfp_mask)
1210{
20cb52eb 1211 int delalloc, unwritten;
f51623b2 1212
34097dfe 1213 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1214
20cb52eb 1215 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1216
448011e2 1217 if (WARN_ON_ONCE(delalloc))
f51623b2 1218 return 0;
448011e2 1219 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1220 return 0;
1221
f51623b2
NS
1222 return try_to_free_buffers(page);
1223}
1224
a719370b 1225/*
a06c277a
DC
1226 * When we map a DIO buffer, we may need to attach an ioend that describes the
1227 * type of write IO we are doing. This passes to the completion function the
1228 * operations it needs to perform. If the mapping is for an overwrite wholly
1229 * within the EOF then we don't need an ioend and so we don't allocate one.
1230 * This avoids the unnecessary overhead of allocating and freeing ioends for
1231 * workloads that don't require transactions on IO completion.
d5cc2e3f
DC
1232 *
1233 * If we get multiple mappings in a single IO, we might be mapping different
1234 * types. But because the direct IO can only have a single private pointer, we
1235 * need to ensure that:
1236 *
a06c277a
DC
1237 * a) i) the ioend spans the entire region of unwritten mappings; or
1238 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
d5cc2e3f
DC
1239 * b) if it contains unwritten extents, it is *permanently* marked as such
1240 *
1241 * We could do this by chaining ioends like buffered IO does, but we only
1242 * actually get one IO completion callback from the direct IO, and that spans
1243 * the entire IO regardless of how many mappings and IOs are needed to complete
1244 * the DIO. There is only going to be one reference to the ioend and its life
1245 * cycle is constrained by the DIO completion code. hence we don't need
1246 * reference counting here.
3e12dbbd
DC
1247 *
1248 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1249 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1250 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1251 * extending the file size. We won't know for sure until IO completion is run
1252 * and the actual max write offset is communicated to the IO completion
1253 * routine.
1254 *
1255 * For DAX page faults, we are preparing to never see unwritten extents here,
1256 * nor should we ever extend the inode size. Hence we will soon have nothing to
1257 * do here for this case, ensuring we don't have to provide an IO completion
1258 * callback to free an ioend that we don't actually need for a fault into the
1259 * page at offset (2^63 - 1FSB) bytes.
a719370b 1260 */
3e12dbbd 1261
a719370b
DC
1262static void
1263xfs_map_direct(
1264 struct inode *inode,
1265 struct buffer_head *bh_result,
1266 struct xfs_bmbt_irec *imap,
3e12dbbd
DC
1267 xfs_off_t offset,
1268 bool dax_fault)
a719370b 1269{
d5cc2e3f
DC
1270 struct xfs_ioend *ioend;
1271 xfs_off_t size = bh_result->b_size;
1272 int type;
1273
1274 if (ISUNWRITTEN(imap))
1275 type = XFS_IO_UNWRITTEN;
1276 else
1277 type = XFS_IO_OVERWRITE;
1278
1279 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1280
3e12dbbd
DC
1281 if (dax_fault) {
1282 ASSERT(type == XFS_IO_OVERWRITE);
1283 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1284 imap);
1285 return;
1286 }
3e12dbbd 1287
d5cc2e3f
DC
1288 if (bh_result->b_private) {
1289 ioend = bh_result->b_private;
1290 ASSERT(ioend->io_size > 0);
1291 ASSERT(offset >= ioend->io_offset);
1292 if (offset + size > ioend->io_offset + ioend->io_size)
1293 ioend->io_size = offset - ioend->io_offset + size;
1294
1295 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1296 ioend->io_type = XFS_IO_UNWRITTEN;
1297
1298 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1299 ioend->io_size, ioend->io_type,
1300 imap);
a06c277a 1301 } else if (type == XFS_IO_UNWRITTEN ||
3e12dbbd
DC
1302 offset + size > i_size_read(inode) ||
1303 offset + size < 0) {
d5cc2e3f
DC
1304 ioend = xfs_alloc_ioend(inode, type);
1305 ioend->io_offset = offset;
1306 ioend->io_size = size;
a06c277a 1307
d5cc2e3f 1308 bh_result->b_private = ioend;
a06c277a 1309 set_buffer_defer_completion(bh_result);
d5cc2e3f
DC
1310
1311 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1312 imap);
a06c277a
DC
1313 } else {
1314 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1315 imap);
a719370b
DC
1316 }
1317}
1318
1fdca9c2
DC
1319/*
1320 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1321 * is, so that we can avoid repeated get_blocks calls.
1322 *
1323 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1324 * for blocks beyond EOF must be marked new so that sub block regions can be
1325 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1326 * was just allocated or is unwritten, otherwise the callers would overwrite
1327 * existing data with zeros. Hence we have to split the mapping into a range up
1328 * to and including EOF, and a second mapping for beyond EOF.
1329 */
1330static void
1331xfs_map_trim_size(
1332 struct inode *inode,
1333 sector_t iblock,
1334 struct buffer_head *bh_result,
1335 struct xfs_bmbt_irec *imap,
1336 xfs_off_t offset,
1337 ssize_t size)
1338{
1339 xfs_off_t mapping_size;
1340
1341 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1342 mapping_size <<= inode->i_blkbits;
1343
1344 ASSERT(mapping_size > 0);
1345 if (mapping_size > size)
1346 mapping_size = size;
1347 if (offset < i_size_read(inode) &&
1348 offset + mapping_size >= i_size_read(inode)) {
1349 /* limit mapping to block that spans EOF */
1350 mapping_size = roundup_64(i_size_read(inode) - offset,
1351 1 << inode->i_blkbits);
1352 }
1353 if (mapping_size > LONG_MAX)
1354 mapping_size = LONG_MAX;
1355
1356 bh_result->b_size = mapping_size;
1357}
1358
1da177e4 1359STATIC int
c2536668 1360__xfs_get_blocks(
1da177e4
LT
1361 struct inode *inode,
1362 sector_t iblock,
1da177e4
LT
1363 struct buffer_head *bh_result,
1364 int create,
3e12dbbd
DC
1365 bool direct,
1366 bool dax_fault)
1da177e4 1367{
a206c817
CH
1368 struct xfs_inode *ip = XFS_I(inode);
1369 struct xfs_mount *mp = ip->i_mount;
1370 xfs_fileoff_t offset_fsb, end_fsb;
1371 int error = 0;
1372 int lockmode = 0;
207d0416 1373 struct xfs_bmbt_irec imap;
a206c817 1374 int nimaps = 1;
fdc7ed75
NS
1375 xfs_off_t offset;
1376 ssize_t size;
207d0416 1377 int new = 0;
a206c817
CH
1378
1379 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1380 return -EIO;
1da177e4 1381
fdc7ed75 1382 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1383 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1384 size = bh_result->b_size;
364f358a
LM
1385
1386 if (!create && direct && offset >= i_size_read(inode))
1387 return 0;
1388
507630b2
DC
1389 /*
1390 * Direct I/O is usually done on preallocated files, so try getting
1391 * a block mapping without an exclusive lock first. For buffered
1392 * writes we already have the exclusive iolock anyway, so avoiding
1393 * a lock roundtrip here by taking the ilock exclusive from the
1394 * beginning is a useful micro optimization.
1395 */
1396 if (create && !direct) {
a206c817
CH
1397 lockmode = XFS_ILOCK_EXCL;
1398 xfs_ilock(ip, lockmode);
1399 } else {
309ecac8 1400 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1401 }
f2bde9b8 1402
d2c28191
DC
1403 ASSERT(offset <= mp->m_super->s_maxbytes);
1404 if (offset + size > mp->m_super->s_maxbytes)
1405 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1406 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1407 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1408
5c8ed202
DC
1409 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1410 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1411 if (error)
a206c817
CH
1412 goto out_unlock;
1413
1ca19157 1414 /* for DAX, we convert unwritten extents directly */
a206c817
CH
1415 if (create &&
1416 (!nimaps ||
1417 (imap.br_startblock == HOLESTARTBLOCK ||
1ca19157
DC
1418 imap.br_startblock == DELAYSTARTBLOCK) ||
1419 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
aff3a9ed 1420 if (direct || xfs_get_extsz_hint(ip)) {
507630b2 1421 /*
009c6e87
BF
1422 * xfs_iomap_write_direct() expects the shared lock. It
1423 * is unlocked on return.
507630b2 1424 */
009c6e87
BF
1425 if (lockmode == XFS_ILOCK_EXCL)
1426 xfs_ilock_demote(ip, lockmode);
1427
a206c817
CH
1428 error = xfs_iomap_write_direct(ip, offset, size,
1429 &imap, nimaps);
507630b2 1430 if (error)
2451337d 1431 return error;
d3bc815a 1432 new = 1;
6b698ede 1433
a206c817 1434 } else {
507630b2
DC
1435 /*
1436 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1437 * we can go on without dropping the lock here. If we
1438 * are allocating a new delalloc block, make sure that
1439 * we set the new flag so that we mark the buffer new so
1440 * that we know that it is newly allocated if the write
1441 * fails.
507630b2 1442 */
d3bc815a
DC
1443 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1444 new = 1;
a206c817 1445 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1446 if (error)
1447 goto out_unlock;
1448
1449 xfs_iunlock(ip, lockmode);
a206c817 1450 }
d5cc2e3f
DC
1451 trace_xfs_get_blocks_alloc(ip, offset, size,
1452 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1453 : XFS_IO_DELALLOC, &imap);
a206c817 1454 } else if (nimaps) {
d5cc2e3f
DC
1455 trace_xfs_get_blocks_found(ip, offset, size,
1456 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1457 : XFS_IO_OVERWRITE, &imap);
507630b2 1458 xfs_iunlock(ip, lockmode);
a206c817
CH
1459 } else {
1460 trace_xfs_get_blocks_notfound(ip, offset, size);
1461 goto out_unlock;
1462 }
1da177e4 1463
1ca19157
DC
1464 if (IS_DAX(inode) && create) {
1465 ASSERT(!ISUNWRITTEN(&imap));
1466 /* zeroing is not needed at a higher layer */
1467 new = 0;
1468 }
1469
1fdca9c2
DC
1470 /* trim mapping down to size requested */
1471 if (direct || size > (1 << inode->i_blkbits))
1472 xfs_map_trim_size(inode, iblock, bh_result,
1473 &imap, offset, size);
1474
a719370b
DC
1475 /*
1476 * For unwritten extents do not report a disk address in the buffered
1477 * read case (treat as if we're reading into a hole).
1478 */
207d0416 1479 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1480 imap.br_startblock != DELAYSTARTBLOCK &&
1481 (create || !ISUNWRITTEN(&imap))) {
1482 xfs_map_buffer(inode, bh_result, &imap, offset);
1483 if (ISUNWRITTEN(&imap))
1da177e4 1484 set_buffer_unwritten(bh_result);
a719370b
DC
1485 /* direct IO needs special help */
1486 if (create && direct)
3e12dbbd
DC
1487 xfs_map_direct(inode, bh_result, &imap, offset,
1488 dax_fault);
1da177e4
LT
1489 }
1490
c2536668
NS
1491 /*
1492 * If this is a realtime file, data may be on a different device.
1493 * to that pointed to from the buffer_head b_bdev currently.
1494 */
046f1685 1495 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1496
c2536668 1497 /*
549054af
DC
1498 * If we previously allocated a block out beyond eof and we are now
1499 * coming back to use it then we will need to flag it as new even if it
1500 * has a disk address.
1501 *
1502 * With sub-block writes into unwritten extents we also need to mark
1503 * the buffer as new so that the unwritten parts of the buffer gets
1504 * correctly zeroed.
1da177e4
LT
1505 */
1506 if (create &&
1507 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1508 (offset >= i_size_read(inode)) ||
207d0416 1509 (new || ISUNWRITTEN(&imap))))
1da177e4 1510 set_buffer_new(bh_result);
1da177e4 1511
207d0416 1512 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1513 BUG_ON(direct);
1514 if (create) {
1515 set_buffer_uptodate(bh_result);
1516 set_buffer_mapped(bh_result);
1517 set_buffer_delay(bh_result);
1518 }
1519 }
1520
1da177e4 1521 return 0;
a206c817
CH
1522
1523out_unlock:
1524 xfs_iunlock(ip, lockmode);
2451337d 1525 return error;
1da177e4
LT
1526}
1527
1528int
c2536668 1529xfs_get_blocks(
1da177e4
LT
1530 struct inode *inode,
1531 sector_t iblock,
1532 struct buffer_head *bh_result,
1533 int create)
1534{
3e12dbbd 1535 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1da177e4
LT
1536}
1537
6b698ede 1538int
e4c573bb 1539xfs_get_blocks_direct(
1da177e4
LT
1540 struct inode *inode,
1541 sector_t iblock,
1da177e4
LT
1542 struct buffer_head *bh_result,
1543 int create)
1544{
3e12dbbd
DC
1545 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1546}
1547
1548int
1549xfs_get_blocks_dax_fault(
1550 struct inode *inode,
1551 sector_t iblock,
1552 struct buffer_head *bh_result,
1553 int create)
1554{
1555 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1da177e4
LT
1556}
1557
6b698ede
DC
1558static void
1559__xfs_end_io_direct_write(
1560 struct inode *inode,
1561 struct xfs_ioend *ioend,
209fb87a 1562 loff_t offset,
6b698ede 1563 ssize_t size)
f0973863 1564{
6b698ede 1565 struct xfs_mount *mp = XFS_I(inode)->i_mount;
a06c277a 1566
6b698ede 1567 if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
6dfa1b67 1568 goto out_end_io;
f0973863 1569
2813d682 1570 /*
d5cc2e3f
DC
1571 * dio completion end_io functions are only called on writes if more
1572 * than 0 bytes was written.
2813d682 1573 */
d5cc2e3f
DC
1574 ASSERT(size > 0);
1575
1576 /*
1577 * The ioend only maps whole blocks, while the IO may be sector aligned.
a06c277a
DC
1578 * Hence the ioend offset/size may not match the IO offset/size exactly.
1579 * Because we don't map overwrites within EOF into the ioend, the offset
1580 * may not match, but only if the endio spans EOF. Either way, write
1581 * the IO sizes into the ioend so that completion processing does the
1582 * right thing.
d5cc2e3f 1583 */
d5cc2e3f
DC
1584 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1585 ioend->io_size = size;
1586 ioend->io_offset = offset;
f0973863 1587
2813d682 1588 /*
6dfa1b67
DC
1589 * The ioend tells us whether we are doing unwritten extent conversion
1590 * or an append transaction that updates the on-disk file size. These
1591 * cases are the only cases where we should *potentially* be needing
a06c277a 1592 * to update the VFS inode size.
6dfa1b67
DC
1593 *
1594 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1595 * with the on-disk inode size being outside the in-core inode size. We
1596 * have no other method of updating EOF for AIO, so always do it here
1597 * if necessary.
b9d59846
DC
1598 *
1599 * We need to lock the test/set EOF update as we can be racing with
1600 * other IO completions here to update the EOF. Failing to serialise
1601 * here can result in EOF moving backwards and Bad Things Happen when
1602 * that occurs.
2813d682 1603 */
6b698ede 1604 spin_lock(&XFS_I(inode)->i_flags_lock);
2ba66237
CH
1605 if (offset + size > i_size_read(inode))
1606 i_size_write(inode, offset + size);
6b698ede 1607 spin_unlock(&XFS_I(inode)->i_flags_lock);
2813d682 1608
f0973863 1609 /*
6dfa1b67
DC
1610 * If we are doing an append IO that needs to update the EOF on disk,
1611 * do the transaction reserve now so we can use common end io
1612 * processing. Stashing the error (if there is one) in the ioend will
1613 * result in the ioend processing passing on the error if it is
1614 * possible as we can't return it from here.
f0973863 1615 */
a06c277a 1616 if (ioend->io_type == XFS_IO_OVERWRITE)
6dfa1b67 1617 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
209fb87a 1618
6dfa1b67
DC
1619out_end_io:
1620 xfs_end_io(&ioend->io_work);
1621 return;
f0973863
CH
1622}
1623
6b698ede
DC
1624/*
1625 * Complete a direct I/O write request.
1626 *
1627 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1628 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1629 * wholly within the EOF and so there is nothing for us to do. Note that in this
1630 * case the completion can be called in interrupt context, whereas if we have an
1631 * ioend we will always be called in task context (i.e. from a workqueue).
1632 */
1633STATIC void
1634xfs_end_io_direct_write(
1635 struct kiocb *iocb,
1636 loff_t offset,
1637 ssize_t size,
1638 void *private)
1639{
1640 struct inode *inode = file_inode(iocb->ki_filp);
1641 struct xfs_ioend *ioend = private;
1642
1643 trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1644 ioend ? ioend->io_type : 0, NULL);
1645
1646 if (!ioend) {
1647 ASSERT(offset + size <= i_size_read(inode));
1648 return;
1649 }
1650
1651 __xfs_end_io_direct_write(inode, ioend, offset, size);
1652}
1653
6e1ba0bc
DC
1654static inline ssize_t
1655xfs_vm_do_dio(
1656 struct inode *inode,
1657 struct kiocb *iocb,
1658 struct iov_iter *iter,
1659 loff_t offset,
1660 void (*endio)(struct kiocb *iocb,
1661 loff_t offset,
1662 ssize_t size,
1663 void *private),
1664 int flags)
1665{
1666 struct block_device *bdev;
1667
1668 if (IS_DAX(inode))
1669 return dax_do_io(iocb, inode, iter, offset,
1670 xfs_get_blocks_direct, endio, 0);
1671
1672 bdev = xfs_find_bdev_for_inode(inode);
1673 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1674 xfs_get_blocks_direct, endio, NULL, flags);
1675}
1676
1da177e4 1677STATIC ssize_t
e4c573bb 1678xfs_vm_direct_IO(
1da177e4 1679 struct kiocb *iocb,
d8d3d94b
AV
1680 struct iov_iter *iter,
1681 loff_t offset)
1da177e4 1682{
209fb87a 1683 struct inode *inode = iocb->ki_filp->f_mapping->host;
209fb87a 1684
6e1ba0bc
DC
1685 if (iov_iter_rw(iter) == WRITE)
1686 return xfs_vm_do_dio(inode, iocb, iter, offset,
1687 xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1688 return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1da177e4
LT
1689}
1690
d3bc815a
DC
1691/*
1692 * Punch out the delalloc blocks we have already allocated.
1693 *
1694 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1695 * as the page is still locked at this point.
1696 */
1697STATIC void
1698xfs_vm_kill_delalloc_range(
1699 struct inode *inode,
1700 loff_t start,
1701 loff_t end)
1702{
1703 struct xfs_inode *ip = XFS_I(inode);
1704 xfs_fileoff_t start_fsb;
1705 xfs_fileoff_t end_fsb;
1706 int error;
1707
1708 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1709 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1710 if (end_fsb <= start_fsb)
1711 return;
1712
1713 xfs_ilock(ip, XFS_ILOCK_EXCL);
1714 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1715 end_fsb - start_fsb);
1716 if (error) {
1717 /* something screwed, just bail */
1718 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1719 xfs_alert(ip->i_mount,
1720 "xfs_vm_write_failed: unable to clean up ino %lld",
1721 ip->i_ino);
1722 }
1723 }
1724 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1725}
1726
fa9b227e
CH
1727STATIC void
1728xfs_vm_write_failed(
d3bc815a
DC
1729 struct inode *inode,
1730 struct page *page,
1731 loff_t pos,
1732 unsigned len)
fa9b227e 1733{
58e59854 1734 loff_t block_offset;
d3bc815a
DC
1735 loff_t block_start;
1736 loff_t block_end;
1737 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1738 loff_t to = from + len;
1739 struct buffer_head *bh, *head;
fa9b227e 1740
58e59854
JL
1741 /*
1742 * The request pos offset might be 32 or 64 bit, this is all fine
1743 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1744 * platform, the high 32-bit will be masked off if we evaluate the
1745 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1746 * 0xfffff000 as an unsigned long, hence the result is incorrect
1747 * which could cause the following ASSERT failed in most cases.
1748 * In order to avoid this, we can evaluate the block_offset of the
1749 * start of the page by using shifts rather than masks the mismatch
1750 * problem.
1751 */
1752 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1753
d3bc815a 1754 ASSERT(block_offset + from == pos);
c726de44 1755
d3bc815a
DC
1756 head = page_buffers(page);
1757 block_start = 0;
1758 for (bh = head; bh != head || !block_start;
1759 bh = bh->b_this_page, block_start = block_end,
1760 block_offset += bh->b_size) {
1761 block_end = block_start + bh->b_size;
c726de44 1762
d3bc815a
DC
1763 /* skip buffers before the write */
1764 if (block_end <= from)
1765 continue;
1766
1767 /* if the buffer is after the write, we're done */
1768 if (block_start >= to)
1769 break;
1770
1771 if (!buffer_delay(bh))
1772 continue;
1773
1774 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1775 continue;
1776
1777 xfs_vm_kill_delalloc_range(inode, block_offset,
1778 block_offset + bh->b_size);
4ab9ed57
DC
1779
1780 /*
1781 * This buffer does not contain data anymore. make sure anyone
1782 * who finds it knows that for certain.
1783 */
1784 clear_buffer_delay(bh);
1785 clear_buffer_uptodate(bh);
1786 clear_buffer_mapped(bh);
1787 clear_buffer_new(bh);
1788 clear_buffer_dirty(bh);
fa9b227e 1789 }
d3bc815a 1790
fa9b227e
CH
1791}
1792
d3bc815a
DC
1793/*
1794 * This used to call block_write_begin(), but it unlocks and releases the page
1795 * on error, and we need that page to be able to punch stale delalloc blocks out
1796 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1797 * the appropriate point.
1798 */
f51623b2 1799STATIC int
d79689c7 1800xfs_vm_write_begin(
f51623b2 1801 struct file *file,
d79689c7
NP
1802 struct address_space *mapping,
1803 loff_t pos,
1804 unsigned len,
1805 unsigned flags,
1806 struct page **pagep,
1807 void **fsdata)
f51623b2 1808{
d3bc815a
DC
1809 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1810 struct page *page;
1811 int status;
155130a4 1812
d3bc815a
DC
1813 ASSERT(len <= PAGE_CACHE_SIZE);
1814
ad22c7a0 1815 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1816 if (!page)
1817 return -ENOMEM;
1818
1819 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1820 if (unlikely(status)) {
1821 struct inode *inode = mapping->host;
72ab70a1 1822 size_t isize = i_size_read(inode);
d3bc815a
DC
1823
1824 xfs_vm_write_failed(inode, page, pos, len);
1825 unlock_page(page);
1826
72ab70a1
DC
1827 /*
1828 * If the write is beyond EOF, we only want to kill blocks
1829 * allocated in this write, not blocks that were previously
1830 * written successfully.
1831 */
1832 if (pos + len > isize) {
1833 ssize_t start = max_t(ssize_t, pos, isize);
1834
1835 truncate_pagecache_range(inode, start, pos + len);
1836 }
d3bc815a
DC
1837
1838 page_cache_release(page);
1839 page = NULL;
1840 }
1841
1842 *pagep = page;
1843 return status;
fa9b227e
CH
1844}
1845
d3bc815a 1846/*
aad3f375
DC
1847 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1848 * this specific write because they will never be written. Previous writes
1849 * beyond EOF where block allocation succeeded do not need to be trashed, so
1850 * only new blocks from this write should be trashed. For blocks within
1851 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1852 * written with all the other valid data.
d3bc815a 1853 */
fa9b227e
CH
1854STATIC int
1855xfs_vm_write_end(
1856 struct file *file,
1857 struct address_space *mapping,
1858 loff_t pos,
1859 unsigned len,
1860 unsigned copied,
1861 struct page *page,
1862 void *fsdata)
1863{
1864 int ret;
155130a4 1865
d3bc815a
DC
1866 ASSERT(len <= PAGE_CACHE_SIZE);
1867
fa9b227e 1868 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1869 if (unlikely(ret < len)) {
1870 struct inode *inode = mapping->host;
1871 size_t isize = i_size_read(inode);
1872 loff_t to = pos + len;
1873
1874 if (to > isize) {
aad3f375
DC
1875 /* only kill blocks in this write beyond EOF */
1876 if (pos > isize)
1877 isize = pos;
d3bc815a 1878 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1879 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1880 }
1881 }
155130a4 1882 return ret;
f51623b2 1883}
1da177e4
LT
1884
1885STATIC sector_t
e4c573bb 1886xfs_vm_bmap(
1da177e4
LT
1887 struct address_space *mapping,
1888 sector_t block)
1889{
1890 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1891 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1892
cca28fb8 1893 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1894 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1895 filemap_write_and_wait(mapping);
126468b1 1896 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1897 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1898}
1899
1900STATIC int
e4c573bb 1901xfs_vm_readpage(
1da177e4
LT
1902 struct file *unused,
1903 struct page *page)
1904{
121e213e 1905 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1906 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1907}
1908
1909STATIC int
e4c573bb 1910xfs_vm_readpages(
1da177e4
LT
1911 struct file *unused,
1912 struct address_space *mapping,
1913 struct list_head *pages,
1914 unsigned nr_pages)
1915{
121e213e 1916 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1917 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1918}
1919
22e757a4
DC
1920/*
1921 * This is basically a copy of __set_page_dirty_buffers() with one
1922 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1923 * dirty, we'll never be able to clean them because we don't write buffers
1924 * beyond EOF, and that means we can't invalidate pages that span EOF
1925 * that have been marked dirty. Further, the dirty state can leak into
1926 * the file interior if the file is extended, resulting in all sorts of
1927 * bad things happening as the state does not match the underlying data.
1928 *
1929 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1930 * this only exist because of bufferheads and how the generic code manages them.
1931 */
1932STATIC int
1933xfs_vm_set_page_dirty(
1934 struct page *page)
1935{
1936 struct address_space *mapping = page->mapping;
1937 struct inode *inode = mapping->host;
1938 loff_t end_offset;
1939 loff_t offset;
1940 int newly_dirty;
c4843a75 1941 struct mem_cgroup *memcg;
22e757a4
DC
1942
1943 if (unlikely(!mapping))
1944 return !TestSetPageDirty(page);
1945
1946 end_offset = i_size_read(inode);
1947 offset = page_offset(page);
1948
1949 spin_lock(&mapping->private_lock);
1950 if (page_has_buffers(page)) {
1951 struct buffer_head *head = page_buffers(page);
1952 struct buffer_head *bh = head;
1953
1954 do {
1955 if (offset < end_offset)
1956 set_buffer_dirty(bh);
1957 bh = bh->b_this_page;
1958 offset += 1 << inode->i_blkbits;
1959 } while (bh != head);
1960 }
c4843a75
GT
1961 /*
1962 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1963 * per-memcg dirty page counters.
1964 */
1965 memcg = mem_cgroup_begin_page_stat(page);
22e757a4
DC
1966 newly_dirty = !TestSetPageDirty(page);
1967 spin_unlock(&mapping->private_lock);
1968
1969 if (newly_dirty) {
1970 /* sigh - __set_page_dirty() is static, so copy it here, too */
1971 unsigned long flags;
1972
1973 spin_lock_irqsave(&mapping->tree_lock, flags);
1974 if (page->mapping) { /* Race with truncate? */
1975 WARN_ON_ONCE(!PageUptodate(page));
c4843a75 1976 account_page_dirtied(page, mapping, memcg);
22e757a4
DC
1977 radix_tree_tag_set(&mapping->page_tree,
1978 page_index(page), PAGECACHE_TAG_DIRTY);
1979 }
1980 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1981 }
c4843a75
GT
1982 mem_cgroup_end_page_stat(memcg);
1983 if (newly_dirty)
1984 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1985 return newly_dirty;
1986}
1987
f5e54d6e 1988const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1989 .readpage = xfs_vm_readpage,
1990 .readpages = xfs_vm_readpages,
1991 .writepage = xfs_vm_writepage,
7d4fb40a 1992 .writepages = xfs_vm_writepages,
22e757a4 1993 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1994 .releasepage = xfs_vm_releasepage,
1995 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1996 .write_begin = xfs_vm_write_begin,
fa9b227e 1997 .write_end = xfs_vm_write_end,
e4c573bb
NS
1998 .bmap = xfs_vm_bmap,
1999 .direct_IO = xfs_vm_direct_IO,
e965f963 2000 .migratepage = buffer_migrate_page,
bddaafa1 2001 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2002 .error_remove_page = generic_error_remove_page,
1da177e4 2003};
This page took 0.769789 seconds and 5 git commands to generate.