xfs: don't use ioends for direct write completions
[deliverable/linux.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
273dda76
CH
39/* flags for direct write completions */
40#define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41#define XFS_DIO_FLAG_APPEND (1 << 1)
42
0b1b213f 43void
f51623b2
NS
44xfs_count_page_state(
45 struct page *page,
46 int *delalloc,
f51623b2
NS
47 int *unwritten)
48{
49 struct buffer_head *bh, *head;
50
20cb52eb 51 *delalloc = *unwritten = 0;
f51623b2
NS
52
53 bh = head = page_buffers(page);
54 do {
20cb52eb 55 if (buffer_unwritten(bh))
f51623b2
NS
56 (*unwritten) = 1;
57 else if (buffer_delay(bh))
58 (*delalloc) = 1;
59 } while ((bh = bh->b_this_page) != head);
60}
61
6214ed44
CH
62STATIC struct block_device *
63xfs_find_bdev_for_inode(
046f1685 64 struct inode *inode)
6214ed44 65{
046f1685 66 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
67 struct xfs_mount *mp = ip->i_mount;
68
71ddabb9 69 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
70 return mp->m_rtdev_targp->bt_bdev;
71 else
72 return mp->m_ddev_targp->bt_bdev;
73}
74
f6d6d4fc
CH
75/*
76 * We're now finished for good with this ioend structure.
77 * Update the page state via the associated buffer_heads,
78 * release holds on the inode and bio, and finally free
79 * up memory. Do not use the ioend after this.
80 */
0829c360
CH
81STATIC void
82xfs_destroy_ioend(
83 xfs_ioend_t *ioend)
84{
f6d6d4fc
CH
85 struct buffer_head *bh, *next;
86
87 for (bh = ioend->io_buffer_head; bh; bh = next) {
88 next = bh->b_private;
7d04a335 89 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 90 }
583fa586 91
0829c360
CH
92 mempool_free(ioend, xfs_ioend_pool);
93}
94
fc0063c4
CH
95/*
96 * Fast and loose check if this write could update the on-disk inode size.
97 */
98static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
99{
100 return ioend->io_offset + ioend->io_size >
101 XFS_I(ioend->io_inode)->i_d.di_size;
102}
103
281627df
CH
104STATIC int
105xfs_setfilesize_trans_alloc(
106 struct xfs_ioend *ioend)
107{
108 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
109 struct xfs_trans *tp;
110 int error;
111
112 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
113
3d3c8b52 114 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df 115 if (error) {
4906e215 116 xfs_trans_cancel(tp);
281627df
CH
117 return error;
118 }
119
120 ioend->io_append_trans = tp;
121
d9457dc0 122 /*
437a255a 123 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
124 * we released it.
125 */
bee9182d 126 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
127 /*
128 * We hand off the transaction to the completion thread now, so
129 * clear the flag here.
130 */
131 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
132 return 0;
133}
134
ba87ea69 135/*
2813d682 136 * Update on-disk file size now that data has been written to disk.
ba87ea69 137 */
281627df 138STATIC int
ba87ea69 139xfs_setfilesize(
2ba66237
CH
140 struct xfs_inode *ip,
141 struct xfs_trans *tp,
142 xfs_off_t offset,
143 size_t size)
ba87ea69 144{
ba87ea69 145 xfs_fsize_t isize;
ba87ea69 146
aa6bf01d 147 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 148 isize = xfs_new_eof(ip, offset + size);
281627df
CH
149 if (!isize) {
150 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 151 xfs_trans_cancel(tp);
281627df 152 return 0;
ba87ea69
LM
153 }
154
2ba66237 155 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
156
157 ip->i_d.di_size = isize;
158 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
159 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
160
70393313 161 return xfs_trans_commit(tp);
77d7a0c2
DC
162}
163
2ba66237
CH
164STATIC int
165xfs_setfilesize_ioend(
166 struct xfs_ioend *ioend)
167{
168 struct xfs_inode *ip = XFS_I(ioend->io_inode);
169 struct xfs_trans *tp = ioend->io_append_trans;
170
171 /*
172 * The transaction may have been allocated in the I/O submission thread,
173 * thus we need to mark ourselves as being in a transaction manually.
174 * Similarly for freeze protection.
175 */
176 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 177 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 178
5cb13dcd
Z
179 /* we abort the update if there was an IO error */
180 if (ioend->io_error) {
181 xfs_trans_cancel(tp);
182 return ioend->io_error;
183 }
184
2ba66237
CH
185 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
186}
187
77d7a0c2 188/*
209fb87a 189 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
190 *
191 * If there is no work to do we might as well call it a day and free the
192 * ioend right now.
77d7a0c2
DC
193 */
194STATIC void
195xfs_finish_ioend(
209fb87a 196 struct xfs_ioend *ioend)
77d7a0c2
DC
197{
198 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
199 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
200
0d882a36 201 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 202 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
2ba66237 203 else if (ioend->io_append_trans)
aa6bf01d 204 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
205 else
206 xfs_destroy_ioend(ioend);
77d7a0c2 207 }
ba87ea69
LM
208}
209
0829c360 210/*
5ec4fabb 211 * IO write completion.
f6d6d4fc
CH
212 */
213STATIC void
5ec4fabb 214xfs_end_io(
77d7a0c2 215 struct work_struct *work)
0829c360 216{
77d7a0c2
DC
217 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
218 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 219 int error = 0;
ba87ea69 220
04f658ee 221 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 222 ioend->io_error = -EIO;
04f658ee
CH
223 goto done;
224 }
04f658ee 225
5ec4fabb
CH
226 /*
227 * For unwritten extents we need to issue transactions to convert a
228 * range to normal written extens after the data I/O has finished.
5cb13dcd
Z
229 * Detecting and handling completion IO errors is done individually
230 * for each case as different cleanup operations need to be performed
231 * on error.
5ec4fabb 232 */
0d882a36 233 if (ioend->io_type == XFS_IO_UNWRITTEN) {
5cb13dcd
Z
234 if (ioend->io_error)
235 goto done;
437a255a
DC
236 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
237 ioend->io_size);
281627df 238 } else if (ioend->io_append_trans) {
2ba66237 239 error = xfs_setfilesize_ioend(ioend);
84803fb7 240 } else {
281627df 241 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 242 }
ba87ea69 243
04f658ee 244done:
437a255a 245 if (error)
2451337d 246 ioend->io_error = error;
aa6bf01d 247 xfs_destroy_ioend(ioend);
c626d174
DC
248}
249
0829c360
CH
250/*
251 * Allocate and initialise an IO completion structure.
252 * We need to track unwritten extent write completion here initially.
253 * We'll need to extend this for updating the ondisk inode size later
254 * (vs. incore size).
255 */
256STATIC xfs_ioend_t *
257xfs_alloc_ioend(
f6d6d4fc
CH
258 struct inode *inode,
259 unsigned int type)
0829c360
CH
260{
261 xfs_ioend_t *ioend;
262
263 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
264
265 /*
266 * Set the count to 1 initially, which will prevent an I/O
267 * completion callback from happening before we have started
268 * all the I/O from calling the completion routine too early.
269 */
270 atomic_set(&ioend->io_remaining, 1);
7d04a335 271 ioend->io_error = 0;
f6d6d4fc
CH
272 ioend->io_list = NULL;
273 ioend->io_type = type;
b677c210 274 ioend->io_inode = inode;
c1a073bd 275 ioend->io_buffer_head = NULL;
f6d6d4fc 276 ioend->io_buffer_tail = NULL;
0829c360
CH
277 ioend->io_offset = 0;
278 ioend->io_size = 0;
281627df 279 ioend->io_append_trans = NULL;
0829c360 280
5ec4fabb 281 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
282 return ioend;
283}
284
1da177e4
LT
285STATIC int
286xfs_map_blocks(
287 struct inode *inode,
288 loff_t offset,
207d0416 289 struct xfs_bmbt_irec *imap,
a206c817
CH
290 int type,
291 int nonblocking)
1da177e4 292{
a206c817
CH
293 struct xfs_inode *ip = XFS_I(inode);
294 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 295 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
296 xfs_fileoff_t offset_fsb, end_fsb;
297 int error = 0;
a206c817
CH
298 int bmapi_flags = XFS_BMAPI_ENTIRE;
299 int nimaps = 1;
300
301 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 302 return -EIO;
a206c817 303
0d882a36 304 if (type == XFS_IO_UNWRITTEN)
a206c817 305 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
306
307 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
308 if (nonblocking)
b474c7ae 309 return -EAGAIN;
8ff2957d 310 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
311 }
312
8ff2957d
CH
313 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
314 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 315 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 316
d2c28191
DC
317 if (offset + count > mp->m_super->s_maxbytes)
318 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
319 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
320 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
321 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
322 imap, &nimaps, bmapi_flags);
8ff2957d 323 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 324
8ff2957d 325 if (error)
2451337d 326 return error;
a206c817 327
0d882a36 328 if (type == XFS_IO_DELALLOC &&
8ff2957d 329 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 330 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
331 if (!error)
332 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 333 return error;
a206c817
CH
334 }
335
8ff2957d 336#ifdef DEBUG
0d882a36 337 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
338 ASSERT(nimaps);
339 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
340 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
341 }
342#endif
343 if (nimaps)
344 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
345 return 0;
1da177e4
LT
346}
347
b8f82a4a 348STATIC int
558e6891 349xfs_imap_valid(
8699bb0a 350 struct inode *inode,
207d0416 351 struct xfs_bmbt_irec *imap,
558e6891 352 xfs_off_t offset)
1da177e4 353{
558e6891 354 offset >>= inode->i_blkbits;
8699bb0a 355
558e6891
CH
356 return offset >= imap->br_startoff &&
357 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
358}
359
f6d6d4fc
CH
360/*
361 * BIO completion handler for buffered IO.
362 */
782e3b3b 363STATIC void
f6d6d4fc 364xfs_end_bio(
4246a0b6 365 struct bio *bio)
f6d6d4fc
CH
366{
367 xfs_ioend_t *ioend = bio->bi_private;
368
77a78806
LT
369 if (!ioend->io_error)
370 ioend->io_error = bio->bi_error;
f6d6d4fc
CH
371
372 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
373 bio->bi_private = NULL;
374 bio->bi_end_io = NULL;
f6d6d4fc 375 bio_put(bio);
7d04a335 376
209fb87a 377 xfs_finish_ioend(ioend);
f6d6d4fc
CH
378}
379
380STATIC void
381xfs_submit_ioend_bio(
06342cf8
CH
382 struct writeback_control *wbc,
383 xfs_ioend_t *ioend,
384 struct bio *bio)
f6d6d4fc
CH
385{
386 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
387 bio->bi_private = ioend;
388 bio->bi_end_io = xfs_end_bio;
721a9602 389 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
390}
391
392STATIC struct bio *
393xfs_alloc_ioend_bio(
394 struct buffer_head *bh)
395{
b54ffb73 396 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
f6d6d4fc
CH
397
398 ASSERT(bio->bi_private == NULL);
4f024f37 399 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 400 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
401 return bio;
402}
403
404STATIC void
405xfs_start_buffer_writeback(
406 struct buffer_head *bh)
407{
408 ASSERT(buffer_mapped(bh));
409 ASSERT(buffer_locked(bh));
410 ASSERT(!buffer_delay(bh));
411 ASSERT(!buffer_unwritten(bh));
412
413 mark_buffer_async_write(bh);
414 set_buffer_uptodate(bh);
415 clear_buffer_dirty(bh);
416}
417
418STATIC void
419xfs_start_page_writeback(
420 struct page *page,
f6d6d4fc
CH
421 int clear_dirty,
422 int buffers)
423{
424 ASSERT(PageLocked(page));
425 ASSERT(!PageWriteback(page));
0d085a52
DC
426
427 /*
428 * if the page was not fully cleaned, we need to ensure that the higher
429 * layers come back to it correctly. That means we need to keep the page
430 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
431 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
432 * write this page in this writeback sweep will be made.
433 */
434 if (clear_dirty) {
92132021 435 clear_page_dirty_for_io(page);
0d085a52
DC
436 set_page_writeback(page);
437 } else
438 set_page_writeback_keepwrite(page);
439
f6d6d4fc 440 unlock_page(page);
0d085a52 441
1f7decf6
FW
442 /* If no buffers on the page are to be written, finish it here */
443 if (!buffers)
f6d6d4fc 444 end_page_writeback(page);
f6d6d4fc
CH
445}
446
c7c1a7d8 447static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
448{
449 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
450}
451
452/*
d88992f6
DC
453 * Submit all of the bios for all of the ioends we have saved up, covering the
454 * initial writepage page and also any probed pages.
455 *
456 * Because we may have multiple ioends spanning a page, we need to start
457 * writeback on all the buffers before we submit them for I/O. If we mark the
458 * buffers as we got, then we can end up with a page that only has buffers
459 * marked async write and I/O complete on can occur before we mark the other
460 * buffers async write.
461 *
462 * The end result of this is that we trip a bug in end_page_writeback() because
463 * we call it twice for the one page as the code in end_buffer_async_write()
464 * assumes that all buffers on the page are started at the same time.
465 *
466 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 467 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
468 *
469 * If @fail is non-zero, it means that we have a situation where some part of
470 * the submission process has failed after we have marked paged for writeback
471 * and unlocked them. In this situation, we need to fail the ioend chain rather
472 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
473 */
474STATIC void
475xfs_submit_ioend(
06342cf8 476 struct writeback_control *wbc,
7bf7f352
DC
477 xfs_ioend_t *ioend,
478 int fail)
f6d6d4fc 479{
d88992f6 480 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
481 xfs_ioend_t *next;
482 struct buffer_head *bh;
483 struct bio *bio;
484 sector_t lastblock = 0;
485
d88992f6
DC
486 /* Pass 1 - start writeback */
487 do {
488 next = ioend->io_list;
221cb251 489 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 490 xfs_start_buffer_writeback(bh);
d88992f6
DC
491 } while ((ioend = next) != NULL);
492
493 /* Pass 2 - submit I/O */
494 ioend = head;
f6d6d4fc
CH
495 do {
496 next = ioend->io_list;
497 bio = NULL;
498
7bf7f352
DC
499 /*
500 * If we are failing the IO now, just mark the ioend with an
501 * error and finish it. This will run IO completion immediately
502 * as there is only one reference to the ioend at this point in
503 * time.
504 */
505 if (fail) {
2451337d 506 ioend->io_error = fail;
7bf7f352
DC
507 xfs_finish_ioend(ioend);
508 continue;
509 }
510
f6d6d4fc 511 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
512
513 if (!bio) {
514 retry:
515 bio = xfs_alloc_ioend_bio(bh);
516 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 517 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
518 goto retry;
519 }
520
c7c1a7d8 521 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 522 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
523 goto retry;
524 }
525
526 lastblock = bh->b_blocknr;
527 }
528 if (bio)
06342cf8 529 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 530 xfs_finish_ioend(ioend);
f6d6d4fc
CH
531 } while ((ioend = next) != NULL);
532}
533
534/*
535 * Cancel submission of all buffer_heads so far in this endio.
536 * Toss the endio too. Only ever called for the initial page
537 * in a writepage request, so only ever one page.
538 */
539STATIC void
540xfs_cancel_ioend(
541 xfs_ioend_t *ioend)
542{
543 xfs_ioend_t *next;
544 struct buffer_head *bh, *next_bh;
545
546 do {
547 next = ioend->io_list;
548 bh = ioend->io_buffer_head;
549 do {
550 next_bh = bh->b_private;
551 clear_buffer_async_write(bh);
07d08681
BF
552 /*
553 * The unwritten flag is cleared when added to the
554 * ioend. We're not submitting for I/O so mark the
555 * buffer unwritten again for next time around.
556 */
557 if (ioend->io_type == XFS_IO_UNWRITTEN)
558 set_buffer_unwritten(bh);
f6d6d4fc
CH
559 unlock_buffer(bh);
560 } while ((bh = next_bh) != NULL);
561
f6d6d4fc
CH
562 mempool_free(ioend, xfs_ioend_pool);
563 } while ((ioend = next) != NULL);
564}
565
566/*
567 * Test to see if we've been building up a completion structure for
568 * earlier buffers -- if so, we try to append to this ioend if we
569 * can, otherwise we finish off any current ioend and start another.
570 * Return true if we've finished the given ioend.
571 */
572STATIC void
573xfs_add_to_ioend(
574 struct inode *inode,
575 struct buffer_head *bh,
7336cea8 576 xfs_off_t offset,
f6d6d4fc
CH
577 unsigned int type,
578 xfs_ioend_t **result,
579 int need_ioend)
580{
581 xfs_ioend_t *ioend = *result;
582
583 if (!ioend || need_ioend || type != ioend->io_type) {
584 xfs_ioend_t *previous = *result;
f6d6d4fc 585
f6d6d4fc
CH
586 ioend = xfs_alloc_ioend(inode, type);
587 ioend->io_offset = offset;
588 ioend->io_buffer_head = bh;
589 ioend->io_buffer_tail = bh;
590 if (previous)
591 previous->io_list = ioend;
592 *result = ioend;
593 } else {
594 ioend->io_buffer_tail->b_private = bh;
595 ioend->io_buffer_tail = bh;
596 }
597
598 bh->b_private = NULL;
599 ioend->io_size += bh->b_size;
600}
601
87cbc49c
NS
602STATIC void
603xfs_map_buffer(
046f1685 604 struct inode *inode,
87cbc49c 605 struct buffer_head *bh,
207d0416 606 struct xfs_bmbt_irec *imap,
046f1685 607 xfs_off_t offset)
87cbc49c
NS
608{
609 sector_t bn;
8699bb0a 610 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
611 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
612 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 613
207d0416
CH
614 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
615 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 616
e513182d 617 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 618 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 619
046f1685 620 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
621
622 bh->b_blocknr = bn;
623 set_buffer_mapped(bh);
624}
625
1da177e4
LT
626STATIC void
627xfs_map_at_offset(
046f1685 628 struct inode *inode,
1da177e4 629 struct buffer_head *bh,
207d0416 630 struct xfs_bmbt_irec *imap,
046f1685 631 xfs_off_t offset)
1da177e4 632{
207d0416
CH
633 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
634 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 635
207d0416 636 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
637 set_buffer_mapped(bh);
638 clear_buffer_delay(bh);
f6d6d4fc 639 clear_buffer_unwritten(bh);
1da177e4
LT
640}
641
1da177e4 642/*
a49935f2
DC
643 * Test if a given page contains at least one buffer of a given @type.
644 * If @check_all_buffers is true, then we walk all the buffers in the page to
645 * try to find one of the type passed in. If it is not set, then the caller only
646 * needs to check the first buffer on the page for a match.
1da177e4 647 */
a49935f2 648STATIC bool
6ffc4db5 649xfs_check_page_type(
10ce4444 650 struct page *page,
a49935f2
DC
651 unsigned int type,
652 bool check_all_buffers)
1da177e4 653{
a49935f2
DC
654 struct buffer_head *bh;
655 struct buffer_head *head;
1da177e4 656
a49935f2
DC
657 if (PageWriteback(page))
658 return false;
659 if (!page->mapping)
660 return false;
661 if (!page_has_buffers(page))
662 return false;
1da177e4 663
a49935f2
DC
664 bh = head = page_buffers(page);
665 do {
666 if (buffer_unwritten(bh)) {
667 if (type == XFS_IO_UNWRITTEN)
668 return true;
669 } else if (buffer_delay(bh)) {
805eeb8e 670 if (type == XFS_IO_DELALLOC)
a49935f2
DC
671 return true;
672 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 673 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
674 return true;
675 }
1da177e4 676
a49935f2
DC
677 /* If we are only checking the first buffer, we are done now. */
678 if (!check_all_buffers)
679 break;
680 } while ((bh = bh->b_this_page) != head);
1da177e4 681
a49935f2 682 return false;
1da177e4
LT
683}
684
1da177e4
LT
685/*
686 * Allocate & map buffers for page given the extent map. Write it out.
687 * except for the original page of a writepage, this is called on
688 * delalloc/unwritten pages only, for the original page it is possible
689 * that the page has no mapping at all.
690 */
f6d6d4fc 691STATIC int
1da177e4
LT
692xfs_convert_page(
693 struct inode *inode,
694 struct page *page,
10ce4444 695 loff_t tindex,
207d0416 696 struct xfs_bmbt_irec *imap,
f6d6d4fc 697 xfs_ioend_t **ioendp,
2fa24f92 698 struct writeback_control *wbc)
1da177e4 699{
f6d6d4fc 700 struct buffer_head *bh, *head;
9260dc6b
CH
701 xfs_off_t end_offset;
702 unsigned long p_offset;
f6d6d4fc 703 unsigned int type;
24e17b5f 704 int len, page_dirty;
f6d6d4fc 705 int count = 0, done = 0, uptodate = 1;
9260dc6b 706 xfs_off_t offset = page_offset(page);
1da177e4 707
10ce4444
CH
708 if (page->index != tindex)
709 goto fail;
529ae9aa 710 if (!trylock_page(page))
10ce4444
CH
711 goto fail;
712 if (PageWriteback(page))
713 goto fail_unlock_page;
714 if (page->mapping != inode->i_mapping)
715 goto fail_unlock_page;
a49935f2 716 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
10ce4444
CH
717 goto fail_unlock_page;
718
24e17b5f
NS
719 /*
720 * page_dirty is initially a count of buffers on the page before
c41564b5 721 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
722 *
723 * Derivation:
724 *
725 * End offset is the highest offset that this page should represent.
726 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
727 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
728 * hence give us the correct page_dirty count. On any other page,
729 * it will be zero and in that case we need page_dirty to be the
730 * count of buffers on the page.
24e17b5f 731 */
9260dc6b
CH
732 end_offset = min_t(unsigned long long,
733 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
734 i_size_read(inode));
735
480d7467
DC
736 /*
737 * If the current map does not span the entire page we are about to try
738 * to write, then give up. The only way we can write a page that spans
739 * multiple mappings in a single writeback iteration is via the
740 * xfs_vm_writepage() function. Data integrity writeback requires the
741 * entire page to be written in a single attempt, otherwise the part of
742 * the page we don't write here doesn't get written as part of the data
743 * integrity sync.
744 *
745 * For normal writeback, we also don't attempt to write partial pages
746 * here as it simply means that write_cache_pages() will see it under
747 * writeback and ignore the page until some point in the future, at
748 * which time this will be the only page in the file that needs
749 * writeback. Hence for more optimal IO patterns, we should always
750 * avoid partial page writeback due to multiple mappings on a page here.
751 */
752 if (!xfs_imap_valid(inode, imap, end_offset))
753 goto fail_unlock_page;
754
24e17b5f 755 len = 1 << inode->i_blkbits;
9260dc6b
CH
756 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
757 PAGE_CACHE_SIZE);
758 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
759 page_dirty = p_offset / len;
24e17b5f 760
a49935f2
DC
761 /*
762 * The moment we find a buffer that doesn't match our current type
763 * specification or can't be written, abort the loop and start
764 * writeback. As per the above xfs_imap_valid() check, only
765 * xfs_vm_writepage() can handle partial page writeback fully - we are
766 * limited here to the buffers that are contiguous with the current
767 * ioend, and hence a buffer we can't write breaks that contiguity and
768 * we have to defer the rest of the IO to xfs_vm_writepage().
769 */
1da177e4
LT
770 bh = head = page_buffers(page);
771 do {
9260dc6b 772 if (offset >= end_offset)
1da177e4 773 break;
f6d6d4fc
CH
774 if (!buffer_uptodate(bh))
775 uptodate = 0;
776 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
777 done = 1;
a49935f2 778 break;
f6d6d4fc
CH
779 }
780
2fa24f92
CH
781 if (buffer_unwritten(bh) || buffer_delay(bh) ||
782 buffer_mapped(bh)) {
9260dc6b 783 if (buffer_unwritten(bh))
0d882a36 784 type = XFS_IO_UNWRITTEN;
2fa24f92 785 else if (buffer_delay(bh))
0d882a36 786 type = XFS_IO_DELALLOC;
2fa24f92 787 else
0d882a36 788 type = XFS_IO_OVERWRITE;
9260dc6b 789
a49935f2
DC
790 /*
791 * imap should always be valid because of the above
792 * partial page end_offset check on the imap.
793 */
794 ASSERT(xfs_imap_valid(inode, imap, offset));
9260dc6b 795
ecff71e6 796 lock_buffer(bh);
0d882a36 797 if (type != XFS_IO_OVERWRITE)
2fa24f92 798 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
799 xfs_add_to_ioend(inode, bh, offset, type,
800 ioendp, done);
801
9260dc6b
CH
802 page_dirty--;
803 count++;
804 } else {
2fa24f92 805 done = 1;
a49935f2 806 break;
1da177e4 807 }
7336cea8 808 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 809
f6d6d4fc
CH
810 if (uptodate && bh == head)
811 SetPageUptodate(page);
812
89f3b363 813 if (count) {
efceab1d
DC
814 if (--wbc->nr_to_write <= 0 &&
815 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 816 done = 1;
1da177e4 817 }
89f3b363 818 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
819
820 return done;
10ce4444
CH
821 fail_unlock_page:
822 unlock_page(page);
823 fail:
824 return 1;
1da177e4
LT
825}
826
827/*
828 * Convert & write out a cluster of pages in the same extent as defined
829 * by mp and following the start page.
830 */
831STATIC void
832xfs_cluster_write(
833 struct inode *inode,
834 pgoff_t tindex,
207d0416 835 struct xfs_bmbt_irec *imap,
f6d6d4fc 836 xfs_ioend_t **ioendp,
1da177e4 837 struct writeback_control *wbc,
1da177e4
LT
838 pgoff_t tlast)
839{
10ce4444
CH
840 struct pagevec pvec;
841 int done = 0, i;
1da177e4 842
10ce4444
CH
843 pagevec_init(&pvec, 0);
844 while (!done && tindex <= tlast) {
845 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
846
847 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 848 break;
10ce4444
CH
849
850 for (i = 0; i < pagevec_count(&pvec); i++) {
851 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 852 imap, ioendp, wbc);
10ce4444
CH
853 if (done)
854 break;
855 }
856
857 pagevec_release(&pvec);
858 cond_resched();
1da177e4
LT
859 }
860}
861
3ed3a434
DC
862STATIC void
863xfs_vm_invalidatepage(
864 struct page *page,
d47992f8
LC
865 unsigned int offset,
866 unsigned int length)
3ed3a434 867{
34097dfe
LC
868 trace_xfs_invalidatepage(page->mapping->host, page, offset,
869 length);
870 block_invalidatepage(page, offset, length);
3ed3a434
DC
871}
872
873/*
874 * If the page has delalloc buffers on it, we need to punch them out before we
875 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
876 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
877 * is done on that same region - the delalloc extent is returned when none is
878 * supposed to be there.
879 *
880 * We prevent this by truncating away the delalloc regions on the page before
881 * invalidating it. Because they are delalloc, we can do this without needing a
882 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
883 * truncation without a transaction as there is no space left for block
884 * reservation (typically why we see a ENOSPC in writeback).
885 *
886 * This is not a performance critical path, so for now just do the punching a
887 * buffer head at a time.
888 */
889STATIC void
890xfs_aops_discard_page(
891 struct page *page)
892{
893 struct inode *inode = page->mapping->host;
894 struct xfs_inode *ip = XFS_I(inode);
895 struct buffer_head *bh, *head;
896 loff_t offset = page_offset(page);
3ed3a434 897
a49935f2 898 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
899 goto out_invalidate;
900
e8c3753c
DC
901 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
902 goto out_invalidate;
903
4f10700a 904 xfs_alert(ip->i_mount,
3ed3a434
DC
905 "page discard on page %p, inode 0x%llx, offset %llu.",
906 page, ip->i_ino, offset);
907
908 xfs_ilock(ip, XFS_ILOCK_EXCL);
909 bh = head = page_buffers(page);
910 do {
3ed3a434 911 int error;
c726de44 912 xfs_fileoff_t start_fsb;
3ed3a434
DC
913
914 if (!buffer_delay(bh))
915 goto next_buffer;
916
c726de44
DC
917 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
918 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
919 if (error) {
920 /* something screwed, just bail */
e8c3753c 921 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 922 xfs_alert(ip->i_mount,
3ed3a434 923 "page discard unable to remove delalloc mapping.");
e8c3753c 924 }
3ed3a434
DC
925 break;
926 }
927next_buffer:
c726de44 928 offset += 1 << inode->i_blkbits;
3ed3a434
DC
929
930 } while ((bh = bh->b_this_page) != head);
931
932 xfs_iunlock(ip, XFS_ILOCK_EXCL);
933out_invalidate:
d47992f8 934 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
935 return;
936}
937
1da177e4 938/*
89f3b363
CH
939 * Write out a dirty page.
940 *
941 * For delalloc space on the page we need to allocate space and flush it.
942 * For unwritten space on the page we need to start the conversion to
943 * regular allocated space.
89f3b363 944 * For any other dirty buffer heads on the page we should flush them.
1da177e4 945 */
1da177e4 946STATIC int
89f3b363
CH
947xfs_vm_writepage(
948 struct page *page,
949 struct writeback_control *wbc)
1da177e4 950{
89f3b363 951 struct inode *inode = page->mapping->host;
f6d6d4fc 952 struct buffer_head *bh, *head;
207d0416 953 struct xfs_bmbt_irec imap;
f6d6d4fc 954 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 955 loff_t offset;
f6d6d4fc 956 unsigned int type;
1da177e4 957 __uint64_t end_offset;
bd1556a1 958 pgoff_t end_index, last_index;
ed1e7b7e 959 ssize_t len;
a206c817 960 int err, imap_valid = 0, uptodate = 1;
89f3b363 961 int count = 0;
a206c817 962 int nonblocking = 0;
89f3b363 963
34097dfe 964 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 965
20cb52eb
CH
966 ASSERT(page_has_buffers(page));
967
89f3b363
CH
968 /*
969 * Refuse to write the page out if we are called from reclaim context.
970 *
d4f7a5cb
CH
971 * This avoids stack overflows when called from deeply used stacks in
972 * random callers for direct reclaim or memcg reclaim. We explicitly
973 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 974 *
94054fa3
MG
975 * This should never happen except in the case of a VM regression so
976 * warn about it.
89f3b363 977 */
94054fa3
MG
978 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
979 PF_MEMALLOC))
b5420f23 980 goto redirty;
1da177e4 981
89f3b363 982 /*
680a647b
CH
983 * Given that we do not allow direct reclaim to call us, we should
984 * never be called while in a filesystem transaction.
89f3b363 985 */
448011e2 986 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 987 goto redirty;
89f3b363 988
1da177e4
LT
989 /* Is this page beyond the end of the file? */
990 offset = i_size_read(inode);
991 end_index = offset >> PAGE_CACHE_SHIFT;
992 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
8695d27e
JL
993
994 /*
995 * The page index is less than the end_index, adjust the end_offset
996 * to the highest offset that this page should represent.
997 * -----------------------------------------------------
998 * | file mapping | <EOF> |
999 * -----------------------------------------------------
1000 * | Page ... | Page N-2 | Page N-1 | Page N | |
1001 * ^--------------------------------^----------|--------
1002 * | desired writeback range | see else |
1003 * ---------------------------------^------------------|
1004 */
1005 if (page->index < end_index)
1006 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
1007 else {
1008 /*
1009 * Check whether the page to write out is beyond or straddles
1010 * i_size or not.
1011 * -------------------------------------------------------
1012 * | file mapping | <EOF> |
1013 * -------------------------------------------------------
1014 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1015 * ^--------------------------------^-----------|---------
1016 * | | Straddles |
1017 * ---------------------------------^-----------|--------|
1018 */
6b7a03f0
CH
1019 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1020
1021 /*
ff9a28f6
JK
1022 * Skip the page if it is fully outside i_size, e.g. due to a
1023 * truncate operation that is in progress. We must redirty the
1024 * page so that reclaim stops reclaiming it. Otherwise
1025 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1026 *
1027 * Note that the end_index is unsigned long, it would overflow
1028 * if the given offset is greater than 16TB on 32-bit system
1029 * and if we do check the page is fully outside i_size or not
1030 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1031 * will be evaluated to 0. Hence this page will be redirtied
1032 * and be written out repeatedly which would result in an
1033 * infinite loop, the user program that perform this operation
1034 * will hang. Instead, we can verify this situation by checking
1035 * if the page to write is totally beyond the i_size or if it's
1036 * offset is just equal to the EOF.
6b7a03f0 1037 */
8695d27e
JL
1038 if (page->index > end_index ||
1039 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1040 goto redirty;
6b7a03f0
CH
1041
1042 /*
1043 * The page straddles i_size. It must be zeroed out on each
1044 * and every writepage invocation because it may be mmapped.
1045 * "A file is mapped in multiples of the page size. For a file
8695d27e 1046 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1047 * memory is zeroed when mapped, and writes to that region are
1048 * not written out to the file."
1049 */
1050 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
1051
1052 /* Adjust the end_offset to the end of file */
1053 end_offset = offset;
1da177e4
LT
1054 }
1055
24e17b5f 1056 len = 1 << inode->i_blkbits;
24e17b5f 1057
24e17b5f 1058 bh = head = page_buffers(page);
f6d6d4fc 1059 offset = page_offset(page);
0d882a36 1060 type = XFS_IO_OVERWRITE;
a206c817 1061
dbcdde3e 1062 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 1063 nonblocking = 1;
f6d6d4fc 1064
1da177e4 1065 do {
6ac7248e
CH
1066 int new_ioend = 0;
1067
1da177e4
LT
1068 if (offset >= end_offset)
1069 break;
1070 if (!buffer_uptodate(bh))
1071 uptodate = 0;
1da177e4 1072
3d9b02e3 1073 /*
ece413f5
CH
1074 * set_page_dirty dirties all buffers in a page, independent
1075 * of their state. The dirty state however is entirely
1076 * meaningless for holes (!mapped && uptodate), so skip
1077 * buffers covering holes here.
3d9b02e3
ES
1078 */
1079 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1080 imap_valid = 0;
1081 continue;
1082 }
1083
aeea1b1f 1084 if (buffer_unwritten(bh)) {
0d882a36
AR
1085 if (type != XFS_IO_UNWRITTEN) {
1086 type = XFS_IO_UNWRITTEN;
aeea1b1f 1087 imap_valid = 0;
1da177e4 1088 }
aeea1b1f 1089 } else if (buffer_delay(bh)) {
0d882a36
AR
1090 if (type != XFS_IO_DELALLOC) {
1091 type = XFS_IO_DELALLOC;
aeea1b1f 1092 imap_valid = 0;
1da177e4 1093 }
89f3b363 1094 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1095 if (type != XFS_IO_OVERWRITE) {
1096 type = XFS_IO_OVERWRITE;
85da94c6
CH
1097 imap_valid = 0;
1098 }
aeea1b1f 1099 } else {
7d0fa3ec 1100 if (PageUptodate(page))
aeea1b1f 1101 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1102 /*
1103 * This buffer is not uptodate and will not be
1104 * written to disk. Ensure that we will put any
1105 * subsequent writeable buffers into a new
1106 * ioend.
1107 */
1108 imap_valid = 0;
aeea1b1f
CH
1109 continue;
1110 }
d5cb48aa 1111
aeea1b1f
CH
1112 if (imap_valid)
1113 imap_valid = xfs_imap_valid(inode, &imap, offset);
1114 if (!imap_valid) {
1115 /*
1116 * If we didn't have a valid mapping then we need to
1117 * put the new mapping into a separate ioend structure.
1118 * This ensures non-contiguous extents always have
1119 * separate ioends, which is particularly important
1120 * for unwritten extent conversion at I/O completion
1121 * time.
1122 */
1123 new_ioend = 1;
1124 err = xfs_map_blocks(inode, offset, &imap, type,
1125 nonblocking);
1126 if (err)
1127 goto error;
1128 imap_valid = xfs_imap_valid(inode, &imap, offset);
1129 }
1130 if (imap_valid) {
ecff71e6 1131 lock_buffer(bh);
0d882a36 1132 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1133 xfs_map_at_offset(inode, bh, &imap, offset);
1134 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1135 new_ioend);
1136 count++;
1da177e4 1137 }
f6d6d4fc
CH
1138
1139 if (!iohead)
1140 iohead = ioend;
1141
1142 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1143
1144 if (uptodate && bh == head)
1145 SetPageUptodate(page);
1146
89f3b363 1147 xfs_start_page_writeback(page, 1, count);
1da177e4 1148
7bf7f352
DC
1149 /* if there is no IO to be submitted for this page, we are done */
1150 if (!ioend)
1151 return 0;
1152
1153 ASSERT(iohead);
1154
1155 /*
1156 * Any errors from this point onwards need tobe reported through the IO
1157 * completion path as we have marked the initial page as under writeback
1158 * and unlocked it.
1159 */
1160 if (imap_valid) {
bd1556a1
CH
1161 xfs_off_t end_index;
1162
1163 end_index = imap.br_startoff + imap.br_blockcount;
1164
1165 /* to bytes */
1166 end_index <<= inode->i_blkbits;
1167
1168 /* to pages */
1169 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1170
1171 /* check against file size */
1172 if (end_index > last_index)
1173 end_index = last_index;
8699bb0a 1174
207d0416 1175 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1176 wbc, end_index);
1da177e4
LT
1177 }
1178
281627df 1179
7bf7f352
DC
1180 /*
1181 * Reserve log space if we might write beyond the on-disk inode size.
1182 */
1183 err = 0;
1184 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1185 err = xfs_setfilesize_trans_alloc(ioend);
1186
1187 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1188
89f3b363 1189 return 0;
1da177e4
LT
1190
1191error:
f6d6d4fc
CH
1192 if (iohead)
1193 xfs_cancel_ioend(iohead);
1da177e4 1194
b5420f23
CH
1195 if (err == -EAGAIN)
1196 goto redirty;
1197
20cb52eb 1198 xfs_aops_discard_page(page);
89f3b363
CH
1199 ClearPageUptodate(page);
1200 unlock_page(page);
1da177e4 1201 return err;
f51623b2 1202
b5420f23 1203redirty:
f51623b2
NS
1204 redirty_page_for_writepage(wbc, page);
1205 unlock_page(page);
1206 return 0;
f51623b2
NS
1207}
1208
7d4fb40a
NS
1209STATIC int
1210xfs_vm_writepages(
1211 struct address_space *mapping,
1212 struct writeback_control *wbc)
1213{
b3aea4ed 1214 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1215 return generic_writepages(mapping, wbc);
1216}
1217
f51623b2
NS
1218/*
1219 * Called to move a page into cleanable state - and from there
89f3b363 1220 * to be released. The page should already be clean. We always
f51623b2
NS
1221 * have buffer heads in this call.
1222 *
89f3b363 1223 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1224 */
1225STATIC int
238f4c54 1226xfs_vm_releasepage(
f51623b2
NS
1227 struct page *page,
1228 gfp_t gfp_mask)
1229{
20cb52eb 1230 int delalloc, unwritten;
f51623b2 1231
34097dfe 1232 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1233
20cb52eb 1234 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1235
448011e2 1236 if (WARN_ON_ONCE(delalloc))
f51623b2 1237 return 0;
448011e2 1238 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1239 return 0;
1240
f51623b2
NS
1241 return try_to_free_buffers(page);
1242}
1243
a719370b 1244/*
273dda76
CH
1245 * When we map a DIO buffer, we may need to pass flags to
1246 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
3e12dbbd
DC
1247 *
1248 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1249 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1250 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1251 * extending the file size. We won't know for sure until IO completion is run
1252 * and the actual max write offset is communicated to the IO completion
1253 * routine.
a719370b
DC
1254 */
1255static void
1256xfs_map_direct(
1257 struct inode *inode,
1258 struct buffer_head *bh_result,
1259 struct xfs_bmbt_irec *imap,
273dda76 1260 xfs_off_t offset)
a719370b 1261{
273dda76 1262 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
d5cc2e3f 1263 xfs_off_t size = bh_result->b_size;
d5cc2e3f 1264
273dda76
CH
1265 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1266 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
a06c277a 1267
273dda76
CH
1268 if (ISUNWRITTEN(imap)) {
1269 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1270 set_buffer_defer_completion(bh_result);
1271 } else if (offset + size > i_size_read(inode) || offset + size < 0) {
1272 *flags |= XFS_DIO_FLAG_APPEND;
a06c277a 1273 set_buffer_defer_completion(bh_result);
a719370b
DC
1274 }
1275}
1276
1fdca9c2
DC
1277/*
1278 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1279 * is, so that we can avoid repeated get_blocks calls.
1280 *
1281 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1282 * for blocks beyond EOF must be marked new so that sub block regions can be
1283 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1284 * was just allocated or is unwritten, otherwise the callers would overwrite
1285 * existing data with zeros. Hence we have to split the mapping into a range up
1286 * to and including EOF, and a second mapping for beyond EOF.
1287 */
1288static void
1289xfs_map_trim_size(
1290 struct inode *inode,
1291 sector_t iblock,
1292 struct buffer_head *bh_result,
1293 struct xfs_bmbt_irec *imap,
1294 xfs_off_t offset,
1295 ssize_t size)
1296{
1297 xfs_off_t mapping_size;
1298
1299 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1300 mapping_size <<= inode->i_blkbits;
1301
1302 ASSERT(mapping_size > 0);
1303 if (mapping_size > size)
1304 mapping_size = size;
1305 if (offset < i_size_read(inode) &&
1306 offset + mapping_size >= i_size_read(inode)) {
1307 /* limit mapping to block that spans EOF */
1308 mapping_size = roundup_64(i_size_read(inode) - offset,
1309 1 << inode->i_blkbits);
1310 }
1311 if (mapping_size > LONG_MAX)
1312 mapping_size = LONG_MAX;
1313
1314 bh_result->b_size = mapping_size;
1315}
1316
1da177e4 1317STATIC int
c2536668 1318__xfs_get_blocks(
1da177e4
LT
1319 struct inode *inode,
1320 sector_t iblock,
1da177e4
LT
1321 struct buffer_head *bh_result,
1322 int create,
3e12dbbd
DC
1323 bool direct,
1324 bool dax_fault)
1da177e4 1325{
a206c817
CH
1326 struct xfs_inode *ip = XFS_I(inode);
1327 struct xfs_mount *mp = ip->i_mount;
1328 xfs_fileoff_t offset_fsb, end_fsb;
1329 int error = 0;
1330 int lockmode = 0;
207d0416 1331 struct xfs_bmbt_irec imap;
a206c817 1332 int nimaps = 1;
fdc7ed75
NS
1333 xfs_off_t offset;
1334 ssize_t size;
207d0416 1335 int new = 0;
a206c817
CH
1336
1337 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1338 return -EIO;
1da177e4 1339
fdc7ed75 1340 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1341 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1342 size = bh_result->b_size;
364f358a
LM
1343
1344 if (!create && direct && offset >= i_size_read(inode))
1345 return 0;
1346
507630b2
DC
1347 /*
1348 * Direct I/O is usually done on preallocated files, so try getting
1349 * a block mapping without an exclusive lock first. For buffered
1350 * writes we already have the exclusive iolock anyway, so avoiding
1351 * a lock roundtrip here by taking the ilock exclusive from the
1352 * beginning is a useful micro optimization.
1353 */
1354 if (create && !direct) {
a206c817
CH
1355 lockmode = XFS_ILOCK_EXCL;
1356 xfs_ilock(ip, lockmode);
1357 } else {
309ecac8 1358 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1359 }
f2bde9b8 1360
d2c28191
DC
1361 ASSERT(offset <= mp->m_super->s_maxbytes);
1362 if (offset + size > mp->m_super->s_maxbytes)
1363 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1364 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1365 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1366
5c8ed202
DC
1367 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1368 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1369 if (error)
a206c817
CH
1370 goto out_unlock;
1371
1ca19157 1372 /* for DAX, we convert unwritten extents directly */
a206c817
CH
1373 if (create &&
1374 (!nimaps ||
1375 (imap.br_startblock == HOLESTARTBLOCK ||
1ca19157
DC
1376 imap.br_startblock == DELAYSTARTBLOCK) ||
1377 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
aff3a9ed 1378 if (direct || xfs_get_extsz_hint(ip)) {
507630b2 1379 /*
009c6e87
BF
1380 * xfs_iomap_write_direct() expects the shared lock. It
1381 * is unlocked on return.
507630b2 1382 */
009c6e87
BF
1383 if (lockmode == XFS_ILOCK_EXCL)
1384 xfs_ilock_demote(ip, lockmode);
1385
a206c817
CH
1386 error = xfs_iomap_write_direct(ip, offset, size,
1387 &imap, nimaps);
507630b2 1388 if (error)
2451337d 1389 return error;
d3bc815a 1390 new = 1;
6b698ede 1391
a206c817 1392 } else {
507630b2
DC
1393 /*
1394 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1395 * we can go on without dropping the lock here. If we
1396 * are allocating a new delalloc block, make sure that
1397 * we set the new flag so that we mark the buffer new so
1398 * that we know that it is newly allocated if the write
1399 * fails.
507630b2 1400 */
d3bc815a
DC
1401 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1402 new = 1;
a206c817 1403 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1404 if (error)
1405 goto out_unlock;
1406
1407 xfs_iunlock(ip, lockmode);
a206c817 1408 }
d5cc2e3f
DC
1409 trace_xfs_get_blocks_alloc(ip, offset, size,
1410 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1411 : XFS_IO_DELALLOC, &imap);
a206c817 1412 } else if (nimaps) {
d5cc2e3f
DC
1413 trace_xfs_get_blocks_found(ip, offset, size,
1414 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1415 : XFS_IO_OVERWRITE, &imap);
507630b2 1416 xfs_iunlock(ip, lockmode);
a206c817
CH
1417 } else {
1418 trace_xfs_get_blocks_notfound(ip, offset, size);
1419 goto out_unlock;
1420 }
1da177e4 1421
1ca19157
DC
1422 if (IS_DAX(inode) && create) {
1423 ASSERT(!ISUNWRITTEN(&imap));
1424 /* zeroing is not needed at a higher layer */
1425 new = 0;
1426 }
1427
1fdca9c2
DC
1428 /* trim mapping down to size requested */
1429 if (direct || size > (1 << inode->i_blkbits))
1430 xfs_map_trim_size(inode, iblock, bh_result,
1431 &imap, offset, size);
1432
a719370b
DC
1433 /*
1434 * For unwritten extents do not report a disk address in the buffered
1435 * read case (treat as if we're reading into a hole).
1436 */
207d0416 1437 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1438 imap.br_startblock != DELAYSTARTBLOCK &&
1439 (create || !ISUNWRITTEN(&imap))) {
1440 xfs_map_buffer(inode, bh_result, &imap, offset);
1441 if (ISUNWRITTEN(&imap))
1da177e4 1442 set_buffer_unwritten(bh_result);
a719370b 1443 /* direct IO needs special help */
273dda76
CH
1444 if (create && direct) {
1445 if (dax_fault)
1446 ASSERT(!ISUNWRITTEN(&imap));
1447 else
1448 xfs_map_direct(inode, bh_result, &imap, offset);
1449 }
1da177e4
LT
1450 }
1451
c2536668
NS
1452 /*
1453 * If this is a realtime file, data may be on a different device.
1454 * to that pointed to from the buffer_head b_bdev currently.
1455 */
046f1685 1456 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1457
c2536668 1458 /*
549054af
DC
1459 * If we previously allocated a block out beyond eof and we are now
1460 * coming back to use it then we will need to flag it as new even if it
1461 * has a disk address.
1462 *
1463 * With sub-block writes into unwritten extents we also need to mark
1464 * the buffer as new so that the unwritten parts of the buffer gets
1465 * correctly zeroed.
1da177e4
LT
1466 */
1467 if (create &&
1468 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1469 (offset >= i_size_read(inode)) ||
207d0416 1470 (new || ISUNWRITTEN(&imap))))
1da177e4 1471 set_buffer_new(bh_result);
1da177e4 1472
207d0416 1473 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1474 BUG_ON(direct);
1475 if (create) {
1476 set_buffer_uptodate(bh_result);
1477 set_buffer_mapped(bh_result);
1478 set_buffer_delay(bh_result);
1479 }
1480 }
1481
1da177e4 1482 return 0;
a206c817
CH
1483
1484out_unlock:
1485 xfs_iunlock(ip, lockmode);
2451337d 1486 return error;
1da177e4
LT
1487}
1488
1489int
c2536668 1490xfs_get_blocks(
1da177e4
LT
1491 struct inode *inode,
1492 sector_t iblock,
1493 struct buffer_head *bh_result,
1494 int create)
1495{
3e12dbbd 1496 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1da177e4
LT
1497}
1498
6b698ede 1499int
e4c573bb 1500xfs_get_blocks_direct(
1da177e4
LT
1501 struct inode *inode,
1502 sector_t iblock,
1da177e4
LT
1503 struct buffer_head *bh_result,
1504 int create)
1505{
3e12dbbd
DC
1506 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1507}
1508
1509int
1510xfs_get_blocks_dax_fault(
1511 struct inode *inode,
1512 sector_t iblock,
1513 struct buffer_head *bh_result,
1514 int create)
1515{
1516 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1da177e4
LT
1517}
1518
273dda76
CH
1519/*
1520 * Complete a direct I/O write request.
1521 *
1522 * xfs_map_direct passes us some flags in the private data to tell us what to
1523 * do. If no flags are set, then the write IO is an overwrite wholly within
1524 * the existing allocated file size and so there is nothing for us to do.
1525 *
1526 * Note that in this case the completion can be called in interrupt context,
1527 * whereas if we have flags set we will always be called in task context
1528 * (i.e. from a workqueue).
1529 */
1530STATIC int
1531xfs_end_io_direct_write(
1532 struct kiocb *iocb,
209fb87a 1533 loff_t offset,
273dda76
CH
1534 ssize_t size,
1535 void *private)
f0973863 1536{
273dda76
CH
1537 struct inode *inode = file_inode(iocb->ki_filp);
1538 struct xfs_inode *ip = XFS_I(inode);
1539 struct xfs_mount *mp = ip->i_mount;
1540 uintptr_t flags = (uintptr_t)private;
1541 int error = 0;
a06c277a 1542
273dda76 1543 trace_xfs_end_io_direct_write(ip, offset, size);
f0973863 1544
273dda76
CH
1545 if (XFS_FORCED_SHUTDOWN(mp))
1546 return -EIO;
d5cc2e3f 1547
273dda76
CH
1548 if (size <= 0)
1549 return size;
f0973863 1550
2813d682 1551 /*
273dda76 1552 * The flags tell us whether we are doing unwritten extent conversions
6dfa1b67
DC
1553 * or an append transaction that updates the on-disk file size. These
1554 * cases are the only cases where we should *potentially* be needing
a06c277a 1555 * to update the VFS inode size.
273dda76
CH
1556 */
1557 if (flags == 0) {
1558 ASSERT(offset + size <= i_size_read(inode));
1559 return 0;
1560 }
1561
1562 /*
6dfa1b67 1563 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1564 * with the on-disk inode size being outside the in-core inode size. We
1565 * have no other method of updating EOF for AIO, so always do it here
1566 * if necessary.
b9d59846
DC
1567 *
1568 * We need to lock the test/set EOF update as we can be racing with
1569 * other IO completions here to update the EOF. Failing to serialise
1570 * here can result in EOF moving backwards and Bad Things Happen when
1571 * that occurs.
2813d682 1572 */
273dda76 1573 spin_lock(&ip->i_flags_lock);
2ba66237
CH
1574 if (offset + size > i_size_read(inode))
1575 i_size_write(inode, offset + size);
273dda76 1576 spin_unlock(&ip->i_flags_lock);
2813d682 1577
273dda76
CH
1578 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1579 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
209fb87a 1580
273dda76
CH
1581 error = xfs_iomap_write_unwritten(ip, offset, size);
1582 } else if (flags & XFS_DIO_FLAG_APPEND) {
1583 struct xfs_trans *tp;
f0973863 1584
273dda76 1585 trace_xfs_end_io_direct_write_append(ip, offset, size);
6b698ede 1586
273dda76
CH
1587 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1588 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
1589 if (error) {
1590 xfs_trans_cancel(tp);
1591 return error;
1592 }
1593 error = xfs_setfilesize(ip, tp, offset, size);
6b698ede
DC
1594 }
1595
273dda76 1596 return error;
6b698ede
DC
1597}
1598
6e1ba0bc
DC
1599static inline ssize_t
1600xfs_vm_do_dio(
1601 struct inode *inode,
1602 struct kiocb *iocb,
1603 struct iov_iter *iter,
1604 loff_t offset,
187372a3 1605 dio_iodone_t endio,
6e1ba0bc
DC
1606 int flags)
1607{
1608 struct block_device *bdev;
1609
1610 if (IS_DAX(inode))
1611 return dax_do_io(iocb, inode, iter, offset,
1612 xfs_get_blocks_direct, endio, 0);
1613
1614 bdev = xfs_find_bdev_for_inode(inode);
1615 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1616 xfs_get_blocks_direct, endio, NULL, flags);
1617}
1618
1da177e4 1619STATIC ssize_t
e4c573bb 1620xfs_vm_direct_IO(
1da177e4 1621 struct kiocb *iocb,
d8d3d94b
AV
1622 struct iov_iter *iter,
1623 loff_t offset)
1da177e4 1624{
209fb87a 1625 struct inode *inode = iocb->ki_filp->f_mapping->host;
209fb87a 1626
6e1ba0bc
DC
1627 if (iov_iter_rw(iter) == WRITE)
1628 return xfs_vm_do_dio(inode, iocb, iter, offset,
1629 xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1630 return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1da177e4
LT
1631}
1632
d3bc815a
DC
1633/*
1634 * Punch out the delalloc blocks we have already allocated.
1635 *
1636 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1637 * as the page is still locked at this point.
1638 */
1639STATIC void
1640xfs_vm_kill_delalloc_range(
1641 struct inode *inode,
1642 loff_t start,
1643 loff_t end)
1644{
1645 struct xfs_inode *ip = XFS_I(inode);
1646 xfs_fileoff_t start_fsb;
1647 xfs_fileoff_t end_fsb;
1648 int error;
1649
1650 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1651 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1652 if (end_fsb <= start_fsb)
1653 return;
1654
1655 xfs_ilock(ip, XFS_ILOCK_EXCL);
1656 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1657 end_fsb - start_fsb);
1658 if (error) {
1659 /* something screwed, just bail */
1660 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1661 xfs_alert(ip->i_mount,
1662 "xfs_vm_write_failed: unable to clean up ino %lld",
1663 ip->i_ino);
1664 }
1665 }
1666 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1667}
1668
fa9b227e
CH
1669STATIC void
1670xfs_vm_write_failed(
d3bc815a
DC
1671 struct inode *inode,
1672 struct page *page,
1673 loff_t pos,
1674 unsigned len)
fa9b227e 1675{
58e59854 1676 loff_t block_offset;
d3bc815a
DC
1677 loff_t block_start;
1678 loff_t block_end;
1679 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1680 loff_t to = from + len;
1681 struct buffer_head *bh, *head;
fa9b227e 1682
58e59854
JL
1683 /*
1684 * The request pos offset might be 32 or 64 bit, this is all fine
1685 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1686 * platform, the high 32-bit will be masked off if we evaluate the
1687 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1688 * 0xfffff000 as an unsigned long, hence the result is incorrect
1689 * which could cause the following ASSERT failed in most cases.
1690 * In order to avoid this, we can evaluate the block_offset of the
1691 * start of the page by using shifts rather than masks the mismatch
1692 * problem.
1693 */
1694 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1695
d3bc815a 1696 ASSERT(block_offset + from == pos);
c726de44 1697
d3bc815a
DC
1698 head = page_buffers(page);
1699 block_start = 0;
1700 for (bh = head; bh != head || !block_start;
1701 bh = bh->b_this_page, block_start = block_end,
1702 block_offset += bh->b_size) {
1703 block_end = block_start + bh->b_size;
c726de44 1704
d3bc815a
DC
1705 /* skip buffers before the write */
1706 if (block_end <= from)
1707 continue;
1708
1709 /* if the buffer is after the write, we're done */
1710 if (block_start >= to)
1711 break;
1712
1713 if (!buffer_delay(bh))
1714 continue;
1715
1716 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1717 continue;
1718
1719 xfs_vm_kill_delalloc_range(inode, block_offset,
1720 block_offset + bh->b_size);
4ab9ed57
DC
1721
1722 /*
1723 * This buffer does not contain data anymore. make sure anyone
1724 * who finds it knows that for certain.
1725 */
1726 clear_buffer_delay(bh);
1727 clear_buffer_uptodate(bh);
1728 clear_buffer_mapped(bh);
1729 clear_buffer_new(bh);
1730 clear_buffer_dirty(bh);
fa9b227e 1731 }
d3bc815a 1732
fa9b227e
CH
1733}
1734
d3bc815a
DC
1735/*
1736 * This used to call block_write_begin(), but it unlocks and releases the page
1737 * on error, and we need that page to be able to punch stale delalloc blocks out
1738 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1739 * the appropriate point.
1740 */
f51623b2 1741STATIC int
d79689c7 1742xfs_vm_write_begin(
f51623b2 1743 struct file *file,
d79689c7
NP
1744 struct address_space *mapping,
1745 loff_t pos,
1746 unsigned len,
1747 unsigned flags,
1748 struct page **pagep,
1749 void **fsdata)
f51623b2 1750{
d3bc815a
DC
1751 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1752 struct page *page;
1753 int status;
155130a4 1754
d3bc815a
DC
1755 ASSERT(len <= PAGE_CACHE_SIZE);
1756
ad22c7a0 1757 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1758 if (!page)
1759 return -ENOMEM;
1760
1761 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1762 if (unlikely(status)) {
1763 struct inode *inode = mapping->host;
72ab70a1 1764 size_t isize = i_size_read(inode);
d3bc815a
DC
1765
1766 xfs_vm_write_failed(inode, page, pos, len);
1767 unlock_page(page);
1768
72ab70a1
DC
1769 /*
1770 * If the write is beyond EOF, we only want to kill blocks
1771 * allocated in this write, not blocks that were previously
1772 * written successfully.
1773 */
1774 if (pos + len > isize) {
1775 ssize_t start = max_t(ssize_t, pos, isize);
1776
1777 truncate_pagecache_range(inode, start, pos + len);
1778 }
d3bc815a
DC
1779
1780 page_cache_release(page);
1781 page = NULL;
1782 }
1783
1784 *pagep = page;
1785 return status;
fa9b227e
CH
1786}
1787
d3bc815a 1788/*
aad3f375
DC
1789 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1790 * this specific write because they will never be written. Previous writes
1791 * beyond EOF where block allocation succeeded do not need to be trashed, so
1792 * only new blocks from this write should be trashed. For blocks within
1793 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1794 * written with all the other valid data.
d3bc815a 1795 */
fa9b227e
CH
1796STATIC int
1797xfs_vm_write_end(
1798 struct file *file,
1799 struct address_space *mapping,
1800 loff_t pos,
1801 unsigned len,
1802 unsigned copied,
1803 struct page *page,
1804 void *fsdata)
1805{
1806 int ret;
155130a4 1807
d3bc815a
DC
1808 ASSERT(len <= PAGE_CACHE_SIZE);
1809
fa9b227e 1810 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1811 if (unlikely(ret < len)) {
1812 struct inode *inode = mapping->host;
1813 size_t isize = i_size_read(inode);
1814 loff_t to = pos + len;
1815
1816 if (to > isize) {
aad3f375
DC
1817 /* only kill blocks in this write beyond EOF */
1818 if (pos > isize)
1819 isize = pos;
d3bc815a 1820 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1821 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1822 }
1823 }
155130a4 1824 return ret;
f51623b2 1825}
1da177e4
LT
1826
1827STATIC sector_t
e4c573bb 1828xfs_vm_bmap(
1da177e4
LT
1829 struct address_space *mapping,
1830 sector_t block)
1831{
1832 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1833 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1834
cca28fb8 1835 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1836 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1837 filemap_write_and_wait(mapping);
126468b1 1838 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1839 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1840}
1841
1842STATIC int
e4c573bb 1843xfs_vm_readpage(
1da177e4
LT
1844 struct file *unused,
1845 struct page *page)
1846{
121e213e 1847 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1848 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1849}
1850
1851STATIC int
e4c573bb 1852xfs_vm_readpages(
1da177e4
LT
1853 struct file *unused,
1854 struct address_space *mapping,
1855 struct list_head *pages,
1856 unsigned nr_pages)
1857{
121e213e 1858 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1859 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1860}
1861
22e757a4
DC
1862/*
1863 * This is basically a copy of __set_page_dirty_buffers() with one
1864 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1865 * dirty, we'll never be able to clean them because we don't write buffers
1866 * beyond EOF, and that means we can't invalidate pages that span EOF
1867 * that have been marked dirty. Further, the dirty state can leak into
1868 * the file interior if the file is extended, resulting in all sorts of
1869 * bad things happening as the state does not match the underlying data.
1870 *
1871 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1872 * this only exist because of bufferheads and how the generic code manages them.
1873 */
1874STATIC int
1875xfs_vm_set_page_dirty(
1876 struct page *page)
1877{
1878 struct address_space *mapping = page->mapping;
1879 struct inode *inode = mapping->host;
1880 loff_t end_offset;
1881 loff_t offset;
1882 int newly_dirty;
c4843a75 1883 struct mem_cgroup *memcg;
22e757a4
DC
1884
1885 if (unlikely(!mapping))
1886 return !TestSetPageDirty(page);
1887
1888 end_offset = i_size_read(inode);
1889 offset = page_offset(page);
1890
1891 spin_lock(&mapping->private_lock);
1892 if (page_has_buffers(page)) {
1893 struct buffer_head *head = page_buffers(page);
1894 struct buffer_head *bh = head;
1895
1896 do {
1897 if (offset < end_offset)
1898 set_buffer_dirty(bh);
1899 bh = bh->b_this_page;
1900 offset += 1 << inode->i_blkbits;
1901 } while (bh != head);
1902 }
c4843a75
GT
1903 /*
1904 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1905 * per-memcg dirty page counters.
1906 */
1907 memcg = mem_cgroup_begin_page_stat(page);
22e757a4
DC
1908 newly_dirty = !TestSetPageDirty(page);
1909 spin_unlock(&mapping->private_lock);
1910
1911 if (newly_dirty) {
1912 /* sigh - __set_page_dirty() is static, so copy it here, too */
1913 unsigned long flags;
1914
1915 spin_lock_irqsave(&mapping->tree_lock, flags);
1916 if (page->mapping) { /* Race with truncate? */
1917 WARN_ON_ONCE(!PageUptodate(page));
c4843a75 1918 account_page_dirtied(page, mapping, memcg);
22e757a4
DC
1919 radix_tree_tag_set(&mapping->page_tree,
1920 page_index(page), PAGECACHE_TAG_DIRTY);
1921 }
1922 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1923 }
c4843a75
GT
1924 mem_cgroup_end_page_stat(memcg);
1925 if (newly_dirty)
1926 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1927 return newly_dirty;
1928}
1929
f5e54d6e 1930const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1931 .readpage = xfs_vm_readpage,
1932 .readpages = xfs_vm_readpages,
1933 .writepage = xfs_vm_writepage,
7d4fb40a 1934 .writepages = xfs_vm_writepages,
22e757a4 1935 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1936 .releasepage = xfs_vm_releasepage,
1937 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1938 .write_begin = xfs_vm_write_begin,
fa9b227e 1939 .write_end = xfs_vm_write_end,
e4c573bb
NS
1940 .bmap = xfs_vm_bmap,
1941 .direct_IO = xfs_vm_direct_IO,
e965f963 1942 .migratepage = buffer_migrate_page,
bddaafa1 1943 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1944 .error_remove_page = generic_error_remove_page,
1da177e4 1945};
This page took 0.837165 seconds and 5 git commands to generate.