xfs: create a shared header file for format-related information
[deliverable/linux.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c
DC
19#include "xfs_format.h"
20#include "xfs_shared.h"
1da177e4 21#include "xfs_sb.h"
a844f451 22#include "xfs_ag.h"
70a9883c 23#include "xfs_log.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
281627df 29#include "xfs_inode_item.h"
a844f451 30#include "xfs_alloc.h"
1da177e4 31#include "xfs_error.h"
1da177e4 32#include "xfs_iomap.h"
0b1b213f 33#include "xfs_trace.h"
3ed3a434 34#include "xfs_bmap.h"
68988114 35#include "xfs_bmap_util.h"
a27bb332 36#include <linux/aio.h>
5a0e3ad6 37#include <linux/gfp.h>
1da177e4 38#include <linux/mpage.h>
10ce4444 39#include <linux/pagevec.h>
1da177e4
LT
40#include <linux/writeback.h>
41
0b1b213f 42void
f51623b2
NS
43xfs_count_page_state(
44 struct page *page,
45 int *delalloc,
f51623b2
NS
46 int *unwritten)
47{
48 struct buffer_head *bh, *head;
49
20cb52eb 50 *delalloc = *unwritten = 0;
f51623b2
NS
51
52 bh = head = page_buffers(page);
53 do {
20cb52eb 54 if (buffer_unwritten(bh))
f51623b2
NS
55 (*unwritten) = 1;
56 else if (buffer_delay(bh))
57 (*delalloc) = 1;
58 } while ((bh = bh->b_this_page) != head);
59}
60
6214ed44
CH
61STATIC struct block_device *
62xfs_find_bdev_for_inode(
046f1685 63 struct inode *inode)
6214ed44 64{
046f1685 65 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
66 struct xfs_mount *mp = ip->i_mount;
67
71ddabb9 68 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
69 return mp->m_rtdev_targp->bt_bdev;
70 else
71 return mp->m_ddev_targp->bt_bdev;
72}
73
f6d6d4fc
CH
74/*
75 * We're now finished for good with this ioend structure.
76 * Update the page state via the associated buffer_heads,
77 * release holds on the inode and bio, and finally free
78 * up memory. Do not use the ioend after this.
79 */
0829c360
CH
80STATIC void
81xfs_destroy_ioend(
82 xfs_ioend_t *ioend)
83{
f6d6d4fc
CH
84 struct buffer_head *bh, *next;
85
86 for (bh = ioend->io_buffer_head; bh; bh = next) {
87 next = bh->b_private;
7d04a335 88 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 89 }
583fa586 90
0829c360
CH
91 mempool_free(ioend, xfs_ioend_pool);
92}
93
fc0063c4
CH
94/*
95 * Fast and loose check if this write could update the on-disk inode size.
96 */
97static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
98{
99 return ioend->io_offset + ioend->io_size >
100 XFS_I(ioend->io_inode)->i_d.di_size;
101}
102
281627df
CH
103STATIC int
104xfs_setfilesize_trans_alloc(
105 struct xfs_ioend *ioend)
106{
107 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
108 struct xfs_trans *tp;
109 int error;
110
111 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
112
3d3c8b52 113 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df
CH
114 if (error) {
115 xfs_trans_cancel(tp, 0);
116 return error;
117 }
118
119 ioend->io_append_trans = tp;
120
d9457dc0 121 /*
437a255a 122 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
123 * we released it.
124 */
125 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
126 1, _THIS_IP_);
281627df
CH
127 /*
128 * We hand off the transaction to the completion thread now, so
129 * clear the flag here.
130 */
131 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
132 return 0;
133}
134
ba87ea69 135/*
2813d682 136 * Update on-disk file size now that data has been written to disk.
ba87ea69 137 */
281627df 138STATIC int
ba87ea69 139xfs_setfilesize(
aa6bf01d 140 struct xfs_ioend *ioend)
ba87ea69 141{
aa6bf01d 142 struct xfs_inode *ip = XFS_I(ioend->io_inode);
281627df 143 struct xfs_trans *tp = ioend->io_append_trans;
ba87ea69 144 xfs_fsize_t isize;
ba87ea69 145
281627df 146 /*
437a255a
DC
147 * The transaction may have been allocated in the I/O submission thread,
148 * thus we need to mark ourselves as beeing in a transaction manually.
149 * Similarly for freeze protection.
281627df
CH
150 */
151 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
437a255a
DC
152 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
153 0, 1, _THIS_IP_);
281627df 154
aa6bf01d 155 xfs_ilock(ip, XFS_ILOCK_EXCL);
6923e686 156 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
281627df
CH
157 if (!isize) {
158 xfs_iunlock(ip, XFS_ILOCK_EXCL);
159 xfs_trans_cancel(tp, 0);
160 return 0;
ba87ea69
LM
161 }
162
281627df
CH
163 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
164
165 ip->i_d.di_size = isize;
166 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
167 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
168
169 return xfs_trans_commit(tp, 0);
77d7a0c2
DC
170}
171
172/*
209fb87a 173 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
174 *
175 * If there is no work to do we might as well call it a day and free the
176 * ioend right now.
77d7a0c2
DC
177 */
178STATIC void
179xfs_finish_ioend(
209fb87a 180 struct xfs_ioend *ioend)
77d7a0c2
DC
181{
182 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
183 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
184
0d882a36 185 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 186 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
437a255a
DC
187 else if (ioend->io_append_trans ||
188 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
aa6bf01d 189 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
190 else
191 xfs_destroy_ioend(ioend);
77d7a0c2 192 }
ba87ea69
LM
193}
194
0829c360 195/*
5ec4fabb 196 * IO write completion.
f6d6d4fc
CH
197 */
198STATIC void
5ec4fabb 199xfs_end_io(
77d7a0c2 200 struct work_struct *work)
0829c360 201{
77d7a0c2
DC
202 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
203 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 204 int error = 0;
ba87ea69 205
04f658ee 206 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 207 ioend->io_error = -EIO;
04f658ee
CH
208 goto done;
209 }
210 if (ioend->io_error)
211 goto done;
212
5ec4fabb
CH
213 /*
214 * For unwritten extents we need to issue transactions to convert a
215 * range to normal written extens after the data I/O has finished.
216 */
0d882a36 217 if (ioend->io_type == XFS_IO_UNWRITTEN) {
437a255a
DC
218 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
219 ioend->io_size);
220 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
281627df 221 /*
437a255a
DC
222 * For direct I/O we do not know if we need to allocate blocks
223 * or not so we can't preallocate an append transaction as that
224 * results in nested reservations and log space deadlocks. Hence
225 * allocate the transaction here. While this is sub-optimal and
226 * can block IO completion for some time, we're stuck with doing
227 * it this way until we can pass the ioend to the direct IO
228 * allocation callbacks and avoid nesting that way.
281627df 229 */
437a255a
DC
230 error = xfs_setfilesize_trans_alloc(ioend);
231 if (error)
04f658ee 232 goto done;
437a255a 233 error = xfs_setfilesize(ioend);
281627df
CH
234 } else if (ioend->io_append_trans) {
235 error = xfs_setfilesize(ioend);
84803fb7 236 } else {
281627df 237 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 238 }
ba87ea69 239
04f658ee 240done:
437a255a
DC
241 if (error)
242 ioend->io_error = -error;
aa6bf01d 243 xfs_destroy_ioend(ioend);
c626d174
DC
244}
245
209fb87a
CH
246/*
247 * Call IO completion handling in caller context on the final put of an ioend.
248 */
249STATIC void
250xfs_finish_ioend_sync(
251 struct xfs_ioend *ioend)
252{
253 if (atomic_dec_and_test(&ioend->io_remaining))
254 xfs_end_io(&ioend->io_work);
255}
256
0829c360
CH
257/*
258 * Allocate and initialise an IO completion structure.
259 * We need to track unwritten extent write completion here initially.
260 * We'll need to extend this for updating the ondisk inode size later
261 * (vs. incore size).
262 */
263STATIC xfs_ioend_t *
264xfs_alloc_ioend(
f6d6d4fc
CH
265 struct inode *inode,
266 unsigned int type)
0829c360
CH
267{
268 xfs_ioend_t *ioend;
269
270 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
271
272 /*
273 * Set the count to 1 initially, which will prevent an I/O
274 * completion callback from happening before we have started
275 * all the I/O from calling the completion routine too early.
276 */
277 atomic_set(&ioend->io_remaining, 1);
281627df 278 ioend->io_isdirect = 0;
7d04a335 279 ioend->io_error = 0;
f6d6d4fc
CH
280 ioend->io_list = NULL;
281 ioend->io_type = type;
b677c210 282 ioend->io_inode = inode;
c1a073bd 283 ioend->io_buffer_head = NULL;
f6d6d4fc 284 ioend->io_buffer_tail = NULL;
0829c360
CH
285 ioend->io_offset = 0;
286 ioend->io_size = 0;
281627df 287 ioend->io_append_trans = NULL;
0829c360 288
5ec4fabb 289 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
290 return ioend;
291}
292
1da177e4
LT
293STATIC int
294xfs_map_blocks(
295 struct inode *inode,
296 loff_t offset,
207d0416 297 struct xfs_bmbt_irec *imap,
a206c817
CH
298 int type,
299 int nonblocking)
1da177e4 300{
a206c817
CH
301 struct xfs_inode *ip = XFS_I(inode);
302 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 303 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
304 xfs_fileoff_t offset_fsb, end_fsb;
305 int error = 0;
a206c817
CH
306 int bmapi_flags = XFS_BMAPI_ENTIRE;
307 int nimaps = 1;
308
309 if (XFS_FORCED_SHUTDOWN(mp))
310 return -XFS_ERROR(EIO);
311
0d882a36 312 if (type == XFS_IO_UNWRITTEN)
a206c817 313 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
314
315 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
316 if (nonblocking)
317 return -XFS_ERROR(EAGAIN);
318 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
319 }
320
8ff2957d
CH
321 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
322 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 323 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 324
d2c28191
DC
325 if (offset + count > mp->m_super->s_maxbytes)
326 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
327 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
328 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
329 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
330 imap, &nimaps, bmapi_flags);
8ff2957d 331 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 332
8ff2957d
CH
333 if (error)
334 return -XFS_ERROR(error);
a206c817 335
0d882a36 336 if (type == XFS_IO_DELALLOC &&
8ff2957d 337 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 338 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
339 if (!error)
340 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 341 return -XFS_ERROR(error);
a206c817
CH
342 }
343
8ff2957d 344#ifdef DEBUG
0d882a36 345 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
346 ASSERT(nimaps);
347 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
348 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
349 }
350#endif
351 if (nimaps)
352 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
353 return 0;
1da177e4
LT
354}
355
b8f82a4a 356STATIC int
558e6891 357xfs_imap_valid(
8699bb0a 358 struct inode *inode,
207d0416 359 struct xfs_bmbt_irec *imap,
558e6891 360 xfs_off_t offset)
1da177e4 361{
558e6891 362 offset >>= inode->i_blkbits;
8699bb0a 363
558e6891
CH
364 return offset >= imap->br_startoff &&
365 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
366}
367
f6d6d4fc
CH
368/*
369 * BIO completion handler for buffered IO.
370 */
782e3b3b 371STATIC void
f6d6d4fc
CH
372xfs_end_bio(
373 struct bio *bio,
f6d6d4fc
CH
374 int error)
375{
376 xfs_ioend_t *ioend = bio->bi_private;
377
f6d6d4fc 378 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 379 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
380
381 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
382 bio->bi_private = NULL;
383 bio->bi_end_io = NULL;
f6d6d4fc 384 bio_put(bio);
7d04a335 385
209fb87a 386 xfs_finish_ioend(ioend);
f6d6d4fc
CH
387}
388
389STATIC void
390xfs_submit_ioend_bio(
06342cf8
CH
391 struct writeback_control *wbc,
392 xfs_ioend_t *ioend,
393 struct bio *bio)
f6d6d4fc
CH
394{
395 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
396 bio->bi_private = ioend;
397 bio->bi_end_io = xfs_end_bio;
721a9602 398 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
399}
400
401STATIC struct bio *
402xfs_alloc_ioend_bio(
403 struct buffer_head *bh)
404{
f6d6d4fc 405 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 406 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
407
408 ASSERT(bio->bi_private == NULL);
409 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
410 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
411 return bio;
412}
413
414STATIC void
415xfs_start_buffer_writeback(
416 struct buffer_head *bh)
417{
418 ASSERT(buffer_mapped(bh));
419 ASSERT(buffer_locked(bh));
420 ASSERT(!buffer_delay(bh));
421 ASSERT(!buffer_unwritten(bh));
422
423 mark_buffer_async_write(bh);
424 set_buffer_uptodate(bh);
425 clear_buffer_dirty(bh);
426}
427
428STATIC void
429xfs_start_page_writeback(
430 struct page *page,
f6d6d4fc
CH
431 int clear_dirty,
432 int buffers)
433{
434 ASSERT(PageLocked(page));
435 ASSERT(!PageWriteback(page));
f6d6d4fc 436 if (clear_dirty)
92132021
DC
437 clear_page_dirty_for_io(page);
438 set_page_writeback(page);
f6d6d4fc 439 unlock_page(page);
1f7decf6
FW
440 /* If no buffers on the page are to be written, finish it here */
441 if (!buffers)
f6d6d4fc 442 end_page_writeback(page);
f6d6d4fc
CH
443}
444
c7c1a7d8 445static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
446{
447 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
448}
449
450/*
d88992f6
DC
451 * Submit all of the bios for all of the ioends we have saved up, covering the
452 * initial writepage page and also any probed pages.
453 *
454 * Because we may have multiple ioends spanning a page, we need to start
455 * writeback on all the buffers before we submit them for I/O. If we mark the
456 * buffers as we got, then we can end up with a page that only has buffers
457 * marked async write and I/O complete on can occur before we mark the other
458 * buffers async write.
459 *
460 * The end result of this is that we trip a bug in end_page_writeback() because
461 * we call it twice for the one page as the code in end_buffer_async_write()
462 * assumes that all buffers on the page are started at the same time.
463 *
464 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 465 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
466 *
467 * If @fail is non-zero, it means that we have a situation where some part of
468 * the submission process has failed after we have marked paged for writeback
469 * and unlocked them. In this situation, we need to fail the ioend chain rather
470 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
471 */
472STATIC void
473xfs_submit_ioend(
06342cf8 474 struct writeback_control *wbc,
7bf7f352
DC
475 xfs_ioend_t *ioend,
476 int fail)
f6d6d4fc 477{
d88992f6 478 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
479 xfs_ioend_t *next;
480 struct buffer_head *bh;
481 struct bio *bio;
482 sector_t lastblock = 0;
483
d88992f6
DC
484 /* Pass 1 - start writeback */
485 do {
486 next = ioend->io_list;
221cb251 487 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 488 xfs_start_buffer_writeback(bh);
d88992f6
DC
489 } while ((ioend = next) != NULL);
490
491 /* Pass 2 - submit I/O */
492 ioend = head;
f6d6d4fc
CH
493 do {
494 next = ioend->io_list;
495 bio = NULL;
496
7bf7f352
DC
497 /*
498 * If we are failing the IO now, just mark the ioend with an
499 * error and finish it. This will run IO completion immediately
500 * as there is only one reference to the ioend at this point in
501 * time.
502 */
503 if (fail) {
504 ioend->io_error = -fail;
505 xfs_finish_ioend(ioend);
506 continue;
507 }
508
f6d6d4fc 509 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
510
511 if (!bio) {
512 retry:
513 bio = xfs_alloc_ioend_bio(bh);
514 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 515 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
516 goto retry;
517 }
518
c7c1a7d8 519 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 520 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
521 goto retry;
522 }
523
524 lastblock = bh->b_blocknr;
525 }
526 if (bio)
06342cf8 527 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 528 xfs_finish_ioend(ioend);
f6d6d4fc
CH
529 } while ((ioend = next) != NULL);
530}
531
532/*
533 * Cancel submission of all buffer_heads so far in this endio.
534 * Toss the endio too. Only ever called for the initial page
535 * in a writepage request, so only ever one page.
536 */
537STATIC void
538xfs_cancel_ioend(
539 xfs_ioend_t *ioend)
540{
541 xfs_ioend_t *next;
542 struct buffer_head *bh, *next_bh;
543
544 do {
545 next = ioend->io_list;
546 bh = ioend->io_buffer_head;
547 do {
548 next_bh = bh->b_private;
549 clear_buffer_async_write(bh);
550 unlock_buffer(bh);
551 } while ((bh = next_bh) != NULL);
552
f6d6d4fc
CH
553 mempool_free(ioend, xfs_ioend_pool);
554 } while ((ioend = next) != NULL);
555}
556
557/*
558 * Test to see if we've been building up a completion structure for
559 * earlier buffers -- if so, we try to append to this ioend if we
560 * can, otherwise we finish off any current ioend and start another.
561 * Return true if we've finished the given ioend.
562 */
563STATIC void
564xfs_add_to_ioend(
565 struct inode *inode,
566 struct buffer_head *bh,
7336cea8 567 xfs_off_t offset,
f6d6d4fc
CH
568 unsigned int type,
569 xfs_ioend_t **result,
570 int need_ioend)
571{
572 xfs_ioend_t *ioend = *result;
573
574 if (!ioend || need_ioend || type != ioend->io_type) {
575 xfs_ioend_t *previous = *result;
f6d6d4fc 576
f6d6d4fc
CH
577 ioend = xfs_alloc_ioend(inode, type);
578 ioend->io_offset = offset;
579 ioend->io_buffer_head = bh;
580 ioend->io_buffer_tail = bh;
581 if (previous)
582 previous->io_list = ioend;
583 *result = ioend;
584 } else {
585 ioend->io_buffer_tail->b_private = bh;
586 ioend->io_buffer_tail = bh;
587 }
588
589 bh->b_private = NULL;
590 ioend->io_size += bh->b_size;
591}
592
87cbc49c
NS
593STATIC void
594xfs_map_buffer(
046f1685 595 struct inode *inode,
87cbc49c 596 struct buffer_head *bh,
207d0416 597 struct xfs_bmbt_irec *imap,
046f1685 598 xfs_off_t offset)
87cbc49c
NS
599{
600 sector_t bn;
8699bb0a 601 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
602 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
603 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 604
207d0416
CH
605 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
606 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 607
e513182d 608 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 609 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 610
046f1685 611 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
612
613 bh->b_blocknr = bn;
614 set_buffer_mapped(bh);
615}
616
1da177e4
LT
617STATIC void
618xfs_map_at_offset(
046f1685 619 struct inode *inode,
1da177e4 620 struct buffer_head *bh,
207d0416 621 struct xfs_bmbt_irec *imap,
046f1685 622 xfs_off_t offset)
1da177e4 623{
207d0416
CH
624 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 626
207d0416 627 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
628 set_buffer_mapped(bh);
629 clear_buffer_delay(bh);
f6d6d4fc 630 clear_buffer_unwritten(bh);
1da177e4
LT
631}
632
1da177e4 633/*
10ce4444
CH
634 * Test if a given page is suitable for writing as part of an unwritten
635 * or delayed allocate extent.
1da177e4 636 */
10ce4444 637STATIC int
6ffc4db5 638xfs_check_page_type(
10ce4444 639 struct page *page,
f6d6d4fc 640 unsigned int type)
1da177e4 641{
1da177e4 642 if (PageWriteback(page))
10ce4444 643 return 0;
1da177e4
LT
644
645 if (page->mapping && page_has_buffers(page)) {
646 struct buffer_head *bh, *head;
647 int acceptable = 0;
648
649 bh = head = page_buffers(page);
650 do {
f6d6d4fc 651 if (buffer_unwritten(bh))
0d882a36 652 acceptable += (type == XFS_IO_UNWRITTEN);
f6d6d4fc 653 else if (buffer_delay(bh))
0d882a36 654 acceptable += (type == XFS_IO_DELALLOC);
2ddee844 655 else if (buffer_dirty(bh) && buffer_mapped(bh))
0d882a36 656 acceptable += (type == XFS_IO_OVERWRITE);
f6d6d4fc 657 else
1da177e4 658 break;
1da177e4
LT
659 } while ((bh = bh->b_this_page) != head);
660
661 if (acceptable)
10ce4444 662 return 1;
1da177e4
LT
663 }
664
10ce4444 665 return 0;
1da177e4
LT
666}
667
1da177e4
LT
668/*
669 * Allocate & map buffers for page given the extent map. Write it out.
670 * except for the original page of a writepage, this is called on
671 * delalloc/unwritten pages only, for the original page it is possible
672 * that the page has no mapping at all.
673 */
f6d6d4fc 674STATIC int
1da177e4
LT
675xfs_convert_page(
676 struct inode *inode,
677 struct page *page,
10ce4444 678 loff_t tindex,
207d0416 679 struct xfs_bmbt_irec *imap,
f6d6d4fc 680 xfs_ioend_t **ioendp,
2fa24f92 681 struct writeback_control *wbc)
1da177e4 682{
f6d6d4fc 683 struct buffer_head *bh, *head;
9260dc6b
CH
684 xfs_off_t end_offset;
685 unsigned long p_offset;
f6d6d4fc 686 unsigned int type;
24e17b5f 687 int len, page_dirty;
f6d6d4fc 688 int count = 0, done = 0, uptodate = 1;
9260dc6b 689 xfs_off_t offset = page_offset(page);
1da177e4 690
10ce4444
CH
691 if (page->index != tindex)
692 goto fail;
529ae9aa 693 if (!trylock_page(page))
10ce4444
CH
694 goto fail;
695 if (PageWriteback(page))
696 goto fail_unlock_page;
697 if (page->mapping != inode->i_mapping)
698 goto fail_unlock_page;
6ffc4db5 699 if (!xfs_check_page_type(page, (*ioendp)->io_type))
10ce4444
CH
700 goto fail_unlock_page;
701
24e17b5f
NS
702 /*
703 * page_dirty is initially a count of buffers on the page before
c41564b5 704 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
705 *
706 * Derivation:
707 *
708 * End offset is the highest offset that this page should represent.
709 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
710 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
711 * hence give us the correct page_dirty count. On any other page,
712 * it will be zero and in that case we need page_dirty to be the
713 * count of buffers on the page.
24e17b5f 714 */
9260dc6b
CH
715 end_offset = min_t(unsigned long long,
716 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
717 i_size_read(inode));
718
480d7467
DC
719 /*
720 * If the current map does not span the entire page we are about to try
721 * to write, then give up. The only way we can write a page that spans
722 * multiple mappings in a single writeback iteration is via the
723 * xfs_vm_writepage() function. Data integrity writeback requires the
724 * entire page to be written in a single attempt, otherwise the part of
725 * the page we don't write here doesn't get written as part of the data
726 * integrity sync.
727 *
728 * For normal writeback, we also don't attempt to write partial pages
729 * here as it simply means that write_cache_pages() will see it under
730 * writeback and ignore the page until some point in the future, at
731 * which time this will be the only page in the file that needs
732 * writeback. Hence for more optimal IO patterns, we should always
733 * avoid partial page writeback due to multiple mappings on a page here.
734 */
735 if (!xfs_imap_valid(inode, imap, end_offset))
736 goto fail_unlock_page;
737
24e17b5f 738 len = 1 << inode->i_blkbits;
9260dc6b
CH
739 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
740 PAGE_CACHE_SIZE);
741 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
742 page_dirty = p_offset / len;
24e17b5f 743
1da177e4
LT
744 bh = head = page_buffers(page);
745 do {
9260dc6b 746 if (offset >= end_offset)
1da177e4 747 break;
f6d6d4fc
CH
748 if (!buffer_uptodate(bh))
749 uptodate = 0;
750 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
751 done = 1;
1da177e4 752 continue;
f6d6d4fc
CH
753 }
754
2fa24f92
CH
755 if (buffer_unwritten(bh) || buffer_delay(bh) ||
756 buffer_mapped(bh)) {
9260dc6b 757 if (buffer_unwritten(bh))
0d882a36 758 type = XFS_IO_UNWRITTEN;
2fa24f92 759 else if (buffer_delay(bh))
0d882a36 760 type = XFS_IO_DELALLOC;
2fa24f92 761 else
0d882a36 762 type = XFS_IO_OVERWRITE;
9260dc6b 763
558e6891 764 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 765 done = 1;
9260dc6b
CH
766 continue;
767 }
768
ecff71e6 769 lock_buffer(bh);
0d882a36 770 if (type != XFS_IO_OVERWRITE)
2fa24f92 771 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
772 xfs_add_to_ioend(inode, bh, offset, type,
773 ioendp, done);
774
9260dc6b
CH
775 page_dirty--;
776 count++;
777 } else {
2fa24f92 778 done = 1;
1da177e4 779 }
7336cea8 780 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 781
f6d6d4fc
CH
782 if (uptodate && bh == head)
783 SetPageUptodate(page);
784
89f3b363 785 if (count) {
efceab1d
DC
786 if (--wbc->nr_to_write <= 0 &&
787 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 788 done = 1;
1da177e4 789 }
89f3b363 790 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
791
792 return done;
10ce4444
CH
793 fail_unlock_page:
794 unlock_page(page);
795 fail:
796 return 1;
1da177e4
LT
797}
798
799/*
800 * Convert & write out a cluster of pages in the same extent as defined
801 * by mp and following the start page.
802 */
803STATIC void
804xfs_cluster_write(
805 struct inode *inode,
806 pgoff_t tindex,
207d0416 807 struct xfs_bmbt_irec *imap,
f6d6d4fc 808 xfs_ioend_t **ioendp,
1da177e4 809 struct writeback_control *wbc,
1da177e4
LT
810 pgoff_t tlast)
811{
10ce4444
CH
812 struct pagevec pvec;
813 int done = 0, i;
1da177e4 814
10ce4444
CH
815 pagevec_init(&pvec, 0);
816 while (!done && tindex <= tlast) {
817 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
818
819 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 820 break;
10ce4444
CH
821
822 for (i = 0; i < pagevec_count(&pvec); i++) {
823 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 824 imap, ioendp, wbc);
10ce4444
CH
825 if (done)
826 break;
827 }
828
829 pagevec_release(&pvec);
830 cond_resched();
1da177e4
LT
831 }
832}
833
3ed3a434
DC
834STATIC void
835xfs_vm_invalidatepage(
836 struct page *page,
d47992f8
LC
837 unsigned int offset,
838 unsigned int length)
3ed3a434 839{
34097dfe
LC
840 trace_xfs_invalidatepage(page->mapping->host, page, offset,
841 length);
842 block_invalidatepage(page, offset, length);
3ed3a434
DC
843}
844
845/*
846 * If the page has delalloc buffers on it, we need to punch them out before we
847 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
848 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
849 * is done on that same region - the delalloc extent is returned when none is
850 * supposed to be there.
851 *
852 * We prevent this by truncating away the delalloc regions on the page before
853 * invalidating it. Because they are delalloc, we can do this without needing a
854 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
855 * truncation without a transaction as there is no space left for block
856 * reservation (typically why we see a ENOSPC in writeback).
857 *
858 * This is not a performance critical path, so for now just do the punching a
859 * buffer head at a time.
860 */
861STATIC void
862xfs_aops_discard_page(
863 struct page *page)
864{
865 struct inode *inode = page->mapping->host;
866 struct xfs_inode *ip = XFS_I(inode);
867 struct buffer_head *bh, *head;
868 loff_t offset = page_offset(page);
3ed3a434 869
0d882a36 870 if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
3ed3a434
DC
871 goto out_invalidate;
872
e8c3753c
DC
873 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
874 goto out_invalidate;
875
4f10700a 876 xfs_alert(ip->i_mount,
3ed3a434
DC
877 "page discard on page %p, inode 0x%llx, offset %llu.",
878 page, ip->i_ino, offset);
879
880 xfs_ilock(ip, XFS_ILOCK_EXCL);
881 bh = head = page_buffers(page);
882 do {
3ed3a434 883 int error;
c726de44 884 xfs_fileoff_t start_fsb;
3ed3a434
DC
885
886 if (!buffer_delay(bh))
887 goto next_buffer;
888
c726de44
DC
889 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
890 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
891 if (error) {
892 /* something screwed, just bail */
e8c3753c 893 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 894 xfs_alert(ip->i_mount,
3ed3a434 895 "page discard unable to remove delalloc mapping.");
e8c3753c 896 }
3ed3a434
DC
897 break;
898 }
899next_buffer:
c726de44 900 offset += 1 << inode->i_blkbits;
3ed3a434
DC
901
902 } while ((bh = bh->b_this_page) != head);
903
904 xfs_iunlock(ip, XFS_ILOCK_EXCL);
905out_invalidate:
d47992f8 906 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
907 return;
908}
909
1da177e4 910/*
89f3b363
CH
911 * Write out a dirty page.
912 *
913 * For delalloc space on the page we need to allocate space and flush it.
914 * For unwritten space on the page we need to start the conversion to
915 * regular allocated space.
89f3b363 916 * For any other dirty buffer heads on the page we should flush them.
1da177e4 917 */
1da177e4 918STATIC int
89f3b363
CH
919xfs_vm_writepage(
920 struct page *page,
921 struct writeback_control *wbc)
1da177e4 922{
89f3b363 923 struct inode *inode = page->mapping->host;
f6d6d4fc 924 struct buffer_head *bh, *head;
207d0416 925 struct xfs_bmbt_irec imap;
f6d6d4fc 926 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 927 loff_t offset;
f6d6d4fc 928 unsigned int type;
1da177e4 929 __uint64_t end_offset;
bd1556a1 930 pgoff_t end_index, last_index;
ed1e7b7e 931 ssize_t len;
a206c817 932 int err, imap_valid = 0, uptodate = 1;
89f3b363 933 int count = 0;
a206c817 934 int nonblocking = 0;
89f3b363 935
34097dfe 936 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 937
20cb52eb
CH
938 ASSERT(page_has_buffers(page));
939
89f3b363
CH
940 /*
941 * Refuse to write the page out if we are called from reclaim context.
942 *
d4f7a5cb
CH
943 * This avoids stack overflows when called from deeply used stacks in
944 * random callers for direct reclaim or memcg reclaim. We explicitly
945 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 946 *
94054fa3
MG
947 * This should never happen except in the case of a VM regression so
948 * warn about it.
89f3b363 949 */
94054fa3
MG
950 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
951 PF_MEMALLOC))
b5420f23 952 goto redirty;
1da177e4 953
89f3b363 954 /*
680a647b
CH
955 * Given that we do not allow direct reclaim to call us, we should
956 * never be called while in a filesystem transaction.
89f3b363 957 */
680a647b 958 if (WARN_ON(current->flags & PF_FSTRANS))
b5420f23 959 goto redirty;
89f3b363 960
1da177e4
LT
961 /* Is this page beyond the end of the file? */
962 offset = i_size_read(inode);
963 end_index = offset >> PAGE_CACHE_SHIFT;
964 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
965 if (page->index >= end_index) {
6b7a03f0
CH
966 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
967
968 /*
ff9a28f6
JK
969 * Skip the page if it is fully outside i_size, e.g. due to a
970 * truncate operation that is in progress. We must redirty the
971 * page so that reclaim stops reclaiming it. Otherwise
972 * xfs_vm_releasepage() is called on it and gets confused.
6b7a03f0 973 */
ff9a28f6
JK
974 if (page->index >= end_index + 1 || offset_into_page == 0)
975 goto redirty;
6b7a03f0
CH
976
977 /*
978 * The page straddles i_size. It must be zeroed out on each
979 * and every writepage invocation because it may be mmapped.
980 * "A file is mapped in multiples of the page size. For a file
981 * that is not a multiple of the page size, the remaining
982 * memory is zeroed when mapped, and writes to that region are
983 * not written out to the file."
984 */
985 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1da177e4
LT
986 }
987
f6d6d4fc 988 end_offset = min_t(unsigned long long,
20cb52eb
CH
989 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
990 offset);
24e17b5f 991 len = 1 << inode->i_blkbits;
24e17b5f 992
24e17b5f 993 bh = head = page_buffers(page);
f6d6d4fc 994 offset = page_offset(page);
0d882a36 995 type = XFS_IO_OVERWRITE;
a206c817 996
dbcdde3e 997 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 998 nonblocking = 1;
f6d6d4fc 999
1da177e4 1000 do {
6ac7248e
CH
1001 int new_ioend = 0;
1002
1da177e4
LT
1003 if (offset >= end_offset)
1004 break;
1005 if (!buffer_uptodate(bh))
1006 uptodate = 0;
1da177e4 1007
3d9b02e3 1008 /*
ece413f5
CH
1009 * set_page_dirty dirties all buffers in a page, independent
1010 * of their state. The dirty state however is entirely
1011 * meaningless for holes (!mapped && uptodate), so skip
1012 * buffers covering holes here.
3d9b02e3
ES
1013 */
1014 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1015 imap_valid = 0;
1016 continue;
1017 }
1018
aeea1b1f 1019 if (buffer_unwritten(bh)) {
0d882a36
AR
1020 if (type != XFS_IO_UNWRITTEN) {
1021 type = XFS_IO_UNWRITTEN;
aeea1b1f 1022 imap_valid = 0;
1da177e4 1023 }
aeea1b1f 1024 } else if (buffer_delay(bh)) {
0d882a36
AR
1025 if (type != XFS_IO_DELALLOC) {
1026 type = XFS_IO_DELALLOC;
aeea1b1f 1027 imap_valid = 0;
1da177e4 1028 }
89f3b363 1029 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1030 if (type != XFS_IO_OVERWRITE) {
1031 type = XFS_IO_OVERWRITE;
85da94c6
CH
1032 imap_valid = 0;
1033 }
aeea1b1f 1034 } else {
7d0fa3ec 1035 if (PageUptodate(page))
aeea1b1f 1036 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1037 /*
1038 * This buffer is not uptodate and will not be
1039 * written to disk. Ensure that we will put any
1040 * subsequent writeable buffers into a new
1041 * ioend.
1042 */
1043 imap_valid = 0;
aeea1b1f
CH
1044 continue;
1045 }
d5cb48aa 1046
aeea1b1f
CH
1047 if (imap_valid)
1048 imap_valid = xfs_imap_valid(inode, &imap, offset);
1049 if (!imap_valid) {
1050 /*
1051 * If we didn't have a valid mapping then we need to
1052 * put the new mapping into a separate ioend structure.
1053 * This ensures non-contiguous extents always have
1054 * separate ioends, which is particularly important
1055 * for unwritten extent conversion at I/O completion
1056 * time.
1057 */
1058 new_ioend = 1;
1059 err = xfs_map_blocks(inode, offset, &imap, type,
1060 nonblocking);
1061 if (err)
1062 goto error;
1063 imap_valid = xfs_imap_valid(inode, &imap, offset);
1064 }
1065 if (imap_valid) {
ecff71e6 1066 lock_buffer(bh);
0d882a36 1067 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1068 xfs_map_at_offset(inode, bh, &imap, offset);
1069 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1070 new_ioend);
1071 count++;
1da177e4 1072 }
f6d6d4fc
CH
1073
1074 if (!iohead)
1075 iohead = ioend;
1076
1077 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1078
1079 if (uptodate && bh == head)
1080 SetPageUptodate(page);
1081
89f3b363 1082 xfs_start_page_writeback(page, 1, count);
1da177e4 1083
7bf7f352
DC
1084 /* if there is no IO to be submitted for this page, we are done */
1085 if (!ioend)
1086 return 0;
1087
1088 ASSERT(iohead);
1089
1090 /*
1091 * Any errors from this point onwards need tobe reported through the IO
1092 * completion path as we have marked the initial page as under writeback
1093 * and unlocked it.
1094 */
1095 if (imap_valid) {
bd1556a1
CH
1096 xfs_off_t end_index;
1097
1098 end_index = imap.br_startoff + imap.br_blockcount;
1099
1100 /* to bytes */
1101 end_index <<= inode->i_blkbits;
1102
1103 /* to pages */
1104 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1105
1106 /* check against file size */
1107 if (end_index > last_index)
1108 end_index = last_index;
8699bb0a 1109
207d0416 1110 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1111 wbc, end_index);
1da177e4
LT
1112 }
1113
281627df 1114
7bf7f352
DC
1115 /*
1116 * Reserve log space if we might write beyond the on-disk inode size.
1117 */
1118 err = 0;
1119 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1120 err = xfs_setfilesize_trans_alloc(ioend);
1121
1122 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1123
89f3b363 1124 return 0;
1da177e4
LT
1125
1126error:
f6d6d4fc
CH
1127 if (iohead)
1128 xfs_cancel_ioend(iohead);
1da177e4 1129
b5420f23
CH
1130 if (err == -EAGAIN)
1131 goto redirty;
1132
20cb52eb 1133 xfs_aops_discard_page(page);
89f3b363
CH
1134 ClearPageUptodate(page);
1135 unlock_page(page);
1da177e4 1136 return err;
f51623b2 1137
b5420f23 1138redirty:
f51623b2
NS
1139 redirty_page_for_writepage(wbc, page);
1140 unlock_page(page);
1141 return 0;
f51623b2
NS
1142}
1143
7d4fb40a
NS
1144STATIC int
1145xfs_vm_writepages(
1146 struct address_space *mapping,
1147 struct writeback_control *wbc)
1148{
b3aea4ed 1149 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1150 return generic_writepages(mapping, wbc);
1151}
1152
f51623b2
NS
1153/*
1154 * Called to move a page into cleanable state - and from there
89f3b363 1155 * to be released. The page should already be clean. We always
f51623b2
NS
1156 * have buffer heads in this call.
1157 *
89f3b363 1158 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1159 */
1160STATIC int
238f4c54 1161xfs_vm_releasepage(
f51623b2
NS
1162 struct page *page,
1163 gfp_t gfp_mask)
1164{
20cb52eb 1165 int delalloc, unwritten;
f51623b2 1166
34097dfe 1167 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1168
20cb52eb 1169 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1170
89f3b363 1171 if (WARN_ON(delalloc))
f51623b2 1172 return 0;
89f3b363 1173 if (WARN_ON(unwritten))
f51623b2
NS
1174 return 0;
1175
f51623b2
NS
1176 return try_to_free_buffers(page);
1177}
1178
1da177e4 1179STATIC int
c2536668 1180__xfs_get_blocks(
1da177e4
LT
1181 struct inode *inode,
1182 sector_t iblock,
1da177e4
LT
1183 struct buffer_head *bh_result,
1184 int create,
f2bde9b8 1185 int direct)
1da177e4 1186{
a206c817
CH
1187 struct xfs_inode *ip = XFS_I(inode);
1188 struct xfs_mount *mp = ip->i_mount;
1189 xfs_fileoff_t offset_fsb, end_fsb;
1190 int error = 0;
1191 int lockmode = 0;
207d0416 1192 struct xfs_bmbt_irec imap;
a206c817 1193 int nimaps = 1;
fdc7ed75
NS
1194 xfs_off_t offset;
1195 ssize_t size;
207d0416 1196 int new = 0;
a206c817
CH
1197
1198 if (XFS_FORCED_SHUTDOWN(mp))
1199 return -XFS_ERROR(EIO);
1da177e4 1200
fdc7ed75 1201 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1202 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1203 size = bh_result->b_size;
364f358a
LM
1204
1205 if (!create && direct && offset >= i_size_read(inode))
1206 return 0;
1207
507630b2
DC
1208 /*
1209 * Direct I/O is usually done on preallocated files, so try getting
1210 * a block mapping without an exclusive lock first. For buffered
1211 * writes we already have the exclusive iolock anyway, so avoiding
1212 * a lock roundtrip here by taking the ilock exclusive from the
1213 * beginning is a useful micro optimization.
1214 */
1215 if (create && !direct) {
a206c817
CH
1216 lockmode = XFS_ILOCK_EXCL;
1217 xfs_ilock(ip, lockmode);
1218 } else {
1219 lockmode = xfs_ilock_map_shared(ip);
1220 }
f2bde9b8 1221
d2c28191
DC
1222 ASSERT(offset <= mp->m_super->s_maxbytes);
1223 if (offset + size > mp->m_super->s_maxbytes)
1224 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1225 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1226 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1227
5c8ed202
DC
1228 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1229 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1230 if (error)
a206c817
CH
1231 goto out_unlock;
1232
1233 if (create &&
1234 (!nimaps ||
1235 (imap.br_startblock == HOLESTARTBLOCK ||
1236 imap.br_startblock == DELAYSTARTBLOCK))) {
aff3a9ed 1237 if (direct || xfs_get_extsz_hint(ip)) {
507630b2
DC
1238 /*
1239 * Drop the ilock in preparation for starting the block
1240 * allocation transaction. It will be retaken
1241 * exclusively inside xfs_iomap_write_direct for the
1242 * actual allocation.
1243 */
1244 xfs_iunlock(ip, lockmode);
a206c817
CH
1245 error = xfs_iomap_write_direct(ip, offset, size,
1246 &imap, nimaps);
507630b2
DC
1247 if (error)
1248 return -error;
d3bc815a 1249 new = 1;
a206c817 1250 } else {
507630b2
DC
1251 /*
1252 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1253 * we can go on without dropping the lock here. If we
1254 * are allocating a new delalloc block, make sure that
1255 * we set the new flag so that we mark the buffer new so
1256 * that we know that it is newly allocated if the write
1257 * fails.
507630b2 1258 */
d3bc815a
DC
1259 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1260 new = 1;
a206c817 1261 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1262 if (error)
1263 goto out_unlock;
1264
1265 xfs_iunlock(ip, lockmode);
a206c817 1266 }
a206c817
CH
1267
1268 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1269 } else if (nimaps) {
1270 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
507630b2 1271 xfs_iunlock(ip, lockmode);
a206c817
CH
1272 } else {
1273 trace_xfs_get_blocks_notfound(ip, offset, size);
1274 goto out_unlock;
1275 }
1da177e4 1276
207d0416
CH
1277 if (imap.br_startblock != HOLESTARTBLOCK &&
1278 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1279 /*
1280 * For unwritten extents do not report a disk address on
1da177e4
LT
1281 * the read case (treat as if we're reading into a hole).
1282 */
207d0416
CH
1283 if (create || !ISUNWRITTEN(&imap))
1284 xfs_map_buffer(inode, bh_result, &imap, offset);
1285 if (create && ISUNWRITTEN(&imap)) {
7b7a8665 1286 if (direct) {
1da177e4 1287 bh_result->b_private = inode;
7b7a8665
CH
1288 set_buffer_defer_completion(bh_result);
1289 }
1da177e4 1290 set_buffer_unwritten(bh_result);
1da177e4
LT
1291 }
1292 }
1293
c2536668
NS
1294 /*
1295 * If this is a realtime file, data may be on a different device.
1296 * to that pointed to from the buffer_head b_bdev currently.
1297 */
046f1685 1298 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1299
c2536668 1300 /*
549054af
DC
1301 * If we previously allocated a block out beyond eof and we are now
1302 * coming back to use it then we will need to flag it as new even if it
1303 * has a disk address.
1304 *
1305 * With sub-block writes into unwritten extents we also need to mark
1306 * the buffer as new so that the unwritten parts of the buffer gets
1307 * correctly zeroed.
1da177e4
LT
1308 */
1309 if (create &&
1310 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1311 (offset >= i_size_read(inode)) ||
207d0416 1312 (new || ISUNWRITTEN(&imap))))
1da177e4 1313 set_buffer_new(bh_result);
1da177e4 1314
207d0416 1315 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1316 BUG_ON(direct);
1317 if (create) {
1318 set_buffer_uptodate(bh_result);
1319 set_buffer_mapped(bh_result);
1320 set_buffer_delay(bh_result);
1321 }
1322 }
1323
2b8f12b7
CH
1324 /*
1325 * If this is O_DIRECT or the mpage code calling tell them how large
1326 * the mapping is, so that we can avoid repeated get_blocks calls.
1327 */
c2536668 1328 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1329 xfs_off_t mapping_size;
1330
1331 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1332 mapping_size <<= inode->i_blkbits;
1333
1334 ASSERT(mapping_size > 0);
1335 if (mapping_size > size)
1336 mapping_size = size;
1337 if (mapping_size > LONG_MAX)
1338 mapping_size = LONG_MAX;
1339
1340 bh_result->b_size = mapping_size;
1da177e4
LT
1341 }
1342
1343 return 0;
a206c817
CH
1344
1345out_unlock:
1346 xfs_iunlock(ip, lockmode);
1347 return -error;
1da177e4
LT
1348}
1349
1350int
c2536668 1351xfs_get_blocks(
1da177e4
LT
1352 struct inode *inode,
1353 sector_t iblock,
1354 struct buffer_head *bh_result,
1355 int create)
1356{
f2bde9b8 1357 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1358}
1359
1360STATIC int
e4c573bb 1361xfs_get_blocks_direct(
1da177e4
LT
1362 struct inode *inode,
1363 sector_t iblock,
1da177e4
LT
1364 struct buffer_head *bh_result,
1365 int create)
1366{
f2bde9b8 1367 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1368}
1369
209fb87a
CH
1370/*
1371 * Complete a direct I/O write request.
1372 *
1373 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1374 * need to issue a transaction to convert the range from unwritten to written
1375 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1376 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1377 * request this handler is called from interrupt context, from which we
1378 * can't start transactions. In that case offload the I/O completion to
1379 * the workqueues we also use for buffered I/O completion.
1380 */
f0973863 1381STATIC void
209fb87a
CH
1382xfs_end_io_direct_write(
1383 struct kiocb *iocb,
1384 loff_t offset,
1385 ssize_t size,
7b7a8665 1386 void *private)
f0973863 1387{
209fb87a 1388 struct xfs_ioend *ioend = iocb->private;
f0973863 1389
2813d682
CH
1390 /*
1391 * While the generic direct I/O code updates the inode size, it does
1392 * so only after the end_io handler is called, which means our
1393 * end_io handler thinks the on-disk size is outside the in-core
1394 * size. To prevent this just update it a little bit earlier here.
1395 */
1396 if (offset + size > i_size_read(ioend->io_inode))
1397 i_size_write(ioend->io_inode, offset + size);
1398
f0973863 1399 /*
209fb87a
CH
1400 * blockdev_direct_IO can return an error even after the I/O
1401 * completion handler was called. Thus we need to protect
1402 * against double-freeing.
f0973863 1403 */
209fb87a
CH
1404 iocb->private = NULL;
1405
ba87ea69
LM
1406 ioend->io_offset = offset;
1407 ioend->io_size = size;
209fb87a 1408 if (private && size > 0)
0d882a36 1409 ioend->io_type = XFS_IO_UNWRITTEN;
209fb87a 1410
7b7a8665 1411 xfs_finish_ioend_sync(ioend);
f0973863
CH
1412}
1413
1da177e4 1414STATIC ssize_t
e4c573bb 1415xfs_vm_direct_IO(
1da177e4
LT
1416 int rw,
1417 struct kiocb *iocb,
1418 const struct iovec *iov,
1419 loff_t offset,
1420 unsigned long nr_segs)
1421{
209fb87a
CH
1422 struct inode *inode = iocb->ki_filp->f_mapping->host;
1423 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
281627df 1424 struct xfs_ioend *ioend = NULL;
209fb87a
CH
1425 ssize_t ret;
1426
1427 if (rw & WRITE) {
281627df
CH
1428 size_t size = iov_length(iov, nr_segs);
1429
1430 /*
437a255a
DC
1431 * We cannot preallocate a size update transaction here as we
1432 * don't know whether allocation is necessary or not. Hence we
1433 * can only tell IO completion that one is necessary if we are
1434 * not doing unwritten extent conversion.
281627df 1435 */
0d882a36 1436 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
437a255a 1437 if (offset + size > XFS_I(inode)->i_d.di_size)
281627df 1438 ioend->io_isdirect = 1;
209fb87a 1439
eafdc7d1
CH
1440 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1441 offset, nr_segs,
1442 xfs_get_blocks_direct,
1443 xfs_end_io_direct_write, NULL, 0);
209fb87a 1444 if (ret != -EIOCBQUEUED && iocb->private)
437a255a 1445 goto out_destroy_ioend;
209fb87a 1446 } else {
eafdc7d1
CH
1447 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1448 offset, nr_segs,
1449 xfs_get_blocks_direct,
1450 NULL, NULL, 0);
209fb87a 1451 }
f0973863 1452
f0973863 1453 return ret;
281627df 1454
281627df
CH
1455out_destroy_ioend:
1456 xfs_destroy_ioend(ioend);
1457 return ret;
1da177e4
LT
1458}
1459
d3bc815a
DC
1460/*
1461 * Punch out the delalloc blocks we have already allocated.
1462 *
1463 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1464 * as the page is still locked at this point.
1465 */
1466STATIC void
1467xfs_vm_kill_delalloc_range(
1468 struct inode *inode,
1469 loff_t start,
1470 loff_t end)
1471{
1472 struct xfs_inode *ip = XFS_I(inode);
1473 xfs_fileoff_t start_fsb;
1474 xfs_fileoff_t end_fsb;
1475 int error;
1476
1477 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1478 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1479 if (end_fsb <= start_fsb)
1480 return;
1481
1482 xfs_ilock(ip, XFS_ILOCK_EXCL);
1483 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1484 end_fsb - start_fsb);
1485 if (error) {
1486 /* something screwed, just bail */
1487 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1488 xfs_alert(ip->i_mount,
1489 "xfs_vm_write_failed: unable to clean up ino %lld",
1490 ip->i_ino);
1491 }
1492 }
1493 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1494}
1495
fa9b227e
CH
1496STATIC void
1497xfs_vm_write_failed(
d3bc815a
DC
1498 struct inode *inode,
1499 struct page *page,
1500 loff_t pos,
1501 unsigned len)
fa9b227e 1502{
58e59854 1503 loff_t block_offset;
d3bc815a
DC
1504 loff_t block_start;
1505 loff_t block_end;
1506 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1507 loff_t to = from + len;
1508 struct buffer_head *bh, *head;
fa9b227e 1509
58e59854
JL
1510 /*
1511 * The request pos offset might be 32 or 64 bit, this is all fine
1512 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1513 * platform, the high 32-bit will be masked off if we evaluate the
1514 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1515 * 0xfffff000 as an unsigned long, hence the result is incorrect
1516 * which could cause the following ASSERT failed in most cases.
1517 * In order to avoid this, we can evaluate the block_offset of the
1518 * start of the page by using shifts rather than masks the mismatch
1519 * problem.
1520 */
1521 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1522
d3bc815a 1523 ASSERT(block_offset + from == pos);
c726de44 1524
d3bc815a
DC
1525 head = page_buffers(page);
1526 block_start = 0;
1527 for (bh = head; bh != head || !block_start;
1528 bh = bh->b_this_page, block_start = block_end,
1529 block_offset += bh->b_size) {
1530 block_end = block_start + bh->b_size;
c726de44 1531
d3bc815a
DC
1532 /* skip buffers before the write */
1533 if (block_end <= from)
1534 continue;
1535
1536 /* if the buffer is after the write, we're done */
1537 if (block_start >= to)
1538 break;
1539
1540 if (!buffer_delay(bh))
1541 continue;
1542
1543 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1544 continue;
1545
1546 xfs_vm_kill_delalloc_range(inode, block_offset,
1547 block_offset + bh->b_size);
fa9b227e 1548 }
d3bc815a 1549
fa9b227e
CH
1550}
1551
d3bc815a
DC
1552/*
1553 * This used to call block_write_begin(), but it unlocks and releases the page
1554 * on error, and we need that page to be able to punch stale delalloc blocks out
1555 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1556 * the appropriate point.
1557 */
f51623b2 1558STATIC int
d79689c7 1559xfs_vm_write_begin(
f51623b2 1560 struct file *file,
d79689c7
NP
1561 struct address_space *mapping,
1562 loff_t pos,
1563 unsigned len,
1564 unsigned flags,
1565 struct page **pagep,
1566 void **fsdata)
f51623b2 1567{
d3bc815a
DC
1568 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1569 struct page *page;
1570 int status;
155130a4 1571
d3bc815a
DC
1572 ASSERT(len <= PAGE_CACHE_SIZE);
1573
1574 page = grab_cache_page_write_begin(mapping, index,
1575 flags | AOP_FLAG_NOFS);
1576 if (!page)
1577 return -ENOMEM;
1578
1579 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1580 if (unlikely(status)) {
1581 struct inode *inode = mapping->host;
1582
1583 xfs_vm_write_failed(inode, page, pos, len);
1584 unlock_page(page);
1585
1586 if (pos + len > i_size_read(inode))
7caef267 1587 truncate_pagecache(inode, i_size_read(inode));
d3bc815a
DC
1588
1589 page_cache_release(page);
1590 page = NULL;
1591 }
1592
1593 *pagep = page;
1594 return status;
fa9b227e
CH
1595}
1596
d3bc815a
DC
1597/*
1598 * On failure, we only need to kill delalloc blocks beyond EOF because they
1599 * will never be written. For blocks within EOF, generic_write_end() zeros them
1600 * so they are safe to leave alone and be written with all the other valid data.
1601 */
fa9b227e
CH
1602STATIC int
1603xfs_vm_write_end(
1604 struct file *file,
1605 struct address_space *mapping,
1606 loff_t pos,
1607 unsigned len,
1608 unsigned copied,
1609 struct page *page,
1610 void *fsdata)
1611{
1612 int ret;
155130a4 1613
d3bc815a
DC
1614 ASSERT(len <= PAGE_CACHE_SIZE);
1615
fa9b227e 1616 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1617 if (unlikely(ret < len)) {
1618 struct inode *inode = mapping->host;
1619 size_t isize = i_size_read(inode);
1620 loff_t to = pos + len;
1621
1622 if (to > isize) {
7caef267 1623 truncate_pagecache(inode, isize);
d3bc815a
DC
1624 xfs_vm_kill_delalloc_range(inode, isize, to);
1625 }
1626 }
155130a4 1627 return ret;
f51623b2 1628}
1da177e4
LT
1629
1630STATIC sector_t
e4c573bb 1631xfs_vm_bmap(
1da177e4
LT
1632 struct address_space *mapping,
1633 sector_t block)
1634{
1635 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1636 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1637
cca28fb8 1638 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1639 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1640 filemap_write_and_wait(mapping);
126468b1 1641 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1642 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1643}
1644
1645STATIC int
e4c573bb 1646xfs_vm_readpage(
1da177e4
LT
1647 struct file *unused,
1648 struct page *page)
1649{
c2536668 1650 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1651}
1652
1653STATIC int
e4c573bb 1654xfs_vm_readpages(
1da177e4
LT
1655 struct file *unused,
1656 struct address_space *mapping,
1657 struct list_head *pages,
1658 unsigned nr_pages)
1659{
c2536668 1660 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1661}
1662
f5e54d6e 1663const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1664 .readpage = xfs_vm_readpage,
1665 .readpages = xfs_vm_readpages,
1666 .writepage = xfs_vm_writepage,
7d4fb40a 1667 .writepages = xfs_vm_writepages,
238f4c54
NS
1668 .releasepage = xfs_vm_releasepage,
1669 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1670 .write_begin = xfs_vm_write_begin,
fa9b227e 1671 .write_end = xfs_vm_write_end,
e4c573bb
NS
1672 .bmap = xfs_vm_bmap,
1673 .direct_IO = xfs_vm_direct_IO,
e965f963 1674 .migratepage = buffer_migrate_page,
bddaafa1 1675 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1676 .error_remove_page = generic_error_remove_page,
1da177e4 1677};
This page took 0.696421 seconds and 5 git commands to generate.