xfs: don't chain ioends during writepage submission
[deliverable/linux.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
fbcc0256
DC
39/*
40 * structure owned by writepages passed to individual writepage calls
41 */
42struct xfs_writepage_ctx {
43 struct xfs_bmbt_irec imap;
44 bool imap_valid;
45 unsigned int io_type;
fbcc0256
DC
46 struct xfs_ioend *ioend;
47 sector_t last_block;
48};
49
0b1b213f 50void
f51623b2
NS
51xfs_count_page_state(
52 struct page *page,
53 int *delalloc,
f51623b2
NS
54 int *unwritten)
55{
56 struct buffer_head *bh, *head;
57
20cb52eb 58 *delalloc = *unwritten = 0;
f51623b2
NS
59
60 bh = head = page_buffers(page);
61 do {
20cb52eb 62 if (buffer_unwritten(bh))
f51623b2
NS
63 (*unwritten) = 1;
64 else if (buffer_delay(bh))
65 (*delalloc) = 1;
66 } while ((bh = bh->b_this_page) != head);
67}
68
6214ed44
CH
69STATIC struct block_device *
70xfs_find_bdev_for_inode(
046f1685 71 struct inode *inode)
6214ed44 72{
046f1685 73 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
74 struct xfs_mount *mp = ip->i_mount;
75
71ddabb9 76 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
77 return mp->m_rtdev_targp->bt_bdev;
78 else
79 return mp->m_ddev_targp->bt_bdev;
80}
81
f6d6d4fc
CH
82/*
83 * We're now finished for good with this ioend structure.
84 * Update the page state via the associated buffer_heads,
85 * release holds on the inode and bio, and finally free
86 * up memory. Do not use the ioend after this.
87 */
0829c360
CH
88STATIC void
89xfs_destroy_ioend(
90 xfs_ioend_t *ioend)
91{
f6d6d4fc
CH
92 struct buffer_head *bh, *next;
93
94 for (bh = ioend->io_buffer_head; bh; bh = next) {
95 next = bh->b_private;
7d04a335 96 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 97 }
583fa586 98
0829c360
CH
99 mempool_free(ioend, xfs_ioend_pool);
100}
101
fc0063c4
CH
102/*
103 * Fast and loose check if this write could update the on-disk inode size.
104 */
105static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
106{
107 return ioend->io_offset + ioend->io_size >
108 XFS_I(ioend->io_inode)->i_d.di_size;
109}
110
281627df
CH
111STATIC int
112xfs_setfilesize_trans_alloc(
113 struct xfs_ioend *ioend)
114{
115 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
116 struct xfs_trans *tp;
117 int error;
118
119 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
120
3d3c8b52 121 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df 122 if (error) {
4906e215 123 xfs_trans_cancel(tp);
281627df
CH
124 return error;
125 }
126
127 ioend->io_append_trans = tp;
128
d9457dc0 129 /*
437a255a 130 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
131 * we released it.
132 */
bee9182d 133 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
134 /*
135 * We hand off the transaction to the completion thread now, so
136 * clear the flag here.
137 */
138 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
139 return 0;
140}
141
ba87ea69 142/*
2813d682 143 * Update on-disk file size now that data has been written to disk.
ba87ea69 144 */
281627df 145STATIC int
ba87ea69 146xfs_setfilesize(
2ba66237
CH
147 struct xfs_inode *ip,
148 struct xfs_trans *tp,
149 xfs_off_t offset,
150 size_t size)
ba87ea69 151{
ba87ea69 152 xfs_fsize_t isize;
ba87ea69 153
aa6bf01d 154 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 155 isize = xfs_new_eof(ip, offset + size);
281627df
CH
156 if (!isize) {
157 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 158 xfs_trans_cancel(tp);
281627df 159 return 0;
ba87ea69
LM
160 }
161
2ba66237 162 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
163
164 ip->i_d.di_size = isize;
165 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
166 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
167
70393313 168 return xfs_trans_commit(tp);
77d7a0c2
DC
169}
170
2ba66237
CH
171STATIC int
172xfs_setfilesize_ioend(
173 struct xfs_ioend *ioend)
174{
175 struct xfs_inode *ip = XFS_I(ioend->io_inode);
176 struct xfs_trans *tp = ioend->io_append_trans;
177
178 /*
179 * The transaction may have been allocated in the I/O submission thread,
180 * thus we need to mark ourselves as being in a transaction manually.
181 * Similarly for freeze protection.
182 */
183 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 184 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 185
5cb13dcd
Z
186 /* we abort the update if there was an IO error */
187 if (ioend->io_error) {
188 xfs_trans_cancel(tp);
189 return ioend->io_error;
190 }
191
2ba66237
CH
192 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
193}
194
77d7a0c2 195/*
209fb87a 196 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
197 *
198 * If there is no work to do we might as well call it a day and free the
199 * ioend right now.
77d7a0c2
DC
200 */
201STATIC void
202xfs_finish_ioend(
209fb87a 203 struct xfs_ioend *ioend)
77d7a0c2
DC
204{
205 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
206 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
207
0d882a36 208 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 209 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
2ba66237 210 else if (ioend->io_append_trans)
aa6bf01d 211 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
212 else
213 xfs_destroy_ioend(ioend);
77d7a0c2 214 }
ba87ea69
LM
215}
216
0829c360 217/*
5ec4fabb 218 * IO write completion.
f6d6d4fc
CH
219 */
220STATIC void
5ec4fabb 221xfs_end_io(
77d7a0c2 222 struct work_struct *work)
0829c360 223{
77d7a0c2
DC
224 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
225 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 226 int error = 0;
ba87ea69 227
04f658ee 228 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 229 ioend->io_error = -EIO;
04f658ee
CH
230 goto done;
231 }
04f658ee 232
5ec4fabb
CH
233 /*
234 * For unwritten extents we need to issue transactions to convert a
235 * range to normal written extens after the data I/O has finished.
5cb13dcd
Z
236 * Detecting and handling completion IO errors is done individually
237 * for each case as different cleanup operations need to be performed
238 * on error.
5ec4fabb 239 */
0d882a36 240 if (ioend->io_type == XFS_IO_UNWRITTEN) {
5cb13dcd
Z
241 if (ioend->io_error)
242 goto done;
437a255a
DC
243 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
244 ioend->io_size);
281627df 245 } else if (ioend->io_append_trans) {
2ba66237 246 error = xfs_setfilesize_ioend(ioend);
84803fb7 247 } else {
281627df 248 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 249 }
ba87ea69 250
04f658ee 251done:
437a255a 252 if (error)
2451337d 253 ioend->io_error = error;
aa6bf01d 254 xfs_destroy_ioend(ioend);
c626d174
DC
255}
256
0829c360
CH
257/*
258 * Allocate and initialise an IO completion structure.
259 * We need to track unwritten extent write completion here initially.
260 * We'll need to extend this for updating the ondisk inode size later
261 * (vs. incore size).
262 */
263STATIC xfs_ioend_t *
264xfs_alloc_ioend(
f6d6d4fc
CH
265 struct inode *inode,
266 unsigned int type)
0829c360
CH
267{
268 xfs_ioend_t *ioend;
269
270 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
271
272 /*
273 * Set the count to 1 initially, which will prevent an I/O
274 * completion callback from happening before we have started
275 * all the I/O from calling the completion routine too early.
276 */
277 atomic_set(&ioend->io_remaining, 1);
7d04a335 278 ioend->io_error = 0;
e10de372 279 INIT_LIST_HEAD(&ioend->io_list);
f6d6d4fc 280 ioend->io_type = type;
b677c210 281 ioend->io_inode = inode;
c1a073bd 282 ioend->io_buffer_head = NULL;
f6d6d4fc 283 ioend->io_buffer_tail = NULL;
0829c360
CH
284 ioend->io_offset = 0;
285 ioend->io_size = 0;
281627df 286 ioend->io_append_trans = NULL;
0829c360 287
5ec4fabb 288 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
289 return ioend;
290}
291
1da177e4
LT
292STATIC int
293xfs_map_blocks(
294 struct inode *inode,
295 loff_t offset,
207d0416 296 struct xfs_bmbt_irec *imap,
988ef927 297 int type)
1da177e4 298{
a206c817
CH
299 struct xfs_inode *ip = XFS_I(inode);
300 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 301 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
302 xfs_fileoff_t offset_fsb, end_fsb;
303 int error = 0;
a206c817
CH
304 int bmapi_flags = XFS_BMAPI_ENTIRE;
305 int nimaps = 1;
306
307 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 308 return -EIO;
a206c817 309
0d882a36 310 if (type == XFS_IO_UNWRITTEN)
a206c817 311 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 312
988ef927 313 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
314 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
315 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 316 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 317
d2c28191
DC
318 if (offset + count > mp->m_super->s_maxbytes)
319 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
320 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
321 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
322 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
323 imap, &nimaps, bmapi_flags);
8ff2957d 324 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 325
8ff2957d 326 if (error)
2451337d 327 return error;
a206c817 328
0d882a36 329 if (type == XFS_IO_DELALLOC &&
8ff2957d 330 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 331 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
332 if (!error)
333 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 334 return error;
a206c817
CH
335 }
336
8ff2957d 337#ifdef DEBUG
0d882a36 338 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
339 ASSERT(nimaps);
340 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
341 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
342 }
343#endif
344 if (nimaps)
345 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
346 return 0;
1da177e4
LT
347}
348
fbcc0256 349STATIC bool
558e6891 350xfs_imap_valid(
8699bb0a 351 struct inode *inode,
207d0416 352 struct xfs_bmbt_irec *imap,
558e6891 353 xfs_off_t offset)
1da177e4 354{
558e6891 355 offset >>= inode->i_blkbits;
8699bb0a 356
558e6891
CH
357 return offset >= imap->br_startoff &&
358 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
359}
360
f6d6d4fc
CH
361/*
362 * BIO completion handler for buffered IO.
363 */
782e3b3b 364STATIC void
f6d6d4fc 365xfs_end_bio(
4246a0b6 366 struct bio *bio)
f6d6d4fc
CH
367{
368 xfs_ioend_t *ioend = bio->bi_private;
369
77a78806
LT
370 if (!ioend->io_error)
371 ioend->io_error = bio->bi_error;
f6d6d4fc
CH
372
373 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
374 bio->bi_private = NULL;
375 bio->bi_end_io = NULL;
f6d6d4fc 376 bio_put(bio);
7d04a335 377
209fb87a 378 xfs_finish_ioend(ioend);
f6d6d4fc
CH
379}
380
381STATIC void
382xfs_submit_ioend_bio(
06342cf8
CH
383 struct writeback_control *wbc,
384 xfs_ioend_t *ioend,
385 struct bio *bio)
f6d6d4fc
CH
386{
387 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
388 bio->bi_private = ioend;
389 bio->bi_end_io = xfs_end_bio;
721a9602 390 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
391}
392
393STATIC struct bio *
394xfs_alloc_ioend_bio(
395 struct buffer_head *bh)
396{
b54ffb73 397 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
f6d6d4fc
CH
398
399 ASSERT(bio->bi_private == NULL);
4f024f37 400 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 401 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
402 return bio;
403}
404
405STATIC void
406xfs_start_buffer_writeback(
407 struct buffer_head *bh)
408{
409 ASSERT(buffer_mapped(bh));
410 ASSERT(buffer_locked(bh));
411 ASSERT(!buffer_delay(bh));
412 ASSERT(!buffer_unwritten(bh));
413
414 mark_buffer_async_write(bh);
415 set_buffer_uptodate(bh);
416 clear_buffer_dirty(bh);
417}
418
419STATIC void
420xfs_start_page_writeback(
421 struct page *page,
e10de372 422 int clear_dirty)
f6d6d4fc
CH
423{
424 ASSERT(PageLocked(page));
425 ASSERT(!PageWriteback(page));
0d085a52
DC
426
427 /*
428 * if the page was not fully cleaned, we need to ensure that the higher
429 * layers come back to it correctly. That means we need to keep the page
430 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
431 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
432 * write this page in this writeback sweep will be made.
433 */
434 if (clear_dirty) {
92132021 435 clear_page_dirty_for_io(page);
0d085a52
DC
436 set_page_writeback(page);
437 } else
438 set_page_writeback_keepwrite(page);
439
f6d6d4fc 440 unlock_page(page);
f6d6d4fc
CH
441}
442
c7c1a7d8 443static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
444{
445 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
446}
447
448/*
e10de372
DC
449 * Submit all of the bios for an ioend. We are only passed a single ioend at a
450 * time; the caller is responsible for chaining prior to submission.
7bf7f352
DC
451 *
452 * If @fail is non-zero, it means that we have a situation where some part of
453 * the submission process has failed after we have marked paged for writeback
454 * and unlocked them. In this situation, we need to fail the ioend chain rather
455 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc 456 */
e10de372 457STATIC int
f6d6d4fc 458xfs_submit_ioend(
06342cf8 459 struct writeback_control *wbc,
7bf7f352 460 xfs_ioend_t *ioend,
e10de372 461 int status)
f6d6d4fc 462{
f6d6d4fc
CH
463 struct buffer_head *bh;
464 struct bio *bio;
465 sector_t lastblock = 0;
466
e10de372
DC
467 /* Reserve log space if we might write beyond the on-disk inode size. */
468 if (!status &&
469 ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
470 status = xfs_setfilesize_trans_alloc(ioend);
471 /*
472 * If we are failing the IO now, just mark the ioend with an
473 * error and finish it. This will run IO completion immediately
474 * as there is only one reference to the ioend at this point in
475 * time.
476 */
477 if (status) {
478 ioend->io_error = status;
479 xfs_finish_ioend(ioend);
480 return status;
481 }
d88992f6 482
e10de372
DC
483 bio = NULL;
484 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc 485
e10de372
DC
486 if (!bio) {
487retry:
488 bio = xfs_alloc_ioend_bio(bh);
489 } else if (bh->b_blocknr != lastblock + 1) {
490 xfs_submit_ioend_bio(wbc, ioend, bio);
491 goto retry;
7bf7f352
DC
492 }
493
e10de372 494 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 495 xfs_submit_ioend_bio(wbc, ioend, bio);
e10de372
DC
496 goto retry;
497 }
498
499 lastblock = bh->b_blocknr;
500 }
501 if (bio)
502 xfs_submit_ioend_bio(wbc, ioend, bio);
503 xfs_finish_ioend(ioend);
504 return 0;
f6d6d4fc
CH
505}
506
f6d6d4fc
CH
507/*
508 * Test to see if we've been building up a completion structure for
509 * earlier buffers -- if so, we try to append to this ioend if we
510 * can, otherwise we finish off any current ioend and start another.
e10de372
DC
511 * Return the ioend we finished off so that the caller can submit it
512 * once it has finished processing the dirty page.
f6d6d4fc
CH
513 */
514STATIC void
515xfs_add_to_ioend(
516 struct inode *inode,
517 struct buffer_head *bh,
7336cea8 518 xfs_off_t offset,
e10de372
DC
519 struct xfs_writepage_ctx *wpc,
520 struct list_head *iolist)
f6d6d4fc 521{
fbcc0256
DC
522 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
523 bh->b_blocknr != wpc->last_block + 1) {
524 struct xfs_ioend *new;
525
e10de372
DC
526 if (wpc->ioend)
527 list_add(&wpc->ioend->io_list, iolist);
528
fbcc0256
DC
529 new = xfs_alloc_ioend(inode, wpc->io_type);
530 new->io_offset = offset;
531 new->io_buffer_head = bh;
532 new->io_buffer_tail = bh;
fbcc0256 533 wpc->ioend = new;
f6d6d4fc 534 } else {
fbcc0256
DC
535 wpc->ioend->io_buffer_tail->b_private = bh;
536 wpc->ioend->io_buffer_tail = bh;
f6d6d4fc
CH
537 }
538
539 bh->b_private = NULL;
fbcc0256
DC
540 wpc->ioend->io_size += bh->b_size;
541 wpc->last_block = bh->b_blocknr;
e10de372 542 xfs_start_buffer_writeback(bh);
f6d6d4fc
CH
543}
544
87cbc49c
NS
545STATIC void
546xfs_map_buffer(
046f1685 547 struct inode *inode,
87cbc49c 548 struct buffer_head *bh,
207d0416 549 struct xfs_bmbt_irec *imap,
046f1685 550 xfs_off_t offset)
87cbc49c
NS
551{
552 sector_t bn;
8699bb0a 553 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
554 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
555 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 556
207d0416
CH
557 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
558 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 559
e513182d 560 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 561 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 562
046f1685 563 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
564
565 bh->b_blocknr = bn;
566 set_buffer_mapped(bh);
567}
568
1da177e4
LT
569STATIC void
570xfs_map_at_offset(
046f1685 571 struct inode *inode,
1da177e4 572 struct buffer_head *bh,
207d0416 573 struct xfs_bmbt_irec *imap,
046f1685 574 xfs_off_t offset)
1da177e4 575{
207d0416
CH
576 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
577 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 578
207d0416 579 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
580 set_buffer_mapped(bh);
581 clear_buffer_delay(bh);
f6d6d4fc 582 clear_buffer_unwritten(bh);
1da177e4
LT
583}
584
1da177e4 585/*
a49935f2
DC
586 * Test if a given page contains at least one buffer of a given @type.
587 * If @check_all_buffers is true, then we walk all the buffers in the page to
588 * try to find one of the type passed in. If it is not set, then the caller only
589 * needs to check the first buffer on the page for a match.
1da177e4 590 */
a49935f2 591STATIC bool
6ffc4db5 592xfs_check_page_type(
10ce4444 593 struct page *page,
a49935f2
DC
594 unsigned int type,
595 bool check_all_buffers)
1da177e4 596{
a49935f2
DC
597 struct buffer_head *bh;
598 struct buffer_head *head;
1da177e4 599
a49935f2
DC
600 if (PageWriteback(page))
601 return false;
602 if (!page->mapping)
603 return false;
604 if (!page_has_buffers(page))
605 return false;
1da177e4 606
a49935f2
DC
607 bh = head = page_buffers(page);
608 do {
609 if (buffer_unwritten(bh)) {
610 if (type == XFS_IO_UNWRITTEN)
611 return true;
612 } else if (buffer_delay(bh)) {
805eeb8e 613 if (type == XFS_IO_DELALLOC)
a49935f2
DC
614 return true;
615 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 616 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
617 return true;
618 }
1da177e4 619
a49935f2
DC
620 /* If we are only checking the first buffer, we are done now. */
621 if (!check_all_buffers)
622 break;
623 } while ((bh = bh->b_this_page) != head);
1da177e4 624
a49935f2 625 return false;
1da177e4
LT
626}
627
3ed3a434
DC
628STATIC void
629xfs_vm_invalidatepage(
630 struct page *page,
d47992f8
LC
631 unsigned int offset,
632 unsigned int length)
3ed3a434 633{
34097dfe
LC
634 trace_xfs_invalidatepage(page->mapping->host, page, offset,
635 length);
636 block_invalidatepage(page, offset, length);
3ed3a434
DC
637}
638
639/*
640 * If the page has delalloc buffers on it, we need to punch them out before we
641 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
642 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
643 * is done on that same region - the delalloc extent is returned when none is
644 * supposed to be there.
645 *
646 * We prevent this by truncating away the delalloc regions on the page before
647 * invalidating it. Because they are delalloc, we can do this without needing a
648 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
649 * truncation without a transaction as there is no space left for block
650 * reservation (typically why we see a ENOSPC in writeback).
651 *
652 * This is not a performance critical path, so for now just do the punching a
653 * buffer head at a time.
654 */
655STATIC void
656xfs_aops_discard_page(
657 struct page *page)
658{
659 struct inode *inode = page->mapping->host;
660 struct xfs_inode *ip = XFS_I(inode);
661 struct buffer_head *bh, *head;
662 loff_t offset = page_offset(page);
3ed3a434 663
a49935f2 664 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
665 goto out_invalidate;
666
e8c3753c
DC
667 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
668 goto out_invalidate;
669
4f10700a 670 xfs_alert(ip->i_mount,
3ed3a434
DC
671 "page discard on page %p, inode 0x%llx, offset %llu.",
672 page, ip->i_ino, offset);
673
674 xfs_ilock(ip, XFS_ILOCK_EXCL);
675 bh = head = page_buffers(page);
676 do {
3ed3a434 677 int error;
c726de44 678 xfs_fileoff_t start_fsb;
3ed3a434
DC
679
680 if (!buffer_delay(bh))
681 goto next_buffer;
682
c726de44
DC
683 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
684 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
685 if (error) {
686 /* something screwed, just bail */
e8c3753c 687 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 688 xfs_alert(ip->i_mount,
3ed3a434 689 "page discard unable to remove delalloc mapping.");
e8c3753c 690 }
3ed3a434
DC
691 break;
692 }
693next_buffer:
c726de44 694 offset += 1 << inode->i_blkbits;
3ed3a434
DC
695
696 } while ((bh = bh->b_this_page) != head);
697
698 xfs_iunlock(ip, XFS_ILOCK_EXCL);
699out_invalidate:
d47992f8 700 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
701 return;
702}
703
e10de372
DC
704/*
705 * We implement an immediate ioend submission policy here to avoid needing to
706 * chain multiple ioends and hence nest mempool allocations which can violate
707 * forward progress guarantees we need to provide. The current ioend we are
708 * adding buffers to is cached on the writepage context, and if the new buffer
709 * does not append to the cached ioend it will create a new ioend and cache that
710 * instead.
711 *
712 * If a new ioend is created and cached, the old ioend is returned and queued
713 * locally for submission once the entire page is processed or an error has been
714 * detected. While ioends are submitted immediately after they are completed,
715 * batching optimisations are provided by higher level block plugging.
716 *
717 * At the end of a writeback pass, there will be a cached ioend remaining on the
718 * writepage context that the caller will need to submit.
719 */
bfce7d2e
DC
720static int
721xfs_writepage_map(
722 struct xfs_writepage_ctx *wpc,
e10de372 723 struct writeback_control *wbc,
bfce7d2e
DC
724 struct inode *inode,
725 struct page *page,
726 loff_t offset,
727 __uint64_t end_offset)
728{
e10de372
DC
729 LIST_HEAD(submit_list);
730 struct xfs_ioend *ioend, *next;
bfce7d2e
DC
731 struct buffer_head *bh, *head;
732 ssize_t len = 1 << inode->i_blkbits;
733 int error = 0;
bfce7d2e 734 int count = 0;
e10de372 735 int uptodate = 1;
bfce7d2e
DC
736
737 bh = head = page_buffers(page);
738 offset = page_offset(page);
bfce7d2e
DC
739 do {
740 if (offset >= end_offset)
741 break;
742 if (!buffer_uptodate(bh))
743 uptodate = 0;
744
745 /*
746 * set_page_dirty dirties all buffers in a page, independent
747 * of their state. The dirty state however is entirely
748 * meaningless for holes (!mapped && uptodate), so skip
749 * buffers covering holes here.
750 */
751 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
752 wpc->imap_valid = false;
753 continue;
754 }
755
756 if (buffer_unwritten(bh)) {
757 if (wpc->io_type != XFS_IO_UNWRITTEN) {
758 wpc->io_type = XFS_IO_UNWRITTEN;
759 wpc->imap_valid = false;
760 }
761 } else if (buffer_delay(bh)) {
762 if (wpc->io_type != XFS_IO_DELALLOC) {
763 wpc->io_type = XFS_IO_DELALLOC;
764 wpc->imap_valid = false;
765 }
766 } else if (buffer_uptodate(bh)) {
767 if (wpc->io_type != XFS_IO_OVERWRITE) {
768 wpc->io_type = XFS_IO_OVERWRITE;
769 wpc->imap_valid = false;
770 }
771 } else {
772 if (PageUptodate(page))
773 ASSERT(buffer_mapped(bh));
774 /*
775 * This buffer is not uptodate and will not be
776 * written to disk. Ensure that we will put any
777 * subsequent writeable buffers into a new
778 * ioend.
779 */
780 wpc->imap_valid = false;
781 continue;
782 }
783
784 if (wpc->imap_valid)
785 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
786 offset);
787 if (!wpc->imap_valid) {
788 error = xfs_map_blocks(inode, offset, &wpc->imap,
789 wpc->io_type);
790 if (error)
e10de372 791 goto out;
bfce7d2e
DC
792 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
793 offset);
794 }
795 if (wpc->imap_valid) {
796 lock_buffer(bh);
797 if (wpc->io_type != XFS_IO_OVERWRITE)
798 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
e10de372 799 xfs_add_to_ioend(inode, bh, offset, wpc, &submit_list);
bfce7d2e
DC
800 count++;
801 }
802
bfce7d2e
DC
803 } while (offset += len, ((bh = bh->b_this_page) != head));
804
805 if (uptodate && bh == head)
806 SetPageUptodate(page);
807
e10de372 808 ASSERT(wpc->ioend || list_empty(&submit_list));
bfce7d2e 809
e10de372 810out:
bfce7d2e 811 /*
e10de372
DC
812 * On error, we have to fail the ioend here because we have locked
813 * buffers in the ioend. If we don't do this, we'll deadlock
814 * invalidating the page as that tries to lock the buffers on the page.
815 * Also, because we may have set pages under writeback, we have to make
816 * sure we run IO completion to mark the error state of the IO
817 * appropriately, so we can't cancel the ioend directly here. That means
818 * we have to mark this page as under writeback if we included any
819 * buffers from it in the ioend chain so that completion treats it
820 * correctly.
bfce7d2e 821 *
e10de372
DC
822 * If we didn't include the page in the ioend, the on error we can
823 * simply discard and unlock it as there are no other users of the page
824 * or it's buffers right now. The caller will still need to trigger
825 * submission of outstanding ioends on the writepage context so they are
826 * treated correctly on error.
bfce7d2e 827 */
e10de372
DC
828 if (count) {
829 xfs_start_page_writeback(page, !error);
830
831 /*
832 * Preserve the original error if there was one, otherwise catch
833 * submission errors here and propagate into subsequent ioend
834 * submissions.
835 */
836 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
837 int error2;
838
839 list_del_init(&ioend->io_list);
840 error2 = xfs_submit_ioend(wbc, ioend, error);
841 if (error2 && !error)
842 error = error2;
843 }
844 } else if (error) {
bfce7d2e
DC
845 xfs_aops_discard_page(page);
846 ClearPageUptodate(page);
847 unlock_page(page);
e10de372
DC
848 } else {
849 /*
850 * We can end up here with no error and nothing to write if we
851 * race with a partial page truncate on a sub-page block sized
852 * filesystem. In that case we need to mark the page clean.
853 */
854 xfs_start_page_writeback(page, 1);
855 end_page_writeback(page);
bfce7d2e 856 }
e10de372 857
bfce7d2e
DC
858 mapping_set_error(page->mapping, error);
859 return error;
860}
861
1da177e4 862/*
89f3b363
CH
863 * Write out a dirty page.
864 *
865 * For delalloc space on the page we need to allocate space and flush it.
866 * For unwritten space on the page we need to start the conversion to
867 * regular allocated space.
89f3b363 868 * For any other dirty buffer heads on the page we should flush them.
1da177e4 869 */
1da177e4 870STATIC int
fbcc0256 871xfs_do_writepage(
89f3b363 872 struct page *page,
fbcc0256
DC
873 struct writeback_control *wbc,
874 void *data)
1da177e4 875{
fbcc0256 876 struct xfs_writepage_ctx *wpc = data;
89f3b363 877 struct inode *inode = page->mapping->host;
1da177e4 878 loff_t offset;
1da177e4 879 __uint64_t end_offset;
ad68972a 880 pgoff_t end_index;
89f3b363 881
34097dfe 882 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 883
20cb52eb
CH
884 ASSERT(page_has_buffers(page));
885
89f3b363
CH
886 /*
887 * Refuse to write the page out if we are called from reclaim context.
888 *
d4f7a5cb
CH
889 * This avoids stack overflows when called from deeply used stacks in
890 * random callers for direct reclaim or memcg reclaim. We explicitly
891 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 892 *
94054fa3
MG
893 * This should never happen except in the case of a VM regression so
894 * warn about it.
89f3b363 895 */
94054fa3
MG
896 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
897 PF_MEMALLOC))
b5420f23 898 goto redirty;
1da177e4 899
89f3b363 900 /*
680a647b
CH
901 * Given that we do not allow direct reclaim to call us, we should
902 * never be called while in a filesystem transaction.
89f3b363 903 */
448011e2 904 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 905 goto redirty;
89f3b363 906
8695d27e 907 /*
ad68972a
DC
908 * Is this page beyond the end of the file?
909 *
8695d27e
JL
910 * The page index is less than the end_index, adjust the end_offset
911 * to the highest offset that this page should represent.
912 * -----------------------------------------------------
913 * | file mapping | <EOF> |
914 * -----------------------------------------------------
915 * | Page ... | Page N-2 | Page N-1 | Page N | |
916 * ^--------------------------------^----------|--------
917 * | desired writeback range | see else |
918 * ---------------------------------^------------------|
919 */
ad68972a
DC
920 offset = i_size_read(inode);
921 end_index = offset >> PAGE_CACHE_SHIFT;
8695d27e
JL
922 if (page->index < end_index)
923 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
924 else {
925 /*
926 * Check whether the page to write out is beyond or straddles
927 * i_size or not.
928 * -------------------------------------------------------
929 * | file mapping | <EOF> |
930 * -------------------------------------------------------
931 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
932 * ^--------------------------------^-----------|---------
933 * | | Straddles |
934 * ---------------------------------^-----------|--------|
935 */
6b7a03f0
CH
936 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
937
938 /*
ff9a28f6
JK
939 * Skip the page if it is fully outside i_size, e.g. due to a
940 * truncate operation that is in progress. We must redirty the
941 * page so that reclaim stops reclaiming it. Otherwise
942 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
943 *
944 * Note that the end_index is unsigned long, it would overflow
945 * if the given offset is greater than 16TB on 32-bit system
946 * and if we do check the page is fully outside i_size or not
947 * via "if (page->index >= end_index + 1)" as "end_index + 1"
948 * will be evaluated to 0. Hence this page will be redirtied
949 * and be written out repeatedly which would result in an
950 * infinite loop, the user program that perform this operation
951 * will hang. Instead, we can verify this situation by checking
952 * if the page to write is totally beyond the i_size or if it's
953 * offset is just equal to the EOF.
6b7a03f0 954 */
8695d27e
JL
955 if (page->index > end_index ||
956 (page->index == end_index && offset_into_page == 0))
ff9a28f6 957 goto redirty;
6b7a03f0
CH
958
959 /*
960 * The page straddles i_size. It must be zeroed out on each
961 * and every writepage invocation because it may be mmapped.
962 * "A file is mapped in multiples of the page size. For a file
8695d27e 963 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
964 * memory is zeroed when mapped, and writes to that region are
965 * not written out to the file."
966 */
967 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
968
969 /* Adjust the end_offset to the end of file */
970 end_offset = offset;
1da177e4
LT
971 }
972
e10de372 973 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
f51623b2 974
b5420f23 975redirty:
f51623b2
NS
976 redirty_page_for_writepage(wbc, page);
977 unlock_page(page);
978 return 0;
f51623b2
NS
979}
980
fbcc0256
DC
981STATIC int
982xfs_vm_writepage(
983 struct page *page,
984 struct writeback_control *wbc)
985{
986 struct xfs_writepage_ctx wpc = {
987 .io_type = XFS_IO_INVALID,
988 };
989 int ret;
990
991 ret = xfs_do_writepage(page, wbc, &wpc);
e10de372
DC
992 if (wpc.ioend)
993 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
994 return ret;
fbcc0256
DC
995}
996
7d4fb40a
NS
997STATIC int
998xfs_vm_writepages(
999 struct address_space *mapping,
1000 struct writeback_control *wbc)
1001{
fbcc0256
DC
1002 struct xfs_writepage_ctx wpc = {
1003 .io_type = XFS_IO_INVALID,
1004 };
1005 int ret;
1006
b3aea4ed 1007 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
fbcc0256 1008 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
e10de372
DC
1009 if (wpc.ioend)
1010 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1011 return ret;
7d4fb40a
NS
1012}
1013
f51623b2
NS
1014/*
1015 * Called to move a page into cleanable state - and from there
89f3b363 1016 * to be released. The page should already be clean. We always
f51623b2
NS
1017 * have buffer heads in this call.
1018 *
89f3b363 1019 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1020 */
1021STATIC int
238f4c54 1022xfs_vm_releasepage(
f51623b2
NS
1023 struct page *page,
1024 gfp_t gfp_mask)
1025{
20cb52eb 1026 int delalloc, unwritten;
f51623b2 1027
34097dfe 1028 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1029
20cb52eb 1030 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1031
448011e2 1032 if (WARN_ON_ONCE(delalloc))
f51623b2 1033 return 0;
448011e2 1034 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1035 return 0;
1036
f51623b2
NS
1037 return try_to_free_buffers(page);
1038}
1039
a719370b 1040/*
a06c277a
DC
1041 * When we map a DIO buffer, we may need to attach an ioend that describes the
1042 * type of write IO we are doing. This passes to the completion function the
1043 * operations it needs to perform. If the mapping is for an overwrite wholly
1044 * within the EOF then we don't need an ioend and so we don't allocate one.
1045 * This avoids the unnecessary overhead of allocating and freeing ioends for
1046 * workloads that don't require transactions on IO completion.
d5cc2e3f
DC
1047 *
1048 * If we get multiple mappings in a single IO, we might be mapping different
1049 * types. But because the direct IO can only have a single private pointer, we
1050 * need to ensure that:
1051 *
a06c277a
DC
1052 * a) i) the ioend spans the entire region of unwritten mappings; or
1053 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
d5cc2e3f
DC
1054 * b) if it contains unwritten extents, it is *permanently* marked as such
1055 *
1056 * We could do this by chaining ioends like buffered IO does, but we only
1057 * actually get one IO completion callback from the direct IO, and that spans
1058 * the entire IO regardless of how many mappings and IOs are needed to complete
1059 * the DIO. There is only going to be one reference to the ioend and its life
1060 * cycle is constrained by the DIO completion code. hence we don't need
1061 * reference counting here.
3e12dbbd
DC
1062 *
1063 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1064 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1065 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1066 * extending the file size. We won't know for sure until IO completion is run
1067 * and the actual max write offset is communicated to the IO completion
1068 * routine.
1069 *
1070 * For DAX page faults, we are preparing to never see unwritten extents here,
1071 * nor should we ever extend the inode size. Hence we will soon have nothing to
1072 * do here for this case, ensuring we don't have to provide an IO completion
1073 * callback to free an ioend that we don't actually need for a fault into the
1074 * page at offset (2^63 - 1FSB) bytes.
a719370b 1075 */
3e12dbbd 1076
a719370b
DC
1077static void
1078xfs_map_direct(
1079 struct inode *inode,
1080 struct buffer_head *bh_result,
1081 struct xfs_bmbt_irec *imap,
3e12dbbd
DC
1082 xfs_off_t offset,
1083 bool dax_fault)
a719370b 1084{
d5cc2e3f
DC
1085 struct xfs_ioend *ioend;
1086 xfs_off_t size = bh_result->b_size;
1087 int type;
1088
1089 if (ISUNWRITTEN(imap))
1090 type = XFS_IO_UNWRITTEN;
1091 else
1092 type = XFS_IO_OVERWRITE;
1093
1094 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1095
3e12dbbd
DC
1096 if (dax_fault) {
1097 ASSERT(type == XFS_IO_OVERWRITE);
1098 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1099 imap);
1100 return;
1101 }
3e12dbbd 1102
d5cc2e3f
DC
1103 if (bh_result->b_private) {
1104 ioend = bh_result->b_private;
1105 ASSERT(ioend->io_size > 0);
1106 ASSERT(offset >= ioend->io_offset);
1107 if (offset + size > ioend->io_offset + ioend->io_size)
1108 ioend->io_size = offset - ioend->io_offset + size;
1109
1110 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1111 ioend->io_type = XFS_IO_UNWRITTEN;
1112
1113 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1114 ioend->io_size, ioend->io_type,
1115 imap);
a06c277a 1116 } else if (type == XFS_IO_UNWRITTEN ||
3e12dbbd
DC
1117 offset + size > i_size_read(inode) ||
1118 offset + size < 0) {
d5cc2e3f
DC
1119 ioend = xfs_alloc_ioend(inode, type);
1120 ioend->io_offset = offset;
1121 ioend->io_size = size;
a06c277a 1122
d5cc2e3f 1123 bh_result->b_private = ioend;
a06c277a 1124 set_buffer_defer_completion(bh_result);
d5cc2e3f
DC
1125
1126 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1127 imap);
a06c277a
DC
1128 } else {
1129 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1130 imap);
a719370b
DC
1131 }
1132}
1133
1fdca9c2
DC
1134/*
1135 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1136 * is, so that we can avoid repeated get_blocks calls.
1137 *
1138 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1139 * for blocks beyond EOF must be marked new so that sub block regions can be
1140 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1141 * was just allocated or is unwritten, otherwise the callers would overwrite
1142 * existing data with zeros. Hence we have to split the mapping into a range up
1143 * to and including EOF, and a second mapping for beyond EOF.
1144 */
1145static void
1146xfs_map_trim_size(
1147 struct inode *inode,
1148 sector_t iblock,
1149 struct buffer_head *bh_result,
1150 struct xfs_bmbt_irec *imap,
1151 xfs_off_t offset,
1152 ssize_t size)
1153{
1154 xfs_off_t mapping_size;
1155
1156 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1157 mapping_size <<= inode->i_blkbits;
1158
1159 ASSERT(mapping_size > 0);
1160 if (mapping_size > size)
1161 mapping_size = size;
1162 if (offset < i_size_read(inode) &&
1163 offset + mapping_size >= i_size_read(inode)) {
1164 /* limit mapping to block that spans EOF */
1165 mapping_size = roundup_64(i_size_read(inode) - offset,
1166 1 << inode->i_blkbits);
1167 }
1168 if (mapping_size > LONG_MAX)
1169 mapping_size = LONG_MAX;
1170
1171 bh_result->b_size = mapping_size;
1172}
1173
1da177e4 1174STATIC int
c2536668 1175__xfs_get_blocks(
1da177e4
LT
1176 struct inode *inode,
1177 sector_t iblock,
1da177e4
LT
1178 struct buffer_head *bh_result,
1179 int create,
3e12dbbd
DC
1180 bool direct,
1181 bool dax_fault)
1da177e4 1182{
a206c817
CH
1183 struct xfs_inode *ip = XFS_I(inode);
1184 struct xfs_mount *mp = ip->i_mount;
1185 xfs_fileoff_t offset_fsb, end_fsb;
1186 int error = 0;
1187 int lockmode = 0;
207d0416 1188 struct xfs_bmbt_irec imap;
a206c817 1189 int nimaps = 1;
fdc7ed75
NS
1190 xfs_off_t offset;
1191 ssize_t size;
207d0416 1192 int new = 0;
a206c817
CH
1193
1194 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1195 return -EIO;
1da177e4 1196
fdc7ed75 1197 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1198 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1199 size = bh_result->b_size;
364f358a
LM
1200
1201 if (!create && direct && offset >= i_size_read(inode))
1202 return 0;
1203
507630b2
DC
1204 /*
1205 * Direct I/O is usually done on preallocated files, so try getting
1206 * a block mapping without an exclusive lock first. For buffered
1207 * writes we already have the exclusive iolock anyway, so avoiding
1208 * a lock roundtrip here by taking the ilock exclusive from the
1209 * beginning is a useful micro optimization.
1210 */
1211 if (create && !direct) {
a206c817
CH
1212 lockmode = XFS_ILOCK_EXCL;
1213 xfs_ilock(ip, lockmode);
1214 } else {
309ecac8 1215 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1216 }
f2bde9b8 1217
d2c28191
DC
1218 ASSERT(offset <= mp->m_super->s_maxbytes);
1219 if (offset + size > mp->m_super->s_maxbytes)
1220 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1221 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1222 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1223
5c8ed202
DC
1224 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1225 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1226 if (error)
a206c817
CH
1227 goto out_unlock;
1228
1ca19157 1229 /* for DAX, we convert unwritten extents directly */
a206c817
CH
1230 if (create &&
1231 (!nimaps ||
1232 (imap.br_startblock == HOLESTARTBLOCK ||
1ca19157
DC
1233 imap.br_startblock == DELAYSTARTBLOCK) ||
1234 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
aff3a9ed 1235 if (direct || xfs_get_extsz_hint(ip)) {
507630b2 1236 /*
009c6e87
BF
1237 * xfs_iomap_write_direct() expects the shared lock. It
1238 * is unlocked on return.
507630b2 1239 */
009c6e87
BF
1240 if (lockmode == XFS_ILOCK_EXCL)
1241 xfs_ilock_demote(ip, lockmode);
1242
a206c817
CH
1243 error = xfs_iomap_write_direct(ip, offset, size,
1244 &imap, nimaps);
507630b2 1245 if (error)
2451337d 1246 return error;
d3bc815a 1247 new = 1;
6b698ede 1248
a206c817 1249 } else {
507630b2
DC
1250 /*
1251 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1252 * we can go on without dropping the lock here. If we
1253 * are allocating a new delalloc block, make sure that
1254 * we set the new flag so that we mark the buffer new so
1255 * that we know that it is newly allocated if the write
1256 * fails.
507630b2 1257 */
d3bc815a
DC
1258 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1259 new = 1;
a206c817 1260 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1261 if (error)
1262 goto out_unlock;
1263
1264 xfs_iunlock(ip, lockmode);
a206c817 1265 }
d5cc2e3f
DC
1266 trace_xfs_get_blocks_alloc(ip, offset, size,
1267 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1268 : XFS_IO_DELALLOC, &imap);
a206c817 1269 } else if (nimaps) {
d5cc2e3f
DC
1270 trace_xfs_get_blocks_found(ip, offset, size,
1271 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1272 : XFS_IO_OVERWRITE, &imap);
507630b2 1273 xfs_iunlock(ip, lockmode);
a206c817
CH
1274 } else {
1275 trace_xfs_get_blocks_notfound(ip, offset, size);
1276 goto out_unlock;
1277 }
1da177e4 1278
1ca19157
DC
1279 if (IS_DAX(inode) && create) {
1280 ASSERT(!ISUNWRITTEN(&imap));
1281 /* zeroing is not needed at a higher layer */
1282 new = 0;
1283 }
1284
1fdca9c2
DC
1285 /* trim mapping down to size requested */
1286 if (direct || size > (1 << inode->i_blkbits))
1287 xfs_map_trim_size(inode, iblock, bh_result,
1288 &imap, offset, size);
1289
a719370b
DC
1290 /*
1291 * For unwritten extents do not report a disk address in the buffered
1292 * read case (treat as if we're reading into a hole).
1293 */
207d0416 1294 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1295 imap.br_startblock != DELAYSTARTBLOCK &&
1296 (create || !ISUNWRITTEN(&imap))) {
1297 xfs_map_buffer(inode, bh_result, &imap, offset);
1298 if (ISUNWRITTEN(&imap))
1da177e4 1299 set_buffer_unwritten(bh_result);
a719370b
DC
1300 /* direct IO needs special help */
1301 if (create && direct)
3e12dbbd
DC
1302 xfs_map_direct(inode, bh_result, &imap, offset,
1303 dax_fault);
1da177e4
LT
1304 }
1305
c2536668
NS
1306 /*
1307 * If this is a realtime file, data may be on a different device.
1308 * to that pointed to from the buffer_head b_bdev currently.
1309 */
046f1685 1310 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1311
c2536668 1312 /*
549054af
DC
1313 * If we previously allocated a block out beyond eof and we are now
1314 * coming back to use it then we will need to flag it as new even if it
1315 * has a disk address.
1316 *
1317 * With sub-block writes into unwritten extents we also need to mark
1318 * the buffer as new so that the unwritten parts of the buffer gets
1319 * correctly zeroed.
1da177e4
LT
1320 */
1321 if (create &&
1322 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1323 (offset >= i_size_read(inode)) ||
207d0416 1324 (new || ISUNWRITTEN(&imap))))
1da177e4 1325 set_buffer_new(bh_result);
1da177e4 1326
207d0416 1327 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1328 BUG_ON(direct);
1329 if (create) {
1330 set_buffer_uptodate(bh_result);
1331 set_buffer_mapped(bh_result);
1332 set_buffer_delay(bh_result);
1333 }
1334 }
1335
1da177e4 1336 return 0;
a206c817
CH
1337
1338out_unlock:
1339 xfs_iunlock(ip, lockmode);
2451337d 1340 return error;
1da177e4
LT
1341}
1342
1343int
c2536668 1344xfs_get_blocks(
1da177e4
LT
1345 struct inode *inode,
1346 sector_t iblock,
1347 struct buffer_head *bh_result,
1348 int create)
1349{
3e12dbbd 1350 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1da177e4
LT
1351}
1352
6b698ede 1353int
e4c573bb 1354xfs_get_blocks_direct(
1da177e4
LT
1355 struct inode *inode,
1356 sector_t iblock,
1da177e4
LT
1357 struct buffer_head *bh_result,
1358 int create)
1359{
3e12dbbd
DC
1360 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1361}
1362
1363int
1364xfs_get_blocks_dax_fault(
1365 struct inode *inode,
1366 sector_t iblock,
1367 struct buffer_head *bh_result,
1368 int create)
1369{
1370 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1da177e4
LT
1371}
1372
6b698ede
DC
1373static void
1374__xfs_end_io_direct_write(
1375 struct inode *inode,
1376 struct xfs_ioend *ioend,
209fb87a 1377 loff_t offset,
6b698ede 1378 ssize_t size)
f0973863 1379{
6b698ede 1380 struct xfs_mount *mp = XFS_I(inode)->i_mount;
a06c277a 1381
6b698ede 1382 if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
6dfa1b67 1383 goto out_end_io;
f0973863 1384
2813d682 1385 /*
d5cc2e3f
DC
1386 * dio completion end_io functions are only called on writes if more
1387 * than 0 bytes was written.
2813d682 1388 */
d5cc2e3f
DC
1389 ASSERT(size > 0);
1390
1391 /*
1392 * The ioend only maps whole blocks, while the IO may be sector aligned.
a06c277a
DC
1393 * Hence the ioend offset/size may not match the IO offset/size exactly.
1394 * Because we don't map overwrites within EOF into the ioend, the offset
1395 * may not match, but only if the endio spans EOF. Either way, write
1396 * the IO sizes into the ioend so that completion processing does the
1397 * right thing.
d5cc2e3f 1398 */
d5cc2e3f
DC
1399 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1400 ioend->io_size = size;
1401 ioend->io_offset = offset;
f0973863 1402
2813d682 1403 /*
6dfa1b67
DC
1404 * The ioend tells us whether we are doing unwritten extent conversion
1405 * or an append transaction that updates the on-disk file size. These
1406 * cases are the only cases where we should *potentially* be needing
a06c277a 1407 * to update the VFS inode size.
6dfa1b67
DC
1408 *
1409 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1410 * with the on-disk inode size being outside the in-core inode size. We
1411 * have no other method of updating EOF for AIO, so always do it here
1412 * if necessary.
b9d59846
DC
1413 *
1414 * We need to lock the test/set EOF update as we can be racing with
1415 * other IO completions here to update the EOF. Failing to serialise
1416 * here can result in EOF moving backwards and Bad Things Happen when
1417 * that occurs.
2813d682 1418 */
6b698ede 1419 spin_lock(&XFS_I(inode)->i_flags_lock);
2ba66237
CH
1420 if (offset + size > i_size_read(inode))
1421 i_size_write(inode, offset + size);
6b698ede 1422 spin_unlock(&XFS_I(inode)->i_flags_lock);
2813d682 1423
f0973863 1424 /*
6dfa1b67
DC
1425 * If we are doing an append IO that needs to update the EOF on disk,
1426 * do the transaction reserve now so we can use common end io
1427 * processing. Stashing the error (if there is one) in the ioend will
1428 * result in the ioend processing passing on the error if it is
1429 * possible as we can't return it from here.
f0973863 1430 */
a06c277a 1431 if (ioend->io_type == XFS_IO_OVERWRITE)
6dfa1b67 1432 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
209fb87a 1433
6dfa1b67
DC
1434out_end_io:
1435 xfs_end_io(&ioend->io_work);
1436 return;
f0973863
CH
1437}
1438
6b698ede
DC
1439/*
1440 * Complete a direct I/O write request.
1441 *
1442 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1443 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1444 * wholly within the EOF and so there is nothing for us to do. Note that in this
1445 * case the completion can be called in interrupt context, whereas if we have an
1446 * ioend we will always be called in task context (i.e. from a workqueue).
1447 */
1448STATIC void
1449xfs_end_io_direct_write(
1450 struct kiocb *iocb,
1451 loff_t offset,
1452 ssize_t size,
1453 void *private)
1454{
1455 struct inode *inode = file_inode(iocb->ki_filp);
1456 struct xfs_ioend *ioend = private;
1457
1458 trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1459 ioend ? ioend->io_type : 0, NULL);
1460
1461 if (!ioend) {
1462 ASSERT(offset + size <= i_size_read(inode));
1463 return;
1464 }
1465
1466 __xfs_end_io_direct_write(inode, ioend, offset, size);
1467}
1468
6e1ba0bc
DC
1469static inline ssize_t
1470xfs_vm_do_dio(
1471 struct inode *inode,
1472 struct kiocb *iocb,
1473 struct iov_iter *iter,
1474 loff_t offset,
1475 void (*endio)(struct kiocb *iocb,
1476 loff_t offset,
1477 ssize_t size,
1478 void *private),
1479 int flags)
1480{
1481 struct block_device *bdev;
1482
1483 if (IS_DAX(inode))
1484 return dax_do_io(iocb, inode, iter, offset,
1485 xfs_get_blocks_direct, endio, 0);
1486
1487 bdev = xfs_find_bdev_for_inode(inode);
1488 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1489 xfs_get_blocks_direct, endio, NULL, flags);
1490}
1491
1da177e4 1492STATIC ssize_t
e4c573bb 1493xfs_vm_direct_IO(
1da177e4 1494 struct kiocb *iocb,
d8d3d94b
AV
1495 struct iov_iter *iter,
1496 loff_t offset)
1da177e4 1497{
209fb87a 1498 struct inode *inode = iocb->ki_filp->f_mapping->host;
209fb87a 1499
6e1ba0bc
DC
1500 if (iov_iter_rw(iter) == WRITE)
1501 return xfs_vm_do_dio(inode, iocb, iter, offset,
1502 xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1503 return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1da177e4
LT
1504}
1505
d3bc815a
DC
1506/*
1507 * Punch out the delalloc blocks we have already allocated.
1508 *
1509 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1510 * as the page is still locked at this point.
1511 */
1512STATIC void
1513xfs_vm_kill_delalloc_range(
1514 struct inode *inode,
1515 loff_t start,
1516 loff_t end)
1517{
1518 struct xfs_inode *ip = XFS_I(inode);
1519 xfs_fileoff_t start_fsb;
1520 xfs_fileoff_t end_fsb;
1521 int error;
1522
1523 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1524 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1525 if (end_fsb <= start_fsb)
1526 return;
1527
1528 xfs_ilock(ip, XFS_ILOCK_EXCL);
1529 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1530 end_fsb - start_fsb);
1531 if (error) {
1532 /* something screwed, just bail */
1533 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1534 xfs_alert(ip->i_mount,
1535 "xfs_vm_write_failed: unable to clean up ino %lld",
1536 ip->i_ino);
1537 }
1538 }
1539 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1540}
1541
fa9b227e
CH
1542STATIC void
1543xfs_vm_write_failed(
d3bc815a
DC
1544 struct inode *inode,
1545 struct page *page,
1546 loff_t pos,
1547 unsigned len)
fa9b227e 1548{
58e59854 1549 loff_t block_offset;
d3bc815a
DC
1550 loff_t block_start;
1551 loff_t block_end;
1552 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1553 loff_t to = from + len;
1554 struct buffer_head *bh, *head;
fa9b227e 1555
58e59854
JL
1556 /*
1557 * The request pos offset might be 32 or 64 bit, this is all fine
1558 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1559 * platform, the high 32-bit will be masked off if we evaluate the
1560 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1561 * 0xfffff000 as an unsigned long, hence the result is incorrect
1562 * which could cause the following ASSERT failed in most cases.
1563 * In order to avoid this, we can evaluate the block_offset of the
1564 * start of the page by using shifts rather than masks the mismatch
1565 * problem.
1566 */
1567 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1568
d3bc815a 1569 ASSERT(block_offset + from == pos);
c726de44 1570
d3bc815a
DC
1571 head = page_buffers(page);
1572 block_start = 0;
1573 for (bh = head; bh != head || !block_start;
1574 bh = bh->b_this_page, block_start = block_end,
1575 block_offset += bh->b_size) {
1576 block_end = block_start + bh->b_size;
c726de44 1577
d3bc815a
DC
1578 /* skip buffers before the write */
1579 if (block_end <= from)
1580 continue;
1581
1582 /* if the buffer is after the write, we're done */
1583 if (block_start >= to)
1584 break;
1585
1586 if (!buffer_delay(bh))
1587 continue;
1588
1589 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1590 continue;
1591
1592 xfs_vm_kill_delalloc_range(inode, block_offset,
1593 block_offset + bh->b_size);
4ab9ed57
DC
1594
1595 /*
1596 * This buffer does not contain data anymore. make sure anyone
1597 * who finds it knows that for certain.
1598 */
1599 clear_buffer_delay(bh);
1600 clear_buffer_uptodate(bh);
1601 clear_buffer_mapped(bh);
1602 clear_buffer_new(bh);
1603 clear_buffer_dirty(bh);
fa9b227e 1604 }
d3bc815a 1605
fa9b227e
CH
1606}
1607
d3bc815a
DC
1608/*
1609 * This used to call block_write_begin(), but it unlocks and releases the page
1610 * on error, and we need that page to be able to punch stale delalloc blocks out
1611 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1612 * the appropriate point.
1613 */
f51623b2 1614STATIC int
d79689c7 1615xfs_vm_write_begin(
f51623b2 1616 struct file *file,
d79689c7
NP
1617 struct address_space *mapping,
1618 loff_t pos,
1619 unsigned len,
1620 unsigned flags,
1621 struct page **pagep,
1622 void **fsdata)
f51623b2 1623{
d3bc815a
DC
1624 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1625 struct page *page;
1626 int status;
155130a4 1627
d3bc815a
DC
1628 ASSERT(len <= PAGE_CACHE_SIZE);
1629
ad22c7a0 1630 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1631 if (!page)
1632 return -ENOMEM;
1633
1634 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1635 if (unlikely(status)) {
1636 struct inode *inode = mapping->host;
72ab70a1 1637 size_t isize = i_size_read(inode);
d3bc815a
DC
1638
1639 xfs_vm_write_failed(inode, page, pos, len);
1640 unlock_page(page);
1641
72ab70a1
DC
1642 /*
1643 * If the write is beyond EOF, we only want to kill blocks
1644 * allocated in this write, not blocks that were previously
1645 * written successfully.
1646 */
1647 if (pos + len > isize) {
1648 ssize_t start = max_t(ssize_t, pos, isize);
1649
1650 truncate_pagecache_range(inode, start, pos + len);
1651 }
d3bc815a
DC
1652
1653 page_cache_release(page);
1654 page = NULL;
1655 }
1656
1657 *pagep = page;
1658 return status;
fa9b227e
CH
1659}
1660
d3bc815a 1661/*
aad3f375
DC
1662 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1663 * this specific write because they will never be written. Previous writes
1664 * beyond EOF where block allocation succeeded do not need to be trashed, so
1665 * only new blocks from this write should be trashed. For blocks within
1666 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1667 * written with all the other valid data.
d3bc815a 1668 */
fa9b227e
CH
1669STATIC int
1670xfs_vm_write_end(
1671 struct file *file,
1672 struct address_space *mapping,
1673 loff_t pos,
1674 unsigned len,
1675 unsigned copied,
1676 struct page *page,
1677 void *fsdata)
1678{
1679 int ret;
155130a4 1680
d3bc815a
DC
1681 ASSERT(len <= PAGE_CACHE_SIZE);
1682
fa9b227e 1683 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1684 if (unlikely(ret < len)) {
1685 struct inode *inode = mapping->host;
1686 size_t isize = i_size_read(inode);
1687 loff_t to = pos + len;
1688
1689 if (to > isize) {
aad3f375
DC
1690 /* only kill blocks in this write beyond EOF */
1691 if (pos > isize)
1692 isize = pos;
d3bc815a 1693 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1694 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1695 }
1696 }
155130a4 1697 return ret;
f51623b2 1698}
1da177e4
LT
1699
1700STATIC sector_t
e4c573bb 1701xfs_vm_bmap(
1da177e4
LT
1702 struct address_space *mapping,
1703 sector_t block)
1704{
1705 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1706 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1707
cca28fb8 1708 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1709 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1710 filemap_write_and_wait(mapping);
126468b1 1711 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1712 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1713}
1714
1715STATIC int
e4c573bb 1716xfs_vm_readpage(
1da177e4
LT
1717 struct file *unused,
1718 struct page *page)
1719{
121e213e 1720 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1721 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1722}
1723
1724STATIC int
e4c573bb 1725xfs_vm_readpages(
1da177e4
LT
1726 struct file *unused,
1727 struct address_space *mapping,
1728 struct list_head *pages,
1729 unsigned nr_pages)
1730{
121e213e 1731 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1732 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1733}
1734
22e757a4
DC
1735/*
1736 * This is basically a copy of __set_page_dirty_buffers() with one
1737 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1738 * dirty, we'll never be able to clean them because we don't write buffers
1739 * beyond EOF, and that means we can't invalidate pages that span EOF
1740 * that have been marked dirty. Further, the dirty state can leak into
1741 * the file interior if the file is extended, resulting in all sorts of
1742 * bad things happening as the state does not match the underlying data.
1743 *
1744 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1745 * this only exist because of bufferheads and how the generic code manages them.
1746 */
1747STATIC int
1748xfs_vm_set_page_dirty(
1749 struct page *page)
1750{
1751 struct address_space *mapping = page->mapping;
1752 struct inode *inode = mapping->host;
1753 loff_t end_offset;
1754 loff_t offset;
1755 int newly_dirty;
c4843a75 1756 struct mem_cgroup *memcg;
22e757a4
DC
1757
1758 if (unlikely(!mapping))
1759 return !TestSetPageDirty(page);
1760
1761 end_offset = i_size_read(inode);
1762 offset = page_offset(page);
1763
1764 spin_lock(&mapping->private_lock);
1765 if (page_has_buffers(page)) {
1766 struct buffer_head *head = page_buffers(page);
1767 struct buffer_head *bh = head;
1768
1769 do {
1770 if (offset < end_offset)
1771 set_buffer_dirty(bh);
1772 bh = bh->b_this_page;
1773 offset += 1 << inode->i_blkbits;
1774 } while (bh != head);
1775 }
c4843a75
GT
1776 /*
1777 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1778 * per-memcg dirty page counters.
1779 */
1780 memcg = mem_cgroup_begin_page_stat(page);
22e757a4
DC
1781 newly_dirty = !TestSetPageDirty(page);
1782 spin_unlock(&mapping->private_lock);
1783
1784 if (newly_dirty) {
1785 /* sigh - __set_page_dirty() is static, so copy it here, too */
1786 unsigned long flags;
1787
1788 spin_lock_irqsave(&mapping->tree_lock, flags);
1789 if (page->mapping) { /* Race with truncate? */
1790 WARN_ON_ONCE(!PageUptodate(page));
c4843a75 1791 account_page_dirtied(page, mapping, memcg);
22e757a4
DC
1792 radix_tree_tag_set(&mapping->page_tree,
1793 page_index(page), PAGECACHE_TAG_DIRTY);
1794 }
1795 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1796 }
c4843a75
GT
1797 mem_cgroup_end_page_stat(memcg);
1798 if (newly_dirty)
1799 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1800 return newly_dirty;
1801}
1802
f5e54d6e 1803const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1804 .readpage = xfs_vm_readpage,
1805 .readpages = xfs_vm_readpages,
1806 .writepage = xfs_vm_writepage,
7d4fb40a 1807 .writepages = xfs_vm_writepages,
22e757a4 1808 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1809 .releasepage = xfs_vm_releasepage,
1810 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1811 .write_begin = xfs_vm_write_begin,
fa9b227e 1812 .write_end = xfs_vm_write_end,
e4c573bb
NS
1813 .bmap = xfs_vm_bmap,
1814 .direct_IO = xfs_vm_direct_IO,
e965f963 1815 .migratepage = buffer_migrate_page,
bddaafa1 1816 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1817 .error_remove_page = generic_error_remove_page,
1da177e4 1818};
This page took 0.761793 seconds and 5 git commands to generate.