xfs: Introduce writeback context for writepages
[deliverable/linux.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
fbcc0256
DC
39/*
40 * structure owned by writepages passed to individual writepage calls
41 */
42struct xfs_writepage_ctx {
43 struct xfs_bmbt_irec imap;
44 bool imap_valid;
45 unsigned int io_type;
46 struct xfs_ioend *iohead;
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49};
50
0b1b213f 51void
f51623b2
NS
52xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
f51623b2
NS
55 int *unwritten)
56{
57 struct buffer_head *bh, *head;
58
20cb52eb 59 *delalloc = *unwritten = 0;
f51623b2
NS
60
61 bh = head = page_buffers(page);
62 do {
20cb52eb 63 if (buffer_unwritten(bh))
f51623b2
NS
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
6214ed44
CH
70STATIC struct block_device *
71xfs_find_bdev_for_inode(
046f1685 72 struct inode *inode)
6214ed44 73{
046f1685 74 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
75 struct xfs_mount *mp = ip->i_mount;
76
71ddabb9 77 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81}
82
f6d6d4fc
CH
83/*
84 * We're now finished for good with this ioend structure.
85 * Update the page state via the associated buffer_heads,
86 * release holds on the inode and bio, and finally free
87 * up memory. Do not use the ioend after this.
88 */
0829c360
CH
89STATIC void
90xfs_destroy_ioend(
91 xfs_ioend_t *ioend)
92{
f6d6d4fc
CH
93 struct buffer_head *bh, *next;
94
95 for (bh = ioend->io_buffer_head; bh; bh = next) {
96 next = bh->b_private;
7d04a335 97 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 98 }
583fa586 99
0829c360
CH
100 mempool_free(ioend, xfs_ioend_pool);
101}
102
fc0063c4
CH
103/*
104 * Fast and loose check if this write could update the on-disk inode size.
105 */
106static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
107{
108 return ioend->io_offset + ioend->io_size >
109 XFS_I(ioend->io_inode)->i_d.di_size;
110}
111
281627df
CH
112STATIC int
113xfs_setfilesize_trans_alloc(
114 struct xfs_ioend *ioend)
115{
116 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
117 struct xfs_trans *tp;
118 int error;
119
120 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
121
3d3c8b52 122 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df 123 if (error) {
4906e215 124 xfs_trans_cancel(tp);
281627df
CH
125 return error;
126 }
127
128 ioend->io_append_trans = tp;
129
d9457dc0 130 /*
437a255a 131 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
132 * we released it.
133 */
bee9182d 134 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
135 /*
136 * We hand off the transaction to the completion thread now, so
137 * clear the flag here.
138 */
139 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
140 return 0;
141}
142
ba87ea69 143/*
2813d682 144 * Update on-disk file size now that data has been written to disk.
ba87ea69 145 */
281627df 146STATIC int
ba87ea69 147xfs_setfilesize(
2ba66237
CH
148 struct xfs_inode *ip,
149 struct xfs_trans *tp,
150 xfs_off_t offset,
151 size_t size)
ba87ea69 152{
ba87ea69 153 xfs_fsize_t isize;
ba87ea69 154
aa6bf01d 155 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 156 isize = xfs_new_eof(ip, offset + size);
281627df
CH
157 if (!isize) {
158 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 159 xfs_trans_cancel(tp);
281627df 160 return 0;
ba87ea69
LM
161 }
162
2ba66237 163 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
164
165 ip->i_d.di_size = isize;
166 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
167 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
168
70393313 169 return xfs_trans_commit(tp);
77d7a0c2
DC
170}
171
2ba66237
CH
172STATIC int
173xfs_setfilesize_ioend(
174 struct xfs_ioend *ioend)
175{
176 struct xfs_inode *ip = XFS_I(ioend->io_inode);
177 struct xfs_trans *tp = ioend->io_append_trans;
178
179 /*
180 * The transaction may have been allocated in the I/O submission thread,
181 * thus we need to mark ourselves as being in a transaction manually.
182 * Similarly for freeze protection.
183 */
184 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 185 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 186
5cb13dcd
Z
187 /* we abort the update if there was an IO error */
188 if (ioend->io_error) {
189 xfs_trans_cancel(tp);
190 return ioend->io_error;
191 }
192
2ba66237
CH
193 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
194}
195
77d7a0c2 196/*
209fb87a 197 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
198 *
199 * If there is no work to do we might as well call it a day and free the
200 * ioend right now.
77d7a0c2
DC
201 */
202STATIC void
203xfs_finish_ioend(
209fb87a 204 struct xfs_ioend *ioend)
77d7a0c2
DC
205{
206 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
207 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
208
0d882a36 209 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 210 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
2ba66237 211 else if (ioend->io_append_trans)
aa6bf01d 212 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
213 else
214 xfs_destroy_ioend(ioend);
77d7a0c2 215 }
ba87ea69
LM
216}
217
0829c360 218/*
5ec4fabb 219 * IO write completion.
f6d6d4fc
CH
220 */
221STATIC void
5ec4fabb 222xfs_end_io(
77d7a0c2 223 struct work_struct *work)
0829c360 224{
77d7a0c2
DC
225 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
226 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 227 int error = 0;
ba87ea69 228
04f658ee 229 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 230 ioend->io_error = -EIO;
04f658ee
CH
231 goto done;
232 }
04f658ee 233
5ec4fabb
CH
234 /*
235 * For unwritten extents we need to issue transactions to convert a
236 * range to normal written extens after the data I/O has finished.
5cb13dcd
Z
237 * Detecting and handling completion IO errors is done individually
238 * for each case as different cleanup operations need to be performed
239 * on error.
5ec4fabb 240 */
0d882a36 241 if (ioend->io_type == XFS_IO_UNWRITTEN) {
5cb13dcd
Z
242 if (ioend->io_error)
243 goto done;
437a255a
DC
244 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
245 ioend->io_size);
281627df 246 } else if (ioend->io_append_trans) {
2ba66237 247 error = xfs_setfilesize_ioend(ioend);
84803fb7 248 } else {
281627df 249 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 250 }
ba87ea69 251
04f658ee 252done:
437a255a 253 if (error)
2451337d 254 ioend->io_error = error;
aa6bf01d 255 xfs_destroy_ioend(ioend);
c626d174
DC
256}
257
0829c360
CH
258/*
259 * Allocate and initialise an IO completion structure.
260 * We need to track unwritten extent write completion here initially.
261 * We'll need to extend this for updating the ondisk inode size later
262 * (vs. incore size).
263 */
264STATIC xfs_ioend_t *
265xfs_alloc_ioend(
f6d6d4fc
CH
266 struct inode *inode,
267 unsigned int type)
0829c360
CH
268{
269 xfs_ioend_t *ioend;
270
271 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
272
273 /*
274 * Set the count to 1 initially, which will prevent an I/O
275 * completion callback from happening before we have started
276 * all the I/O from calling the completion routine too early.
277 */
278 atomic_set(&ioend->io_remaining, 1);
7d04a335 279 ioend->io_error = 0;
f6d6d4fc
CH
280 ioend->io_list = NULL;
281 ioend->io_type = type;
b677c210 282 ioend->io_inode = inode;
c1a073bd 283 ioend->io_buffer_head = NULL;
f6d6d4fc 284 ioend->io_buffer_tail = NULL;
0829c360
CH
285 ioend->io_offset = 0;
286 ioend->io_size = 0;
281627df 287 ioend->io_append_trans = NULL;
0829c360 288
5ec4fabb 289 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
290 return ioend;
291}
292
1da177e4
LT
293STATIC int
294xfs_map_blocks(
295 struct inode *inode,
296 loff_t offset,
207d0416 297 struct xfs_bmbt_irec *imap,
988ef927 298 int type)
1da177e4 299{
a206c817
CH
300 struct xfs_inode *ip = XFS_I(inode);
301 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 302 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
303 xfs_fileoff_t offset_fsb, end_fsb;
304 int error = 0;
a206c817
CH
305 int bmapi_flags = XFS_BMAPI_ENTIRE;
306 int nimaps = 1;
307
308 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 309 return -EIO;
a206c817 310
0d882a36 311 if (type == XFS_IO_UNWRITTEN)
a206c817 312 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 313
988ef927 314 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
315 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
316 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 317 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 318
d2c28191
DC
319 if (offset + count > mp->m_super->s_maxbytes)
320 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
321 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
322 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
323 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
324 imap, &nimaps, bmapi_flags);
8ff2957d 325 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 326
8ff2957d 327 if (error)
2451337d 328 return error;
a206c817 329
0d882a36 330 if (type == XFS_IO_DELALLOC &&
8ff2957d 331 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 332 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
333 if (!error)
334 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 335 return error;
a206c817
CH
336 }
337
8ff2957d 338#ifdef DEBUG
0d882a36 339 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
340 ASSERT(nimaps);
341 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
342 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
343 }
344#endif
345 if (nimaps)
346 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
347 return 0;
1da177e4
LT
348}
349
fbcc0256 350STATIC bool
558e6891 351xfs_imap_valid(
8699bb0a 352 struct inode *inode,
207d0416 353 struct xfs_bmbt_irec *imap,
558e6891 354 xfs_off_t offset)
1da177e4 355{
558e6891 356 offset >>= inode->i_blkbits;
8699bb0a 357
558e6891
CH
358 return offset >= imap->br_startoff &&
359 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
360}
361
f6d6d4fc
CH
362/*
363 * BIO completion handler for buffered IO.
364 */
782e3b3b 365STATIC void
f6d6d4fc 366xfs_end_bio(
4246a0b6 367 struct bio *bio)
f6d6d4fc
CH
368{
369 xfs_ioend_t *ioend = bio->bi_private;
370
77a78806
LT
371 if (!ioend->io_error)
372 ioend->io_error = bio->bi_error;
f6d6d4fc
CH
373
374 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
375 bio->bi_private = NULL;
376 bio->bi_end_io = NULL;
f6d6d4fc 377 bio_put(bio);
7d04a335 378
209fb87a 379 xfs_finish_ioend(ioend);
f6d6d4fc
CH
380}
381
382STATIC void
383xfs_submit_ioend_bio(
06342cf8
CH
384 struct writeback_control *wbc,
385 xfs_ioend_t *ioend,
386 struct bio *bio)
f6d6d4fc
CH
387{
388 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
389 bio->bi_private = ioend;
390 bio->bi_end_io = xfs_end_bio;
721a9602 391 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
392}
393
394STATIC struct bio *
395xfs_alloc_ioend_bio(
396 struct buffer_head *bh)
397{
b54ffb73 398 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
f6d6d4fc
CH
399
400 ASSERT(bio->bi_private == NULL);
4f024f37 401 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 402 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
403 return bio;
404}
405
406STATIC void
407xfs_start_buffer_writeback(
408 struct buffer_head *bh)
409{
410 ASSERT(buffer_mapped(bh));
411 ASSERT(buffer_locked(bh));
412 ASSERT(!buffer_delay(bh));
413 ASSERT(!buffer_unwritten(bh));
414
415 mark_buffer_async_write(bh);
416 set_buffer_uptodate(bh);
417 clear_buffer_dirty(bh);
418}
419
420STATIC void
421xfs_start_page_writeback(
422 struct page *page,
f6d6d4fc
CH
423 int clear_dirty,
424 int buffers)
425{
426 ASSERT(PageLocked(page));
427 ASSERT(!PageWriteback(page));
0d085a52
DC
428
429 /*
430 * if the page was not fully cleaned, we need to ensure that the higher
431 * layers come back to it correctly. That means we need to keep the page
432 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
433 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
434 * write this page in this writeback sweep will be made.
435 */
436 if (clear_dirty) {
92132021 437 clear_page_dirty_for_io(page);
0d085a52
DC
438 set_page_writeback(page);
439 } else
440 set_page_writeback_keepwrite(page);
441
f6d6d4fc 442 unlock_page(page);
0d085a52 443
1f7decf6
FW
444 /* If no buffers on the page are to be written, finish it here */
445 if (!buffers)
f6d6d4fc 446 end_page_writeback(page);
f6d6d4fc
CH
447}
448
c7c1a7d8 449static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
450{
451 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
452}
453
454/*
d88992f6
DC
455 * Submit all of the bios for all of the ioends we have saved up, covering the
456 * initial writepage page and also any probed pages.
457 *
458 * Because we may have multiple ioends spanning a page, we need to start
459 * writeback on all the buffers before we submit them for I/O. If we mark the
460 * buffers as we got, then we can end up with a page that only has buffers
461 * marked async write and I/O complete on can occur before we mark the other
462 * buffers async write.
463 *
464 * The end result of this is that we trip a bug in end_page_writeback() because
465 * we call it twice for the one page as the code in end_buffer_async_write()
466 * assumes that all buffers on the page are started at the same time.
467 *
468 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 469 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
470 *
471 * If @fail is non-zero, it means that we have a situation where some part of
472 * the submission process has failed after we have marked paged for writeback
473 * and unlocked them. In this situation, we need to fail the ioend chain rather
474 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
475 */
476STATIC void
477xfs_submit_ioend(
06342cf8 478 struct writeback_control *wbc,
7bf7f352
DC
479 xfs_ioend_t *ioend,
480 int fail)
f6d6d4fc 481{
d88992f6 482 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
483 xfs_ioend_t *next;
484 struct buffer_head *bh;
485 struct bio *bio;
486 sector_t lastblock = 0;
487
d88992f6
DC
488 /* Pass 1 - start writeback */
489 do {
490 next = ioend->io_list;
221cb251 491 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 492 xfs_start_buffer_writeback(bh);
d88992f6
DC
493 } while ((ioend = next) != NULL);
494
495 /* Pass 2 - submit I/O */
496 ioend = head;
f6d6d4fc
CH
497 do {
498 next = ioend->io_list;
499 bio = NULL;
500
7bf7f352
DC
501 /*
502 * If we are failing the IO now, just mark the ioend with an
503 * error and finish it. This will run IO completion immediately
504 * as there is only one reference to the ioend at this point in
505 * time.
506 */
507 if (fail) {
2451337d 508 ioend->io_error = fail;
7bf7f352
DC
509 xfs_finish_ioend(ioend);
510 continue;
511 }
512
f6d6d4fc 513 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
514
515 if (!bio) {
516 retry:
517 bio = xfs_alloc_ioend_bio(bh);
518 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 519 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
520 goto retry;
521 }
522
c7c1a7d8 523 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 524 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
525 goto retry;
526 }
527
528 lastblock = bh->b_blocknr;
529 }
530 if (bio)
06342cf8 531 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 532 xfs_finish_ioend(ioend);
f6d6d4fc
CH
533 } while ((ioend = next) != NULL);
534}
535
f6d6d4fc
CH
536/*
537 * Test to see if we've been building up a completion structure for
538 * earlier buffers -- if so, we try to append to this ioend if we
539 * can, otherwise we finish off any current ioend and start another.
540 * Return true if we've finished the given ioend.
541 */
542STATIC void
543xfs_add_to_ioend(
544 struct inode *inode,
545 struct buffer_head *bh,
7336cea8 546 xfs_off_t offset,
fbcc0256 547 struct xfs_writepage_ctx *wpc)
f6d6d4fc 548{
fbcc0256
DC
549 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
550 bh->b_blocknr != wpc->last_block + 1) {
551 struct xfs_ioend *new;
552
553 new = xfs_alloc_ioend(inode, wpc->io_type);
554 new->io_offset = offset;
555 new->io_buffer_head = bh;
556 new->io_buffer_tail = bh;
557 if (wpc->ioend)
558 wpc->ioend->io_list = new;
559 wpc->ioend = new;
f6d6d4fc 560 } else {
fbcc0256
DC
561 wpc->ioend->io_buffer_tail->b_private = bh;
562 wpc->ioend->io_buffer_tail = bh;
f6d6d4fc
CH
563 }
564
565 bh->b_private = NULL;
fbcc0256
DC
566 wpc->ioend->io_size += bh->b_size;
567 wpc->last_block = bh->b_blocknr;
f6d6d4fc
CH
568}
569
87cbc49c
NS
570STATIC void
571xfs_map_buffer(
046f1685 572 struct inode *inode,
87cbc49c 573 struct buffer_head *bh,
207d0416 574 struct xfs_bmbt_irec *imap,
046f1685 575 xfs_off_t offset)
87cbc49c
NS
576{
577 sector_t bn;
8699bb0a 578 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
579 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
580 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 581
207d0416
CH
582 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
583 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 584
e513182d 585 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 586 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 587
046f1685 588 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
589
590 bh->b_blocknr = bn;
591 set_buffer_mapped(bh);
592}
593
1da177e4
LT
594STATIC void
595xfs_map_at_offset(
046f1685 596 struct inode *inode,
1da177e4 597 struct buffer_head *bh,
207d0416 598 struct xfs_bmbt_irec *imap,
046f1685 599 xfs_off_t offset)
1da177e4 600{
207d0416
CH
601 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
602 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 603
207d0416 604 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
605 set_buffer_mapped(bh);
606 clear_buffer_delay(bh);
f6d6d4fc 607 clear_buffer_unwritten(bh);
1da177e4
LT
608}
609
1da177e4 610/*
a49935f2
DC
611 * Test if a given page contains at least one buffer of a given @type.
612 * If @check_all_buffers is true, then we walk all the buffers in the page to
613 * try to find one of the type passed in. If it is not set, then the caller only
614 * needs to check the first buffer on the page for a match.
1da177e4 615 */
a49935f2 616STATIC bool
6ffc4db5 617xfs_check_page_type(
10ce4444 618 struct page *page,
a49935f2
DC
619 unsigned int type,
620 bool check_all_buffers)
1da177e4 621{
a49935f2
DC
622 struct buffer_head *bh;
623 struct buffer_head *head;
1da177e4 624
a49935f2
DC
625 if (PageWriteback(page))
626 return false;
627 if (!page->mapping)
628 return false;
629 if (!page_has_buffers(page))
630 return false;
1da177e4 631
a49935f2
DC
632 bh = head = page_buffers(page);
633 do {
634 if (buffer_unwritten(bh)) {
635 if (type == XFS_IO_UNWRITTEN)
636 return true;
637 } else if (buffer_delay(bh)) {
805eeb8e 638 if (type == XFS_IO_DELALLOC)
a49935f2
DC
639 return true;
640 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 641 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
642 return true;
643 }
1da177e4 644
a49935f2
DC
645 /* If we are only checking the first buffer, we are done now. */
646 if (!check_all_buffers)
647 break;
648 } while ((bh = bh->b_this_page) != head);
1da177e4 649
a49935f2 650 return false;
1da177e4
LT
651}
652
1da177e4
LT
653/*
654 * Allocate & map buffers for page given the extent map. Write it out.
655 * except for the original page of a writepage, this is called on
656 * delalloc/unwritten pages only, for the original page it is possible
657 * that the page has no mapping at all.
658 */
f6d6d4fc 659STATIC int
1da177e4
LT
660xfs_convert_page(
661 struct inode *inode,
662 struct page *page,
10ce4444 663 loff_t tindex,
fbcc0256 664 struct xfs_writepage_ctx *wpc,
2fa24f92 665 struct writeback_control *wbc)
1da177e4 666{
f6d6d4fc 667 struct buffer_head *bh, *head;
9260dc6b
CH
668 xfs_off_t end_offset;
669 unsigned long p_offset;
24e17b5f 670 int len, page_dirty;
f6d6d4fc 671 int count = 0, done = 0, uptodate = 1;
fbcc0256 672 xfs_off_t offset = page_offset(page);
1da177e4 673
10ce4444
CH
674 if (page->index != tindex)
675 goto fail;
529ae9aa 676 if (!trylock_page(page))
10ce4444
CH
677 goto fail;
678 if (PageWriteback(page))
679 goto fail_unlock_page;
680 if (page->mapping != inode->i_mapping)
681 goto fail_unlock_page;
fbcc0256 682 if (!xfs_check_page_type(page, wpc->ioend->io_type, false))
10ce4444
CH
683 goto fail_unlock_page;
684
24e17b5f
NS
685 /*
686 * page_dirty is initially a count of buffers on the page before
c41564b5 687 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
688 *
689 * Derivation:
690 *
691 * End offset is the highest offset that this page should represent.
692 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
693 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
694 * hence give us the correct page_dirty count. On any other page,
695 * it will be zero and in that case we need page_dirty to be the
696 * count of buffers on the page.
24e17b5f 697 */
9260dc6b
CH
698 end_offset = min_t(unsigned long long,
699 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
700 i_size_read(inode));
701
480d7467
DC
702 /*
703 * If the current map does not span the entire page we are about to try
704 * to write, then give up. The only way we can write a page that spans
705 * multiple mappings in a single writeback iteration is via the
706 * xfs_vm_writepage() function. Data integrity writeback requires the
707 * entire page to be written in a single attempt, otherwise the part of
708 * the page we don't write here doesn't get written as part of the data
709 * integrity sync.
710 *
711 * For normal writeback, we also don't attempt to write partial pages
712 * here as it simply means that write_cache_pages() will see it under
713 * writeback and ignore the page until some point in the future, at
714 * which time this will be the only page in the file that needs
715 * writeback. Hence for more optimal IO patterns, we should always
716 * avoid partial page writeback due to multiple mappings on a page here.
717 */
fbcc0256 718 if (!xfs_imap_valid(inode, &wpc->imap, end_offset))
480d7467
DC
719 goto fail_unlock_page;
720
24e17b5f 721 len = 1 << inode->i_blkbits;
9260dc6b
CH
722 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
723 PAGE_CACHE_SIZE);
724 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
725 page_dirty = p_offset / len;
24e17b5f 726
a49935f2
DC
727 /*
728 * The moment we find a buffer that doesn't match our current type
729 * specification or can't be written, abort the loop and start
730 * writeback. As per the above xfs_imap_valid() check, only
731 * xfs_vm_writepage() can handle partial page writeback fully - we are
732 * limited here to the buffers that are contiguous with the current
733 * ioend, and hence a buffer we can't write breaks that contiguity and
734 * we have to defer the rest of the IO to xfs_vm_writepage().
735 */
1da177e4
LT
736 bh = head = page_buffers(page);
737 do {
9260dc6b 738 if (offset >= end_offset)
1da177e4 739 break;
f6d6d4fc
CH
740 if (!buffer_uptodate(bh))
741 uptodate = 0;
742 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
743 done = 1;
a49935f2 744 break;
f6d6d4fc
CH
745 }
746
2fa24f92
CH
747 if (buffer_unwritten(bh) || buffer_delay(bh) ||
748 buffer_mapped(bh)) {
9260dc6b 749 if (buffer_unwritten(bh))
fbcc0256 750 wpc->io_type = XFS_IO_UNWRITTEN;
2fa24f92 751 else if (buffer_delay(bh))
fbcc0256 752 wpc->io_type = XFS_IO_DELALLOC;
2fa24f92 753 else
fbcc0256 754 wpc->io_type = XFS_IO_OVERWRITE;
9260dc6b 755
a49935f2
DC
756 /*
757 * imap should always be valid because of the above
758 * partial page end_offset check on the imap.
759 */
fbcc0256 760 ASSERT(xfs_imap_valid(inode, &wpc->imap, offset));
9260dc6b 761
ecff71e6 762 lock_buffer(bh);
fbcc0256
DC
763 if (wpc->io_type != XFS_IO_OVERWRITE)
764 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
765 xfs_add_to_ioend(inode, bh, offset, wpc);
89f3b363 766
9260dc6b
CH
767 page_dirty--;
768 count++;
769 } else {
2fa24f92 770 done = 1;
a49935f2 771 break;
1da177e4 772 }
7336cea8 773 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 774
f6d6d4fc
CH
775 if (uptodate && bh == head)
776 SetPageUptodate(page);
777
89f3b363 778 if (count) {
efceab1d
DC
779 if (--wbc->nr_to_write <= 0 &&
780 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 781 done = 1;
1da177e4 782 }
89f3b363 783 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
784
785 return done;
10ce4444
CH
786 fail_unlock_page:
787 unlock_page(page);
788 fail:
789 return 1;
1da177e4
LT
790}
791
792/*
793 * Convert & write out a cluster of pages in the same extent as defined
794 * by mp and following the start page.
795 */
796STATIC void
797xfs_cluster_write(
798 struct inode *inode,
799 pgoff_t tindex,
fbcc0256 800 struct xfs_writepage_ctx *wpc,
1da177e4 801 struct writeback_control *wbc,
1da177e4
LT
802 pgoff_t tlast)
803{
10ce4444
CH
804 struct pagevec pvec;
805 int done = 0, i;
1da177e4 806
10ce4444
CH
807 pagevec_init(&pvec, 0);
808 while (!done && tindex <= tlast) {
809 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
810
811 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 812 break;
10ce4444
CH
813
814 for (i = 0; i < pagevec_count(&pvec); i++) {
815 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
fbcc0256 816 wpc, wbc);
10ce4444
CH
817 if (done)
818 break;
819 }
820
821 pagevec_release(&pvec);
822 cond_resched();
1da177e4
LT
823 }
824}
825
3ed3a434
DC
826STATIC void
827xfs_vm_invalidatepage(
828 struct page *page,
d47992f8
LC
829 unsigned int offset,
830 unsigned int length)
3ed3a434 831{
34097dfe
LC
832 trace_xfs_invalidatepage(page->mapping->host, page, offset,
833 length);
834 block_invalidatepage(page, offset, length);
3ed3a434
DC
835}
836
837/*
838 * If the page has delalloc buffers on it, we need to punch them out before we
839 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
840 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
841 * is done on that same region - the delalloc extent is returned when none is
842 * supposed to be there.
843 *
844 * We prevent this by truncating away the delalloc regions on the page before
845 * invalidating it. Because they are delalloc, we can do this without needing a
846 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
847 * truncation without a transaction as there is no space left for block
848 * reservation (typically why we see a ENOSPC in writeback).
849 *
850 * This is not a performance critical path, so for now just do the punching a
851 * buffer head at a time.
852 */
853STATIC void
854xfs_aops_discard_page(
855 struct page *page)
856{
857 struct inode *inode = page->mapping->host;
858 struct xfs_inode *ip = XFS_I(inode);
859 struct buffer_head *bh, *head;
860 loff_t offset = page_offset(page);
3ed3a434 861
a49935f2 862 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
863 goto out_invalidate;
864
e8c3753c
DC
865 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
866 goto out_invalidate;
867
4f10700a 868 xfs_alert(ip->i_mount,
3ed3a434
DC
869 "page discard on page %p, inode 0x%llx, offset %llu.",
870 page, ip->i_ino, offset);
871
872 xfs_ilock(ip, XFS_ILOCK_EXCL);
873 bh = head = page_buffers(page);
874 do {
3ed3a434 875 int error;
c726de44 876 xfs_fileoff_t start_fsb;
3ed3a434
DC
877
878 if (!buffer_delay(bh))
879 goto next_buffer;
880
c726de44
DC
881 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
882 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
883 if (error) {
884 /* something screwed, just bail */
e8c3753c 885 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 886 xfs_alert(ip->i_mount,
3ed3a434 887 "page discard unable to remove delalloc mapping.");
e8c3753c 888 }
3ed3a434
DC
889 break;
890 }
891next_buffer:
c726de44 892 offset += 1 << inode->i_blkbits;
3ed3a434
DC
893
894 } while ((bh = bh->b_this_page) != head);
895
896 xfs_iunlock(ip, XFS_ILOCK_EXCL);
897out_invalidate:
d47992f8 898 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
899 return;
900}
901
150d5be0
DC
902static int
903xfs_writepage_submit(
fbcc0256 904 struct xfs_writepage_ctx *wpc,
150d5be0
DC
905 struct writeback_control *wbc,
906 int status)
907{
908 struct blk_plug plug;
909
910 /* Reserve log space if we might write beyond the on-disk inode size. */
fbcc0256
DC
911 if (!status && wpc->ioend && wpc->ioend->io_type != XFS_IO_UNWRITTEN &&
912 xfs_ioend_is_append(wpc->ioend))
913 status = xfs_setfilesize_trans_alloc(wpc->ioend);
150d5be0 914
fbcc0256 915 if (wpc->iohead) {
150d5be0 916 blk_start_plug(&plug);
fbcc0256 917 xfs_submit_ioend(wbc, wpc->iohead, status);
150d5be0
DC
918 blk_finish_plug(&plug);
919 }
920 return status;
921}
922
1da177e4 923/*
89f3b363
CH
924 * Write out a dirty page.
925 *
926 * For delalloc space on the page we need to allocate space and flush it.
927 * For unwritten space on the page we need to start the conversion to
928 * regular allocated space.
89f3b363 929 * For any other dirty buffer heads on the page we should flush them.
1da177e4 930 */
1da177e4 931STATIC int
fbcc0256 932xfs_do_writepage(
89f3b363 933 struct page *page,
fbcc0256
DC
934 struct writeback_control *wbc,
935 void *data)
1da177e4 936{
fbcc0256 937 struct xfs_writepage_ctx *wpc = data;
89f3b363 938 struct inode *inode = page->mapping->host;
f6d6d4fc 939 struct buffer_head *bh, *head;
1da177e4 940 loff_t offset;
1da177e4 941 __uint64_t end_offset;
bd1556a1 942 pgoff_t end_index, last_index;
ed1e7b7e 943 ssize_t len;
fbcc0256 944 int err, uptodate = 1;
89f3b363 945 int count = 0;
89f3b363 946
34097dfe 947 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 948
20cb52eb
CH
949 ASSERT(page_has_buffers(page));
950
89f3b363
CH
951 /*
952 * Refuse to write the page out if we are called from reclaim context.
953 *
d4f7a5cb
CH
954 * This avoids stack overflows when called from deeply used stacks in
955 * random callers for direct reclaim or memcg reclaim. We explicitly
956 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 957 *
94054fa3
MG
958 * This should never happen except in the case of a VM regression so
959 * warn about it.
89f3b363 960 */
94054fa3
MG
961 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
962 PF_MEMALLOC))
b5420f23 963 goto redirty;
1da177e4 964
89f3b363 965 /*
680a647b
CH
966 * Given that we do not allow direct reclaim to call us, we should
967 * never be called while in a filesystem transaction.
89f3b363 968 */
448011e2 969 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 970 goto redirty;
89f3b363 971
1da177e4
LT
972 /* Is this page beyond the end of the file? */
973 offset = i_size_read(inode);
974 end_index = offset >> PAGE_CACHE_SHIFT;
975 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
8695d27e
JL
976
977 /*
978 * The page index is less than the end_index, adjust the end_offset
979 * to the highest offset that this page should represent.
980 * -----------------------------------------------------
981 * | file mapping | <EOF> |
982 * -----------------------------------------------------
983 * | Page ... | Page N-2 | Page N-1 | Page N | |
984 * ^--------------------------------^----------|--------
985 * | desired writeback range | see else |
986 * ---------------------------------^------------------|
987 */
988 if (page->index < end_index)
989 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
990 else {
991 /*
992 * Check whether the page to write out is beyond or straddles
993 * i_size or not.
994 * -------------------------------------------------------
995 * | file mapping | <EOF> |
996 * -------------------------------------------------------
997 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
998 * ^--------------------------------^-----------|---------
999 * | | Straddles |
1000 * ---------------------------------^-----------|--------|
1001 */
6b7a03f0
CH
1002 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1003
1004 /*
ff9a28f6
JK
1005 * Skip the page if it is fully outside i_size, e.g. due to a
1006 * truncate operation that is in progress. We must redirty the
1007 * page so that reclaim stops reclaiming it. Otherwise
1008 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1009 *
1010 * Note that the end_index is unsigned long, it would overflow
1011 * if the given offset is greater than 16TB on 32-bit system
1012 * and if we do check the page is fully outside i_size or not
1013 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1014 * will be evaluated to 0. Hence this page will be redirtied
1015 * and be written out repeatedly which would result in an
1016 * infinite loop, the user program that perform this operation
1017 * will hang. Instead, we can verify this situation by checking
1018 * if the page to write is totally beyond the i_size or if it's
1019 * offset is just equal to the EOF.
6b7a03f0 1020 */
8695d27e
JL
1021 if (page->index > end_index ||
1022 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1023 goto redirty;
6b7a03f0
CH
1024
1025 /*
1026 * The page straddles i_size. It must be zeroed out on each
1027 * and every writepage invocation because it may be mmapped.
1028 * "A file is mapped in multiples of the page size. For a file
8695d27e 1029 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1030 * memory is zeroed when mapped, and writes to that region are
1031 * not written out to the file."
1032 */
1033 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
1034
1035 /* Adjust the end_offset to the end of file */
1036 end_offset = offset;
1da177e4
LT
1037 }
1038
24e17b5f 1039 len = 1 << inode->i_blkbits;
24e17b5f 1040
24e17b5f 1041 bh = head = page_buffers(page);
f6d6d4fc 1042 offset = page_offset(page);
a206c817 1043
1da177e4
LT
1044 do {
1045 if (offset >= end_offset)
1046 break;
1047 if (!buffer_uptodate(bh))
1048 uptodate = 0;
1da177e4 1049
3d9b02e3 1050 /*
ece413f5
CH
1051 * set_page_dirty dirties all buffers in a page, independent
1052 * of their state. The dirty state however is entirely
1053 * meaningless for holes (!mapped && uptodate), so skip
1054 * buffers covering holes here.
3d9b02e3
ES
1055 */
1056 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
fbcc0256 1057 wpc->imap_valid = false;
3d9b02e3
ES
1058 continue;
1059 }
1060
aeea1b1f 1061 if (buffer_unwritten(bh)) {
fbcc0256
DC
1062 if (wpc->io_type != XFS_IO_UNWRITTEN) {
1063 wpc->io_type = XFS_IO_UNWRITTEN;
1064 wpc->imap_valid = false;
1da177e4 1065 }
aeea1b1f 1066 } else if (buffer_delay(bh)) {
fbcc0256
DC
1067 if (wpc->io_type != XFS_IO_DELALLOC) {
1068 wpc->io_type = XFS_IO_DELALLOC;
1069 wpc->imap_valid = false;
1da177e4 1070 }
89f3b363 1071 } else if (buffer_uptodate(bh)) {
fbcc0256
DC
1072 if (wpc->io_type != XFS_IO_OVERWRITE) {
1073 wpc->io_type = XFS_IO_OVERWRITE;
1074 wpc->imap_valid = false;
85da94c6 1075 }
aeea1b1f 1076 } else {
7d0fa3ec 1077 if (PageUptodate(page))
aeea1b1f 1078 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1079 /*
1080 * This buffer is not uptodate and will not be
1081 * written to disk. Ensure that we will put any
1082 * subsequent writeable buffers into a new
1083 * ioend.
1084 */
fbcc0256 1085 wpc->imap_valid = 0;
aeea1b1f
CH
1086 continue;
1087 }
d5cb48aa 1088
fbcc0256
DC
1089 if (wpc->imap_valid)
1090 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
1091 if (!wpc->imap_valid) {
1092 err = xfs_map_blocks(inode, offset, &wpc->imap,
1093 wpc->io_type);
aeea1b1f
CH
1094 if (err)
1095 goto error;
fbcc0256 1096 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
aeea1b1f 1097 }
fbcc0256 1098 if (wpc->imap_valid) {
ecff71e6 1099 lock_buffer(bh);
fbcc0256
DC
1100 if (wpc->io_type != XFS_IO_OVERWRITE)
1101 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
1102 xfs_add_to_ioend(inode, bh, offset, wpc);
aeea1b1f 1103 count++;
1da177e4 1104 }
f6d6d4fc 1105
fbcc0256
DC
1106 if (!wpc->iohead)
1107 wpc->iohead = wpc->ioend;
f6d6d4fc
CH
1108
1109 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1110
1111 if (uptodate && bh == head)
1112 SetPageUptodate(page);
1113
89f3b363 1114 xfs_start_page_writeback(page, 1, count);
1da177e4 1115
7bf7f352 1116 /* if there is no IO to be submitted for this page, we are done */
fbcc0256 1117 if (!count)
7bf7f352
DC
1118 return 0;
1119
fbcc0256 1120 ASSERT(wpc->iohead);
150d5be0 1121 ASSERT(err == 0);
7bf7f352
DC
1122
1123 /*
1124 * Any errors from this point onwards need tobe reported through the IO
1125 * completion path as we have marked the initial page as under writeback
1126 * and unlocked it.
1127 */
fbcc0256 1128 if (wpc->imap_valid) {
bd1556a1
CH
1129 xfs_off_t end_index;
1130
fbcc0256 1131 end_index = wpc->imap.br_startoff + wpc->imap.br_blockcount;
bd1556a1
CH
1132
1133 /* to bytes */
1134 end_index <<= inode->i_blkbits;
1135
1136 /* to pages */
1137 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1138
1139 /* check against file size */
1140 if (end_index > last_index)
1141 end_index = last_index;
8699bb0a 1142
fbcc0256 1143 xfs_cluster_write(inode, page->index + 1, wpc, wbc, end_index);
1da177e4 1144 }
fbcc0256 1145 return 0;
281627df 1146
150d5be0 1147error:
7bf7f352 1148 /*
150d5be0
DC
1149 * On error, we have to fail the iohead here because we buffers locked
1150 * in the ioend chain. If we don't do this, we'll deadlock invalidating
1151 * the page as that tries to lock the buffers on the page. Also, because
fbcc0256
DC
1152 * we may have set pages under writeback, we have to make sure we run
1153 * IO completion to mark the error state of the IO appropriately, so we
1154 * can't cancel the ioend directly here. That means we have to mark this
1155 * page as under writeback if we included any buffers from it in the
1156 * ioend chain so that completion treats it correctly.
1157 *
1158 * If we didn't include the page in the ioend, then we can simply
1159 * discard and unlock it as there are no other users of the page or it's
1160 * buffers right now. The caller will still need to trigger submission
1161 * of outstanding ioends on the writepage context so they are treated
1162 * correctly on error.
7bf7f352 1163 */
150d5be0
DC
1164 if (count)
1165 xfs_start_page_writeback(page, 0, count);
fbcc0256 1166 else {
150d5be0
DC
1167 xfs_aops_discard_page(page);
1168 ClearPageUptodate(page);
1169 unlock_page(page);
1170 }
1171 mapping_set_error(page->mapping, err);
1da177e4 1172 return err;
f51623b2 1173
b5420f23 1174redirty:
f51623b2
NS
1175 redirty_page_for_writepage(wbc, page);
1176 unlock_page(page);
1177 return 0;
f51623b2
NS
1178}
1179
fbcc0256
DC
1180STATIC int
1181xfs_vm_writepage(
1182 struct page *page,
1183 struct writeback_control *wbc)
1184{
1185 struct xfs_writepage_ctx wpc = {
1186 .io_type = XFS_IO_INVALID,
1187 };
1188 int ret;
1189
1190 ret = xfs_do_writepage(page, wbc, &wpc);
1191 return xfs_writepage_submit(&wpc, wbc, ret);
1192}
1193
7d4fb40a
NS
1194STATIC int
1195xfs_vm_writepages(
1196 struct address_space *mapping,
1197 struct writeback_control *wbc)
1198{
fbcc0256
DC
1199 struct xfs_writepage_ctx wpc = {
1200 .io_type = XFS_IO_INVALID,
1201 };
1202 int ret;
1203
b3aea4ed 1204 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
fbcc0256
DC
1205 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1206 return xfs_writepage_submit(&wpc, wbc, ret);
7d4fb40a
NS
1207}
1208
f51623b2
NS
1209/*
1210 * Called to move a page into cleanable state - and from there
89f3b363 1211 * to be released. The page should already be clean. We always
f51623b2
NS
1212 * have buffer heads in this call.
1213 *
89f3b363 1214 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1215 */
1216STATIC int
238f4c54 1217xfs_vm_releasepage(
f51623b2
NS
1218 struct page *page,
1219 gfp_t gfp_mask)
1220{
20cb52eb 1221 int delalloc, unwritten;
f51623b2 1222
34097dfe 1223 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1224
20cb52eb 1225 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1226
448011e2 1227 if (WARN_ON_ONCE(delalloc))
f51623b2 1228 return 0;
448011e2 1229 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1230 return 0;
1231
f51623b2
NS
1232 return try_to_free_buffers(page);
1233}
1234
a719370b 1235/*
a06c277a
DC
1236 * When we map a DIO buffer, we may need to attach an ioend that describes the
1237 * type of write IO we are doing. This passes to the completion function the
1238 * operations it needs to perform. If the mapping is for an overwrite wholly
1239 * within the EOF then we don't need an ioend and so we don't allocate one.
1240 * This avoids the unnecessary overhead of allocating and freeing ioends for
1241 * workloads that don't require transactions on IO completion.
d5cc2e3f
DC
1242 *
1243 * If we get multiple mappings in a single IO, we might be mapping different
1244 * types. But because the direct IO can only have a single private pointer, we
1245 * need to ensure that:
1246 *
a06c277a
DC
1247 * a) i) the ioend spans the entire region of unwritten mappings; or
1248 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
d5cc2e3f
DC
1249 * b) if it contains unwritten extents, it is *permanently* marked as such
1250 *
1251 * We could do this by chaining ioends like buffered IO does, but we only
1252 * actually get one IO completion callback from the direct IO, and that spans
1253 * the entire IO regardless of how many mappings and IOs are needed to complete
1254 * the DIO. There is only going to be one reference to the ioend and its life
1255 * cycle is constrained by the DIO completion code. hence we don't need
1256 * reference counting here.
3e12dbbd
DC
1257 *
1258 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1259 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1260 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1261 * extending the file size. We won't know for sure until IO completion is run
1262 * and the actual max write offset is communicated to the IO completion
1263 * routine.
1264 *
1265 * For DAX page faults, we are preparing to never see unwritten extents here,
1266 * nor should we ever extend the inode size. Hence we will soon have nothing to
1267 * do here for this case, ensuring we don't have to provide an IO completion
1268 * callback to free an ioend that we don't actually need for a fault into the
1269 * page at offset (2^63 - 1FSB) bytes.
a719370b 1270 */
3e12dbbd 1271
a719370b
DC
1272static void
1273xfs_map_direct(
1274 struct inode *inode,
1275 struct buffer_head *bh_result,
1276 struct xfs_bmbt_irec *imap,
3e12dbbd
DC
1277 xfs_off_t offset,
1278 bool dax_fault)
a719370b 1279{
d5cc2e3f
DC
1280 struct xfs_ioend *ioend;
1281 xfs_off_t size = bh_result->b_size;
1282 int type;
1283
1284 if (ISUNWRITTEN(imap))
1285 type = XFS_IO_UNWRITTEN;
1286 else
1287 type = XFS_IO_OVERWRITE;
1288
1289 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1290
3e12dbbd
DC
1291 if (dax_fault) {
1292 ASSERT(type == XFS_IO_OVERWRITE);
1293 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1294 imap);
1295 return;
1296 }
3e12dbbd 1297
d5cc2e3f
DC
1298 if (bh_result->b_private) {
1299 ioend = bh_result->b_private;
1300 ASSERT(ioend->io_size > 0);
1301 ASSERT(offset >= ioend->io_offset);
1302 if (offset + size > ioend->io_offset + ioend->io_size)
1303 ioend->io_size = offset - ioend->io_offset + size;
1304
1305 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1306 ioend->io_type = XFS_IO_UNWRITTEN;
1307
1308 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1309 ioend->io_size, ioend->io_type,
1310 imap);
a06c277a 1311 } else if (type == XFS_IO_UNWRITTEN ||
3e12dbbd
DC
1312 offset + size > i_size_read(inode) ||
1313 offset + size < 0) {
d5cc2e3f
DC
1314 ioend = xfs_alloc_ioend(inode, type);
1315 ioend->io_offset = offset;
1316 ioend->io_size = size;
a06c277a 1317
d5cc2e3f 1318 bh_result->b_private = ioend;
a06c277a 1319 set_buffer_defer_completion(bh_result);
d5cc2e3f
DC
1320
1321 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1322 imap);
a06c277a
DC
1323 } else {
1324 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1325 imap);
a719370b
DC
1326 }
1327}
1328
1fdca9c2
DC
1329/*
1330 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1331 * is, so that we can avoid repeated get_blocks calls.
1332 *
1333 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1334 * for blocks beyond EOF must be marked new so that sub block regions can be
1335 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1336 * was just allocated or is unwritten, otherwise the callers would overwrite
1337 * existing data with zeros. Hence we have to split the mapping into a range up
1338 * to and including EOF, and a second mapping for beyond EOF.
1339 */
1340static void
1341xfs_map_trim_size(
1342 struct inode *inode,
1343 sector_t iblock,
1344 struct buffer_head *bh_result,
1345 struct xfs_bmbt_irec *imap,
1346 xfs_off_t offset,
1347 ssize_t size)
1348{
1349 xfs_off_t mapping_size;
1350
1351 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1352 mapping_size <<= inode->i_blkbits;
1353
1354 ASSERT(mapping_size > 0);
1355 if (mapping_size > size)
1356 mapping_size = size;
1357 if (offset < i_size_read(inode) &&
1358 offset + mapping_size >= i_size_read(inode)) {
1359 /* limit mapping to block that spans EOF */
1360 mapping_size = roundup_64(i_size_read(inode) - offset,
1361 1 << inode->i_blkbits);
1362 }
1363 if (mapping_size > LONG_MAX)
1364 mapping_size = LONG_MAX;
1365
1366 bh_result->b_size = mapping_size;
1367}
1368
1da177e4 1369STATIC int
c2536668 1370__xfs_get_blocks(
1da177e4
LT
1371 struct inode *inode,
1372 sector_t iblock,
1da177e4
LT
1373 struct buffer_head *bh_result,
1374 int create,
3e12dbbd
DC
1375 bool direct,
1376 bool dax_fault)
1da177e4 1377{
a206c817
CH
1378 struct xfs_inode *ip = XFS_I(inode);
1379 struct xfs_mount *mp = ip->i_mount;
1380 xfs_fileoff_t offset_fsb, end_fsb;
1381 int error = 0;
1382 int lockmode = 0;
207d0416 1383 struct xfs_bmbt_irec imap;
a206c817 1384 int nimaps = 1;
fdc7ed75
NS
1385 xfs_off_t offset;
1386 ssize_t size;
207d0416 1387 int new = 0;
a206c817
CH
1388
1389 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1390 return -EIO;
1da177e4 1391
fdc7ed75 1392 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1393 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1394 size = bh_result->b_size;
364f358a
LM
1395
1396 if (!create && direct && offset >= i_size_read(inode))
1397 return 0;
1398
507630b2
DC
1399 /*
1400 * Direct I/O is usually done on preallocated files, so try getting
1401 * a block mapping without an exclusive lock first. For buffered
1402 * writes we already have the exclusive iolock anyway, so avoiding
1403 * a lock roundtrip here by taking the ilock exclusive from the
1404 * beginning is a useful micro optimization.
1405 */
1406 if (create && !direct) {
a206c817
CH
1407 lockmode = XFS_ILOCK_EXCL;
1408 xfs_ilock(ip, lockmode);
1409 } else {
309ecac8 1410 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1411 }
f2bde9b8 1412
d2c28191
DC
1413 ASSERT(offset <= mp->m_super->s_maxbytes);
1414 if (offset + size > mp->m_super->s_maxbytes)
1415 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1416 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1417 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1418
5c8ed202
DC
1419 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1420 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1421 if (error)
a206c817
CH
1422 goto out_unlock;
1423
1ca19157 1424 /* for DAX, we convert unwritten extents directly */
a206c817
CH
1425 if (create &&
1426 (!nimaps ||
1427 (imap.br_startblock == HOLESTARTBLOCK ||
1ca19157
DC
1428 imap.br_startblock == DELAYSTARTBLOCK) ||
1429 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
aff3a9ed 1430 if (direct || xfs_get_extsz_hint(ip)) {
507630b2 1431 /*
009c6e87
BF
1432 * xfs_iomap_write_direct() expects the shared lock. It
1433 * is unlocked on return.
507630b2 1434 */
009c6e87
BF
1435 if (lockmode == XFS_ILOCK_EXCL)
1436 xfs_ilock_demote(ip, lockmode);
1437
a206c817
CH
1438 error = xfs_iomap_write_direct(ip, offset, size,
1439 &imap, nimaps);
507630b2 1440 if (error)
2451337d 1441 return error;
d3bc815a 1442 new = 1;
6b698ede 1443
a206c817 1444 } else {
507630b2
DC
1445 /*
1446 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1447 * we can go on without dropping the lock here. If we
1448 * are allocating a new delalloc block, make sure that
1449 * we set the new flag so that we mark the buffer new so
1450 * that we know that it is newly allocated if the write
1451 * fails.
507630b2 1452 */
d3bc815a
DC
1453 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1454 new = 1;
a206c817 1455 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1456 if (error)
1457 goto out_unlock;
1458
1459 xfs_iunlock(ip, lockmode);
a206c817 1460 }
d5cc2e3f
DC
1461 trace_xfs_get_blocks_alloc(ip, offset, size,
1462 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1463 : XFS_IO_DELALLOC, &imap);
a206c817 1464 } else if (nimaps) {
d5cc2e3f
DC
1465 trace_xfs_get_blocks_found(ip, offset, size,
1466 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1467 : XFS_IO_OVERWRITE, &imap);
507630b2 1468 xfs_iunlock(ip, lockmode);
a206c817
CH
1469 } else {
1470 trace_xfs_get_blocks_notfound(ip, offset, size);
1471 goto out_unlock;
1472 }
1da177e4 1473
1ca19157
DC
1474 if (IS_DAX(inode) && create) {
1475 ASSERT(!ISUNWRITTEN(&imap));
1476 /* zeroing is not needed at a higher layer */
1477 new = 0;
1478 }
1479
1fdca9c2
DC
1480 /* trim mapping down to size requested */
1481 if (direct || size > (1 << inode->i_blkbits))
1482 xfs_map_trim_size(inode, iblock, bh_result,
1483 &imap, offset, size);
1484
a719370b
DC
1485 /*
1486 * For unwritten extents do not report a disk address in the buffered
1487 * read case (treat as if we're reading into a hole).
1488 */
207d0416 1489 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1490 imap.br_startblock != DELAYSTARTBLOCK &&
1491 (create || !ISUNWRITTEN(&imap))) {
1492 xfs_map_buffer(inode, bh_result, &imap, offset);
1493 if (ISUNWRITTEN(&imap))
1da177e4 1494 set_buffer_unwritten(bh_result);
a719370b
DC
1495 /* direct IO needs special help */
1496 if (create && direct)
3e12dbbd
DC
1497 xfs_map_direct(inode, bh_result, &imap, offset,
1498 dax_fault);
1da177e4
LT
1499 }
1500
c2536668
NS
1501 /*
1502 * If this is a realtime file, data may be on a different device.
1503 * to that pointed to from the buffer_head b_bdev currently.
1504 */
046f1685 1505 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1506
c2536668 1507 /*
549054af
DC
1508 * If we previously allocated a block out beyond eof and we are now
1509 * coming back to use it then we will need to flag it as new even if it
1510 * has a disk address.
1511 *
1512 * With sub-block writes into unwritten extents we also need to mark
1513 * the buffer as new so that the unwritten parts of the buffer gets
1514 * correctly zeroed.
1da177e4
LT
1515 */
1516 if (create &&
1517 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1518 (offset >= i_size_read(inode)) ||
207d0416 1519 (new || ISUNWRITTEN(&imap))))
1da177e4 1520 set_buffer_new(bh_result);
1da177e4 1521
207d0416 1522 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1523 BUG_ON(direct);
1524 if (create) {
1525 set_buffer_uptodate(bh_result);
1526 set_buffer_mapped(bh_result);
1527 set_buffer_delay(bh_result);
1528 }
1529 }
1530
1da177e4 1531 return 0;
a206c817
CH
1532
1533out_unlock:
1534 xfs_iunlock(ip, lockmode);
2451337d 1535 return error;
1da177e4
LT
1536}
1537
1538int
c2536668 1539xfs_get_blocks(
1da177e4
LT
1540 struct inode *inode,
1541 sector_t iblock,
1542 struct buffer_head *bh_result,
1543 int create)
1544{
3e12dbbd 1545 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1da177e4
LT
1546}
1547
6b698ede 1548int
e4c573bb 1549xfs_get_blocks_direct(
1da177e4
LT
1550 struct inode *inode,
1551 sector_t iblock,
1da177e4
LT
1552 struct buffer_head *bh_result,
1553 int create)
1554{
3e12dbbd
DC
1555 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1556}
1557
1558int
1559xfs_get_blocks_dax_fault(
1560 struct inode *inode,
1561 sector_t iblock,
1562 struct buffer_head *bh_result,
1563 int create)
1564{
1565 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1da177e4
LT
1566}
1567
6b698ede
DC
1568static void
1569__xfs_end_io_direct_write(
1570 struct inode *inode,
1571 struct xfs_ioend *ioend,
209fb87a 1572 loff_t offset,
6b698ede 1573 ssize_t size)
f0973863 1574{
6b698ede 1575 struct xfs_mount *mp = XFS_I(inode)->i_mount;
a06c277a 1576
6b698ede 1577 if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
6dfa1b67 1578 goto out_end_io;
f0973863 1579
2813d682 1580 /*
d5cc2e3f
DC
1581 * dio completion end_io functions are only called on writes if more
1582 * than 0 bytes was written.
2813d682 1583 */
d5cc2e3f
DC
1584 ASSERT(size > 0);
1585
1586 /*
1587 * The ioend only maps whole blocks, while the IO may be sector aligned.
a06c277a
DC
1588 * Hence the ioend offset/size may not match the IO offset/size exactly.
1589 * Because we don't map overwrites within EOF into the ioend, the offset
1590 * may not match, but only if the endio spans EOF. Either way, write
1591 * the IO sizes into the ioend so that completion processing does the
1592 * right thing.
d5cc2e3f 1593 */
d5cc2e3f
DC
1594 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1595 ioend->io_size = size;
1596 ioend->io_offset = offset;
f0973863 1597
2813d682 1598 /*
6dfa1b67
DC
1599 * The ioend tells us whether we are doing unwritten extent conversion
1600 * or an append transaction that updates the on-disk file size. These
1601 * cases are the only cases where we should *potentially* be needing
a06c277a 1602 * to update the VFS inode size.
6dfa1b67
DC
1603 *
1604 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1605 * with the on-disk inode size being outside the in-core inode size. We
1606 * have no other method of updating EOF for AIO, so always do it here
1607 * if necessary.
b9d59846
DC
1608 *
1609 * We need to lock the test/set EOF update as we can be racing with
1610 * other IO completions here to update the EOF. Failing to serialise
1611 * here can result in EOF moving backwards and Bad Things Happen when
1612 * that occurs.
2813d682 1613 */
6b698ede 1614 spin_lock(&XFS_I(inode)->i_flags_lock);
2ba66237
CH
1615 if (offset + size > i_size_read(inode))
1616 i_size_write(inode, offset + size);
6b698ede 1617 spin_unlock(&XFS_I(inode)->i_flags_lock);
2813d682 1618
f0973863 1619 /*
6dfa1b67
DC
1620 * If we are doing an append IO that needs to update the EOF on disk,
1621 * do the transaction reserve now so we can use common end io
1622 * processing. Stashing the error (if there is one) in the ioend will
1623 * result in the ioend processing passing on the error if it is
1624 * possible as we can't return it from here.
f0973863 1625 */
a06c277a 1626 if (ioend->io_type == XFS_IO_OVERWRITE)
6dfa1b67 1627 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
209fb87a 1628
6dfa1b67
DC
1629out_end_io:
1630 xfs_end_io(&ioend->io_work);
1631 return;
f0973863
CH
1632}
1633
6b698ede
DC
1634/*
1635 * Complete a direct I/O write request.
1636 *
1637 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1638 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1639 * wholly within the EOF and so there is nothing for us to do. Note that in this
1640 * case the completion can be called in interrupt context, whereas if we have an
1641 * ioend we will always be called in task context (i.e. from a workqueue).
1642 */
1643STATIC void
1644xfs_end_io_direct_write(
1645 struct kiocb *iocb,
1646 loff_t offset,
1647 ssize_t size,
1648 void *private)
1649{
1650 struct inode *inode = file_inode(iocb->ki_filp);
1651 struct xfs_ioend *ioend = private;
1652
1653 trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1654 ioend ? ioend->io_type : 0, NULL);
1655
1656 if (!ioend) {
1657 ASSERT(offset + size <= i_size_read(inode));
1658 return;
1659 }
1660
1661 __xfs_end_io_direct_write(inode, ioend, offset, size);
1662}
1663
6e1ba0bc
DC
1664static inline ssize_t
1665xfs_vm_do_dio(
1666 struct inode *inode,
1667 struct kiocb *iocb,
1668 struct iov_iter *iter,
1669 loff_t offset,
1670 void (*endio)(struct kiocb *iocb,
1671 loff_t offset,
1672 ssize_t size,
1673 void *private),
1674 int flags)
1675{
1676 struct block_device *bdev;
1677
1678 if (IS_DAX(inode))
1679 return dax_do_io(iocb, inode, iter, offset,
1680 xfs_get_blocks_direct, endio, 0);
1681
1682 bdev = xfs_find_bdev_for_inode(inode);
1683 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1684 xfs_get_blocks_direct, endio, NULL, flags);
1685}
1686
1da177e4 1687STATIC ssize_t
e4c573bb 1688xfs_vm_direct_IO(
1da177e4 1689 struct kiocb *iocb,
d8d3d94b
AV
1690 struct iov_iter *iter,
1691 loff_t offset)
1da177e4 1692{
209fb87a 1693 struct inode *inode = iocb->ki_filp->f_mapping->host;
209fb87a 1694
6e1ba0bc
DC
1695 if (iov_iter_rw(iter) == WRITE)
1696 return xfs_vm_do_dio(inode, iocb, iter, offset,
1697 xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1698 return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1da177e4
LT
1699}
1700
d3bc815a
DC
1701/*
1702 * Punch out the delalloc blocks we have already allocated.
1703 *
1704 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1705 * as the page is still locked at this point.
1706 */
1707STATIC void
1708xfs_vm_kill_delalloc_range(
1709 struct inode *inode,
1710 loff_t start,
1711 loff_t end)
1712{
1713 struct xfs_inode *ip = XFS_I(inode);
1714 xfs_fileoff_t start_fsb;
1715 xfs_fileoff_t end_fsb;
1716 int error;
1717
1718 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1719 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1720 if (end_fsb <= start_fsb)
1721 return;
1722
1723 xfs_ilock(ip, XFS_ILOCK_EXCL);
1724 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1725 end_fsb - start_fsb);
1726 if (error) {
1727 /* something screwed, just bail */
1728 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1729 xfs_alert(ip->i_mount,
1730 "xfs_vm_write_failed: unable to clean up ino %lld",
1731 ip->i_ino);
1732 }
1733 }
1734 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1735}
1736
fa9b227e
CH
1737STATIC void
1738xfs_vm_write_failed(
d3bc815a
DC
1739 struct inode *inode,
1740 struct page *page,
1741 loff_t pos,
1742 unsigned len)
fa9b227e 1743{
58e59854 1744 loff_t block_offset;
d3bc815a
DC
1745 loff_t block_start;
1746 loff_t block_end;
1747 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1748 loff_t to = from + len;
1749 struct buffer_head *bh, *head;
fa9b227e 1750
58e59854
JL
1751 /*
1752 * The request pos offset might be 32 or 64 bit, this is all fine
1753 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1754 * platform, the high 32-bit will be masked off if we evaluate the
1755 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1756 * 0xfffff000 as an unsigned long, hence the result is incorrect
1757 * which could cause the following ASSERT failed in most cases.
1758 * In order to avoid this, we can evaluate the block_offset of the
1759 * start of the page by using shifts rather than masks the mismatch
1760 * problem.
1761 */
1762 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1763
d3bc815a 1764 ASSERT(block_offset + from == pos);
c726de44 1765
d3bc815a
DC
1766 head = page_buffers(page);
1767 block_start = 0;
1768 for (bh = head; bh != head || !block_start;
1769 bh = bh->b_this_page, block_start = block_end,
1770 block_offset += bh->b_size) {
1771 block_end = block_start + bh->b_size;
c726de44 1772
d3bc815a
DC
1773 /* skip buffers before the write */
1774 if (block_end <= from)
1775 continue;
1776
1777 /* if the buffer is after the write, we're done */
1778 if (block_start >= to)
1779 break;
1780
1781 if (!buffer_delay(bh))
1782 continue;
1783
1784 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1785 continue;
1786
1787 xfs_vm_kill_delalloc_range(inode, block_offset,
1788 block_offset + bh->b_size);
4ab9ed57
DC
1789
1790 /*
1791 * This buffer does not contain data anymore. make sure anyone
1792 * who finds it knows that for certain.
1793 */
1794 clear_buffer_delay(bh);
1795 clear_buffer_uptodate(bh);
1796 clear_buffer_mapped(bh);
1797 clear_buffer_new(bh);
1798 clear_buffer_dirty(bh);
fa9b227e 1799 }
d3bc815a 1800
fa9b227e
CH
1801}
1802
d3bc815a
DC
1803/*
1804 * This used to call block_write_begin(), but it unlocks and releases the page
1805 * on error, and we need that page to be able to punch stale delalloc blocks out
1806 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1807 * the appropriate point.
1808 */
f51623b2 1809STATIC int
d79689c7 1810xfs_vm_write_begin(
f51623b2 1811 struct file *file,
d79689c7
NP
1812 struct address_space *mapping,
1813 loff_t pos,
1814 unsigned len,
1815 unsigned flags,
1816 struct page **pagep,
1817 void **fsdata)
f51623b2 1818{
d3bc815a
DC
1819 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1820 struct page *page;
1821 int status;
155130a4 1822
d3bc815a
DC
1823 ASSERT(len <= PAGE_CACHE_SIZE);
1824
ad22c7a0 1825 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1826 if (!page)
1827 return -ENOMEM;
1828
1829 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1830 if (unlikely(status)) {
1831 struct inode *inode = mapping->host;
72ab70a1 1832 size_t isize = i_size_read(inode);
d3bc815a
DC
1833
1834 xfs_vm_write_failed(inode, page, pos, len);
1835 unlock_page(page);
1836
72ab70a1
DC
1837 /*
1838 * If the write is beyond EOF, we only want to kill blocks
1839 * allocated in this write, not blocks that were previously
1840 * written successfully.
1841 */
1842 if (pos + len > isize) {
1843 ssize_t start = max_t(ssize_t, pos, isize);
1844
1845 truncate_pagecache_range(inode, start, pos + len);
1846 }
d3bc815a
DC
1847
1848 page_cache_release(page);
1849 page = NULL;
1850 }
1851
1852 *pagep = page;
1853 return status;
fa9b227e
CH
1854}
1855
d3bc815a 1856/*
aad3f375
DC
1857 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1858 * this specific write because they will never be written. Previous writes
1859 * beyond EOF where block allocation succeeded do not need to be trashed, so
1860 * only new blocks from this write should be trashed. For blocks within
1861 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1862 * written with all the other valid data.
d3bc815a 1863 */
fa9b227e
CH
1864STATIC int
1865xfs_vm_write_end(
1866 struct file *file,
1867 struct address_space *mapping,
1868 loff_t pos,
1869 unsigned len,
1870 unsigned copied,
1871 struct page *page,
1872 void *fsdata)
1873{
1874 int ret;
155130a4 1875
d3bc815a
DC
1876 ASSERT(len <= PAGE_CACHE_SIZE);
1877
fa9b227e 1878 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1879 if (unlikely(ret < len)) {
1880 struct inode *inode = mapping->host;
1881 size_t isize = i_size_read(inode);
1882 loff_t to = pos + len;
1883
1884 if (to > isize) {
aad3f375
DC
1885 /* only kill blocks in this write beyond EOF */
1886 if (pos > isize)
1887 isize = pos;
d3bc815a 1888 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1889 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1890 }
1891 }
155130a4 1892 return ret;
f51623b2 1893}
1da177e4
LT
1894
1895STATIC sector_t
e4c573bb 1896xfs_vm_bmap(
1da177e4
LT
1897 struct address_space *mapping,
1898 sector_t block)
1899{
1900 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1901 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1902
cca28fb8 1903 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1904 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1905 filemap_write_and_wait(mapping);
126468b1 1906 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1907 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1908}
1909
1910STATIC int
e4c573bb 1911xfs_vm_readpage(
1da177e4
LT
1912 struct file *unused,
1913 struct page *page)
1914{
121e213e 1915 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1916 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1917}
1918
1919STATIC int
e4c573bb 1920xfs_vm_readpages(
1da177e4
LT
1921 struct file *unused,
1922 struct address_space *mapping,
1923 struct list_head *pages,
1924 unsigned nr_pages)
1925{
121e213e 1926 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1927 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1928}
1929
22e757a4
DC
1930/*
1931 * This is basically a copy of __set_page_dirty_buffers() with one
1932 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1933 * dirty, we'll never be able to clean them because we don't write buffers
1934 * beyond EOF, and that means we can't invalidate pages that span EOF
1935 * that have been marked dirty. Further, the dirty state can leak into
1936 * the file interior if the file is extended, resulting in all sorts of
1937 * bad things happening as the state does not match the underlying data.
1938 *
1939 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1940 * this only exist because of bufferheads and how the generic code manages them.
1941 */
1942STATIC int
1943xfs_vm_set_page_dirty(
1944 struct page *page)
1945{
1946 struct address_space *mapping = page->mapping;
1947 struct inode *inode = mapping->host;
1948 loff_t end_offset;
1949 loff_t offset;
1950 int newly_dirty;
c4843a75 1951 struct mem_cgroup *memcg;
22e757a4
DC
1952
1953 if (unlikely(!mapping))
1954 return !TestSetPageDirty(page);
1955
1956 end_offset = i_size_read(inode);
1957 offset = page_offset(page);
1958
1959 spin_lock(&mapping->private_lock);
1960 if (page_has_buffers(page)) {
1961 struct buffer_head *head = page_buffers(page);
1962 struct buffer_head *bh = head;
1963
1964 do {
1965 if (offset < end_offset)
1966 set_buffer_dirty(bh);
1967 bh = bh->b_this_page;
1968 offset += 1 << inode->i_blkbits;
1969 } while (bh != head);
1970 }
c4843a75
GT
1971 /*
1972 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1973 * per-memcg dirty page counters.
1974 */
1975 memcg = mem_cgroup_begin_page_stat(page);
22e757a4
DC
1976 newly_dirty = !TestSetPageDirty(page);
1977 spin_unlock(&mapping->private_lock);
1978
1979 if (newly_dirty) {
1980 /* sigh - __set_page_dirty() is static, so copy it here, too */
1981 unsigned long flags;
1982
1983 spin_lock_irqsave(&mapping->tree_lock, flags);
1984 if (page->mapping) { /* Race with truncate? */
1985 WARN_ON_ONCE(!PageUptodate(page));
c4843a75 1986 account_page_dirtied(page, mapping, memcg);
22e757a4
DC
1987 radix_tree_tag_set(&mapping->page_tree,
1988 page_index(page), PAGECACHE_TAG_DIRTY);
1989 }
1990 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1991 }
c4843a75
GT
1992 mem_cgroup_end_page_stat(memcg);
1993 if (newly_dirty)
1994 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1995 return newly_dirty;
1996}
1997
f5e54d6e 1998const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1999 .readpage = xfs_vm_readpage,
2000 .readpages = xfs_vm_readpages,
2001 .writepage = xfs_vm_writepage,
7d4fb40a 2002 .writepages = xfs_vm_writepages,
22e757a4 2003 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
2004 .releasepage = xfs_vm_releasepage,
2005 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 2006 .write_begin = xfs_vm_write_begin,
fa9b227e 2007 .write_end = xfs_vm_write_end,
e4c573bb
NS
2008 .bmap = xfs_vm_bmap,
2009 .direct_IO = xfs_vm_direct_IO,
e965f963 2010 .migratepage = buffer_migrate_page,
bddaafa1 2011 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2012 .error_remove_page = generic_error_remove_page,
1da177e4 2013};
This page took 0.780833 seconds and 5 git commands to generate.