Merge branch 'linus' into timers/urgent, to pick up fixes
[deliverable/linux.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
4fb6e8ad 37#include "xfs_format.h"
239880ef 38#include "xfs_log_format.h"
7fd36c44 39#include "xfs_trans_resv.h"
239880ef 40#include "xfs_sb.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
239880ef 43#include "xfs_log.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
23ea4032 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
9c7504aa
BF
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105}
106
107/*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111static inline void
112xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114{
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
118 ASSERT(bp->b_flags & XBF_ASYNC);
119 bp->b_flags &= ~_XBF_IN_FLIGHT;
120 percpu_counter_dec(&bp->b_target->bt_io_count);
121}
122
430cbeb8
DC
123/*
124 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
125 * b_lru_ref count so that the buffer is freed immediately when the buffer
126 * reference count falls to zero. If the buffer is already on the LRU, we need
127 * to remove the reference that LRU holds on the buffer.
128 *
129 * This prevents build-up of stale buffers on the LRU.
130 */
131void
132xfs_buf_stale(
133 struct xfs_buf *bp)
134{
43ff2122
CH
135 ASSERT(xfs_buf_islocked(bp));
136
430cbeb8 137 bp->b_flags |= XBF_STALE;
43ff2122
CH
138
139 /*
140 * Clear the delwri status so that a delwri queue walker will not
141 * flush this buffer to disk now that it is stale. The delwri queue has
142 * a reference to the buffer, so this is safe to do.
143 */
144 bp->b_flags &= ~_XBF_DELWRI_Q;
145
9c7504aa
BF
146 /*
147 * Once the buffer is marked stale and unlocked, a subsequent lookup
148 * could reset b_flags. There is no guarantee that the buffer is
149 * unaccounted (released to LRU) before that occurs. Drop in-flight
150 * status now to preserve accounting consistency.
151 */
152 xfs_buf_ioacct_dec(bp);
153
a4082357
DC
154 spin_lock(&bp->b_lock);
155 atomic_set(&bp->b_lru_ref, 0);
156 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
157 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
158 atomic_dec(&bp->b_hold);
159
430cbeb8 160 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 161 spin_unlock(&bp->b_lock);
430cbeb8 162}
1da177e4 163
3e85c868
DC
164static int
165xfs_buf_get_maps(
166 struct xfs_buf *bp,
167 int map_count)
168{
169 ASSERT(bp->b_maps == NULL);
170 bp->b_map_count = map_count;
171
172 if (map_count == 1) {
f4b42421 173 bp->b_maps = &bp->__b_map;
3e85c868
DC
174 return 0;
175 }
176
177 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
178 KM_NOFS);
179 if (!bp->b_maps)
2451337d 180 return -ENOMEM;
3e85c868
DC
181 return 0;
182}
183
184/*
185 * Frees b_pages if it was allocated.
186 */
187static void
188xfs_buf_free_maps(
189 struct xfs_buf *bp)
190{
f4b42421 191 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
192 kmem_free(bp->b_maps);
193 bp->b_maps = NULL;
194 }
195}
196
4347b9d7 197struct xfs_buf *
3e85c868 198_xfs_buf_alloc(
4347b9d7 199 struct xfs_buftarg *target,
3e85c868
DC
200 struct xfs_buf_map *map,
201 int nmaps,
ce8e922c 202 xfs_buf_flags_t flags)
1da177e4 203{
4347b9d7 204 struct xfs_buf *bp;
3e85c868
DC
205 int error;
206 int i;
4347b9d7 207
aa5c158e 208 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
209 if (unlikely(!bp))
210 return NULL;
211
1da177e4 212 /*
12bcb3f7
DC
213 * We don't want certain flags to appear in b_flags unless they are
214 * specifically set by later operations on the buffer.
1da177e4 215 */
611c9946 216 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 217
ce8e922c 218 atomic_set(&bp->b_hold, 1);
430cbeb8 219 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 220 init_completion(&bp->b_iowait);
430cbeb8 221 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 222 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 223 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 224 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 225 spin_lock_init(&bp->b_lock);
ce8e922c
NS
226 XB_SET_OWNER(bp);
227 bp->b_target = target;
3e85c868 228 bp->b_flags = flags;
de1cbee4 229
1da177e4 230 /*
aa0e8833
DC
231 * Set length and io_length to the same value initially.
232 * I/O routines should use io_length, which will be the same in
1da177e4
LT
233 * most cases but may be reset (e.g. XFS recovery).
234 */
3e85c868
DC
235 error = xfs_buf_get_maps(bp, nmaps);
236 if (error) {
237 kmem_zone_free(xfs_buf_zone, bp);
238 return NULL;
239 }
240
241 bp->b_bn = map[0].bm_bn;
242 bp->b_length = 0;
243 for (i = 0; i < nmaps; i++) {
244 bp->b_maps[i].bm_bn = map[i].bm_bn;
245 bp->b_maps[i].bm_len = map[i].bm_len;
246 bp->b_length += map[i].bm_len;
247 }
248 bp->b_io_length = bp->b_length;
249
ce8e922c
NS
250 atomic_set(&bp->b_pin_count, 0);
251 init_waitqueue_head(&bp->b_waiters);
252
ff6d6af2 253 XFS_STATS_INC(target->bt_mount, xb_create);
0b1b213f 254 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
255
256 return bp;
1da177e4
LT
257}
258
259/*
ce8e922c
NS
260 * Allocate a page array capable of holding a specified number
261 * of pages, and point the page buf at it.
1da177e4
LT
262 */
263STATIC int
ce8e922c
NS
264_xfs_buf_get_pages(
265 xfs_buf_t *bp,
87937bf8 266 int page_count)
1da177e4
LT
267{
268 /* Make sure that we have a page list */
ce8e922c 269 if (bp->b_pages == NULL) {
ce8e922c
NS
270 bp->b_page_count = page_count;
271 if (page_count <= XB_PAGES) {
272 bp->b_pages = bp->b_page_array;
1da177e4 273 } else {
ce8e922c 274 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 275 page_count, KM_NOFS);
ce8e922c 276 if (bp->b_pages == NULL)
1da177e4
LT
277 return -ENOMEM;
278 }
ce8e922c 279 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
280 }
281 return 0;
282}
283
284/*
ce8e922c 285 * Frees b_pages if it was allocated.
1da177e4
LT
286 */
287STATIC void
ce8e922c 288_xfs_buf_free_pages(
1da177e4
LT
289 xfs_buf_t *bp)
290{
ce8e922c 291 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 292 kmem_free(bp->b_pages);
3fc98b1a 293 bp->b_pages = NULL;
1da177e4
LT
294 }
295}
296
297/*
298 * Releases the specified buffer.
299 *
300 * The modification state of any associated pages is left unchanged.
b46fe825 301 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
302 * hashed and refcounted buffers
303 */
304void
ce8e922c 305xfs_buf_free(
1da177e4
LT
306 xfs_buf_t *bp)
307{
0b1b213f 308 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 309
430cbeb8
DC
310 ASSERT(list_empty(&bp->b_lru));
311
0e6e847f 312 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
313 uint i;
314
73c77e2c 315 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
316 vm_unmap_ram(bp->b_addr - bp->b_offset,
317 bp->b_page_count);
1da177e4 318
948ecdb4
NS
319 for (i = 0; i < bp->b_page_count; i++) {
320 struct page *page = bp->b_pages[i];
321
0e6e847f 322 __free_page(page);
948ecdb4 323 }
0e6e847f
DC
324 } else if (bp->b_flags & _XBF_KMEM)
325 kmem_free(bp->b_addr);
3fc98b1a 326 _xfs_buf_free_pages(bp);
3e85c868 327 xfs_buf_free_maps(bp);
4347b9d7 328 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
329}
330
331/*
0e6e847f 332 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
333 */
334STATIC int
0e6e847f 335xfs_buf_allocate_memory(
1da177e4
LT
336 xfs_buf_t *bp,
337 uint flags)
338{
aa0e8833 339 size_t size;
1da177e4 340 size_t nbytes, offset;
ce8e922c 341 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 342 unsigned short page_count, i;
795cac72 343 xfs_off_t start, end;
1da177e4
LT
344 int error;
345
0e6e847f
DC
346 /*
347 * for buffers that are contained within a single page, just allocate
348 * the memory from the heap - there's no need for the complexity of
349 * page arrays to keep allocation down to order 0.
350 */
795cac72
DC
351 size = BBTOB(bp->b_length);
352 if (size < PAGE_SIZE) {
aa5c158e 353 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
354 if (!bp->b_addr) {
355 /* low memory - use alloc_page loop instead */
356 goto use_alloc_page;
357 }
358
795cac72 359 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
360 ((unsigned long)bp->b_addr & PAGE_MASK)) {
361 /* b_addr spans two pages - use alloc_page instead */
362 kmem_free(bp->b_addr);
363 bp->b_addr = NULL;
364 goto use_alloc_page;
365 }
366 bp->b_offset = offset_in_page(bp->b_addr);
367 bp->b_pages = bp->b_page_array;
368 bp->b_pages[0] = virt_to_page(bp->b_addr);
369 bp->b_page_count = 1;
611c9946 370 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
371 return 0;
372 }
373
374use_alloc_page:
f4b42421
MT
375 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
376 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 377 >> PAGE_SHIFT;
795cac72 378 page_count = end - start;
87937bf8 379 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
380 if (unlikely(error))
381 return error;
1da177e4 382
ce8e922c 383 offset = bp->b_offset;
0e6e847f 384 bp->b_flags |= _XBF_PAGES;
1da177e4 385
ce8e922c 386 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
387 struct page *page;
388 uint retries = 0;
0e6e847f
DC
389retry:
390 page = alloc_page(gfp_mask);
1da177e4 391 if (unlikely(page == NULL)) {
ce8e922c
NS
392 if (flags & XBF_READ_AHEAD) {
393 bp->b_page_count = i;
2451337d 394 error = -ENOMEM;
0e6e847f 395 goto out_free_pages;
1da177e4
LT
396 }
397
398 /*
399 * This could deadlock.
400 *
401 * But until all the XFS lowlevel code is revamped to
402 * handle buffer allocation failures we can't do much.
403 */
404 if (!(++retries % 100))
4f10700a 405 xfs_err(NULL,
5bf97b1c
TH
406 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
407 current->comm, current->pid,
34a622b2 408 __func__, gfp_mask);
1da177e4 409
ff6d6af2 410 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
8aa7e847 411 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
412 goto retry;
413 }
414
ff6d6af2 415 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
1da177e4 416
0e6e847f 417 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 418 size -= nbytes;
ce8e922c 419 bp->b_pages[i] = page;
1da177e4
LT
420 offset = 0;
421 }
0e6e847f 422 return 0;
1da177e4 423
0e6e847f
DC
424out_free_pages:
425 for (i = 0; i < bp->b_page_count; i++)
426 __free_page(bp->b_pages[i]);
1da177e4
LT
427 return error;
428}
429
430/*
25985edc 431 * Map buffer into kernel address-space if necessary.
1da177e4
LT
432 */
433STATIC int
ce8e922c 434_xfs_buf_map_pages(
1da177e4
LT
435 xfs_buf_t *bp,
436 uint flags)
437{
0e6e847f 438 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 439 if (bp->b_page_count == 1) {
0e6e847f 440 /* A single page buffer is always mappable */
ce8e922c 441 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
442 } else if (flags & XBF_UNMAPPED) {
443 bp->b_addr = NULL;
444 } else {
a19fb380 445 int retried = 0;
ae687e58
DC
446 unsigned noio_flag;
447
448 /*
449 * vm_map_ram() will allocate auxillary structures (e.g.
450 * pagetables) with GFP_KERNEL, yet we are likely to be under
451 * GFP_NOFS context here. Hence we need to tell memory reclaim
452 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
453 * memory reclaim re-entering the filesystem here and
454 * potentially deadlocking.
455 */
456 noio_flag = memalloc_noio_save();
a19fb380
DC
457 do {
458 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 -1, PAGE_KERNEL);
460 if (bp->b_addr)
461 break;
462 vm_unmap_aliases();
463 } while (retried++ <= 1);
ae687e58 464 memalloc_noio_restore(noio_flag);
a19fb380
DC
465
466 if (!bp->b_addr)
1da177e4 467 return -ENOMEM;
ce8e922c 468 bp->b_addr += bp->b_offset;
1da177e4
LT
469 }
470
471 return 0;
472}
473
474/*
475 * Finding and Reading Buffers
476 */
477
478/*
ce8e922c 479 * Look up, and creates if absent, a lockable buffer for
1da177e4 480 * a given range of an inode. The buffer is returned
eabbaf11 481 * locked. No I/O is implied by this call.
1da177e4
LT
482 */
483xfs_buf_t *
ce8e922c 484_xfs_buf_find(
e70b73f8 485 struct xfs_buftarg *btp,
3e85c868
DC
486 struct xfs_buf_map *map,
487 int nmaps,
ce8e922c
NS
488 xfs_buf_flags_t flags,
489 xfs_buf_t *new_bp)
1da177e4 490{
74f75a0c
DC
491 struct xfs_perag *pag;
492 struct rb_node **rbp;
493 struct rb_node *parent;
494 xfs_buf_t *bp;
3e85c868 495 xfs_daddr_t blkno = map[0].bm_bn;
10616b80 496 xfs_daddr_t eofs;
3e85c868
DC
497 int numblks = 0;
498 int i;
1da177e4 499
3e85c868
DC
500 for (i = 0; i < nmaps; i++)
501 numblks += map[i].bm_len;
1da177e4
LT
502
503 /* Check for IOs smaller than the sector size / not sector aligned */
f79af0b9 504 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
6da54179 505 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 506
10616b80
DC
507 /*
508 * Corrupted block numbers can get through to here, unfortunately, so we
509 * have to check that the buffer falls within the filesystem bounds.
510 */
511 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
db52d09e 512 if (blkno < 0 || blkno >= eofs) {
10616b80 513 /*
2451337d 514 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
10616b80
DC
515 * but none of the higher level infrastructure supports
516 * returning a specific error on buffer lookup failures.
517 */
518 xfs_alert(btp->bt_mount,
519 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
520 __func__, blkno, eofs);
7bc0dc27 521 WARN_ON(1);
10616b80
DC
522 return NULL;
523 }
524
74f75a0c
DC
525 /* get tree root */
526 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 527 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
528
529 /* walk tree */
530 spin_lock(&pag->pag_buf_lock);
531 rbp = &pag->pag_buf_tree.rb_node;
532 parent = NULL;
533 bp = NULL;
534 while (*rbp) {
535 parent = *rbp;
536 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
537
de1cbee4 538 if (blkno < bp->b_bn)
74f75a0c 539 rbp = &(*rbp)->rb_left;
de1cbee4 540 else if (blkno > bp->b_bn)
74f75a0c
DC
541 rbp = &(*rbp)->rb_right;
542 else {
543 /*
de1cbee4 544 * found a block number match. If the range doesn't
74f75a0c
DC
545 * match, the only way this is allowed is if the buffer
546 * in the cache is stale and the transaction that made
547 * it stale has not yet committed. i.e. we are
548 * reallocating a busy extent. Skip this buffer and
549 * continue searching to the right for an exact match.
550 */
4e94b71b 551 if (bp->b_length != numblks) {
74f75a0c
DC
552 ASSERT(bp->b_flags & XBF_STALE);
553 rbp = &(*rbp)->rb_right;
554 continue;
555 }
ce8e922c 556 atomic_inc(&bp->b_hold);
1da177e4
LT
557 goto found;
558 }
559 }
560
561 /* No match found */
ce8e922c 562 if (new_bp) {
74f75a0c
DC
563 rb_link_node(&new_bp->b_rbnode, parent, rbp);
564 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
565 /* the buffer keeps the perag reference until it is freed */
566 new_bp->b_pag = pag;
567 spin_unlock(&pag->pag_buf_lock);
1da177e4 568 } else {
ff6d6af2 569 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
570 spin_unlock(&pag->pag_buf_lock);
571 xfs_perag_put(pag);
1da177e4 572 }
ce8e922c 573 return new_bp;
1da177e4
LT
574
575found:
74f75a0c
DC
576 spin_unlock(&pag->pag_buf_lock);
577 xfs_perag_put(pag);
1da177e4 578
0c842ad4
CH
579 if (!xfs_buf_trylock(bp)) {
580 if (flags & XBF_TRYLOCK) {
ce8e922c 581 xfs_buf_rele(bp);
ff6d6af2 582 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
ce8e922c 583 return NULL;
1da177e4 584 }
0c842ad4 585 xfs_buf_lock(bp);
ff6d6af2 586 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
587 }
588
0e6e847f
DC
589 /*
590 * if the buffer is stale, clear all the external state associated with
591 * it. We need to keep flags such as how we allocated the buffer memory
592 * intact here.
593 */
ce8e922c
NS
594 if (bp->b_flags & XBF_STALE) {
595 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 596 ASSERT(bp->b_iodone == NULL);
611c9946 597 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 598 bp->b_ops = NULL;
2f926587 599 }
0b1b213f
CH
600
601 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 602 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
ce8e922c 603 return bp;
1da177e4
LT
604}
605
606/*
3815832a
DC
607 * Assembles a buffer covering the specified range. The code is optimised for
608 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
609 * more hits than misses.
1da177e4 610 */
3815832a 611struct xfs_buf *
6dde2707
DC
612xfs_buf_get_map(
613 struct xfs_buftarg *target,
614 struct xfs_buf_map *map,
615 int nmaps,
ce8e922c 616 xfs_buf_flags_t flags)
1da177e4 617{
3815832a
DC
618 struct xfs_buf *bp;
619 struct xfs_buf *new_bp;
0e6e847f 620 int error = 0;
1da177e4 621
6dde2707 622 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
623 if (likely(bp))
624 goto found;
625
6dde2707 626 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 627 if (unlikely(!new_bp))
1da177e4
LT
628 return NULL;
629
fe2429b0
DC
630 error = xfs_buf_allocate_memory(new_bp, flags);
631 if (error) {
3e85c868 632 xfs_buf_free(new_bp);
fe2429b0
DC
633 return NULL;
634 }
635
6dde2707 636 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 637 if (!bp) {
fe2429b0 638 xfs_buf_free(new_bp);
3815832a
DC
639 return NULL;
640 }
641
fe2429b0
DC
642 if (bp != new_bp)
643 xfs_buf_free(new_bp);
1da177e4 644
3815832a 645found:
611c9946 646 if (!bp->b_addr) {
ce8e922c 647 error = _xfs_buf_map_pages(bp, flags);
1da177e4 648 if (unlikely(error)) {
4f10700a 649 xfs_warn(target->bt_mount,
08e96e1a 650 "%s: failed to map pagesn", __func__);
a8acad70
DC
651 xfs_buf_relse(bp);
652 return NULL;
1da177e4
LT
653 }
654 }
655
b79f4a1c
DC
656 /*
657 * Clear b_error if this is a lookup from a caller that doesn't expect
658 * valid data to be found in the buffer.
659 */
660 if (!(flags & XBF_READ))
661 xfs_buf_ioerror(bp, 0);
662
ff6d6af2 663 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 664 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 665 return bp;
1da177e4
LT
666}
667
5d765b97
CH
668STATIC int
669_xfs_buf_read(
670 xfs_buf_t *bp,
671 xfs_buf_flags_t flags)
672{
43ff2122 673 ASSERT(!(flags & XBF_WRITE));
f4b42421 674 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 675
43ff2122 676 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 677 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 678
595bff75
DC
679 if (flags & XBF_ASYNC) {
680 xfs_buf_submit(bp);
0e95f19a 681 return 0;
595bff75
DC
682 }
683 return xfs_buf_submit_wait(bp);
5d765b97
CH
684}
685
1da177e4 686xfs_buf_t *
6dde2707
DC
687xfs_buf_read_map(
688 struct xfs_buftarg *target,
689 struct xfs_buf_map *map,
690 int nmaps,
c3f8fc73 691 xfs_buf_flags_t flags,
1813dd64 692 const struct xfs_buf_ops *ops)
1da177e4 693{
6dde2707 694 struct xfs_buf *bp;
ce8e922c
NS
695
696 flags |= XBF_READ;
697
6dde2707 698 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 699 if (bp) {
0b1b213f
CH
700 trace_xfs_buf_read(bp, flags, _RET_IP_);
701
b0388bf1 702 if (!(bp->b_flags & XBF_DONE)) {
ff6d6af2 703 XFS_STATS_INC(target->bt_mount, xb_get_read);
1813dd64 704 bp->b_ops = ops;
5d765b97 705 _xfs_buf_read(bp, flags);
ce8e922c 706 } else if (flags & XBF_ASYNC) {
1da177e4
LT
707 /*
708 * Read ahead call which is already satisfied,
709 * drop the buffer
710 */
a8acad70
DC
711 xfs_buf_relse(bp);
712 return NULL;
1da177e4 713 } else {
1da177e4 714 /* We do not want read in the flags */
ce8e922c 715 bp->b_flags &= ~XBF_READ;
1da177e4
LT
716 }
717 }
718
ce8e922c 719 return bp;
1da177e4
LT
720}
721
1da177e4 722/*
ce8e922c
NS
723 * If we are not low on memory then do the readahead in a deadlock
724 * safe manner.
1da177e4
LT
725 */
726void
6dde2707
DC
727xfs_buf_readahead_map(
728 struct xfs_buftarg *target,
729 struct xfs_buf_map *map,
c3f8fc73 730 int nmaps,
1813dd64 731 const struct xfs_buf_ops *ops)
1da177e4 732{
0e6e847f 733 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
734 return;
735
6dde2707 736 xfs_buf_read_map(target, map, nmaps,
1813dd64 737 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
738}
739
5adc94c2
DC
740/*
741 * Read an uncached buffer from disk. Allocates and returns a locked
742 * buffer containing the disk contents or nothing.
743 */
ba372674 744int
5adc94c2 745xfs_buf_read_uncached(
5adc94c2
DC
746 struct xfs_buftarg *target,
747 xfs_daddr_t daddr,
e70b73f8 748 size_t numblks,
c3f8fc73 749 int flags,
ba372674 750 struct xfs_buf **bpp,
1813dd64 751 const struct xfs_buf_ops *ops)
5adc94c2 752{
eab4e633 753 struct xfs_buf *bp;
5adc94c2 754
ba372674
DC
755 *bpp = NULL;
756
e70b73f8 757 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 758 if (!bp)
ba372674 759 return -ENOMEM;
5adc94c2
DC
760
761 /* set up the buffer for a read IO */
3e85c868 762 ASSERT(bp->b_map_count == 1);
ba372674 763 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 764 bp->b_maps[0].bm_bn = daddr;
cbb7baab 765 bp->b_flags |= XBF_READ;
1813dd64 766 bp->b_ops = ops;
5adc94c2 767
595bff75 768 xfs_buf_submit_wait(bp);
ba372674
DC
769 if (bp->b_error) {
770 int error = bp->b_error;
83a0adc3 771 xfs_buf_relse(bp);
ba372674 772 return error;
83a0adc3 773 }
ba372674
DC
774
775 *bpp = bp;
776 return 0;
1da177e4
LT
777}
778
44396476
DC
779/*
780 * Return a buffer allocated as an empty buffer and associated to external
781 * memory via xfs_buf_associate_memory() back to it's empty state.
782 */
783void
784xfs_buf_set_empty(
785 struct xfs_buf *bp,
e70b73f8 786 size_t numblks)
44396476
DC
787{
788 if (bp->b_pages)
789 _xfs_buf_free_pages(bp);
790
791 bp->b_pages = NULL;
792 bp->b_page_count = 0;
793 bp->b_addr = NULL;
4e94b71b 794 bp->b_length = numblks;
aa0e8833 795 bp->b_io_length = numblks;
3e85c868
DC
796
797 ASSERT(bp->b_map_count == 1);
44396476 798 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
799 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
800 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
801}
802
1da177e4
LT
803static inline struct page *
804mem_to_page(
805 void *addr)
806{
9e2779fa 807 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
808 return virt_to_page(addr);
809 } else {
810 return vmalloc_to_page(addr);
811 }
812}
813
814int
ce8e922c
NS
815xfs_buf_associate_memory(
816 xfs_buf_t *bp,
1da177e4
LT
817 void *mem,
818 size_t len)
819{
820 int rval;
821 int i = 0;
d1afb678
LM
822 unsigned long pageaddr;
823 unsigned long offset;
824 size_t buflen;
1da177e4
LT
825 int page_count;
826
0e6e847f 827 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 828 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
829 buflen = PAGE_ALIGN(len + offset);
830 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
831
832 /* Free any previous set of page pointers */
ce8e922c
NS
833 if (bp->b_pages)
834 _xfs_buf_free_pages(bp);
1da177e4 835
ce8e922c
NS
836 bp->b_pages = NULL;
837 bp->b_addr = mem;
1da177e4 838
87937bf8 839 rval = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
840 if (rval)
841 return rval;
842
ce8e922c 843 bp->b_offset = offset;
d1afb678
LM
844
845 for (i = 0; i < bp->b_page_count; i++) {
846 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 847 pageaddr += PAGE_SIZE;
1da177e4 848 }
1da177e4 849
aa0e8833 850 bp->b_io_length = BTOBB(len);
4e94b71b 851 bp->b_length = BTOBB(buflen);
1da177e4
LT
852
853 return 0;
854}
855
856xfs_buf_t *
686865f7
DC
857xfs_buf_get_uncached(
858 struct xfs_buftarg *target,
e70b73f8 859 size_t numblks,
686865f7 860 int flags)
1da177e4 861{
e70b73f8 862 unsigned long page_count;
1fa40b01 863 int error, i;
3e85c868
DC
864 struct xfs_buf *bp;
865 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 866
c891c30a
BF
867 /* flags might contain irrelevant bits, pass only what we care about */
868 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1da177e4
LT
869 if (unlikely(bp == NULL))
870 goto fail;
1da177e4 871
e70b73f8 872 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 873 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 874 if (error)
1da177e4
LT
875 goto fail_free_buf;
876
1fa40b01 877 for (i = 0; i < page_count; i++) {
686865f7 878 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
879 if (!bp->b_pages[i])
880 goto fail_free_mem;
1da177e4 881 }
1fa40b01 882 bp->b_flags |= _XBF_PAGES;
1da177e4 883
611c9946 884 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 885 if (unlikely(error)) {
4f10700a 886 xfs_warn(target->bt_mount,
08e96e1a 887 "%s: failed to map pages", __func__);
1da177e4 888 goto fail_free_mem;
1fa40b01 889 }
1da177e4 890
686865f7 891 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 892 return bp;
1fa40b01 893
1da177e4 894 fail_free_mem:
1fa40b01
CH
895 while (--i >= 0)
896 __free_page(bp->b_pages[i]);
ca165b88 897 _xfs_buf_free_pages(bp);
1da177e4 898 fail_free_buf:
3e85c868 899 xfs_buf_free_maps(bp);
4347b9d7 900 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
901 fail:
902 return NULL;
903}
904
905/*
1da177e4
LT
906 * Increment reference count on buffer, to hold the buffer concurrently
907 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
908 * Must hold the buffer already to call this function.
909 */
910void
ce8e922c
NS
911xfs_buf_hold(
912 xfs_buf_t *bp)
1da177e4 913{
0b1b213f 914 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 915 atomic_inc(&bp->b_hold);
1da177e4
LT
916}
917
918/*
9c7504aa
BF
919 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
920 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
921 */
922void
ce8e922c
NS
923xfs_buf_rele(
924 xfs_buf_t *bp)
1da177e4 925{
74f75a0c 926 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
927 bool release;
928 bool freebuf = false;
1da177e4 929
0b1b213f 930 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 931
74f75a0c 932 if (!pag) {
430cbeb8 933 ASSERT(list_empty(&bp->b_lru));
74f75a0c 934 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
9c7504aa
BF
935 if (atomic_dec_and_test(&bp->b_hold)) {
936 xfs_buf_ioacct_dec(bp);
fad3aa1e 937 xfs_buf_free(bp);
9c7504aa 938 }
fad3aa1e
NS
939 return;
940 }
941
74f75a0c 942 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 943
3790689f 944 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 945
9c7504aa
BF
946 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
947 spin_lock(&bp->b_lock);
948 if (!release) {
949 /*
950 * Drop the in-flight state if the buffer is already on the LRU
951 * and it holds the only reference. This is racy because we
952 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
953 * ensures the decrement occurs only once per-buf.
954 */
955 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
956 xfs_buf_ioacct_dec(bp);
957 goto out_unlock;
958 }
959
960 /* the last reference has been dropped ... */
961 xfs_buf_ioacct_dec(bp);
962 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
963 /*
964 * If the buffer is added to the LRU take a new reference to the
965 * buffer for the LRU and clear the (now stale) dispose list
966 * state flag
967 */
968 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
969 bp->b_state &= ~XFS_BSTATE_DISPOSE;
970 atomic_inc(&bp->b_hold);
1da177e4 971 }
9c7504aa
BF
972 spin_unlock(&pag->pag_buf_lock);
973 } else {
974 /*
975 * most of the time buffers will already be removed from the
976 * LRU, so optimise that case by checking for the
977 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
978 * was on was the disposal list
979 */
980 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
981 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
982 } else {
983 ASSERT(list_empty(&bp->b_lru));
1da177e4 984 }
9c7504aa
BF
985
986 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
987 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
988 spin_unlock(&pag->pag_buf_lock);
989 xfs_perag_put(pag);
990 freebuf = true;
1da177e4 991 }
9c7504aa
BF
992
993out_unlock:
994 spin_unlock(&bp->b_lock);
995
996 if (freebuf)
997 xfs_buf_free(bp);
1da177e4
LT
998}
999
1000
1001/*
0e6e847f 1002 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1003 *
1004 * If we come across a stale, pinned, locked buffer, we know that we are
1005 * being asked to lock a buffer that has been reallocated. Because it is
1006 * pinned, we know that the log has not been pushed to disk and hence it
1007 * will still be locked. Rather than continuing to have trylock attempts
1008 * fail until someone else pushes the log, push it ourselves before
1009 * returning. This means that the xfsaild will not get stuck trying
1010 * to push on stale inode buffers.
1da177e4
LT
1011 */
1012int
0c842ad4
CH
1013xfs_buf_trylock(
1014 struct xfs_buf *bp)
1da177e4
LT
1015{
1016 int locked;
1017
ce8e922c 1018 locked = down_trylock(&bp->b_sema) == 0;
479c6412 1019 if (locked) {
ce8e922c 1020 XB_SET_OWNER(bp);
479c6412
DW
1021 trace_xfs_buf_trylock(bp, _RET_IP_);
1022 } else {
1023 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1024 }
0c842ad4 1025 return locked;
1da177e4 1026}
1da177e4
LT
1027
1028/*
0e6e847f 1029 * Lock a buffer object.
ed3b4d6c
DC
1030 *
1031 * If we come across a stale, pinned, locked buffer, we know that we
1032 * are being asked to lock a buffer that has been reallocated. Because
1033 * it is pinned, we know that the log has not been pushed to disk and
1034 * hence it will still be locked. Rather than sleeping until someone
1035 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1036 */
ce8e922c
NS
1037void
1038xfs_buf_lock(
0c842ad4 1039 struct xfs_buf *bp)
1da177e4 1040{
0b1b213f
CH
1041 trace_xfs_buf_lock(bp, _RET_IP_);
1042
ed3b4d6c 1043 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 1044 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
1045 down(&bp->b_sema);
1046 XB_SET_OWNER(bp);
0b1b213f
CH
1047
1048 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1049}
1050
1da177e4 1051void
ce8e922c 1052xfs_buf_unlock(
0c842ad4 1053 struct xfs_buf *bp)
1da177e4 1054{
ce8e922c
NS
1055 XB_CLEAR_OWNER(bp);
1056 up(&bp->b_sema);
0b1b213f
CH
1057
1058 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1059}
1060
ce8e922c
NS
1061STATIC void
1062xfs_buf_wait_unpin(
1063 xfs_buf_t *bp)
1da177e4
LT
1064{
1065 DECLARE_WAITQUEUE (wait, current);
1066
ce8e922c 1067 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1068 return;
1069
ce8e922c 1070 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1071 for (;;) {
1072 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1073 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1074 break;
7eaceacc 1075 io_schedule();
1da177e4 1076 }
ce8e922c 1077 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1078 set_current_state(TASK_RUNNING);
1079}
1080
1081/*
1082 * Buffer Utility Routines
1083 */
1084
e8aaba9a
DC
1085void
1086xfs_buf_ioend(
1087 struct xfs_buf *bp)
1da177e4 1088{
e8aaba9a
DC
1089 bool read = bp->b_flags & XBF_READ;
1090
1091 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1092
1093 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1094
61be9c52
DC
1095 /*
1096 * Pull in IO completion errors now. We are guaranteed to be running
1097 * single threaded, so we don't need the lock to read b_io_error.
1098 */
1099 if (!bp->b_error && bp->b_io_error)
1100 xfs_buf_ioerror(bp, bp->b_io_error);
1101
e8aaba9a
DC
1102 /* Only validate buffers that were read without errors */
1103 if (read && !bp->b_error && bp->b_ops) {
1104 ASSERT(!bp->b_iodone);
1813dd64 1105 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1106 }
1107
1108 if (!bp->b_error)
1109 bp->b_flags |= XBF_DONE;
1da177e4 1110
80f6c29d 1111 if (bp->b_iodone)
ce8e922c
NS
1112 (*(bp->b_iodone))(bp);
1113 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1114 xfs_buf_relse(bp);
595bff75 1115 else
1813dd64 1116 complete(&bp->b_iowait);
1da177e4
LT
1117}
1118
e8aaba9a
DC
1119static void
1120xfs_buf_ioend_work(
1121 struct work_struct *work)
1da177e4 1122{
e8aaba9a 1123 struct xfs_buf *bp =
b29c70f5 1124 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1125
e8aaba9a
DC
1126 xfs_buf_ioend(bp);
1127}
1da177e4 1128
211fe1a4 1129static void
e8aaba9a
DC
1130xfs_buf_ioend_async(
1131 struct xfs_buf *bp)
1132{
b29c70f5
BF
1133 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1134 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1da177e4
LT
1135}
1136
1da177e4 1137void
ce8e922c
NS
1138xfs_buf_ioerror(
1139 xfs_buf_t *bp,
1140 int error)
1da177e4 1141{
2451337d
DC
1142 ASSERT(error <= 0 && error >= -1000);
1143 bp->b_error = error;
0b1b213f 1144 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1145}
1146
901796af
CH
1147void
1148xfs_buf_ioerror_alert(
1149 struct xfs_buf *bp,
1150 const char *func)
1151{
1152 xfs_alert(bp->b_target->bt_mount,
aa0e8833 1153"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
2451337d 1154 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
901796af
CH
1155}
1156
a2dcf5df
CH
1157int
1158xfs_bwrite(
1159 struct xfs_buf *bp)
1160{
1161 int error;
1162
1163 ASSERT(xfs_buf_islocked(bp));
1164
1165 bp->b_flags |= XBF_WRITE;
27187754
DC
1166 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1167 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1168
595bff75 1169 error = xfs_buf_submit_wait(bp);
a2dcf5df
CH
1170 if (error) {
1171 xfs_force_shutdown(bp->b_target->bt_mount,
1172 SHUTDOWN_META_IO_ERROR);
1173 }
1174 return error;
1175}
1176
9bdd9bd6 1177static void
ce8e922c 1178xfs_buf_bio_end_io(
4246a0b6 1179 struct bio *bio)
1da177e4 1180{
9bdd9bd6 1181 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1182
37eb17e6
DC
1183 /*
1184 * don't overwrite existing errors - otherwise we can lose errors on
1185 * buffers that require multiple bios to complete.
1186 */
9bdd9bd6
BF
1187 if (bio->bi_error)
1188 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1da177e4 1189
37eb17e6 1190 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1191 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1192
e8aaba9a
DC
1193 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1194 xfs_buf_ioend_async(bp);
1da177e4 1195 bio_put(bio);
1da177e4
LT
1196}
1197
3e85c868
DC
1198static void
1199xfs_buf_ioapply_map(
1200 struct xfs_buf *bp,
1201 int map,
1202 int *buf_offset,
1203 int *count,
50bfcd0c
MC
1204 int op,
1205 int op_flags)
1da177e4 1206{
3e85c868
DC
1207 int page_index;
1208 int total_nr_pages = bp->b_page_count;
1209 int nr_pages;
1210 struct bio *bio;
1211 sector_t sector = bp->b_maps[map].bm_bn;
1212 int size;
1213 int offset;
1da177e4 1214
ce8e922c 1215 total_nr_pages = bp->b_page_count;
1da177e4 1216
3e85c868
DC
1217 /* skip the pages in the buffer before the start offset */
1218 page_index = 0;
1219 offset = *buf_offset;
1220 while (offset >= PAGE_SIZE) {
1221 page_index++;
1222 offset -= PAGE_SIZE;
f538d4da
CH
1223 }
1224
3e85c868
DC
1225 /*
1226 * Limit the IO size to the length of the current vector, and update the
1227 * remaining IO count for the next time around.
1228 */
1229 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1230 *count -= size;
1231 *buf_offset += size;
34951f5c 1232
1da177e4 1233next_chunk:
ce8e922c 1234 atomic_inc(&bp->b_io_remaining);
c908e380 1235 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1da177e4
LT
1236
1237 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1238 bio->bi_bdev = bp->b_target->bt_bdev;
4f024f37 1239 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1240 bio->bi_end_io = xfs_buf_bio_end_io;
1241 bio->bi_private = bp;
50bfcd0c 1242 bio_set_op_attrs(bio, op, op_flags);
0e6e847f 1243
3e85c868 1244 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1245 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1246
1247 if (nbytes > size)
1248 nbytes = size;
1249
3e85c868
DC
1250 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1251 offset);
ce8e922c 1252 if (rbytes < nbytes)
1da177e4
LT
1253 break;
1254
1255 offset = 0;
aa0e8833 1256 sector += BTOBB(nbytes);
1da177e4
LT
1257 size -= nbytes;
1258 total_nr_pages--;
1259 }
1260
4f024f37 1261 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1262 if (xfs_buf_is_vmapped(bp)) {
1263 flush_kernel_vmap_range(bp->b_addr,
1264 xfs_buf_vmap_len(bp));
1265 }
4e49ea4a 1266 submit_bio(bio);
1da177e4
LT
1267 if (size)
1268 goto next_chunk;
1269 } else {
37eb17e6
DC
1270 /*
1271 * This is guaranteed not to be the last io reference count
595bff75 1272 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1273 */
1274 atomic_dec(&bp->b_io_remaining);
2451337d 1275 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1276 bio_put(bio);
1da177e4 1277 }
3e85c868
DC
1278
1279}
1280
1281STATIC void
1282_xfs_buf_ioapply(
1283 struct xfs_buf *bp)
1284{
1285 struct blk_plug plug;
50bfcd0c
MC
1286 int op;
1287 int op_flags = 0;
3e85c868
DC
1288 int offset;
1289 int size;
1290 int i;
1291
c163f9a1
DC
1292 /*
1293 * Make sure we capture only current IO errors rather than stale errors
1294 * left over from previous use of the buffer (e.g. failed readahead).
1295 */
1296 bp->b_error = 0;
1297
b29c70f5
BF
1298 /*
1299 * Initialize the I/O completion workqueue if we haven't yet or the
1300 * submitter has not opted to specify a custom one.
1301 */
1302 if (!bp->b_ioend_wq)
1303 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1304
3e85c868 1305 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1306 op = REQ_OP_WRITE;
3e85c868 1307 if (bp->b_flags & XBF_SYNCIO)
50bfcd0c 1308 op_flags = WRITE_SYNC;
3e85c868 1309 if (bp->b_flags & XBF_FUA)
50bfcd0c 1310 op_flags |= REQ_FUA;
3e85c868 1311 if (bp->b_flags & XBF_FLUSH)
28a8f0d3 1312 op_flags |= REQ_PREFLUSH;
1813dd64
DC
1313
1314 /*
1315 * Run the write verifier callback function if it exists. If
1316 * this function fails it will mark the buffer with an error and
1317 * the IO should not be dispatched.
1318 */
1319 if (bp->b_ops) {
1320 bp->b_ops->verify_write(bp);
1321 if (bp->b_error) {
1322 xfs_force_shutdown(bp->b_target->bt_mount,
1323 SHUTDOWN_CORRUPT_INCORE);
1324 return;
1325 }
400b9d88
DC
1326 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1327 struct xfs_mount *mp = bp->b_target->bt_mount;
1328
1329 /*
1330 * non-crc filesystems don't attach verifiers during
1331 * log recovery, so don't warn for such filesystems.
1332 */
1333 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1334 xfs_warn(mp,
1335 "%s: no ops on block 0x%llx/0x%x",
1336 __func__, bp->b_bn, bp->b_length);
1337 xfs_hex_dump(bp->b_addr, 64);
1338 dump_stack();
1339 }
1813dd64 1340 }
3e85c868 1341 } else if (bp->b_flags & XBF_READ_AHEAD) {
50bfcd0c
MC
1342 op = REQ_OP_READ;
1343 op_flags = REQ_RAHEAD;
3e85c868 1344 } else {
50bfcd0c 1345 op = REQ_OP_READ;
3e85c868
DC
1346 }
1347
1348 /* we only use the buffer cache for meta-data */
50bfcd0c 1349 op_flags |= REQ_META;
3e85c868
DC
1350
1351 /*
1352 * Walk all the vectors issuing IO on them. Set up the initial offset
1353 * into the buffer and the desired IO size before we start -
1354 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1355 * subsequent call.
1356 */
1357 offset = bp->b_offset;
1358 size = BBTOB(bp->b_io_length);
1359 blk_start_plug(&plug);
1360 for (i = 0; i < bp->b_map_count; i++) {
50bfcd0c 1361 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
3e85c868
DC
1362 if (bp->b_error)
1363 break;
1364 if (size <= 0)
1365 break; /* all done */
1366 }
1367 blk_finish_plug(&plug);
1da177e4
LT
1368}
1369
595bff75
DC
1370/*
1371 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1372 * the current reference to the IO. It is not safe to reference the buffer after
1373 * a call to this function unless the caller holds an additional reference
1374 * itself.
1375 */
0e95f19a 1376void
595bff75
DC
1377xfs_buf_submit(
1378 struct xfs_buf *bp)
1da177e4 1379{
595bff75 1380 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1381
43ff2122 1382 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1383 ASSERT(bp->b_flags & XBF_ASYNC);
1384
1385 /* on shutdown we stale and complete the buffer immediately */
1386 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1387 xfs_buf_ioerror(bp, -EIO);
1388 bp->b_flags &= ~XBF_DONE;
1389 xfs_buf_stale(bp);
1390 xfs_buf_ioend(bp);
1391 return;
1392 }
1da177e4 1393
375ec69d 1394 if (bp->b_flags & XBF_WRITE)
ce8e922c 1395 xfs_buf_wait_unpin(bp);
e11bb805 1396
61be9c52
DC
1397 /* clear the internal error state to avoid spurious errors */
1398 bp->b_io_error = 0;
1399
e11bb805 1400 /*
595bff75
DC
1401 * The caller's reference is released during I/O completion.
1402 * This occurs some time after the last b_io_remaining reference is
1403 * released, so after we drop our Io reference we have to have some
1404 * other reference to ensure the buffer doesn't go away from underneath
1405 * us. Take a direct reference to ensure we have safe access to the
1406 * buffer until we are finished with it.
e11bb805 1407 */
ce8e922c 1408 xfs_buf_hold(bp);
1da177e4 1409
8d6c1210 1410 /*
e11bb805
DC
1411 * Set the count to 1 initially, this will stop an I/O completion
1412 * callout which happens before we have started all the I/O from calling
1413 * xfs_buf_ioend too early.
1da177e4 1414 */
ce8e922c 1415 atomic_set(&bp->b_io_remaining, 1);
9c7504aa 1416 xfs_buf_ioacct_inc(bp);
ce8e922c 1417 _xfs_buf_ioapply(bp);
e11bb805 1418
8d6c1210 1419 /*
595bff75
DC
1420 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1421 * reference we took above. If we drop it to zero, run completion so
1422 * that we don't return to the caller with completion still pending.
8d6c1210 1423 */
e8aaba9a 1424 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
595bff75 1425 if (bp->b_error)
e8aaba9a
DC
1426 xfs_buf_ioend(bp);
1427 else
1428 xfs_buf_ioend_async(bp);
1429 }
1da177e4 1430
ce8e922c 1431 xfs_buf_rele(bp);
595bff75 1432 /* Note: it is not safe to reference bp now we've dropped our ref */
1da177e4
LT
1433}
1434
1435/*
595bff75 1436 * Synchronous buffer IO submission path, read or write.
1da177e4
LT
1437 */
1438int
595bff75
DC
1439xfs_buf_submit_wait(
1440 struct xfs_buf *bp)
1da177e4 1441{
595bff75 1442 int error;
0b1b213f 1443
595bff75
DC
1444 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1445
1446 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
0b1b213f 1447
595bff75
DC
1448 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1449 xfs_buf_ioerror(bp, -EIO);
1450 xfs_buf_stale(bp);
1451 bp->b_flags &= ~XBF_DONE;
1452 return -EIO;
1453 }
1454
1455 if (bp->b_flags & XBF_WRITE)
1456 xfs_buf_wait_unpin(bp);
1457
1458 /* clear the internal error state to avoid spurious errors */
1459 bp->b_io_error = 0;
1460
1461 /*
1462 * For synchronous IO, the IO does not inherit the submitters reference
1463 * count, nor the buffer lock. Hence we cannot release the reference we
1464 * are about to take until we've waited for all IO completion to occur,
1465 * including any xfs_buf_ioend_async() work that may be pending.
1466 */
1467 xfs_buf_hold(bp);
1468
1469 /*
1470 * Set the count to 1 initially, this will stop an I/O completion
1471 * callout which happens before we have started all the I/O from calling
1472 * xfs_buf_ioend too early.
1473 */
1474 atomic_set(&bp->b_io_remaining, 1);
1475 _xfs_buf_ioapply(bp);
1476
1477 /*
1478 * make sure we run completion synchronously if it raced with us and is
1479 * already complete.
1480 */
1481 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1482 xfs_buf_ioend(bp);
0b1b213f 1483
595bff75
DC
1484 /* wait for completion before gathering the error from the buffer */
1485 trace_xfs_buf_iowait(bp, _RET_IP_);
1486 wait_for_completion(&bp->b_iowait);
0b1b213f 1487 trace_xfs_buf_iowait_done(bp, _RET_IP_);
595bff75
DC
1488 error = bp->b_error;
1489
1490 /*
1491 * all done now, we can release the hold that keeps the buffer
1492 * referenced for the entire IO.
1493 */
1494 xfs_buf_rele(bp);
1495 return error;
1da177e4
LT
1496}
1497
88ee2df7 1498void *
ce8e922c 1499xfs_buf_offset(
88ee2df7 1500 struct xfs_buf *bp,
1da177e4
LT
1501 size_t offset)
1502{
1503 struct page *page;
1504
611c9946 1505 if (bp->b_addr)
62926044 1506 return bp->b_addr + offset;
1da177e4 1507
ce8e922c 1508 offset += bp->b_offset;
0e6e847f 1509 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1510 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1511}
1512
1513/*
1da177e4
LT
1514 * Move data into or out of a buffer.
1515 */
1516void
ce8e922c
NS
1517xfs_buf_iomove(
1518 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1519 size_t boff, /* starting buffer offset */
1520 size_t bsize, /* length to copy */
b9c48649 1521 void *data, /* data address */
ce8e922c 1522 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1523{
795cac72 1524 size_t bend;
1da177e4
LT
1525
1526 bend = boff + bsize;
1527 while (boff < bend) {
795cac72
DC
1528 struct page *page;
1529 int page_index, page_offset, csize;
1530
1531 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1532 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1533 page = bp->b_pages[page_index];
1534 csize = min_t(size_t, PAGE_SIZE - page_offset,
1535 BBTOB(bp->b_io_length) - boff);
1da177e4 1536
795cac72 1537 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1538
1539 switch (mode) {
ce8e922c 1540 case XBRW_ZERO:
795cac72 1541 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1542 break;
ce8e922c 1543 case XBRW_READ:
795cac72 1544 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1545 break;
ce8e922c 1546 case XBRW_WRITE:
795cac72 1547 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1548 }
1549
1550 boff += csize;
1551 data += csize;
1552 }
1553}
1554
1555/*
ce8e922c 1556 * Handling of buffer targets (buftargs).
1da177e4
LT
1557 */
1558
1559/*
430cbeb8
DC
1560 * Wait for any bufs with callbacks that have been submitted but have not yet
1561 * returned. These buffers will have an elevated hold count, so wait on those
1562 * while freeing all the buffers only held by the LRU.
1da177e4 1563 */
e80dfa19
DC
1564static enum lru_status
1565xfs_buftarg_wait_rele(
1566 struct list_head *item,
3f97b163 1567 struct list_lru_one *lru,
e80dfa19
DC
1568 spinlock_t *lru_lock,
1569 void *arg)
1570
1da177e4 1571{
e80dfa19 1572 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1573 struct list_head *dispose = arg;
430cbeb8 1574
e80dfa19 1575 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1576 /* need to wait, so skip it this pass */
e80dfa19 1577 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1578 return LRU_SKIP;
1da177e4 1579 }
a4082357
DC
1580 if (!spin_trylock(&bp->b_lock))
1581 return LRU_SKIP;
e80dfa19 1582
a4082357
DC
1583 /*
1584 * clear the LRU reference count so the buffer doesn't get
1585 * ignored in xfs_buf_rele().
1586 */
1587 atomic_set(&bp->b_lru_ref, 0);
1588 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1589 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1590 spin_unlock(&bp->b_lock);
1591 return LRU_REMOVED;
1da177e4
LT
1592}
1593
e80dfa19
DC
1594void
1595xfs_wait_buftarg(
1596 struct xfs_buftarg *btp)
1597{
a4082357
DC
1598 LIST_HEAD(dispose);
1599 int loop = 0;
1600
85bec546 1601 /*
9c7504aa
BF
1602 * First wait on the buftarg I/O count for all in-flight buffers to be
1603 * released. This is critical as new buffers do not make the LRU until
1604 * they are released.
1605 *
1606 * Next, flush the buffer workqueue to ensure all completion processing
1607 * has finished. Just waiting on buffer locks is not sufficient for
1608 * async IO as the reference count held over IO is not released until
1609 * after the buffer lock is dropped. Hence we need to ensure here that
1610 * all reference counts have been dropped before we start walking the
1611 * LRU list.
85bec546 1612 */
9c7504aa
BF
1613 while (percpu_counter_sum(&btp->bt_io_count))
1614 delay(100);
85bec546
DC
1615 drain_workqueue(btp->bt_mount->m_buf_workqueue);
1616
a4082357
DC
1617 /* loop until there is nothing left on the lru list. */
1618 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1619 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1620 &dispose, LONG_MAX);
1621
1622 while (!list_empty(&dispose)) {
1623 struct xfs_buf *bp;
1624 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1625 list_del_init(&bp->b_lru);
ac8809f9
DC
1626 if (bp->b_flags & XBF_WRITE_FAIL) {
1627 xfs_alert(btp->bt_mount,
f41febd2 1628"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
ac8809f9 1629 (long long)bp->b_bn);
f41febd2
JP
1630 xfs_alert(btp->bt_mount,
1631"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1632 }
a4082357
DC
1633 xfs_buf_rele(bp);
1634 }
1635 if (loop++ != 0)
1636 delay(100);
1637 }
e80dfa19
DC
1638}
1639
1640static enum lru_status
1641xfs_buftarg_isolate(
1642 struct list_head *item,
3f97b163 1643 struct list_lru_one *lru,
e80dfa19
DC
1644 spinlock_t *lru_lock,
1645 void *arg)
1646{
1647 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1648 struct list_head *dispose = arg;
1649
a4082357
DC
1650 /*
1651 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1652 * If we fail to get the lock, just skip it.
1653 */
1654 if (!spin_trylock(&bp->b_lock))
1655 return LRU_SKIP;
e80dfa19
DC
1656 /*
1657 * Decrement the b_lru_ref count unless the value is already
1658 * zero. If the value is already zero, we need to reclaim the
1659 * buffer, otherwise it gets another trip through the LRU.
1660 */
a4082357
DC
1661 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1662 spin_unlock(&bp->b_lock);
e80dfa19 1663 return LRU_ROTATE;
a4082357 1664 }
e80dfa19 1665
a4082357 1666 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1667 list_lru_isolate_move(lru, item, dispose);
a4082357 1668 spin_unlock(&bp->b_lock);
e80dfa19
DC
1669 return LRU_REMOVED;
1670}
1671
addbda40 1672static unsigned long
e80dfa19 1673xfs_buftarg_shrink_scan(
ff57ab21 1674 struct shrinker *shrink,
1495f230 1675 struct shrink_control *sc)
a6867a68 1676{
ff57ab21
DC
1677 struct xfs_buftarg *btp = container_of(shrink,
1678 struct xfs_buftarg, bt_shrinker);
430cbeb8 1679 LIST_HEAD(dispose);
addbda40 1680 unsigned long freed;
430cbeb8 1681
503c358c
VD
1682 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1683 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1684
1685 while (!list_empty(&dispose)) {
e80dfa19 1686 struct xfs_buf *bp;
430cbeb8
DC
1687 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1688 list_del_init(&bp->b_lru);
1689 xfs_buf_rele(bp);
1690 }
1691
e80dfa19
DC
1692 return freed;
1693}
1694
addbda40 1695static unsigned long
e80dfa19
DC
1696xfs_buftarg_shrink_count(
1697 struct shrinker *shrink,
1698 struct shrink_control *sc)
1699{
1700 struct xfs_buftarg *btp = container_of(shrink,
1701 struct xfs_buftarg, bt_shrinker);
503c358c 1702 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1703}
1704
1da177e4
LT
1705void
1706xfs_free_buftarg(
b7963133
CH
1707 struct xfs_mount *mp,
1708 struct xfs_buftarg *btp)
1da177e4 1709{
ff57ab21 1710 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1711 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1712 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1713 list_lru_destroy(&btp->bt_lru);
ff57ab21 1714
b7963133
CH
1715 if (mp->m_flags & XFS_MOUNT_BARRIER)
1716 xfs_blkdev_issue_flush(btp);
a6867a68 1717
f0e2d93c 1718 kmem_free(btp);
1da177e4
LT
1719}
1720
3fefdeee
ES
1721int
1722xfs_setsize_buftarg(
1da177e4 1723 xfs_buftarg_t *btp,
3fefdeee 1724 unsigned int sectorsize)
1da177e4 1725{
7c71ee78 1726 /* Set up metadata sector size info */
6da54179
ES
1727 btp->bt_meta_sectorsize = sectorsize;
1728 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1729
ce8e922c 1730 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1731 xfs_warn(btp->bt_mount,
a1c6f057
DM
1732 "Cannot set_blocksize to %u on device %pg",
1733 sectorsize, btp->bt_bdev);
2451337d 1734 return -EINVAL;
1da177e4
LT
1735 }
1736
7c71ee78
ES
1737 /* Set up device logical sector size mask */
1738 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1739 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1740
1da177e4
LT
1741 return 0;
1742}
1743
1744/*
3fefdeee
ES
1745 * When allocating the initial buffer target we have not yet
1746 * read in the superblock, so don't know what sized sectors
1747 * are being used at this early stage. Play safe.
ce8e922c 1748 */
1da177e4
LT
1749STATIC int
1750xfs_setsize_buftarg_early(
1751 xfs_buftarg_t *btp,
1752 struct block_device *bdev)
1753{
a96c4151 1754 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1755}
1756
1da177e4
LT
1757xfs_buftarg_t *
1758xfs_alloc_buftarg(
ebad861b 1759 struct xfs_mount *mp,
34dcefd7 1760 struct block_device *bdev)
1da177e4
LT
1761{
1762 xfs_buftarg_t *btp;
1763
b17cb364 1764 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1765
ebad861b 1766 btp->bt_mount = mp;
ce8e922c
NS
1767 btp->bt_dev = bdev->bd_dev;
1768 btp->bt_bdev = bdev;
0e6e847f 1769 btp->bt_bdi = blk_get_backing_dev_info(bdev);
0e6e847f 1770
1da177e4
LT
1771 if (xfs_setsize_buftarg_early(btp, bdev))
1772 goto error;
5ca302c8
GC
1773
1774 if (list_lru_init(&btp->bt_lru))
1775 goto error;
1776
9c7504aa
BF
1777 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1778 goto error;
1779
e80dfa19
DC
1780 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1781 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1782 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1783 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
ff57ab21 1784 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1785 return btp;
1786
1787error:
f0e2d93c 1788 kmem_free(btp);
1da177e4
LT
1789 return NULL;
1790}
1791
1da177e4 1792/*
43ff2122
CH
1793 * Add a buffer to the delayed write list.
1794 *
1795 * This queues a buffer for writeout if it hasn't already been. Note that
1796 * neither this routine nor the buffer list submission functions perform
1797 * any internal synchronization. It is expected that the lists are thread-local
1798 * to the callers.
1799 *
1800 * Returns true if we queued up the buffer, or false if it already had
1801 * been on the buffer list.
1da177e4 1802 */
43ff2122 1803bool
ce8e922c 1804xfs_buf_delwri_queue(
43ff2122
CH
1805 struct xfs_buf *bp,
1806 struct list_head *list)
1da177e4 1807{
43ff2122 1808 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1809 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1810
43ff2122
CH
1811 /*
1812 * If the buffer is already marked delwri it already is queued up
1813 * by someone else for imediate writeout. Just ignore it in that
1814 * case.
1815 */
1816 if (bp->b_flags & _XBF_DELWRI_Q) {
1817 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1818 return false;
1da177e4 1819 }
1da177e4 1820
43ff2122 1821 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1822
1823 /*
43ff2122
CH
1824 * If a buffer gets written out synchronously or marked stale while it
1825 * is on a delwri list we lazily remove it. To do this, the other party
1826 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1827 * It remains referenced and on the list. In a rare corner case it
1828 * might get readded to a delwri list after the synchronous writeout, in
1829 * which case we need just need to re-add the flag here.
d808f617 1830 */
43ff2122
CH
1831 bp->b_flags |= _XBF_DELWRI_Q;
1832 if (list_empty(&bp->b_list)) {
1833 atomic_inc(&bp->b_hold);
1834 list_add_tail(&bp->b_list, list);
585e6d88 1835 }
585e6d88 1836
43ff2122 1837 return true;
585e6d88
DC
1838}
1839
089716aa
DC
1840/*
1841 * Compare function is more complex than it needs to be because
1842 * the return value is only 32 bits and we are doing comparisons
1843 * on 64 bit values
1844 */
1845static int
1846xfs_buf_cmp(
1847 void *priv,
1848 struct list_head *a,
1849 struct list_head *b)
1850{
1851 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1852 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1853 xfs_daddr_t diff;
1854
f4b42421 1855 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1856 if (diff < 0)
1857 return -1;
1858 if (diff > 0)
1859 return 1;
1860 return 0;
1861}
1862
26f1fe85
DC
1863/*
1864 * submit buffers for write.
1865 *
1866 * When we have a large buffer list, we do not want to hold all the buffers
1867 * locked while we block on the request queue waiting for IO dispatch. To avoid
1868 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1869 * the lock hold times for lists which may contain thousands of objects.
1870 *
1871 * To do this, we sort the buffer list before we walk the list to lock and
1872 * submit buffers, and we plug and unplug around each group of buffers we
1873 * submit.
1874 */
43ff2122 1875static int
26f1fe85 1876xfs_buf_delwri_submit_buffers(
43ff2122 1877 struct list_head *buffer_list,
26f1fe85 1878 struct list_head *wait_list)
1da177e4 1879{
43ff2122 1880 struct xfs_buf *bp, *n;
26f1fe85 1881 LIST_HEAD (submit_list);
43ff2122 1882 int pinned = 0;
26f1fe85 1883 struct blk_plug plug;
43ff2122 1884
26f1fe85 1885 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 1886
26f1fe85 1887 blk_start_plug(&plug);
43ff2122 1888 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 1889 if (!wait_list) {
43ff2122
CH
1890 if (xfs_buf_ispinned(bp)) {
1891 pinned++;
1892 continue;
1893 }
1894 if (!xfs_buf_trylock(bp))
1895 continue;
1896 } else {
1897 xfs_buf_lock(bp);
1898 }
978c7b2f 1899
43ff2122
CH
1900 /*
1901 * Someone else might have written the buffer synchronously or
1902 * marked it stale in the meantime. In that case only the
1903 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1904 * reference and remove it from the list here.
1905 */
1906 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1907 list_del_init(&bp->b_list);
1908 xfs_buf_relse(bp);
1909 continue;
1910 }
c9c12971 1911
43ff2122 1912 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 1913
cf53e99d 1914 /*
26f1fe85
DC
1915 * We do all IO submission async. This means if we need
1916 * to wait for IO completion we need to take an extra
1917 * reference so the buffer is still valid on the other
1918 * side. We need to move the buffer onto the io_list
1919 * at this point so the caller can still access it.
cf53e99d 1920 */
bbfeb614 1921 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
26f1fe85
DC
1922 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1923 if (wait_list) {
cf53e99d 1924 xfs_buf_hold(bp);
26f1fe85
DC
1925 list_move_tail(&bp->b_list, wait_list);
1926 } else
ce8e922c 1927 list_del_init(&bp->b_list);
8dac3921 1928
595bff75 1929 xfs_buf_submit(bp);
43ff2122
CH
1930 }
1931 blk_finish_plug(&plug);
1da177e4 1932
43ff2122 1933 return pinned;
1da177e4
LT
1934}
1935
1936/*
43ff2122
CH
1937 * Write out a buffer list asynchronously.
1938 *
1939 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1940 * out and not wait for I/O completion on any of the buffers. This interface
1941 * is only safely useable for callers that can track I/O completion by higher
1942 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1943 * function.
1da177e4
LT
1944 */
1945int
43ff2122
CH
1946xfs_buf_delwri_submit_nowait(
1947 struct list_head *buffer_list)
1da177e4 1948{
26f1fe85 1949 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 1950}
1da177e4 1951
43ff2122
CH
1952/*
1953 * Write out a buffer list synchronously.
1954 *
1955 * This will take the @buffer_list, write all buffers out and wait for I/O
1956 * completion on all of the buffers. @buffer_list is consumed by the function,
1957 * so callers must have some other way of tracking buffers if they require such
1958 * functionality.
1959 */
1960int
1961xfs_buf_delwri_submit(
1962 struct list_head *buffer_list)
1963{
26f1fe85 1964 LIST_HEAD (wait_list);
43ff2122
CH
1965 int error = 0, error2;
1966 struct xfs_buf *bp;
1da177e4 1967
26f1fe85 1968 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 1969
43ff2122 1970 /* Wait for IO to complete. */
26f1fe85
DC
1971 while (!list_empty(&wait_list)) {
1972 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 1973
089716aa 1974 list_del_init(&bp->b_list);
cf53e99d
DC
1975
1976 /* locking the buffer will wait for async IO completion. */
1977 xfs_buf_lock(bp);
1978 error2 = bp->b_error;
43ff2122
CH
1979 xfs_buf_relse(bp);
1980 if (!error)
1981 error = error2;
1da177e4
LT
1982 }
1983
43ff2122 1984 return error;
1da177e4
LT
1985}
1986
04d8b284 1987int __init
ce8e922c 1988xfs_buf_init(void)
1da177e4 1989{
8758280f
NS
1990 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1991 KM_ZONE_HWALIGN, NULL);
ce8e922c 1992 if (!xfs_buf_zone)
0b1b213f 1993 goto out;
04d8b284 1994
23ea4032 1995 return 0;
1da177e4 1996
0b1b213f 1997 out:
8758280f 1998 return -ENOMEM;
1da177e4
LT
1999}
2000
1da177e4 2001void
ce8e922c 2002xfs_buf_terminate(void)
1da177e4 2003{
ce8e922c 2004 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2005}
This page took 0.971168 seconds and 5 git commands to generate.