ASoC: omap-abe-twl6040: Add device tree support
[deliverable/linux.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133 37#include "xfs_sb.h"
ed3b4d6c 38#include "xfs_log.h"
b7963133 39#include "xfs_ag.h"
b7963133 40#include "xfs_mount.h"
0b1b213f 41#include "xfs_trace.h"
b7963133 42
7989cb8e 43static kmem_zone_t *xfs_buf_zone;
23ea4032 44
7989cb8e 45static struct workqueue_struct *xfslogd_workqueue;
1da177e4 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
1da177e4 82/*
430cbeb8
DC
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88STATIC void
89xfs_buf_lru_add(
90 struct xfs_buf *bp)
91{
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
99 }
100 spin_unlock(&btp->bt_lru_lock);
101}
102
103/*
104 * xfs_buf_lru_del - remove a buffer from the LRU
105 *
106 * The unlocked check is safe here because it only occurs when there are not
107 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
108 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 109 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 110 * bt_lru_lock.
1da177e4 111 */
430cbeb8
DC
112STATIC void
113xfs_buf_lru_del(
114 struct xfs_buf *bp)
115{
116 struct xfs_buftarg *btp = bp->b_target;
117
118 if (list_empty(&bp->b_lru))
119 return;
120
121 spin_lock(&btp->bt_lru_lock);
122 if (!list_empty(&bp->b_lru)) {
123 list_del_init(&bp->b_lru);
124 btp->bt_lru_nr--;
125 }
126 spin_unlock(&btp->bt_lru_lock);
127}
128
129/*
130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131 * b_lru_ref count so that the buffer is freed immediately when the buffer
132 * reference count falls to zero. If the buffer is already on the LRU, we need
133 * to remove the reference that LRU holds on the buffer.
134 *
135 * This prevents build-up of stale buffers on the LRU.
136 */
137void
138xfs_buf_stale(
139 struct xfs_buf *bp)
140{
43ff2122
CH
141 ASSERT(xfs_buf_islocked(bp));
142
430cbeb8 143 bp->b_flags |= XBF_STALE;
43ff2122
CH
144
145 /*
146 * Clear the delwri status so that a delwri queue walker will not
147 * flush this buffer to disk now that it is stale. The delwri queue has
148 * a reference to the buffer, so this is safe to do.
149 */
150 bp->b_flags &= ~_XBF_DELWRI_Q;
151
430cbeb8
DC
152 atomic_set(&(bp)->b_lru_ref, 0);
153 if (!list_empty(&bp->b_lru)) {
154 struct xfs_buftarg *btp = bp->b_target;
155
156 spin_lock(&btp->bt_lru_lock);
157 if (!list_empty(&bp->b_lru)) {
158 list_del_init(&bp->b_lru);
159 btp->bt_lru_nr--;
160 atomic_dec(&bp->b_hold);
161 }
162 spin_unlock(&btp->bt_lru_lock);
163 }
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165}
1da177e4 166
3e85c868
DC
167static int
168xfs_buf_get_maps(
169 struct xfs_buf *bp,
170 int map_count)
171{
172 ASSERT(bp->b_maps == NULL);
173 bp->b_map_count = map_count;
174
175 if (map_count == 1) {
176 bp->b_maps = &bp->b_map;
177 return 0;
178 }
179
180 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
181 KM_NOFS);
182 if (!bp->b_maps)
183 return ENOMEM;
184 return 0;
185}
186
187/*
188 * Frees b_pages if it was allocated.
189 */
190static void
191xfs_buf_free_maps(
192 struct xfs_buf *bp)
193{
194 if (bp->b_maps != &bp->b_map) {
195 kmem_free(bp->b_maps);
196 bp->b_maps = NULL;
197 }
198}
199
4347b9d7 200struct xfs_buf *
3e85c868 201_xfs_buf_alloc(
4347b9d7 202 struct xfs_buftarg *target,
3e85c868
DC
203 struct xfs_buf_map *map,
204 int nmaps,
ce8e922c 205 xfs_buf_flags_t flags)
1da177e4 206{
4347b9d7 207 struct xfs_buf *bp;
3e85c868
DC
208 int error;
209 int i;
4347b9d7 210
aa5c158e 211 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
212 if (unlikely(!bp))
213 return NULL;
214
1da177e4 215 /*
12bcb3f7
DC
216 * We don't want certain flags to appear in b_flags unless they are
217 * specifically set by later operations on the buffer.
1da177e4 218 */
611c9946 219 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 220
ce8e922c 221 atomic_set(&bp->b_hold, 1);
430cbeb8 222 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 223 init_completion(&bp->b_iowait);
430cbeb8 224 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 225 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 226 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 227 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
228 XB_SET_OWNER(bp);
229 bp->b_target = target;
3e85c868 230 bp->b_flags = flags;
de1cbee4 231
1da177e4 232 /*
aa0e8833
DC
233 * Set length and io_length to the same value initially.
234 * I/O routines should use io_length, which will be the same in
1da177e4
LT
235 * most cases but may be reset (e.g. XFS recovery).
236 */
3e85c868
DC
237 error = xfs_buf_get_maps(bp, nmaps);
238 if (error) {
239 kmem_zone_free(xfs_buf_zone, bp);
240 return NULL;
241 }
242
243 bp->b_bn = map[0].bm_bn;
244 bp->b_length = 0;
245 for (i = 0; i < nmaps; i++) {
246 bp->b_maps[i].bm_bn = map[i].bm_bn;
247 bp->b_maps[i].bm_len = map[i].bm_len;
248 bp->b_length += map[i].bm_len;
249 }
250 bp->b_io_length = bp->b_length;
251
ce8e922c
NS
252 atomic_set(&bp->b_pin_count, 0);
253 init_waitqueue_head(&bp->b_waiters);
254
255 XFS_STATS_INC(xb_create);
0b1b213f 256 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
257
258 return bp;
1da177e4
LT
259}
260
261/*
ce8e922c
NS
262 * Allocate a page array capable of holding a specified number
263 * of pages, and point the page buf at it.
1da177e4
LT
264 */
265STATIC int
ce8e922c
NS
266_xfs_buf_get_pages(
267 xfs_buf_t *bp,
1da177e4 268 int page_count,
ce8e922c 269 xfs_buf_flags_t flags)
1da177e4
LT
270{
271 /* Make sure that we have a page list */
ce8e922c 272 if (bp->b_pages == NULL) {
ce8e922c
NS
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
1da177e4 276 } else {
ce8e922c 277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 278 page_count, KM_NOFS);
ce8e922c 279 if (bp->b_pages == NULL)
1da177e4
LT
280 return -ENOMEM;
281 }
ce8e922c 282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
283 }
284 return 0;
285}
286
287/*
ce8e922c 288 * Frees b_pages if it was allocated.
1da177e4
LT
289 */
290STATIC void
ce8e922c 291_xfs_buf_free_pages(
1da177e4
LT
292 xfs_buf_t *bp)
293{
ce8e922c 294 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 295 kmem_free(bp->b_pages);
3fc98b1a 296 bp->b_pages = NULL;
1da177e4
LT
297 }
298}
299
300/*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
ce8e922c 304 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
305 * hashed and refcounted buffers
306 */
307void
ce8e922c 308xfs_buf_free(
1da177e4
LT
309 xfs_buf_t *bp)
310{
0b1b213f 311 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 312
430cbeb8
DC
313 ASSERT(list_empty(&bp->b_lru));
314
0e6e847f 315 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
316 uint i;
317
73c77e2c 318 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
1da177e4 321
948ecdb4
NS
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
0e6e847f 325 __free_page(page);
948ecdb4 326 }
0e6e847f
DC
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
3fc98b1a 329 _xfs_buf_free_pages(bp);
3e85c868 330 xfs_buf_free_maps(bp);
4347b9d7 331 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
332}
333
334/*
0e6e847f 335 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
336 */
337STATIC int
0e6e847f 338xfs_buf_allocate_memory(
1da177e4
LT
339 xfs_buf_t *bp,
340 uint flags)
341{
aa0e8833 342 size_t size;
1da177e4 343 size_t nbytes, offset;
ce8e922c 344 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 345 unsigned short page_count, i;
795cac72 346 xfs_off_t start, end;
1da177e4
LT
347 int error;
348
0e6e847f
DC
349 /*
350 * for buffers that are contained within a single page, just allocate
351 * the memory from the heap - there's no need for the complexity of
352 * page arrays to keep allocation down to order 0.
353 */
795cac72
DC
354 size = BBTOB(bp->b_length);
355 if (size < PAGE_SIZE) {
aa5c158e 356 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
357 if (!bp->b_addr) {
358 /* low memory - use alloc_page loop instead */
359 goto use_alloc_page;
360 }
361
795cac72 362 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
363 ((unsigned long)bp->b_addr & PAGE_MASK)) {
364 /* b_addr spans two pages - use alloc_page instead */
365 kmem_free(bp->b_addr);
366 bp->b_addr = NULL;
367 goto use_alloc_page;
368 }
369 bp->b_offset = offset_in_page(bp->b_addr);
370 bp->b_pages = bp->b_page_array;
371 bp->b_pages[0] = virt_to_page(bp->b_addr);
372 bp->b_page_count = 1;
611c9946 373 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
374 return 0;
375 }
376
377use_alloc_page:
cbb7baab
DC
378 start = BBTOB(bp->b_map.bm_bn) >> PAGE_SHIFT;
379 end = (BBTOB(bp->b_map.bm_bn + bp->b_length) + PAGE_SIZE - 1)
380 >> PAGE_SHIFT;
795cac72 381 page_count = end - start;
ce8e922c 382 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
383 if (unlikely(error))
384 return error;
1da177e4 385
ce8e922c 386 offset = bp->b_offset;
0e6e847f 387 bp->b_flags |= _XBF_PAGES;
1da177e4 388
ce8e922c 389 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
390 struct page *page;
391 uint retries = 0;
0e6e847f
DC
392retry:
393 page = alloc_page(gfp_mask);
1da177e4 394 if (unlikely(page == NULL)) {
ce8e922c
NS
395 if (flags & XBF_READ_AHEAD) {
396 bp->b_page_count = i;
0e6e847f
DC
397 error = ENOMEM;
398 goto out_free_pages;
1da177e4
LT
399 }
400
401 /*
402 * This could deadlock.
403 *
404 * But until all the XFS lowlevel code is revamped to
405 * handle buffer allocation failures we can't do much.
406 */
407 if (!(++retries % 100))
4f10700a
DC
408 xfs_err(NULL,
409 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 410 __func__, gfp_mask);
1da177e4 411
ce8e922c 412 XFS_STATS_INC(xb_page_retries);
8aa7e847 413 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
414 goto retry;
415 }
416
ce8e922c 417 XFS_STATS_INC(xb_page_found);
1da177e4 418
0e6e847f 419 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 420 size -= nbytes;
ce8e922c 421 bp->b_pages[i] = page;
1da177e4
LT
422 offset = 0;
423 }
0e6e847f 424 return 0;
1da177e4 425
0e6e847f
DC
426out_free_pages:
427 for (i = 0; i < bp->b_page_count; i++)
428 __free_page(bp->b_pages[i]);
1da177e4
LT
429 return error;
430}
431
432/*
25985edc 433 * Map buffer into kernel address-space if necessary.
1da177e4
LT
434 */
435STATIC int
ce8e922c 436_xfs_buf_map_pages(
1da177e4
LT
437 xfs_buf_t *bp,
438 uint flags)
439{
0e6e847f 440 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 441 if (bp->b_page_count == 1) {
0e6e847f 442 /* A single page buffer is always mappable */
ce8e922c 443 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
444 } else if (flags & XBF_UNMAPPED) {
445 bp->b_addr = NULL;
446 } else {
a19fb380
DC
447 int retried = 0;
448
449 do {
450 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
451 -1, PAGE_KERNEL);
452 if (bp->b_addr)
453 break;
454 vm_unmap_aliases();
455 } while (retried++ <= 1);
456
457 if (!bp->b_addr)
1da177e4 458 return -ENOMEM;
ce8e922c 459 bp->b_addr += bp->b_offset;
1da177e4
LT
460 }
461
462 return 0;
463}
464
465/*
466 * Finding and Reading Buffers
467 */
468
469/*
ce8e922c 470 * Look up, and creates if absent, a lockable buffer for
1da177e4 471 * a given range of an inode. The buffer is returned
eabbaf11 472 * locked. No I/O is implied by this call.
1da177e4
LT
473 */
474xfs_buf_t *
ce8e922c 475_xfs_buf_find(
e70b73f8 476 struct xfs_buftarg *btp,
3e85c868
DC
477 struct xfs_buf_map *map,
478 int nmaps,
ce8e922c
NS
479 xfs_buf_flags_t flags,
480 xfs_buf_t *new_bp)
1da177e4 481{
e70b73f8 482 size_t numbytes;
74f75a0c
DC
483 struct xfs_perag *pag;
484 struct rb_node **rbp;
485 struct rb_node *parent;
486 xfs_buf_t *bp;
3e85c868
DC
487 xfs_daddr_t blkno = map[0].bm_bn;
488 int numblks = 0;
489 int i;
1da177e4 490
3e85c868
DC
491 for (i = 0; i < nmaps; i++)
492 numblks += map[i].bm_len;
e70b73f8 493 numbytes = BBTOB(numblks);
1da177e4
LT
494
495 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 496 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 497 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 498
74f75a0c
DC
499 /* get tree root */
500 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 501 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
502
503 /* walk tree */
504 spin_lock(&pag->pag_buf_lock);
505 rbp = &pag->pag_buf_tree.rb_node;
506 parent = NULL;
507 bp = NULL;
508 while (*rbp) {
509 parent = *rbp;
510 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
511
de1cbee4 512 if (blkno < bp->b_bn)
74f75a0c 513 rbp = &(*rbp)->rb_left;
de1cbee4 514 else if (blkno > bp->b_bn)
74f75a0c
DC
515 rbp = &(*rbp)->rb_right;
516 else {
517 /*
de1cbee4 518 * found a block number match. If the range doesn't
74f75a0c
DC
519 * match, the only way this is allowed is if the buffer
520 * in the cache is stale and the transaction that made
521 * it stale has not yet committed. i.e. we are
522 * reallocating a busy extent. Skip this buffer and
523 * continue searching to the right for an exact match.
524 */
4e94b71b 525 if (bp->b_length != numblks) {
74f75a0c
DC
526 ASSERT(bp->b_flags & XBF_STALE);
527 rbp = &(*rbp)->rb_right;
528 continue;
529 }
ce8e922c 530 atomic_inc(&bp->b_hold);
1da177e4
LT
531 goto found;
532 }
533 }
534
535 /* No match found */
ce8e922c 536 if (new_bp) {
74f75a0c
DC
537 rb_link_node(&new_bp->b_rbnode, parent, rbp);
538 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
539 /* the buffer keeps the perag reference until it is freed */
540 new_bp->b_pag = pag;
541 spin_unlock(&pag->pag_buf_lock);
1da177e4 542 } else {
ce8e922c 543 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
544 spin_unlock(&pag->pag_buf_lock);
545 xfs_perag_put(pag);
1da177e4 546 }
ce8e922c 547 return new_bp;
1da177e4
LT
548
549found:
74f75a0c
DC
550 spin_unlock(&pag->pag_buf_lock);
551 xfs_perag_put(pag);
1da177e4 552
0c842ad4
CH
553 if (!xfs_buf_trylock(bp)) {
554 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
555 xfs_buf_rele(bp);
556 XFS_STATS_INC(xb_busy_locked);
557 return NULL;
1da177e4 558 }
0c842ad4
CH
559 xfs_buf_lock(bp);
560 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
561 }
562
0e6e847f
DC
563 /*
564 * if the buffer is stale, clear all the external state associated with
565 * it. We need to keep flags such as how we allocated the buffer memory
566 * intact here.
567 */
ce8e922c
NS
568 if (bp->b_flags & XBF_STALE) {
569 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
611c9946 570 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
2f926587 571 }
0b1b213f
CH
572
573 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
574 XFS_STATS_INC(xb_get_locked);
575 return bp;
1da177e4
LT
576}
577
578/*
3815832a
DC
579 * Assembles a buffer covering the specified range. The code is optimised for
580 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
581 * more hits than misses.
1da177e4 582 */
3815832a 583struct xfs_buf *
6dde2707
DC
584xfs_buf_get_map(
585 struct xfs_buftarg *target,
586 struct xfs_buf_map *map,
587 int nmaps,
ce8e922c 588 xfs_buf_flags_t flags)
1da177e4 589{
3815832a
DC
590 struct xfs_buf *bp;
591 struct xfs_buf *new_bp;
0e6e847f 592 int error = 0;
1da177e4 593
6dde2707 594 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
595 if (likely(bp))
596 goto found;
597
6dde2707 598 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 599 if (unlikely(!new_bp))
1da177e4
LT
600 return NULL;
601
fe2429b0
DC
602 error = xfs_buf_allocate_memory(new_bp, flags);
603 if (error) {
3e85c868 604 xfs_buf_free(new_bp);
fe2429b0
DC
605 return NULL;
606 }
607
6dde2707 608 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 609 if (!bp) {
fe2429b0 610 xfs_buf_free(new_bp);
3815832a
DC
611 return NULL;
612 }
613
fe2429b0
DC
614 if (bp != new_bp)
615 xfs_buf_free(new_bp);
1da177e4 616
3815832a 617found:
611c9946 618 if (!bp->b_addr) {
ce8e922c 619 error = _xfs_buf_map_pages(bp, flags);
1da177e4 620 if (unlikely(error)) {
4f10700a
DC
621 xfs_warn(target->bt_mount,
622 "%s: failed to map pages\n", __func__);
a8acad70
DC
623 xfs_buf_relse(bp);
624 return NULL;
1da177e4
LT
625 }
626 }
627
ce8e922c 628 XFS_STATS_INC(xb_get);
0b1b213f 629 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 630 return bp;
1da177e4
LT
631}
632
5d765b97
CH
633STATIC int
634_xfs_buf_read(
635 xfs_buf_t *bp,
636 xfs_buf_flags_t flags)
637{
43ff2122 638 ASSERT(!(flags & XBF_WRITE));
cbb7baab 639 ASSERT(bp->b_map.bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 640
43ff2122 641 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 642 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 643
0e95f19a
DC
644 xfs_buf_iorequest(bp);
645 if (flags & XBF_ASYNC)
646 return 0;
ec53d1db 647 return xfs_buf_iowait(bp);
5d765b97
CH
648}
649
1da177e4 650xfs_buf_t *
6dde2707
DC
651xfs_buf_read_map(
652 struct xfs_buftarg *target,
653 struct xfs_buf_map *map,
654 int nmaps,
ce8e922c 655 xfs_buf_flags_t flags)
1da177e4 656{
6dde2707 657 struct xfs_buf *bp;
ce8e922c
NS
658
659 flags |= XBF_READ;
660
6dde2707 661 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 662 if (bp) {
0b1b213f
CH
663 trace_xfs_buf_read(bp, flags, _RET_IP_);
664
ce8e922c 665 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 666 XFS_STATS_INC(xb_get_read);
5d765b97 667 _xfs_buf_read(bp, flags);
ce8e922c 668 } else if (flags & XBF_ASYNC) {
1da177e4
LT
669 /*
670 * Read ahead call which is already satisfied,
671 * drop the buffer
672 */
a8acad70
DC
673 xfs_buf_relse(bp);
674 return NULL;
1da177e4 675 } else {
1da177e4 676 /* We do not want read in the flags */
ce8e922c 677 bp->b_flags &= ~XBF_READ;
1da177e4
LT
678 }
679 }
680
ce8e922c 681 return bp;
1da177e4
LT
682}
683
1da177e4 684/*
ce8e922c
NS
685 * If we are not low on memory then do the readahead in a deadlock
686 * safe manner.
1da177e4
LT
687 */
688void
6dde2707
DC
689xfs_buf_readahead_map(
690 struct xfs_buftarg *target,
691 struct xfs_buf_map *map,
692 int nmaps)
1da177e4 693{
0e6e847f 694 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
695 return;
696
6dde2707 697 xfs_buf_read_map(target, map, nmaps,
aa5c158e 698 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
1da177e4
LT
699}
700
5adc94c2
DC
701/*
702 * Read an uncached buffer from disk. Allocates and returns a locked
703 * buffer containing the disk contents or nothing.
704 */
705struct xfs_buf *
706xfs_buf_read_uncached(
5adc94c2
DC
707 struct xfs_buftarg *target,
708 xfs_daddr_t daddr,
e70b73f8 709 size_t numblks,
5adc94c2
DC
710 int flags)
711{
712 xfs_buf_t *bp;
713 int error;
714
e70b73f8 715 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
716 if (!bp)
717 return NULL;
718
719 /* set up the buffer for a read IO */
3e85c868
DC
720 ASSERT(bp->b_map_count == 1);
721 bp->b_bn = daddr;
722 bp->b_maps[0].bm_bn = daddr;
cbb7baab 723 bp->b_flags |= XBF_READ;
5adc94c2 724
e70b73f8 725 xfsbdstrat(target->bt_mount, bp);
1a1a3e97 726 error = xfs_buf_iowait(bp);
0e95f19a 727 if (error) {
5adc94c2
DC
728 xfs_buf_relse(bp);
729 return NULL;
730 }
731 return bp;
1da177e4
LT
732}
733
44396476
DC
734/*
735 * Return a buffer allocated as an empty buffer and associated to external
736 * memory via xfs_buf_associate_memory() back to it's empty state.
737 */
738void
739xfs_buf_set_empty(
740 struct xfs_buf *bp,
e70b73f8 741 size_t numblks)
44396476
DC
742{
743 if (bp->b_pages)
744 _xfs_buf_free_pages(bp);
745
746 bp->b_pages = NULL;
747 bp->b_page_count = 0;
748 bp->b_addr = NULL;
4e94b71b 749 bp->b_length = numblks;
aa0e8833 750 bp->b_io_length = numblks;
3e85c868
DC
751
752 ASSERT(bp->b_map_count == 1);
44396476 753 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
754 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
755 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
756}
757
1da177e4
LT
758static inline struct page *
759mem_to_page(
760 void *addr)
761{
9e2779fa 762 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
763 return virt_to_page(addr);
764 } else {
765 return vmalloc_to_page(addr);
766 }
767}
768
769int
ce8e922c
NS
770xfs_buf_associate_memory(
771 xfs_buf_t *bp,
1da177e4
LT
772 void *mem,
773 size_t len)
774{
775 int rval;
776 int i = 0;
d1afb678
LM
777 unsigned long pageaddr;
778 unsigned long offset;
779 size_t buflen;
1da177e4
LT
780 int page_count;
781
0e6e847f 782 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 783 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
784 buflen = PAGE_ALIGN(len + offset);
785 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
786
787 /* Free any previous set of page pointers */
ce8e922c
NS
788 if (bp->b_pages)
789 _xfs_buf_free_pages(bp);
1da177e4 790
ce8e922c
NS
791 bp->b_pages = NULL;
792 bp->b_addr = mem;
1da177e4 793
aa5c158e 794 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
795 if (rval)
796 return rval;
797
ce8e922c 798 bp->b_offset = offset;
d1afb678
LM
799
800 for (i = 0; i < bp->b_page_count; i++) {
801 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 802 pageaddr += PAGE_SIZE;
1da177e4 803 }
1da177e4 804
aa0e8833 805 bp->b_io_length = BTOBB(len);
4e94b71b 806 bp->b_length = BTOBB(buflen);
1da177e4
LT
807
808 return 0;
809}
810
811xfs_buf_t *
686865f7
DC
812xfs_buf_get_uncached(
813 struct xfs_buftarg *target,
e70b73f8 814 size_t numblks,
686865f7 815 int flags)
1da177e4 816{
e70b73f8 817 unsigned long page_count;
1fa40b01 818 int error, i;
3e85c868
DC
819 struct xfs_buf *bp;
820 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 821
3e85c868 822 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
823 if (unlikely(bp == NULL))
824 goto fail;
1da177e4 825
e70b73f8 826 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
827 error = _xfs_buf_get_pages(bp, page_count, 0);
828 if (error)
1da177e4
LT
829 goto fail_free_buf;
830
1fa40b01 831 for (i = 0; i < page_count; i++) {
686865f7 832 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
833 if (!bp->b_pages[i])
834 goto fail_free_mem;
1da177e4 835 }
1fa40b01 836 bp->b_flags |= _XBF_PAGES;
1da177e4 837
611c9946 838 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 839 if (unlikely(error)) {
4f10700a
DC
840 xfs_warn(target->bt_mount,
841 "%s: failed to map pages\n", __func__);
1da177e4 842 goto fail_free_mem;
1fa40b01 843 }
1da177e4 844
686865f7 845 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 846 return bp;
1fa40b01 847
1da177e4 848 fail_free_mem:
1fa40b01
CH
849 while (--i >= 0)
850 __free_page(bp->b_pages[i]);
ca165b88 851 _xfs_buf_free_pages(bp);
1da177e4 852 fail_free_buf:
3e85c868 853 xfs_buf_free_maps(bp);
4347b9d7 854 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
855 fail:
856 return NULL;
857}
858
859/*
1da177e4
LT
860 * Increment reference count on buffer, to hold the buffer concurrently
861 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
862 * Must hold the buffer already to call this function.
863 */
864void
ce8e922c
NS
865xfs_buf_hold(
866 xfs_buf_t *bp)
1da177e4 867{
0b1b213f 868 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 869 atomic_inc(&bp->b_hold);
1da177e4
LT
870}
871
872/*
ce8e922c
NS
873 * Releases a hold on the specified buffer. If the
874 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
875 */
876void
ce8e922c
NS
877xfs_buf_rele(
878 xfs_buf_t *bp)
1da177e4 879{
74f75a0c 880 struct xfs_perag *pag = bp->b_pag;
1da177e4 881
0b1b213f 882 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 883
74f75a0c 884 if (!pag) {
430cbeb8 885 ASSERT(list_empty(&bp->b_lru));
74f75a0c 886 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
887 if (atomic_dec_and_test(&bp->b_hold))
888 xfs_buf_free(bp);
889 return;
890 }
891
74f75a0c 892 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 893
3790689f 894 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 895 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 896 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
897 atomic_read(&bp->b_lru_ref)) {
898 xfs_buf_lru_add(bp);
899 spin_unlock(&pag->pag_buf_lock);
1da177e4 900 } else {
430cbeb8 901 xfs_buf_lru_del(bp);
43ff2122 902 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
903 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
904 spin_unlock(&pag->pag_buf_lock);
905 xfs_perag_put(pag);
ce8e922c 906 xfs_buf_free(bp);
1da177e4
LT
907 }
908 }
909}
910
911
912/*
0e6e847f 913 * Lock a buffer object, if it is not already locked.
90810b9e
DC
914 *
915 * If we come across a stale, pinned, locked buffer, we know that we are
916 * being asked to lock a buffer that has been reallocated. Because it is
917 * pinned, we know that the log has not been pushed to disk and hence it
918 * will still be locked. Rather than continuing to have trylock attempts
919 * fail until someone else pushes the log, push it ourselves before
920 * returning. This means that the xfsaild will not get stuck trying
921 * to push on stale inode buffers.
1da177e4
LT
922 */
923int
0c842ad4
CH
924xfs_buf_trylock(
925 struct xfs_buf *bp)
1da177e4
LT
926{
927 int locked;
928
ce8e922c 929 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 930 if (locked)
ce8e922c 931 XB_SET_OWNER(bp);
90810b9e
DC
932 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
933 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f 934
0c842ad4
CH
935 trace_xfs_buf_trylock(bp, _RET_IP_);
936 return locked;
1da177e4 937}
1da177e4
LT
938
939/*
0e6e847f 940 * Lock a buffer object.
ed3b4d6c
DC
941 *
942 * If we come across a stale, pinned, locked buffer, we know that we
943 * are being asked to lock a buffer that has been reallocated. Because
944 * it is pinned, we know that the log has not been pushed to disk and
945 * hence it will still be locked. Rather than sleeping until someone
946 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 947 */
ce8e922c
NS
948void
949xfs_buf_lock(
0c842ad4 950 struct xfs_buf *bp)
1da177e4 951{
0b1b213f
CH
952 trace_xfs_buf_lock(bp, _RET_IP_);
953
ed3b4d6c 954 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 955 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
956 down(&bp->b_sema);
957 XB_SET_OWNER(bp);
0b1b213f
CH
958
959 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
960}
961
1da177e4 962void
ce8e922c 963xfs_buf_unlock(
0c842ad4 964 struct xfs_buf *bp)
1da177e4 965{
ce8e922c
NS
966 XB_CLEAR_OWNER(bp);
967 up(&bp->b_sema);
0b1b213f
CH
968
969 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
970}
971
ce8e922c
NS
972STATIC void
973xfs_buf_wait_unpin(
974 xfs_buf_t *bp)
1da177e4
LT
975{
976 DECLARE_WAITQUEUE (wait, current);
977
ce8e922c 978 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
979 return;
980
ce8e922c 981 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
982 for (;;) {
983 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 984 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 985 break;
7eaceacc 986 io_schedule();
1da177e4 987 }
ce8e922c 988 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
989 set_current_state(TASK_RUNNING);
990}
991
992/*
993 * Buffer Utility Routines
994 */
995
1da177e4 996STATIC void
ce8e922c 997xfs_buf_iodone_work(
c4028958 998 struct work_struct *work)
1da177e4 999{
c4028958
DH
1000 xfs_buf_t *bp =
1001 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 1002
80f6c29d 1003 if (bp->b_iodone)
ce8e922c
NS
1004 (*(bp->b_iodone))(bp);
1005 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
1006 xfs_buf_relse(bp);
1007}
1008
1009void
ce8e922c
NS
1010xfs_buf_ioend(
1011 xfs_buf_t *bp,
1da177e4
LT
1012 int schedule)
1013{
0b1b213f
CH
1014 trace_xfs_buf_iodone(bp, _RET_IP_);
1015
77be55a5 1016 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1017 if (bp->b_error == 0)
1018 bp->b_flags |= XBF_DONE;
1da177e4 1019
ce8e922c 1020 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1021 if (schedule) {
c4028958 1022 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1023 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1024 } else {
c4028958 1025 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1026 }
1027 } else {
b4dd330b 1028 complete(&bp->b_iowait);
1da177e4
LT
1029 }
1030}
1031
1da177e4 1032void
ce8e922c
NS
1033xfs_buf_ioerror(
1034 xfs_buf_t *bp,
1035 int error)
1da177e4
LT
1036{
1037 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1038 bp->b_error = (unsigned short)error;
0b1b213f 1039 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1040}
1041
901796af
CH
1042void
1043xfs_buf_ioerror_alert(
1044 struct xfs_buf *bp,
1045 const char *func)
1046{
1047 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
1048"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1049 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
1050}
1051
4e23471a
CH
1052/*
1053 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1054 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1055 * so that the proper iodone callbacks get called.
1056 */
1057STATIC int
1058xfs_bioerror(
1059 xfs_buf_t *bp)
1060{
1061#ifdef XFSERRORDEBUG
1062 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1063#endif
1064
1065 /*
1066 * No need to wait until the buffer is unpinned, we aren't flushing it.
1067 */
5a52c2a5 1068 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1069
1070 /*
1a1a3e97 1071 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1072 */
1073 XFS_BUF_UNREAD(bp);
4e23471a 1074 XFS_BUF_UNDONE(bp);
c867cb61 1075 xfs_buf_stale(bp);
4e23471a 1076
1a1a3e97 1077 xfs_buf_ioend(bp, 0);
4e23471a
CH
1078
1079 return EIO;
1080}
1081
1082/*
1083 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1084 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1085 * This is meant for userdata errors; metadata bufs come with
1086 * iodone functions attached, so that we can track down errors.
1087 */
1088STATIC int
1089xfs_bioerror_relse(
1090 struct xfs_buf *bp)
1091{
ed43233b 1092 int64_t fl = bp->b_flags;
4e23471a
CH
1093 /*
1094 * No need to wait until the buffer is unpinned.
1095 * We aren't flushing it.
1096 *
1097 * chunkhold expects B_DONE to be set, whether
1098 * we actually finish the I/O or not. We don't want to
1099 * change that interface.
1100 */
1101 XFS_BUF_UNREAD(bp);
4e23471a 1102 XFS_BUF_DONE(bp);
c867cb61 1103 xfs_buf_stale(bp);
cb669ca5 1104 bp->b_iodone = NULL;
0cadda1c 1105 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1106 /*
1107 * Mark b_error and B_ERROR _both_.
1108 * Lot's of chunkcache code assumes that.
1109 * There's no reason to mark error for
1110 * ASYNC buffers.
1111 */
5a52c2a5 1112 xfs_buf_ioerror(bp, EIO);
5fde0326 1113 complete(&bp->b_iowait);
4e23471a
CH
1114 } else {
1115 xfs_buf_relse(bp);
1116 }
1117
1118 return EIO;
1119}
1120
a2dcf5df 1121STATIC int
4e23471a
CH
1122xfs_bdstrat_cb(
1123 struct xfs_buf *bp)
1124{
ebad861b 1125 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1126 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1127 /*
1128 * Metadata write that didn't get logged but
1129 * written delayed anyway. These aren't associated
1130 * with a transaction, and can be ignored.
1131 */
1132 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1133 return xfs_bioerror_relse(bp);
1134 else
1135 return xfs_bioerror(bp);
1136 }
1137
1138 xfs_buf_iorequest(bp);
1139 return 0;
1140}
1141
a2dcf5df
CH
1142int
1143xfs_bwrite(
1144 struct xfs_buf *bp)
1145{
1146 int error;
1147
1148 ASSERT(xfs_buf_islocked(bp));
1149
1150 bp->b_flags |= XBF_WRITE;
1151 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1152
1153 xfs_bdstrat_cb(bp);
1154
1155 error = xfs_buf_iowait(bp);
1156 if (error) {
1157 xfs_force_shutdown(bp->b_target->bt_mount,
1158 SHUTDOWN_META_IO_ERROR);
1159 }
1160 return error;
1161}
1162
4e23471a
CH
1163/*
1164 * Wrapper around bdstrat so that we can stop data from going to disk in case
1165 * we are shutting down the filesystem. Typically user data goes thru this
1166 * path; one of the exceptions is the superblock.
1167 */
1168void
1169xfsbdstrat(
1170 struct xfs_mount *mp,
1171 struct xfs_buf *bp)
1172{
1173 if (XFS_FORCED_SHUTDOWN(mp)) {
1174 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1175 xfs_bioerror_relse(bp);
1176 return;
1177 }
1178
1179 xfs_buf_iorequest(bp);
1180}
1181
b8f82a4a 1182STATIC void
ce8e922c
NS
1183_xfs_buf_ioend(
1184 xfs_buf_t *bp,
1da177e4
LT
1185 int schedule)
1186{
0e6e847f 1187 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1188 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1189}
1190
782e3b3b 1191STATIC void
ce8e922c 1192xfs_buf_bio_end_io(
1da177e4 1193 struct bio *bio,
1da177e4
LT
1194 int error)
1195{
ce8e922c 1196 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1197
cfbe5267 1198 xfs_buf_ioerror(bp, -error);
1da177e4 1199
73c77e2c
JB
1200 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1201 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1202
ce8e922c 1203 _xfs_buf_ioend(bp, 1);
1da177e4 1204 bio_put(bio);
1da177e4
LT
1205}
1206
3e85c868
DC
1207static void
1208xfs_buf_ioapply_map(
1209 struct xfs_buf *bp,
1210 int map,
1211 int *buf_offset,
1212 int *count,
1213 int rw)
1da177e4 1214{
3e85c868
DC
1215 int page_index;
1216 int total_nr_pages = bp->b_page_count;
1217 int nr_pages;
1218 struct bio *bio;
1219 sector_t sector = bp->b_maps[map].bm_bn;
1220 int size;
1221 int offset;
1da177e4 1222
ce8e922c 1223 total_nr_pages = bp->b_page_count;
1da177e4 1224
3e85c868
DC
1225 /* skip the pages in the buffer before the start offset */
1226 page_index = 0;
1227 offset = *buf_offset;
1228 while (offset >= PAGE_SIZE) {
1229 page_index++;
1230 offset -= PAGE_SIZE;
f538d4da
CH
1231 }
1232
3e85c868
DC
1233 /*
1234 * Limit the IO size to the length of the current vector, and update the
1235 * remaining IO count for the next time around.
1236 */
1237 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1238 *count -= size;
1239 *buf_offset += size;
34951f5c 1240
1da177e4 1241next_chunk:
ce8e922c 1242 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1243 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1244 if (nr_pages > total_nr_pages)
1245 nr_pages = total_nr_pages;
1246
1247 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1248 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1249 bio->bi_sector = sector;
ce8e922c
NS
1250 bio->bi_end_io = xfs_buf_bio_end_io;
1251 bio->bi_private = bp;
1da177e4 1252
0e6e847f 1253
3e85c868 1254 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1255 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1256
1257 if (nbytes > size)
1258 nbytes = size;
1259
3e85c868
DC
1260 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1261 offset);
ce8e922c 1262 if (rbytes < nbytes)
1da177e4
LT
1263 break;
1264
1265 offset = 0;
aa0e8833 1266 sector += BTOBB(nbytes);
1da177e4
LT
1267 size -= nbytes;
1268 total_nr_pages--;
1269 }
1270
1da177e4 1271 if (likely(bio->bi_size)) {
73c77e2c
JB
1272 if (xfs_buf_is_vmapped(bp)) {
1273 flush_kernel_vmap_range(bp->b_addr,
1274 xfs_buf_vmap_len(bp));
1275 }
1da177e4
LT
1276 submit_bio(rw, bio);
1277 if (size)
1278 goto next_chunk;
1279 } else {
ce8e922c 1280 xfs_buf_ioerror(bp, EIO);
ec53d1db 1281 bio_put(bio);
1da177e4 1282 }
3e85c868
DC
1283
1284}
1285
1286STATIC void
1287_xfs_buf_ioapply(
1288 struct xfs_buf *bp)
1289{
1290 struct blk_plug plug;
1291 int rw;
1292 int offset;
1293 int size;
1294 int i;
1295
1296 if (bp->b_flags & XBF_WRITE) {
1297 if (bp->b_flags & XBF_SYNCIO)
1298 rw = WRITE_SYNC;
1299 else
1300 rw = WRITE;
1301 if (bp->b_flags & XBF_FUA)
1302 rw |= REQ_FUA;
1303 if (bp->b_flags & XBF_FLUSH)
1304 rw |= REQ_FLUSH;
1305 } else if (bp->b_flags & XBF_READ_AHEAD) {
1306 rw = READA;
1307 } else {
1308 rw = READ;
1309 }
1310
1311 /* we only use the buffer cache for meta-data */
1312 rw |= REQ_META;
1313
1314 /*
1315 * Walk all the vectors issuing IO on them. Set up the initial offset
1316 * into the buffer and the desired IO size before we start -
1317 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1318 * subsequent call.
1319 */
1320 offset = bp->b_offset;
1321 size = BBTOB(bp->b_io_length);
1322 blk_start_plug(&plug);
1323 for (i = 0; i < bp->b_map_count; i++) {
1324 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1325 if (bp->b_error)
1326 break;
1327 if (size <= 0)
1328 break; /* all done */
1329 }
1330 blk_finish_plug(&plug);
1da177e4
LT
1331}
1332
0e95f19a 1333void
ce8e922c
NS
1334xfs_buf_iorequest(
1335 xfs_buf_t *bp)
1da177e4 1336{
0b1b213f 1337 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1338
43ff2122 1339 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1340
375ec69d 1341 if (bp->b_flags & XBF_WRITE)
ce8e922c 1342 xfs_buf_wait_unpin(bp);
ce8e922c 1343 xfs_buf_hold(bp);
1da177e4
LT
1344
1345 /* Set the count to 1 initially, this will stop an I/O
1346 * completion callout which happens before we have started
ce8e922c 1347 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1348 */
ce8e922c
NS
1349 atomic_set(&bp->b_io_remaining, 1);
1350 _xfs_buf_ioapply(bp);
08023d6d 1351 _xfs_buf_ioend(bp, 1);
1da177e4 1352
ce8e922c 1353 xfs_buf_rele(bp);
1da177e4
LT
1354}
1355
1356/*
0e95f19a
DC
1357 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1358 * no I/O is pending or there is already a pending error on the buffer. It
1359 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1360 */
1361int
ce8e922c
NS
1362xfs_buf_iowait(
1363 xfs_buf_t *bp)
1da177e4 1364{
0b1b213f
CH
1365 trace_xfs_buf_iowait(bp, _RET_IP_);
1366
0e95f19a
DC
1367 if (!bp->b_error)
1368 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1369
1370 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1371 return bp->b_error;
1da177e4
LT
1372}
1373
ce8e922c
NS
1374xfs_caddr_t
1375xfs_buf_offset(
1376 xfs_buf_t *bp,
1da177e4
LT
1377 size_t offset)
1378{
1379 struct page *page;
1380
611c9946 1381 if (bp->b_addr)
62926044 1382 return bp->b_addr + offset;
1da177e4 1383
ce8e922c 1384 offset += bp->b_offset;
0e6e847f
DC
1385 page = bp->b_pages[offset >> PAGE_SHIFT];
1386 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1387}
1388
1389/*
1da177e4
LT
1390 * Move data into or out of a buffer.
1391 */
1392void
ce8e922c
NS
1393xfs_buf_iomove(
1394 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1395 size_t boff, /* starting buffer offset */
1396 size_t bsize, /* length to copy */
b9c48649 1397 void *data, /* data address */
ce8e922c 1398 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1399{
795cac72 1400 size_t bend;
1da177e4
LT
1401
1402 bend = boff + bsize;
1403 while (boff < bend) {
795cac72
DC
1404 struct page *page;
1405 int page_index, page_offset, csize;
1406
1407 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1408 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1409 page = bp->b_pages[page_index];
1410 csize = min_t(size_t, PAGE_SIZE - page_offset,
1411 BBTOB(bp->b_io_length) - boff);
1da177e4 1412
795cac72 1413 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1414
1415 switch (mode) {
ce8e922c 1416 case XBRW_ZERO:
795cac72 1417 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1418 break;
ce8e922c 1419 case XBRW_READ:
795cac72 1420 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1421 break;
ce8e922c 1422 case XBRW_WRITE:
795cac72 1423 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1424 }
1425
1426 boff += csize;
1427 data += csize;
1428 }
1429}
1430
1431/*
ce8e922c 1432 * Handling of buffer targets (buftargs).
1da177e4
LT
1433 */
1434
1435/*
430cbeb8
DC
1436 * Wait for any bufs with callbacks that have been submitted but have not yet
1437 * returned. These buffers will have an elevated hold count, so wait on those
1438 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1439 */
1440void
1441xfs_wait_buftarg(
74f75a0c 1442 struct xfs_buftarg *btp)
1da177e4 1443{
430cbeb8
DC
1444 struct xfs_buf *bp;
1445
1446restart:
1447 spin_lock(&btp->bt_lru_lock);
1448 while (!list_empty(&btp->bt_lru)) {
1449 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1450 if (atomic_read(&bp->b_hold) > 1) {
1451 spin_unlock(&btp->bt_lru_lock);
26af6552 1452 delay(100);
430cbeb8 1453 goto restart;
1da177e4 1454 }
430cbeb8 1455 /*
90802ed9 1456 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1457 * ignored in xfs_buf_rele().
1458 */
1459 atomic_set(&bp->b_lru_ref, 0);
1460 spin_unlock(&btp->bt_lru_lock);
1461 xfs_buf_rele(bp);
1462 spin_lock(&btp->bt_lru_lock);
1da177e4 1463 }
430cbeb8 1464 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1465}
1466
ff57ab21
DC
1467int
1468xfs_buftarg_shrink(
1469 struct shrinker *shrink,
1495f230 1470 struct shrink_control *sc)
a6867a68 1471{
ff57ab21
DC
1472 struct xfs_buftarg *btp = container_of(shrink,
1473 struct xfs_buftarg, bt_shrinker);
430cbeb8 1474 struct xfs_buf *bp;
1495f230 1475 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1476 LIST_HEAD(dispose);
1477
1478 if (!nr_to_scan)
1479 return btp->bt_lru_nr;
1480
1481 spin_lock(&btp->bt_lru_lock);
1482 while (!list_empty(&btp->bt_lru)) {
1483 if (nr_to_scan-- <= 0)
1484 break;
1485
1486 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1487
1488 /*
1489 * Decrement the b_lru_ref count unless the value is already
1490 * zero. If the value is already zero, we need to reclaim the
1491 * buffer, otherwise it gets another trip through the LRU.
1492 */
1493 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1494 list_move_tail(&bp->b_lru, &btp->bt_lru);
1495 continue;
1496 }
1497
1498 /*
1499 * remove the buffer from the LRU now to avoid needing another
1500 * lock round trip inside xfs_buf_rele().
1501 */
1502 list_move(&bp->b_lru, &dispose);
1503 btp->bt_lru_nr--;
ff57ab21 1504 }
430cbeb8
DC
1505 spin_unlock(&btp->bt_lru_lock);
1506
1507 while (!list_empty(&dispose)) {
1508 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1509 list_del_init(&bp->b_lru);
1510 xfs_buf_rele(bp);
1511 }
1512
1513 return btp->bt_lru_nr;
a6867a68
DC
1514}
1515
1da177e4
LT
1516void
1517xfs_free_buftarg(
b7963133
CH
1518 struct xfs_mount *mp,
1519 struct xfs_buftarg *btp)
1da177e4 1520{
ff57ab21
DC
1521 unregister_shrinker(&btp->bt_shrinker);
1522
b7963133
CH
1523 if (mp->m_flags & XFS_MOUNT_BARRIER)
1524 xfs_blkdev_issue_flush(btp);
a6867a68 1525
f0e2d93c 1526 kmem_free(btp);
1da177e4
LT
1527}
1528
1da177e4
LT
1529STATIC int
1530xfs_setsize_buftarg_flags(
1531 xfs_buftarg_t *btp,
1532 unsigned int blocksize,
1533 unsigned int sectorsize,
1534 int verbose)
1535{
ce8e922c
NS
1536 btp->bt_bsize = blocksize;
1537 btp->bt_sshift = ffs(sectorsize) - 1;
1538 btp->bt_smask = sectorsize - 1;
1da177e4 1539
ce8e922c 1540 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1541 char name[BDEVNAME_SIZE];
1542
1543 bdevname(btp->bt_bdev, name);
1544
4f10700a
DC
1545 xfs_warn(btp->bt_mount,
1546 "Cannot set_blocksize to %u on device %s\n",
02b102df 1547 sectorsize, name);
1da177e4
LT
1548 return EINVAL;
1549 }
1550
1da177e4
LT
1551 return 0;
1552}
1553
1554/*
ce8e922c
NS
1555 * When allocating the initial buffer target we have not yet
1556 * read in the superblock, so don't know what sized sectors
1557 * are being used is at this early stage. Play safe.
1558 */
1da177e4
LT
1559STATIC int
1560xfs_setsize_buftarg_early(
1561 xfs_buftarg_t *btp,
1562 struct block_device *bdev)
1563{
1564 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1565 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1566}
1567
1568int
1569xfs_setsize_buftarg(
1570 xfs_buftarg_t *btp,
1571 unsigned int blocksize,
1572 unsigned int sectorsize)
1573{
1574 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1575}
1576
1da177e4
LT
1577xfs_buftarg_t *
1578xfs_alloc_buftarg(
ebad861b 1579 struct xfs_mount *mp,
1da177e4 1580 struct block_device *bdev,
e2a07812
JE
1581 int external,
1582 const char *fsname)
1da177e4
LT
1583{
1584 xfs_buftarg_t *btp;
1585
1586 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1587
ebad861b 1588 btp->bt_mount = mp;
ce8e922c
NS
1589 btp->bt_dev = bdev->bd_dev;
1590 btp->bt_bdev = bdev;
0e6e847f
DC
1591 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1592 if (!btp->bt_bdi)
1593 goto error;
1594
430cbeb8
DC
1595 INIT_LIST_HEAD(&btp->bt_lru);
1596 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1597 if (xfs_setsize_buftarg_early(btp, bdev))
1598 goto error;
ff57ab21
DC
1599 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1600 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1601 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1602 return btp;
1603
1604error:
f0e2d93c 1605 kmem_free(btp);
1da177e4
LT
1606 return NULL;
1607}
1608
1da177e4 1609/*
43ff2122
CH
1610 * Add a buffer to the delayed write list.
1611 *
1612 * This queues a buffer for writeout if it hasn't already been. Note that
1613 * neither this routine nor the buffer list submission functions perform
1614 * any internal synchronization. It is expected that the lists are thread-local
1615 * to the callers.
1616 *
1617 * Returns true if we queued up the buffer, or false if it already had
1618 * been on the buffer list.
1da177e4 1619 */
43ff2122 1620bool
ce8e922c 1621xfs_buf_delwri_queue(
43ff2122
CH
1622 struct xfs_buf *bp,
1623 struct list_head *list)
1da177e4 1624{
43ff2122 1625 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1626 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1627
43ff2122
CH
1628 /*
1629 * If the buffer is already marked delwri it already is queued up
1630 * by someone else for imediate writeout. Just ignore it in that
1631 * case.
1632 */
1633 if (bp->b_flags & _XBF_DELWRI_Q) {
1634 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1635 return false;
1da177e4 1636 }
1da177e4 1637
43ff2122 1638 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1639
1640 /*
43ff2122
CH
1641 * If a buffer gets written out synchronously or marked stale while it
1642 * is on a delwri list we lazily remove it. To do this, the other party
1643 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1644 * It remains referenced and on the list. In a rare corner case it
1645 * might get readded to a delwri list after the synchronous writeout, in
1646 * which case we need just need to re-add the flag here.
d808f617 1647 */
43ff2122
CH
1648 bp->b_flags |= _XBF_DELWRI_Q;
1649 if (list_empty(&bp->b_list)) {
1650 atomic_inc(&bp->b_hold);
1651 list_add_tail(&bp->b_list, list);
585e6d88 1652 }
585e6d88 1653
43ff2122 1654 return true;
585e6d88
DC
1655}
1656
089716aa
DC
1657/*
1658 * Compare function is more complex than it needs to be because
1659 * the return value is only 32 bits and we are doing comparisons
1660 * on 64 bit values
1661 */
1662static int
1663xfs_buf_cmp(
1664 void *priv,
1665 struct list_head *a,
1666 struct list_head *b)
1667{
1668 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1669 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1670 xfs_daddr_t diff;
1671
cbb7baab 1672 diff = ap->b_map.bm_bn - bp->b_map.bm_bn;
089716aa
DC
1673 if (diff < 0)
1674 return -1;
1675 if (diff > 0)
1676 return 1;
1677 return 0;
1678}
1679
43ff2122
CH
1680static int
1681__xfs_buf_delwri_submit(
1682 struct list_head *buffer_list,
1683 struct list_head *io_list,
1684 bool wait)
1da177e4 1685{
43ff2122
CH
1686 struct blk_plug plug;
1687 struct xfs_buf *bp, *n;
1688 int pinned = 0;
1689
1690 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1691 if (!wait) {
1692 if (xfs_buf_ispinned(bp)) {
1693 pinned++;
1694 continue;
1695 }
1696 if (!xfs_buf_trylock(bp))
1697 continue;
1698 } else {
1699 xfs_buf_lock(bp);
1700 }
978c7b2f 1701
43ff2122
CH
1702 /*
1703 * Someone else might have written the buffer synchronously or
1704 * marked it stale in the meantime. In that case only the
1705 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1706 * reference and remove it from the list here.
1707 */
1708 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1709 list_del_init(&bp->b_list);
1710 xfs_buf_relse(bp);
1711 continue;
1712 }
c9c12971 1713
43ff2122
CH
1714 list_move_tail(&bp->b_list, io_list);
1715 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1716 }
1da177e4 1717
43ff2122 1718 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1719
43ff2122
CH
1720 blk_start_plug(&plug);
1721 list_for_each_entry_safe(bp, n, io_list, b_list) {
1722 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1723 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1724
43ff2122
CH
1725 if (!wait) {
1726 bp->b_flags |= XBF_ASYNC;
ce8e922c 1727 list_del_init(&bp->b_list);
1da177e4 1728 }
43ff2122
CH
1729 xfs_bdstrat_cb(bp);
1730 }
1731 blk_finish_plug(&plug);
1da177e4 1732
43ff2122 1733 return pinned;
1da177e4
LT
1734}
1735
1736/*
43ff2122
CH
1737 * Write out a buffer list asynchronously.
1738 *
1739 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1740 * out and not wait for I/O completion on any of the buffers. This interface
1741 * is only safely useable for callers that can track I/O completion by higher
1742 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1743 * function.
1da177e4
LT
1744 */
1745int
43ff2122
CH
1746xfs_buf_delwri_submit_nowait(
1747 struct list_head *buffer_list)
1da177e4 1748{
43ff2122
CH
1749 LIST_HEAD (io_list);
1750 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1751}
1da177e4 1752
43ff2122
CH
1753/*
1754 * Write out a buffer list synchronously.
1755 *
1756 * This will take the @buffer_list, write all buffers out and wait for I/O
1757 * completion on all of the buffers. @buffer_list is consumed by the function,
1758 * so callers must have some other way of tracking buffers if they require such
1759 * functionality.
1760 */
1761int
1762xfs_buf_delwri_submit(
1763 struct list_head *buffer_list)
1764{
1765 LIST_HEAD (io_list);
1766 int error = 0, error2;
1767 struct xfs_buf *bp;
1da177e4 1768
43ff2122 1769 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1770
43ff2122
CH
1771 /* Wait for IO to complete. */
1772 while (!list_empty(&io_list)) {
1773 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1774
089716aa 1775 list_del_init(&bp->b_list);
43ff2122
CH
1776 error2 = xfs_buf_iowait(bp);
1777 xfs_buf_relse(bp);
1778 if (!error)
1779 error = error2;
1da177e4
LT
1780 }
1781
43ff2122 1782 return error;
1da177e4
LT
1783}
1784
04d8b284 1785int __init
ce8e922c 1786xfs_buf_init(void)
1da177e4 1787{
8758280f
NS
1788 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1789 KM_ZONE_HWALIGN, NULL);
ce8e922c 1790 if (!xfs_buf_zone)
0b1b213f 1791 goto out;
04d8b284 1792
51749e47 1793 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1794 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1795 if (!xfslogd_workqueue)
04d8b284 1796 goto out_free_buf_zone;
1da177e4 1797
23ea4032 1798 return 0;
1da177e4 1799
23ea4032 1800 out_free_buf_zone:
ce8e922c 1801 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1802 out:
8758280f 1803 return -ENOMEM;
1da177e4
LT
1804}
1805
1da177e4 1806void
ce8e922c 1807xfs_buf_terminate(void)
1da177e4 1808{
04d8b284 1809 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1810 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1811}
This page took 0.704005 seconds and 5 git commands to generate.