Merge branch 'cleanup-hwmod' into cleanup
[deliverable/linux.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133 37#include "xfs_sb.h"
ed3b4d6c 38#include "xfs_log.h"
b7963133 39#include "xfs_ag.h"
b7963133 40#include "xfs_mount.h"
0b1b213f 41#include "xfs_trace.h"
b7963133 42
7989cb8e 43static kmem_zone_t *xfs_buf_zone;
23ea4032 44
7989cb8e 45static struct workqueue_struct *xfslogd_workqueue;
1da177e4 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
1da177e4 82/*
430cbeb8
DC
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88STATIC void
89xfs_buf_lru_add(
90 struct xfs_buf *bp)
91{
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
99 }
100 spin_unlock(&btp->bt_lru_lock);
101}
102
103/*
104 * xfs_buf_lru_del - remove a buffer from the LRU
105 *
106 * The unlocked check is safe here because it only occurs when there are not
107 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
108 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 109 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 110 * bt_lru_lock.
1da177e4 111 */
430cbeb8
DC
112STATIC void
113xfs_buf_lru_del(
114 struct xfs_buf *bp)
115{
116 struct xfs_buftarg *btp = bp->b_target;
117
118 if (list_empty(&bp->b_lru))
119 return;
120
121 spin_lock(&btp->bt_lru_lock);
122 if (!list_empty(&bp->b_lru)) {
123 list_del_init(&bp->b_lru);
124 btp->bt_lru_nr--;
125 }
126 spin_unlock(&btp->bt_lru_lock);
127}
128
129/*
130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131 * b_lru_ref count so that the buffer is freed immediately when the buffer
132 * reference count falls to zero. If the buffer is already on the LRU, we need
133 * to remove the reference that LRU holds on the buffer.
134 *
135 * This prevents build-up of stale buffers on the LRU.
136 */
137void
138xfs_buf_stale(
139 struct xfs_buf *bp)
140{
43ff2122
CH
141 ASSERT(xfs_buf_islocked(bp));
142
430cbeb8 143 bp->b_flags |= XBF_STALE;
43ff2122
CH
144
145 /*
146 * Clear the delwri status so that a delwri queue walker will not
147 * flush this buffer to disk now that it is stale. The delwri queue has
148 * a reference to the buffer, so this is safe to do.
149 */
150 bp->b_flags &= ~_XBF_DELWRI_Q;
151
430cbeb8
DC
152 atomic_set(&(bp)->b_lru_ref, 0);
153 if (!list_empty(&bp->b_lru)) {
154 struct xfs_buftarg *btp = bp->b_target;
155
156 spin_lock(&btp->bt_lru_lock);
157 if (!list_empty(&bp->b_lru)) {
158 list_del_init(&bp->b_lru);
159 btp->bt_lru_nr--;
160 atomic_dec(&bp->b_hold);
161 }
162 spin_unlock(&btp->bt_lru_lock);
163 }
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165}
1da177e4 166
4347b9d7
CH
167struct xfs_buf *
168xfs_buf_alloc(
169 struct xfs_buftarg *target,
e70b73f8
DC
170 xfs_daddr_t blkno,
171 size_t numblks,
ce8e922c 172 xfs_buf_flags_t flags)
1da177e4 173{
4347b9d7
CH
174 struct xfs_buf *bp;
175
aa5c158e 176 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
177 if (unlikely(!bp))
178 return NULL;
179
1da177e4 180 /*
12bcb3f7
DC
181 * We don't want certain flags to appear in b_flags unless they are
182 * specifically set by later operations on the buffer.
1da177e4 183 */
611c9946 184 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 185
ce8e922c 186 atomic_set(&bp->b_hold, 1);
430cbeb8 187 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 188 init_completion(&bp->b_iowait);
430cbeb8 189 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 190 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 191 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 192 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
de1cbee4 195
1da177e4 196 /*
aa0e8833
DC
197 * Set length and io_length to the same value initially.
198 * I/O routines should use io_length, which will be the same in
1da177e4
LT
199 * most cases but may be reset (e.g. XFS recovery).
200 */
4e94b71b 201 bp->b_length = numblks;
aa0e8833 202 bp->b_io_length = numblks;
ce8e922c 203 bp->b_flags = flags;
59c84ed0 204 bp->b_bn = blkno;
ce8e922c
NS
205 atomic_set(&bp->b_pin_count, 0);
206 init_waitqueue_head(&bp->b_waiters);
207
208 XFS_STATS_INC(xb_create);
0b1b213f 209 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
210
211 return bp;
1da177e4
LT
212}
213
214/*
ce8e922c
NS
215 * Allocate a page array capable of holding a specified number
216 * of pages, and point the page buf at it.
1da177e4
LT
217 */
218STATIC int
ce8e922c
NS
219_xfs_buf_get_pages(
220 xfs_buf_t *bp,
1da177e4 221 int page_count,
ce8e922c 222 xfs_buf_flags_t flags)
1da177e4
LT
223{
224 /* Make sure that we have a page list */
ce8e922c 225 if (bp->b_pages == NULL) {
ce8e922c
NS
226 bp->b_page_count = page_count;
227 if (page_count <= XB_PAGES) {
228 bp->b_pages = bp->b_page_array;
1da177e4 229 } else {
ce8e922c 230 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 231 page_count, KM_NOFS);
ce8e922c 232 if (bp->b_pages == NULL)
1da177e4
LT
233 return -ENOMEM;
234 }
ce8e922c 235 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
236 }
237 return 0;
238}
239
240/*
ce8e922c 241 * Frees b_pages if it was allocated.
1da177e4
LT
242 */
243STATIC void
ce8e922c 244_xfs_buf_free_pages(
1da177e4
LT
245 xfs_buf_t *bp)
246{
ce8e922c 247 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 248 kmem_free(bp->b_pages);
3fc98b1a 249 bp->b_pages = NULL;
1da177e4
LT
250 }
251}
252
253/*
254 * Releases the specified buffer.
255 *
256 * The modification state of any associated pages is left unchanged.
ce8e922c 257 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
258 * hashed and refcounted buffers
259 */
260void
ce8e922c 261xfs_buf_free(
1da177e4
LT
262 xfs_buf_t *bp)
263{
0b1b213f 264 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 265
430cbeb8
DC
266 ASSERT(list_empty(&bp->b_lru));
267
0e6e847f 268 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
269 uint i;
270
73c77e2c 271 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
272 vm_unmap_ram(bp->b_addr - bp->b_offset,
273 bp->b_page_count);
1da177e4 274
948ecdb4
NS
275 for (i = 0; i < bp->b_page_count; i++) {
276 struct page *page = bp->b_pages[i];
277
0e6e847f 278 __free_page(page);
948ecdb4 279 }
0e6e847f
DC
280 } else if (bp->b_flags & _XBF_KMEM)
281 kmem_free(bp->b_addr);
3fc98b1a 282 _xfs_buf_free_pages(bp);
4347b9d7 283 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
284}
285
286/*
0e6e847f 287 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
288 */
289STATIC int
0e6e847f 290xfs_buf_allocate_memory(
1da177e4
LT
291 xfs_buf_t *bp,
292 uint flags)
293{
aa0e8833 294 size_t size;
1da177e4 295 size_t nbytes, offset;
ce8e922c 296 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 297 unsigned short page_count, i;
795cac72 298 xfs_off_t start, end;
1da177e4
LT
299 int error;
300
0e6e847f
DC
301 /*
302 * for buffers that are contained within a single page, just allocate
303 * the memory from the heap - there's no need for the complexity of
304 * page arrays to keep allocation down to order 0.
305 */
795cac72
DC
306 size = BBTOB(bp->b_length);
307 if (size < PAGE_SIZE) {
aa5c158e 308 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
309 if (!bp->b_addr) {
310 /* low memory - use alloc_page loop instead */
311 goto use_alloc_page;
312 }
313
795cac72 314 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
315 ((unsigned long)bp->b_addr & PAGE_MASK)) {
316 /* b_addr spans two pages - use alloc_page instead */
317 kmem_free(bp->b_addr);
318 bp->b_addr = NULL;
319 goto use_alloc_page;
320 }
321 bp->b_offset = offset_in_page(bp->b_addr);
322 bp->b_pages = bp->b_page_array;
323 bp->b_pages[0] = virt_to_page(bp->b_addr);
324 bp->b_page_count = 1;
611c9946 325 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
326 return 0;
327 }
328
329use_alloc_page:
795cac72
DC
330 start = BBTOB(bp->b_bn) >> PAGE_SHIFT;
331 end = (BBTOB(bp->b_bn + bp->b_length) + PAGE_SIZE - 1) >> PAGE_SHIFT;
332 page_count = end - start;
ce8e922c 333 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
334 if (unlikely(error))
335 return error;
1da177e4 336
ce8e922c 337 offset = bp->b_offset;
0e6e847f 338 bp->b_flags |= _XBF_PAGES;
1da177e4 339
ce8e922c 340 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
341 struct page *page;
342 uint retries = 0;
0e6e847f
DC
343retry:
344 page = alloc_page(gfp_mask);
1da177e4 345 if (unlikely(page == NULL)) {
ce8e922c
NS
346 if (flags & XBF_READ_AHEAD) {
347 bp->b_page_count = i;
0e6e847f
DC
348 error = ENOMEM;
349 goto out_free_pages;
1da177e4
LT
350 }
351
352 /*
353 * This could deadlock.
354 *
355 * But until all the XFS lowlevel code is revamped to
356 * handle buffer allocation failures we can't do much.
357 */
358 if (!(++retries % 100))
4f10700a
DC
359 xfs_err(NULL,
360 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 361 __func__, gfp_mask);
1da177e4 362
ce8e922c 363 XFS_STATS_INC(xb_page_retries);
8aa7e847 364 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
365 goto retry;
366 }
367
ce8e922c 368 XFS_STATS_INC(xb_page_found);
1da177e4 369
0e6e847f 370 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 371 size -= nbytes;
ce8e922c 372 bp->b_pages[i] = page;
1da177e4
LT
373 offset = 0;
374 }
0e6e847f 375 return 0;
1da177e4 376
0e6e847f
DC
377out_free_pages:
378 for (i = 0; i < bp->b_page_count; i++)
379 __free_page(bp->b_pages[i]);
1da177e4
LT
380 return error;
381}
382
383/*
25985edc 384 * Map buffer into kernel address-space if necessary.
1da177e4
LT
385 */
386STATIC int
ce8e922c 387_xfs_buf_map_pages(
1da177e4
LT
388 xfs_buf_t *bp,
389 uint flags)
390{
0e6e847f 391 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 392 if (bp->b_page_count == 1) {
0e6e847f 393 /* A single page buffer is always mappable */
ce8e922c 394 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
395 } else if (flags & XBF_UNMAPPED) {
396 bp->b_addr = NULL;
397 } else {
a19fb380
DC
398 int retried = 0;
399
400 do {
401 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
402 -1, PAGE_KERNEL);
403 if (bp->b_addr)
404 break;
405 vm_unmap_aliases();
406 } while (retried++ <= 1);
407
408 if (!bp->b_addr)
1da177e4 409 return -ENOMEM;
ce8e922c 410 bp->b_addr += bp->b_offset;
1da177e4
LT
411 }
412
413 return 0;
414}
415
416/*
417 * Finding and Reading Buffers
418 */
419
420/*
ce8e922c 421 * Look up, and creates if absent, a lockable buffer for
1da177e4 422 * a given range of an inode. The buffer is returned
eabbaf11 423 * locked. No I/O is implied by this call.
1da177e4
LT
424 */
425xfs_buf_t *
ce8e922c 426_xfs_buf_find(
e70b73f8
DC
427 struct xfs_buftarg *btp,
428 xfs_daddr_t blkno,
429 size_t numblks,
ce8e922c
NS
430 xfs_buf_flags_t flags,
431 xfs_buf_t *new_bp)
1da177e4 432{
e70b73f8 433 size_t numbytes;
74f75a0c
DC
434 struct xfs_perag *pag;
435 struct rb_node **rbp;
436 struct rb_node *parent;
437 xfs_buf_t *bp;
1da177e4 438
e70b73f8 439 numbytes = BBTOB(numblks);
1da177e4
LT
440
441 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 442 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 443 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 444
74f75a0c
DC
445 /* get tree root */
446 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 447 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
448
449 /* walk tree */
450 spin_lock(&pag->pag_buf_lock);
451 rbp = &pag->pag_buf_tree.rb_node;
452 parent = NULL;
453 bp = NULL;
454 while (*rbp) {
455 parent = *rbp;
456 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
457
de1cbee4 458 if (blkno < bp->b_bn)
74f75a0c 459 rbp = &(*rbp)->rb_left;
de1cbee4 460 else if (blkno > bp->b_bn)
74f75a0c
DC
461 rbp = &(*rbp)->rb_right;
462 else {
463 /*
de1cbee4 464 * found a block number match. If the range doesn't
74f75a0c
DC
465 * match, the only way this is allowed is if the buffer
466 * in the cache is stale and the transaction that made
467 * it stale has not yet committed. i.e. we are
468 * reallocating a busy extent. Skip this buffer and
469 * continue searching to the right for an exact match.
470 */
4e94b71b 471 if (bp->b_length != numblks) {
74f75a0c
DC
472 ASSERT(bp->b_flags & XBF_STALE);
473 rbp = &(*rbp)->rb_right;
474 continue;
475 }
ce8e922c 476 atomic_inc(&bp->b_hold);
1da177e4
LT
477 goto found;
478 }
479 }
480
481 /* No match found */
ce8e922c 482 if (new_bp) {
74f75a0c
DC
483 rb_link_node(&new_bp->b_rbnode, parent, rbp);
484 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
485 /* the buffer keeps the perag reference until it is freed */
486 new_bp->b_pag = pag;
487 spin_unlock(&pag->pag_buf_lock);
1da177e4 488 } else {
ce8e922c 489 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
490 spin_unlock(&pag->pag_buf_lock);
491 xfs_perag_put(pag);
1da177e4 492 }
ce8e922c 493 return new_bp;
1da177e4
LT
494
495found:
74f75a0c
DC
496 spin_unlock(&pag->pag_buf_lock);
497 xfs_perag_put(pag);
1da177e4 498
0c842ad4
CH
499 if (!xfs_buf_trylock(bp)) {
500 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
501 xfs_buf_rele(bp);
502 XFS_STATS_INC(xb_busy_locked);
503 return NULL;
1da177e4 504 }
0c842ad4
CH
505 xfs_buf_lock(bp);
506 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
507 }
508
0e6e847f
DC
509 /*
510 * if the buffer is stale, clear all the external state associated with
511 * it. We need to keep flags such as how we allocated the buffer memory
512 * intact here.
513 */
ce8e922c
NS
514 if (bp->b_flags & XBF_STALE) {
515 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
611c9946 516 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
2f926587 517 }
0b1b213f
CH
518
519 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
520 XFS_STATS_INC(xb_get_locked);
521 return bp;
1da177e4
LT
522}
523
524/*
3815832a
DC
525 * Assembles a buffer covering the specified range. The code is optimised for
526 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
527 * more hits than misses.
1da177e4 528 */
3815832a 529struct xfs_buf *
6ad112bf 530xfs_buf_get(
e70b73f8
DC
531 xfs_buftarg_t *target,
532 xfs_daddr_t blkno,
533 size_t numblks,
ce8e922c 534 xfs_buf_flags_t flags)
1da177e4 535{
3815832a
DC
536 struct xfs_buf *bp;
537 struct xfs_buf *new_bp;
0e6e847f 538 int error = 0;
1da177e4 539
e70b73f8 540 bp = _xfs_buf_find(target, blkno, numblks, flags, NULL);
3815832a
DC
541 if (likely(bp))
542 goto found;
543
e70b73f8 544 new_bp = xfs_buf_alloc(target, blkno, numblks, flags);
ce8e922c 545 if (unlikely(!new_bp))
1da177e4
LT
546 return NULL;
547
fe2429b0
DC
548 error = xfs_buf_allocate_memory(new_bp, flags);
549 if (error) {
550 kmem_zone_free(xfs_buf_zone, new_bp);
551 return NULL;
552 }
553
e70b73f8 554 bp = _xfs_buf_find(target, blkno, numblks, flags, new_bp);
3815832a 555 if (!bp) {
fe2429b0 556 xfs_buf_free(new_bp);
3815832a
DC
557 return NULL;
558 }
559
fe2429b0
DC
560 if (bp != new_bp)
561 xfs_buf_free(new_bp);
1da177e4 562
aa0e8833 563 bp->b_io_length = bp->b_length;
3815832a
DC
564
565found:
611c9946 566 if (!bp->b_addr) {
ce8e922c 567 error = _xfs_buf_map_pages(bp, flags);
1da177e4 568 if (unlikely(error)) {
4f10700a
DC
569 xfs_warn(target->bt_mount,
570 "%s: failed to map pages\n", __func__);
a8acad70
DC
571 xfs_buf_relse(bp);
572 return NULL;
1da177e4
LT
573 }
574 }
575
ce8e922c 576 XFS_STATS_INC(xb_get);
0b1b213f 577 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 578 return bp;
1da177e4
LT
579}
580
5d765b97
CH
581STATIC int
582_xfs_buf_read(
583 xfs_buf_t *bp,
584 xfs_buf_flags_t flags)
585{
43ff2122 586 ASSERT(!(flags & XBF_WRITE));
5d765b97
CH
587 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
588
43ff2122 589 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 590 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 591
0e95f19a
DC
592 xfs_buf_iorequest(bp);
593 if (flags & XBF_ASYNC)
594 return 0;
ec53d1db 595 return xfs_buf_iowait(bp);
5d765b97
CH
596}
597
1da177e4 598xfs_buf_t *
6ad112bf 599xfs_buf_read(
1da177e4 600 xfs_buftarg_t *target,
e70b73f8
DC
601 xfs_daddr_t blkno,
602 size_t numblks,
ce8e922c 603 xfs_buf_flags_t flags)
1da177e4 604{
ce8e922c
NS
605 xfs_buf_t *bp;
606
607 flags |= XBF_READ;
608
e70b73f8 609 bp = xfs_buf_get(target, blkno, numblks, flags);
ce8e922c 610 if (bp) {
0b1b213f
CH
611 trace_xfs_buf_read(bp, flags, _RET_IP_);
612
ce8e922c 613 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 614 XFS_STATS_INC(xb_get_read);
5d765b97 615 _xfs_buf_read(bp, flags);
ce8e922c 616 } else if (flags & XBF_ASYNC) {
1da177e4
LT
617 /*
618 * Read ahead call which is already satisfied,
619 * drop the buffer
620 */
a8acad70
DC
621 xfs_buf_relse(bp);
622 return NULL;
1da177e4 623 } else {
1da177e4 624 /* We do not want read in the flags */
ce8e922c 625 bp->b_flags &= ~XBF_READ;
1da177e4
LT
626 }
627 }
628
ce8e922c 629 return bp;
1da177e4
LT
630}
631
1da177e4 632/*
ce8e922c
NS
633 * If we are not low on memory then do the readahead in a deadlock
634 * safe manner.
1da177e4
LT
635 */
636void
ce8e922c 637xfs_buf_readahead(
1da177e4 638 xfs_buftarg_t *target,
e70b73f8
DC
639 xfs_daddr_t blkno,
640 size_t numblks)
1da177e4 641{
0e6e847f 642 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
643 return;
644
e70b73f8 645 xfs_buf_read(target, blkno, numblks,
aa5c158e 646 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
1da177e4
LT
647}
648
5adc94c2
DC
649/*
650 * Read an uncached buffer from disk. Allocates and returns a locked
651 * buffer containing the disk contents or nothing.
652 */
653struct xfs_buf *
654xfs_buf_read_uncached(
5adc94c2
DC
655 struct xfs_buftarg *target,
656 xfs_daddr_t daddr,
e70b73f8 657 size_t numblks,
5adc94c2
DC
658 int flags)
659{
660 xfs_buf_t *bp;
661 int error;
662
e70b73f8 663 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
664 if (!bp)
665 return NULL;
666
667 /* set up the buffer for a read IO */
5adc94c2
DC
668 XFS_BUF_SET_ADDR(bp, daddr);
669 XFS_BUF_READ(bp);
5adc94c2 670
e70b73f8 671 xfsbdstrat(target->bt_mount, bp);
1a1a3e97 672 error = xfs_buf_iowait(bp);
0e95f19a 673 if (error) {
5adc94c2
DC
674 xfs_buf_relse(bp);
675 return NULL;
676 }
677 return bp;
1da177e4
LT
678}
679
44396476
DC
680/*
681 * Return a buffer allocated as an empty buffer and associated to external
682 * memory via xfs_buf_associate_memory() back to it's empty state.
683 */
684void
685xfs_buf_set_empty(
686 struct xfs_buf *bp,
e70b73f8 687 size_t numblks)
44396476
DC
688{
689 if (bp->b_pages)
690 _xfs_buf_free_pages(bp);
691
692 bp->b_pages = NULL;
693 bp->b_page_count = 0;
694 bp->b_addr = NULL;
4e94b71b 695 bp->b_length = numblks;
aa0e8833 696 bp->b_io_length = numblks;
44396476 697 bp->b_bn = XFS_BUF_DADDR_NULL;
44396476
DC
698}
699
1da177e4
LT
700static inline struct page *
701mem_to_page(
702 void *addr)
703{
9e2779fa 704 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
705 return virt_to_page(addr);
706 } else {
707 return vmalloc_to_page(addr);
708 }
709}
710
711int
ce8e922c
NS
712xfs_buf_associate_memory(
713 xfs_buf_t *bp,
1da177e4
LT
714 void *mem,
715 size_t len)
716{
717 int rval;
718 int i = 0;
d1afb678
LM
719 unsigned long pageaddr;
720 unsigned long offset;
721 size_t buflen;
1da177e4
LT
722 int page_count;
723
0e6e847f 724 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 725 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
726 buflen = PAGE_ALIGN(len + offset);
727 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
728
729 /* Free any previous set of page pointers */
ce8e922c
NS
730 if (bp->b_pages)
731 _xfs_buf_free_pages(bp);
1da177e4 732
ce8e922c
NS
733 bp->b_pages = NULL;
734 bp->b_addr = mem;
1da177e4 735
aa5c158e 736 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
737 if (rval)
738 return rval;
739
ce8e922c 740 bp->b_offset = offset;
d1afb678
LM
741
742 for (i = 0; i < bp->b_page_count; i++) {
743 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 744 pageaddr += PAGE_SIZE;
1da177e4 745 }
1da177e4 746
aa0e8833 747 bp->b_io_length = BTOBB(len);
4e94b71b 748 bp->b_length = BTOBB(buflen);
1da177e4
LT
749
750 return 0;
751}
752
753xfs_buf_t *
686865f7
DC
754xfs_buf_get_uncached(
755 struct xfs_buftarg *target,
e70b73f8 756 size_t numblks,
686865f7 757 int flags)
1da177e4 758{
e70b73f8 759 unsigned long page_count;
1fa40b01 760 int error, i;
1da177e4 761 xfs_buf_t *bp;
1da177e4 762
59c84ed0 763 bp = xfs_buf_alloc(target, XFS_BUF_DADDR_NULL, numblks, 0);
1da177e4
LT
764 if (unlikely(bp == NULL))
765 goto fail;
1da177e4 766
e70b73f8 767 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
768 error = _xfs_buf_get_pages(bp, page_count, 0);
769 if (error)
1da177e4
LT
770 goto fail_free_buf;
771
1fa40b01 772 for (i = 0; i < page_count; i++) {
686865f7 773 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
774 if (!bp->b_pages[i])
775 goto fail_free_mem;
1da177e4 776 }
1fa40b01 777 bp->b_flags |= _XBF_PAGES;
1da177e4 778
611c9946 779 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 780 if (unlikely(error)) {
4f10700a
DC
781 xfs_warn(target->bt_mount,
782 "%s: failed to map pages\n", __func__);
1da177e4 783 goto fail_free_mem;
1fa40b01 784 }
1da177e4 785
686865f7 786 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 787 return bp;
1fa40b01 788
1da177e4 789 fail_free_mem:
1fa40b01
CH
790 while (--i >= 0)
791 __free_page(bp->b_pages[i]);
ca165b88 792 _xfs_buf_free_pages(bp);
1da177e4 793 fail_free_buf:
4347b9d7 794 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
795 fail:
796 return NULL;
797}
798
799/*
1da177e4
LT
800 * Increment reference count on buffer, to hold the buffer concurrently
801 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
802 * Must hold the buffer already to call this function.
803 */
804void
ce8e922c
NS
805xfs_buf_hold(
806 xfs_buf_t *bp)
1da177e4 807{
0b1b213f 808 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 809 atomic_inc(&bp->b_hold);
1da177e4
LT
810}
811
812/*
ce8e922c
NS
813 * Releases a hold on the specified buffer. If the
814 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
815 */
816void
ce8e922c
NS
817xfs_buf_rele(
818 xfs_buf_t *bp)
1da177e4 819{
74f75a0c 820 struct xfs_perag *pag = bp->b_pag;
1da177e4 821
0b1b213f 822 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 823
74f75a0c 824 if (!pag) {
430cbeb8 825 ASSERT(list_empty(&bp->b_lru));
74f75a0c 826 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
827 if (atomic_dec_and_test(&bp->b_hold))
828 xfs_buf_free(bp);
829 return;
830 }
831
74f75a0c 832 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 833
3790689f 834 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 835 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 836 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
837 atomic_read(&bp->b_lru_ref)) {
838 xfs_buf_lru_add(bp);
839 spin_unlock(&pag->pag_buf_lock);
1da177e4 840 } else {
430cbeb8 841 xfs_buf_lru_del(bp);
43ff2122 842 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
843 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
844 spin_unlock(&pag->pag_buf_lock);
845 xfs_perag_put(pag);
ce8e922c 846 xfs_buf_free(bp);
1da177e4
LT
847 }
848 }
849}
850
851
852/*
0e6e847f 853 * Lock a buffer object, if it is not already locked.
90810b9e
DC
854 *
855 * If we come across a stale, pinned, locked buffer, we know that we are
856 * being asked to lock a buffer that has been reallocated. Because it is
857 * pinned, we know that the log has not been pushed to disk and hence it
858 * will still be locked. Rather than continuing to have trylock attempts
859 * fail until someone else pushes the log, push it ourselves before
860 * returning. This means that the xfsaild will not get stuck trying
861 * to push on stale inode buffers.
1da177e4
LT
862 */
863int
0c842ad4
CH
864xfs_buf_trylock(
865 struct xfs_buf *bp)
1da177e4
LT
866{
867 int locked;
868
ce8e922c 869 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 870 if (locked)
ce8e922c 871 XB_SET_OWNER(bp);
90810b9e
DC
872 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
873 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f 874
0c842ad4
CH
875 trace_xfs_buf_trylock(bp, _RET_IP_);
876 return locked;
1da177e4 877}
1da177e4
LT
878
879/*
0e6e847f 880 * Lock a buffer object.
ed3b4d6c
DC
881 *
882 * If we come across a stale, pinned, locked buffer, we know that we
883 * are being asked to lock a buffer that has been reallocated. Because
884 * it is pinned, we know that the log has not been pushed to disk and
885 * hence it will still be locked. Rather than sleeping until someone
886 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 887 */
ce8e922c
NS
888void
889xfs_buf_lock(
0c842ad4 890 struct xfs_buf *bp)
1da177e4 891{
0b1b213f
CH
892 trace_xfs_buf_lock(bp, _RET_IP_);
893
ed3b4d6c 894 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 895 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
896 down(&bp->b_sema);
897 XB_SET_OWNER(bp);
0b1b213f
CH
898
899 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
900}
901
1da177e4 902void
ce8e922c 903xfs_buf_unlock(
0c842ad4 904 struct xfs_buf *bp)
1da177e4 905{
ce8e922c
NS
906 XB_CLEAR_OWNER(bp);
907 up(&bp->b_sema);
0b1b213f
CH
908
909 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
910}
911
ce8e922c
NS
912STATIC void
913xfs_buf_wait_unpin(
914 xfs_buf_t *bp)
1da177e4
LT
915{
916 DECLARE_WAITQUEUE (wait, current);
917
ce8e922c 918 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
919 return;
920
ce8e922c 921 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
922 for (;;) {
923 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 924 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 925 break;
7eaceacc 926 io_schedule();
1da177e4 927 }
ce8e922c 928 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
929 set_current_state(TASK_RUNNING);
930}
931
932/*
933 * Buffer Utility Routines
934 */
935
1da177e4 936STATIC void
ce8e922c 937xfs_buf_iodone_work(
c4028958 938 struct work_struct *work)
1da177e4 939{
c4028958
DH
940 xfs_buf_t *bp =
941 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 942
80f6c29d 943 if (bp->b_iodone)
ce8e922c
NS
944 (*(bp->b_iodone))(bp);
945 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
946 xfs_buf_relse(bp);
947}
948
949void
ce8e922c
NS
950xfs_buf_ioend(
951 xfs_buf_t *bp,
1da177e4
LT
952 int schedule)
953{
0b1b213f
CH
954 trace_xfs_buf_iodone(bp, _RET_IP_);
955
77be55a5 956 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
957 if (bp->b_error == 0)
958 bp->b_flags |= XBF_DONE;
1da177e4 959
ce8e922c 960 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 961 if (schedule) {
c4028958 962 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 963 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 964 } else {
c4028958 965 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
966 }
967 } else {
b4dd330b 968 complete(&bp->b_iowait);
1da177e4
LT
969 }
970}
971
1da177e4 972void
ce8e922c
NS
973xfs_buf_ioerror(
974 xfs_buf_t *bp,
975 int error)
1da177e4
LT
976{
977 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 978 bp->b_error = (unsigned short)error;
0b1b213f 979 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
980}
981
901796af
CH
982void
983xfs_buf_ioerror_alert(
984 struct xfs_buf *bp,
985 const char *func)
986{
987 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
988"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
989 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
990}
991
1da177e4 992int
64e0bc7d 993xfs_bwrite(
5d765b97 994 struct xfs_buf *bp)
1da177e4 995{
8c38366f 996 int error;
1da177e4 997
43ff2122
CH
998 ASSERT(xfs_buf_islocked(bp));
999
64e0bc7d 1000 bp->b_flags |= XBF_WRITE;
43ff2122 1001 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1da177e4 1002
939d723b 1003 xfs_bdstrat_cb(bp);
1da177e4 1004
8c38366f 1005 error = xfs_buf_iowait(bp);
c2b006c1
CH
1006 if (error) {
1007 xfs_force_shutdown(bp->b_target->bt_mount,
1008 SHUTDOWN_META_IO_ERROR);
1009 }
64e0bc7d 1010 return error;
5d765b97 1011}
1da177e4 1012
4e23471a
CH
1013/*
1014 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1015 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1016 * so that the proper iodone callbacks get called.
1017 */
1018STATIC int
1019xfs_bioerror(
1020 xfs_buf_t *bp)
1021{
1022#ifdef XFSERRORDEBUG
1023 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1024#endif
1025
1026 /*
1027 * No need to wait until the buffer is unpinned, we aren't flushing it.
1028 */
5a52c2a5 1029 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1030
1031 /*
1a1a3e97 1032 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1033 */
1034 XFS_BUF_UNREAD(bp);
4e23471a 1035 XFS_BUF_UNDONE(bp);
c867cb61 1036 xfs_buf_stale(bp);
4e23471a 1037
1a1a3e97 1038 xfs_buf_ioend(bp, 0);
4e23471a
CH
1039
1040 return EIO;
1041}
1042
1043/*
1044 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1045 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1046 * This is meant for userdata errors; metadata bufs come with
1047 * iodone functions attached, so that we can track down errors.
1048 */
1049STATIC int
1050xfs_bioerror_relse(
1051 struct xfs_buf *bp)
1052{
ed43233b 1053 int64_t fl = bp->b_flags;
4e23471a
CH
1054 /*
1055 * No need to wait until the buffer is unpinned.
1056 * We aren't flushing it.
1057 *
1058 * chunkhold expects B_DONE to be set, whether
1059 * we actually finish the I/O or not. We don't want to
1060 * change that interface.
1061 */
1062 XFS_BUF_UNREAD(bp);
4e23471a 1063 XFS_BUF_DONE(bp);
c867cb61 1064 xfs_buf_stale(bp);
cb669ca5 1065 bp->b_iodone = NULL;
0cadda1c 1066 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1067 /*
1068 * Mark b_error and B_ERROR _both_.
1069 * Lot's of chunkcache code assumes that.
1070 * There's no reason to mark error for
1071 * ASYNC buffers.
1072 */
5a52c2a5 1073 xfs_buf_ioerror(bp, EIO);
5fde0326 1074 complete(&bp->b_iowait);
4e23471a
CH
1075 } else {
1076 xfs_buf_relse(bp);
1077 }
1078
1079 return EIO;
1080}
1081
1082
1083/*
1084 * All xfs metadata buffers except log state machine buffers
1085 * get this attached as their b_bdstrat callback function.
1086 * This is so that we can catch a buffer
1087 * after prematurely unpinning it to forcibly shutdown the filesystem.
1088 */
1089int
1090xfs_bdstrat_cb(
1091 struct xfs_buf *bp)
1092{
ebad861b 1093 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1094 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1095 /*
1096 * Metadata write that didn't get logged but
1097 * written delayed anyway. These aren't associated
1098 * with a transaction, and can be ignored.
1099 */
1100 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1101 return xfs_bioerror_relse(bp);
1102 else
1103 return xfs_bioerror(bp);
1104 }
1105
1106 xfs_buf_iorequest(bp);
1107 return 0;
1108}
1109
1110/*
1111 * Wrapper around bdstrat so that we can stop data from going to disk in case
1112 * we are shutting down the filesystem. Typically user data goes thru this
1113 * path; one of the exceptions is the superblock.
1114 */
1115void
1116xfsbdstrat(
1117 struct xfs_mount *mp,
1118 struct xfs_buf *bp)
1119{
1120 if (XFS_FORCED_SHUTDOWN(mp)) {
1121 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1122 xfs_bioerror_relse(bp);
1123 return;
1124 }
1125
1126 xfs_buf_iorequest(bp);
1127}
1128
b8f82a4a 1129STATIC void
ce8e922c
NS
1130_xfs_buf_ioend(
1131 xfs_buf_t *bp,
1da177e4
LT
1132 int schedule)
1133{
0e6e847f 1134 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1135 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1136}
1137
782e3b3b 1138STATIC void
ce8e922c 1139xfs_buf_bio_end_io(
1da177e4 1140 struct bio *bio,
1da177e4
LT
1141 int error)
1142{
ce8e922c 1143 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1144
cfbe5267 1145 xfs_buf_ioerror(bp, -error);
1da177e4 1146
73c77e2c
JB
1147 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1148 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1149
ce8e922c 1150 _xfs_buf_ioend(bp, 1);
1da177e4 1151 bio_put(bio);
1da177e4
LT
1152}
1153
1154STATIC void
ce8e922c
NS
1155_xfs_buf_ioapply(
1156 xfs_buf_t *bp)
1da177e4 1157{
a9759f2d 1158 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1159 struct bio *bio;
ce8e922c 1160 int offset = bp->b_offset;
aa0e8833 1161 int size = BBTOB(bp->b_io_length);
ce8e922c 1162 sector_t sector = bp->b_bn;
1da177e4 1163
ce8e922c 1164 total_nr_pages = bp->b_page_count;
1da177e4
LT
1165 map_i = 0;
1166
1d5ae5df
CH
1167 if (bp->b_flags & XBF_WRITE) {
1168 if (bp->b_flags & XBF_SYNCIO)
1169 rw = WRITE_SYNC;
1170 else
1171 rw = WRITE;
1172 if (bp->b_flags & XBF_FUA)
1173 rw |= REQ_FUA;
1174 if (bp->b_flags & XBF_FLUSH)
1175 rw |= REQ_FLUSH;
1176 } else if (bp->b_flags & XBF_READ_AHEAD) {
1177 rw = READA;
51bdd706 1178 } else {
1d5ae5df 1179 rw = READ;
f538d4da
CH
1180 }
1181
34951f5c
CH
1182 /* we only use the buffer cache for meta-data */
1183 rw |= REQ_META;
1184
1da177e4 1185next_chunk:
ce8e922c 1186 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1187 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1188 if (nr_pages > total_nr_pages)
1189 nr_pages = total_nr_pages;
1190
1191 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1192 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1193 bio->bi_sector = sector;
ce8e922c
NS
1194 bio->bi_end_io = xfs_buf_bio_end_io;
1195 bio->bi_private = bp;
1da177e4 1196
0e6e847f 1197
1da177e4 1198 for (; size && nr_pages; nr_pages--, map_i++) {
0e6e847f 1199 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1200
1201 if (nbytes > size)
1202 nbytes = size;
1203
ce8e922c
NS
1204 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1205 if (rbytes < nbytes)
1da177e4
LT
1206 break;
1207
1208 offset = 0;
aa0e8833 1209 sector += BTOBB(nbytes);
1da177e4
LT
1210 size -= nbytes;
1211 total_nr_pages--;
1212 }
1213
1da177e4 1214 if (likely(bio->bi_size)) {
73c77e2c
JB
1215 if (xfs_buf_is_vmapped(bp)) {
1216 flush_kernel_vmap_range(bp->b_addr,
1217 xfs_buf_vmap_len(bp));
1218 }
1da177e4
LT
1219 submit_bio(rw, bio);
1220 if (size)
1221 goto next_chunk;
1222 } else {
ce8e922c 1223 xfs_buf_ioerror(bp, EIO);
ec53d1db 1224 bio_put(bio);
1da177e4
LT
1225 }
1226}
1227
0e95f19a 1228void
ce8e922c
NS
1229xfs_buf_iorequest(
1230 xfs_buf_t *bp)
1da177e4 1231{
0b1b213f 1232 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1233
43ff2122 1234 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1235
375ec69d 1236 if (bp->b_flags & XBF_WRITE)
ce8e922c 1237 xfs_buf_wait_unpin(bp);
ce8e922c 1238 xfs_buf_hold(bp);
1da177e4
LT
1239
1240 /* Set the count to 1 initially, this will stop an I/O
1241 * completion callout which happens before we have started
ce8e922c 1242 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1243 */
ce8e922c
NS
1244 atomic_set(&bp->b_io_remaining, 1);
1245 _xfs_buf_ioapply(bp);
1246 _xfs_buf_ioend(bp, 0);
1da177e4 1247
ce8e922c 1248 xfs_buf_rele(bp);
1da177e4
LT
1249}
1250
1251/*
0e95f19a
DC
1252 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1253 * no I/O is pending or there is already a pending error on the buffer. It
1254 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1255 */
1256int
ce8e922c
NS
1257xfs_buf_iowait(
1258 xfs_buf_t *bp)
1da177e4 1259{
0b1b213f
CH
1260 trace_xfs_buf_iowait(bp, _RET_IP_);
1261
0e95f19a
DC
1262 if (!bp->b_error)
1263 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1264
1265 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1266 return bp->b_error;
1da177e4
LT
1267}
1268
ce8e922c
NS
1269xfs_caddr_t
1270xfs_buf_offset(
1271 xfs_buf_t *bp,
1da177e4
LT
1272 size_t offset)
1273{
1274 struct page *page;
1275
611c9946 1276 if (bp->b_addr)
62926044 1277 return bp->b_addr + offset;
1da177e4 1278
ce8e922c 1279 offset += bp->b_offset;
0e6e847f
DC
1280 page = bp->b_pages[offset >> PAGE_SHIFT];
1281 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1282}
1283
1284/*
1da177e4
LT
1285 * Move data into or out of a buffer.
1286 */
1287void
ce8e922c
NS
1288xfs_buf_iomove(
1289 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1290 size_t boff, /* starting buffer offset */
1291 size_t bsize, /* length to copy */
b9c48649 1292 void *data, /* data address */
ce8e922c 1293 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1294{
795cac72 1295 size_t bend;
1da177e4
LT
1296
1297 bend = boff + bsize;
1298 while (boff < bend) {
795cac72
DC
1299 struct page *page;
1300 int page_index, page_offset, csize;
1301
1302 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1303 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1304 page = bp->b_pages[page_index];
1305 csize = min_t(size_t, PAGE_SIZE - page_offset,
1306 BBTOB(bp->b_io_length) - boff);
1da177e4 1307
795cac72 1308 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1309
1310 switch (mode) {
ce8e922c 1311 case XBRW_ZERO:
795cac72 1312 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1313 break;
ce8e922c 1314 case XBRW_READ:
795cac72 1315 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1316 break;
ce8e922c 1317 case XBRW_WRITE:
795cac72 1318 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1319 }
1320
1321 boff += csize;
1322 data += csize;
1323 }
1324}
1325
1326/*
ce8e922c 1327 * Handling of buffer targets (buftargs).
1da177e4
LT
1328 */
1329
1330/*
430cbeb8
DC
1331 * Wait for any bufs with callbacks that have been submitted but have not yet
1332 * returned. These buffers will have an elevated hold count, so wait on those
1333 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1334 */
1335void
1336xfs_wait_buftarg(
74f75a0c 1337 struct xfs_buftarg *btp)
1da177e4 1338{
430cbeb8
DC
1339 struct xfs_buf *bp;
1340
1341restart:
1342 spin_lock(&btp->bt_lru_lock);
1343 while (!list_empty(&btp->bt_lru)) {
1344 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1345 if (atomic_read(&bp->b_hold) > 1) {
1346 spin_unlock(&btp->bt_lru_lock);
26af6552 1347 delay(100);
430cbeb8 1348 goto restart;
1da177e4 1349 }
430cbeb8 1350 /*
90802ed9 1351 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1352 * ignored in xfs_buf_rele().
1353 */
1354 atomic_set(&bp->b_lru_ref, 0);
1355 spin_unlock(&btp->bt_lru_lock);
1356 xfs_buf_rele(bp);
1357 spin_lock(&btp->bt_lru_lock);
1da177e4 1358 }
430cbeb8 1359 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1360}
1361
ff57ab21
DC
1362int
1363xfs_buftarg_shrink(
1364 struct shrinker *shrink,
1495f230 1365 struct shrink_control *sc)
a6867a68 1366{
ff57ab21
DC
1367 struct xfs_buftarg *btp = container_of(shrink,
1368 struct xfs_buftarg, bt_shrinker);
430cbeb8 1369 struct xfs_buf *bp;
1495f230 1370 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1371 LIST_HEAD(dispose);
1372
1373 if (!nr_to_scan)
1374 return btp->bt_lru_nr;
1375
1376 spin_lock(&btp->bt_lru_lock);
1377 while (!list_empty(&btp->bt_lru)) {
1378 if (nr_to_scan-- <= 0)
1379 break;
1380
1381 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1382
1383 /*
1384 * Decrement the b_lru_ref count unless the value is already
1385 * zero. If the value is already zero, we need to reclaim the
1386 * buffer, otherwise it gets another trip through the LRU.
1387 */
1388 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1389 list_move_tail(&bp->b_lru, &btp->bt_lru);
1390 continue;
1391 }
1392
1393 /*
1394 * remove the buffer from the LRU now to avoid needing another
1395 * lock round trip inside xfs_buf_rele().
1396 */
1397 list_move(&bp->b_lru, &dispose);
1398 btp->bt_lru_nr--;
ff57ab21 1399 }
430cbeb8
DC
1400 spin_unlock(&btp->bt_lru_lock);
1401
1402 while (!list_empty(&dispose)) {
1403 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1404 list_del_init(&bp->b_lru);
1405 xfs_buf_rele(bp);
1406 }
1407
1408 return btp->bt_lru_nr;
a6867a68
DC
1409}
1410
1da177e4
LT
1411void
1412xfs_free_buftarg(
b7963133
CH
1413 struct xfs_mount *mp,
1414 struct xfs_buftarg *btp)
1da177e4 1415{
ff57ab21
DC
1416 unregister_shrinker(&btp->bt_shrinker);
1417
b7963133
CH
1418 if (mp->m_flags & XFS_MOUNT_BARRIER)
1419 xfs_blkdev_issue_flush(btp);
a6867a68 1420
f0e2d93c 1421 kmem_free(btp);
1da177e4
LT
1422}
1423
1da177e4
LT
1424STATIC int
1425xfs_setsize_buftarg_flags(
1426 xfs_buftarg_t *btp,
1427 unsigned int blocksize,
1428 unsigned int sectorsize,
1429 int verbose)
1430{
ce8e922c
NS
1431 btp->bt_bsize = blocksize;
1432 btp->bt_sshift = ffs(sectorsize) - 1;
1433 btp->bt_smask = sectorsize - 1;
1da177e4 1434
ce8e922c 1435 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1436 char name[BDEVNAME_SIZE];
1437
1438 bdevname(btp->bt_bdev, name);
1439
4f10700a
DC
1440 xfs_warn(btp->bt_mount,
1441 "Cannot set_blocksize to %u on device %s\n",
02b102df 1442 sectorsize, name);
1da177e4
LT
1443 return EINVAL;
1444 }
1445
1da177e4
LT
1446 return 0;
1447}
1448
1449/*
ce8e922c
NS
1450 * When allocating the initial buffer target we have not yet
1451 * read in the superblock, so don't know what sized sectors
1452 * are being used is at this early stage. Play safe.
1453 */
1da177e4
LT
1454STATIC int
1455xfs_setsize_buftarg_early(
1456 xfs_buftarg_t *btp,
1457 struct block_device *bdev)
1458{
1459 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1460 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1461}
1462
1463int
1464xfs_setsize_buftarg(
1465 xfs_buftarg_t *btp,
1466 unsigned int blocksize,
1467 unsigned int sectorsize)
1468{
1469 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1470}
1471
1da177e4
LT
1472xfs_buftarg_t *
1473xfs_alloc_buftarg(
ebad861b 1474 struct xfs_mount *mp,
1da177e4 1475 struct block_device *bdev,
e2a07812
JE
1476 int external,
1477 const char *fsname)
1da177e4
LT
1478{
1479 xfs_buftarg_t *btp;
1480
1481 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1482
ebad861b 1483 btp->bt_mount = mp;
ce8e922c
NS
1484 btp->bt_dev = bdev->bd_dev;
1485 btp->bt_bdev = bdev;
0e6e847f
DC
1486 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1487 if (!btp->bt_bdi)
1488 goto error;
1489
430cbeb8
DC
1490 INIT_LIST_HEAD(&btp->bt_lru);
1491 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1492 if (xfs_setsize_buftarg_early(btp, bdev))
1493 goto error;
ff57ab21
DC
1494 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1495 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1496 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1497 return btp;
1498
1499error:
f0e2d93c 1500 kmem_free(btp);
1da177e4
LT
1501 return NULL;
1502}
1503
1da177e4 1504/*
43ff2122
CH
1505 * Add a buffer to the delayed write list.
1506 *
1507 * This queues a buffer for writeout if it hasn't already been. Note that
1508 * neither this routine nor the buffer list submission functions perform
1509 * any internal synchronization. It is expected that the lists are thread-local
1510 * to the callers.
1511 *
1512 * Returns true if we queued up the buffer, or false if it already had
1513 * been on the buffer list.
1da177e4 1514 */
43ff2122 1515bool
ce8e922c 1516xfs_buf_delwri_queue(
43ff2122
CH
1517 struct xfs_buf *bp,
1518 struct list_head *list)
1da177e4 1519{
43ff2122 1520 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1521 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1522
43ff2122
CH
1523 /*
1524 * If the buffer is already marked delwri it already is queued up
1525 * by someone else for imediate writeout. Just ignore it in that
1526 * case.
1527 */
1528 if (bp->b_flags & _XBF_DELWRI_Q) {
1529 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1530 return false;
1da177e4 1531 }
1da177e4 1532
43ff2122 1533 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1534
1535 /*
43ff2122
CH
1536 * If a buffer gets written out synchronously or marked stale while it
1537 * is on a delwri list we lazily remove it. To do this, the other party
1538 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1539 * It remains referenced and on the list. In a rare corner case it
1540 * might get readded to a delwri list after the synchronous writeout, in
1541 * which case we need just need to re-add the flag here.
d808f617 1542 */
43ff2122
CH
1543 bp->b_flags |= _XBF_DELWRI_Q;
1544 if (list_empty(&bp->b_list)) {
1545 atomic_inc(&bp->b_hold);
1546 list_add_tail(&bp->b_list, list);
585e6d88 1547 }
585e6d88 1548
43ff2122 1549 return true;
585e6d88
DC
1550}
1551
089716aa
DC
1552/*
1553 * Compare function is more complex than it needs to be because
1554 * the return value is only 32 bits and we are doing comparisons
1555 * on 64 bit values
1556 */
1557static int
1558xfs_buf_cmp(
1559 void *priv,
1560 struct list_head *a,
1561 struct list_head *b)
1562{
1563 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1564 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1565 xfs_daddr_t diff;
1566
1567 diff = ap->b_bn - bp->b_bn;
1568 if (diff < 0)
1569 return -1;
1570 if (diff > 0)
1571 return 1;
1572 return 0;
1573}
1574
43ff2122
CH
1575static int
1576__xfs_buf_delwri_submit(
1577 struct list_head *buffer_list,
1578 struct list_head *io_list,
1579 bool wait)
1da177e4 1580{
43ff2122
CH
1581 struct blk_plug plug;
1582 struct xfs_buf *bp, *n;
1583 int pinned = 0;
1584
1585 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1586 if (!wait) {
1587 if (xfs_buf_ispinned(bp)) {
1588 pinned++;
1589 continue;
1590 }
1591 if (!xfs_buf_trylock(bp))
1592 continue;
1593 } else {
1594 xfs_buf_lock(bp);
1595 }
978c7b2f 1596
43ff2122
CH
1597 /*
1598 * Someone else might have written the buffer synchronously or
1599 * marked it stale in the meantime. In that case only the
1600 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1601 * reference and remove it from the list here.
1602 */
1603 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1604 list_del_init(&bp->b_list);
1605 xfs_buf_relse(bp);
1606 continue;
1607 }
c9c12971 1608
43ff2122
CH
1609 list_move_tail(&bp->b_list, io_list);
1610 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1611 }
1da177e4 1612
43ff2122 1613 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1614
43ff2122
CH
1615 blk_start_plug(&plug);
1616 list_for_each_entry_safe(bp, n, io_list, b_list) {
1617 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1618 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1619
43ff2122
CH
1620 if (!wait) {
1621 bp->b_flags |= XBF_ASYNC;
ce8e922c 1622 list_del_init(&bp->b_list);
1da177e4 1623 }
43ff2122
CH
1624 xfs_bdstrat_cb(bp);
1625 }
1626 blk_finish_plug(&plug);
1da177e4 1627
43ff2122 1628 return pinned;
1da177e4
LT
1629}
1630
1631/*
43ff2122
CH
1632 * Write out a buffer list asynchronously.
1633 *
1634 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1635 * out and not wait for I/O completion on any of the buffers. This interface
1636 * is only safely useable for callers that can track I/O completion by higher
1637 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1638 * function.
1da177e4
LT
1639 */
1640int
43ff2122
CH
1641xfs_buf_delwri_submit_nowait(
1642 struct list_head *buffer_list)
1da177e4 1643{
43ff2122
CH
1644 LIST_HEAD (io_list);
1645 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1646}
1da177e4 1647
43ff2122
CH
1648/*
1649 * Write out a buffer list synchronously.
1650 *
1651 * This will take the @buffer_list, write all buffers out and wait for I/O
1652 * completion on all of the buffers. @buffer_list is consumed by the function,
1653 * so callers must have some other way of tracking buffers if they require such
1654 * functionality.
1655 */
1656int
1657xfs_buf_delwri_submit(
1658 struct list_head *buffer_list)
1659{
1660 LIST_HEAD (io_list);
1661 int error = 0, error2;
1662 struct xfs_buf *bp;
1da177e4 1663
43ff2122 1664 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1665
43ff2122
CH
1666 /* Wait for IO to complete. */
1667 while (!list_empty(&io_list)) {
1668 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1669
089716aa 1670 list_del_init(&bp->b_list);
43ff2122
CH
1671 error2 = xfs_buf_iowait(bp);
1672 xfs_buf_relse(bp);
1673 if (!error)
1674 error = error2;
1da177e4
LT
1675 }
1676
43ff2122 1677 return error;
1da177e4
LT
1678}
1679
04d8b284 1680int __init
ce8e922c 1681xfs_buf_init(void)
1da177e4 1682{
8758280f
NS
1683 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1684 KM_ZONE_HWALIGN, NULL);
ce8e922c 1685 if (!xfs_buf_zone)
0b1b213f 1686 goto out;
04d8b284 1687
51749e47 1688 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1689 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1690 if (!xfslogd_workqueue)
04d8b284 1691 goto out_free_buf_zone;
1da177e4 1692
23ea4032 1693 return 0;
1da177e4 1694
23ea4032 1695 out_free_buf_zone:
ce8e922c 1696 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1697 out:
8758280f 1698 return -ENOMEM;
1da177e4
LT
1699}
1700
1da177e4 1701void
ce8e922c 1702xfs_buf_terminate(void)
1da177e4 1703{
04d8b284 1704 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1705 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1706}
This page took 0.645785 seconds and 5 git commands to generate.