xfs: track and serialize in-flight async buffers against unmount
[deliverable/linux.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
4fb6e8ad 37#include "xfs_format.h"
239880ef 38#include "xfs_log_format.h"
7fd36c44 39#include "xfs_trans_resv.h"
239880ef 40#include "xfs_sb.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
239880ef 43#include "xfs_log.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
23ea4032 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
9c7504aa
BF
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105}
106
107/*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111static inline void
112xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114{
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
118 ASSERT(bp->b_flags & XBF_ASYNC);
119 bp->b_flags &= ~_XBF_IN_FLIGHT;
120 percpu_counter_dec(&bp->b_target->bt_io_count);
121}
122
430cbeb8
DC
123/*
124 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
125 * b_lru_ref count so that the buffer is freed immediately when the buffer
126 * reference count falls to zero. If the buffer is already on the LRU, we need
127 * to remove the reference that LRU holds on the buffer.
128 *
129 * This prevents build-up of stale buffers on the LRU.
130 */
131void
132xfs_buf_stale(
133 struct xfs_buf *bp)
134{
43ff2122
CH
135 ASSERT(xfs_buf_islocked(bp));
136
430cbeb8 137 bp->b_flags |= XBF_STALE;
43ff2122
CH
138
139 /*
140 * Clear the delwri status so that a delwri queue walker will not
141 * flush this buffer to disk now that it is stale. The delwri queue has
142 * a reference to the buffer, so this is safe to do.
143 */
144 bp->b_flags &= ~_XBF_DELWRI_Q;
145
9c7504aa
BF
146 /*
147 * Once the buffer is marked stale and unlocked, a subsequent lookup
148 * could reset b_flags. There is no guarantee that the buffer is
149 * unaccounted (released to LRU) before that occurs. Drop in-flight
150 * status now to preserve accounting consistency.
151 */
152 xfs_buf_ioacct_dec(bp);
153
a4082357
DC
154 spin_lock(&bp->b_lock);
155 atomic_set(&bp->b_lru_ref, 0);
156 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
157 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
158 atomic_dec(&bp->b_hold);
159
430cbeb8 160 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 161 spin_unlock(&bp->b_lock);
430cbeb8 162}
1da177e4 163
3e85c868
DC
164static int
165xfs_buf_get_maps(
166 struct xfs_buf *bp,
167 int map_count)
168{
169 ASSERT(bp->b_maps == NULL);
170 bp->b_map_count = map_count;
171
172 if (map_count == 1) {
f4b42421 173 bp->b_maps = &bp->__b_map;
3e85c868
DC
174 return 0;
175 }
176
177 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
178 KM_NOFS);
179 if (!bp->b_maps)
2451337d 180 return -ENOMEM;
3e85c868
DC
181 return 0;
182}
183
184/*
185 * Frees b_pages if it was allocated.
186 */
187static void
188xfs_buf_free_maps(
189 struct xfs_buf *bp)
190{
f4b42421 191 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
192 kmem_free(bp->b_maps);
193 bp->b_maps = NULL;
194 }
195}
196
4347b9d7 197struct xfs_buf *
3e85c868 198_xfs_buf_alloc(
4347b9d7 199 struct xfs_buftarg *target,
3e85c868
DC
200 struct xfs_buf_map *map,
201 int nmaps,
ce8e922c 202 xfs_buf_flags_t flags)
1da177e4 203{
4347b9d7 204 struct xfs_buf *bp;
3e85c868
DC
205 int error;
206 int i;
4347b9d7 207
aa5c158e 208 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
209 if (unlikely(!bp))
210 return NULL;
211
1da177e4 212 /*
12bcb3f7
DC
213 * We don't want certain flags to appear in b_flags unless they are
214 * specifically set by later operations on the buffer.
1da177e4 215 */
611c9946 216 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 217
ce8e922c 218 atomic_set(&bp->b_hold, 1);
430cbeb8 219 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 220 init_completion(&bp->b_iowait);
430cbeb8 221 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 222 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 223 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 224 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 225 spin_lock_init(&bp->b_lock);
ce8e922c
NS
226 XB_SET_OWNER(bp);
227 bp->b_target = target;
3e85c868 228 bp->b_flags = flags;
de1cbee4 229
1da177e4 230 /*
aa0e8833
DC
231 * Set length and io_length to the same value initially.
232 * I/O routines should use io_length, which will be the same in
1da177e4
LT
233 * most cases but may be reset (e.g. XFS recovery).
234 */
3e85c868
DC
235 error = xfs_buf_get_maps(bp, nmaps);
236 if (error) {
237 kmem_zone_free(xfs_buf_zone, bp);
238 return NULL;
239 }
240
241 bp->b_bn = map[0].bm_bn;
242 bp->b_length = 0;
243 for (i = 0; i < nmaps; i++) {
244 bp->b_maps[i].bm_bn = map[i].bm_bn;
245 bp->b_maps[i].bm_len = map[i].bm_len;
246 bp->b_length += map[i].bm_len;
247 }
248 bp->b_io_length = bp->b_length;
249
ce8e922c
NS
250 atomic_set(&bp->b_pin_count, 0);
251 init_waitqueue_head(&bp->b_waiters);
252
ff6d6af2 253 XFS_STATS_INC(target->bt_mount, xb_create);
0b1b213f 254 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
255
256 return bp;
1da177e4
LT
257}
258
259/*
ce8e922c
NS
260 * Allocate a page array capable of holding a specified number
261 * of pages, and point the page buf at it.
1da177e4
LT
262 */
263STATIC int
ce8e922c
NS
264_xfs_buf_get_pages(
265 xfs_buf_t *bp,
87937bf8 266 int page_count)
1da177e4
LT
267{
268 /* Make sure that we have a page list */
ce8e922c 269 if (bp->b_pages == NULL) {
ce8e922c
NS
270 bp->b_page_count = page_count;
271 if (page_count <= XB_PAGES) {
272 bp->b_pages = bp->b_page_array;
1da177e4 273 } else {
ce8e922c 274 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 275 page_count, KM_NOFS);
ce8e922c 276 if (bp->b_pages == NULL)
1da177e4
LT
277 return -ENOMEM;
278 }
ce8e922c 279 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
280 }
281 return 0;
282}
283
284/*
ce8e922c 285 * Frees b_pages if it was allocated.
1da177e4
LT
286 */
287STATIC void
ce8e922c 288_xfs_buf_free_pages(
1da177e4
LT
289 xfs_buf_t *bp)
290{
ce8e922c 291 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 292 kmem_free(bp->b_pages);
3fc98b1a 293 bp->b_pages = NULL;
1da177e4
LT
294 }
295}
296
297/*
298 * Releases the specified buffer.
299 *
300 * The modification state of any associated pages is left unchanged.
b46fe825 301 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
302 * hashed and refcounted buffers
303 */
304void
ce8e922c 305xfs_buf_free(
1da177e4
LT
306 xfs_buf_t *bp)
307{
0b1b213f 308 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 309
430cbeb8
DC
310 ASSERT(list_empty(&bp->b_lru));
311
0e6e847f 312 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
313 uint i;
314
73c77e2c 315 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
316 vm_unmap_ram(bp->b_addr - bp->b_offset,
317 bp->b_page_count);
1da177e4 318
948ecdb4
NS
319 for (i = 0; i < bp->b_page_count; i++) {
320 struct page *page = bp->b_pages[i];
321
0e6e847f 322 __free_page(page);
948ecdb4 323 }
0e6e847f
DC
324 } else if (bp->b_flags & _XBF_KMEM)
325 kmem_free(bp->b_addr);
3fc98b1a 326 _xfs_buf_free_pages(bp);
3e85c868 327 xfs_buf_free_maps(bp);
4347b9d7 328 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
329}
330
331/*
0e6e847f 332 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
333 */
334STATIC int
0e6e847f 335xfs_buf_allocate_memory(
1da177e4
LT
336 xfs_buf_t *bp,
337 uint flags)
338{
aa0e8833 339 size_t size;
1da177e4 340 size_t nbytes, offset;
ce8e922c 341 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 342 unsigned short page_count, i;
795cac72 343 xfs_off_t start, end;
1da177e4
LT
344 int error;
345
0e6e847f
DC
346 /*
347 * for buffers that are contained within a single page, just allocate
348 * the memory from the heap - there's no need for the complexity of
349 * page arrays to keep allocation down to order 0.
350 */
795cac72
DC
351 size = BBTOB(bp->b_length);
352 if (size < PAGE_SIZE) {
aa5c158e 353 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
354 if (!bp->b_addr) {
355 /* low memory - use alloc_page loop instead */
356 goto use_alloc_page;
357 }
358
795cac72 359 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
360 ((unsigned long)bp->b_addr & PAGE_MASK)) {
361 /* b_addr spans two pages - use alloc_page instead */
362 kmem_free(bp->b_addr);
363 bp->b_addr = NULL;
364 goto use_alloc_page;
365 }
366 bp->b_offset = offset_in_page(bp->b_addr);
367 bp->b_pages = bp->b_page_array;
368 bp->b_pages[0] = virt_to_page(bp->b_addr);
369 bp->b_page_count = 1;
611c9946 370 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
371 return 0;
372 }
373
374use_alloc_page:
f4b42421
MT
375 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
376 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 377 >> PAGE_SHIFT;
795cac72 378 page_count = end - start;
87937bf8 379 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
380 if (unlikely(error))
381 return error;
1da177e4 382
ce8e922c 383 offset = bp->b_offset;
0e6e847f 384 bp->b_flags |= _XBF_PAGES;
1da177e4 385
ce8e922c 386 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
387 struct page *page;
388 uint retries = 0;
0e6e847f
DC
389retry:
390 page = alloc_page(gfp_mask);
1da177e4 391 if (unlikely(page == NULL)) {
ce8e922c
NS
392 if (flags & XBF_READ_AHEAD) {
393 bp->b_page_count = i;
2451337d 394 error = -ENOMEM;
0e6e847f 395 goto out_free_pages;
1da177e4
LT
396 }
397
398 /*
399 * This could deadlock.
400 *
401 * But until all the XFS lowlevel code is revamped to
402 * handle buffer allocation failures we can't do much.
403 */
404 if (!(++retries % 100))
4f10700a 405 xfs_err(NULL,
5bf97b1c
TH
406 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
407 current->comm, current->pid,
34a622b2 408 __func__, gfp_mask);
1da177e4 409
ff6d6af2 410 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
8aa7e847 411 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
412 goto retry;
413 }
414
ff6d6af2 415 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
1da177e4 416
0e6e847f 417 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 418 size -= nbytes;
ce8e922c 419 bp->b_pages[i] = page;
1da177e4
LT
420 offset = 0;
421 }
0e6e847f 422 return 0;
1da177e4 423
0e6e847f
DC
424out_free_pages:
425 for (i = 0; i < bp->b_page_count; i++)
426 __free_page(bp->b_pages[i]);
1da177e4
LT
427 return error;
428}
429
430/*
25985edc 431 * Map buffer into kernel address-space if necessary.
1da177e4
LT
432 */
433STATIC int
ce8e922c 434_xfs_buf_map_pages(
1da177e4
LT
435 xfs_buf_t *bp,
436 uint flags)
437{
0e6e847f 438 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 439 if (bp->b_page_count == 1) {
0e6e847f 440 /* A single page buffer is always mappable */
ce8e922c 441 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
442 } else if (flags & XBF_UNMAPPED) {
443 bp->b_addr = NULL;
444 } else {
a19fb380 445 int retried = 0;
ae687e58
DC
446 unsigned noio_flag;
447
448 /*
449 * vm_map_ram() will allocate auxillary structures (e.g.
450 * pagetables) with GFP_KERNEL, yet we are likely to be under
451 * GFP_NOFS context here. Hence we need to tell memory reclaim
452 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
453 * memory reclaim re-entering the filesystem here and
454 * potentially deadlocking.
455 */
456 noio_flag = memalloc_noio_save();
a19fb380
DC
457 do {
458 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 -1, PAGE_KERNEL);
460 if (bp->b_addr)
461 break;
462 vm_unmap_aliases();
463 } while (retried++ <= 1);
ae687e58 464 memalloc_noio_restore(noio_flag);
a19fb380
DC
465
466 if (!bp->b_addr)
1da177e4 467 return -ENOMEM;
ce8e922c 468 bp->b_addr += bp->b_offset;
1da177e4
LT
469 }
470
471 return 0;
472}
473
474/*
475 * Finding and Reading Buffers
476 */
477
478/*
ce8e922c 479 * Look up, and creates if absent, a lockable buffer for
1da177e4 480 * a given range of an inode. The buffer is returned
eabbaf11 481 * locked. No I/O is implied by this call.
1da177e4
LT
482 */
483xfs_buf_t *
ce8e922c 484_xfs_buf_find(
e70b73f8 485 struct xfs_buftarg *btp,
3e85c868
DC
486 struct xfs_buf_map *map,
487 int nmaps,
ce8e922c
NS
488 xfs_buf_flags_t flags,
489 xfs_buf_t *new_bp)
1da177e4 490{
74f75a0c
DC
491 struct xfs_perag *pag;
492 struct rb_node **rbp;
493 struct rb_node *parent;
494 xfs_buf_t *bp;
3e85c868 495 xfs_daddr_t blkno = map[0].bm_bn;
10616b80 496 xfs_daddr_t eofs;
3e85c868
DC
497 int numblks = 0;
498 int i;
1da177e4 499
3e85c868
DC
500 for (i = 0; i < nmaps; i++)
501 numblks += map[i].bm_len;
1da177e4
LT
502
503 /* Check for IOs smaller than the sector size / not sector aligned */
f79af0b9 504 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
6da54179 505 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 506
10616b80
DC
507 /*
508 * Corrupted block numbers can get through to here, unfortunately, so we
509 * have to check that the buffer falls within the filesystem bounds.
510 */
511 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
db52d09e 512 if (blkno < 0 || blkno >= eofs) {
10616b80 513 /*
2451337d 514 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
10616b80
DC
515 * but none of the higher level infrastructure supports
516 * returning a specific error on buffer lookup failures.
517 */
518 xfs_alert(btp->bt_mount,
519 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
520 __func__, blkno, eofs);
7bc0dc27 521 WARN_ON(1);
10616b80
DC
522 return NULL;
523 }
524
74f75a0c
DC
525 /* get tree root */
526 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 527 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
528
529 /* walk tree */
530 spin_lock(&pag->pag_buf_lock);
531 rbp = &pag->pag_buf_tree.rb_node;
532 parent = NULL;
533 bp = NULL;
534 while (*rbp) {
535 parent = *rbp;
536 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
537
de1cbee4 538 if (blkno < bp->b_bn)
74f75a0c 539 rbp = &(*rbp)->rb_left;
de1cbee4 540 else if (blkno > bp->b_bn)
74f75a0c
DC
541 rbp = &(*rbp)->rb_right;
542 else {
543 /*
de1cbee4 544 * found a block number match. If the range doesn't
74f75a0c
DC
545 * match, the only way this is allowed is if the buffer
546 * in the cache is stale and the transaction that made
547 * it stale has not yet committed. i.e. we are
548 * reallocating a busy extent. Skip this buffer and
549 * continue searching to the right for an exact match.
550 */
4e94b71b 551 if (bp->b_length != numblks) {
74f75a0c
DC
552 ASSERT(bp->b_flags & XBF_STALE);
553 rbp = &(*rbp)->rb_right;
554 continue;
555 }
ce8e922c 556 atomic_inc(&bp->b_hold);
1da177e4
LT
557 goto found;
558 }
559 }
560
561 /* No match found */
ce8e922c 562 if (new_bp) {
74f75a0c
DC
563 rb_link_node(&new_bp->b_rbnode, parent, rbp);
564 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
565 /* the buffer keeps the perag reference until it is freed */
566 new_bp->b_pag = pag;
567 spin_unlock(&pag->pag_buf_lock);
1da177e4 568 } else {
ff6d6af2 569 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
570 spin_unlock(&pag->pag_buf_lock);
571 xfs_perag_put(pag);
1da177e4 572 }
ce8e922c 573 return new_bp;
1da177e4
LT
574
575found:
74f75a0c
DC
576 spin_unlock(&pag->pag_buf_lock);
577 xfs_perag_put(pag);
1da177e4 578
0c842ad4
CH
579 if (!xfs_buf_trylock(bp)) {
580 if (flags & XBF_TRYLOCK) {
ce8e922c 581 xfs_buf_rele(bp);
ff6d6af2 582 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
ce8e922c 583 return NULL;
1da177e4 584 }
0c842ad4 585 xfs_buf_lock(bp);
ff6d6af2 586 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
587 }
588
0e6e847f
DC
589 /*
590 * if the buffer is stale, clear all the external state associated with
591 * it. We need to keep flags such as how we allocated the buffer memory
592 * intact here.
593 */
ce8e922c
NS
594 if (bp->b_flags & XBF_STALE) {
595 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 596 ASSERT(bp->b_iodone == NULL);
611c9946 597 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 598 bp->b_ops = NULL;
2f926587 599 }
0b1b213f
CH
600
601 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 602 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
ce8e922c 603 return bp;
1da177e4
LT
604}
605
606/*
3815832a
DC
607 * Assembles a buffer covering the specified range. The code is optimised for
608 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
609 * more hits than misses.
1da177e4 610 */
3815832a 611struct xfs_buf *
6dde2707
DC
612xfs_buf_get_map(
613 struct xfs_buftarg *target,
614 struct xfs_buf_map *map,
615 int nmaps,
ce8e922c 616 xfs_buf_flags_t flags)
1da177e4 617{
3815832a
DC
618 struct xfs_buf *bp;
619 struct xfs_buf *new_bp;
0e6e847f 620 int error = 0;
1da177e4 621
6dde2707 622 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
623 if (likely(bp))
624 goto found;
625
6dde2707 626 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 627 if (unlikely(!new_bp))
1da177e4
LT
628 return NULL;
629
fe2429b0
DC
630 error = xfs_buf_allocate_memory(new_bp, flags);
631 if (error) {
3e85c868 632 xfs_buf_free(new_bp);
fe2429b0
DC
633 return NULL;
634 }
635
6dde2707 636 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 637 if (!bp) {
fe2429b0 638 xfs_buf_free(new_bp);
3815832a
DC
639 return NULL;
640 }
641
fe2429b0
DC
642 if (bp != new_bp)
643 xfs_buf_free(new_bp);
1da177e4 644
3815832a 645found:
611c9946 646 if (!bp->b_addr) {
ce8e922c 647 error = _xfs_buf_map_pages(bp, flags);
1da177e4 648 if (unlikely(error)) {
4f10700a 649 xfs_warn(target->bt_mount,
08e96e1a 650 "%s: failed to map pagesn", __func__);
a8acad70
DC
651 xfs_buf_relse(bp);
652 return NULL;
1da177e4
LT
653 }
654 }
655
b79f4a1c
DC
656 /*
657 * Clear b_error if this is a lookup from a caller that doesn't expect
658 * valid data to be found in the buffer.
659 */
660 if (!(flags & XBF_READ))
661 xfs_buf_ioerror(bp, 0);
662
ff6d6af2 663 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 664 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 665 return bp;
1da177e4
LT
666}
667
5d765b97
CH
668STATIC int
669_xfs_buf_read(
670 xfs_buf_t *bp,
671 xfs_buf_flags_t flags)
672{
43ff2122 673 ASSERT(!(flags & XBF_WRITE));
f4b42421 674 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 675
43ff2122 676 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 677 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 678
595bff75
DC
679 if (flags & XBF_ASYNC) {
680 xfs_buf_submit(bp);
0e95f19a 681 return 0;
595bff75
DC
682 }
683 return xfs_buf_submit_wait(bp);
5d765b97
CH
684}
685
1da177e4 686xfs_buf_t *
6dde2707
DC
687xfs_buf_read_map(
688 struct xfs_buftarg *target,
689 struct xfs_buf_map *map,
690 int nmaps,
c3f8fc73 691 xfs_buf_flags_t flags,
1813dd64 692 const struct xfs_buf_ops *ops)
1da177e4 693{
6dde2707 694 struct xfs_buf *bp;
ce8e922c
NS
695
696 flags |= XBF_READ;
697
6dde2707 698 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 699 if (bp) {
0b1b213f
CH
700 trace_xfs_buf_read(bp, flags, _RET_IP_);
701
b0388bf1 702 if (!(bp->b_flags & XBF_DONE)) {
ff6d6af2 703 XFS_STATS_INC(target->bt_mount, xb_get_read);
1813dd64 704 bp->b_ops = ops;
5d765b97 705 _xfs_buf_read(bp, flags);
ce8e922c 706 } else if (flags & XBF_ASYNC) {
1da177e4
LT
707 /*
708 * Read ahead call which is already satisfied,
709 * drop the buffer
710 */
a8acad70
DC
711 xfs_buf_relse(bp);
712 return NULL;
1da177e4 713 } else {
1da177e4 714 /* We do not want read in the flags */
ce8e922c 715 bp->b_flags &= ~XBF_READ;
1da177e4
LT
716 }
717 }
718
ce8e922c 719 return bp;
1da177e4
LT
720}
721
1da177e4 722/*
ce8e922c
NS
723 * If we are not low on memory then do the readahead in a deadlock
724 * safe manner.
1da177e4
LT
725 */
726void
6dde2707
DC
727xfs_buf_readahead_map(
728 struct xfs_buftarg *target,
729 struct xfs_buf_map *map,
c3f8fc73 730 int nmaps,
1813dd64 731 const struct xfs_buf_ops *ops)
1da177e4 732{
0e6e847f 733 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
734 return;
735
6dde2707 736 xfs_buf_read_map(target, map, nmaps,
1813dd64 737 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
738}
739
5adc94c2
DC
740/*
741 * Read an uncached buffer from disk. Allocates and returns a locked
742 * buffer containing the disk contents or nothing.
743 */
ba372674 744int
5adc94c2 745xfs_buf_read_uncached(
5adc94c2
DC
746 struct xfs_buftarg *target,
747 xfs_daddr_t daddr,
e70b73f8 748 size_t numblks,
c3f8fc73 749 int flags,
ba372674 750 struct xfs_buf **bpp,
1813dd64 751 const struct xfs_buf_ops *ops)
5adc94c2 752{
eab4e633 753 struct xfs_buf *bp;
5adc94c2 754
ba372674
DC
755 *bpp = NULL;
756
e70b73f8 757 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 758 if (!bp)
ba372674 759 return -ENOMEM;
5adc94c2
DC
760
761 /* set up the buffer for a read IO */
3e85c868 762 ASSERT(bp->b_map_count == 1);
ba372674 763 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 764 bp->b_maps[0].bm_bn = daddr;
cbb7baab 765 bp->b_flags |= XBF_READ;
1813dd64 766 bp->b_ops = ops;
5adc94c2 767
595bff75 768 xfs_buf_submit_wait(bp);
ba372674
DC
769 if (bp->b_error) {
770 int error = bp->b_error;
83a0adc3 771 xfs_buf_relse(bp);
ba372674 772 return error;
83a0adc3 773 }
ba372674
DC
774
775 *bpp = bp;
776 return 0;
1da177e4
LT
777}
778
44396476
DC
779/*
780 * Return a buffer allocated as an empty buffer and associated to external
781 * memory via xfs_buf_associate_memory() back to it's empty state.
782 */
783void
784xfs_buf_set_empty(
785 struct xfs_buf *bp,
e70b73f8 786 size_t numblks)
44396476
DC
787{
788 if (bp->b_pages)
789 _xfs_buf_free_pages(bp);
790
791 bp->b_pages = NULL;
792 bp->b_page_count = 0;
793 bp->b_addr = NULL;
4e94b71b 794 bp->b_length = numblks;
aa0e8833 795 bp->b_io_length = numblks;
3e85c868
DC
796
797 ASSERT(bp->b_map_count == 1);
44396476 798 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
799 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
800 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
801}
802
1da177e4
LT
803static inline struct page *
804mem_to_page(
805 void *addr)
806{
9e2779fa 807 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
808 return virt_to_page(addr);
809 } else {
810 return vmalloc_to_page(addr);
811 }
812}
813
814int
ce8e922c
NS
815xfs_buf_associate_memory(
816 xfs_buf_t *bp,
1da177e4
LT
817 void *mem,
818 size_t len)
819{
820 int rval;
821 int i = 0;
d1afb678
LM
822 unsigned long pageaddr;
823 unsigned long offset;
824 size_t buflen;
1da177e4
LT
825 int page_count;
826
0e6e847f 827 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 828 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
829 buflen = PAGE_ALIGN(len + offset);
830 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
831
832 /* Free any previous set of page pointers */
ce8e922c
NS
833 if (bp->b_pages)
834 _xfs_buf_free_pages(bp);
1da177e4 835
ce8e922c
NS
836 bp->b_pages = NULL;
837 bp->b_addr = mem;
1da177e4 838
87937bf8 839 rval = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
840 if (rval)
841 return rval;
842
ce8e922c 843 bp->b_offset = offset;
d1afb678
LM
844
845 for (i = 0; i < bp->b_page_count; i++) {
846 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 847 pageaddr += PAGE_SIZE;
1da177e4 848 }
1da177e4 849
aa0e8833 850 bp->b_io_length = BTOBB(len);
4e94b71b 851 bp->b_length = BTOBB(buflen);
1da177e4
LT
852
853 return 0;
854}
855
856xfs_buf_t *
686865f7
DC
857xfs_buf_get_uncached(
858 struct xfs_buftarg *target,
e70b73f8 859 size_t numblks,
686865f7 860 int flags)
1da177e4 861{
e70b73f8 862 unsigned long page_count;
1fa40b01 863 int error, i;
3e85c868
DC
864 struct xfs_buf *bp;
865 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 866
c891c30a
BF
867 /* flags might contain irrelevant bits, pass only what we care about */
868 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1da177e4
LT
869 if (unlikely(bp == NULL))
870 goto fail;
1da177e4 871
e70b73f8 872 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 873 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 874 if (error)
1da177e4
LT
875 goto fail_free_buf;
876
1fa40b01 877 for (i = 0; i < page_count; i++) {
686865f7 878 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
879 if (!bp->b_pages[i])
880 goto fail_free_mem;
1da177e4 881 }
1fa40b01 882 bp->b_flags |= _XBF_PAGES;
1da177e4 883
611c9946 884 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 885 if (unlikely(error)) {
4f10700a 886 xfs_warn(target->bt_mount,
08e96e1a 887 "%s: failed to map pages", __func__);
1da177e4 888 goto fail_free_mem;
1fa40b01 889 }
1da177e4 890
686865f7 891 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 892 return bp;
1fa40b01 893
1da177e4 894 fail_free_mem:
1fa40b01
CH
895 while (--i >= 0)
896 __free_page(bp->b_pages[i]);
ca165b88 897 _xfs_buf_free_pages(bp);
1da177e4 898 fail_free_buf:
3e85c868 899 xfs_buf_free_maps(bp);
4347b9d7 900 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
901 fail:
902 return NULL;
903}
904
905/*
1da177e4
LT
906 * Increment reference count on buffer, to hold the buffer concurrently
907 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
908 * Must hold the buffer already to call this function.
909 */
910void
ce8e922c
NS
911xfs_buf_hold(
912 xfs_buf_t *bp)
1da177e4 913{
0b1b213f 914 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 915 atomic_inc(&bp->b_hold);
1da177e4
LT
916}
917
918/*
9c7504aa
BF
919 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
920 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
921 */
922void
ce8e922c
NS
923xfs_buf_rele(
924 xfs_buf_t *bp)
1da177e4 925{
74f75a0c 926 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
927 bool release;
928 bool freebuf = false;
1da177e4 929
0b1b213f 930 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 931
74f75a0c 932 if (!pag) {
430cbeb8 933 ASSERT(list_empty(&bp->b_lru));
74f75a0c 934 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
9c7504aa
BF
935 if (atomic_dec_and_test(&bp->b_hold)) {
936 xfs_buf_ioacct_dec(bp);
fad3aa1e 937 xfs_buf_free(bp);
9c7504aa 938 }
fad3aa1e
NS
939 return;
940 }
941
74f75a0c 942 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 943
3790689f 944 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 945
9c7504aa
BF
946 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
947 spin_lock(&bp->b_lock);
948 if (!release) {
949 /*
950 * Drop the in-flight state if the buffer is already on the LRU
951 * and it holds the only reference. This is racy because we
952 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
953 * ensures the decrement occurs only once per-buf.
954 */
955 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
956 xfs_buf_ioacct_dec(bp);
957 goto out_unlock;
958 }
959
960 /* the last reference has been dropped ... */
961 xfs_buf_ioacct_dec(bp);
962 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
963 /*
964 * If the buffer is added to the LRU take a new reference to the
965 * buffer for the LRU and clear the (now stale) dispose list
966 * state flag
967 */
968 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
969 bp->b_state &= ~XFS_BSTATE_DISPOSE;
970 atomic_inc(&bp->b_hold);
1da177e4 971 }
9c7504aa
BF
972 spin_unlock(&pag->pag_buf_lock);
973 } else {
974 /*
975 * most of the time buffers will already be removed from the
976 * LRU, so optimise that case by checking for the
977 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
978 * was on was the disposal list
979 */
980 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
981 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
982 } else {
983 ASSERT(list_empty(&bp->b_lru));
984 }
985
986 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
987 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
988 spin_unlock(&pag->pag_buf_lock);
989 xfs_perag_put(pag);
990 freebuf = true;
1da177e4 991 }
9c7504aa
BF
992
993out_unlock:
994 spin_unlock(&bp->b_lock);
995
996 if (freebuf)
997 xfs_buf_free(bp);
1da177e4
LT
998}
999
1000
1001/*
0e6e847f 1002 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1003 *
1004 * If we come across a stale, pinned, locked buffer, we know that we are
1005 * being asked to lock a buffer that has been reallocated. Because it is
1006 * pinned, we know that the log has not been pushed to disk and hence it
1007 * will still be locked. Rather than continuing to have trylock attempts
1008 * fail until someone else pushes the log, push it ourselves before
1009 * returning. This means that the xfsaild will not get stuck trying
1010 * to push on stale inode buffers.
1da177e4
LT
1011 */
1012int
0c842ad4
CH
1013xfs_buf_trylock(
1014 struct xfs_buf *bp)
1da177e4
LT
1015{
1016 int locked;
1017
ce8e922c 1018 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 1019 if (locked)
ce8e922c 1020 XB_SET_OWNER(bp);
0b1b213f 1021
0c842ad4
CH
1022 trace_xfs_buf_trylock(bp, _RET_IP_);
1023 return locked;
1da177e4 1024}
1da177e4
LT
1025
1026/*
0e6e847f 1027 * Lock a buffer object.
ed3b4d6c
DC
1028 *
1029 * If we come across a stale, pinned, locked buffer, we know that we
1030 * are being asked to lock a buffer that has been reallocated. Because
1031 * it is pinned, we know that the log has not been pushed to disk and
1032 * hence it will still be locked. Rather than sleeping until someone
1033 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1034 */
ce8e922c
NS
1035void
1036xfs_buf_lock(
0c842ad4 1037 struct xfs_buf *bp)
1da177e4 1038{
0b1b213f
CH
1039 trace_xfs_buf_lock(bp, _RET_IP_);
1040
ed3b4d6c 1041 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 1042 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
1043 down(&bp->b_sema);
1044 XB_SET_OWNER(bp);
0b1b213f
CH
1045
1046 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1047}
1048
1da177e4 1049void
ce8e922c 1050xfs_buf_unlock(
0c842ad4 1051 struct xfs_buf *bp)
1da177e4 1052{
ce8e922c
NS
1053 XB_CLEAR_OWNER(bp);
1054 up(&bp->b_sema);
0b1b213f
CH
1055
1056 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1057}
1058
ce8e922c
NS
1059STATIC void
1060xfs_buf_wait_unpin(
1061 xfs_buf_t *bp)
1da177e4
LT
1062{
1063 DECLARE_WAITQUEUE (wait, current);
1064
ce8e922c 1065 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1066 return;
1067
ce8e922c 1068 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1069 for (;;) {
1070 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1071 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1072 break;
7eaceacc 1073 io_schedule();
1da177e4 1074 }
ce8e922c 1075 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1076 set_current_state(TASK_RUNNING);
1077}
1078
1079/*
1080 * Buffer Utility Routines
1081 */
1082
e8aaba9a
DC
1083void
1084xfs_buf_ioend(
1085 struct xfs_buf *bp)
1da177e4 1086{
e8aaba9a
DC
1087 bool read = bp->b_flags & XBF_READ;
1088
1089 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1090
1091 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1092
61be9c52
DC
1093 /*
1094 * Pull in IO completion errors now. We are guaranteed to be running
1095 * single threaded, so we don't need the lock to read b_io_error.
1096 */
1097 if (!bp->b_error && bp->b_io_error)
1098 xfs_buf_ioerror(bp, bp->b_io_error);
1099
e8aaba9a
DC
1100 /* Only validate buffers that were read without errors */
1101 if (read && !bp->b_error && bp->b_ops) {
1102 ASSERT(!bp->b_iodone);
1813dd64 1103 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1104 }
1105
1106 if (!bp->b_error)
1107 bp->b_flags |= XBF_DONE;
1da177e4 1108
80f6c29d 1109 if (bp->b_iodone)
ce8e922c
NS
1110 (*(bp->b_iodone))(bp);
1111 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1112 xfs_buf_relse(bp);
595bff75 1113 else
1813dd64 1114 complete(&bp->b_iowait);
1da177e4
LT
1115}
1116
e8aaba9a
DC
1117static void
1118xfs_buf_ioend_work(
1119 struct work_struct *work)
1da177e4 1120{
e8aaba9a 1121 struct xfs_buf *bp =
b29c70f5 1122 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1123
e8aaba9a
DC
1124 xfs_buf_ioend(bp);
1125}
1da177e4 1126
211fe1a4 1127static void
e8aaba9a
DC
1128xfs_buf_ioend_async(
1129 struct xfs_buf *bp)
1130{
b29c70f5
BF
1131 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1132 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1da177e4
LT
1133}
1134
1da177e4 1135void
ce8e922c
NS
1136xfs_buf_ioerror(
1137 xfs_buf_t *bp,
1138 int error)
1da177e4 1139{
2451337d
DC
1140 ASSERT(error <= 0 && error >= -1000);
1141 bp->b_error = error;
0b1b213f 1142 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1143}
1144
901796af
CH
1145void
1146xfs_buf_ioerror_alert(
1147 struct xfs_buf *bp,
1148 const char *func)
1149{
1150 xfs_alert(bp->b_target->bt_mount,
aa0e8833 1151"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
2451337d 1152 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
901796af
CH
1153}
1154
a2dcf5df
CH
1155int
1156xfs_bwrite(
1157 struct xfs_buf *bp)
1158{
1159 int error;
1160
1161 ASSERT(xfs_buf_islocked(bp));
1162
1163 bp->b_flags |= XBF_WRITE;
27187754
DC
1164 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1165 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1166
595bff75 1167 error = xfs_buf_submit_wait(bp);
a2dcf5df
CH
1168 if (error) {
1169 xfs_force_shutdown(bp->b_target->bt_mount,
1170 SHUTDOWN_META_IO_ERROR);
1171 }
1172 return error;
1173}
1174
9bdd9bd6 1175static void
ce8e922c 1176xfs_buf_bio_end_io(
4246a0b6 1177 struct bio *bio)
1da177e4 1178{
9bdd9bd6 1179 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1180
37eb17e6
DC
1181 /*
1182 * don't overwrite existing errors - otherwise we can lose errors on
1183 * buffers that require multiple bios to complete.
1184 */
9bdd9bd6
BF
1185 if (bio->bi_error)
1186 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1da177e4 1187
37eb17e6 1188 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1189 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1190
e8aaba9a
DC
1191 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1192 xfs_buf_ioend_async(bp);
1da177e4 1193 bio_put(bio);
1da177e4
LT
1194}
1195
3e85c868
DC
1196static void
1197xfs_buf_ioapply_map(
1198 struct xfs_buf *bp,
1199 int map,
1200 int *buf_offset,
1201 int *count,
1202 int rw)
1da177e4 1203{
3e85c868
DC
1204 int page_index;
1205 int total_nr_pages = bp->b_page_count;
1206 int nr_pages;
1207 struct bio *bio;
1208 sector_t sector = bp->b_maps[map].bm_bn;
1209 int size;
1210 int offset;
1da177e4 1211
ce8e922c 1212 total_nr_pages = bp->b_page_count;
1da177e4 1213
3e85c868
DC
1214 /* skip the pages in the buffer before the start offset */
1215 page_index = 0;
1216 offset = *buf_offset;
1217 while (offset >= PAGE_SIZE) {
1218 page_index++;
1219 offset -= PAGE_SIZE;
f538d4da
CH
1220 }
1221
3e85c868
DC
1222 /*
1223 * Limit the IO size to the length of the current vector, and update the
1224 * remaining IO count for the next time around.
1225 */
1226 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1227 *count -= size;
1228 *buf_offset += size;
34951f5c 1229
1da177e4 1230next_chunk:
ce8e922c 1231 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1232 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1233 if (nr_pages > total_nr_pages)
1234 nr_pages = total_nr_pages;
1235
1236 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1237 bio->bi_bdev = bp->b_target->bt_bdev;
4f024f37 1238 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1239 bio->bi_end_io = xfs_buf_bio_end_io;
1240 bio->bi_private = bp;
1da177e4 1241
0e6e847f 1242
3e85c868 1243 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1244 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1245
1246 if (nbytes > size)
1247 nbytes = size;
1248
3e85c868
DC
1249 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1250 offset);
ce8e922c 1251 if (rbytes < nbytes)
1da177e4
LT
1252 break;
1253
1254 offset = 0;
aa0e8833 1255 sector += BTOBB(nbytes);
1da177e4
LT
1256 size -= nbytes;
1257 total_nr_pages--;
1258 }
1259
4f024f37 1260 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1261 if (xfs_buf_is_vmapped(bp)) {
1262 flush_kernel_vmap_range(bp->b_addr,
1263 xfs_buf_vmap_len(bp));
1264 }
1da177e4
LT
1265 submit_bio(rw, bio);
1266 if (size)
1267 goto next_chunk;
1268 } else {
37eb17e6
DC
1269 /*
1270 * This is guaranteed not to be the last io reference count
595bff75 1271 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1272 */
1273 atomic_dec(&bp->b_io_remaining);
2451337d 1274 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1275 bio_put(bio);
1da177e4 1276 }
3e85c868
DC
1277
1278}
1279
1280STATIC void
1281_xfs_buf_ioapply(
1282 struct xfs_buf *bp)
1283{
1284 struct blk_plug plug;
1285 int rw;
1286 int offset;
1287 int size;
1288 int i;
1289
c163f9a1
DC
1290 /*
1291 * Make sure we capture only current IO errors rather than stale errors
1292 * left over from previous use of the buffer (e.g. failed readahead).
1293 */
1294 bp->b_error = 0;
1295
b29c70f5
BF
1296 /*
1297 * Initialize the I/O completion workqueue if we haven't yet or the
1298 * submitter has not opted to specify a custom one.
1299 */
1300 if (!bp->b_ioend_wq)
1301 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1302
3e85c868
DC
1303 if (bp->b_flags & XBF_WRITE) {
1304 if (bp->b_flags & XBF_SYNCIO)
1305 rw = WRITE_SYNC;
1306 else
1307 rw = WRITE;
1308 if (bp->b_flags & XBF_FUA)
1309 rw |= REQ_FUA;
1310 if (bp->b_flags & XBF_FLUSH)
1311 rw |= REQ_FLUSH;
1813dd64
DC
1312
1313 /*
1314 * Run the write verifier callback function if it exists. If
1315 * this function fails it will mark the buffer with an error and
1316 * the IO should not be dispatched.
1317 */
1318 if (bp->b_ops) {
1319 bp->b_ops->verify_write(bp);
1320 if (bp->b_error) {
1321 xfs_force_shutdown(bp->b_target->bt_mount,
1322 SHUTDOWN_CORRUPT_INCORE);
1323 return;
1324 }
400b9d88
DC
1325 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1326 struct xfs_mount *mp = bp->b_target->bt_mount;
1327
1328 /*
1329 * non-crc filesystems don't attach verifiers during
1330 * log recovery, so don't warn for such filesystems.
1331 */
1332 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1333 xfs_warn(mp,
1334 "%s: no ops on block 0x%llx/0x%x",
1335 __func__, bp->b_bn, bp->b_length);
1336 xfs_hex_dump(bp->b_addr, 64);
1337 dump_stack();
1338 }
1813dd64 1339 }
3e85c868
DC
1340 } else if (bp->b_flags & XBF_READ_AHEAD) {
1341 rw = READA;
1342 } else {
1343 rw = READ;
1344 }
1345
1346 /* we only use the buffer cache for meta-data */
1347 rw |= REQ_META;
1348
1349 /*
1350 * Walk all the vectors issuing IO on them. Set up the initial offset
1351 * into the buffer and the desired IO size before we start -
1352 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1353 * subsequent call.
1354 */
1355 offset = bp->b_offset;
1356 size = BBTOB(bp->b_io_length);
1357 blk_start_plug(&plug);
1358 for (i = 0; i < bp->b_map_count; i++) {
1359 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1360 if (bp->b_error)
1361 break;
1362 if (size <= 0)
1363 break; /* all done */
1364 }
1365 blk_finish_plug(&plug);
1da177e4
LT
1366}
1367
595bff75
DC
1368/*
1369 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1370 * the current reference to the IO. It is not safe to reference the buffer after
1371 * a call to this function unless the caller holds an additional reference
1372 * itself.
1373 */
0e95f19a 1374void
595bff75
DC
1375xfs_buf_submit(
1376 struct xfs_buf *bp)
1da177e4 1377{
595bff75 1378 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1379
43ff2122 1380 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1381 ASSERT(bp->b_flags & XBF_ASYNC);
1382
1383 /* on shutdown we stale and complete the buffer immediately */
1384 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1385 xfs_buf_ioerror(bp, -EIO);
1386 bp->b_flags &= ~XBF_DONE;
1387 xfs_buf_stale(bp);
1388 xfs_buf_ioend(bp);
1389 return;
1390 }
1da177e4 1391
375ec69d 1392 if (bp->b_flags & XBF_WRITE)
ce8e922c 1393 xfs_buf_wait_unpin(bp);
e11bb805 1394
61be9c52
DC
1395 /* clear the internal error state to avoid spurious errors */
1396 bp->b_io_error = 0;
1397
e11bb805 1398 /*
595bff75
DC
1399 * The caller's reference is released during I/O completion.
1400 * This occurs some time after the last b_io_remaining reference is
1401 * released, so after we drop our Io reference we have to have some
1402 * other reference to ensure the buffer doesn't go away from underneath
1403 * us. Take a direct reference to ensure we have safe access to the
1404 * buffer until we are finished with it.
e11bb805 1405 */
ce8e922c 1406 xfs_buf_hold(bp);
1da177e4 1407
8d6c1210 1408 /*
e11bb805
DC
1409 * Set the count to 1 initially, this will stop an I/O completion
1410 * callout which happens before we have started all the I/O from calling
1411 * xfs_buf_ioend too early.
1da177e4 1412 */
ce8e922c 1413 atomic_set(&bp->b_io_remaining, 1);
9c7504aa 1414 xfs_buf_ioacct_inc(bp);
ce8e922c 1415 _xfs_buf_ioapply(bp);
e11bb805 1416
8d6c1210 1417 /*
595bff75
DC
1418 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1419 * reference we took above. If we drop it to zero, run completion so
1420 * that we don't return to the caller with completion still pending.
8d6c1210 1421 */
e8aaba9a 1422 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
595bff75 1423 if (bp->b_error)
e8aaba9a
DC
1424 xfs_buf_ioend(bp);
1425 else
1426 xfs_buf_ioend_async(bp);
1427 }
1da177e4 1428
ce8e922c 1429 xfs_buf_rele(bp);
595bff75 1430 /* Note: it is not safe to reference bp now we've dropped our ref */
1da177e4
LT
1431}
1432
1433/*
595bff75 1434 * Synchronous buffer IO submission path, read or write.
1da177e4
LT
1435 */
1436int
595bff75
DC
1437xfs_buf_submit_wait(
1438 struct xfs_buf *bp)
1da177e4 1439{
595bff75 1440 int error;
0b1b213f 1441
595bff75
DC
1442 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1443
1444 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
0b1b213f 1445
595bff75
DC
1446 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1447 xfs_buf_ioerror(bp, -EIO);
1448 xfs_buf_stale(bp);
1449 bp->b_flags &= ~XBF_DONE;
1450 return -EIO;
1451 }
1452
1453 if (bp->b_flags & XBF_WRITE)
1454 xfs_buf_wait_unpin(bp);
1455
1456 /* clear the internal error state to avoid spurious errors */
1457 bp->b_io_error = 0;
1458
1459 /*
1460 * For synchronous IO, the IO does not inherit the submitters reference
1461 * count, nor the buffer lock. Hence we cannot release the reference we
1462 * are about to take until we've waited for all IO completion to occur,
1463 * including any xfs_buf_ioend_async() work that may be pending.
1464 */
1465 xfs_buf_hold(bp);
1466
1467 /*
1468 * Set the count to 1 initially, this will stop an I/O completion
1469 * callout which happens before we have started all the I/O from calling
1470 * xfs_buf_ioend too early.
1471 */
1472 atomic_set(&bp->b_io_remaining, 1);
1473 _xfs_buf_ioapply(bp);
1474
1475 /*
1476 * make sure we run completion synchronously if it raced with us and is
1477 * already complete.
1478 */
1479 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1480 xfs_buf_ioend(bp);
0b1b213f 1481
595bff75
DC
1482 /* wait for completion before gathering the error from the buffer */
1483 trace_xfs_buf_iowait(bp, _RET_IP_);
1484 wait_for_completion(&bp->b_iowait);
0b1b213f 1485 trace_xfs_buf_iowait_done(bp, _RET_IP_);
595bff75
DC
1486 error = bp->b_error;
1487
1488 /*
1489 * all done now, we can release the hold that keeps the buffer
1490 * referenced for the entire IO.
1491 */
1492 xfs_buf_rele(bp);
1493 return error;
1da177e4
LT
1494}
1495
88ee2df7 1496void *
ce8e922c 1497xfs_buf_offset(
88ee2df7 1498 struct xfs_buf *bp,
1da177e4
LT
1499 size_t offset)
1500{
1501 struct page *page;
1502
611c9946 1503 if (bp->b_addr)
62926044 1504 return bp->b_addr + offset;
1da177e4 1505
ce8e922c 1506 offset += bp->b_offset;
0e6e847f 1507 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1508 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1509}
1510
1511/*
1da177e4
LT
1512 * Move data into or out of a buffer.
1513 */
1514void
ce8e922c
NS
1515xfs_buf_iomove(
1516 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1517 size_t boff, /* starting buffer offset */
1518 size_t bsize, /* length to copy */
b9c48649 1519 void *data, /* data address */
ce8e922c 1520 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1521{
795cac72 1522 size_t bend;
1da177e4
LT
1523
1524 bend = boff + bsize;
1525 while (boff < bend) {
795cac72
DC
1526 struct page *page;
1527 int page_index, page_offset, csize;
1528
1529 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1530 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1531 page = bp->b_pages[page_index];
1532 csize = min_t(size_t, PAGE_SIZE - page_offset,
1533 BBTOB(bp->b_io_length) - boff);
1da177e4 1534
795cac72 1535 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1536
1537 switch (mode) {
ce8e922c 1538 case XBRW_ZERO:
795cac72 1539 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1540 break;
ce8e922c 1541 case XBRW_READ:
795cac72 1542 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1543 break;
ce8e922c 1544 case XBRW_WRITE:
795cac72 1545 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1546 }
1547
1548 boff += csize;
1549 data += csize;
1550 }
1551}
1552
1553/*
ce8e922c 1554 * Handling of buffer targets (buftargs).
1da177e4
LT
1555 */
1556
1557/*
430cbeb8
DC
1558 * Wait for any bufs with callbacks that have been submitted but have not yet
1559 * returned. These buffers will have an elevated hold count, so wait on those
1560 * while freeing all the buffers only held by the LRU.
1da177e4 1561 */
e80dfa19
DC
1562static enum lru_status
1563xfs_buftarg_wait_rele(
1564 struct list_head *item,
3f97b163 1565 struct list_lru_one *lru,
e80dfa19
DC
1566 spinlock_t *lru_lock,
1567 void *arg)
1568
1da177e4 1569{
e80dfa19 1570 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1571 struct list_head *dispose = arg;
430cbeb8 1572
e80dfa19 1573 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1574 /* need to wait, so skip it this pass */
e80dfa19 1575 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1576 return LRU_SKIP;
1da177e4 1577 }
a4082357
DC
1578 if (!spin_trylock(&bp->b_lock))
1579 return LRU_SKIP;
e80dfa19 1580
a4082357
DC
1581 /*
1582 * clear the LRU reference count so the buffer doesn't get
1583 * ignored in xfs_buf_rele().
1584 */
1585 atomic_set(&bp->b_lru_ref, 0);
1586 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1587 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1588 spin_unlock(&bp->b_lock);
1589 return LRU_REMOVED;
1da177e4
LT
1590}
1591
e80dfa19
DC
1592void
1593xfs_wait_buftarg(
1594 struct xfs_buftarg *btp)
1595{
a4082357
DC
1596 LIST_HEAD(dispose);
1597 int loop = 0;
1598
85bec546 1599 /*
9c7504aa
BF
1600 * First wait on the buftarg I/O count for all in-flight buffers to be
1601 * released. This is critical as new buffers do not make the LRU until
1602 * they are released.
1603 *
1604 * Next, flush the buffer workqueue to ensure all completion processing
1605 * has finished. Just waiting on buffer locks is not sufficient for
1606 * async IO as the reference count held over IO is not released until
1607 * after the buffer lock is dropped. Hence we need to ensure here that
1608 * all reference counts have been dropped before we start walking the
1609 * LRU list.
85bec546 1610 */
9c7504aa
BF
1611 while (percpu_counter_sum(&btp->bt_io_count))
1612 delay(100);
85bec546
DC
1613 drain_workqueue(btp->bt_mount->m_buf_workqueue);
1614
a4082357
DC
1615 /* loop until there is nothing left on the lru list. */
1616 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1617 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1618 &dispose, LONG_MAX);
1619
1620 while (!list_empty(&dispose)) {
1621 struct xfs_buf *bp;
1622 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1623 list_del_init(&bp->b_lru);
ac8809f9
DC
1624 if (bp->b_flags & XBF_WRITE_FAIL) {
1625 xfs_alert(btp->bt_mount,
f41febd2 1626"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
ac8809f9 1627 (long long)bp->b_bn);
f41febd2
JP
1628 xfs_alert(btp->bt_mount,
1629"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1630 }
a4082357
DC
1631 xfs_buf_rele(bp);
1632 }
1633 if (loop++ != 0)
1634 delay(100);
1635 }
e80dfa19
DC
1636}
1637
1638static enum lru_status
1639xfs_buftarg_isolate(
1640 struct list_head *item,
3f97b163 1641 struct list_lru_one *lru,
e80dfa19
DC
1642 spinlock_t *lru_lock,
1643 void *arg)
1644{
1645 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1646 struct list_head *dispose = arg;
1647
a4082357
DC
1648 /*
1649 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1650 * If we fail to get the lock, just skip it.
1651 */
1652 if (!spin_trylock(&bp->b_lock))
1653 return LRU_SKIP;
e80dfa19
DC
1654 /*
1655 * Decrement the b_lru_ref count unless the value is already
1656 * zero. If the value is already zero, we need to reclaim the
1657 * buffer, otherwise it gets another trip through the LRU.
1658 */
a4082357
DC
1659 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1660 spin_unlock(&bp->b_lock);
e80dfa19 1661 return LRU_ROTATE;
a4082357 1662 }
e80dfa19 1663
a4082357 1664 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1665 list_lru_isolate_move(lru, item, dispose);
a4082357 1666 spin_unlock(&bp->b_lock);
e80dfa19
DC
1667 return LRU_REMOVED;
1668}
1669
addbda40 1670static unsigned long
e80dfa19 1671xfs_buftarg_shrink_scan(
ff57ab21 1672 struct shrinker *shrink,
1495f230 1673 struct shrink_control *sc)
a6867a68 1674{
ff57ab21
DC
1675 struct xfs_buftarg *btp = container_of(shrink,
1676 struct xfs_buftarg, bt_shrinker);
430cbeb8 1677 LIST_HEAD(dispose);
addbda40 1678 unsigned long freed;
430cbeb8 1679
503c358c
VD
1680 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1681 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1682
1683 while (!list_empty(&dispose)) {
e80dfa19 1684 struct xfs_buf *bp;
430cbeb8
DC
1685 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1686 list_del_init(&bp->b_lru);
1687 xfs_buf_rele(bp);
1688 }
1689
e80dfa19
DC
1690 return freed;
1691}
1692
addbda40 1693static unsigned long
e80dfa19
DC
1694xfs_buftarg_shrink_count(
1695 struct shrinker *shrink,
1696 struct shrink_control *sc)
1697{
1698 struct xfs_buftarg *btp = container_of(shrink,
1699 struct xfs_buftarg, bt_shrinker);
503c358c 1700 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1701}
1702
1da177e4
LT
1703void
1704xfs_free_buftarg(
b7963133
CH
1705 struct xfs_mount *mp,
1706 struct xfs_buftarg *btp)
1da177e4 1707{
ff57ab21 1708 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1709 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1710 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1711 list_lru_destroy(&btp->bt_lru);
ff57ab21 1712
b7963133
CH
1713 if (mp->m_flags & XFS_MOUNT_BARRIER)
1714 xfs_blkdev_issue_flush(btp);
a6867a68 1715
f0e2d93c 1716 kmem_free(btp);
1da177e4
LT
1717}
1718
3fefdeee
ES
1719int
1720xfs_setsize_buftarg(
1da177e4 1721 xfs_buftarg_t *btp,
3fefdeee 1722 unsigned int sectorsize)
1da177e4 1723{
7c71ee78 1724 /* Set up metadata sector size info */
6da54179
ES
1725 btp->bt_meta_sectorsize = sectorsize;
1726 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1727
ce8e922c 1728 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1729 xfs_warn(btp->bt_mount,
a1c6f057
DM
1730 "Cannot set_blocksize to %u on device %pg",
1731 sectorsize, btp->bt_bdev);
2451337d 1732 return -EINVAL;
1da177e4
LT
1733 }
1734
7c71ee78
ES
1735 /* Set up device logical sector size mask */
1736 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1737 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1738
1da177e4
LT
1739 return 0;
1740}
1741
1742/*
3fefdeee
ES
1743 * When allocating the initial buffer target we have not yet
1744 * read in the superblock, so don't know what sized sectors
1745 * are being used at this early stage. Play safe.
ce8e922c 1746 */
1da177e4
LT
1747STATIC int
1748xfs_setsize_buftarg_early(
1749 xfs_buftarg_t *btp,
1750 struct block_device *bdev)
1751{
a96c4151 1752 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1753}
1754
1da177e4
LT
1755xfs_buftarg_t *
1756xfs_alloc_buftarg(
ebad861b 1757 struct xfs_mount *mp,
34dcefd7 1758 struct block_device *bdev)
1da177e4
LT
1759{
1760 xfs_buftarg_t *btp;
1761
b17cb364 1762 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1763
ebad861b 1764 btp->bt_mount = mp;
ce8e922c
NS
1765 btp->bt_dev = bdev->bd_dev;
1766 btp->bt_bdev = bdev;
0e6e847f 1767 btp->bt_bdi = blk_get_backing_dev_info(bdev);
0e6e847f 1768
1da177e4
LT
1769 if (xfs_setsize_buftarg_early(btp, bdev))
1770 goto error;
5ca302c8
GC
1771
1772 if (list_lru_init(&btp->bt_lru))
1773 goto error;
1774
9c7504aa
BF
1775 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1776 goto error;
1777
e80dfa19
DC
1778 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1779 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1780 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1781 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
ff57ab21 1782 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1783 return btp;
1784
1785error:
f0e2d93c 1786 kmem_free(btp);
1da177e4
LT
1787 return NULL;
1788}
1789
1da177e4 1790/*
43ff2122
CH
1791 * Add a buffer to the delayed write list.
1792 *
1793 * This queues a buffer for writeout if it hasn't already been. Note that
1794 * neither this routine nor the buffer list submission functions perform
1795 * any internal synchronization. It is expected that the lists are thread-local
1796 * to the callers.
1797 *
1798 * Returns true if we queued up the buffer, or false if it already had
1799 * been on the buffer list.
1da177e4 1800 */
43ff2122 1801bool
ce8e922c 1802xfs_buf_delwri_queue(
43ff2122
CH
1803 struct xfs_buf *bp,
1804 struct list_head *list)
1da177e4 1805{
43ff2122 1806 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1807 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1808
43ff2122
CH
1809 /*
1810 * If the buffer is already marked delwri it already is queued up
1811 * by someone else for imediate writeout. Just ignore it in that
1812 * case.
1813 */
1814 if (bp->b_flags & _XBF_DELWRI_Q) {
1815 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1816 return false;
1da177e4 1817 }
1da177e4 1818
43ff2122 1819 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1820
1821 /*
43ff2122
CH
1822 * If a buffer gets written out synchronously or marked stale while it
1823 * is on a delwri list we lazily remove it. To do this, the other party
1824 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1825 * It remains referenced and on the list. In a rare corner case it
1826 * might get readded to a delwri list after the synchronous writeout, in
1827 * which case we need just need to re-add the flag here.
d808f617 1828 */
43ff2122
CH
1829 bp->b_flags |= _XBF_DELWRI_Q;
1830 if (list_empty(&bp->b_list)) {
1831 atomic_inc(&bp->b_hold);
1832 list_add_tail(&bp->b_list, list);
585e6d88 1833 }
585e6d88 1834
43ff2122 1835 return true;
585e6d88
DC
1836}
1837
089716aa
DC
1838/*
1839 * Compare function is more complex than it needs to be because
1840 * the return value is only 32 bits and we are doing comparisons
1841 * on 64 bit values
1842 */
1843static int
1844xfs_buf_cmp(
1845 void *priv,
1846 struct list_head *a,
1847 struct list_head *b)
1848{
1849 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1850 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1851 xfs_daddr_t diff;
1852
f4b42421 1853 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1854 if (diff < 0)
1855 return -1;
1856 if (diff > 0)
1857 return 1;
1858 return 0;
1859}
1860
43ff2122
CH
1861static int
1862__xfs_buf_delwri_submit(
1863 struct list_head *buffer_list,
1864 struct list_head *io_list,
1865 bool wait)
1da177e4 1866{
43ff2122
CH
1867 struct blk_plug plug;
1868 struct xfs_buf *bp, *n;
1869 int pinned = 0;
1870
1871 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1872 if (!wait) {
1873 if (xfs_buf_ispinned(bp)) {
1874 pinned++;
1875 continue;
1876 }
1877 if (!xfs_buf_trylock(bp))
1878 continue;
1879 } else {
1880 xfs_buf_lock(bp);
1881 }
978c7b2f 1882
43ff2122
CH
1883 /*
1884 * Someone else might have written the buffer synchronously or
1885 * marked it stale in the meantime. In that case only the
1886 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1887 * reference and remove it from the list here.
1888 */
1889 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1890 list_del_init(&bp->b_list);
1891 xfs_buf_relse(bp);
1892 continue;
1893 }
c9c12971 1894
43ff2122
CH
1895 list_move_tail(&bp->b_list, io_list);
1896 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1897 }
1da177e4 1898
43ff2122 1899 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1900
43ff2122
CH
1901 blk_start_plug(&plug);
1902 list_for_each_entry_safe(bp, n, io_list, b_list) {
0b4db5df 1903 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
cf53e99d 1904 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
a1b7ea5d 1905
cf53e99d
DC
1906 /*
1907 * we do all Io submission async. This means if we need to wait
1908 * for IO completion we need to take an extra reference so the
1909 * buffer is still valid on the other side.
1910 */
1911 if (wait)
1912 xfs_buf_hold(bp);
1913 else
ce8e922c 1914 list_del_init(&bp->b_list);
8dac3921 1915
595bff75 1916 xfs_buf_submit(bp);
43ff2122
CH
1917 }
1918 blk_finish_plug(&plug);
1da177e4 1919
43ff2122 1920 return pinned;
1da177e4
LT
1921}
1922
1923/*
43ff2122
CH
1924 * Write out a buffer list asynchronously.
1925 *
1926 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1927 * out and not wait for I/O completion on any of the buffers. This interface
1928 * is only safely useable for callers that can track I/O completion by higher
1929 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1930 * function.
1da177e4
LT
1931 */
1932int
43ff2122
CH
1933xfs_buf_delwri_submit_nowait(
1934 struct list_head *buffer_list)
1da177e4 1935{
43ff2122
CH
1936 LIST_HEAD (io_list);
1937 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1938}
1da177e4 1939
43ff2122
CH
1940/*
1941 * Write out a buffer list synchronously.
1942 *
1943 * This will take the @buffer_list, write all buffers out and wait for I/O
1944 * completion on all of the buffers. @buffer_list is consumed by the function,
1945 * so callers must have some other way of tracking buffers if they require such
1946 * functionality.
1947 */
1948int
1949xfs_buf_delwri_submit(
1950 struct list_head *buffer_list)
1951{
1952 LIST_HEAD (io_list);
1953 int error = 0, error2;
1954 struct xfs_buf *bp;
1da177e4 1955
43ff2122 1956 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1957
43ff2122
CH
1958 /* Wait for IO to complete. */
1959 while (!list_empty(&io_list)) {
1960 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1961
089716aa 1962 list_del_init(&bp->b_list);
cf53e99d
DC
1963
1964 /* locking the buffer will wait for async IO completion. */
1965 xfs_buf_lock(bp);
1966 error2 = bp->b_error;
43ff2122
CH
1967 xfs_buf_relse(bp);
1968 if (!error)
1969 error = error2;
1da177e4
LT
1970 }
1971
43ff2122 1972 return error;
1da177e4
LT
1973}
1974
04d8b284 1975int __init
ce8e922c 1976xfs_buf_init(void)
1da177e4 1977{
8758280f
NS
1978 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1979 KM_ZONE_HWALIGN, NULL);
ce8e922c 1980 if (!xfs_buf_zone)
0b1b213f 1981 goto out;
04d8b284 1982
23ea4032 1983 return 0;
1da177e4 1984
0b1b213f 1985 out:
8758280f 1986 return -ENOMEM;
1da177e4
LT
1987}
1988
1da177e4 1989void
ce8e922c 1990xfs_buf_terminate(void)
1da177e4 1991{
ce8e922c 1992 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1993}
This page took 1.329071 seconds and 5 git commands to generate.