xfs: use blocks for counting length of buffers
[deliverable/linux.git] / fs / xfs / xfs_buf_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
1da177e4 25#include "xfs_sb.h"
da353b0d 26#include "xfs_ag.h"
1da177e4 27#include "xfs_mount.h"
a844f451 28#include "xfs_buf_item.h"
1da177e4 29#include "xfs_trans_priv.h"
1da177e4 30#include "xfs_error.h"
0b1b213f 31#include "xfs_trace.h"
1da177e4
LT
32
33
34kmem_zone_t *xfs_buf_item_zone;
35
7bfa31d8
CH
36static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37{
38 return container_of(lip, struct xfs_buf_log_item, bli_item);
39}
40
41
1da177e4
LT
42#ifdef XFS_TRANS_DEBUG
43/*
44 * This function uses an alternate strategy for tracking the bytes
45 * that the user requests to be logged. This can then be used
46 * in conjunction with the bli_orig array in the buf log item to
47 * catch bugs in our callers' code.
48 *
49 * We also double check the bits set in xfs_buf_item_log using a
50 * simple algorithm to check that every byte is accounted for.
51 */
52STATIC void
53xfs_buf_item_log_debug(
54 xfs_buf_log_item_t *bip,
55 uint first,
56 uint last)
57{
58 uint x;
59 uint byte;
60 uint nbytes;
61 uint chunk_num;
62 uint word_num;
63 uint bit_num;
64 uint bit_set;
65 uint *wordp;
66
67 ASSERT(bip->bli_logged != NULL);
68 byte = first;
69 nbytes = last - first + 1;
70 bfset(bip->bli_logged, first, nbytes);
71 for (x = 0; x < nbytes; x++) {
c1155410 72 chunk_num = byte >> XFS_BLF_SHIFT;
1da177e4
LT
73 word_num = chunk_num >> BIT_TO_WORD_SHIFT;
74 bit_num = chunk_num & (NBWORD - 1);
75 wordp = &(bip->bli_format.blf_data_map[word_num]);
76 bit_set = *wordp & (1 << bit_num);
77 ASSERT(bit_set);
78 byte++;
79 }
80}
81
82/*
83 * This function is called when we flush something into a buffer without
84 * logging it. This happens for things like inodes which are logged
85 * separately from the buffer.
86 */
87void
88xfs_buf_item_flush_log_debug(
89 xfs_buf_t *bp,
90 uint first,
91 uint last)
92{
adadbeef 93 xfs_buf_log_item_t *bip = bp->b_fspriv;
1da177e4
LT
94 uint nbytes;
95
adadbeef 96 if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF))
1da177e4 97 return;
1da177e4
LT
98
99 ASSERT(bip->bli_logged != NULL);
100 nbytes = last - first + 1;
101 bfset(bip->bli_logged, first, nbytes);
102}
103
104/*
c41564b5 105 * This function is called to verify that our callers have logged
1da177e4
LT
106 * all the bytes that they changed.
107 *
108 * It does this by comparing the original copy of the buffer stored in
109 * the buf log item's bli_orig array to the current copy of the buffer
c41564b5 110 * and ensuring that all bytes which mismatch are set in the bli_logged
1da177e4
LT
111 * array of the buf log item.
112 */
113STATIC void
114xfs_buf_item_log_check(
115 xfs_buf_log_item_t *bip)
116{
117 char *orig;
118 char *buffer;
119 int x;
120 xfs_buf_t *bp;
121
122 ASSERT(bip->bli_orig != NULL);
123 ASSERT(bip->bli_logged != NULL);
124
125 bp = bip->bli_buf;
126 ASSERT(XFS_BUF_COUNT(bp) > 0);
62926044 127 ASSERT(bp->b_addr != NULL);
1da177e4 128 orig = bip->bli_orig;
62926044 129 buffer = bp->b_addr;
1da177e4 130 for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
0b932ccc
DC
131 if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
132 xfs_emerg(bp->b_mount,
133 "%s: bip %x buffer %x orig %x index %d",
134 __func__, bip, bp, orig, x);
135 ASSERT(0);
136 }
1da177e4
LT
137 }
138}
139#else
140#define xfs_buf_item_log_debug(x,y,z)
141#define xfs_buf_item_log_check(x)
142#endif
143
c90821a2 144STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
1da177e4
LT
145
146/*
147 * This returns the number of log iovecs needed to log the
148 * given buf log item.
149 *
150 * It calculates this as 1 iovec for the buf log format structure
151 * and 1 for each stretch of non-contiguous chunks to be logged.
152 * Contiguous chunks are logged in a single iovec.
153 *
154 * If the XFS_BLI_STALE flag has been set, then log nothing.
155 */
ba0f32d4 156STATIC uint
1da177e4 157xfs_buf_item_size(
7bfa31d8 158 struct xfs_log_item *lip)
1da177e4 159{
7bfa31d8
CH
160 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
161 struct xfs_buf *bp = bip->bli_buf;
162 uint nvecs;
163 int next_bit;
164 int last_bit;
1da177e4
LT
165
166 ASSERT(atomic_read(&bip->bli_refcount) > 0);
167 if (bip->bli_flags & XFS_BLI_STALE) {
168 /*
169 * The buffer is stale, so all we need to log
170 * is the buf log format structure with the
171 * cancel flag in it.
172 */
0b1b213f 173 trace_xfs_buf_item_size_stale(bip);
c1155410 174 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
1da177e4
LT
175 return 1;
176 }
177
1da177e4
LT
178 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
179 nvecs = 1;
180 last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
181 bip->bli_format.blf_map_size, 0);
182 ASSERT(last_bit != -1);
183 nvecs++;
184 while (last_bit != -1) {
185 /*
186 * This takes the bit number to start looking from and
187 * returns the next set bit from there. It returns -1
188 * if there are no more bits set or the start bit is
189 * beyond the end of the bitmap.
190 */
191 next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
192 bip->bli_format.blf_map_size,
193 last_bit + 1);
194 /*
195 * If we run out of bits, leave the loop,
196 * else if we find a new set of bits bump the number of vecs,
197 * else keep scanning the current set of bits.
198 */
199 if (next_bit == -1) {
200 last_bit = -1;
201 } else if (next_bit != last_bit + 1) {
202 last_bit = next_bit;
203 nvecs++;
c1155410
DC
204 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
205 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
206 XFS_BLF_CHUNK)) {
1da177e4
LT
207 last_bit = next_bit;
208 nvecs++;
209 } else {
210 last_bit++;
211 }
212 }
213
0b1b213f 214 trace_xfs_buf_item_size(bip);
1da177e4
LT
215 return nvecs;
216}
217
218/*
219 * This is called to fill in the vector of log iovecs for the
220 * given log buf item. It fills the first entry with a buf log
221 * format structure, and the rest point to contiguous chunks
222 * within the buffer.
223 */
ba0f32d4 224STATIC void
1da177e4 225xfs_buf_item_format(
7bfa31d8
CH
226 struct xfs_log_item *lip,
227 struct xfs_log_iovec *vecp)
1da177e4 228{
7bfa31d8
CH
229 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
230 struct xfs_buf *bp = bip->bli_buf;
1da177e4
LT
231 uint base_size;
232 uint nvecs;
1da177e4
LT
233 int first_bit;
234 int last_bit;
235 int next_bit;
236 uint nbits;
237 uint buffer_offset;
238
239 ASSERT(atomic_read(&bip->bli_refcount) > 0);
240 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
241 (bip->bli_flags & XFS_BLI_STALE));
1da177e4
LT
242
243 /*
244 * The size of the base structure is the size of the
245 * declared structure plus the space for the extra words
246 * of the bitmap. We subtract one from the map size, because
247 * the first element of the bitmap is accounted for in the
248 * size of the base structure.
249 */
250 base_size =
251 (uint)(sizeof(xfs_buf_log_format_t) +
252 ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
4e0d5f92 253 vecp->i_addr = &bip->bli_format;
1da177e4 254 vecp->i_len = base_size;
4139b3b3 255 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
1da177e4
LT
256 vecp++;
257 nvecs = 1;
258
ccf7c23f
DC
259 /*
260 * If it is an inode buffer, transfer the in-memory state to the
261 * format flags and clear the in-memory state. We do not transfer
262 * this state if the inode buffer allocation has not yet been committed
263 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
264 * correct replay of the inode allocation.
265 */
266 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
267 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
7bfa31d8 268 xfs_log_item_in_current_chkpt(lip)))
ccf7c23f
DC
269 bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
270 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
271 }
272
1da177e4
LT
273 if (bip->bli_flags & XFS_BLI_STALE) {
274 /*
275 * The buffer is stale, so all we need to log
276 * is the buf log format structure with the
277 * cancel flag in it.
278 */
0b1b213f 279 trace_xfs_buf_item_format_stale(bip);
c1155410 280 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
1da177e4
LT
281 bip->bli_format.blf_size = nvecs;
282 return;
283 }
284
285 /*
286 * Fill in an iovec for each set of contiguous chunks.
287 */
288 first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
289 bip->bli_format.blf_map_size, 0);
290 ASSERT(first_bit != -1);
291 last_bit = first_bit;
292 nbits = 1;
293 for (;;) {
294 /*
295 * This takes the bit number to start looking from and
296 * returns the next set bit from there. It returns -1
297 * if there are no more bits set or the start bit is
298 * beyond the end of the bitmap.
299 */
300 next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
301 bip->bli_format.blf_map_size,
302 (uint)last_bit + 1);
303 /*
304 * If we run out of bits fill in the last iovec and get
305 * out of the loop.
306 * Else if we start a new set of bits then fill in the
307 * iovec for the series we were looking at and start
308 * counting the bits in the new one.
309 * Else we're still in the same set of bits so just
310 * keep counting and scanning.
311 */
312 if (next_bit == -1) {
c1155410 313 buffer_offset = first_bit * XFS_BLF_CHUNK;
1da177e4 314 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 315 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 316 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
317 nvecs++;
318 break;
319 } else if (next_bit != last_bit + 1) {
c1155410 320 buffer_offset = first_bit * XFS_BLF_CHUNK;
1da177e4 321 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 322 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 323 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
324 nvecs++;
325 vecp++;
326 first_bit = next_bit;
327 last_bit = next_bit;
328 nbits = 1;
c1155410
DC
329 } else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
330 (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
331 XFS_BLF_CHUNK)) {
332 buffer_offset = first_bit * XFS_BLF_CHUNK;
1da177e4 333 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 334 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 335 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
336/* You would think we need to bump the nvecs here too, but we do not
337 * this number is used by recovery, and it gets confused by the boundary
338 * split here
339 * nvecs++;
340 */
341 vecp++;
342 first_bit = next_bit;
343 last_bit = next_bit;
344 nbits = 1;
345 } else {
346 last_bit++;
347 nbits++;
348 }
349 }
350 bip->bli_format.blf_size = nvecs;
351
352 /*
353 * Check to make sure everything is consistent.
354 */
0b1b213f 355 trace_xfs_buf_item_format(bip);
1da177e4
LT
356 xfs_buf_item_log_check(bip);
357}
358
359/*
64fc35de 360 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 361 * so it cannot be written out.
64fc35de
DC
362 *
363 * We also always take a reference to the buffer log item here so that the bli
364 * is held while the item is pinned in memory. This means that we can
365 * unconditionally drop the reference count a transaction holds when the
366 * transaction is completed.
1da177e4 367 */
ba0f32d4 368STATIC void
1da177e4 369xfs_buf_item_pin(
7bfa31d8 370 struct xfs_log_item *lip)
1da177e4 371{
7bfa31d8 372 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 373
1da177e4
LT
374 ASSERT(atomic_read(&bip->bli_refcount) > 0);
375 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
376 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 377
0b1b213f 378 trace_xfs_buf_item_pin(bip);
4d16e924
CH
379
380 atomic_inc(&bip->bli_refcount);
381 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
382}
383
1da177e4
LT
384/*
385 * This is called to unpin the buffer associated with the buf log
386 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
387 *
388 * Also drop the reference to the buf item for the current transaction.
389 * If the XFS_BLI_STALE flag is set and we are the last reference,
390 * then free up the buf log item and unlock the buffer.
9412e318
CH
391 *
392 * If the remove flag is set we are called from uncommit in the
393 * forced-shutdown path. If that is true and the reference count on
394 * the log item is going to drop to zero we need to free the item's
395 * descriptor in the transaction.
1da177e4 396 */
ba0f32d4 397STATIC void
1da177e4 398xfs_buf_item_unpin(
7bfa31d8 399 struct xfs_log_item *lip,
9412e318 400 int remove)
1da177e4 401{
7bfa31d8 402 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
9412e318 403 xfs_buf_t *bp = bip->bli_buf;
7bfa31d8 404 struct xfs_ail *ailp = lip->li_ailp;
8e123850 405 int stale = bip->bli_flags & XFS_BLI_STALE;
7bfa31d8 406 int freed;
1da177e4 407
adadbeef 408 ASSERT(bp->b_fspriv == bip);
1da177e4 409 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 410
0b1b213f 411 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
412
413 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
414
415 if (atomic_dec_and_test(&bp->b_pin_count))
416 wake_up_all(&bp->b_waiters);
7bfa31d8 417
1da177e4
LT
418 if (freed && stale) {
419 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 420 ASSERT(xfs_buf_islocked(bp));
1da177e4 421 ASSERT(XFS_BUF_ISSTALE(bp));
c1155410 422 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 423
0b1b213f
CH
424 trace_xfs_buf_item_unpin_stale(bip);
425
9412e318
CH
426 if (remove) {
427 /*
e34a314c
DC
428 * If we are in a transaction context, we have to
429 * remove the log item from the transaction as we are
430 * about to release our reference to the buffer. If we
431 * don't, the unlock that occurs later in
432 * xfs_trans_uncommit() will try to reference the
9412e318
CH
433 * buffer which we no longer have a hold on.
434 */
e34a314c
DC
435 if (lip->li_desc)
436 xfs_trans_del_item(lip);
9412e318
CH
437
438 /*
439 * Since the transaction no longer refers to the buffer,
440 * the buffer should no longer refer to the transaction.
441 */
bf9d9013 442 bp->b_transp = NULL;
9412e318
CH
443 }
444
1da177e4
LT
445 /*
446 * If we get called here because of an IO error, we may
783a2f65 447 * or may not have the item on the AIL. xfs_trans_ail_delete()
1da177e4 448 * will take care of that situation.
783a2f65 449 * xfs_trans_ail_delete() drops the AIL lock.
1da177e4
LT
450 */
451 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
c90821a2 452 xfs_buf_do_callbacks(bp);
adadbeef 453 bp->b_fspriv = NULL;
cb669ca5 454 bp->b_iodone = NULL;
1da177e4 455 } else {
783a2f65 456 spin_lock(&ailp->xa_lock);
04913fdd 457 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 458 xfs_buf_item_relse(bp);
adadbeef 459 ASSERT(bp->b_fspriv == NULL);
1da177e4
LT
460 }
461 xfs_buf_relse(bp);
960c60af
CH
462 } else if (freed && remove) {
463 xfs_buf_lock(bp);
464 xfs_buf_ioerror(bp, EIO);
465 XFS_BUF_UNDONE(bp);
466 xfs_buf_stale(bp);
467 xfs_buf_ioend(bp, 0);
1da177e4
LT
468 }
469}
470
ba0f32d4 471STATIC uint
43ff2122
CH
472xfs_buf_item_push(
473 struct xfs_log_item *lip,
474 struct list_head *buffer_list)
1da177e4 475{
7bfa31d8
CH
476 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
477 struct xfs_buf *bp = bip->bli_buf;
43ff2122 478 uint rval = XFS_ITEM_SUCCESS;
1da177e4 479
811e64c7 480 if (xfs_buf_ispinned(bp))
1da177e4 481 return XFS_ITEM_PINNED;
0c842ad4 482 if (!xfs_buf_trylock(bp))
1da177e4 483 return XFS_ITEM_LOCKED;
1da177e4 484
1da177e4 485 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
486
487 trace_xfs_buf_item_push(bip);
488
489 if (!xfs_buf_delwri_queue(bp, buffer_list))
490 rval = XFS_ITEM_FLUSHING;
491 xfs_buf_unlock(bp);
492 return rval;
1da177e4
LT
493}
494
495/*
64fc35de
DC
496 * Release the buffer associated with the buf log item. If there is no dirty
497 * logged data associated with the buffer recorded in the buf log item, then
498 * free the buf log item and remove the reference to it in the buffer.
1da177e4 499 *
64fc35de
DC
500 * This call ignores the recursion count. It is only called when the buffer
501 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 502 *
64fc35de
DC
503 * We unconditionally drop the transaction's reference to the log item. If the
504 * item was logged, then another reference was taken when it was pinned, so we
505 * can safely drop the transaction reference now. This also allows us to avoid
506 * potential races with the unpin code freeing the bli by not referencing the
507 * bli after we've dropped the reference count.
508 *
509 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
510 * if necessary but do not unlock the buffer. This is for support of
511 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
512 * free the item.
1da177e4 513 */
ba0f32d4 514STATIC void
1da177e4 515xfs_buf_item_unlock(
7bfa31d8 516 struct xfs_log_item *lip)
1da177e4 517{
7bfa31d8
CH
518 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
519 struct xfs_buf *bp = bip->bli_buf;
520 int aborted;
521 uint hold;
1da177e4 522
64fc35de 523 /* Clear the buffer's association with this transaction. */
bf9d9013 524 bp->b_transp = NULL;
1da177e4
LT
525
526 /*
64fc35de
DC
527 * If this is a transaction abort, don't return early. Instead, allow
528 * the brelse to happen. Normally it would be done for stale
529 * (cancelled) buffers at unpin time, but we'll never go through the
530 * pin/unpin cycle if we abort inside commit.
1da177e4 531 */
7bfa31d8 532 aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
1da177e4
LT
533
534 /*
64fc35de
DC
535 * Before possibly freeing the buf item, determine if we should
536 * release the buffer at the end of this routine.
537 */
538 hold = bip->bli_flags & XFS_BLI_HOLD;
539
540 /* Clear the per transaction state. */
541 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
542
543 /*
544 * If the buf item is marked stale, then don't do anything. We'll
545 * unlock the buffer and free the buf item when the buffer is unpinned
546 * for the last time.
1da177e4
LT
547 */
548 if (bip->bli_flags & XFS_BLI_STALE) {
0b1b213f 549 trace_xfs_buf_item_unlock_stale(bip);
c1155410 550 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
64fc35de
DC
551 if (!aborted) {
552 atomic_dec(&bip->bli_refcount);
1da177e4 553 return;
64fc35de 554 }
1da177e4
LT
555 }
556
0b1b213f 557 trace_xfs_buf_item_unlock(bip);
1da177e4
LT
558
559 /*
64fc35de
DC
560 * If the buf item isn't tracking any data, free it, otherwise drop the
561 * reference we hold to it.
1da177e4 562 */
24ad33ff 563 if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
64fc35de 564 bip->bli_format.blf_map_size))
1da177e4 565 xfs_buf_item_relse(bp);
64fc35de
DC
566 else
567 atomic_dec(&bip->bli_refcount);
1da177e4 568
64fc35de 569 if (!hold)
1da177e4 570 xfs_buf_relse(bp);
1da177e4
LT
571}
572
573/*
574 * This is called to find out where the oldest active copy of the
575 * buf log item in the on disk log resides now that the last log
576 * write of it completed at the given lsn.
577 * We always re-log all the dirty data in a buffer, so usually the
578 * latest copy in the on disk log is the only one that matters. For
579 * those cases we simply return the given lsn.
580 *
581 * The one exception to this is for buffers full of newly allocated
582 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
583 * flag set, indicating that only the di_next_unlinked fields from the
584 * inodes in the buffers will be replayed during recovery. If the
585 * original newly allocated inode images have not yet been flushed
586 * when the buffer is so relogged, then we need to make sure that we
587 * keep the old images in the 'active' portion of the log. We do this
588 * by returning the original lsn of that transaction here rather than
589 * the current one.
590 */
ba0f32d4 591STATIC xfs_lsn_t
1da177e4 592xfs_buf_item_committed(
7bfa31d8 593 struct xfs_log_item *lip,
1da177e4
LT
594 xfs_lsn_t lsn)
595{
7bfa31d8
CH
596 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
597
0b1b213f
CH
598 trace_xfs_buf_item_committed(bip);
599
7bfa31d8
CH
600 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
601 return lip->li_lsn;
602 return lsn;
1da177e4
LT
603}
604
ba0f32d4 605STATIC void
7bfa31d8
CH
606xfs_buf_item_committing(
607 struct xfs_log_item *lip,
608 xfs_lsn_t commit_lsn)
1da177e4
LT
609{
610}
611
612/*
613 * This is the ops vector shared by all buf log items.
614 */
272e42b2 615static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
616 .iop_size = xfs_buf_item_size,
617 .iop_format = xfs_buf_item_format,
618 .iop_pin = xfs_buf_item_pin,
619 .iop_unpin = xfs_buf_item_unpin,
7bfa31d8
CH
620 .iop_unlock = xfs_buf_item_unlock,
621 .iop_committed = xfs_buf_item_committed,
622 .iop_push = xfs_buf_item_push,
7bfa31d8 623 .iop_committing = xfs_buf_item_committing
1da177e4
LT
624};
625
626
627/*
628 * Allocate a new buf log item to go with the given buffer.
629 * Set the buffer's b_fsprivate field to point to the new
630 * buf log item. If there are other item's attached to the
631 * buffer (see xfs_buf_attach_iodone() below), then put the
632 * buf log item at the front.
633 */
634void
635xfs_buf_item_init(
636 xfs_buf_t *bp,
637 xfs_mount_t *mp)
638{
adadbeef 639 xfs_log_item_t *lip = bp->b_fspriv;
1da177e4
LT
640 xfs_buf_log_item_t *bip;
641 int chunks;
642 int map_size;
643
644 /*
645 * Check to see if there is already a buf log item for
646 * this buffer. If there is, it is guaranteed to be
647 * the first. If we do already have one, there is
648 * nothing to do here so return.
649 */
ebad861b 650 ASSERT(bp->b_target->bt_mount == mp);
adadbeef
CH
651 if (lip != NULL && lip->li_type == XFS_LI_BUF)
652 return;
1da177e4
LT
653
654 /*
c1155410 655 * chunks is the number of XFS_BLF_CHUNK size pieces
1da177e4
LT
656 * the buffer can be divided into. Make sure not to
657 * truncate any pieces. map_size is the size of the
658 * bitmap needed to describe the chunks of the buffer.
659 */
c1155410 660 chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
1da177e4
LT
661 map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
662
663 bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
664 KM_SLEEP);
43f5efc5 665 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 666 bip->bli_buf = bp;
e1f5dbd7 667 xfs_buf_hold(bp);
1da177e4
LT
668 bip->bli_format.blf_type = XFS_LI_BUF;
669 bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
670 bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
671 bip->bli_format.blf_map_size = map_size;
1da177e4
LT
672
673#ifdef XFS_TRANS_DEBUG
674 /*
675 * Allocate the arrays for tracking what needs to be logged
676 * and what our callers request to be logged. bli_orig
677 * holds a copy of the original, clean buffer for comparison
678 * against, and bli_logged keeps a 1 bit flag per byte in
679 * the buffer to indicate which bytes the callers have asked
680 * to have logged.
681 */
682 bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
62926044 683 memcpy(bip->bli_orig, bp->b_addr, XFS_BUF_COUNT(bp));
1da177e4
LT
684 bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
685#endif
686
687 /*
688 * Put the buf item into the list of items attached to the
689 * buffer at the front.
690 */
adadbeef
CH
691 if (bp->b_fspriv)
692 bip->bli_item.li_bio_list = bp->b_fspriv;
693 bp->b_fspriv = bip;
1da177e4
LT
694}
695
696
697/*
698 * Mark bytes first through last inclusive as dirty in the buf
699 * item's bitmap.
700 */
701void
702xfs_buf_item_log(
703 xfs_buf_log_item_t *bip,
704 uint first,
705 uint last)
706{
707 uint first_bit;
708 uint last_bit;
709 uint bits_to_set;
710 uint bits_set;
711 uint word_num;
712 uint *wordp;
713 uint bit;
714 uint end_bit;
715 uint mask;
716
717 /*
718 * Mark the item as having some dirty data for
719 * quick reference in xfs_buf_item_dirty.
720 */
721 bip->bli_flags |= XFS_BLI_DIRTY;
722
723 /*
724 * Convert byte offsets to bit numbers.
725 */
c1155410
DC
726 first_bit = first >> XFS_BLF_SHIFT;
727 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
728
729 /*
730 * Calculate the total number of bits to be set.
731 */
732 bits_to_set = last_bit - first_bit + 1;
733
734 /*
735 * Get a pointer to the first word in the bitmap
736 * to set a bit in.
737 */
738 word_num = first_bit >> BIT_TO_WORD_SHIFT;
739 wordp = &(bip->bli_format.blf_data_map[word_num]);
740
741 /*
742 * Calculate the starting bit in the first word.
743 */
744 bit = first_bit & (uint)(NBWORD - 1);
745
746 /*
747 * First set any bits in the first word of our range.
748 * If it starts at bit 0 of the word, it will be
749 * set below rather than here. That is what the variable
750 * bit tells us. The variable bits_set tracks the number
751 * of bits that have been set so far. End_bit is the number
752 * of the last bit to be set in this word plus one.
753 */
754 if (bit) {
755 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
756 mask = ((1 << (end_bit - bit)) - 1) << bit;
757 *wordp |= mask;
758 wordp++;
759 bits_set = end_bit - bit;
760 } else {
761 bits_set = 0;
762 }
763
764 /*
765 * Now set bits a whole word at a time that are between
766 * first_bit and last_bit.
767 */
768 while ((bits_to_set - bits_set) >= NBWORD) {
769 *wordp |= 0xffffffff;
770 bits_set += NBWORD;
771 wordp++;
772 }
773
774 /*
775 * Finally, set any bits left to be set in one last partial word.
776 */
777 end_bit = bits_to_set - bits_set;
778 if (end_bit) {
779 mask = (1 << end_bit) - 1;
780 *wordp |= mask;
781 }
782
783 xfs_buf_item_log_debug(bip, first, last);
784}
785
786
787/*
788 * Return 1 if the buffer has some data that has been logged (at any
789 * point, not just the current transaction) and 0 if not.
790 */
791uint
792xfs_buf_item_dirty(
793 xfs_buf_log_item_t *bip)
794{
795 return (bip->bli_flags & XFS_BLI_DIRTY);
796}
797
e1f5dbd7
LM
798STATIC void
799xfs_buf_item_free(
800 xfs_buf_log_item_t *bip)
801{
802#ifdef XFS_TRANS_DEBUG
803 kmem_free(bip->bli_orig);
804 kmem_free(bip->bli_logged);
805#endif /* XFS_TRANS_DEBUG */
806
e1f5dbd7
LM
807 kmem_zone_free(xfs_buf_item_zone, bip);
808}
809
1da177e4
LT
810/*
811 * This is called when the buf log item is no longer needed. It should
812 * free the buf log item associated with the given buffer and clear
813 * the buffer's pointer to the buf log item. If there are no more
814 * items in the list, clear the b_iodone field of the buffer (see
815 * xfs_buf_attach_iodone() below).
816 */
817void
818xfs_buf_item_relse(
819 xfs_buf_t *bp)
820{
821 xfs_buf_log_item_t *bip;
822
0b1b213f
CH
823 trace_xfs_buf_item_relse(bp, _RET_IP_);
824
adadbeef
CH
825 bip = bp->b_fspriv;
826 bp->b_fspriv = bip->bli_item.li_bio_list;
cb669ca5
CH
827 if (bp->b_fspriv == NULL)
828 bp->b_iodone = NULL;
adadbeef 829
e1f5dbd7
LM
830 xfs_buf_rele(bp);
831 xfs_buf_item_free(bip);
1da177e4
LT
832}
833
834
835/*
836 * Add the given log item with its callback to the list of callbacks
837 * to be called when the buffer's I/O completes. If it is not set
838 * already, set the buffer's b_iodone() routine to be
839 * xfs_buf_iodone_callbacks() and link the log item into the list of
840 * items rooted at b_fsprivate. Items are always added as the second
841 * entry in the list if there is a first, because the buf item code
842 * assumes that the buf log item is first.
843 */
844void
845xfs_buf_attach_iodone(
846 xfs_buf_t *bp,
847 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
848 xfs_log_item_t *lip)
849{
850 xfs_log_item_t *head_lip;
851
0c842ad4 852 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
853
854 lip->li_cb = cb;
adadbeef
CH
855 head_lip = bp->b_fspriv;
856 if (head_lip) {
1da177e4
LT
857 lip->li_bio_list = head_lip->li_bio_list;
858 head_lip->li_bio_list = lip;
859 } else {
adadbeef 860 bp->b_fspriv = lip;
1da177e4
LT
861 }
862
cb669ca5
CH
863 ASSERT(bp->b_iodone == NULL ||
864 bp->b_iodone == xfs_buf_iodone_callbacks);
865 bp->b_iodone = xfs_buf_iodone_callbacks;
1da177e4
LT
866}
867
c90821a2
DC
868/*
869 * We can have many callbacks on a buffer. Running the callbacks individually
870 * can cause a lot of contention on the AIL lock, so we allow for a single
871 * callback to be able to scan the remaining lip->li_bio_list for other items
872 * of the same type and callback to be processed in the first call.
873 *
874 * As a result, the loop walking the callback list below will also modify the
875 * list. it removes the first item from the list and then runs the callback.
876 * The loop then restarts from the new head of the list. This allows the
877 * callback to scan and modify the list attached to the buffer and we don't
878 * have to care about maintaining a next item pointer.
879 */
1da177e4
LT
880STATIC void
881xfs_buf_do_callbacks(
c90821a2 882 struct xfs_buf *bp)
1da177e4 883{
c90821a2 884 struct xfs_log_item *lip;
1da177e4 885
adadbeef
CH
886 while ((lip = bp->b_fspriv) != NULL) {
887 bp->b_fspriv = lip->li_bio_list;
1da177e4
LT
888 ASSERT(lip->li_cb != NULL);
889 /*
890 * Clear the next pointer so we don't have any
891 * confusion if the item is added to another buf.
892 * Don't touch the log item after calling its
893 * callback, because it could have freed itself.
894 */
895 lip->li_bio_list = NULL;
896 lip->li_cb(bp, lip);
1da177e4
LT
897 }
898}
899
900/*
901 * This is the iodone() function for buffers which have had callbacks
902 * attached to them by xfs_buf_attach_iodone(). It should remove each
903 * log item from the buffer's list and call the callback of each in turn.
904 * When done, the buffer's fsprivate field is set to NULL and the buffer
905 * is unlocked with a call to iodone().
906 */
907void
908xfs_buf_iodone_callbacks(
bfc60177 909 struct xfs_buf *bp)
1da177e4 910{
bfc60177
CH
911 struct xfs_log_item *lip = bp->b_fspriv;
912 struct xfs_mount *mp = lip->li_mountp;
913 static ulong lasttime;
914 static xfs_buftarg_t *lasttarg;
1da177e4 915
5a52c2a5 916 if (likely(!xfs_buf_geterror(bp)))
bfc60177 917 goto do_callbacks;
1da177e4 918
bfc60177
CH
919 /*
920 * If we've already decided to shutdown the filesystem because of
921 * I/O errors, there's no point in giving this a retry.
922 */
923 if (XFS_FORCED_SHUTDOWN(mp)) {
c867cb61 924 xfs_buf_stale(bp);
c867cb61 925 XFS_BUF_DONE(bp);
bfc60177
CH
926 trace_xfs_buf_item_iodone(bp, _RET_IP_);
927 goto do_callbacks;
928 }
1da177e4 929
49074c06 930 if (bp->b_target != lasttarg ||
bfc60177
CH
931 time_after(jiffies, (lasttime + 5*HZ))) {
932 lasttime = jiffies;
b38505b0 933 xfs_buf_ioerror_alert(bp, __func__);
bfc60177 934 }
49074c06 935 lasttarg = bp->b_target;
1da177e4 936
bfc60177 937 /*
25985edc 938 * If the write was asynchronous then no one will be looking for the
bfc60177
CH
939 * error. Clear the error state and write the buffer out again.
940 *
43ff2122
CH
941 * XXX: This helps against transient write errors, but we need to find
942 * a way to shut the filesystem down if the writes keep failing.
943 *
944 * In practice we'll shut the filesystem down soon as non-transient
945 * erorrs tend to affect the whole device and a failing log write
946 * will make us give up. But we really ought to do better here.
bfc60177
CH
947 */
948 if (XFS_BUF_ISASYNC(bp)) {
43ff2122
CH
949 ASSERT(bp->b_iodone != NULL);
950
951 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
952
5a52c2a5 953 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
bfc60177
CH
954
955 if (!XFS_BUF_ISSTALE(bp)) {
43ff2122
CH
956 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
957 xfs_bdstrat_cb(bp);
958 } else {
959 xfs_buf_relse(bp);
1da177e4 960 }
43ff2122 961
1da177e4
LT
962 return;
963 }
0b1b213f 964
bfc60177
CH
965 /*
966 * If the write of the buffer was synchronous, we want to make
967 * sure to return the error to the caller of xfs_bwrite().
968 */
c867cb61 969 xfs_buf_stale(bp);
1da177e4 970 XFS_BUF_DONE(bp);
0b1b213f
CH
971
972 trace_xfs_buf_error_relse(bp, _RET_IP_);
973
bfc60177 974do_callbacks:
c90821a2 975 xfs_buf_do_callbacks(bp);
adadbeef 976 bp->b_fspriv = NULL;
cb669ca5 977 bp->b_iodone = NULL;
bfc60177 978 xfs_buf_ioend(bp, 0);
1da177e4
LT
979}
980
1da177e4
LT
981/*
982 * This is the iodone() function for buffers which have been
983 * logged. It is called when they are eventually flushed out.
984 * It should remove the buf item from the AIL, and free the buf item.
985 * It is called by xfs_buf_iodone_callbacks() above which will take
986 * care of cleaning up the buffer itself.
987 */
1da177e4
LT
988void
989xfs_buf_iodone(
ca30b2a7
CH
990 struct xfs_buf *bp,
991 struct xfs_log_item *lip)
1da177e4 992{
ca30b2a7 993 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 994
ca30b2a7 995 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 996
e1f5dbd7 997 xfs_buf_rele(bp);
1da177e4
LT
998
999 /*
1000 * If we are forcibly shutting down, this may well be
1001 * off the AIL already. That's because we simulate the
1002 * log-committed callbacks to unpin these buffers. Or we may never
1003 * have put this item on AIL because of the transaction was
783a2f65 1004 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1005 *
1006 * Either way, AIL is useless if we're forcing a shutdown.
1007 */
fc1829f3 1008 spin_lock(&ailp->xa_lock);
04913fdd 1009 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
ca30b2a7 1010 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1011}
This page took 0.617516 seconds and 5 git commands to generate.