xfs: factor all the kmalloc-or-vmalloc fallback allocations
[deliverable/linux.git] / fs / xfs / xfs_buf_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4
LT
22#include "xfs_log.h"
23#include "xfs_trans.h"
1da177e4 24#include "xfs_sb.h"
da353b0d 25#include "xfs_ag.h"
1da177e4 26#include "xfs_mount.h"
a844f451 27#include "xfs_buf_item.h"
1da177e4 28#include "xfs_trans_priv.h"
1da177e4 29#include "xfs_error.h"
0b1b213f 30#include "xfs_trace.h"
1da177e4
LT
31
32
33kmem_zone_t *xfs_buf_item_zone;
34
7bfa31d8
CH
35static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
36{
37 return container_of(lip, struct xfs_buf_log_item, bli_item);
38}
39
c90821a2 40STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
1da177e4 41
166d1368
DC
42static inline int
43xfs_buf_log_format_size(
44 struct xfs_buf_log_format *blfp)
45{
46 return offsetof(struct xfs_buf_log_format, blf_data_map) +
47 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
48}
49
1da177e4
LT
50/*
51 * This returns the number of log iovecs needed to log the
52 * given buf log item.
53 *
54 * It calculates this as 1 iovec for the buf log format structure
55 * and 1 for each stretch of non-contiguous chunks to be logged.
56 * Contiguous chunks are logged in a single iovec.
57 *
58 * If the XFS_BLI_STALE flag has been set, then log nothing.
59 */
166d1368 60STATIC void
372cc85e
DC
61xfs_buf_item_size_segment(
62 struct xfs_buf_log_item *bip,
166d1368
DC
63 struct xfs_buf_log_format *blfp,
64 int *nvecs,
65 int *nbytes)
1da177e4 66{
7bfa31d8 67 struct xfs_buf *bp = bip->bli_buf;
7bfa31d8
CH
68 int next_bit;
69 int last_bit;
1da177e4 70
372cc85e
DC
71 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
72 if (last_bit == -1)
166d1368 73 return;
372cc85e
DC
74
75 /*
76 * initial count for a dirty buffer is 2 vectors - the format structure
77 * and the first dirty region.
78 */
166d1368
DC
79 *nvecs += 2;
80 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
1da177e4 81
1da177e4
LT
82 while (last_bit != -1) {
83 /*
84 * This takes the bit number to start looking from and
85 * returns the next set bit from there. It returns -1
86 * if there are no more bits set or the start bit is
87 * beyond the end of the bitmap.
88 */
372cc85e
DC
89 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
90 last_bit + 1);
1da177e4
LT
91 /*
92 * If we run out of bits, leave the loop,
93 * else if we find a new set of bits bump the number of vecs,
94 * else keep scanning the current set of bits.
95 */
96 if (next_bit == -1) {
372cc85e 97 break;
1da177e4
LT
98 } else if (next_bit != last_bit + 1) {
99 last_bit = next_bit;
166d1368 100 (*nvecs)++;
c1155410
DC
101 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
102 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
103 XFS_BLF_CHUNK)) {
1da177e4 104 last_bit = next_bit;
166d1368 105 (*nvecs)++;
1da177e4
LT
106 } else {
107 last_bit++;
108 }
166d1368 109 *nbytes += XFS_BLF_CHUNK;
1da177e4 110 }
1da177e4
LT
111}
112
113/*
372cc85e
DC
114 * This returns the number of log iovecs needed to log the given buf log item.
115 *
116 * It calculates this as 1 iovec for the buf log format structure and 1 for each
117 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
118 * in a single iovec.
119 *
120 * Discontiguous buffers need a format structure per region that that is being
121 * logged. This makes the changes in the buffer appear to log recovery as though
122 * they came from separate buffers, just like would occur if multiple buffers
123 * were used instead of a single discontiguous buffer. This enables
124 * discontiguous buffers to be in-memory constructs, completely transparent to
125 * what ends up on disk.
126 *
127 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
128 * format structures.
1da177e4 129 */
166d1368 130STATIC void
372cc85e 131xfs_buf_item_size(
166d1368
DC
132 struct xfs_log_item *lip,
133 int *nvecs,
134 int *nbytes)
1da177e4 135{
7bfa31d8 136 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
372cc85e
DC
137 int i;
138
139 ASSERT(atomic_read(&bip->bli_refcount) > 0);
140 if (bip->bli_flags & XFS_BLI_STALE) {
141 /*
142 * The buffer is stale, so all we need to log
143 * is the buf log format structure with the
144 * cancel flag in it.
145 */
146 trace_xfs_buf_item_size_stale(bip);
b9438173 147 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
166d1368
DC
148 *nvecs += bip->bli_format_count;
149 for (i = 0; i < bip->bli_format_count; i++) {
150 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
151 }
152 return;
372cc85e
DC
153 }
154
155 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
156
5f6bed76
DC
157 if (bip->bli_flags & XFS_BLI_ORDERED) {
158 /*
159 * The buffer has been logged just to order it.
160 * It is not being included in the transaction
161 * commit, so no vectors are used at all.
162 */
163 trace_xfs_buf_item_size_ordered(bip);
166d1368
DC
164 *nvecs = XFS_LOG_VEC_ORDERED;
165 return;
5f6bed76
DC
166 }
167
372cc85e
DC
168 /*
169 * the vector count is based on the number of buffer vectors we have
170 * dirty bits in. This will only be greater than one when we have a
171 * compound buffer with more than one segment dirty. Hence for compound
172 * buffers we need to track which segment the dirty bits correspond to,
173 * and when we move from one segment to the next increment the vector
174 * count for the extra buf log format structure that will need to be
175 * written.
176 */
372cc85e 177 for (i = 0; i < bip->bli_format_count; i++) {
166d1368
DC
178 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
179 nvecs, nbytes);
372cc85e 180 }
372cc85e 181 trace_xfs_buf_item_size(bip);
372cc85e
DC
182}
183
184static struct xfs_log_iovec *
185xfs_buf_item_format_segment(
186 struct xfs_buf_log_item *bip,
187 struct xfs_log_iovec *vecp,
188 uint offset,
189 struct xfs_buf_log_format *blfp)
190{
7bfa31d8 191 struct xfs_buf *bp = bip->bli_buf;
1da177e4
LT
192 uint base_size;
193 uint nvecs;
1da177e4
LT
194 int first_bit;
195 int last_bit;
196 int next_bit;
197 uint nbits;
198 uint buffer_offset;
199
372cc85e 200 /* copy the flags across from the base format item */
b9438173 201 blfp->blf_flags = bip->__bli_format.blf_flags;
1da177e4
LT
202
203 /*
77c1a08f
DC
204 * Base size is the actual size of the ondisk structure - it reflects
205 * the actual size of the dirty bitmap rather than the size of the in
206 * memory structure.
1da177e4 207 */
166d1368 208 base_size = xfs_buf_log_format_size(blfp);
820a554f
MT
209
210 nvecs = 0;
211 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
212 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
213 /*
214 * If the map is not be dirty in the transaction, mark
215 * the size as zero and do not advance the vector pointer.
216 */
217 goto out;
218 }
219
372cc85e 220 vecp->i_addr = blfp;
1da177e4 221 vecp->i_len = base_size;
4139b3b3 222 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
1da177e4
LT
223 vecp++;
224 nvecs = 1;
225
226 if (bip->bli_flags & XFS_BLI_STALE) {
227 /*
228 * The buffer is stale, so all we need to log
229 * is the buf log format structure with the
230 * cancel flag in it.
231 */
0b1b213f 232 trace_xfs_buf_item_format_stale(bip);
372cc85e 233 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
820a554f 234 goto out;
1da177e4
LT
235 }
236
5f6bed76 237
1da177e4
LT
238 /*
239 * Fill in an iovec for each set of contiguous chunks.
240 */
820a554f 241
1da177e4
LT
242 last_bit = first_bit;
243 nbits = 1;
244 for (;;) {
245 /*
246 * This takes the bit number to start looking from and
247 * returns the next set bit from there. It returns -1
248 * if there are no more bits set or the start bit is
249 * beyond the end of the bitmap.
250 */
372cc85e
DC
251 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
252 (uint)last_bit + 1);
1da177e4
LT
253 /*
254 * If we run out of bits fill in the last iovec and get
255 * out of the loop.
256 * Else if we start a new set of bits then fill in the
257 * iovec for the series we were looking at and start
258 * counting the bits in the new one.
259 * Else we're still in the same set of bits so just
260 * keep counting and scanning.
261 */
262 if (next_bit == -1) {
372cc85e 263 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
1da177e4 264 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 265 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 266 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
267 nvecs++;
268 break;
269 } else if (next_bit != last_bit + 1) {
372cc85e 270 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
1da177e4 271 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 272 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 273 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
274 nvecs++;
275 vecp++;
276 first_bit = next_bit;
277 last_bit = next_bit;
278 nbits = 1;
372cc85e
DC
279 } else if (xfs_buf_offset(bp, offset +
280 (next_bit << XFS_BLF_SHIFT)) !=
281 (xfs_buf_offset(bp, offset +
282 (last_bit << XFS_BLF_SHIFT)) +
c1155410 283 XFS_BLF_CHUNK)) {
372cc85e 284 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
1da177e4 285 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 286 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 287 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
709da6a6 288 nvecs++;
1da177e4
LT
289 vecp++;
290 first_bit = next_bit;
291 last_bit = next_bit;
292 nbits = 1;
293 } else {
294 last_bit++;
295 nbits++;
296 }
297 }
820a554f
MT
298out:
299 blfp->blf_size = nvecs;
372cc85e
DC
300 return vecp;
301}
302
303/*
304 * This is called to fill in the vector of log iovecs for the
305 * given log buf item. It fills the first entry with a buf log
306 * format structure, and the rest point to contiguous chunks
307 * within the buffer.
308 */
309STATIC void
310xfs_buf_item_format(
311 struct xfs_log_item *lip,
312 struct xfs_log_iovec *vecp)
313{
314 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
315 struct xfs_buf *bp = bip->bli_buf;
316 uint offset = 0;
317 int i;
318
319 ASSERT(atomic_read(&bip->bli_refcount) > 0);
320 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
321 (bip->bli_flags & XFS_BLI_STALE));
322
323 /*
324 * If it is an inode buffer, transfer the in-memory state to the
ddf6ad01
DC
325 * format flags and clear the in-memory state.
326 *
327 * For buffer based inode allocation, we do not transfer
372cc85e
DC
328 * this state if the inode buffer allocation has not yet been committed
329 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
330 * correct replay of the inode allocation.
ddf6ad01
DC
331 *
332 * For icreate item based inode allocation, the buffers aren't written
333 * to the journal during allocation, and hence we should always tag the
334 * buffer as an inode buffer so that the correct unlinked list replay
335 * occurs during recovery.
372cc85e
DC
336 */
337 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
ddf6ad01
DC
338 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
339 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
372cc85e 340 xfs_log_item_in_current_chkpt(lip)))
b9438173 341 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
372cc85e
DC
342 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
343 }
344
5f6bed76
DC
345 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
346 XFS_BLI_ORDERED) {
347 /*
348 * The buffer has been logged just to order it. It is not being
349 * included in the transaction commit, so don't format it.
350 */
351 trace_xfs_buf_item_format_ordered(bip);
352 return;
353 }
354
372cc85e
DC
355 for (i = 0; i < bip->bli_format_count; i++) {
356 vecp = xfs_buf_item_format_segment(bip, vecp, offset,
357 &bip->bli_formats[i]);
358 offset += bp->b_maps[i].bm_len;
359 }
1da177e4
LT
360
361 /*
362 * Check to make sure everything is consistent.
363 */
0b1b213f 364 trace_xfs_buf_item_format(bip);
1da177e4
LT
365}
366
367/*
64fc35de 368 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 369 * so it cannot be written out.
64fc35de
DC
370 *
371 * We also always take a reference to the buffer log item here so that the bli
372 * is held while the item is pinned in memory. This means that we can
373 * unconditionally drop the reference count a transaction holds when the
374 * transaction is completed.
1da177e4 375 */
ba0f32d4 376STATIC void
1da177e4 377xfs_buf_item_pin(
7bfa31d8 378 struct xfs_log_item *lip)
1da177e4 379{
7bfa31d8 380 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 381
1da177e4
LT
382 ASSERT(atomic_read(&bip->bli_refcount) > 0);
383 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
5f6bed76 384 (bip->bli_flags & XFS_BLI_ORDERED) ||
1da177e4 385 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 386
0b1b213f 387 trace_xfs_buf_item_pin(bip);
4d16e924
CH
388
389 atomic_inc(&bip->bli_refcount);
390 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
391}
392
1da177e4
LT
393/*
394 * This is called to unpin the buffer associated with the buf log
395 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
396 *
397 * Also drop the reference to the buf item for the current transaction.
398 * If the XFS_BLI_STALE flag is set and we are the last reference,
399 * then free up the buf log item and unlock the buffer.
9412e318
CH
400 *
401 * If the remove flag is set we are called from uncommit in the
402 * forced-shutdown path. If that is true and the reference count on
403 * the log item is going to drop to zero we need to free the item's
404 * descriptor in the transaction.
1da177e4 405 */
ba0f32d4 406STATIC void
1da177e4 407xfs_buf_item_unpin(
7bfa31d8 408 struct xfs_log_item *lip,
9412e318 409 int remove)
1da177e4 410{
7bfa31d8 411 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
9412e318 412 xfs_buf_t *bp = bip->bli_buf;
7bfa31d8 413 struct xfs_ail *ailp = lip->li_ailp;
8e123850 414 int stale = bip->bli_flags & XFS_BLI_STALE;
7bfa31d8 415 int freed;
1da177e4 416
adadbeef 417 ASSERT(bp->b_fspriv == bip);
1da177e4 418 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 419
0b1b213f 420 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
421
422 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
423
424 if (atomic_dec_and_test(&bp->b_pin_count))
425 wake_up_all(&bp->b_waiters);
7bfa31d8 426
1da177e4
LT
427 if (freed && stale) {
428 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 429 ASSERT(xfs_buf_islocked(bp));
1da177e4 430 ASSERT(XFS_BUF_ISSTALE(bp));
b9438173 431 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 432
0b1b213f
CH
433 trace_xfs_buf_item_unpin_stale(bip);
434
9412e318
CH
435 if (remove) {
436 /*
e34a314c
DC
437 * If we are in a transaction context, we have to
438 * remove the log item from the transaction as we are
439 * about to release our reference to the buffer. If we
440 * don't, the unlock that occurs later in
441 * xfs_trans_uncommit() will try to reference the
9412e318
CH
442 * buffer which we no longer have a hold on.
443 */
e34a314c
DC
444 if (lip->li_desc)
445 xfs_trans_del_item(lip);
9412e318
CH
446
447 /*
448 * Since the transaction no longer refers to the buffer,
449 * the buffer should no longer refer to the transaction.
450 */
bf9d9013 451 bp->b_transp = NULL;
9412e318
CH
452 }
453
1da177e4
LT
454 /*
455 * If we get called here because of an IO error, we may
783a2f65 456 * or may not have the item on the AIL. xfs_trans_ail_delete()
1da177e4 457 * will take care of that situation.
783a2f65 458 * xfs_trans_ail_delete() drops the AIL lock.
1da177e4
LT
459 */
460 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
c90821a2 461 xfs_buf_do_callbacks(bp);
adadbeef 462 bp->b_fspriv = NULL;
cb669ca5 463 bp->b_iodone = NULL;
1da177e4 464 } else {
783a2f65 465 spin_lock(&ailp->xa_lock);
04913fdd 466 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 467 xfs_buf_item_relse(bp);
adadbeef 468 ASSERT(bp->b_fspriv == NULL);
1da177e4
LT
469 }
470 xfs_buf_relse(bp);
960c60af 471 } else if (freed && remove) {
137fff09
DC
472 /*
473 * There are currently two references to the buffer - the active
474 * LRU reference and the buf log item. What we are about to do
475 * here - simulate a failed IO completion - requires 3
476 * references.
477 *
478 * The LRU reference is removed by the xfs_buf_stale() call. The
479 * buf item reference is removed by the xfs_buf_iodone()
480 * callback that is run by xfs_buf_do_callbacks() during ioend
481 * processing (via the bp->b_iodone callback), and then finally
482 * the ioend processing will drop the IO reference if the buffer
483 * is marked XBF_ASYNC.
484 *
485 * Hence we need to take an additional reference here so that IO
486 * completion processing doesn't free the buffer prematurely.
487 */
960c60af 488 xfs_buf_lock(bp);
137fff09
DC
489 xfs_buf_hold(bp);
490 bp->b_flags |= XBF_ASYNC;
960c60af
CH
491 xfs_buf_ioerror(bp, EIO);
492 XFS_BUF_UNDONE(bp);
493 xfs_buf_stale(bp);
494 xfs_buf_ioend(bp, 0);
1da177e4
LT
495 }
496}
497
ba0f32d4 498STATIC uint
43ff2122
CH
499xfs_buf_item_push(
500 struct xfs_log_item *lip,
501 struct list_head *buffer_list)
1da177e4 502{
7bfa31d8
CH
503 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
504 struct xfs_buf *bp = bip->bli_buf;
43ff2122 505 uint rval = XFS_ITEM_SUCCESS;
1da177e4 506
811e64c7 507 if (xfs_buf_ispinned(bp))
1da177e4 508 return XFS_ITEM_PINNED;
5337fe9b
BF
509 if (!xfs_buf_trylock(bp)) {
510 /*
511 * If we have just raced with a buffer being pinned and it has
512 * been marked stale, we could end up stalling until someone else
513 * issues a log force to unpin the stale buffer. Check for the
514 * race condition here so xfsaild recognizes the buffer is pinned
515 * and queues a log force to move it along.
516 */
517 if (xfs_buf_ispinned(bp))
518 return XFS_ITEM_PINNED;
1da177e4 519 return XFS_ITEM_LOCKED;
5337fe9b 520 }
1da177e4 521
1da177e4 522 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
523
524 trace_xfs_buf_item_push(bip);
525
526 if (!xfs_buf_delwri_queue(bp, buffer_list))
527 rval = XFS_ITEM_FLUSHING;
528 xfs_buf_unlock(bp);
529 return rval;
1da177e4
LT
530}
531
532/*
64fc35de
DC
533 * Release the buffer associated with the buf log item. If there is no dirty
534 * logged data associated with the buffer recorded in the buf log item, then
535 * free the buf log item and remove the reference to it in the buffer.
1da177e4 536 *
64fc35de
DC
537 * This call ignores the recursion count. It is only called when the buffer
538 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 539 *
64fc35de
DC
540 * We unconditionally drop the transaction's reference to the log item. If the
541 * item was logged, then another reference was taken when it was pinned, so we
542 * can safely drop the transaction reference now. This also allows us to avoid
543 * potential races with the unpin code freeing the bli by not referencing the
544 * bli after we've dropped the reference count.
545 *
546 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
547 * if necessary but do not unlock the buffer. This is for support of
548 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
549 * free the item.
1da177e4 550 */
ba0f32d4 551STATIC void
1da177e4 552xfs_buf_item_unlock(
7bfa31d8 553 struct xfs_log_item *lip)
1da177e4 554{
7bfa31d8
CH
555 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
556 struct xfs_buf *bp = bip->bli_buf;
5f6bed76
DC
557 bool clean;
558 bool aborted;
559 int flags;
1da177e4 560
64fc35de 561 /* Clear the buffer's association with this transaction. */
bf9d9013 562 bp->b_transp = NULL;
1da177e4
LT
563
564 /*
64fc35de
DC
565 * If this is a transaction abort, don't return early. Instead, allow
566 * the brelse to happen. Normally it would be done for stale
567 * (cancelled) buffers at unpin time, but we'll never go through the
568 * pin/unpin cycle if we abort inside commit.
1da177e4 569 */
5f6bed76 570 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
1da177e4 571 /*
5f6bed76
DC
572 * Before possibly freeing the buf item, copy the per-transaction state
573 * so we can reference it safely later after clearing it from the
574 * buffer log item.
64fc35de 575 */
5f6bed76
DC
576 flags = bip->bli_flags;
577 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
64fc35de
DC
578
579 /*
580 * If the buf item is marked stale, then don't do anything. We'll
581 * unlock the buffer and free the buf item when the buffer is unpinned
582 * for the last time.
1da177e4 583 */
5f6bed76 584 if (flags & XFS_BLI_STALE) {
0b1b213f 585 trace_xfs_buf_item_unlock_stale(bip);
b9438173 586 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
64fc35de
DC
587 if (!aborted) {
588 atomic_dec(&bip->bli_refcount);
1da177e4 589 return;
64fc35de 590 }
1da177e4
LT
591 }
592
0b1b213f 593 trace_xfs_buf_item_unlock(bip);
1da177e4
LT
594
595 /*
64fc35de 596 * If the buf item isn't tracking any data, free it, otherwise drop the
3b19034d
DC
597 * reference we hold to it. If we are aborting the transaction, this may
598 * be the only reference to the buf item, so we free it anyway
599 * regardless of whether it is dirty or not. A dirty abort implies a
600 * shutdown, anyway.
5f6bed76
DC
601 *
602 * Ordered buffers are dirty but may have no recorded changes, so ensure
603 * we only release clean items here.
1da177e4 604 */
5f6bed76
DC
605 clean = (flags & XFS_BLI_DIRTY) ? false : true;
606 if (clean) {
607 int i;
608 for (i = 0; i < bip->bli_format_count; i++) {
609 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
610 bip->bli_formats[i].blf_map_size)) {
611 clean = false;
612 break;
613 }
c883d0c4
MT
614 }
615 }
2ad01f53 616 if (clean || aborted) {
3b19034d 617 if (atomic_dec_and_test(&bip->bli_refcount)) {
2ad01f53 618 ASSERT(!aborted || XFS_FORCED_SHUTDOWN(lip->li_mountp));
3b19034d
DC
619 xfs_buf_item_relse(bp);
620 }
621 } else
64fc35de 622 atomic_dec(&bip->bli_refcount);
1da177e4 623
5f6bed76 624 if (!(flags & XFS_BLI_HOLD))
1da177e4 625 xfs_buf_relse(bp);
1da177e4
LT
626}
627
628/*
629 * This is called to find out where the oldest active copy of the
630 * buf log item in the on disk log resides now that the last log
631 * write of it completed at the given lsn.
632 * We always re-log all the dirty data in a buffer, so usually the
633 * latest copy in the on disk log is the only one that matters. For
634 * those cases we simply return the given lsn.
635 *
636 * The one exception to this is for buffers full of newly allocated
637 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
638 * flag set, indicating that only the di_next_unlinked fields from the
639 * inodes in the buffers will be replayed during recovery. If the
640 * original newly allocated inode images have not yet been flushed
641 * when the buffer is so relogged, then we need to make sure that we
642 * keep the old images in the 'active' portion of the log. We do this
643 * by returning the original lsn of that transaction here rather than
644 * the current one.
645 */
ba0f32d4 646STATIC xfs_lsn_t
1da177e4 647xfs_buf_item_committed(
7bfa31d8 648 struct xfs_log_item *lip,
1da177e4
LT
649 xfs_lsn_t lsn)
650{
7bfa31d8
CH
651 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
652
0b1b213f
CH
653 trace_xfs_buf_item_committed(bip);
654
7bfa31d8
CH
655 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
656 return lip->li_lsn;
657 return lsn;
1da177e4
LT
658}
659
ba0f32d4 660STATIC void
7bfa31d8
CH
661xfs_buf_item_committing(
662 struct xfs_log_item *lip,
663 xfs_lsn_t commit_lsn)
1da177e4
LT
664{
665}
666
667/*
668 * This is the ops vector shared by all buf log items.
669 */
272e42b2 670static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
671 .iop_size = xfs_buf_item_size,
672 .iop_format = xfs_buf_item_format,
673 .iop_pin = xfs_buf_item_pin,
674 .iop_unpin = xfs_buf_item_unpin,
7bfa31d8
CH
675 .iop_unlock = xfs_buf_item_unlock,
676 .iop_committed = xfs_buf_item_committed,
677 .iop_push = xfs_buf_item_push,
7bfa31d8 678 .iop_committing = xfs_buf_item_committing
1da177e4
LT
679};
680
372cc85e
DC
681STATIC int
682xfs_buf_item_get_format(
683 struct xfs_buf_log_item *bip,
684 int count)
685{
686 ASSERT(bip->bli_formats == NULL);
687 bip->bli_format_count = count;
688
689 if (count == 1) {
b9438173 690 bip->bli_formats = &bip->__bli_format;
372cc85e
DC
691 return 0;
692 }
693
694 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
695 KM_SLEEP);
696 if (!bip->bli_formats)
697 return ENOMEM;
698 return 0;
699}
700
701STATIC void
702xfs_buf_item_free_format(
703 struct xfs_buf_log_item *bip)
704{
b9438173 705 if (bip->bli_formats != &bip->__bli_format) {
372cc85e
DC
706 kmem_free(bip->bli_formats);
707 bip->bli_formats = NULL;
708 }
709}
1da177e4
LT
710
711/*
712 * Allocate a new buf log item to go with the given buffer.
713 * Set the buffer's b_fsprivate field to point to the new
714 * buf log item. If there are other item's attached to the
715 * buffer (see xfs_buf_attach_iodone() below), then put the
716 * buf log item at the front.
717 */
718void
719xfs_buf_item_init(
720 xfs_buf_t *bp,
721 xfs_mount_t *mp)
722{
adadbeef 723 xfs_log_item_t *lip = bp->b_fspriv;
1da177e4
LT
724 xfs_buf_log_item_t *bip;
725 int chunks;
726 int map_size;
372cc85e
DC
727 int error;
728 int i;
1da177e4
LT
729
730 /*
731 * Check to see if there is already a buf log item for
732 * this buffer. If there is, it is guaranteed to be
733 * the first. If we do already have one, there is
734 * nothing to do here so return.
735 */
ebad861b 736 ASSERT(bp->b_target->bt_mount == mp);
adadbeef
CH
737 if (lip != NULL && lip->li_type == XFS_LI_BUF)
738 return;
1da177e4 739
372cc85e 740 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
43f5efc5 741 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 742 bip->bli_buf = bp;
e1f5dbd7 743 xfs_buf_hold(bp);
372cc85e
DC
744
745 /*
746 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
747 * can be divided into. Make sure not to truncate any pieces.
748 * map_size is the size of the bitmap needed to describe the
749 * chunks of the buffer.
750 *
751 * Discontiguous buffer support follows the layout of the underlying
752 * buffer. This makes the implementation as simple as possible.
753 */
754 error = xfs_buf_item_get_format(bip, bp->b_map_count);
755 ASSERT(error == 0);
756
757 for (i = 0; i < bip->bli_format_count; i++) {
758 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
759 XFS_BLF_CHUNK);
760 map_size = DIV_ROUND_UP(chunks, NBWORD);
761
762 bip->bli_formats[i].blf_type = XFS_LI_BUF;
763 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
764 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
765 bip->bli_formats[i].blf_map_size = map_size;
766 }
1da177e4
LT
767
768#ifdef XFS_TRANS_DEBUG
769 /*
770 * Allocate the arrays for tracking what needs to be logged
771 * and what our callers request to be logged. bli_orig
772 * holds a copy of the original, clean buffer for comparison
773 * against, and bli_logged keeps a 1 bit flag per byte in
774 * the buffer to indicate which bytes the callers have asked
775 * to have logged.
776 */
aa0e8833
DC
777 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
778 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
779 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
1da177e4
LT
780#endif
781
782 /*
783 * Put the buf item into the list of items attached to the
784 * buffer at the front.
785 */
adadbeef
CH
786 if (bp->b_fspriv)
787 bip->bli_item.li_bio_list = bp->b_fspriv;
788 bp->b_fspriv = bip;
1da177e4
LT
789}
790
791
792/*
793 * Mark bytes first through last inclusive as dirty in the buf
794 * item's bitmap.
795 */
796void
372cc85e
DC
797xfs_buf_item_log_segment(
798 struct xfs_buf_log_item *bip,
1da177e4 799 uint first,
372cc85e
DC
800 uint last,
801 uint *map)
1da177e4
LT
802{
803 uint first_bit;
804 uint last_bit;
805 uint bits_to_set;
806 uint bits_set;
807 uint word_num;
808 uint *wordp;
809 uint bit;
810 uint end_bit;
811 uint mask;
812
1da177e4
LT
813 /*
814 * Convert byte offsets to bit numbers.
815 */
c1155410
DC
816 first_bit = first >> XFS_BLF_SHIFT;
817 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
818
819 /*
820 * Calculate the total number of bits to be set.
821 */
822 bits_to_set = last_bit - first_bit + 1;
823
824 /*
825 * Get a pointer to the first word in the bitmap
826 * to set a bit in.
827 */
828 word_num = first_bit >> BIT_TO_WORD_SHIFT;
372cc85e 829 wordp = &map[word_num];
1da177e4
LT
830
831 /*
832 * Calculate the starting bit in the first word.
833 */
834 bit = first_bit & (uint)(NBWORD - 1);
835
836 /*
837 * First set any bits in the first word of our range.
838 * If it starts at bit 0 of the word, it will be
839 * set below rather than here. That is what the variable
840 * bit tells us. The variable bits_set tracks the number
841 * of bits that have been set so far. End_bit is the number
842 * of the last bit to be set in this word plus one.
843 */
844 if (bit) {
845 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
846 mask = ((1 << (end_bit - bit)) - 1) << bit;
847 *wordp |= mask;
848 wordp++;
849 bits_set = end_bit - bit;
850 } else {
851 bits_set = 0;
852 }
853
854 /*
855 * Now set bits a whole word at a time that are between
856 * first_bit and last_bit.
857 */
858 while ((bits_to_set - bits_set) >= NBWORD) {
859 *wordp |= 0xffffffff;
860 bits_set += NBWORD;
861 wordp++;
862 }
863
864 /*
865 * Finally, set any bits left to be set in one last partial word.
866 */
867 end_bit = bits_to_set - bits_set;
868 if (end_bit) {
869 mask = (1 << end_bit) - 1;
870 *wordp |= mask;
871 }
1da177e4
LT
872}
873
372cc85e
DC
874/*
875 * Mark bytes first through last inclusive as dirty in the buf
876 * item's bitmap.
877 */
878void
879xfs_buf_item_log(
880 xfs_buf_log_item_t *bip,
881 uint first,
882 uint last)
883{
884 int i;
885 uint start;
886 uint end;
887 struct xfs_buf *bp = bip->bli_buf;
888
372cc85e
DC
889 /*
890 * walk each buffer segment and mark them dirty appropriately.
891 */
892 start = 0;
893 for (i = 0; i < bip->bli_format_count; i++) {
894 if (start > last)
895 break;
896 end = start + BBTOB(bp->b_maps[i].bm_len);
897 if (first > end) {
898 start += BBTOB(bp->b_maps[i].bm_len);
899 continue;
900 }
901 if (first < start)
902 first = start;
903 if (end > last)
904 end = last;
905
906 xfs_buf_item_log_segment(bip, first, end,
907 &bip->bli_formats[i].blf_data_map[0]);
908
909 start += bp->b_maps[i].bm_len;
910 }
911}
912
1da177e4
LT
913
914/*
5f6bed76 915 * Return 1 if the buffer has been logged or ordered in a transaction (at any
1da177e4
LT
916 * point, not just the current transaction) and 0 if not.
917 */
918uint
919xfs_buf_item_dirty(
920 xfs_buf_log_item_t *bip)
921{
922 return (bip->bli_flags & XFS_BLI_DIRTY);
923}
924
e1f5dbd7
LM
925STATIC void
926xfs_buf_item_free(
927 xfs_buf_log_item_t *bip)
928{
929#ifdef XFS_TRANS_DEBUG
930 kmem_free(bip->bli_orig);
931 kmem_free(bip->bli_logged);
932#endif /* XFS_TRANS_DEBUG */
933
372cc85e 934 xfs_buf_item_free_format(bip);
e1f5dbd7
LM
935 kmem_zone_free(xfs_buf_item_zone, bip);
936}
937
1da177e4
LT
938/*
939 * This is called when the buf log item is no longer needed. It should
940 * free the buf log item associated with the given buffer and clear
941 * the buffer's pointer to the buf log item. If there are no more
942 * items in the list, clear the b_iodone field of the buffer (see
943 * xfs_buf_attach_iodone() below).
944 */
945void
946xfs_buf_item_relse(
947 xfs_buf_t *bp)
948{
5f6bed76 949 xfs_buf_log_item_t *bip = bp->b_fspriv;
1da177e4 950
0b1b213f 951 trace_xfs_buf_item_relse(bp, _RET_IP_);
5f6bed76 952 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
0b1b213f 953
adadbeef 954 bp->b_fspriv = bip->bli_item.li_bio_list;
cb669ca5
CH
955 if (bp->b_fspriv == NULL)
956 bp->b_iodone = NULL;
adadbeef 957
e1f5dbd7
LM
958 xfs_buf_rele(bp);
959 xfs_buf_item_free(bip);
1da177e4
LT
960}
961
962
963/*
964 * Add the given log item with its callback to the list of callbacks
965 * to be called when the buffer's I/O completes. If it is not set
966 * already, set the buffer's b_iodone() routine to be
967 * xfs_buf_iodone_callbacks() and link the log item into the list of
968 * items rooted at b_fsprivate. Items are always added as the second
969 * entry in the list if there is a first, because the buf item code
970 * assumes that the buf log item is first.
971 */
972void
973xfs_buf_attach_iodone(
974 xfs_buf_t *bp,
975 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
976 xfs_log_item_t *lip)
977{
978 xfs_log_item_t *head_lip;
979
0c842ad4 980 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
981
982 lip->li_cb = cb;
adadbeef
CH
983 head_lip = bp->b_fspriv;
984 if (head_lip) {
1da177e4
LT
985 lip->li_bio_list = head_lip->li_bio_list;
986 head_lip->li_bio_list = lip;
987 } else {
adadbeef 988 bp->b_fspriv = lip;
1da177e4
LT
989 }
990
cb669ca5
CH
991 ASSERT(bp->b_iodone == NULL ||
992 bp->b_iodone == xfs_buf_iodone_callbacks);
993 bp->b_iodone = xfs_buf_iodone_callbacks;
1da177e4
LT
994}
995
c90821a2
DC
996/*
997 * We can have many callbacks on a buffer. Running the callbacks individually
998 * can cause a lot of contention on the AIL lock, so we allow for a single
999 * callback to be able to scan the remaining lip->li_bio_list for other items
1000 * of the same type and callback to be processed in the first call.
1001 *
1002 * As a result, the loop walking the callback list below will also modify the
1003 * list. it removes the first item from the list and then runs the callback.
1004 * The loop then restarts from the new head of the list. This allows the
1005 * callback to scan and modify the list attached to the buffer and we don't
1006 * have to care about maintaining a next item pointer.
1007 */
1da177e4
LT
1008STATIC void
1009xfs_buf_do_callbacks(
c90821a2 1010 struct xfs_buf *bp)
1da177e4 1011{
c90821a2 1012 struct xfs_log_item *lip;
1da177e4 1013
adadbeef
CH
1014 while ((lip = bp->b_fspriv) != NULL) {
1015 bp->b_fspriv = lip->li_bio_list;
1da177e4
LT
1016 ASSERT(lip->li_cb != NULL);
1017 /*
1018 * Clear the next pointer so we don't have any
1019 * confusion if the item is added to another buf.
1020 * Don't touch the log item after calling its
1021 * callback, because it could have freed itself.
1022 */
1023 lip->li_bio_list = NULL;
1024 lip->li_cb(bp, lip);
1da177e4
LT
1025 }
1026}
1027
1028/*
1029 * This is the iodone() function for buffers which have had callbacks
1030 * attached to them by xfs_buf_attach_iodone(). It should remove each
1031 * log item from the buffer's list and call the callback of each in turn.
1032 * When done, the buffer's fsprivate field is set to NULL and the buffer
1033 * is unlocked with a call to iodone().
1034 */
1035void
1036xfs_buf_iodone_callbacks(
bfc60177 1037 struct xfs_buf *bp)
1da177e4 1038{
bfc60177
CH
1039 struct xfs_log_item *lip = bp->b_fspriv;
1040 struct xfs_mount *mp = lip->li_mountp;
1041 static ulong lasttime;
1042 static xfs_buftarg_t *lasttarg;
1da177e4 1043
5a52c2a5 1044 if (likely(!xfs_buf_geterror(bp)))
bfc60177 1045 goto do_callbacks;
1da177e4 1046
bfc60177
CH
1047 /*
1048 * If we've already decided to shutdown the filesystem because of
1049 * I/O errors, there's no point in giving this a retry.
1050 */
1051 if (XFS_FORCED_SHUTDOWN(mp)) {
c867cb61 1052 xfs_buf_stale(bp);
c867cb61 1053 XFS_BUF_DONE(bp);
bfc60177
CH
1054 trace_xfs_buf_item_iodone(bp, _RET_IP_);
1055 goto do_callbacks;
1056 }
1da177e4 1057
49074c06 1058 if (bp->b_target != lasttarg ||
bfc60177
CH
1059 time_after(jiffies, (lasttime + 5*HZ))) {
1060 lasttime = jiffies;
b38505b0 1061 xfs_buf_ioerror_alert(bp, __func__);
bfc60177 1062 }
49074c06 1063 lasttarg = bp->b_target;
1da177e4 1064
bfc60177 1065 /*
25985edc 1066 * If the write was asynchronous then no one will be looking for the
bfc60177
CH
1067 * error. Clear the error state and write the buffer out again.
1068 *
43ff2122
CH
1069 * XXX: This helps against transient write errors, but we need to find
1070 * a way to shut the filesystem down if the writes keep failing.
1071 *
1072 * In practice we'll shut the filesystem down soon as non-transient
1073 * erorrs tend to affect the whole device and a failing log write
1074 * will make us give up. But we really ought to do better here.
bfc60177
CH
1075 */
1076 if (XFS_BUF_ISASYNC(bp)) {
43ff2122
CH
1077 ASSERT(bp->b_iodone != NULL);
1078
1079 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1080
5a52c2a5 1081 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
bfc60177
CH
1082
1083 if (!XFS_BUF_ISSTALE(bp)) {
43ff2122 1084 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
a2dcf5df 1085 xfs_buf_iorequest(bp);
43ff2122
CH
1086 } else {
1087 xfs_buf_relse(bp);
1da177e4 1088 }
43ff2122 1089
1da177e4
LT
1090 return;
1091 }
0b1b213f 1092
bfc60177
CH
1093 /*
1094 * If the write of the buffer was synchronous, we want to make
1095 * sure to return the error to the caller of xfs_bwrite().
1096 */
c867cb61 1097 xfs_buf_stale(bp);
1da177e4 1098 XFS_BUF_DONE(bp);
0b1b213f
CH
1099
1100 trace_xfs_buf_error_relse(bp, _RET_IP_);
1101
bfc60177 1102do_callbacks:
c90821a2 1103 xfs_buf_do_callbacks(bp);
adadbeef 1104 bp->b_fspriv = NULL;
cb669ca5 1105 bp->b_iodone = NULL;
bfc60177 1106 xfs_buf_ioend(bp, 0);
1da177e4
LT
1107}
1108
1da177e4
LT
1109/*
1110 * This is the iodone() function for buffers which have been
1111 * logged. It is called when they are eventually flushed out.
1112 * It should remove the buf item from the AIL, and free the buf item.
1113 * It is called by xfs_buf_iodone_callbacks() above which will take
1114 * care of cleaning up the buffer itself.
1115 */
1da177e4
LT
1116void
1117xfs_buf_iodone(
ca30b2a7
CH
1118 struct xfs_buf *bp,
1119 struct xfs_log_item *lip)
1da177e4 1120{
ca30b2a7 1121 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 1122
ca30b2a7 1123 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 1124
e1f5dbd7 1125 xfs_buf_rele(bp);
1da177e4
LT
1126
1127 /*
1128 * If we are forcibly shutting down, this may well be
1129 * off the AIL already. That's because we simulate the
1130 * log-committed callbacks to unpin these buffers. Or we may never
1131 * have put this item on AIL because of the transaction was
783a2f65 1132 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1133 *
1134 * Either way, AIL is useless if we're forcing a shutdown.
1135 */
fc1829f3 1136 spin_lock(&ailp->xa_lock);
04913fdd 1137 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
ca30b2a7 1138 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1139}
This page took 0.695764 seconds and 5 git commands to generate.