xfs: decouple log and transaction headers
[deliverable/linux.git] / fs / xfs / xfs_extfree_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
239880ef
DC
20#include "xfs_log_format.h"
21#include "xfs_trans_resv.h"
1da177e4 22#include "xfs_sb.h"
da353b0d 23#include "xfs_ag.h"
1da177e4 24#include "xfs_mount.h"
239880ef 25#include "xfs_trans.h"
1da177e4 26#include "xfs_trans_priv.h"
239880ef 27#include "xfs_buf_item.h"
1da177e4
LT
28#include "xfs_extfree_item.h"
29
30
31kmem_zone_t *xfs_efi_zone;
32kmem_zone_t *xfs_efd_zone;
33
7bfa31d8
CH
34static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35{
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37}
1da177e4 38
7d795ca3 39void
7bfa31d8
CH
40xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
7d795ca3 42{
7bfa31d8 43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
f0e2d93c 44 kmem_free(efip);
7bfa31d8 45 else
7d795ca3 46 kmem_zone_free(xfs_efi_zone, efip);
7d795ca3 47}
1da177e4 48
b199c8a4
DC
49/*
50 * Freeing the efi requires that we remove it from the AIL if it has already
51 * been placed there. However, the EFI may not yet have been placed in the AIL
52 * when called by xfs_efi_release() from EFD processing due to the ordering of
666d644c
DC
53 * committed vs unpin operations in bulk insert operations. Hence the reference
54 * count to ensure only the last caller frees the EFI.
b199c8a4
DC
55 */
56STATIC void
57__xfs_efi_release(
58 struct xfs_efi_log_item *efip)
59{
60 struct xfs_ail *ailp = efip->efi_item.li_ailp;
61
666d644c 62 if (atomic_dec_and_test(&efip->efi_refcount)) {
b199c8a4
DC
63 spin_lock(&ailp->xa_lock);
64 /* xfs_trans_ail_delete() drops the AIL lock. */
04913fdd
DC
65 xfs_trans_ail_delete(ailp, &efip->efi_item,
66 SHUTDOWN_LOG_IO_ERROR);
b199c8a4
DC
67 xfs_efi_item_free(efip);
68 }
69}
70
1da177e4
LT
71/*
72 * This returns the number of iovecs needed to log the given efi item.
73 * We only need 1 iovec for an efi item. It just logs the efi_log_format
74 * structure.
75 */
166d1368
DC
76static inline int
77xfs_efi_item_sizeof(
78 struct xfs_efi_log_item *efip)
79{
80 return sizeof(struct xfs_efi_log_format) +
81 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
82}
83
84STATIC void
7bfa31d8 85xfs_efi_item_size(
166d1368
DC
86 struct xfs_log_item *lip,
87 int *nvecs,
88 int *nbytes)
1da177e4 89{
166d1368
DC
90 *nvecs += 1;
91 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
1da177e4
LT
92}
93
94/*
95 * This is called to fill in the vector of log iovecs for the
96 * given efi log item. We use only 1 iovec, and we point that
97 * at the efi_log_format structure embedded in the efi item.
98 * It is at this point that we assert that all of the extent
99 * slots in the efi item have been filled.
100 */
101STATIC void
7bfa31d8
CH
102xfs_efi_item_format(
103 struct xfs_log_item *lip,
104 struct xfs_log_iovec *log_vector)
1da177e4 105{
7bfa31d8 106 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
1da177e4 107
b199c8a4
DC
108 ASSERT(atomic_read(&efip->efi_next_extent) ==
109 efip->efi_format.efi_nextents);
1da177e4
LT
110
111 efip->efi_format.efi_type = XFS_LI_EFI;
1da177e4
LT
112 efip->efi_format.efi_size = 1;
113
4e0d5f92 114 log_vector->i_addr = &efip->efi_format;
166d1368 115 log_vector->i_len = xfs_efi_item_sizeof(efip);
4139b3b3 116 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
166d1368 117 ASSERT(log_vector->i_len >= sizeof(xfs_efi_log_format_t));
1da177e4
LT
118}
119
120
121/*
122 * Pinning has no meaning for an efi item, so just return.
123 */
1da177e4 124STATIC void
7bfa31d8
CH
125xfs_efi_item_pin(
126 struct xfs_log_item *lip)
1da177e4 127{
1da177e4
LT
128}
129
1da177e4 130/*
9c5f8414
DC
131 * While EFIs cannot really be pinned, the unpin operation is the last place at
132 * which the EFI is manipulated during a transaction. If we are being asked to
133 * remove the EFI it's because the transaction has been cancelled and by
134 * definition that means the EFI cannot be in the AIL so remove it from the
666d644c
DC
135 * transaction and free it. Otherwise coordinate with xfs_efi_release()
136 * to determine who gets to free the EFI.
1da177e4 137 */
1da177e4 138STATIC void
7bfa31d8
CH
139xfs_efi_item_unpin(
140 struct xfs_log_item *lip,
141 int remove)
1da177e4 142{
7bfa31d8 143 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
1da177e4 144
9c5f8414
DC
145 if (remove) {
146 ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
e34a314c
DC
147 if (lip->li_desc)
148 xfs_trans_del_item(lip);
7d795ca3 149 xfs_efi_item_free(efip);
b199c8a4 150 return;
1da177e4 151 }
b199c8a4 152 __xfs_efi_release(efip);
1da177e4
LT
153}
154
155/*
43ff2122
CH
156 * Efi items have no locking or pushing. However, since EFIs are pulled from
157 * the AIL when their corresponding EFDs are committed to disk, their situation
158 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
159 * will eventually flush the log. This should help in getting the EFI out of
160 * the AIL.
1da177e4 161 */
1da177e4 162STATIC uint
43ff2122
CH
163xfs_efi_item_push(
164 struct xfs_log_item *lip,
165 struct list_head *buffer_list)
1da177e4
LT
166{
167 return XFS_ITEM_PINNED;
168}
169
1da177e4 170STATIC void
7bfa31d8
CH
171xfs_efi_item_unlock(
172 struct xfs_log_item *lip)
1da177e4 173{
7bfa31d8
CH
174 if (lip->li_flags & XFS_LI_ABORTED)
175 xfs_efi_item_free(EFI_ITEM(lip));
1da177e4
LT
176}
177
178/*
b199c8a4 179 * The EFI is logged only once and cannot be moved in the log, so simply return
666d644c 180 * the lsn at which it's been logged.
1da177e4 181 */
1da177e4 182STATIC xfs_lsn_t
7bfa31d8
CH
183xfs_efi_item_committed(
184 struct xfs_log_item *lip,
185 xfs_lsn_t lsn)
1da177e4
LT
186{
187 return lsn;
188}
189
1da177e4
LT
190/*
191 * The EFI dependency tracking op doesn't do squat. It can't because
192 * it doesn't know where the free extent is coming from. The dependency
193 * tracking has to be handled by the "enclosing" metadata object. For
194 * example, for inodes, the inode is locked throughout the extent freeing
195 * so the dependency should be recorded there.
196 */
1da177e4 197STATIC void
7bfa31d8
CH
198xfs_efi_item_committing(
199 struct xfs_log_item *lip,
200 xfs_lsn_t lsn)
1da177e4 201{
1da177e4
LT
202}
203
204/*
205 * This is the ops vector shared by all efi log items.
206 */
272e42b2 207static const struct xfs_item_ops xfs_efi_item_ops = {
7bfa31d8
CH
208 .iop_size = xfs_efi_item_size,
209 .iop_format = xfs_efi_item_format,
210 .iop_pin = xfs_efi_item_pin,
211 .iop_unpin = xfs_efi_item_unpin,
7bfa31d8
CH
212 .iop_unlock = xfs_efi_item_unlock,
213 .iop_committed = xfs_efi_item_committed,
214 .iop_push = xfs_efi_item_push,
215 .iop_committing = xfs_efi_item_committing
1da177e4
LT
216};
217
218
219/*
220 * Allocate and initialize an efi item with the given number of extents.
221 */
7bfa31d8
CH
222struct xfs_efi_log_item *
223xfs_efi_init(
224 struct xfs_mount *mp,
225 uint nextents)
1da177e4
LT
226
227{
7bfa31d8 228 struct xfs_efi_log_item *efip;
1da177e4
LT
229 uint size;
230
231 ASSERT(nextents > 0);
232 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
233 size = (uint)(sizeof(xfs_efi_log_item_t) +
234 ((nextents - 1) * sizeof(xfs_extent_t)));
7bfa31d8 235 efip = kmem_zalloc(size, KM_SLEEP);
1da177e4 236 } else {
7bfa31d8 237 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
1da177e4
LT
238 }
239
43f5efc5 240 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
1da177e4
LT
241 efip->efi_format.efi_nextents = nextents;
242 efip->efi_format.efi_id = (__psint_t)(void*)efip;
b199c8a4 243 atomic_set(&efip->efi_next_extent, 0);
666d644c 244 atomic_set(&efip->efi_refcount, 2);
1da177e4 245
7bfa31d8 246 return efip;
1da177e4
LT
247}
248
6d192a9b
TS
249/*
250 * Copy an EFI format buffer from the given buf, and into the destination
251 * EFI format structure.
252 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
253 * one of which will be the native format for this kernel.
254 * It will handle the conversion of formats if necessary.
255 */
256int
257xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
258{
4e0d5f92 259 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
6d192a9b
TS
260 uint i;
261 uint len = sizeof(xfs_efi_log_format_t) +
262 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
263 uint len32 = sizeof(xfs_efi_log_format_32_t) +
264 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
265 uint len64 = sizeof(xfs_efi_log_format_64_t) +
266 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
267
268 if (buf->i_len == len) {
269 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
270 return 0;
271 } else if (buf->i_len == len32) {
4e0d5f92 272 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
6d192a9b
TS
273
274 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
275 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
276 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
277 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
278 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
279 dst_efi_fmt->efi_extents[i].ext_start =
280 src_efi_fmt_32->efi_extents[i].ext_start;
281 dst_efi_fmt->efi_extents[i].ext_len =
282 src_efi_fmt_32->efi_extents[i].ext_len;
283 }
284 return 0;
285 } else if (buf->i_len == len64) {
4e0d5f92 286 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
6d192a9b
TS
287
288 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
289 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
290 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
291 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
292 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
293 dst_efi_fmt->efi_extents[i].ext_start =
294 src_efi_fmt_64->efi_extents[i].ext_start;
295 dst_efi_fmt->efi_extents[i].ext_len =
296 src_efi_fmt_64->efi_extents[i].ext_len;
297 }
298 return 0;
299 }
300 return EFSCORRUPTED;
301}
302
1da177e4 303/*
b199c8a4
DC
304 * This is called by the efd item code below to release references to the given
305 * efi item. Each efd calls this with the number of extents that it has
306 * logged, and when the sum of these reaches the total number of extents logged
307 * by this efi item we can free the efi item.
1da177e4
LT
308 */
309void
310xfs_efi_release(xfs_efi_log_item_t *efip,
311 uint nextents)
312{
b199c8a4 313 ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
666d644c 314 if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) {
666d644c
DC
315 /* recovery needs us to drop the EFI reference, too */
316 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
317 __xfs_efi_release(efip);
509e708a
DC
318
319 __xfs_efi_release(efip);
320 /* efip may now have been freed, do not reference it again. */
666d644c 321 }
1da177e4
LT
322}
323
7bfa31d8 324static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
7d795ca3 325{
7bfa31d8
CH
326 return container_of(lip, struct xfs_efd_log_item, efd_item);
327}
1da177e4 328
7bfa31d8
CH
329STATIC void
330xfs_efd_item_free(struct xfs_efd_log_item *efdp)
331{
332 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
f0e2d93c 333 kmem_free(efdp);
7bfa31d8 334 else
7d795ca3 335 kmem_zone_free(xfs_efd_zone, efdp);
7d795ca3 336}
1da177e4
LT
337
338/*
339 * This returns the number of iovecs needed to log the given efd item.
340 * We only need 1 iovec for an efd item. It just logs the efd_log_format
341 * structure.
342 */
166d1368
DC
343static inline int
344xfs_efd_item_sizeof(
345 struct xfs_efd_log_item *efdp)
346{
347 return sizeof(xfs_efd_log_format_t) +
348 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
349}
350
351STATIC void
7bfa31d8 352xfs_efd_item_size(
166d1368
DC
353 struct xfs_log_item *lip,
354 int *nvecs,
355 int *nbytes)
1da177e4 356{
166d1368
DC
357 *nvecs += 1;
358 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
1da177e4
LT
359}
360
361/*
362 * This is called to fill in the vector of log iovecs for the
363 * given efd log item. We use only 1 iovec, and we point that
364 * at the efd_log_format structure embedded in the efd item.
365 * It is at this point that we assert that all of the extent
366 * slots in the efd item have been filled.
367 */
368STATIC void
7bfa31d8
CH
369xfs_efd_item_format(
370 struct xfs_log_item *lip,
371 struct xfs_log_iovec *log_vector)
1da177e4 372{
7bfa31d8 373 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
1da177e4
LT
374
375 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
376
377 efdp->efd_format.efd_type = XFS_LI_EFD;
1da177e4
LT
378 efdp->efd_format.efd_size = 1;
379
4e0d5f92 380 log_vector->i_addr = &efdp->efd_format;
166d1368 381 log_vector->i_len = xfs_efd_item_sizeof(efdp);
4139b3b3 382 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
166d1368 383 ASSERT(log_vector->i_len >= sizeof(xfs_efd_log_format_t));
1da177e4
LT
384}
385
1da177e4
LT
386/*
387 * Pinning has no meaning for an efd item, so just return.
388 */
1da177e4 389STATIC void
7bfa31d8
CH
390xfs_efd_item_pin(
391 struct xfs_log_item *lip)
1da177e4 392{
1da177e4
LT
393}
394
1da177e4
LT
395/*
396 * Since pinning has no meaning for an efd item, unpinning does
397 * not either.
398 */
1da177e4 399STATIC void
7bfa31d8
CH
400xfs_efd_item_unpin(
401 struct xfs_log_item *lip,
402 int remove)
1da177e4 403{
1da177e4
LT
404}
405
406/*
43ff2122
CH
407 * There isn't much you can do to push on an efd item. It is simply stuck
408 * waiting for the log to be flushed to disk.
1da177e4 409 */
1da177e4 410STATIC uint
43ff2122
CH
411xfs_efd_item_push(
412 struct xfs_log_item *lip,
413 struct list_head *buffer_list)
1da177e4 414{
43ff2122 415 return XFS_ITEM_PINNED;
1da177e4
LT
416}
417
1da177e4 418STATIC void
7bfa31d8
CH
419xfs_efd_item_unlock(
420 struct xfs_log_item *lip)
1da177e4 421{
7bfa31d8
CH
422 if (lip->li_flags & XFS_LI_ABORTED)
423 xfs_efd_item_free(EFD_ITEM(lip));
1da177e4
LT
424}
425
426/*
427 * When the efd item is committed to disk, all we need to do
428 * is delete our reference to our partner efi item and then
429 * free ourselves. Since we're freeing ourselves we must
430 * return -1 to keep the transaction code from further referencing
431 * this item.
432 */
1da177e4 433STATIC xfs_lsn_t
7bfa31d8
CH
434xfs_efd_item_committed(
435 struct xfs_log_item *lip,
436 xfs_lsn_t lsn)
1da177e4 437{
7bfa31d8
CH
438 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
439
1da177e4
LT
440 /*
441 * If we got a log I/O error, it's always the case that the LR with the
442 * EFI got unpinned and freed before the EFD got aborted.
443 */
7bfa31d8 444 if (!(lip->li_flags & XFS_LI_ABORTED))
1da177e4
LT
445 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
446
7d795ca3 447 xfs_efd_item_free(efdp);
1da177e4
LT
448 return (xfs_lsn_t)-1;
449}
450
1da177e4
LT
451/*
452 * The EFD dependency tracking op doesn't do squat. It can't because
453 * it doesn't know where the free extent is coming from. The dependency
454 * tracking has to be handled by the "enclosing" metadata object. For
455 * example, for inodes, the inode is locked throughout the extent freeing
456 * so the dependency should be recorded there.
457 */
1da177e4 458STATIC void
7bfa31d8
CH
459xfs_efd_item_committing(
460 struct xfs_log_item *lip,
461 xfs_lsn_t lsn)
1da177e4 462{
1da177e4
LT
463}
464
465/*
466 * This is the ops vector shared by all efd log items.
467 */
272e42b2 468static const struct xfs_item_ops xfs_efd_item_ops = {
7bfa31d8
CH
469 .iop_size = xfs_efd_item_size,
470 .iop_format = xfs_efd_item_format,
471 .iop_pin = xfs_efd_item_pin,
472 .iop_unpin = xfs_efd_item_unpin,
7bfa31d8
CH
473 .iop_unlock = xfs_efd_item_unlock,
474 .iop_committed = xfs_efd_item_committed,
475 .iop_push = xfs_efd_item_push,
476 .iop_committing = xfs_efd_item_committing
1da177e4
LT
477};
478
1da177e4
LT
479/*
480 * Allocate and initialize an efd item with the given number of extents.
481 */
7bfa31d8
CH
482struct xfs_efd_log_item *
483xfs_efd_init(
484 struct xfs_mount *mp,
485 struct xfs_efi_log_item *efip,
486 uint nextents)
1da177e4
LT
487
488{
7bfa31d8 489 struct xfs_efd_log_item *efdp;
1da177e4
LT
490 uint size;
491
492 ASSERT(nextents > 0);
493 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
494 size = (uint)(sizeof(xfs_efd_log_item_t) +
495 ((nextents - 1) * sizeof(xfs_extent_t)));
7bfa31d8 496 efdp = kmem_zalloc(size, KM_SLEEP);
1da177e4 497 } else {
7bfa31d8 498 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
1da177e4
LT
499 }
500
43f5efc5 501 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
1da177e4
LT
502 efdp->efd_efip = efip;
503 efdp->efd_format.efd_nextents = nextents;
504 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
505
7bfa31d8 506 return efdp;
1da177e4 507}
This page took 0.705372 seconds and 5 git commands to generate.