MIPS: KVM: Relative branch to common exit handler
[deliverable/linux.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
1da177e4
LT
40
41#include <linux/dcache.h>
2fe17c10 42#include <linux/falloc.h>
d126d43f 43#include <linux/pagevec.h>
66114cad 44#include <linux/backing-dev.h>
1da177e4 45
f0f37e2f 46static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 47
487f84f3
DC
48/*
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 */
52static inline void
53xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
56{
57 if (type & XFS_IOLOCK_EXCL)
5955102c 58 inode_lock(VFS_I(ip));
487f84f3
DC
59 xfs_ilock(ip, type);
60}
61
62static inline void
63xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
66{
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
5955102c 69 inode_unlock(VFS_I(ip));
487f84f3
DC
70}
71
72static inline void
73xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
76{
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
5955102c 79 inode_unlock(VFS_I(ip));
487f84f3
DC
80}
81
dda35b8f 82/*
4f69f578
DC
83 * xfs_iozero clears the specified range supplied via the page cache (except in
84 * the DAX case). Writes through the page cache will allocate blocks over holes,
85 * though the callers usually map the holes first and avoid them. If a block is
86 * not completely zeroed, then it will be read from disk before being partially
87 * zeroed.
dda35b8f 88 *
4f69f578
DC
89 * In the DAX case, we can just directly write to the underlying pages. This
90 * will not allocate blocks, but will avoid holes and unwritten extents and so
91 * not do unnecessary work.
dda35b8f 92 */
ef9d8733 93int
dda35b8f
CH
94xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98{
99 struct page *page;
100 struct address_space *mapping;
4f69f578
DC
101 int status = 0;
102
dda35b8f
CH
103
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
108
09cbfeaf
KS
109 offset = (pos & (PAGE_SIZE -1)); /* Within page */
110 bytes = PAGE_SIZE - offset;
dda35b8f
CH
111 if (bytes > count)
112 bytes = count;
113
4f69f578
DC
114 if (IS_DAX(VFS_I(ip))) {
115 status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 xfs_get_blocks_direct);
117 if (status)
118 break;
119 } else {
120 status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 AOP_FLAG_UNINTERRUPTIBLE,
122 &page, &fsdata);
123 if (status)
124 break;
dda35b8f 125
4f69f578 126 zero_user(page, offset, bytes);
dda35b8f 127
4f69f578
DC
128 status = pagecache_write_end(NULL, mapping, pos, bytes,
129 bytes, page, fsdata);
130 WARN_ON(status <= 0); /* can't return less than zero! */
131 status = 0;
132 }
dda35b8f
CH
133 pos += bytes;
134 count -= bytes;
dda35b8f
CH
135 } while (count);
136
cddc1162 137 return status;
dda35b8f
CH
138}
139
8add71ca
CH
140int
141xfs_update_prealloc_flags(
142 struct xfs_inode *ip,
143 enum xfs_prealloc_flags flags)
144{
145 struct xfs_trans *tp;
146 int error;
147
253f4911
CH
148 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
149 0, 0, 0, &tp);
150 if (error)
8add71ca 151 return error;
8add71ca
CH
152
153 xfs_ilock(ip, XFS_ILOCK_EXCL);
154 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155
156 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
157 VFS_I(ip)->i_mode &= ~S_ISUID;
158 if (VFS_I(ip)->i_mode & S_IXGRP)
159 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
160 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
161 }
162
163 if (flags & XFS_PREALLOC_SET)
164 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
165 if (flags & XFS_PREALLOC_CLEAR)
166 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
167
168 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
169 if (flags & XFS_PREALLOC_SYNC)
170 xfs_trans_set_sync(tp);
70393313 171 return xfs_trans_commit(tp);
8add71ca
CH
172}
173
1da2f2db
CH
174/*
175 * Fsync operations on directories are much simpler than on regular files,
176 * as there is no file data to flush, and thus also no need for explicit
177 * cache flush operations, and there are no non-transaction metadata updates
178 * on directories either.
179 */
180STATIC int
181xfs_dir_fsync(
182 struct file *file,
183 loff_t start,
184 loff_t end,
185 int datasync)
186{
187 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
188 struct xfs_mount *mp = ip->i_mount;
189 xfs_lsn_t lsn = 0;
190
191 trace_xfs_dir_fsync(ip);
192
193 xfs_ilock(ip, XFS_ILOCK_SHARED);
194 if (xfs_ipincount(ip))
195 lsn = ip->i_itemp->ili_last_lsn;
196 xfs_iunlock(ip, XFS_ILOCK_SHARED);
197
198 if (!lsn)
199 return 0;
2451337d 200 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
201}
202
fd3200be
CH
203STATIC int
204xfs_file_fsync(
205 struct file *file,
02c24a82
JB
206 loff_t start,
207 loff_t end,
fd3200be
CH
208 int datasync)
209{
7ea80859
CH
210 struct inode *inode = file->f_mapping->host;
211 struct xfs_inode *ip = XFS_I(inode);
a27a263b 212 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
213 int error = 0;
214 int log_flushed = 0;
b1037058 215 xfs_lsn_t lsn = 0;
fd3200be 216
cca28fb8 217 trace_xfs_file_fsync(ip);
fd3200be 218
02c24a82
JB
219 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
220 if (error)
221 return error;
222
a27a263b 223 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 224 return -EIO;
fd3200be
CH
225
226 xfs_iflags_clear(ip, XFS_ITRUNCATED);
227
a27a263b
CH
228 if (mp->m_flags & XFS_MOUNT_BARRIER) {
229 /*
230 * If we have an RT and/or log subvolume we need to make sure
231 * to flush the write cache the device used for file data
232 * first. This is to ensure newly written file data make
233 * it to disk before logging the new inode size in case of
234 * an extending write.
235 */
236 if (XFS_IS_REALTIME_INODE(ip))
237 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
238 else if (mp->m_logdev_targp != mp->m_ddev_targp)
239 xfs_blkdev_issue_flush(mp->m_ddev_targp);
240 }
241
fd3200be 242 /*
fc0561ce
DC
243 * All metadata updates are logged, which means that we just have to
244 * flush the log up to the latest LSN that touched the inode. If we have
245 * concurrent fsync/fdatasync() calls, we need them to all block on the
246 * log force before we clear the ili_fsync_fields field. This ensures
247 * that we don't get a racing sync operation that does not wait for the
248 * metadata to hit the journal before returning. If we race with
249 * clearing the ili_fsync_fields, then all that will happen is the log
250 * force will do nothing as the lsn will already be on disk. We can't
251 * race with setting ili_fsync_fields because that is done under
252 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
253 * until after the ili_fsync_fields is cleared.
fd3200be
CH
254 */
255 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
256 if (xfs_ipincount(ip)) {
257 if (!datasync ||
fc0561ce 258 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
259 lsn = ip->i_itemp->ili_last_lsn;
260 }
fd3200be 261
fc0561ce 262 if (lsn) {
b1037058 263 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
264 ip->i_itemp->ili_fsync_fields = 0;
265 }
266 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 267
a27a263b
CH
268 /*
269 * If we only have a single device, and the log force about was
270 * a no-op we might have to flush the data device cache here.
271 * This can only happen for fdatasync/O_DSYNC if we were overwriting
272 * an already allocated file and thus do not have any metadata to
273 * commit.
274 */
275 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
276 mp->m_logdev_targp == mp->m_ddev_targp &&
277 !XFS_IS_REALTIME_INODE(ip) &&
278 !log_flushed)
279 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 280
2451337d 281 return error;
fd3200be
CH
282}
283
00258e36 284STATIC ssize_t
b4f5d2c6 285xfs_file_read_iter(
dda35b8f 286 struct kiocb *iocb,
b4f5d2c6 287 struct iov_iter *to)
dda35b8f
CH
288{
289 struct file *file = iocb->ki_filp;
290 struct inode *inode = file->f_mapping->host;
00258e36
CH
291 struct xfs_inode *ip = XFS_I(inode);
292 struct xfs_mount *mp = ip->i_mount;
b4f5d2c6 293 size_t size = iov_iter_count(to);
dda35b8f 294 ssize_t ret = 0;
00258e36 295 int ioflags = 0;
dda35b8f 296 xfs_fsize_t n;
b4f5d2c6 297 loff_t pos = iocb->ki_pos;
dda35b8f 298
ff6d6af2 299 XFS_STATS_INC(mp, xs_read_calls);
dda35b8f 300
2ba48ce5 301 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
b92cc59f 302 ioflags |= XFS_IO_ISDIRECT;
00258e36 303 if (file->f_mode & FMODE_NOCMTIME)
b92cc59f 304 ioflags |= XFS_IO_INVIS;
00258e36 305
6b698ede 306 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
dda35b8f
CH
307 xfs_buftarg_t *target =
308 XFS_IS_REALTIME_INODE(ip) ?
309 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
310 /* DIO must be aligned to device logical sector size */
311 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 312 if (pos == i_size_read(inode))
00258e36 313 return 0;
b474c7ae 314 return -EINVAL;
dda35b8f
CH
315 }
316 }
317
fb595814 318 n = mp->m_super->s_maxbytes - pos;
00258e36 319 if (n <= 0 || size == 0)
dda35b8f
CH
320 return 0;
321
322 if (n < size)
323 size = n;
324
325 if (XFS_FORCED_SHUTDOWN(mp))
326 return -EIO;
327
0c38a251 328 /*
3d751af2
BF
329 * Locking is a bit tricky here. If we take an exclusive lock for direct
330 * IO, we effectively serialise all new concurrent read IO to this file
331 * and block it behind IO that is currently in progress because IO in
332 * progress holds the IO lock shared. We only need to hold the lock
333 * exclusive to blow away the page cache, so only take lock exclusively
334 * if the page cache needs invalidation. This allows the normal direct
335 * IO case of no page cache pages to proceeed concurrently without
336 * serialisation.
0c38a251
DC
337 */
338 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b92cc59f 339 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
0c38a251 340 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
341 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
342
3d751af2
BF
343 /*
344 * The generic dio code only flushes the range of the particular
345 * I/O. Because we take an exclusive lock here, this whole
346 * sequence is considerably more expensive for us. This has a
347 * noticeable performance impact for any file with cached pages,
348 * even when outside of the range of the particular I/O.
349 *
350 * Hence, amortize the cost of the lock against a full file
351 * flush and reduce the chances of repeated iolock cycles going
352 * forward.
353 */
00258e36 354 if (inode->i_mapping->nrpages) {
3d751af2 355 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
487f84f3
DC
356 if (ret) {
357 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
358 return ret;
359 }
85e584da
CM
360
361 /*
362 * Invalidate whole pages. This can return an error if
363 * we fail to invalidate a page, but this should never
364 * happen on XFS. Warn if it does fail.
365 */
3d751af2 366 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
85e584da
CM
367 WARN_ON_ONCE(ret);
368 ret = 0;
00258e36 369 }
487f84f3 370 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 371 }
dda35b8f 372
fb595814 373 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 374
b4f5d2c6 375 ret = generic_file_read_iter(iocb, to);
dda35b8f 376 if (ret > 0)
ff6d6af2 377 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f 378
487f84f3 379 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
380 return ret;
381}
382
00258e36
CH
383STATIC ssize_t
384xfs_file_splice_read(
dda35b8f
CH
385 struct file *infilp,
386 loff_t *ppos,
387 struct pipe_inode_info *pipe,
388 size_t count,
00258e36 389 unsigned int flags)
dda35b8f 390{
00258e36 391 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 392 int ioflags = 0;
dda35b8f
CH
393 ssize_t ret;
394
ff6d6af2 395 XFS_STATS_INC(ip->i_mount, xs_read_calls);
00258e36
CH
396
397 if (infilp->f_mode & FMODE_NOCMTIME)
b92cc59f 398 ioflags |= XFS_IO_INVIS;
00258e36 399
dda35b8f
CH
400 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
401 return -EIO;
402
dda35b8f
CH
403 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
404
a6d7636e
DC
405 /*
406 * DAX inodes cannot ues the page cache for splice, so we have to push
407 * them through the VFS IO path. This means it goes through
408 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
409 * cannot lock the splice operation at this level for DAX inodes.
410 */
411 if (IS_DAX(VFS_I(ip))) {
412 ret = default_file_splice_read(infilp, ppos, pipe, count,
413 flags);
414 goto out;
415 }
dda35b8f 416
a6d7636e
DC
417 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
418 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
487f84f3 419 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
a6d7636e
DC
420out:
421 if (ret > 0)
422 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
dda35b8f
CH
423 return ret;
424}
425
dda35b8f 426/*
193aec10
CH
427 * This routine is called to handle zeroing any space in the last block of the
428 * file that is beyond the EOF. We do this since the size is being increased
429 * without writing anything to that block and we don't want to read the
430 * garbage on the disk.
dda35b8f
CH
431 */
432STATIC int /* error (positive) */
433xfs_zero_last_block(
193aec10
CH
434 struct xfs_inode *ip,
435 xfs_fsize_t offset,
5885ebda
DC
436 xfs_fsize_t isize,
437 bool *did_zeroing)
dda35b8f 438{
193aec10
CH
439 struct xfs_mount *mp = ip->i_mount;
440 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
441 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
442 int zero_len;
443 int nimaps = 1;
444 int error = 0;
445 struct xfs_bmbt_irec imap;
dda35b8f 446
193aec10 447 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 448 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 449 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 450 if (error)
dda35b8f 451 return error;
193aec10 452
dda35b8f 453 ASSERT(nimaps > 0);
193aec10 454
dda35b8f
CH
455 /*
456 * If the block underlying isize is just a hole, then there
457 * is nothing to zero.
458 */
193aec10 459 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 460 return 0;
dda35b8f
CH
461
462 zero_len = mp->m_sb.sb_blocksize - zero_offset;
463 if (isize + zero_len > offset)
464 zero_len = offset - isize;
5885ebda 465 *did_zeroing = true;
193aec10 466 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
467}
468
469/*
193aec10
CH
470 * Zero any on disk space between the current EOF and the new, larger EOF.
471 *
472 * This handles the normal case of zeroing the remainder of the last block in
473 * the file and the unusual case of zeroing blocks out beyond the size of the
474 * file. This second case only happens with fixed size extents and when the
475 * system crashes before the inode size was updated but after blocks were
476 * allocated.
477 *
478 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 479 */
dda35b8f
CH
480int /* error (positive) */
481xfs_zero_eof(
193aec10
CH
482 struct xfs_inode *ip,
483 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
484 xfs_fsize_t isize, /* current inode size */
485 bool *did_zeroing)
dda35b8f 486{
193aec10
CH
487 struct xfs_mount *mp = ip->i_mount;
488 xfs_fileoff_t start_zero_fsb;
489 xfs_fileoff_t end_zero_fsb;
490 xfs_fileoff_t zero_count_fsb;
491 xfs_fileoff_t last_fsb;
492 xfs_fileoff_t zero_off;
493 xfs_fsize_t zero_len;
494 int nimaps;
495 int error = 0;
496 struct xfs_bmbt_irec imap;
497
498 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
499 ASSERT(offset > isize);
500
0a50f162
BF
501 trace_xfs_zero_eof(ip, isize, offset - isize);
502
dda35b8f
CH
503 /*
504 * First handle zeroing the block on which isize resides.
193aec10 505 *
dda35b8f
CH
506 * We only zero a part of that block so it is handled specially.
507 */
193aec10 508 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
5885ebda 509 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
193aec10
CH
510 if (error)
511 return error;
dda35b8f
CH
512 }
513
514 /*
193aec10
CH
515 * Calculate the range between the new size and the old where blocks
516 * needing to be zeroed may exist.
517 *
518 * To get the block where the last byte in the file currently resides,
519 * we need to subtract one from the size and truncate back to a block
520 * boundary. We subtract 1 in case the size is exactly on a block
521 * boundary.
dda35b8f
CH
522 */
523 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
524 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
525 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
526 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
527 if (last_fsb == end_zero_fsb) {
528 /*
529 * The size was only incremented on its last block.
530 * We took care of that above, so just return.
531 */
532 return 0;
533 }
534
535 ASSERT(start_zero_fsb <= end_zero_fsb);
536 while (start_zero_fsb <= end_zero_fsb) {
537 nimaps = 1;
538 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
539
540 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
541 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
542 &imap, &nimaps, 0);
193aec10
CH
543 xfs_iunlock(ip, XFS_ILOCK_EXCL);
544 if (error)
dda35b8f 545 return error;
193aec10 546
dda35b8f
CH
547 ASSERT(nimaps > 0);
548
549 if (imap.br_state == XFS_EXT_UNWRITTEN ||
550 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
551 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
552 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
553 continue;
554 }
555
556 /*
557 * There are blocks we need to zero.
dda35b8f 558 */
dda35b8f
CH
559 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
560 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
561
562 if ((zero_off + zero_len) > offset)
563 zero_len = offset - zero_off;
564
565 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
566 if (error)
567 return error;
dda35b8f 568
5885ebda 569 *did_zeroing = true;
dda35b8f
CH
570 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
571 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
572 }
573
574 return 0;
dda35b8f
CH
575}
576
4d8d1581
DC
577/*
578 * Common pre-write limit and setup checks.
579 *
5bf1f262
CH
580 * Called with the iolocked held either shared and exclusive according to
581 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
582 * if called for a direct write beyond i_size.
4d8d1581
DC
583 */
584STATIC ssize_t
585xfs_file_aio_write_checks(
99733fa3
AV
586 struct kiocb *iocb,
587 struct iov_iter *from,
4d8d1581
DC
588 int *iolock)
589{
99733fa3 590 struct file *file = iocb->ki_filp;
4d8d1581
DC
591 struct inode *inode = file->f_mapping->host;
592 struct xfs_inode *ip = XFS_I(inode);
3309dd04 593 ssize_t error = 0;
99733fa3 594 size_t count = iov_iter_count(from);
3136e8bb 595 bool drained_dio = false;
4d8d1581 596
7271d243 597restart:
3309dd04
AV
598 error = generic_write_checks(iocb, from);
599 if (error <= 0)
4d8d1581 600 return error;
4d8d1581 601
21c3ea18 602 error = xfs_break_layouts(inode, iolock, true);
781355c6
CH
603 if (error)
604 return error;
605
a6de82ca
JK
606 /* For changing security info in file_remove_privs() we need i_mutex */
607 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
608 xfs_rw_iunlock(ip, *iolock);
609 *iolock = XFS_IOLOCK_EXCL;
610 xfs_rw_ilock(ip, *iolock);
611 goto restart;
612 }
4d8d1581
DC
613 /*
614 * If the offset is beyond the size of the file, we need to zero any
615 * blocks that fall between the existing EOF and the start of this
2813d682 616 * write. If zeroing is needed and we are currently holding the
467f7899
CH
617 * iolock shared, we need to update it to exclusive which implies
618 * having to redo all checks before.
b9d59846
DC
619 *
620 * We need to serialise against EOF updates that occur in IO
621 * completions here. We want to make sure that nobody is changing the
622 * size while we do this check until we have placed an IO barrier (i.e.
623 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
624 * The spinlock effectively forms a memory barrier once we have the
625 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
626 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 627 */
b9d59846 628 spin_lock(&ip->i_flags_lock);
99733fa3 629 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
630 bool zero = false;
631
b9d59846 632 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
633 if (!drained_dio) {
634 if (*iolock == XFS_IOLOCK_SHARED) {
635 xfs_rw_iunlock(ip, *iolock);
636 *iolock = XFS_IOLOCK_EXCL;
637 xfs_rw_ilock(ip, *iolock);
638 iov_iter_reexpand(from, count);
639 }
40c63fbc
DC
640 /*
641 * We now have an IO submission barrier in place, but
642 * AIO can do EOF updates during IO completion and hence
643 * we now need to wait for all of them to drain. Non-AIO
644 * DIO will have drained before we are given the
645 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
646 * no-op.
647 */
648 inode_dio_wait(inode);
3136e8bb 649 drained_dio = true;
7271d243
DC
650 goto restart;
651 }
99733fa3 652 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
653 if (error)
654 return error;
b9d59846
DC
655 } else
656 spin_unlock(&ip->i_flags_lock);
4d8d1581 657
8a9c9980
CH
658 /*
659 * Updating the timestamps will grab the ilock again from
660 * xfs_fs_dirty_inode, so we have to call it after dropping the
661 * lock above. Eventually we should look into a way to avoid
662 * the pointless lock roundtrip.
663 */
c3b2da31
JB
664 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
665 error = file_update_time(file);
666 if (error)
667 return error;
668 }
8a9c9980 669
4d8d1581
DC
670 /*
671 * If we're writing the file then make sure to clear the setuid and
672 * setgid bits if the process is not being run by root. This keeps
673 * people from modifying setuid and setgid binaries.
674 */
a6de82ca
JK
675 if (!IS_NOSEC(inode))
676 return file_remove_privs(file);
677 return 0;
4d8d1581
DC
678}
679
f0d26e86
DC
680/*
681 * xfs_file_dio_aio_write - handle direct IO writes
682 *
683 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 684 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
685 * follow locking changes and looping.
686 *
eda77982
DC
687 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
688 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
689 * pages are flushed out.
690 *
691 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
692 * allowing them to be done in parallel with reads and other direct IO writes.
693 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
694 * needs to do sub-block zeroing and that requires serialisation against other
695 * direct IOs to the same block. In this case we need to serialise the
696 * submission of the unaligned IOs so that we don't get racing block zeroing in
697 * the dio layer. To avoid the problem with aio, we also need to wait for
698 * outstanding IOs to complete so that unwritten extent conversion is completed
699 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 700 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 701 *
f0d26e86
DC
702 * Returns with locks held indicated by @iolock and errors indicated by
703 * negative return values.
704 */
705STATIC ssize_t
706xfs_file_dio_aio_write(
707 struct kiocb *iocb,
b3188919 708 struct iov_iter *from)
f0d26e86
DC
709{
710 struct file *file = iocb->ki_filp;
711 struct address_space *mapping = file->f_mapping;
712 struct inode *inode = mapping->host;
713 struct xfs_inode *ip = XFS_I(inode);
714 struct xfs_mount *mp = ip->i_mount;
715 ssize_t ret = 0;
eda77982 716 int unaligned_io = 0;
d0606464 717 int iolock;
b3188919 718 size_t count = iov_iter_count(from);
0cefb29e
DC
719 loff_t end;
720 struct iov_iter data;
f0d26e86
DC
721 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
722 mp->m_rtdev_targp : mp->m_ddev_targp;
723
7c71ee78 724 /* DIO must be aligned to device logical sector size */
13712713
CH
725 if (!IS_DAX(inode) &&
726 ((iocb->ki_pos | count) & target->bt_logical_sectormask))
b474c7ae 727 return -EINVAL;
f0d26e86 728
7c71ee78 729 /* "unaligned" here means not aligned to a filesystem block */
13712713
CH
730 if ((iocb->ki_pos & mp->m_blockmask) ||
731 ((iocb->ki_pos + count) & mp->m_blockmask))
eda77982
DC
732 unaligned_io = 1;
733
7271d243
DC
734 /*
735 * We don't need to take an exclusive lock unless there page cache needs
736 * to be invalidated or unaligned IO is being executed. We don't need to
737 * consider the EOF extension case here because
738 * xfs_file_aio_write_checks() will relock the inode as necessary for
739 * EOF zeroing cases and fill out the new inode size as appropriate.
740 */
741 if (unaligned_io || mapping->nrpages)
d0606464 742 iolock = XFS_IOLOCK_EXCL;
f0d26e86 743 else
d0606464
CH
744 iolock = XFS_IOLOCK_SHARED;
745 xfs_rw_ilock(ip, iolock);
c58cb165
CH
746
747 /*
748 * Recheck if there are cached pages that need invalidate after we got
749 * the iolock to protect against other threads adding new pages while
750 * we were waiting for the iolock.
751 */
d0606464
CH
752 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
753 xfs_rw_iunlock(ip, iolock);
754 iolock = XFS_IOLOCK_EXCL;
755 xfs_rw_ilock(ip, iolock);
c58cb165 756 }
f0d26e86 757
99733fa3 758 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 759 if (ret)
d0606464 760 goto out;
99733fa3 761 count = iov_iter_count(from);
13712713 762 end = iocb->ki_pos + count - 1;
f0d26e86 763
3d751af2
BF
764 /*
765 * See xfs_file_read_iter() for why we do a full-file flush here.
766 */
f0d26e86 767 if (mapping->nrpages) {
3d751af2 768 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
f0d26e86 769 if (ret)
d0606464 770 goto out;
834ffca6 771 /*
3d751af2
BF
772 * Invalidate whole pages. This can return an error if we fail
773 * to invalidate a page, but this should never happen on XFS.
774 * Warn if it does fail.
834ffca6 775 */
3d751af2 776 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
834ffca6
DC
777 WARN_ON_ONCE(ret);
778 ret = 0;
f0d26e86
DC
779 }
780
eda77982
DC
781 /*
782 * If we are doing unaligned IO, wait for all other IO to drain,
783 * otherwise demote the lock if we had to flush cached pages
784 */
785 if (unaligned_io)
4a06fd26 786 inode_dio_wait(inode);
d0606464 787 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 788 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 789 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
790 }
791
792 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
f0d26e86 793
0cefb29e 794 data = *from;
c8b8e32d 795 ret = mapping->a_ops->direct_IO(iocb, &data);
0cefb29e
DC
796
797 /* see generic_file_direct_write() for why this is necessary */
798 if (mapping->nrpages) {
799 invalidate_inode_pages2_range(mapping,
13712713 800 iocb->ki_pos >> PAGE_SHIFT,
09cbfeaf 801 end >> PAGE_SHIFT);
0cefb29e
DC
802 }
803
804 if (ret > 0) {
13712713 805 iocb->ki_pos += ret;
0cefb29e 806 iov_iter_advance(from, ret);
0cefb29e 807 }
d0606464
CH
808out:
809 xfs_rw_iunlock(ip, iolock);
810
6b698ede
DC
811 /*
812 * No fallback to buffered IO on errors for XFS. DAX can result in
813 * partial writes, but direct IO will either complete fully or fail.
814 */
815 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
f0d26e86
DC
816 return ret;
817}
818
00258e36 819STATIC ssize_t
637bbc75 820xfs_file_buffered_aio_write(
dda35b8f 821 struct kiocb *iocb,
b3188919 822 struct iov_iter *from)
dda35b8f
CH
823{
824 struct file *file = iocb->ki_filp;
825 struct address_space *mapping = file->f_mapping;
826 struct inode *inode = mapping->host;
00258e36 827 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
828 ssize_t ret;
829 int enospc = 0;
d0606464 830 int iolock = XFS_IOLOCK_EXCL;
dda35b8f 831
d0606464 832 xfs_rw_ilock(ip, iolock);
dda35b8f 833
99733fa3 834 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 835 if (ret)
d0606464 836 goto out;
dda35b8f
CH
837
838 /* We can write back this queue in page reclaim */
de1414a6 839 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 840
dda35b8f 841write_retry:
99733fa3
AV
842 trace_xfs_file_buffered_write(ip, iov_iter_count(from),
843 iocb->ki_pos, 0);
844 ret = generic_perform_write(file, from, iocb->ki_pos);
0a64bc2c 845 if (likely(ret >= 0))
99733fa3 846 iocb->ki_pos += ret;
dc06f398 847
637bbc75 848 /*
dc06f398
BF
849 * If we hit a space limit, try to free up some lingering preallocated
850 * space before returning an error. In the case of ENOSPC, first try to
851 * write back all dirty inodes to free up some of the excess reserved
852 * metadata space. This reduces the chances that the eofblocks scan
853 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
854 * also behaves as a filter to prevent too many eofblocks scans from
855 * running at the same time.
637bbc75 856 */
dc06f398
BF
857 if (ret == -EDQUOT && !enospc) {
858 enospc = xfs_inode_free_quota_eofblocks(ip);
859 if (enospc)
860 goto write_retry;
861 } else if (ret == -ENOSPC && !enospc) {
862 struct xfs_eofblocks eofb = {0};
863
637bbc75 864 enospc = 1;
9aa05000 865 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
866 eofb.eof_scan_owner = ip->i_ino; /* for locking */
867 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
868 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 869 goto write_retry;
dda35b8f 870 }
d0606464 871
dda35b8f 872 current->backing_dev_info = NULL;
d0606464
CH
873out:
874 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
875 return ret;
876}
877
878STATIC ssize_t
bf97f3bc 879xfs_file_write_iter(
637bbc75 880 struct kiocb *iocb,
bf97f3bc 881 struct iov_iter *from)
637bbc75
DC
882{
883 struct file *file = iocb->ki_filp;
884 struct address_space *mapping = file->f_mapping;
885 struct inode *inode = mapping->host;
886 struct xfs_inode *ip = XFS_I(inode);
887 ssize_t ret;
bf97f3bc 888 size_t ocount = iov_iter_count(from);
637bbc75 889
ff6d6af2 890 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 891
637bbc75
DC
892 if (ocount == 0)
893 return 0;
894
bf97f3bc
AV
895 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
896 return -EIO;
637bbc75 897
6b698ede 898 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
bf97f3bc 899 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 900 else
bf97f3bc 901 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 902
d0606464 903 if (ret > 0) {
ff6d6af2 904 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
dda35b8f 905
d0606464 906 /* Handle various SYNC-type writes */
e2592217 907 ret = generic_write_sync(iocb, ret);
dda35b8f 908 }
a363f0c2 909 return ret;
dda35b8f
CH
910}
911
a904b1ca
NJ
912#define XFS_FALLOC_FL_SUPPORTED \
913 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
914 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
915 FALLOC_FL_INSERT_RANGE)
916
2fe17c10
CH
917STATIC long
918xfs_file_fallocate(
83aee9e4
CH
919 struct file *file,
920 int mode,
921 loff_t offset,
922 loff_t len)
2fe17c10 923{
83aee9e4
CH
924 struct inode *inode = file_inode(file);
925 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 926 long error;
8add71ca 927 enum xfs_prealloc_flags flags = 0;
781355c6 928 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 929 loff_t new_size = 0;
a904b1ca 930 bool do_file_insert = 0;
2fe17c10 931
83aee9e4
CH
932 if (!S_ISREG(inode->i_mode))
933 return -EINVAL;
a904b1ca 934 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
935 return -EOPNOTSUPP;
936
781355c6 937 xfs_ilock(ip, iolock);
21c3ea18 938 error = xfs_break_layouts(inode, &iolock, false);
781355c6
CH
939 if (error)
940 goto out_unlock;
941
e8e9ad42
DC
942 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
943 iolock |= XFS_MMAPLOCK_EXCL;
944
83aee9e4
CH
945 if (mode & FALLOC_FL_PUNCH_HOLE) {
946 error = xfs_free_file_space(ip, offset, len);
947 if (error)
948 goto out_unlock;
e1d8fb88
NJ
949 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
950 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
951
952 if (offset & blksize_mask || len & blksize_mask) {
2451337d 953 error = -EINVAL;
e1d8fb88
NJ
954 goto out_unlock;
955 }
956
23fffa92
LC
957 /*
958 * There is no need to overlap collapse range with EOF,
959 * in which case it is effectively a truncate operation
960 */
961 if (offset + len >= i_size_read(inode)) {
2451337d 962 error = -EINVAL;
23fffa92
LC
963 goto out_unlock;
964 }
965
e1d8fb88
NJ
966 new_size = i_size_read(inode) - len;
967
968 error = xfs_collapse_file_space(ip, offset, len);
969 if (error)
970 goto out_unlock;
a904b1ca
NJ
971 } else if (mode & FALLOC_FL_INSERT_RANGE) {
972 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
973
974 new_size = i_size_read(inode) + len;
975 if (offset & blksize_mask || len & blksize_mask) {
976 error = -EINVAL;
977 goto out_unlock;
978 }
979
980 /* check the new inode size does not wrap through zero */
981 if (new_size > inode->i_sb->s_maxbytes) {
982 error = -EFBIG;
983 goto out_unlock;
984 }
985
986 /* Offset should be less than i_size */
987 if (offset >= i_size_read(inode)) {
988 error = -EINVAL;
989 goto out_unlock;
990 }
991 do_file_insert = 1;
83aee9e4 992 } else {
8add71ca
CH
993 flags |= XFS_PREALLOC_SET;
994
83aee9e4
CH
995 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
996 offset + len > i_size_read(inode)) {
997 new_size = offset + len;
2451337d 998 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
999 if (error)
1000 goto out_unlock;
1001 }
2fe17c10 1002
376ba313
LC
1003 if (mode & FALLOC_FL_ZERO_RANGE)
1004 error = xfs_zero_file_space(ip, offset, len);
1005 else
1006 error = xfs_alloc_file_space(ip, offset, len,
1007 XFS_BMAPI_PREALLOC);
2fe17c10
CH
1008 if (error)
1009 goto out_unlock;
1010 }
1011
83aee9e4 1012 if (file->f_flags & O_DSYNC)
8add71ca
CH
1013 flags |= XFS_PREALLOC_SYNC;
1014
1015 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
1016 if (error)
1017 goto out_unlock;
1018
1019 /* Change file size if needed */
1020 if (new_size) {
1021 struct iattr iattr;
1022
1023 iattr.ia_valid = ATTR_SIZE;
1024 iattr.ia_size = new_size;
83aee9e4 1025 error = xfs_setattr_size(ip, &iattr);
a904b1ca
NJ
1026 if (error)
1027 goto out_unlock;
2fe17c10
CH
1028 }
1029
a904b1ca
NJ
1030 /*
1031 * Perform hole insertion now that the file size has been
1032 * updated so that if we crash during the operation we don't
1033 * leave shifted extents past EOF and hence losing access to
1034 * the data that is contained within them.
1035 */
1036 if (do_file_insert)
1037 error = xfs_insert_file_space(ip, offset, len);
1038
2fe17c10 1039out_unlock:
781355c6 1040 xfs_iunlock(ip, iolock);
2451337d 1041 return error;
2fe17c10
CH
1042}
1043
1044
1da177e4 1045STATIC int
3562fd45 1046xfs_file_open(
1da177e4 1047 struct inode *inode,
f999a5bf 1048 struct file *file)
1da177e4 1049{
f999a5bf 1050 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 1051 return -EFBIG;
f999a5bf
CH
1052 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1053 return -EIO;
1054 return 0;
1055}
1056
1057STATIC int
1058xfs_dir_open(
1059 struct inode *inode,
1060 struct file *file)
1061{
1062 struct xfs_inode *ip = XFS_I(inode);
1063 int mode;
1064 int error;
1065
1066 error = xfs_file_open(inode, file);
1067 if (error)
1068 return error;
1069
1070 /*
1071 * If there are any blocks, read-ahead block 0 as we're almost
1072 * certain to have the next operation be a read there.
1073 */
309ecac8 1074 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 1075 if (ip->i_d.di_nextents > 0)
9df2dd0b 1076 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
1077 xfs_iunlock(ip, mode);
1078 return 0;
1da177e4
LT
1079}
1080
1da177e4 1081STATIC int
3562fd45 1082xfs_file_release(
1da177e4
LT
1083 struct inode *inode,
1084 struct file *filp)
1085{
2451337d 1086 return xfs_release(XFS_I(inode));
1da177e4
LT
1087}
1088
1da177e4 1089STATIC int
3562fd45 1090xfs_file_readdir(
b8227554
AV
1091 struct file *file,
1092 struct dir_context *ctx)
1da177e4 1093{
b8227554 1094 struct inode *inode = file_inode(file);
739bfb2a 1095 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1096 size_t bufsize;
1097
1098 /*
1099 * The Linux API doesn't pass down the total size of the buffer
1100 * we read into down to the filesystem. With the filldir concept
1101 * it's not needed for correct information, but the XFS dir2 leaf
1102 * code wants an estimate of the buffer size to calculate it's
1103 * readahead window and size the buffers used for mapping to
1104 * physical blocks.
1105 *
1106 * Try to give it an estimate that's good enough, maybe at some
1107 * point we can change the ->readdir prototype to include the
a9cc799e 1108 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1109 */
a9cc799e 1110 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 1111
8300475e 1112 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
1113}
1114
d126d43f
JL
1115/*
1116 * This type is designed to indicate the type of offset we would like
49c69591 1117 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1118 */
1119enum {
1120 HOLE_OFF = 0,
1121 DATA_OFF,
1122};
1123
1124/*
1125 * Lookup the desired type of offset from the given page.
1126 *
1127 * On success, return true and the offset argument will point to the
1128 * start of the region that was found. Otherwise this function will
1129 * return false and keep the offset argument unchanged.
1130 */
1131STATIC bool
1132xfs_lookup_buffer_offset(
1133 struct page *page,
1134 loff_t *offset,
1135 unsigned int type)
1136{
1137 loff_t lastoff = page_offset(page);
1138 bool found = false;
1139 struct buffer_head *bh, *head;
1140
1141 bh = head = page_buffers(page);
1142 do {
1143 /*
1144 * Unwritten extents that have data in the page
1145 * cache covering them can be identified by the
1146 * BH_Unwritten state flag. Pages with multiple
1147 * buffers might have a mix of holes, data and
1148 * unwritten extents - any buffer with valid
1149 * data in it should have BH_Uptodate flag set
1150 * on it.
1151 */
1152 if (buffer_unwritten(bh) ||
1153 buffer_uptodate(bh)) {
1154 if (type == DATA_OFF)
1155 found = true;
1156 } else {
1157 if (type == HOLE_OFF)
1158 found = true;
1159 }
1160
1161 if (found) {
1162 *offset = lastoff;
1163 break;
1164 }
1165 lastoff += bh->b_size;
1166 } while ((bh = bh->b_this_page) != head);
1167
1168 return found;
1169}
1170
1171/*
1172 * This routine is called to find out and return a data or hole offset
1173 * from the page cache for unwritten extents according to the desired
49c69591 1174 * type for xfs_seek_hole_data().
d126d43f
JL
1175 *
1176 * The argument offset is used to tell where we start to search from the
1177 * page cache. Map is used to figure out the end points of the range to
1178 * lookup pages.
1179 *
1180 * Return true if the desired type of offset was found, and the argument
1181 * offset is filled with that address. Otherwise, return false and keep
1182 * offset unchanged.
1183 */
1184STATIC bool
1185xfs_find_get_desired_pgoff(
1186 struct inode *inode,
1187 struct xfs_bmbt_irec *map,
1188 unsigned int type,
1189 loff_t *offset)
1190{
1191 struct xfs_inode *ip = XFS_I(inode);
1192 struct xfs_mount *mp = ip->i_mount;
1193 struct pagevec pvec;
1194 pgoff_t index;
1195 pgoff_t end;
1196 loff_t endoff;
1197 loff_t startoff = *offset;
1198 loff_t lastoff = startoff;
1199 bool found = false;
1200
1201 pagevec_init(&pvec, 0);
1202
09cbfeaf 1203 index = startoff >> PAGE_SHIFT;
d126d43f 1204 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
09cbfeaf 1205 end = endoff >> PAGE_SHIFT;
d126d43f
JL
1206 do {
1207 int want;
1208 unsigned nr_pages;
1209 unsigned int i;
1210
1211 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1212 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1213 want);
1214 /*
1215 * No page mapped into given range. If we are searching holes
1216 * and if this is the first time we got into the loop, it means
1217 * that the given offset is landed in a hole, return it.
1218 *
1219 * If we have already stepped through some block buffers to find
1220 * holes but they all contains data. In this case, the last
1221 * offset is already updated and pointed to the end of the last
1222 * mapped page, if it does not reach the endpoint to search,
1223 * that means there should be a hole between them.
1224 */
1225 if (nr_pages == 0) {
1226 /* Data search found nothing */
1227 if (type == DATA_OFF)
1228 break;
1229
1230 ASSERT(type == HOLE_OFF);
1231 if (lastoff == startoff || lastoff < endoff) {
1232 found = true;
1233 *offset = lastoff;
1234 }
1235 break;
1236 }
1237
1238 /*
1239 * At lease we found one page. If this is the first time we
1240 * step into the loop, and if the first page index offset is
1241 * greater than the given search offset, a hole was found.
1242 */
1243 if (type == HOLE_OFF && lastoff == startoff &&
1244 lastoff < page_offset(pvec.pages[0])) {
1245 found = true;
1246 break;
1247 }
1248
1249 for (i = 0; i < nr_pages; i++) {
1250 struct page *page = pvec.pages[i];
1251 loff_t b_offset;
1252
1253 /*
1254 * At this point, the page may be truncated or
1255 * invalidated (changing page->mapping to NULL),
1256 * or even swizzled back from swapper_space to tmpfs
1257 * file mapping. However, page->index will not change
1258 * because we have a reference on the page.
1259 *
1260 * Searching done if the page index is out of range.
1261 * If the current offset is not reaches the end of
1262 * the specified search range, there should be a hole
1263 * between them.
1264 */
1265 if (page->index > end) {
1266 if (type == HOLE_OFF && lastoff < endoff) {
1267 *offset = lastoff;
1268 found = true;
1269 }
1270 goto out;
1271 }
1272
1273 lock_page(page);
1274 /*
1275 * Page truncated or invalidated(page->mapping == NULL).
1276 * We can freely skip it and proceed to check the next
1277 * page.
1278 */
1279 if (unlikely(page->mapping != inode->i_mapping)) {
1280 unlock_page(page);
1281 continue;
1282 }
1283
1284 if (!page_has_buffers(page)) {
1285 unlock_page(page);
1286 continue;
1287 }
1288
1289 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1290 if (found) {
1291 /*
1292 * The found offset may be less than the start
1293 * point to search if this is the first time to
1294 * come here.
1295 */
1296 *offset = max_t(loff_t, startoff, b_offset);
1297 unlock_page(page);
1298 goto out;
1299 }
1300
1301 /*
1302 * We either searching data but nothing was found, or
1303 * searching hole but found a data buffer. In either
1304 * case, probably the next page contains the desired
1305 * things, update the last offset to it so.
1306 */
1307 lastoff = page_offset(page) + PAGE_SIZE;
1308 unlock_page(page);
1309 }
1310
1311 /*
1312 * The number of returned pages less than our desired, search
1313 * done. In this case, nothing was found for searching data,
1314 * but we found a hole behind the last offset.
1315 */
1316 if (nr_pages < want) {
1317 if (type == HOLE_OFF) {
1318 *offset = lastoff;
1319 found = true;
1320 }
1321 break;
1322 }
1323
1324 index = pvec.pages[i - 1]->index + 1;
1325 pagevec_release(&pvec);
1326 } while (index <= end);
1327
1328out:
1329 pagevec_release(&pvec);
1330 return found;
1331}
1332
8aa7d37e
ES
1333/*
1334 * caller must lock inode with xfs_ilock_data_map_shared,
1335 * can we craft an appropriate ASSERT?
1336 *
1337 * end is because the VFS-level lseek interface is defined such that any
1338 * offset past i_size shall return -ENXIO, but we use this for quota code
1339 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1340 */
1341loff_t
1342__xfs_seek_hole_data(
1343 struct inode *inode,
49c69591 1344 loff_t start,
8aa7d37e 1345 loff_t end,
49c69591 1346 int whence)
3fe3e6b1 1347{
3fe3e6b1
JL
1348 struct xfs_inode *ip = XFS_I(inode);
1349 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1 1350 loff_t uninitialized_var(offset);
3fe3e6b1 1351 xfs_fileoff_t fsbno;
8aa7d37e 1352 xfs_filblks_t lastbno;
3fe3e6b1
JL
1353 int error;
1354
8aa7d37e 1355 if (start >= end) {
2451337d 1356 error = -ENXIO;
8aa7d37e 1357 goto out_error;
3fe3e6b1
JL
1358 }
1359
3fe3e6b1
JL
1360 /*
1361 * Try to read extents from the first block indicated
1362 * by fsbno to the end block of the file.
1363 */
52f1acc8 1364 fsbno = XFS_B_TO_FSBT(mp, start);
8aa7d37e 1365 lastbno = XFS_B_TO_FSB(mp, end);
49c69591 1366
52f1acc8
JL
1367 for (;;) {
1368 struct xfs_bmbt_irec map[2];
1369 int nmap = 2;
1370 unsigned int i;
3fe3e6b1 1371
8aa7d37e 1372 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
52f1acc8
JL
1373 XFS_BMAPI_ENTIRE);
1374 if (error)
8aa7d37e 1375 goto out_error;
3fe3e6b1 1376
52f1acc8
JL
1377 /* No extents at given offset, must be beyond EOF */
1378 if (nmap == 0) {
2451337d 1379 error = -ENXIO;
8aa7d37e 1380 goto out_error;
52f1acc8
JL
1381 }
1382
1383 for (i = 0; i < nmap; i++) {
1384 offset = max_t(loff_t, start,
1385 XFS_FSB_TO_B(mp, map[i].br_startoff));
1386
49c69591
ES
1387 /* Landed in the hole we wanted? */
1388 if (whence == SEEK_HOLE &&
1389 map[i].br_startblock == HOLESTARTBLOCK)
1390 goto out;
1391
1392 /* Landed in the data extent we wanted? */
1393 if (whence == SEEK_DATA &&
1394 (map[i].br_startblock == DELAYSTARTBLOCK ||
1395 (map[i].br_state == XFS_EXT_NORM &&
1396 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1397 goto out;
1398
1399 /*
49c69591
ES
1400 * Landed in an unwritten extent, try to search
1401 * for hole or data from page cache.
52f1acc8
JL
1402 */
1403 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1404 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1405 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1406 &offset))
52f1acc8
JL
1407 goto out;
1408 }
1409 }
1410
1411 /*
49c69591
ES
1412 * We only received one extent out of the two requested. This
1413 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1414 */
3fe3e6b1 1415 if (nmap == 1) {
49c69591
ES
1416 /*
1417 * If we were looking for a hole, set offset to
1418 * the end of the file (i.e., there is an implicit
1419 * hole at the end of any file).
1420 */
1421 if (whence == SEEK_HOLE) {
8aa7d37e 1422 offset = end;
49c69591
ES
1423 break;
1424 }
1425 /*
1426 * If we were looking for data, it's nowhere to be found
1427 */
1428 ASSERT(whence == SEEK_DATA);
2451337d 1429 error = -ENXIO;
8aa7d37e 1430 goto out_error;
3fe3e6b1
JL
1431 }
1432
52f1acc8
JL
1433 ASSERT(i > 1);
1434
1435 /*
1436 * Nothing was found, proceed to the next round of search
49c69591 1437 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1438 */
1439 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1440 start = XFS_FSB_TO_B(mp, fsbno);
8aa7d37e 1441 if (start >= end) {
49c69591 1442 if (whence == SEEK_HOLE) {
8aa7d37e 1443 offset = end;
49c69591
ES
1444 break;
1445 }
1446 ASSERT(whence == SEEK_DATA);
2451337d 1447 error = -ENXIO;
8aa7d37e 1448 goto out_error;
52f1acc8 1449 }
3fe3e6b1
JL
1450 }
1451
b686d1f7
JL
1452out:
1453 /*
49c69591 1454 * If at this point we have found the hole we wanted, the returned
b686d1f7 1455 * offset may be bigger than the file size as it may be aligned to
49c69591 1456 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1457 * situation in particular.
1458 */
49c69591 1459 if (whence == SEEK_HOLE)
8aa7d37e
ES
1460 offset = min_t(loff_t, offset, end);
1461
1462 return offset;
1463
1464out_error:
1465 return error;
1466}
1467
1468STATIC loff_t
1469xfs_seek_hole_data(
1470 struct file *file,
1471 loff_t start,
1472 int whence)
1473{
1474 struct inode *inode = file->f_mapping->host;
1475 struct xfs_inode *ip = XFS_I(inode);
1476 struct xfs_mount *mp = ip->i_mount;
1477 uint lock;
1478 loff_t offset, end;
1479 int error = 0;
1480
1481 if (XFS_FORCED_SHUTDOWN(mp))
1482 return -EIO;
1483
1484 lock = xfs_ilock_data_map_shared(ip);
1485
1486 end = i_size_read(inode);
1487 offset = __xfs_seek_hole_data(inode, start, end, whence);
1488 if (offset < 0) {
1489 error = offset;
1490 goto out_unlock;
1491 }
1492
46a1c2c7 1493 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1494
1495out_unlock:
01f4f327 1496 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1497
1498 if (error)
2451337d 1499 return error;
3fe3e6b1
JL
1500 return offset;
1501}
1502
1503STATIC loff_t
1504xfs_file_llseek(
1505 struct file *file,
1506 loff_t offset,
59f9c004 1507 int whence)
3fe3e6b1 1508{
59f9c004 1509 switch (whence) {
3fe3e6b1
JL
1510 case SEEK_END:
1511 case SEEK_CUR:
1512 case SEEK_SET:
59f9c004 1513 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1514 case SEEK_HOLE:
49c69591 1515 case SEEK_DATA:
59f9c004 1516 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1517 default:
1518 return -EINVAL;
1519 }
1520}
1521
de0e8c20
DC
1522/*
1523 * Locking for serialisation of IO during page faults. This results in a lock
1524 * ordering of:
1525 *
1526 * mmap_sem (MM)
6b698ede 1527 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1528 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1529 * page_lock (MM)
1530 * i_lock (XFS - extent map serialisation)
de0e8c20 1531 */
de0e8c20 1532
075a924d
DC
1533/*
1534 * mmap()d file has taken write protection fault and is being made writable. We
1535 * can set the page state up correctly for a writable page, which means we can
1536 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1537 * mapping.
de0e8c20
DC
1538 */
1539STATIC int
075a924d 1540xfs_filemap_page_mkwrite(
de0e8c20
DC
1541 struct vm_area_struct *vma,
1542 struct vm_fault *vmf)
1543{
6b698ede 1544 struct inode *inode = file_inode(vma->vm_file);
ec56b1f1 1545 int ret;
de0e8c20 1546
6b698ede 1547 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
de0e8c20 1548
6b698ede 1549 sb_start_pagefault(inode->i_sb);
ec56b1f1 1550 file_update_time(vma->vm_file);
6b698ede 1551 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
de0e8c20 1552
6b698ede 1553 if (IS_DAX(inode)) {
02fbd139 1554 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
6b698ede 1555 } else {
5c500029 1556 ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
6b698ede
DC
1557 ret = block_page_mkwrite_return(ret);
1558 }
1559
1560 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1561 sb_end_pagefault(inode->i_sb);
1562
1563 return ret;
de0e8c20
DC
1564}
1565
075a924d 1566STATIC int
6b698ede 1567xfs_filemap_fault(
075a924d
DC
1568 struct vm_area_struct *vma,
1569 struct vm_fault *vmf)
1570{
b2442c5a 1571 struct inode *inode = file_inode(vma->vm_file);
6b698ede 1572 int ret;
ec56b1f1 1573
b2442c5a 1574 trace_xfs_filemap_fault(XFS_I(inode));
075a924d 1575
6b698ede 1576 /* DAX can shortcut the normal fault path on write faults! */
b2442c5a 1577 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
6b698ede 1578 return xfs_filemap_page_mkwrite(vma, vmf);
075a924d 1579
b2442c5a
DC
1580 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1581 if (IS_DAX(inode)) {
1582 /*
1583 * we do not want to trigger unwritten extent conversion on read
1584 * faults - that is unnecessary overhead and would also require
1585 * changes to xfs_get_blocks_direct() to map unwritten extent
1586 * ioend for conversion on read-only mappings.
1587 */
02fbd139 1588 ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
b2442c5a
DC
1589 } else
1590 ret = filemap_fault(vma, vmf);
1591 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
075a924d 1592
6b698ede
DC
1593 return ret;
1594}
1595
13ad4fe3
DC
1596/*
1597 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1598 * both read and write faults. Hence we need to handle both cases. There is no
1599 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1600 * handle both cases here. @flags carries the information on the type of fault
1601 * occuring.
1602 */
acd76e74
MW
1603STATIC int
1604xfs_filemap_pmd_fault(
1605 struct vm_area_struct *vma,
1606 unsigned long addr,
1607 pmd_t *pmd,
1608 unsigned int flags)
1609{
1610 struct inode *inode = file_inode(vma->vm_file);
1611 struct xfs_inode *ip = XFS_I(inode);
1612 int ret;
1613
1614 if (!IS_DAX(inode))
1615 return VM_FAULT_FALLBACK;
1616
1617 trace_xfs_filemap_pmd_fault(ip);
1618
13ad4fe3
DC
1619 if (flags & FAULT_FLAG_WRITE) {
1620 sb_start_pagefault(inode->i_sb);
1621 file_update_time(vma->vm_file);
1622 }
1623
acd76e74 1624 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
02fbd139 1625 ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
acd76e74 1626 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
acd76e74 1627
13ad4fe3
DC
1628 if (flags & FAULT_FLAG_WRITE)
1629 sb_end_pagefault(inode->i_sb);
acd76e74
MW
1630
1631 return ret;
1632}
1633
3af49285
DC
1634/*
1635 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1636 * updates on write faults. In reality, it's need to serialise against
5eb88dca
RZ
1637 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1638 * to ensure we serialise the fault barrier in place.
3af49285
DC
1639 */
1640static int
1641xfs_filemap_pfn_mkwrite(
1642 struct vm_area_struct *vma,
1643 struct vm_fault *vmf)
1644{
1645
1646 struct inode *inode = file_inode(vma->vm_file);
1647 struct xfs_inode *ip = XFS_I(inode);
1648 int ret = VM_FAULT_NOPAGE;
1649 loff_t size;
1650
1651 trace_xfs_filemap_pfn_mkwrite(ip);
1652
1653 sb_start_pagefault(inode->i_sb);
1654 file_update_time(vma->vm_file);
1655
1656 /* check if the faulting page hasn't raced with truncate */
1657 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1658 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1659 if (vmf->pgoff >= size)
1660 ret = VM_FAULT_SIGBUS;
5eb88dca
RZ
1661 else if (IS_DAX(inode))
1662 ret = dax_pfn_mkwrite(vma, vmf);
3af49285
DC
1663 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1664 sb_end_pagefault(inode->i_sb);
acd76e74 1665 return ret;
3af49285 1666
acd76e74
MW
1667}
1668
6b698ede
DC
1669static const struct vm_operations_struct xfs_file_vm_ops = {
1670 .fault = xfs_filemap_fault,
acd76e74 1671 .pmd_fault = xfs_filemap_pmd_fault,
6b698ede
DC
1672 .map_pages = filemap_map_pages,
1673 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1674 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1675};
1676
1677STATIC int
1678xfs_file_mmap(
1679 struct file *filp,
1680 struct vm_area_struct *vma)
1681{
1682 file_accessed(filp);
1683 vma->vm_ops = &xfs_file_vm_ops;
1684 if (IS_DAX(file_inode(filp)))
acd76e74 1685 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
6b698ede 1686 return 0;
075a924d
DC
1687}
1688
4b6f5d20 1689const struct file_operations xfs_file_operations = {
3fe3e6b1 1690 .llseek = xfs_file_llseek,
b4f5d2c6 1691 .read_iter = xfs_file_read_iter,
bf97f3bc 1692 .write_iter = xfs_file_write_iter,
1b895840 1693 .splice_read = xfs_file_splice_read,
8d020765 1694 .splice_write = iter_file_splice_write,
3562fd45 1695 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1696#ifdef CONFIG_COMPAT
3562fd45 1697 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1698#endif
3562fd45
NS
1699 .mmap = xfs_file_mmap,
1700 .open = xfs_file_open,
1701 .release = xfs_file_release,
1702 .fsync = xfs_file_fsync,
2fe17c10 1703 .fallocate = xfs_file_fallocate,
1da177e4
LT
1704};
1705
4b6f5d20 1706const struct file_operations xfs_dir_file_operations = {
f999a5bf 1707 .open = xfs_dir_open,
1da177e4 1708 .read = generic_read_dir,
3b0a3c1a 1709 .iterate_shared = xfs_file_readdir,
59af1584 1710 .llseek = generic_file_llseek,
3562fd45 1711 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1712#ifdef CONFIG_COMPAT
3562fd45 1713 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1714#endif
1da2f2db 1715 .fsync = xfs_dir_fsync,
1da177e4 1716};
This page took 0.731418 seconds and 5 git commands to generate.