Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_sb.h"
a844f451 25#include "xfs_ag.h"
1da177e4 26#include "xfs_mount.h"
57062787
DC
27#include "xfs_da_format.h"
28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
c24b5dfa 33#include "xfs_bmap_util.h"
1da177e4 34#include "xfs_error.h"
2b9ab5ab 35#include "xfs_dir2.h"
c24b5dfa 36#include "xfs_dir2_priv.h"
ddcd856d 37#include "xfs_ioctl.h"
dda35b8f 38#include "xfs_trace.h"
239880ef 39#include "xfs_log.h"
a4fbe6ab 40#include "xfs_dinode.h"
dc06f398 41#include "xfs_icache.h"
1da177e4 42
a27bb332 43#include <linux/aio.h>
1da177e4 44#include <linux/dcache.h>
2fe17c10 45#include <linux/falloc.h>
d126d43f 46#include <linux/pagevec.h>
1da177e4 47
f0f37e2f 48static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 49
487f84f3
DC
50/*
51 * Locking primitives for read and write IO paths to ensure we consistently use
52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53 */
54static inline void
55xfs_rw_ilock(
56 struct xfs_inode *ip,
57 int type)
58{
59 if (type & XFS_IOLOCK_EXCL)
60 mutex_lock(&VFS_I(ip)->i_mutex);
61 xfs_ilock(ip, type);
62}
63
64static inline void
65xfs_rw_iunlock(
66 struct xfs_inode *ip,
67 int type)
68{
69 xfs_iunlock(ip, type);
70 if (type & XFS_IOLOCK_EXCL)
71 mutex_unlock(&VFS_I(ip)->i_mutex);
72}
73
74static inline void
75xfs_rw_ilock_demote(
76 struct xfs_inode *ip,
77 int type)
78{
79 xfs_ilock_demote(ip, type);
80 if (type & XFS_IOLOCK_EXCL)
81 mutex_unlock(&VFS_I(ip)->i_mutex);
82}
83
dda35b8f
CH
84/*
85 * xfs_iozero
86 *
87 * xfs_iozero clears the specified range of buffer supplied,
88 * and marks all the affected blocks as valid and modified. If
89 * an affected block is not allocated, it will be allocated. If
90 * an affected block is not completely overwritten, and is not
91 * valid before the operation, it will be read from disk before
92 * being partially zeroed.
93 */
ef9d8733 94int
dda35b8f
CH
95xfs_iozero(
96 struct xfs_inode *ip, /* inode */
97 loff_t pos, /* offset in file */
98 size_t count) /* size of data to zero */
99{
100 struct page *page;
101 struct address_space *mapping;
102 int status;
103
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
108
109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 bytes = PAGE_CACHE_SIZE - offset;
111 if (bytes > count)
112 bytes = count;
113
114 status = pagecache_write_begin(NULL, mapping, pos, bytes,
115 AOP_FLAG_UNINTERRUPTIBLE,
116 &page, &fsdata);
117 if (status)
118 break;
119
120 zero_user(page, offset, bytes);
121
122 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
123 page, fsdata);
124 WARN_ON(status <= 0); /* can't return less than zero! */
125 pos += bytes;
126 count -= bytes;
127 status = 0;
128 } while (count);
129
130 return (-status);
131}
132
1da2f2db
CH
133/*
134 * Fsync operations on directories are much simpler than on regular files,
135 * as there is no file data to flush, and thus also no need for explicit
136 * cache flush operations, and there are no non-transaction metadata updates
137 * on directories either.
138 */
139STATIC int
140xfs_dir_fsync(
141 struct file *file,
142 loff_t start,
143 loff_t end,
144 int datasync)
145{
146 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
147 struct xfs_mount *mp = ip->i_mount;
148 xfs_lsn_t lsn = 0;
149
150 trace_xfs_dir_fsync(ip);
151
152 xfs_ilock(ip, XFS_ILOCK_SHARED);
153 if (xfs_ipincount(ip))
154 lsn = ip->i_itemp->ili_last_lsn;
155 xfs_iunlock(ip, XFS_ILOCK_SHARED);
156
157 if (!lsn)
158 return 0;
2451337d 159 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
160}
161
fd3200be
CH
162STATIC int
163xfs_file_fsync(
164 struct file *file,
02c24a82
JB
165 loff_t start,
166 loff_t end,
fd3200be
CH
167 int datasync)
168{
7ea80859
CH
169 struct inode *inode = file->f_mapping->host;
170 struct xfs_inode *ip = XFS_I(inode);
a27a263b 171 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
172 int error = 0;
173 int log_flushed = 0;
b1037058 174 xfs_lsn_t lsn = 0;
fd3200be 175
cca28fb8 176 trace_xfs_file_fsync(ip);
fd3200be 177
02c24a82
JB
178 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
179 if (error)
180 return error;
181
a27a263b 182 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 183 return -EIO;
fd3200be
CH
184
185 xfs_iflags_clear(ip, XFS_ITRUNCATED);
186
a27a263b
CH
187 if (mp->m_flags & XFS_MOUNT_BARRIER) {
188 /*
189 * If we have an RT and/or log subvolume we need to make sure
190 * to flush the write cache the device used for file data
191 * first. This is to ensure newly written file data make
192 * it to disk before logging the new inode size in case of
193 * an extending write.
194 */
195 if (XFS_IS_REALTIME_INODE(ip))
196 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
197 else if (mp->m_logdev_targp != mp->m_ddev_targp)
198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
199 }
200
fd3200be 201 /*
8a9c9980
CH
202 * All metadata updates are logged, which means that we just have
203 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
204 */
205 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
206 if (xfs_ipincount(ip)) {
207 if (!datasync ||
208 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
209 lsn = ip->i_itemp->ili_last_lsn;
210 }
8a9c9980 211 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 212
8a9c9980 213 if (lsn)
b1037058
CH
214 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
215
a27a263b
CH
216 /*
217 * If we only have a single device, and the log force about was
218 * a no-op we might have to flush the data device cache here.
219 * This can only happen for fdatasync/O_DSYNC if we were overwriting
220 * an already allocated file and thus do not have any metadata to
221 * commit.
222 */
223 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
224 mp->m_logdev_targp == mp->m_ddev_targp &&
225 !XFS_IS_REALTIME_INODE(ip) &&
226 !log_flushed)
227 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 228
2451337d 229 return error;
fd3200be
CH
230}
231
00258e36 232STATIC ssize_t
b4f5d2c6 233xfs_file_read_iter(
dda35b8f 234 struct kiocb *iocb,
b4f5d2c6 235 struct iov_iter *to)
dda35b8f
CH
236{
237 struct file *file = iocb->ki_filp;
238 struct inode *inode = file->f_mapping->host;
00258e36
CH
239 struct xfs_inode *ip = XFS_I(inode);
240 struct xfs_mount *mp = ip->i_mount;
b4f5d2c6 241 size_t size = iov_iter_count(to);
dda35b8f 242 ssize_t ret = 0;
00258e36 243 int ioflags = 0;
dda35b8f 244 xfs_fsize_t n;
b4f5d2c6 245 loff_t pos = iocb->ki_pos;
dda35b8f 246
dda35b8f
CH
247 XFS_STATS_INC(xs_read_calls);
248
00258e36 249 if (unlikely(file->f_flags & O_DIRECT))
b92cc59f 250 ioflags |= XFS_IO_ISDIRECT;
00258e36 251 if (file->f_mode & FMODE_NOCMTIME)
b92cc59f 252 ioflags |= XFS_IO_INVIS;
00258e36 253
b92cc59f 254 if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
dda35b8f
CH
255 xfs_buftarg_t *target =
256 XFS_IS_REALTIME_INODE(ip) ?
257 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
258 /* DIO must be aligned to device logical sector size */
259 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 260 if (pos == i_size_read(inode))
00258e36 261 return 0;
b474c7ae 262 return -EINVAL;
dda35b8f
CH
263 }
264 }
265
fb595814 266 n = mp->m_super->s_maxbytes - pos;
00258e36 267 if (n <= 0 || size == 0)
dda35b8f
CH
268 return 0;
269
270 if (n < size)
271 size = n;
272
273 if (XFS_FORCED_SHUTDOWN(mp))
274 return -EIO;
275
0c38a251
DC
276 /*
277 * Locking is a bit tricky here. If we take an exclusive lock
278 * for direct IO, we effectively serialise all new concurrent
279 * read IO to this file and block it behind IO that is currently in
280 * progress because IO in progress holds the IO lock shared. We only
281 * need to hold the lock exclusive to blow away the page cache, so
282 * only take lock exclusively if the page cache needs invalidation.
283 * This allows the normal direct IO case of no page cache pages to
284 * proceeed concurrently without serialisation.
285 */
286 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b92cc59f 287 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
0c38a251 288 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
289 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
290
00258e36 291 if (inode->i_mapping->nrpages) {
8ff1e670 292 ret = filemap_write_and_wait_range(
fb595814 293 VFS_I(ip)->i_mapping,
7d4ea3ce 294 pos, pos + size - 1);
487f84f3
DC
295 if (ret) {
296 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
297 return ret;
298 }
85e584da
CM
299
300 /*
301 * Invalidate whole pages. This can return an error if
302 * we fail to invalidate a page, but this should never
303 * happen on XFS. Warn if it does fail.
304 */
305 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce
DC
306 pos >> PAGE_CACHE_SHIFT,
307 (pos + size - 1) >> PAGE_CACHE_SHIFT);
85e584da
CM
308 WARN_ON_ONCE(ret);
309 ret = 0;
00258e36 310 }
487f84f3 311 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 312 }
dda35b8f 313
fb595814 314 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 315
b4f5d2c6 316 ret = generic_file_read_iter(iocb, to);
dda35b8f
CH
317 if (ret > 0)
318 XFS_STATS_ADD(xs_read_bytes, ret);
319
487f84f3 320 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
321 return ret;
322}
323
00258e36
CH
324STATIC ssize_t
325xfs_file_splice_read(
dda35b8f
CH
326 struct file *infilp,
327 loff_t *ppos,
328 struct pipe_inode_info *pipe,
329 size_t count,
00258e36 330 unsigned int flags)
dda35b8f 331{
00258e36 332 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 333 int ioflags = 0;
dda35b8f
CH
334 ssize_t ret;
335
336 XFS_STATS_INC(xs_read_calls);
00258e36
CH
337
338 if (infilp->f_mode & FMODE_NOCMTIME)
b92cc59f 339 ioflags |= XFS_IO_INVIS;
00258e36 340
dda35b8f
CH
341 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
342 return -EIO;
343
487f84f3 344 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 345
dda35b8f
CH
346 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
347
348 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
349 if (ret > 0)
350 XFS_STATS_ADD(xs_read_bytes, ret);
351
487f84f3 352 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
353 return ret;
354}
355
dda35b8f 356/*
193aec10
CH
357 * This routine is called to handle zeroing any space in the last block of the
358 * file that is beyond the EOF. We do this since the size is being increased
359 * without writing anything to that block and we don't want to read the
360 * garbage on the disk.
dda35b8f
CH
361 */
362STATIC int /* error (positive) */
363xfs_zero_last_block(
193aec10
CH
364 struct xfs_inode *ip,
365 xfs_fsize_t offset,
366 xfs_fsize_t isize)
dda35b8f 367{
193aec10
CH
368 struct xfs_mount *mp = ip->i_mount;
369 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
370 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
371 int zero_len;
372 int nimaps = 1;
373 int error = 0;
374 struct xfs_bmbt_irec imap;
dda35b8f 375
193aec10 376 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 377 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 378 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 379 if (error)
dda35b8f 380 return error;
193aec10 381
dda35b8f 382 ASSERT(nimaps > 0);
193aec10 383
dda35b8f
CH
384 /*
385 * If the block underlying isize is just a hole, then there
386 * is nothing to zero.
387 */
193aec10 388 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 389 return 0;
dda35b8f
CH
390
391 zero_len = mp->m_sb.sb_blocksize - zero_offset;
392 if (isize + zero_len > offset)
393 zero_len = offset - isize;
193aec10 394 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
395}
396
397/*
193aec10
CH
398 * Zero any on disk space between the current EOF and the new, larger EOF.
399 *
400 * This handles the normal case of zeroing the remainder of the last block in
401 * the file and the unusual case of zeroing blocks out beyond the size of the
402 * file. This second case only happens with fixed size extents and when the
403 * system crashes before the inode size was updated but after blocks were
404 * allocated.
405 *
406 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 407 */
dda35b8f
CH
408int /* error (positive) */
409xfs_zero_eof(
193aec10
CH
410 struct xfs_inode *ip,
411 xfs_off_t offset, /* starting I/O offset */
412 xfs_fsize_t isize) /* current inode size */
dda35b8f 413{
193aec10
CH
414 struct xfs_mount *mp = ip->i_mount;
415 xfs_fileoff_t start_zero_fsb;
416 xfs_fileoff_t end_zero_fsb;
417 xfs_fileoff_t zero_count_fsb;
418 xfs_fileoff_t last_fsb;
419 xfs_fileoff_t zero_off;
420 xfs_fsize_t zero_len;
421 int nimaps;
422 int error = 0;
423 struct xfs_bmbt_irec imap;
424
425 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
426 ASSERT(offset > isize);
427
428 /*
429 * First handle zeroing the block on which isize resides.
193aec10 430 *
dda35b8f
CH
431 * We only zero a part of that block so it is handled specially.
432 */
193aec10
CH
433 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
434 error = xfs_zero_last_block(ip, offset, isize);
435 if (error)
436 return error;
dda35b8f
CH
437 }
438
439 /*
193aec10
CH
440 * Calculate the range between the new size and the old where blocks
441 * needing to be zeroed may exist.
442 *
443 * To get the block where the last byte in the file currently resides,
444 * we need to subtract one from the size and truncate back to a block
445 * boundary. We subtract 1 in case the size is exactly on a block
446 * boundary.
dda35b8f
CH
447 */
448 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
449 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
450 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
451 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
452 if (last_fsb == end_zero_fsb) {
453 /*
454 * The size was only incremented on its last block.
455 * We took care of that above, so just return.
456 */
457 return 0;
458 }
459
460 ASSERT(start_zero_fsb <= end_zero_fsb);
461 while (start_zero_fsb <= end_zero_fsb) {
462 nimaps = 1;
463 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
464
465 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
466 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
467 &imap, &nimaps, 0);
193aec10
CH
468 xfs_iunlock(ip, XFS_ILOCK_EXCL);
469 if (error)
dda35b8f 470 return error;
193aec10 471
dda35b8f
CH
472 ASSERT(nimaps > 0);
473
474 if (imap.br_state == XFS_EXT_UNWRITTEN ||
475 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
476 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
477 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
478 continue;
479 }
480
481 /*
482 * There are blocks we need to zero.
dda35b8f 483 */
dda35b8f
CH
484 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
485 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
486
487 if ((zero_off + zero_len) > offset)
488 zero_len = offset - zero_off;
489
490 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
491 if (error)
492 return error;
dda35b8f
CH
493
494 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
495 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
496 }
497
498 return 0;
dda35b8f
CH
499}
500
4d8d1581
DC
501/*
502 * Common pre-write limit and setup checks.
503 *
5bf1f262
CH
504 * Called with the iolocked held either shared and exclusive according to
505 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
506 * if called for a direct write beyond i_size.
4d8d1581
DC
507 */
508STATIC ssize_t
509xfs_file_aio_write_checks(
510 struct file *file,
511 loff_t *pos,
512 size_t *count,
513 int *iolock)
514{
515 struct inode *inode = file->f_mapping->host;
516 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
517 int error = 0;
518
7271d243 519restart:
4d8d1581 520 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 521 if (error)
4d8d1581 522 return error;
4d8d1581 523
4d8d1581
DC
524 /*
525 * If the offset is beyond the size of the file, we need to zero any
526 * blocks that fall between the existing EOF and the start of this
2813d682 527 * write. If zeroing is needed and we are currently holding the
467f7899
CH
528 * iolock shared, we need to update it to exclusive which implies
529 * having to redo all checks before.
4d8d1581 530 */
2813d682 531 if (*pos > i_size_read(inode)) {
7271d243 532 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 533 xfs_rw_iunlock(ip, *iolock);
7271d243 534 *iolock = XFS_IOLOCK_EXCL;
467f7899 535 xfs_rw_ilock(ip, *iolock);
7271d243
DC
536 goto restart;
537 }
2451337d 538 error = xfs_zero_eof(ip, *pos, i_size_read(inode));
467f7899
CH
539 if (error)
540 return error;
7271d243 541 }
4d8d1581 542
8a9c9980
CH
543 /*
544 * Updating the timestamps will grab the ilock again from
545 * xfs_fs_dirty_inode, so we have to call it after dropping the
546 * lock above. Eventually we should look into a way to avoid
547 * the pointless lock roundtrip.
548 */
c3b2da31
JB
549 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
550 error = file_update_time(file);
551 if (error)
552 return error;
553 }
8a9c9980 554
4d8d1581
DC
555 /*
556 * If we're writing the file then make sure to clear the setuid and
557 * setgid bits if the process is not being run by root. This keeps
558 * people from modifying setuid and setgid binaries.
559 */
560 return file_remove_suid(file);
4d8d1581
DC
561}
562
f0d26e86
DC
563/*
564 * xfs_file_dio_aio_write - handle direct IO writes
565 *
566 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 567 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
568 * follow locking changes and looping.
569 *
eda77982
DC
570 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
571 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
572 * pages are flushed out.
573 *
574 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
575 * allowing them to be done in parallel with reads and other direct IO writes.
576 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
577 * needs to do sub-block zeroing and that requires serialisation against other
578 * direct IOs to the same block. In this case we need to serialise the
579 * submission of the unaligned IOs so that we don't get racing block zeroing in
580 * the dio layer. To avoid the problem with aio, we also need to wait for
581 * outstanding IOs to complete so that unwritten extent conversion is completed
582 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 583 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 584 *
f0d26e86
DC
585 * Returns with locks held indicated by @iolock and errors indicated by
586 * negative return values.
587 */
588STATIC ssize_t
589xfs_file_dio_aio_write(
590 struct kiocb *iocb,
b3188919 591 struct iov_iter *from)
f0d26e86
DC
592{
593 struct file *file = iocb->ki_filp;
594 struct address_space *mapping = file->f_mapping;
595 struct inode *inode = mapping->host;
596 struct xfs_inode *ip = XFS_I(inode);
597 struct xfs_mount *mp = ip->i_mount;
598 ssize_t ret = 0;
eda77982 599 int unaligned_io = 0;
d0606464 600 int iolock;
b3188919
AV
601 size_t count = iov_iter_count(from);
602 loff_t pos = iocb->ki_pos;
f0d26e86
DC
603 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
604 mp->m_rtdev_targp : mp->m_ddev_targp;
605
7c71ee78
ES
606 /* DIO must be aligned to device logical sector size */
607 if ((pos | count) & target->bt_logical_sectormask)
b474c7ae 608 return -EINVAL;
f0d26e86 609
7c71ee78 610 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
611 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
612 unaligned_io = 1;
613
7271d243
DC
614 /*
615 * We don't need to take an exclusive lock unless there page cache needs
616 * to be invalidated or unaligned IO is being executed. We don't need to
617 * consider the EOF extension case here because
618 * xfs_file_aio_write_checks() will relock the inode as necessary for
619 * EOF zeroing cases and fill out the new inode size as appropriate.
620 */
621 if (unaligned_io || mapping->nrpages)
d0606464 622 iolock = XFS_IOLOCK_EXCL;
f0d26e86 623 else
d0606464
CH
624 iolock = XFS_IOLOCK_SHARED;
625 xfs_rw_ilock(ip, iolock);
c58cb165
CH
626
627 /*
628 * Recheck if there are cached pages that need invalidate after we got
629 * the iolock to protect against other threads adding new pages while
630 * we were waiting for the iolock.
631 */
d0606464
CH
632 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
633 xfs_rw_iunlock(ip, iolock);
634 iolock = XFS_IOLOCK_EXCL;
635 xfs_rw_ilock(ip, iolock);
c58cb165 636 }
f0d26e86 637
d0606464 638 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 639 if (ret)
d0606464 640 goto out;
b3188919 641 iov_iter_truncate(from, count);
f0d26e86
DC
642
643 if (mapping->nrpages) {
07d5035a 644 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
7d4ea3ce 645 pos, pos + count - 1);
f0d26e86 646 if (ret)
d0606464 647 goto out;
834ffca6
DC
648 /*
649 * Invalidate whole pages. This can return an error if
650 * we fail to invalidate a page, but this should never
651 * happen on XFS. Warn if it does fail.
652 */
653 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce
DC
654 pos >> PAGE_CACHE_SHIFT,
655 (pos + count - 1) >> PAGE_CACHE_SHIFT);
834ffca6
DC
656 WARN_ON_ONCE(ret);
657 ret = 0;
f0d26e86
DC
658 }
659
eda77982
DC
660 /*
661 * If we are doing unaligned IO, wait for all other IO to drain,
662 * otherwise demote the lock if we had to flush cached pages
663 */
664 if (unaligned_io)
4a06fd26 665 inode_dio_wait(inode);
d0606464 666 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 667 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 668 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
669 }
670
671 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
b3188919 672 ret = generic_file_direct_write(iocb, from, pos);
f0d26e86 673
d0606464
CH
674out:
675 xfs_rw_iunlock(ip, iolock);
676
f0d26e86
DC
677 /* No fallback to buffered IO on errors for XFS. */
678 ASSERT(ret < 0 || ret == count);
679 return ret;
680}
681
00258e36 682STATIC ssize_t
637bbc75 683xfs_file_buffered_aio_write(
dda35b8f 684 struct kiocb *iocb,
b3188919 685 struct iov_iter *from)
dda35b8f
CH
686{
687 struct file *file = iocb->ki_filp;
688 struct address_space *mapping = file->f_mapping;
689 struct inode *inode = mapping->host;
00258e36 690 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
691 ssize_t ret;
692 int enospc = 0;
d0606464 693 int iolock = XFS_IOLOCK_EXCL;
b3188919
AV
694 loff_t pos = iocb->ki_pos;
695 size_t count = iov_iter_count(from);
dda35b8f 696
d0606464 697 xfs_rw_ilock(ip, iolock);
dda35b8f 698
d0606464 699 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 700 if (ret)
d0606464 701 goto out;
dda35b8f 702
b3188919 703 iov_iter_truncate(from, count);
dda35b8f
CH
704 /* We can write back this queue in page reclaim */
705 current->backing_dev_info = mapping->backing_dev_info;
706
dda35b8f 707write_retry:
637bbc75 708 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
b3188919 709 ret = generic_perform_write(file, from, pos);
0a64bc2c
AV
710 if (likely(ret >= 0))
711 iocb->ki_pos = pos + ret;
dc06f398 712
637bbc75 713 /*
dc06f398
BF
714 * If we hit a space limit, try to free up some lingering preallocated
715 * space before returning an error. In the case of ENOSPC, first try to
716 * write back all dirty inodes to free up some of the excess reserved
717 * metadata space. This reduces the chances that the eofblocks scan
718 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
719 * also behaves as a filter to prevent too many eofblocks scans from
720 * running at the same time.
637bbc75 721 */
dc06f398
BF
722 if (ret == -EDQUOT && !enospc) {
723 enospc = xfs_inode_free_quota_eofblocks(ip);
724 if (enospc)
725 goto write_retry;
726 } else if (ret == -ENOSPC && !enospc) {
727 struct xfs_eofblocks eofb = {0};
728
637bbc75 729 enospc = 1;
9aa05000 730 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
731 eofb.eof_scan_owner = ip->i_ino; /* for locking */
732 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
733 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 734 goto write_retry;
dda35b8f 735 }
d0606464 736
dda35b8f 737 current->backing_dev_info = NULL;
d0606464
CH
738out:
739 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
740 return ret;
741}
742
743STATIC ssize_t
bf97f3bc 744xfs_file_write_iter(
637bbc75 745 struct kiocb *iocb,
bf97f3bc 746 struct iov_iter *from)
637bbc75
DC
747{
748 struct file *file = iocb->ki_filp;
749 struct address_space *mapping = file->f_mapping;
750 struct inode *inode = mapping->host;
751 struct xfs_inode *ip = XFS_I(inode);
752 ssize_t ret;
bf97f3bc 753 size_t ocount = iov_iter_count(from);
637bbc75
DC
754
755 XFS_STATS_INC(xs_write_calls);
756
637bbc75
DC
757 if (ocount == 0)
758 return 0;
759
bf97f3bc
AV
760 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
761 return -EIO;
637bbc75
DC
762
763 if (unlikely(file->f_flags & O_DIRECT))
bf97f3bc 764 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 765 else
bf97f3bc 766 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 767
d0606464
CH
768 if (ret > 0) {
769 ssize_t err;
dda35b8f 770
d0606464 771 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 772
d0606464 773 /* Handle various SYNC-type writes */
d311d79d 774 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
775 if (err < 0)
776 ret = err;
dda35b8f 777 }
a363f0c2 778 return ret;
dda35b8f
CH
779}
780
2fe17c10
CH
781STATIC long
782xfs_file_fallocate(
83aee9e4
CH
783 struct file *file,
784 int mode,
785 loff_t offset,
786 loff_t len)
2fe17c10 787{
83aee9e4
CH
788 struct inode *inode = file_inode(file);
789 struct xfs_inode *ip = XFS_I(inode);
790 struct xfs_trans *tp;
791 long error;
792 loff_t new_size = 0;
2fe17c10 793
83aee9e4
CH
794 if (!S_ISREG(inode->i_mode))
795 return -EINVAL;
e1d8fb88 796 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
376ba313 797 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
798 return -EOPNOTSUPP;
799
2fe17c10 800 xfs_ilock(ip, XFS_IOLOCK_EXCL);
83aee9e4
CH
801 if (mode & FALLOC_FL_PUNCH_HOLE) {
802 error = xfs_free_file_space(ip, offset, len);
803 if (error)
804 goto out_unlock;
e1d8fb88
NJ
805 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
806 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
807
808 if (offset & blksize_mask || len & blksize_mask) {
2451337d 809 error = -EINVAL;
e1d8fb88
NJ
810 goto out_unlock;
811 }
812
23fffa92
LC
813 /*
814 * There is no need to overlap collapse range with EOF,
815 * in which case it is effectively a truncate operation
816 */
817 if (offset + len >= i_size_read(inode)) {
2451337d 818 error = -EINVAL;
23fffa92
LC
819 goto out_unlock;
820 }
821
e1d8fb88
NJ
822 new_size = i_size_read(inode) - len;
823
824 error = xfs_collapse_file_space(ip, offset, len);
825 if (error)
826 goto out_unlock;
83aee9e4
CH
827 } else {
828 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
829 offset + len > i_size_read(inode)) {
830 new_size = offset + len;
2451337d 831 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
832 if (error)
833 goto out_unlock;
834 }
2fe17c10 835
376ba313
LC
836 if (mode & FALLOC_FL_ZERO_RANGE)
837 error = xfs_zero_file_space(ip, offset, len);
838 else
839 error = xfs_alloc_file_space(ip, offset, len,
840 XFS_BMAPI_PREALLOC);
2fe17c10
CH
841 if (error)
842 goto out_unlock;
843 }
844
83aee9e4
CH
845 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
846 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
847 if (error) {
848 xfs_trans_cancel(tp, 0);
849 goto out_unlock;
850 }
851
852 xfs_ilock(ip, XFS_ILOCK_EXCL);
853 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
854 ip->i_d.di_mode &= ~S_ISUID;
855 if (ip->i_d.di_mode & S_IXGRP)
856 ip->i_d.di_mode &= ~S_ISGID;
82878897 857
e1d8fb88 858 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
83aee9e4
CH
859 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
860
861 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
862 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
863
864 if (file->f_flags & O_DSYNC)
865 xfs_trans_set_sync(tp);
866 error = xfs_trans_commit(tp, 0);
2fe17c10
CH
867 if (error)
868 goto out_unlock;
869
870 /* Change file size if needed */
871 if (new_size) {
872 struct iattr iattr;
873
874 iattr.ia_valid = ATTR_SIZE;
875 iattr.ia_size = new_size;
83aee9e4 876 error = xfs_setattr_size(ip, &iattr);
2fe17c10
CH
877 }
878
879out_unlock:
880 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
2451337d 881 return error;
2fe17c10
CH
882}
883
884
1da177e4 885STATIC int
3562fd45 886xfs_file_open(
1da177e4 887 struct inode *inode,
f999a5bf 888 struct file *file)
1da177e4 889{
f999a5bf 890 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 891 return -EFBIG;
f999a5bf
CH
892 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
893 return -EIO;
894 return 0;
895}
896
897STATIC int
898xfs_dir_open(
899 struct inode *inode,
900 struct file *file)
901{
902 struct xfs_inode *ip = XFS_I(inode);
903 int mode;
904 int error;
905
906 error = xfs_file_open(inode, file);
907 if (error)
908 return error;
909
910 /*
911 * If there are any blocks, read-ahead block 0 as we're almost
912 * certain to have the next operation be a read there.
913 */
309ecac8 914 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 915 if (ip->i_d.di_nextents > 0)
9df2dd0b 916 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
917 xfs_iunlock(ip, mode);
918 return 0;
1da177e4
LT
919}
920
1da177e4 921STATIC int
3562fd45 922xfs_file_release(
1da177e4
LT
923 struct inode *inode,
924 struct file *filp)
925{
2451337d 926 return xfs_release(XFS_I(inode));
1da177e4
LT
927}
928
1da177e4 929STATIC int
3562fd45 930xfs_file_readdir(
b8227554
AV
931 struct file *file,
932 struct dir_context *ctx)
1da177e4 933{
b8227554 934 struct inode *inode = file_inode(file);
739bfb2a 935 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
936 int error;
937 size_t bufsize;
938
939 /*
940 * The Linux API doesn't pass down the total size of the buffer
941 * we read into down to the filesystem. With the filldir concept
942 * it's not needed for correct information, but the XFS dir2 leaf
943 * code wants an estimate of the buffer size to calculate it's
944 * readahead window and size the buffers used for mapping to
945 * physical blocks.
946 *
947 * Try to give it an estimate that's good enough, maybe at some
948 * point we can change the ->readdir prototype to include the
a9cc799e 949 * buffer size. For now we use the current glibc buffer size.
051e7cd4 950 */
a9cc799e 951 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 952
b8227554 953 error = xfs_readdir(ip, ctx, bufsize);
051e7cd4 954 if (error)
2451337d 955 return error;
051e7cd4 956 return 0;
1da177e4
LT
957}
958
1da177e4 959STATIC int
3562fd45 960xfs_file_mmap(
1da177e4
LT
961 struct file *filp,
962 struct vm_area_struct *vma)
963{
3562fd45 964 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 965
fbc1462b 966 file_accessed(filp);
1da177e4
LT
967 return 0;
968}
969
4f57dbc6
DC
970/*
971 * mmap()d file has taken write protection fault and is being made
972 * writable. We can set the page state up correctly for a writable
973 * page, which means we can do correct delalloc accounting (ENOSPC
974 * checking!) and unwritten extent mapping.
975 */
976STATIC int
977xfs_vm_page_mkwrite(
978 struct vm_area_struct *vma,
c2ec175c 979 struct vm_fault *vmf)
4f57dbc6 980{
c2ec175c 981 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
982}
983
d126d43f
JL
984/*
985 * This type is designed to indicate the type of offset we would like
49c69591 986 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
987 */
988enum {
989 HOLE_OFF = 0,
990 DATA_OFF,
991};
992
993/*
994 * Lookup the desired type of offset from the given page.
995 *
996 * On success, return true and the offset argument will point to the
997 * start of the region that was found. Otherwise this function will
998 * return false and keep the offset argument unchanged.
999 */
1000STATIC bool
1001xfs_lookup_buffer_offset(
1002 struct page *page,
1003 loff_t *offset,
1004 unsigned int type)
1005{
1006 loff_t lastoff = page_offset(page);
1007 bool found = false;
1008 struct buffer_head *bh, *head;
1009
1010 bh = head = page_buffers(page);
1011 do {
1012 /*
1013 * Unwritten extents that have data in the page
1014 * cache covering them can be identified by the
1015 * BH_Unwritten state flag. Pages with multiple
1016 * buffers might have a mix of holes, data and
1017 * unwritten extents - any buffer with valid
1018 * data in it should have BH_Uptodate flag set
1019 * on it.
1020 */
1021 if (buffer_unwritten(bh) ||
1022 buffer_uptodate(bh)) {
1023 if (type == DATA_OFF)
1024 found = true;
1025 } else {
1026 if (type == HOLE_OFF)
1027 found = true;
1028 }
1029
1030 if (found) {
1031 *offset = lastoff;
1032 break;
1033 }
1034 lastoff += bh->b_size;
1035 } while ((bh = bh->b_this_page) != head);
1036
1037 return found;
1038}
1039
1040/*
1041 * This routine is called to find out and return a data or hole offset
1042 * from the page cache for unwritten extents according to the desired
49c69591 1043 * type for xfs_seek_hole_data().
d126d43f
JL
1044 *
1045 * The argument offset is used to tell where we start to search from the
1046 * page cache. Map is used to figure out the end points of the range to
1047 * lookup pages.
1048 *
1049 * Return true if the desired type of offset was found, and the argument
1050 * offset is filled with that address. Otherwise, return false and keep
1051 * offset unchanged.
1052 */
1053STATIC bool
1054xfs_find_get_desired_pgoff(
1055 struct inode *inode,
1056 struct xfs_bmbt_irec *map,
1057 unsigned int type,
1058 loff_t *offset)
1059{
1060 struct xfs_inode *ip = XFS_I(inode);
1061 struct xfs_mount *mp = ip->i_mount;
1062 struct pagevec pvec;
1063 pgoff_t index;
1064 pgoff_t end;
1065 loff_t endoff;
1066 loff_t startoff = *offset;
1067 loff_t lastoff = startoff;
1068 bool found = false;
1069
1070 pagevec_init(&pvec, 0);
1071
1072 index = startoff >> PAGE_CACHE_SHIFT;
1073 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1074 end = endoff >> PAGE_CACHE_SHIFT;
1075 do {
1076 int want;
1077 unsigned nr_pages;
1078 unsigned int i;
1079
1080 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1081 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1082 want);
1083 /*
1084 * No page mapped into given range. If we are searching holes
1085 * and if this is the first time we got into the loop, it means
1086 * that the given offset is landed in a hole, return it.
1087 *
1088 * If we have already stepped through some block buffers to find
1089 * holes but they all contains data. In this case, the last
1090 * offset is already updated and pointed to the end of the last
1091 * mapped page, if it does not reach the endpoint to search,
1092 * that means there should be a hole between them.
1093 */
1094 if (nr_pages == 0) {
1095 /* Data search found nothing */
1096 if (type == DATA_OFF)
1097 break;
1098
1099 ASSERT(type == HOLE_OFF);
1100 if (lastoff == startoff || lastoff < endoff) {
1101 found = true;
1102 *offset = lastoff;
1103 }
1104 break;
1105 }
1106
1107 /*
1108 * At lease we found one page. If this is the first time we
1109 * step into the loop, and if the first page index offset is
1110 * greater than the given search offset, a hole was found.
1111 */
1112 if (type == HOLE_OFF && lastoff == startoff &&
1113 lastoff < page_offset(pvec.pages[0])) {
1114 found = true;
1115 break;
1116 }
1117
1118 for (i = 0; i < nr_pages; i++) {
1119 struct page *page = pvec.pages[i];
1120 loff_t b_offset;
1121
1122 /*
1123 * At this point, the page may be truncated or
1124 * invalidated (changing page->mapping to NULL),
1125 * or even swizzled back from swapper_space to tmpfs
1126 * file mapping. However, page->index will not change
1127 * because we have a reference on the page.
1128 *
1129 * Searching done if the page index is out of range.
1130 * If the current offset is not reaches the end of
1131 * the specified search range, there should be a hole
1132 * between them.
1133 */
1134 if (page->index > end) {
1135 if (type == HOLE_OFF && lastoff < endoff) {
1136 *offset = lastoff;
1137 found = true;
1138 }
1139 goto out;
1140 }
1141
1142 lock_page(page);
1143 /*
1144 * Page truncated or invalidated(page->mapping == NULL).
1145 * We can freely skip it and proceed to check the next
1146 * page.
1147 */
1148 if (unlikely(page->mapping != inode->i_mapping)) {
1149 unlock_page(page);
1150 continue;
1151 }
1152
1153 if (!page_has_buffers(page)) {
1154 unlock_page(page);
1155 continue;
1156 }
1157
1158 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1159 if (found) {
1160 /*
1161 * The found offset may be less than the start
1162 * point to search if this is the first time to
1163 * come here.
1164 */
1165 *offset = max_t(loff_t, startoff, b_offset);
1166 unlock_page(page);
1167 goto out;
1168 }
1169
1170 /*
1171 * We either searching data but nothing was found, or
1172 * searching hole but found a data buffer. In either
1173 * case, probably the next page contains the desired
1174 * things, update the last offset to it so.
1175 */
1176 lastoff = page_offset(page) + PAGE_SIZE;
1177 unlock_page(page);
1178 }
1179
1180 /*
1181 * The number of returned pages less than our desired, search
1182 * done. In this case, nothing was found for searching data,
1183 * but we found a hole behind the last offset.
1184 */
1185 if (nr_pages < want) {
1186 if (type == HOLE_OFF) {
1187 *offset = lastoff;
1188 found = true;
1189 }
1190 break;
1191 }
1192
1193 index = pvec.pages[i - 1]->index + 1;
1194 pagevec_release(&pvec);
1195 } while (index <= end);
1196
1197out:
1198 pagevec_release(&pvec);
1199 return found;
1200}
1201
3fe3e6b1 1202STATIC loff_t
49c69591 1203xfs_seek_hole_data(
3fe3e6b1 1204 struct file *file,
49c69591
ES
1205 loff_t start,
1206 int whence)
3fe3e6b1
JL
1207{
1208 struct inode *inode = file->f_mapping->host;
1209 struct xfs_inode *ip = XFS_I(inode);
1210 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1211 loff_t uninitialized_var(offset);
1212 xfs_fsize_t isize;
1213 xfs_fileoff_t fsbno;
1214 xfs_filblks_t end;
1215 uint lock;
1216 int error;
1217
49c69591
ES
1218 if (XFS_FORCED_SHUTDOWN(mp))
1219 return -EIO;
1220
309ecac8 1221 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1222
1223 isize = i_size_read(inode);
1224 if (start >= isize) {
2451337d 1225 error = -ENXIO;
3fe3e6b1
JL
1226 goto out_unlock;
1227 }
1228
3fe3e6b1
JL
1229 /*
1230 * Try to read extents from the first block indicated
1231 * by fsbno to the end block of the file.
1232 */
52f1acc8 1233 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1234 end = XFS_B_TO_FSB(mp, isize);
49c69591 1235
52f1acc8
JL
1236 for (;;) {
1237 struct xfs_bmbt_irec map[2];
1238 int nmap = 2;
1239 unsigned int i;
3fe3e6b1 1240
52f1acc8
JL
1241 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1242 XFS_BMAPI_ENTIRE);
1243 if (error)
1244 goto out_unlock;
3fe3e6b1 1245
52f1acc8
JL
1246 /* No extents at given offset, must be beyond EOF */
1247 if (nmap == 0) {
2451337d 1248 error = -ENXIO;
52f1acc8
JL
1249 goto out_unlock;
1250 }
1251
1252 for (i = 0; i < nmap; i++) {
1253 offset = max_t(loff_t, start,
1254 XFS_FSB_TO_B(mp, map[i].br_startoff));
1255
49c69591
ES
1256 /* Landed in the hole we wanted? */
1257 if (whence == SEEK_HOLE &&
1258 map[i].br_startblock == HOLESTARTBLOCK)
1259 goto out;
1260
1261 /* Landed in the data extent we wanted? */
1262 if (whence == SEEK_DATA &&
1263 (map[i].br_startblock == DELAYSTARTBLOCK ||
1264 (map[i].br_state == XFS_EXT_NORM &&
1265 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1266 goto out;
1267
1268 /*
49c69591
ES
1269 * Landed in an unwritten extent, try to search
1270 * for hole or data from page cache.
52f1acc8
JL
1271 */
1272 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1273 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1274 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1275 &offset))
52f1acc8
JL
1276 goto out;
1277 }
1278 }
1279
1280 /*
49c69591
ES
1281 * We only received one extent out of the two requested. This
1282 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1283 */
3fe3e6b1 1284 if (nmap == 1) {
49c69591
ES
1285 /*
1286 * If we were looking for a hole, set offset to
1287 * the end of the file (i.e., there is an implicit
1288 * hole at the end of any file).
1289 */
1290 if (whence == SEEK_HOLE) {
1291 offset = isize;
1292 break;
1293 }
1294 /*
1295 * If we were looking for data, it's nowhere to be found
1296 */
1297 ASSERT(whence == SEEK_DATA);
2451337d 1298 error = -ENXIO;
3fe3e6b1
JL
1299 goto out_unlock;
1300 }
1301
52f1acc8
JL
1302 ASSERT(i > 1);
1303
1304 /*
1305 * Nothing was found, proceed to the next round of search
49c69591 1306 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1307 */
1308 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1309 start = XFS_FSB_TO_B(mp, fsbno);
1310 if (start >= isize) {
49c69591
ES
1311 if (whence == SEEK_HOLE) {
1312 offset = isize;
1313 break;
1314 }
1315 ASSERT(whence == SEEK_DATA);
2451337d 1316 error = -ENXIO;
52f1acc8
JL
1317 goto out_unlock;
1318 }
3fe3e6b1
JL
1319 }
1320
b686d1f7
JL
1321out:
1322 /*
49c69591 1323 * If at this point we have found the hole we wanted, the returned
b686d1f7 1324 * offset may be bigger than the file size as it may be aligned to
49c69591 1325 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1326 * situation in particular.
1327 */
49c69591
ES
1328 if (whence == SEEK_HOLE)
1329 offset = min_t(loff_t, offset, isize);
46a1c2c7 1330 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1331
1332out_unlock:
01f4f327 1333 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1334
1335 if (error)
2451337d 1336 return error;
3fe3e6b1
JL
1337 return offset;
1338}
1339
1340STATIC loff_t
1341xfs_file_llseek(
1342 struct file *file,
1343 loff_t offset,
59f9c004 1344 int whence)
3fe3e6b1 1345{
59f9c004 1346 switch (whence) {
3fe3e6b1
JL
1347 case SEEK_END:
1348 case SEEK_CUR:
1349 case SEEK_SET:
59f9c004 1350 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1351 case SEEK_HOLE:
49c69591 1352 case SEEK_DATA:
59f9c004 1353 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1354 default:
1355 return -EINVAL;
1356 }
1357}
1358
4b6f5d20 1359const struct file_operations xfs_file_operations = {
3fe3e6b1 1360 .llseek = xfs_file_llseek,
b4f5d2c6 1361 .read = new_sync_read,
bf97f3bc 1362 .write = new_sync_write,
b4f5d2c6 1363 .read_iter = xfs_file_read_iter,
bf97f3bc 1364 .write_iter = xfs_file_write_iter,
1b895840 1365 .splice_read = xfs_file_splice_read,
8d020765 1366 .splice_write = iter_file_splice_write,
3562fd45 1367 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1368#ifdef CONFIG_COMPAT
3562fd45 1369 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1370#endif
3562fd45
NS
1371 .mmap = xfs_file_mmap,
1372 .open = xfs_file_open,
1373 .release = xfs_file_release,
1374 .fsync = xfs_file_fsync,
2fe17c10 1375 .fallocate = xfs_file_fallocate,
1da177e4
LT
1376};
1377
4b6f5d20 1378const struct file_operations xfs_dir_file_operations = {
f999a5bf 1379 .open = xfs_dir_open,
1da177e4 1380 .read = generic_read_dir,
b8227554 1381 .iterate = xfs_file_readdir,
59af1584 1382 .llseek = generic_file_llseek,
3562fd45 1383 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1384#ifdef CONFIG_COMPAT
3562fd45 1385 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1386#endif
1da2f2db 1387 .fsync = xfs_dir_fsync,
1da177e4
LT
1388};
1389
f0f37e2f 1390static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1391 .fault = filemap_fault,
f1820361 1392 .map_pages = filemap_map_pages,
4f57dbc6 1393 .page_mkwrite = xfs_vm_page_mkwrite,
0b173bc4 1394 .remap_pages = generic_file_remap_pages,
6fac0cb4 1395};
This page took 0.813617 seconds and 5 git commands to generate.