xfs: xfs_attr_inactive leaves inconsistent attr fork state behind
[deliverable/linux.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
1da177e4
LT
40
41#include <linux/dcache.h>
2fe17c10 42#include <linux/falloc.h>
d126d43f 43#include <linux/pagevec.h>
1da177e4 44
f0f37e2f 45static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 46
487f84f3
DC
47/*
48 * Locking primitives for read and write IO paths to ensure we consistently use
49 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
50 */
51static inline void
52xfs_rw_ilock(
53 struct xfs_inode *ip,
54 int type)
55{
56 if (type & XFS_IOLOCK_EXCL)
57 mutex_lock(&VFS_I(ip)->i_mutex);
58 xfs_ilock(ip, type);
59}
60
61static inline void
62xfs_rw_iunlock(
63 struct xfs_inode *ip,
64 int type)
65{
66 xfs_iunlock(ip, type);
67 if (type & XFS_IOLOCK_EXCL)
68 mutex_unlock(&VFS_I(ip)->i_mutex);
69}
70
71static inline void
72xfs_rw_ilock_demote(
73 struct xfs_inode *ip,
74 int type)
75{
76 xfs_ilock_demote(ip, type);
77 if (type & XFS_IOLOCK_EXCL)
78 mutex_unlock(&VFS_I(ip)->i_mutex);
79}
80
dda35b8f
CH
81/*
82 * xfs_iozero
83 *
84 * xfs_iozero clears the specified range of buffer supplied,
85 * and marks all the affected blocks as valid and modified. If
86 * an affected block is not allocated, it will be allocated. If
87 * an affected block is not completely overwritten, and is not
88 * valid before the operation, it will be read from disk before
89 * being partially zeroed.
90 */
ef9d8733 91int
dda35b8f
CH
92xfs_iozero(
93 struct xfs_inode *ip, /* inode */
94 loff_t pos, /* offset in file */
95 size_t count) /* size of data to zero */
96{
97 struct page *page;
98 struct address_space *mapping;
99 int status;
100
101 mapping = VFS_I(ip)->i_mapping;
102 do {
103 unsigned offset, bytes;
104 void *fsdata;
105
106 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
107 bytes = PAGE_CACHE_SIZE - offset;
108 if (bytes > count)
109 bytes = count;
110
111 status = pagecache_write_begin(NULL, mapping, pos, bytes,
112 AOP_FLAG_UNINTERRUPTIBLE,
113 &page, &fsdata);
114 if (status)
115 break;
116
117 zero_user(page, offset, bytes);
118
119 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
120 page, fsdata);
121 WARN_ON(status <= 0); /* can't return less than zero! */
122 pos += bytes;
123 count -= bytes;
124 status = 0;
125 } while (count);
126
127 return (-status);
128}
129
8add71ca
CH
130int
131xfs_update_prealloc_flags(
132 struct xfs_inode *ip,
133 enum xfs_prealloc_flags flags)
134{
135 struct xfs_trans *tp;
136 int error;
137
138 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
139 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
140 if (error) {
141 xfs_trans_cancel(tp, 0);
142 return error;
143 }
144
145 xfs_ilock(ip, XFS_ILOCK_EXCL);
146 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
147
148 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
149 ip->i_d.di_mode &= ~S_ISUID;
150 if (ip->i_d.di_mode & S_IXGRP)
151 ip->i_d.di_mode &= ~S_ISGID;
152 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
153 }
154
155 if (flags & XFS_PREALLOC_SET)
156 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
157 if (flags & XFS_PREALLOC_CLEAR)
158 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
159
160 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
161 if (flags & XFS_PREALLOC_SYNC)
162 xfs_trans_set_sync(tp);
163 return xfs_trans_commit(tp, 0);
164}
165
1da2f2db
CH
166/*
167 * Fsync operations on directories are much simpler than on regular files,
168 * as there is no file data to flush, and thus also no need for explicit
169 * cache flush operations, and there are no non-transaction metadata updates
170 * on directories either.
171 */
172STATIC int
173xfs_dir_fsync(
174 struct file *file,
175 loff_t start,
176 loff_t end,
177 int datasync)
178{
179 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
180 struct xfs_mount *mp = ip->i_mount;
181 xfs_lsn_t lsn = 0;
182
183 trace_xfs_dir_fsync(ip);
184
185 xfs_ilock(ip, XFS_ILOCK_SHARED);
186 if (xfs_ipincount(ip))
187 lsn = ip->i_itemp->ili_last_lsn;
188 xfs_iunlock(ip, XFS_ILOCK_SHARED);
189
190 if (!lsn)
191 return 0;
2451337d 192 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
193}
194
fd3200be
CH
195STATIC int
196xfs_file_fsync(
197 struct file *file,
02c24a82
JB
198 loff_t start,
199 loff_t end,
fd3200be
CH
200 int datasync)
201{
7ea80859
CH
202 struct inode *inode = file->f_mapping->host;
203 struct xfs_inode *ip = XFS_I(inode);
a27a263b 204 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
205 int error = 0;
206 int log_flushed = 0;
b1037058 207 xfs_lsn_t lsn = 0;
fd3200be 208
cca28fb8 209 trace_xfs_file_fsync(ip);
fd3200be 210
02c24a82
JB
211 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
212 if (error)
213 return error;
214
a27a263b 215 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 216 return -EIO;
fd3200be
CH
217
218 xfs_iflags_clear(ip, XFS_ITRUNCATED);
219
a27a263b
CH
220 if (mp->m_flags & XFS_MOUNT_BARRIER) {
221 /*
222 * If we have an RT and/or log subvolume we need to make sure
223 * to flush the write cache the device used for file data
224 * first. This is to ensure newly written file data make
225 * it to disk before logging the new inode size in case of
226 * an extending write.
227 */
228 if (XFS_IS_REALTIME_INODE(ip))
229 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
230 else if (mp->m_logdev_targp != mp->m_ddev_targp)
231 xfs_blkdev_issue_flush(mp->m_ddev_targp);
232 }
233
fd3200be 234 /*
8a9c9980
CH
235 * All metadata updates are logged, which means that we just have
236 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
237 */
238 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
239 if (xfs_ipincount(ip)) {
240 if (!datasync ||
241 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
242 lsn = ip->i_itemp->ili_last_lsn;
243 }
8a9c9980 244 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 245
8a9c9980 246 if (lsn)
b1037058
CH
247 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
248
a27a263b
CH
249 /*
250 * If we only have a single device, and the log force about was
251 * a no-op we might have to flush the data device cache here.
252 * This can only happen for fdatasync/O_DSYNC if we were overwriting
253 * an already allocated file and thus do not have any metadata to
254 * commit.
255 */
256 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
257 mp->m_logdev_targp == mp->m_ddev_targp &&
258 !XFS_IS_REALTIME_INODE(ip) &&
259 !log_flushed)
260 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 261
2451337d 262 return error;
fd3200be
CH
263}
264
00258e36 265STATIC ssize_t
b4f5d2c6 266xfs_file_read_iter(
dda35b8f 267 struct kiocb *iocb,
b4f5d2c6 268 struct iov_iter *to)
dda35b8f
CH
269{
270 struct file *file = iocb->ki_filp;
271 struct inode *inode = file->f_mapping->host;
00258e36
CH
272 struct xfs_inode *ip = XFS_I(inode);
273 struct xfs_mount *mp = ip->i_mount;
b4f5d2c6 274 size_t size = iov_iter_count(to);
dda35b8f 275 ssize_t ret = 0;
00258e36 276 int ioflags = 0;
dda35b8f 277 xfs_fsize_t n;
b4f5d2c6 278 loff_t pos = iocb->ki_pos;
dda35b8f 279
dda35b8f
CH
280 XFS_STATS_INC(xs_read_calls);
281
2ba48ce5 282 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
b92cc59f 283 ioflags |= XFS_IO_ISDIRECT;
00258e36 284 if (file->f_mode & FMODE_NOCMTIME)
b92cc59f 285 ioflags |= XFS_IO_INVIS;
00258e36 286
b92cc59f 287 if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
dda35b8f
CH
288 xfs_buftarg_t *target =
289 XFS_IS_REALTIME_INODE(ip) ?
290 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
291 /* DIO must be aligned to device logical sector size */
292 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 293 if (pos == i_size_read(inode))
00258e36 294 return 0;
b474c7ae 295 return -EINVAL;
dda35b8f
CH
296 }
297 }
298
fb595814 299 n = mp->m_super->s_maxbytes - pos;
00258e36 300 if (n <= 0 || size == 0)
dda35b8f
CH
301 return 0;
302
303 if (n < size)
304 size = n;
305
306 if (XFS_FORCED_SHUTDOWN(mp))
307 return -EIO;
308
0c38a251
DC
309 /*
310 * Locking is a bit tricky here. If we take an exclusive lock
311 * for direct IO, we effectively serialise all new concurrent
312 * read IO to this file and block it behind IO that is currently in
313 * progress because IO in progress holds the IO lock shared. We only
314 * need to hold the lock exclusive to blow away the page cache, so
315 * only take lock exclusively if the page cache needs invalidation.
316 * This allows the normal direct IO case of no page cache pages to
317 * proceeed concurrently without serialisation.
318 */
319 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b92cc59f 320 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
0c38a251 321 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
322 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
323
00258e36 324 if (inode->i_mapping->nrpages) {
8ff1e670 325 ret = filemap_write_and_wait_range(
fb595814 326 VFS_I(ip)->i_mapping,
7d4ea3ce 327 pos, pos + size - 1);
487f84f3
DC
328 if (ret) {
329 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
330 return ret;
331 }
85e584da
CM
332
333 /*
334 * Invalidate whole pages. This can return an error if
335 * we fail to invalidate a page, but this should never
336 * happen on XFS. Warn if it does fail.
337 */
338 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce
DC
339 pos >> PAGE_CACHE_SHIFT,
340 (pos + size - 1) >> PAGE_CACHE_SHIFT);
85e584da
CM
341 WARN_ON_ONCE(ret);
342 ret = 0;
00258e36 343 }
487f84f3 344 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 345 }
dda35b8f 346
fb595814 347 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 348
b4f5d2c6 349 ret = generic_file_read_iter(iocb, to);
dda35b8f
CH
350 if (ret > 0)
351 XFS_STATS_ADD(xs_read_bytes, ret);
352
487f84f3 353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
354 return ret;
355}
356
00258e36
CH
357STATIC ssize_t
358xfs_file_splice_read(
dda35b8f
CH
359 struct file *infilp,
360 loff_t *ppos,
361 struct pipe_inode_info *pipe,
362 size_t count,
00258e36 363 unsigned int flags)
dda35b8f 364{
00258e36 365 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 366 int ioflags = 0;
dda35b8f
CH
367 ssize_t ret;
368
369 XFS_STATS_INC(xs_read_calls);
00258e36
CH
370
371 if (infilp->f_mode & FMODE_NOCMTIME)
b92cc59f 372 ioflags |= XFS_IO_INVIS;
00258e36 373
dda35b8f
CH
374 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
375 return -EIO;
376
487f84f3 377 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 378
dda35b8f
CH
379 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
380
381 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
382 if (ret > 0)
383 XFS_STATS_ADD(xs_read_bytes, ret);
384
487f84f3 385 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
386 return ret;
387}
388
dda35b8f 389/*
193aec10
CH
390 * This routine is called to handle zeroing any space in the last block of the
391 * file that is beyond the EOF. We do this since the size is being increased
392 * without writing anything to that block and we don't want to read the
393 * garbage on the disk.
dda35b8f
CH
394 */
395STATIC int /* error (positive) */
396xfs_zero_last_block(
193aec10
CH
397 struct xfs_inode *ip,
398 xfs_fsize_t offset,
5885ebda
DC
399 xfs_fsize_t isize,
400 bool *did_zeroing)
dda35b8f 401{
193aec10
CH
402 struct xfs_mount *mp = ip->i_mount;
403 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
404 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
405 int zero_len;
406 int nimaps = 1;
407 int error = 0;
408 struct xfs_bmbt_irec imap;
dda35b8f 409
193aec10 410 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 411 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 412 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 413 if (error)
dda35b8f 414 return error;
193aec10 415
dda35b8f 416 ASSERT(nimaps > 0);
193aec10 417
dda35b8f
CH
418 /*
419 * If the block underlying isize is just a hole, then there
420 * is nothing to zero.
421 */
193aec10 422 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 423 return 0;
dda35b8f
CH
424
425 zero_len = mp->m_sb.sb_blocksize - zero_offset;
426 if (isize + zero_len > offset)
427 zero_len = offset - isize;
5885ebda 428 *did_zeroing = true;
193aec10 429 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
430}
431
432/*
193aec10
CH
433 * Zero any on disk space between the current EOF and the new, larger EOF.
434 *
435 * This handles the normal case of zeroing the remainder of the last block in
436 * the file and the unusual case of zeroing blocks out beyond the size of the
437 * file. This second case only happens with fixed size extents and when the
438 * system crashes before the inode size was updated but after blocks were
439 * allocated.
440 *
441 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 442 */
dda35b8f
CH
443int /* error (positive) */
444xfs_zero_eof(
193aec10
CH
445 struct xfs_inode *ip,
446 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
447 xfs_fsize_t isize, /* current inode size */
448 bool *did_zeroing)
dda35b8f 449{
193aec10
CH
450 struct xfs_mount *mp = ip->i_mount;
451 xfs_fileoff_t start_zero_fsb;
452 xfs_fileoff_t end_zero_fsb;
453 xfs_fileoff_t zero_count_fsb;
454 xfs_fileoff_t last_fsb;
455 xfs_fileoff_t zero_off;
456 xfs_fsize_t zero_len;
457 int nimaps;
458 int error = 0;
459 struct xfs_bmbt_irec imap;
460
461 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
462 ASSERT(offset > isize);
463
464 /*
465 * First handle zeroing the block on which isize resides.
193aec10 466 *
dda35b8f
CH
467 * We only zero a part of that block so it is handled specially.
468 */
193aec10 469 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
5885ebda 470 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
193aec10
CH
471 if (error)
472 return error;
dda35b8f
CH
473 }
474
475 /*
193aec10
CH
476 * Calculate the range between the new size and the old where blocks
477 * needing to be zeroed may exist.
478 *
479 * To get the block where the last byte in the file currently resides,
480 * we need to subtract one from the size and truncate back to a block
481 * boundary. We subtract 1 in case the size is exactly on a block
482 * boundary.
dda35b8f
CH
483 */
484 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
485 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
486 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
487 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
488 if (last_fsb == end_zero_fsb) {
489 /*
490 * The size was only incremented on its last block.
491 * We took care of that above, so just return.
492 */
493 return 0;
494 }
495
496 ASSERT(start_zero_fsb <= end_zero_fsb);
497 while (start_zero_fsb <= end_zero_fsb) {
498 nimaps = 1;
499 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
500
501 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
502 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
503 &imap, &nimaps, 0);
193aec10
CH
504 xfs_iunlock(ip, XFS_ILOCK_EXCL);
505 if (error)
dda35b8f 506 return error;
193aec10 507
dda35b8f
CH
508 ASSERT(nimaps > 0);
509
510 if (imap.br_state == XFS_EXT_UNWRITTEN ||
511 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
512 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
513 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
514 continue;
515 }
516
517 /*
518 * There are blocks we need to zero.
dda35b8f 519 */
dda35b8f
CH
520 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
521 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
522
523 if ((zero_off + zero_len) > offset)
524 zero_len = offset - zero_off;
525
526 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
527 if (error)
528 return error;
dda35b8f 529
5885ebda 530 *did_zeroing = true;
dda35b8f
CH
531 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
532 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
533 }
534
535 return 0;
dda35b8f
CH
536}
537
4d8d1581
DC
538/*
539 * Common pre-write limit and setup checks.
540 *
5bf1f262
CH
541 * Called with the iolocked held either shared and exclusive according to
542 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
543 * if called for a direct write beyond i_size.
4d8d1581
DC
544 */
545STATIC ssize_t
546xfs_file_aio_write_checks(
99733fa3
AV
547 struct kiocb *iocb,
548 struct iov_iter *from,
4d8d1581
DC
549 int *iolock)
550{
99733fa3 551 struct file *file = iocb->ki_filp;
4d8d1581
DC
552 struct inode *inode = file->f_mapping->host;
553 struct xfs_inode *ip = XFS_I(inode);
3309dd04 554 ssize_t error = 0;
99733fa3 555 size_t count = iov_iter_count(from);
4d8d1581 556
7271d243 557restart:
3309dd04
AV
558 error = generic_write_checks(iocb, from);
559 if (error <= 0)
4d8d1581 560 return error;
4d8d1581 561
21c3ea18 562 error = xfs_break_layouts(inode, iolock, true);
781355c6
CH
563 if (error)
564 return error;
565
4d8d1581
DC
566 /*
567 * If the offset is beyond the size of the file, we need to zero any
568 * blocks that fall between the existing EOF and the start of this
2813d682 569 * write. If zeroing is needed and we are currently holding the
467f7899
CH
570 * iolock shared, we need to update it to exclusive which implies
571 * having to redo all checks before.
b9d59846
DC
572 *
573 * We need to serialise against EOF updates that occur in IO
574 * completions here. We want to make sure that nobody is changing the
575 * size while we do this check until we have placed an IO barrier (i.e.
576 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
577 * The spinlock effectively forms a memory barrier once we have the
578 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
579 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 580 */
b9d59846 581 spin_lock(&ip->i_flags_lock);
99733fa3 582 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
583 bool zero = false;
584
b9d59846 585 spin_unlock(&ip->i_flags_lock);
7271d243 586 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 587 xfs_rw_iunlock(ip, *iolock);
7271d243 588 *iolock = XFS_IOLOCK_EXCL;
467f7899 589 xfs_rw_ilock(ip, *iolock);
3309dd04 590 iov_iter_reexpand(from, count);
40c63fbc
DC
591
592 /*
593 * We now have an IO submission barrier in place, but
594 * AIO can do EOF updates during IO completion and hence
595 * we now need to wait for all of them to drain. Non-AIO
596 * DIO will have drained before we are given the
597 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
598 * no-op.
599 */
600 inode_dio_wait(inode);
7271d243
DC
601 goto restart;
602 }
99733fa3 603 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
604 if (error)
605 return error;
b9d59846
DC
606 } else
607 spin_unlock(&ip->i_flags_lock);
4d8d1581 608
8a9c9980
CH
609 /*
610 * Updating the timestamps will grab the ilock again from
611 * xfs_fs_dirty_inode, so we have to call it after dropping the
612 * lock above. Eventually we should look into a way to avoid
613 * the pointless lock roundtrip.
614 */
c3b2da31
JB
615 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
616 error = file_update_time(file);
617 if (error)
618 return error;
619 }
8a9c9980 620
4d8d1581
DC
621 /*
622 * If we're writing the file then make sure to clear the setuid and
623 * setgid bits if the process is not being run by root. This keeps
624 * people from modifying setuid and setgid binaries.
625 */
626 return file_remove_suid(file);
4d8d1581
DC
627}
628
f0d26e86
DC
629/*
630 * xfs_file_dio_aio_write - handle direct IO writes
631 *
632 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 633 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
634 * follow locking changes and looping.
635 *
eda77982
DC
636 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
637 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
638 * pages are flushed out.
639 *
640 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
641 * allowing them to be done in parallel with reads and other direct IO writes.
642 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
643 * needs to do sub-block zeroing and that requires serialisation against other
644 * direct IOs to the same block. In this case we need to serialise the
645 * submission of the unaligned IOs so that we don't get racing block zeroing in
646 * the dio layer. To avoid the problem with aio, we also need to wait for
647 * outstanding IOs to complete so that unwritten extent conversion is completed
648 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 649 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 650 *
f0d26e86
DC
651 * Returns with locks held indicated by @iolock and errors indicated by
652 * negative return values.
653 */
654STATIC ssize_t
655xfs_file_dio_aio_write(
656 struct kiocb *iocb,
b3188919 657 struct iov_iter *from)
f0d26e86
DC
658{
659 struct file *file = iocb->ki_filp;
660 struct address_space *mapping = file->f_mapping;
661 struct inode *inode = mapping->host;
662 struct xfs_inode *ip = XFS_I(inode);
663 struct xfs_mount *mp = ip->i_mount;
664 ssize_t ret = 0;
eda77982 665 int unaligned_io = 0;
d0606464 666 int iolock;
b3188919
AV
667 size_t count = iov_iter_count(from);
668 loff_t pos = iocb->ki_pos;
0cefb29e
DC
669 loff_t end;
670 struct iov_iter data;
f0d26e86
DC
671 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
672 mp->m_rtdev_targp : mp->m_ddev_targp;
673
7c71ee78
ES
674 /* DIO must be aligned to device logical sector size */
675 if ((pos | count) & target->bt_logical_sectormask)
b474c7ae 676 return -EINVAL;
f0d26e86 677
7c71ee78 678 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
679 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
680 unaligned_io = 1;
681
7271d243
DC
682 /*
683 * We don't need to take an exclusive lock unless there page cache needs
684 * to be invalidated or unaligned IO is being executed. We don't need to
685 * consider the EOF extension case here because
686 * xfs_file_aio_write_checks() will relock the inode as necessary for
687 * EOF zeroing cases and fill out the new inode size as appropriate.
688 */
689 if (unaligned_io || mapping->nrpages)
d0606464 690 iolock = XFS_IOLOCK_EXCL;
f0d26e86 691 else
d0606464
CH
692 iolock = XFS_IOLOCK_SHARED;
693 xfs_rw_ilock(ip, iolock);
c58cb165
CH
694
695 /*
696 * Recheck if there are cached pages that need invalidate after we got
697 * the iolock to protect against other threads adding new pages while
698 * we were waiting for the iolock.
699 */
d0606464
CH
700 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
701 xfs_rw_iunlock(ip, iolock);
702 iolock = XFS_IOLOCK_EXCL;
703 xfs_rw_ilock(ip, iolock);
c58cb165 704 }
f0d26e86 705
99733fa3 706 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 707 if (ret)
d0606464 708 goto out;
99733fa3
AV
709 count = iov_iter_count(from);
710 pos = iocb->ki_pos;
0cefb29e 711 end = pos + count - 1;
f0d26e86
DC
712
713 if (mapping->nrpages) {
07d5035a 714 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
0cefb29e 715 pos, end);
f0d26e86 716 if (ret)
d0606464 717 goto out;
834ffca6
DC
718 /*
719 * Invalidate whole pages. This can return an error if
720 * we fail to invalidate a page, but this should never
721 * happen on XFS. Warn if it does fail.
722 */
723 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce 724 pos >> PAGE_CACHE_SHIFT,
0cefb29e 725 end >> PAGE_CACHE_SHIFT);
834ffca6
DC
726 WARN_ON_ONCE(ret);
727 ret = 0;
f0d26e86
DC
728 }
729
eda77982
DC
730 /*
731 * If we are doing unaligned IO, wait for all other IO to drain,
732 * otherwise demote the lock if we had to flush cached pages
733 */
734 if (unaligned_io)
4a06fd26 735 inode_dio_wait(inode);
d0606464 736 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 737 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 738 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
739 }
740
741 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
f0d26e86 742
0cefb29e 743 data = *from;
1aef882f 744 ret = mapping->a_ops->direct_IO(iocb, &data, pos);
0cefb29e
DC
745
746 /* see generic_file_direct_write() for why this is necessary */
747 if (mapping->nrpages) {
748 invalidate_inode_pages2_range(mapping,
749 pos >> PAGE_CACHE_SHIFT,
750 end >> PAGE_CACHE_SHIFT);
751 }
752
753 if (ret > 0) {
754 pos += ret;
755 iov_iter_advance(from, ret);
756 iocb->ki_pos = pos;
757 }
d0606464
CH
758out:
759 xfs_rw_iunlock(ip, iolock);
760
f0d26e86
DC
761 /* No fallback to buffered IO on errors for XFS. */
762 ASSERT(ret < 0 || ret == count);
763 return ret;
764}
765
00258e36 766STATIC ssize_t
637bbc75 767xfs_file_buffered_aio_write(
dda35b8f 768 struct kiocb *iocb,
b3188919 769 struct iov_iter *from)
dda35b8f
CH
770{
771 struct file *file = iocb->ki_filp;
772 struct address_space *mapping = file->f_mapping;
773 struct inode *inode = mapping->host;
00258e36 774 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
775 ssize_t ret;
776 int enospc = 0;
d0606464 777 int iolock = XFS_IOLOCK_EXCL;
dda35b8f 778
d0606464 779 xfs_rw_ilock(ip, iolock);
dda35b8f 780
99733fa3 781 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 782 if (ret)
d0606464 783 goto out;
dda35b8f
CH
784
785 /* We can write back this queue in page reclaim */
de1414a6 786 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 787
dda35b8f 788write_retry:
99733fa3
AV
789 trace_xfs_file_buffered_write(ip, iov_iter_count(from),
790 iocb->ki_pos, 0);
791 ret = generic_perform_write(file, from, iocb->ki_pos);
0a64bc2c 792 if (likely(ret >= 0))
99733fa3 793 iocb->ki_pos += ret;
dc06f398 794
637bbc75 795 /*
dc06f398
BF
796 * If we hit a space limit, try to free up some lingering preallocated
797 * space before returning an error. In the case of ENOSPC, first try to
798 * write back all dirty inodes to free up some of the excess reserved
799 * metadata space. This reduces the chances that the eofblocks scan
800 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
801 * also behaves as a filter to prevent too many eofblocks scans from
802 * running at the same time.
637bbc75 803 */
dc06f398
BF
804 if (ret == -EDQUOT && !enospc) {
805 enospc = xfs_inode_free_quota_eofblocks(ip);
806 if (enospc)
807 goto write_retry;
808 } else if (ret == -ENOSPC && !enospc) {
809 struct xfs_eofblocks eofb = {0};
810
637bbc75 811 enospc = 1;
9aa05000 812 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
813 eofb.eof_scan_owner = ip->i_ino; /* for locking */
814 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
815 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 816 goto write_retry;
dda35b8f 817 }
d0606464 818
dda35b8f 819 current->backing_dev_info = NULL;
d0606464
CH
820out:
821 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
822 return ret;
823}
824
825STATIC ssize_t
bf97f3bc 826xfs_file_write_iter(
637bbc75 827 struct kiocb *iocb,
bf97f3bc 828 struct iov_iter *from)
637bbc75
DC
829{
830 struct file *file = iocb->ki_filp;
831 struct address_space *mapping = file->f_mapping;
832 struct inode *inode = mapping->host;
833 struct xfs_inode *ip = XFS_I(inode);
834 ssize_t ret;
bf97f3bc 835 size_t ocount = iov_iter_count(from);
637bbc75
DC
836
837 XFS_STATS_INC(xs_write_calls);
838
637bbc75
DC
839 if (ocount == 0)
840 return 0;
841
bf97f3bc
AV
842 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
843 return -EIO;
637bbc75 844
2ba48ce5 845 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
bf97f3bc 846 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 847 else
bf97f3bc 848 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 849
d0606464
CH
850 if (ret > 0) {
851 ssize_t err;
dda35b8f 852
d0606464 853 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 854
d0606464 855 /* Handle various SYNC-type writes */
d311d79d 856 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
857 if (err < 0)
858 ret = err;
dda35b8f 859 }
a363f0c2 860 return ret;
dda35b8f
CH
861}
862
a904b1ca
NJ
863#define XFS_FALLOC_FL_SUPPORTED \
864 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
865 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
866 FALLOC_FL_INSERT_RANGE)
867
2fe17c10
CH
868STATIC long
869xfs_file_fallocate(
83aee9e4
CH
870 struct file *file,
871 int mode,
872 loff_t offset,
873 loff_t len)
2fe17c10 874{
83aee9e4
CH
875 struct inode *inode = file_inode(file);
876 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 877 long error;
8add71ca 878 enum xfs_prealloc_flags flags = 0;
781355c6 879 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 880 loff_t new_size = 0;
a904b1ca 881 bool do_file_insert = 0;
2fe17c10 882
83aee9e4
CH
883 if (!S_ISREG(inode->i_mode))
884 return -EINVAL;
a904b1ca 885 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
886 return -EOPNOTSUPP;
887
781355c6 888 xfs_ilock(ip, iolock);
21c3ea18 889 error = xfs_break_layouts(inode, &iolock, false);
781355c6
CH
890 if (error)
891 goto out_unlock;
892
e8e9ad42
DC
893 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
894 iolock |= XFS_MMAPLOCK_EXCL;
895
83aee9e4
CH
896 if (mode & FALLOC_FL_PUNCH_HOLE) {
897 error = xfs_free_file_space(ip, offset, len);
898 if (error)
899 goto out_unlock;
e1d8fb88
NJ
900 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
901 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
902
903 if (offset & blksize_mask || len & blksize_mask) {
2451337d 904 error = -EINVAL;
e1d8fb88
NJ
905 goto out_unlock;
906 }
907
23fffa92
LC
908 /*
909 * There is no need to overlap collapse range with EOF,
910 * in which case it is effectively a truncate operation
911 */
912 if (offset + len >= i_size_read(inode)) {
2451337d 913 error = -EINVAL;
23fffa92
LC
914 goto out_unlock;
915 }
916
e1d8fb88
NJ
917 new_size = i_size_read(inode) - len;
918
919 error = xfs_collapse_file_space(ip, offset, len);
920 if (error)
921 goto out_unlock;
a904b1ca
NJ
922 } else if (mode & FALLOC_FL_INSERT_RANGE) {
923 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
924
925 new_size = i_size_read(inode) + len;
926 if (offset & blksize_mask || len & blksize_mask) {
927 error = -EINVAL;
928 goto out_unlock;
929 }
930
931 /* check the new inode size does not wrap through zero */
932 if (new_size > inode->i_sb->s_maxbytes) {
933 error = -EFBIG;
934 goto out_unlock;
935 }
936
937 /* Offset should be less than i_size */
938 if (offset >= i_size_read(inode)) {
939 error = -EINVAL;
940 goto out_unlock;
941 }
942 do_file_insert = 1;
83aee9e4 943 } else {
8add71ca
CH
944 flags |= XFS_PREALLOC_SET;
945
83aee9e4
CH
946 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
947 offset + len > i_size_read(inode)) {
948 new_size = offset + len;
2451337d 949 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
950 if (error)
951 goto out_unlock;
952 }
2fe17c10 953
376ba313
LC
954 if (mode & FALLOC_FL_ZERO_RANGE)
955 error = xfs_zero_file_space(ip, offset, len);
956 else
957 error = xfs_alloc_file_space(ip, offset, len,
958 XFS_BMAPI_PREALLOC);
2fe17c10
CH
959 if (error)
960 goto out_unlock;
961 }
962
83aee9e4 963 if (file->f_flags & O_DSYNC)
8add71ca
CH
964 flags |= XFS_PREALLOC_SYNC;
965
966 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
967 if (error)
968 goto out_unlock;
969
970 /* Change file size if needed */
971 if (new_size) {
972 struct iattr iattr;
973
974 iattr.ia_valid = ATTR_SIZE;
975 iattr.ia_size = new_size;
83aee9e4 976 error = xfs_setattr_size(ip, &iattr);
a904b1ca
NJ
977 if (error)
978 goto out_unlock;
2fe17c10
CH
979 }
980
a904b1ca
NJ
981 /*
982 * Perform hole insertion now that the file size has been
983 * updated so that if we crash during the operation we don't
984 * leave shifted extents past EOF and hence losing access to
985 * the data that is contained within them.
986 */
987 if (do_file_insert)
988 error = xfs_insert_file_space(ip, offset, len);
989
2fe17c10 990out_unlock:
781355c6 991 xfs_iunlock(ip, iolock);
2451337d 992 return error;
2fe17c10
CH
993}
994
995
1da177e4 996STATIC int
3562fd45 997xfs_file_open(
1da177e4 998 struct inode *inode,
f999a5bf 999 struct file *file)
1da177e4 1000{
f999a5bf 1001 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 1002 return -EFBIG;
f999a5bf
CH
1003 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1004 return -EIO;
1005 return 0;
1006}
1007
1008STATIC int
1009xfs_dir_open(
1010 struct inode *inode,
1011 struct file *file)
1012{
1013 struct xfs_inode *ip = XFS_I(inode);
1014 int mode;
1015 int error;
1016
1017 error = xfs_file_open(inode, file);
1018 if (error)
1019 return error;
1020
1021 /*
1022 * If there are any blocks, read-ahead block 0 as we're almost
1023 * certain to have the next operation be a read there.
1024 */
309ecac8 1025 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 1026 if (ip->i_d.di_nextents > 0)
9df2dd0b 1027 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
1028 xfs_iunlock(ip, mode);
1029 return 0;
1da177e4
LT
1030}
1031
1da177e4 1032STATIC int
3562fd45 1033xfs_file_release(
1da177e4
LT
1034 struct inode *inode,
1035 struct file *filp)
1036{
2451337d 1037 return xfs_release(XFS_I(inode));
1da177e4
LT
1038}
1039
1da177e4 1040STATIC int
3562fd45 1041xfs_file_readdir(
b8227554
AV
1042 struct file *file,
1043 struct dir_context *ctx)
1da177e4 1044{
b8227554 1045 struct inode *inode = file_inode(file);
739bfb2a 1046 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1047 size_t bufsize;
1048
1049 /*
1050 * The Linux API doesn't pass down the total size of the buffer
1051 * we read into down to the filesystem. With the filldir concept
1052 * it's not needed for correct information, but the XFS dir2 leaf
1053 * code wants an estimate of the buffer size to calculate it's
1054 * readahead window and size the buffers used for mapping to
1055 * physical blocks.
1056 *
1057 * Try to give it an estimate that's good enough, maybe at some
1058 * point we can change the ->readdir prototype to include the
a9cc799e 1059 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1060 */
a9cc799e 1061 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 1062
8300475e 1063 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
1064}
1065
1da177e4 1066STATIC int
3562fd45 1067xfs_file_mmap(
1da177e4
LT
1068 struct file *filp,
1069 struct vm_area_struct *vma)
1070{
3562fd45 1071 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 1072
fbc1462b 1073 file_accessed(filp);
1da177e4
LT
1074 return 0;
1075}
1076
d126d43f
JL
1077/*
1078 * This type is designed to indicate the type of offset we would like
49c69591 1079 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1080 */
1081enum {
1082 HOLE_OFF = 0,
1083 DATA_OFF,
1084};
1085
1086/*
1087 * Lookup the desired type of offset from the given page.
1088 *
1089 * On success, return true and the offset argument will point to the
1090 * start of the region that was found. Otherwise this function will
1091 * return false and keep the offset argument unchanged.
1092 */
1093STATIC bool
1094xfs_lookup_buffer_offset(
1095 struct page *page,
1096 loff_t *offset,
1097 unsigned int type)
1098{
1099 loff_t lastoff = page_offset(page);
1100 bool found = false;
1101 struct buffer_head *bh, *head;
1102
1103 bh = head = page_buffers(page);
1104 do {
1105 /*
1106 * Unwritten extents that have data in the page
1107 * cache covering them can be identified by the
1108 * BH_Unwritten state flag. Pages with multiple
1109 * buffers might have a mix of holes, data and
1110 * unwritten extents - any buffer with valid
1111 * data in it should have BH_Uptodate flag set
1112 * on it.
1113 */
1114 if (buffer_unwritten(bh) ||
1115 buffer_uptodate(bh)) {
1116 if (type == DATA_OFF)
1117 found = true;
1118 } else {
1119 if (type == HOLE_OFF)
1120 found = true;
1121 }
1122
1123 if (found) {
1124 *offset = lastoff;
1125 break;
1126 }
1127 lastoff += bh->b_size;
1128 } while ((bh = bh->b_this_page) != head);
1129
1130 return found;
1131}
1132
1133/*
1134 * This routine is called to find out and return a data or hole offset
1135 * from the page cache for unwritten extents according to the desired
49c69591 1136 * type for xfs_seek_hole_data().
d126d43f
JL
1137 *
1138 * The argument offset is used to tell where we start to search from the
1139 * page cache. Map is used to figure out the end points of the range to
1140 * lookup pages.
1141 *
1142 * Return true if the desired type of offset was found, and the argument
1143 * offset is filled with that address. Otherwise, return false and keep
1144 * offset unchanged.
1145 */
1146STATIC bool
1147xfs_find_get_desired_pgoff(
1148 struct inode *inode,
1149 struct xfs_bmbt_irec *map,
1150 unsigned int type,
1151 loff_t *offset)
1152{
1153 struct xfs_inode *ip = XFS_I(inode);
1154 struct xfs_mount *mp = ip->i_mount;
1155 struct pagevec pvec;
1156 pgoff_t index;
1157 pgoff_t end;
1158 loff_t endoff;
1159 loff_t startoff = *offset;
1160 loff_t lastoff = startoff;
1161 bool found = false;
1162
1163 pagevec_init(&pvec, 0);
1164
1165 index = startoff >> PAGE_CACHE_SHIFT;
1166 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1167 end = endoff >> PAGE_CACHE_SHIFT;
1168 do {
1169 int want;
1170 unsigned nr_pages;
1171 unsigned int i;
1172
1173 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1174 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1175 want);
1176 /*
1177 * No page mapped into given range. If we are searching holes
1178 * and if this is the first time we got into the loop, it means
1179 * that the given offset is landed in a hole, return it.
1180 *
1181 * If we have already stepped through some block buffers to find
1182 * holes but they all contains data. In this case, the last
1183 * offset is already updated and pointed to the end of the last
1184 * mapped page, if it does not reach the endpoint to search,
1185 * that means there should be a hole between them.
1186 */
1187 if (nr_pages == 0) {
1188 /* Data search found nothing */
1189 if (type == DATA_OFF)
1190 break;
1191
1192 ASSERT(type == HOLE_OFF);
1193 if (lastoff == startoff || lastoff < endoff) {
1194 found = true;
1195 *offset = lastoff;
1196 }
1197 break;
1198 }
1199
1200 /*
1201 * At lease we found one page. If this is the first time we
1202 * step into the loop, and if the first page index offset is
1203 * greater than the given search offset, a hole was found.
1204 */
1205 if (type == HOLE_OFF && lastoff == startoff &&
1206 lastoff < page_offset(pvec.pages[0])) {
1207 found = true;
1208 break;
1209 }
1210
1211 for (i = 0; i < nr_pages; i++) {
1212 struct page *page = pvec.pages[i];
1213 loff_t b_offset;
1214
1215 /*
1216 * At this point, the page may be truncated or
1217 * invalidated (changing page->mapping to NULL),
1218 * or even swizzled back from swapper_space to tmpfs
1219 * file mapping. However, page->index will not change
1220 * because we have a reference on the page.
1221 *
1222 * Searching done if the page index is out of range.
1223 * If the current offset is not reaches the end of
1224 * the specified search range, there should be a hole
1225 * between them.
1226 */
1227 if (page->index > end) {
1228 if (type == HOLE_OFF && lastoff < endoff) {
1229 *offset = lastoff;
1230 found = true;
1231 }
1232 goto out;
1233 }
1234
1235 lock_page(page);
1236 /*
1237 * Page truncated or invalidated(page->mapping == NULL).
1238 * We can freely skip it and proceed to check the next
1239 * page.
1240 */
1241 if (unlikely(page->mapping != inode->i_mapping)) {
1242 unlock_page(page);
1243 continue;
1244 }
1245
1246 if (!page_has_buffers(page)) {
1247 unlock_page(page);
1248 continue;
1249 }
1250
1251 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1252 if (found) {
1253 /*
1254 * The found offset may be less than the start
1255 * point to search if this is the first time to
1256 * come here.
1257 */
1258 *offset = max_t(loff_t, startoff, b_offset);
1259 unlock_page(page);
1260 goto out;
1261 }
1262
1263 /*
1264 * We either searching data but nothing was found, or
1265 * searching hole but found a data buffer. In either
1266 * case, probably the next page contains the desired
1267 * things, update the last offset to it so.
1268 */
1269 lastoff = page_offset(page) + PAGE_SIZE;
1270 unlock_page(page);
1271 }
1272
1273 /*
1274 * The number of returned pages less than our desired, search
1275 * done. In this case, nothing was found for searching data,
1276 * but we found a hole behind the last offset.
1277 */
1278 if (nr_pages < want) {
1279 if (type == HOLE_OFF) {
1280 *offset = lastoff;
1281 found = true;
1282 }
1283 break;
1284 }
1285
1286 index = pvec.pages[i - 1]->index + 1;
1287 pagevec_release(&pvec);
1288 } while (index <= end);
1289
1290out:
1291 pagevec_release(&pvec);
1292 return found;
1293}
1294
3fe3e6b1 1295STATIC loff_t
49c69591 1296xfs_seek_hole_data(
3fe3e6b1 1297 struct file *file,
49c69591
ES
1298 loff_t start,
1299 int whence)
3fe3e6b1
JL
1300{
1301 struct inode *inode = file->f_mapping->host;
1302 struct xfs_inode *ip = XFS_I(inode);
1303 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1304 loff_t uninitialized_var(offset);
1305 xfs_fsize_t isize;
1306 xfs_fileoff_t fsbno;
1307 xfs_filblks_t end;
1308 uint lock;
1309 int error;
1310
49c69591
ES
1311 if (XFS_FORCED_SHUTDOWN(mp))
1312 return -EIO;
1313
309ecac8 1314 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1315
1316 isize = i_size_read(inode);
1317 if (start >= isize) {
2451337d 1318 error = -ENXIO;
3fe3e6b1
JL
1319 goto out_unlock;
1320 }
1321
3fe3e6b1
JL
1322 /*
1323 * Try to read extents from the first block indicated
1324 * by fsbno to the end block of the file.
1325 */
52f1acc8 1326 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1327 end = XFS_B_TO_FSB(mp, isize);
49c69591 1328
52f1acc8
JL
1329 for (;;) {
1330 struct xfs_bmbt_irec map[2];
1331 int nmap = 2;
1332 unsigned int i;
3fe3e6b1 1333
52f1acc8
JL
1334 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1335 XFS_BMAPI_ENTIRE);
1336 if (error)
1337 goto out_unlock;
3fe3e6b1 1338
52f1acc8
JL
1339 /* No extents at given offset, must be beyond EOF */
1340 if (nmap == 0) {
2451337d 1341 error = -ENXIO;
52f1acc8
JL
1342 goto out_unlock;
1343 }
1344
1345 for (i = 0; i < nmap; i++) {
1346 offset = max_t(loff_t, start,
1347 XFS_FSB_TO_B(mp, map[i].br_startoff));
1348
49c69591
ES
1349 /* Landed in the hole we wanted? */
1350 if (whence == SEEK_HOLE &&
1351 map[i].br_startblock == HOLESTARTBLOCK)
1352 goto out;
1353
1354 /* Landed in the data extent we wanted? */
1355 if (whence == SEEK_DATA &&
1356 (map[i].br_startblock == DELAYSTARTBLOCK ||
1357 (map[i].br_state == XFS_EXT_NORM &&
1358 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1359 goto out;
1360
1361 /*
49c69591
ES
1362 * Landed in an unwritten extent, try to search
1363 * for hole or data from page cache.
52f1acc8
JL
1364 */
1365 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1366 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1367 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1368 &offset))
52f1acc8
JL
1369 goto out;
1370 }
1371 }
1372
1373 /*
49c69591
ES
1374 * We only received one extent out of the two requested. This
1375 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1376 */
3fe3e6b1 1377 if (nmap == 1) {
49c69591
ES
1378 /*
1379 * If we were looking for a hole, set offset to
1380 * the end of the file (i.e., there is an implicit
1381 * hole at the end of any file).
1382 */
1383 if (whence == SEEK_HOLE) {
1384 offset = isize;
1385 break;
1386 }
1387 /*
1388 * If we were looking for data, it's nowhere to be found
1389 */
1390 ASSERT(whence == SEEK_DATA);
2451337d 1391 error = -ENXIO;
3fe3e6b1
JL
1392 goto out_unlock;
1393 }
1394
52f1acc8
JL
1395 ASSERT(i > 1);
1396
1397 /*
1398 * Nothing was found, proceed to the next round of search
49c69591 1399 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1400 */
1401 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1402 start = XFS_FSB_TO_B(mp, fsbno);
1403 if (start >= isize) {
49c69591
ES
1404 if (whence == SEEK_HOLE) {
1405 offset = isize;
1406 break;
1407 }
1408 ASSERT(whence == SEEK_DATA);
2451337d 1409 error = -ENXIO;
52f1acc8
JL
1410 goto out_unlock;
1411 }
3fe3e6b1
JL
1412 }
1413
b686d1f7
JL
1414out:
1415 /*
49c69591 1416 * If at this point we have found the hole we wanted, the returned
b686d1f7 1417 * offset may be bigger than the file size as it may be aligned to
49c69591 1418 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1419 * situation in particular.
1420 */
49c69591
ES
1421 if (whence == SEEK_HOLE)
1422 offset = min_t(loff_t, offset, isize);
46a1c2c7 1423 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1424
1425out_unlock:
01f4f327 1426 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1427
1428 if (error)
2451337d 1429 return error;
3fe3e6b1
JL
1430 return offset;
1431}
1432
1433STATIC loff_t
1434xfs_file_llseek(
1435 struct file *file,
1436 loff_t offset,
59f9c004 1437 int whence)
3fe3e6b1 1438{
59f9c004 1439 switch (whence) {
3fe3e6b1
JL
1440 case SEEK_END:
1441 case SEEK_CUR:
1442 case SEEK_SET:
59f9c004 1443 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1444 case SEEK_HOLE:
49c69591 1445 case SEEK_DATA:
59f9c004 1446 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1447 default:
1448 return -EINVAL;
1449 }
1450}
1451
de0e8c20
DC
1452/*
1453 * Locking for serialisation of IO during page faults. This results in a lock
1454 * ordering of:
1455 *
1456 * mmap_sem (MM)
1457 * i_mmap_lock (XFS - truncate serialisation)
1458 * page_lock (MM)
1459 * i_lock (XFS - extent map serialisation)
1460 */
1461STATIC int
1462xfs_filemap_fault(
1463 struct vm_area_struct *vma,
1464 struct vm_fault *vmf)
1465{
1466 struct xfs_inode *ip = XFS_I(vma->vm_file->f_mapping->host);
1467 int error;
1468
1469 trace_xfs_filemap_fault(ip);
1470
1471 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1472 error = filemap_fault(vma, vmf);
1473 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1474
1475 return error;
1476}
1477
075a924d
DC
1478/*
1479 * mmap()d file has taken write protection fault and is being made writable. We
1480 * can set the page state up correctly for a writable page, which means we can
1481 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1482 * mapping.
1483 */
1484STATIC int
1485xfs_filemap_page_mkwrite(
1486 struct vm_area_struct *vma,
1487 struct vm_fault *vmf)
1488{
1489 struct xfs_inode *ip = XFS_I(vma->vm_file->f_mapping->host);
1490 int error;
1491
1492 trace_xfs_filemap_page_mkwrite(ip);
1493
1494 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1495 error = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1496 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1497
1498 return error;
1499}
1500
4b6f5d20 1501const struct file_operations xfs_file_operations = {
3fe3e6b1 1502 .llseek = xfs_file_llseek,
b4f5d2c6 1503 .read_iter = xfs_file_read_iter,
bf97f3bc 1504 .write_iter = xfs_file_write_iter,
1b895840 1505 .splice_read = xfs_file_splice_read,
8d020765 1506 .splice_write = iter_file_splice_write,
3562fd45 1507 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1508#ifdef CONFIG_COMPAT
3562fd45 1509 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1510#endif
3562fd45
NS
1511 .mmap = xfs_file_mmap,
1512 .open = xfs_file_open,
1513 .release = xfs_file_release,
1514 .fsync = xfs_file_fsync,
2fe17c10 1515 .fallocate = xfs_file_fallocate,
1da177e4
LT
1516};
1517
4b6f5d20 1518const struct file_operations xfs_dir_file_operations = {
f999a5bf 1519 .open = xfs_dir_open,
1da177e4 1520 .read = generic_read_dir,
b8227554 1521 .iterate = xfs_file_readdir,
59af1584 1522 .llseek = generic_file_llseek,
3562fd45 1523 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1524#ifdef CONFIG_COMPAT
3562fd45 1525 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1526#endif
1da2f2db 1527 .fsync = xfs_dir_fsync,
1da177e4
LT
1528};
1529
f0f37e2f 1530static const struct vm_operations_struct xfs_file_vm_ops = {
de0e8c20 1531 .fault = xfs_filemap_fault,
f1820361 1532 .map_pages = filemap_map_pages,
075a924d 1533 .page_mkwrite = xfs_filemap_page_mkwrite,
6fac0cb4 1534};
This page took 0.879119 seconds and 5 git commands to generate.