xfs: switch to ->write_iter()
[deliverable/linux.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_sb.h"
a844f451 25#include "xfs_ag.h"
1da177e4 26#include "xfs_mount.h"
57062787
DC
27#include "xfs_da_format.h"
28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
c24b5dfa 33#include "xfs_bmap_util.h"
1da177e4 34#include "xfs_error.h"
2b9ab5ab 35#include "xfs_dir2.h"
c24b5dfa 36#include "xfs_dir2_priv.h"
ddcd856d 37#include "xfs_ioctl.h"
dda35b8f 38#include "xfs_trace.h"
239880ef 39#include "xfs_log.h"
a4fbe6ab 40#include "xfs_dinode.h"
1da177e4 41
a27bb332 42#include <linux/aio.h>
1da177e4 43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
1da177e4 46
f0f37e2f 47static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 48
487f84f3
DC
49/*
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 */
53static inline void
54xfs_rw_ilock(
55 struct xfs_inode *ip,
56 int type)
57{
58 if (type & XFS_IOLOCK_EXCL)
59 mutex_lock(&VFS_I(ip)->i_mutex);
60 xfs_ilock(ip, type);
61}
62
63static inline void
64xfs_rw_iunlock(
65 struct xfs_inode *ip,
66 int type)
67{
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
70 mutex_unlock(&VFS_I(ip)->i_mutex);
71}
72
73static inline void
74xfs_rw_ilock_demote(
75 struct xfs_inode *ip,
76 int type)
77{
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
80 mutex_unlock(&VFS_I(ip)->i_mutex);
81}
82
dda35b8f
CH
83/*
84 * xfs_iozero
85 *
86 * xfs_iozero clears the specified range of buffer supplied,
87 * and marks all the affected blocks as valid and modified. If
88 * an affected block is not allocated, it will be allocated. If
89 * an affected block is not completely overwritten, and is not
90 * valid before the operation, it will be read from disk before
91 * being partially zeroed.
92 */
ef9d8733 93int
dda35b8f
CH
94xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98{
99 struct page *page;
100 struct address_space *mapping;
101 int status;
102
103 mapping = VFS_I(ip)->i_mapping;
104 do {
105 unsigned offset, bytes;
106 void *fsdata;
107
108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
109 bytes = PAGE_CACHE_SIZE - offset;
110 if (bytes > count)
111 bytes = count;
112
113 status = pagecache_write_begin(NULL, mapping, pos, bytes,
114 AOP_FLAG_UNINTERRUPTIBLE,
115 &page, &fsdata);
116 if (status)
117 break;
118
119 zero_user(page, offset, bytes);
120
121 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
122 page, fsdata);
123 WARN_ON(status <= 0); /* can't return less than zero! */
124 pos += bytes;
125 count -= bytes;
126 status = 0;
127 } while (count);
128
129 return (-status);
130}
131
1da2f2db
CH
132/*
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
137 */
138STATIC int
139xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
144{
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
148
149 trace_xfs_dir_fsync(ip);
150
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
155
156 if (!lsn)
157 return 0;
158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159}
160
fd3200be
CH
161STATIC int
162xfs_file_fsync(
163 struct file *file,
02c24a82
JB
164 loff_t start,
165 loff_t end,
fd3200be
CH
166 int datasync)
167{
7ea80859
CH
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
a27a263b 170 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
171 int error = 0;
172 int log_flushed = 0;
b1037058 173 xfs_lsn_t lsn = 0;
fd3200be 174
cca28fb8 175 trace_xfs_file_fsync(ip);
fd3200be 176
02c24a82
JB
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
180
a27a263b 181 if (XFS_FORCED_SHUTDOWN(mp))
fd3200be
CH
182 return -XFS_ERROR(EIO);
183
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185
a27a263b
CH
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 /*
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
193 */
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 }
199
fd3200be 200 /*
8a9c9980
CH
201 * All metadata updates are logged, which means that we just have
202 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
203 */
204 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
205 if (xfs_ipincount(ip)) {
206 if (!datasync ||
207 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
208 lsn = ip->i_itemp->ili_last_lsn;
209 }
8a9c9980 210 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 211
8a9c9980 212 if (lsn)
b1037058
CH
213 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
214
a27a263b
CH
215 /*
216 * If we only have a single device, and the log force about was
217 * a no-op we might have to flush the data device cache here.
218 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 * an already allocated file and thus do not have any metadata to
220 * commit.
221 */
222 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
223 mp->m_logdev_targp == mp->m_ddev_targp &&
224 !XFS_IS_REALTIME_INODE(ip) &&
225 !log_flushed)
226 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be
CH
227
228 return -error;
229}
230
00258e36 231STATIC ssize_t
b4f5d2c6 232xfs_file_read_iter(
dda35b8f 233 struct kiocb *iocb,
b4f5d2c6 234 struct iov_iter *to)
dda35b8f
CH
235{
236 struct file *file = iocb->ki_filp;
237 struct inode *inode = file->f_mapping->host;
00258e36
CH
238 struct xfs_inode *ip = XFS_I(inode);
239 struct xfs_mount *mp = ip->i_mount;
b4f5d2c6 240 size_t size = iov_iter_count(to);
dda35b8f 241 ssize_t ret = 0;
00258e36 242 int ioflags = 0;
dda35b8f 243 xfs_fsize_t n;
b4f5d2c6 244 loff_t pos = iocb->ki_pos;
dda35b8f 245
dda35b8f
CH
246 XFS_STATS_INC(xs_read_calls);
247
00258e36
CH
248 if (unlikely(file->f_flags & O_DIRECT))
249 ioflags |= IO_ISDIRECT;
250 if (file->f_mode & FMODE_NOCMTIME)
251 ioflags |= IO_INVIS;
252
dda35b8f
CH
253 if (unlikely(ioflags & IO_ISDIRECT)) {
254 xfs_buftarg_t *target =
255 XFS_IS_REALTIME_INODE(ip) ?
256 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
257 /* DIO must be aligned to device logical sector size */
258 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 259 if (pos == i_size_read(inode))
00258e36 260 return 0;
dda35b8f
CH
261 return -XFS_ERROR(EINVAL);
262 }
263 }
264
fb595814 265 n = mp->m_super->s_maxbytes - pos;
00258e36 266 if (n <= 0 || size == 0)
dda35b8f
CH
267 return 0;
268
269 if (n < size)
270 size = n;
271
272 if (XFS_FORCED_SHUTDOWN(mp))
273 return -EIO;
274
0c38a251
DC
275 /*
276 * Locking is a bit tricky here. If we take an exclusive lock
277 * for direct IO, we effectively serialise all new concurrent
278 * read IO to this file and block it behind IO that is currently in
279 * progress because IO in progress holds the IO lock shared. We only
280 * need to hold the lock exclusive to blow away the page cache, so
281 * only take lock exclusively if the page cache needs invalidation.
282 * This allows the normal direct IO case of no page cache pages to
283 * proceeed concurrently without serialisation.
284 */
285 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
286 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
287 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
288 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
289
00258e36 290 if (inode->i_mapping->nrpages) {
fb595814
DC
291 ret = -filemap_write_and_wait_range(
292 VFS_I(ip)->i_mapping,
293 pos, -1);
487f84f3
DC
294 if (ret) {
295 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
296 return ret;
297 }
fb595814 298 truncate_pagecache_range(VFS_I(ip), pos, -1);
00258e36 299 }
487f84f3 300 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 301 }
dda35b8f 302
fb595814 303 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 304
b4f5d2c6 305 ret = generic_file_read_iter(iocb, to);
dda35b8f
CH
306 if (ret > 0)
307 XFS_STATS_ADD(xs_read_bytes, ret);
308
487f84f3 309 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
310 return ret;
311}
312
00258e36
CH
313STATIC ssize_t
314xfs_file_splice_read(
dda35b8f
CH
315 struct file *infilp,
316 loff_t *ppos,
317 struct pipe_inode_info *pipe,
318 size_t count,
00258e36 319 unsigned int flags)
dda35b8f 320{
00258e36 321 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 322 int ioflags = 0;
dda35b8f
CH
323 ssize_t ret;
324
325 XFS_STATS_INC(xs_read_calls);
00258e36
CH
326
327 if (infilp->f_mode & FMODE_NOCMTIME)
328 ioflags |= IO_INVIS;
329
dda35b8f
CH
330 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
331 return -EIO;
332
487f84f3 333 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 334
dda35b8f
CH
335 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
336
337 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
338 if (ret > 0)
339 XFS_STATS_ADD(xs_read_bytes, ret);
340
487f84f3 341 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
342 return ret;
343}
344
487f84f3
DC
345/*
346 * xfs_file_splice_write() does not use xfs_rw_ilock() because
347 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
348 * couuld cause lock inversions between the aio_write path and the splice path
349 * if someone is doing concurrent splice(2) based writes and write(2) based
350 * writes to the same inode. The only real way to fix this is to re-implement
351 * the generic code here with correct locking orders.
352 */
00258e36
CH
353STATIC ssize_t
354xfs_file_splice_write(
dda35b8f
CH
355 struct pipe_inode_info *pipe,
356 struct file *outfilp,
357 loff_t *ppos,
358 size_t count,
00258e36 359 unsigned int flags)
dda35b8f 360{
dda35b8f 361 struct inode *inode = outfilp->f_mapping->host;
00258e36 362 struct xfs_inode *ip = XFS_I(inode);
00258e36
CH
363 int ioflags = 0;
364 ssize_t ret;
dda35b8f
CH
365
366 XFS_STATS_INC(xs_write_calls);
00258e36
CH
367
368 if (outfilp->f_mode & FMODE_NOCMTIME)
369 ioflags |= IO_INVIS;
370
dda35b8f
CH
371 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
372 return -EIO;
373
374 xfs_ilock(ip, XFS_IOLOCK_EXCL);
375
dda35b8f
CH
376 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
377
378 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
ce7ae151
CH
379 if (ret > 0)
380 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 381
dda35b8f
CH
382 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
383 return ret;
384}
385
386/*
193aec10
CH
387 * This routine is called to handle zeroing any space in the last block of the
388 * file that is beyond the EOF. We do this since the size is being increased
389 * without writing anything to that block and we don't want to read the
390 * garbage on the disk.
dda35b8f
CH
391 */
392STATIC int /* error (positive) */
393xfs_zero_last_block(
193aec10
CH
394 struct xfs_inode *ip,
395 xfs_fsize_t offset,
396 xfs_fsize_t isize)
dda35b8f 397{
193aec10
CH
398 struct xfs_mount *mp = ip->i_mount;
399 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
400 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
401 int zero_len;
402 int nimaps = 1;
403 int error = 0;
404 struct xfs_bmbt_irec imap;
dda35b8f 405
193aec10 406 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 407 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 408 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 409 if (error)
dda35b8f 410 return error;
193aec10 411
dda35b8f 412 ASSERT(nimaps > 0);
193aec10 413
dda35b8f
CH
414 /*
415 * If the block underlying isize is just a hole, then there
416 * is nothing to zero.
417 */
193aec10 418 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 419 return 0;
dda35b8f
CH
420
421 zero_len = mp->m_sb.sb_blocksize - zero_offset;
422 if (isize + zero_len > offset)
423 zero_len = offset - isize;
193aec10 424 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
425}
426
427/*
193aec10
CH
428 * Zero any on disk space between the current EOF and the new, larger EOF.
429 *
430 * This handles the normal case of zeroing the remainder of the last block in
431 * the file and the unusual case of zeroing blocks out beyond the size of the
432 * file. This second case only happens with fixed size extents and when the
433 * system crashes before the inode size was updated but after blocks were
434 * allocated.
435 *
436 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 437 */
dda35b8f
CH
438int /* error (positive) */
439xfs_zero_eof(
193aec10
CH
440 struct xfs_inode *ip,
441 xfs_off_t offset, /* starting I/O offset */
442 xfs_fsize_t isize) /* current inode size */
dda35b8f 443{
193aec10
CH
444 struct xfs_mount *mp = ip->i_mount;
445 xfs_fileoff_t start_zero_fsb;
446 xfs_fileoff_t end_zero_fsb;
447 xfs_fileoff_t zero_count_fsb;
448 xfs_fileoff_t last_fsb;
449 xfs_fileoff_t zero_off;
450 xfs_fsize_t zero_len;
451 int nimaps;
452 int error = 0;
453 struct xfs_bmbt_irec imap;
454
455 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
456 ASSERT(offset > isize);
457
458 /*
459 * First handle zeroing the block on which isize resides.
193aec10 460 *
dda35b8f
CH
461 * We only zero a part of that block so it is handled specially.
462 */
193aec10
CH
463 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
464 error = xfs_zero_last_block(ip, offset, isize);
465 if (error)
466 return error;
dda35b8f
CH
467 }
468
469 /*
193aec10
CH
470 * Calculate the range between the new size and the old where blocks
471 * needing to be zeroed may exist.
472 *
473 * To get the block where the last byte in the file currently resides,
474 * we need to subtract one from the size and truncate back to a block
475 * boundary. We subtract 1 in case the size is exactly on a block
476 * boundary.
dda35b8f
CH
477 */
478 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
479 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
480 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
481 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
482 if (last_fsb == end_zero_fsb) {
483 /*
484 * The size was only incremented on its last block.
485 * We took care of that above, so just return.
486 */
487 return 0;
488 }
489
490 ASSERT(start_zero_fsb <= end_zero_fsb);
491 while (start_zero_fsb <= end_zero_fsb) {
492 nimaps = 1;
493 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
494
495 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
496 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
497 &imap, &nimaps, 0);
193aec10
CH
498 xfs_iunlock(ip, XFS_ILOCK_EXCL);
499 if (error)
dda35b8f 500 return error;
193aec10 501
dda35b8f
CH
502 ASSERT(nimaps > 0);
503
504 if (imap.br_state == XFS_EXT_UNWRITTEN ||
505 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
506 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
507 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
508 continue;
509 }
510
511 /*
512 * There are blocks we need to zero.
dda35b8f 513 */
dda35b8f
CH
514 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
515 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
516
517 if ((zero_off + zero_len) > offset)
518 zero_len = offset - zero_off;
519
520 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
521 if (error)
522 return error;
dda35b8f
CH
523
524 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
525 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
526 }
527
528 return 0;
dda35b8f
CH
529}
530
4d8d1581
DC
531/*
532 * Common pre-write limit and setup checks.
533 *
5bf1f262
CH
534 * Called with the iolocked held either shared and exclusive according to
535 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
536 * if called for a direct write beyond i_size.
4d8d1581
DC
537 */
538STATIC ssize_t
539xfs_file_aio_write_checks(
540 struct file *file,
541 loff_t *pos,
542 size_t *count,
543 int *iolock)
544{
545 struct inode *inode = file->f_mapping->host;
546 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
547 int error = 0;
548
7271d243 549restart:
4d8d1581 550 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 551 if (error)
4d8d1581 552 return error;
4d8d1581 553
4d8d1581
DC
554 /*
555 * If the offset is beyond the size of the file, we need to zero any
556 * blocks that fall between the existing EOF and the start of this
2813d682 557 * write. If zeroing is needed and we are currently holding the
467f7899
CH
558 * iolock shared, we need to update it to exclusive which implies
559 * having to redo all checks before.
4d8d1581 560 */
2813d682 561 if (*pos > i_size_read(inode)) {
7271d243 562 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 563 xfs_rw_iunlock(ip, *iolock);
7271d243 564 *iolock = XFS_IOLOCK_EXCL;
467f7899 565 xfs_rw_ilock(ip, *iolock);
7271d243
DC
566 goto restart;
567 }
ce7ae151 568 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
467f7899
CH
569 if (error)
570 return error;
7271d243 571 }
4d8d1581 572
8a9c9980
CH
573 /*
574 * Updating the timestamps will grab the ilock again from
575 * xfs_fs_dirty_inode, so we have to call it after dropping the
576 * lock above. Eventually we should look into a way to avoid
577 * the pointless lock roundtrip.
578 */
c3b2da31
JB
579 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
580 error = file_update_time(file);
581 if (error)
582 return error;
583 }
8a9c9980 584
4d8d1581
DC
585 /*
586 * If we're writing the file then make sure to clear the setuid and
587 * setgid bits if the process is not being run by root. This keeps
588 * people from modifying setuid and setgid binaries.
589 */
590 return file_remove_suid(file);
4d8d1581
DC
591}
592
f0d26e86
DC
593/*
594 * xfs_file_dio_aio_write - handle direct IO writes
595 *
596 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 597 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
598 * follow locking changes and looping.
599 *
eda77982
DC
600 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
601 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
602 * pages are flushed out.
603 *
604 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
605 * allowing them to be done in parallel with reads and other direct IO writes.
606 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
607 * needs to do sub-block zeroing and that requires serialisation against other
608 * direct IOs to the same block. In this case we need to serialise the
609 * submission of the unaligned IOs so that we don't get racing block zeroing in
610 * the dio layer. To avoid the problem with aio, we also need to wait for
611 * outstanding IOs to complete so that unwritten extent conversion is completed
612 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 613 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 614 *
f0d26e86
DC
615 * Returns with locks held indicated by @iolock and errors indicated by
616 * negative return values.
617 */
618STATIC ssize_t
619xfs_file_dio_aio_write(
620 struct kiocb *iocb,
b3188919 621 struct iov_iter *from)
f0d26e86
DC
622{
623 struct file *file = iocb->ki_filp;
624 struct address_space *mapping = file->f_mapping;
625 struct inode *inode = mapping->host;
626 struct xfs_inode *ip = XFS_I(inode);
627 struct xfs_mount *mp = ip->i_mount;
628 ssize_t ret = 0;
eda77982 629 int unaligned_io = 0;
d0606464 630 int iolock;
b3188919
AV
631 size_t count = iov_iter_count(from);
632 loff_t pos = iocb->ki_pos;
f0d26e86
DC
633 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
634 mp->m_rtdev_targp : mp->m_ddev_targp;
635
7c71ee78
ES
636 /* DIO must be aligned to device logical sector size */
637 if ((pos | count) & target->bt_logical_sectormask)
f0d26e86
DC
638 return -XFS_ERROR(EINVAL);
639
7c71ee78 640 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
641 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
642 unaligned_io = 1;
643
7271d243
DC
644 /*
645 * We don't need to take an exclusive lock unless there page cache needs
646 * to be invalidated or unaligned IO is being executed. We don't need to
647 * consider the EOF extension case here because
648 * xfs_file_aio_write_checks() will relock the inode as necessary for
649 * EOF zeroing cases and fill out the new inode size as appropriate.
650 */
651 if (unaligned_io || mapping->nrpages)
d0606464 652 iolock = XFS_IOLOCK_EXCL;
f0d26e86 653 else
d0606464
CH
654 iolock = XFS_IOLOCK_SHARED;
655 xfs_rw_ilock(ip, iolock);
c58cb165
CH
656
657 /*
658 * Recheck if there are cached pages that need invalidate after we got
659 * the iolock to protect against other threads adding new pages while
660 * we were waiting for the iolock.
661 */
d0606464
CH
662 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
663 xfs_rw_iunlock(ip, iolock);
664 iolock = XFS_IOLOCK_EXCL;
665 xfs_rw_ilock(ip, iolock);
c58cb165 666 }
f0d26e86 667
d0606464 668 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 669 if (ret)
d0606464 670 goto out;
b3188919 671 iov_iter_truncate(from, count);
f0d26e86
DC
672
673 if (mapping->nrpages) {
07d5035a 674 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
fb595814 675 pos, -1);
f0d26e86 676 if (ret)
d0606464 677 goto out;
fb595814 678 truncate_pagecache_range(VFS_I(ip), pos, -1);
f0d26e86
DC
679 }
680
eda77982
DC
681 /*
682 * If we are doing unaligned IO, wait for all other IO to drain,
683 * otherwise demote the lock if we had to flush cached pages
684 */
685 if (unaligned_io)
4a06fd26 686 inode_dio_wait(inode);
d0606464 687 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 688 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 689 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
690 }
691
692 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
b3188919 693 ret = generic_file_direct_write(iocb, from, pos);
f0d26e86 694
d0606464
CH
695out:
696 xfs_rw_iunlock(ip, iolock);
697
f0d26e86
DC
698 /* No fallback to buffered IO on errors for XFS. */
699 ASSERT(ret < 0 || ret == count);
700 return ret;
701}
702
00258e36 703STATIC ssize_t
637bbc75 704xfs_file_buffered_aio_write(
dda35b8f 705 struct kiocb *iocb,
b3188919 706 struct iov_iter *from)
dda35b8f
CH
707{
708 struct file *file = iocb->ki_filp;
709 struct address_space *mapping = file->f_mapping;
710 struct inode *inode = mapping->host;
00258e36 711 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
712 ssize_t ret;
713 int enospc = 0;
d0606464 714 int iolock = XFS_IOLOCK_EXCL;
b3188919
AV
715 loff_t pos = iocb->ki_pos;
716 size_t count = iov_iter_count(from);
dda35b8f 717
d0606464 718 xfs_rw_ilock(ip, iolock);
dda35b8f 719
d0606464 720 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 721 if (ret)
d0606464 722 goto out;
dda35b8f 723
b3188919 724 iov_iter_truncate(from, count);
dda35b8f
CH
725 /* We can write back this queue in page reclaim */
726 current->backing_dev_info = mapping->backing_dev_info;
727
dda35b8f 728write_retry:
637bbc75 729 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
b3188919 730 ret = generic_perform_write(file, from, pos);
0a64bc2c
AV
731 if (likely(ret >= 0))
732 iocb->ki_pos = pos + ret;
637bbc75 733 /*
9aa05000
DC
734 * If we just got an ENOSPC, try to write back all dirty inodes to
735 * convert delalloc space to free up some of the excess reserved
736 * metadata space.
637bbc75
DC
737 */
738 if (ret == -ENOSPC && !enospc) {
637bbc75 739 enospc = 1;
9aa05000
DC
740 xfs_flush_inodes(ip->i_mount);
741 goto write_retry;
dda35b8f 742 }
d0606464 743
dda35b8f 744 current->backing_dev_info = NULL;
d0606464
CH
745out:
746 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
747 return ret;
748}
749
750STATIC ssize_t
bf97f3bc 751xfs_file_write_iter(
637bbc75 752 struct kiocb *iocb,
bf97f3bc 753 struct iov_iter *from)
637bbc75
DC
754{
755 struct file *file = iocb->ki_filp;
756 struct address_space *mapping = file->f_mapping;
757 struct inode *inode = mapping->host;
758 struct xfs_inode *ip = XFS_I(inode);
759 ssize_t ret;
bf97f3bc 760 size_t ocount = iov_iter_count(from);
637bbc75
DC
761
762 XFS_STATS_INC(xs_write_calls);
763
637bbc75
DC
764 if (ocount == 0)
765 return 0;
766
bf97f3bc
AV
767 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
768 return -EIO;
637bbc75
DC
769
770 if (unlikely(file->f_flags & O_DIRECT))
bf97f3bc 771 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 772 else
bf97f3bc 773 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 774
d0606464
CH
775 if (ret > 0) {
776 ssize_t err;
dda35b8f 777
d0606464 778 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 779
d0606464 780 /* Handle various SYNC-type writes */
d311d79d 781 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
782 if (err < 0)
783 ret = err;
dda35b8f 784 }
a363f0c2 785 return ret;
dda35b8f
CH
786}
787
2fe17c10
CH
788STATIC long
789xfs_file_fallocate(
83aee9e4
CH
790 struct file *file,
791 int mode,
792 loff_t offset,
793 loff_t len)
2fe17c10 794{
83aee9e4
CH
795 struct inode *inode = file_inode(file);
796 struct xfs_inode *ip = XFS_I(inode);
797 struct xfs_trans *tp;
798 long error;
799 loff_t new_size = 0;
2fe17c10 800
83aee9e4
CH
801 if (!S_ISREG(inode->i_mode))
802 return -EINVAL;
e1d8fb88 803 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
376ba313 804 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
805 return -EOPNOTSUPP;
806
2fe17c10 807 xfs_ilock(ip, XFS_IOLOCK_EXCL);
83aee9e4
CH
808 if (mode & FALLOC_FL_PUNCH_HOLE) {
809 error = xfs_free_file_space(ip, offset, len);
810 if (error)
811 goto out_unlock;
e1d8fb88
NJ
812 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
813 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
814
815 if (offset & blksize_mask || len & blksize_mask) {
816 error = -EINVAL;
817 goto out_unlock;
818 }
819
23fffa92
LC
820 /*
821 * There is no need to overlap collapse range with EOF,
822 * in which case it is effectively a truncate operation
823 */
824 if (offset + len >= i_size_read(inode)) {
825 error = -EINVAL;
826 goto out_unlock;
827 }
828
e1d8fb88
NJ
829 new_size = i_size_read(inode) - len;
830
831 error = xfs_collapse_file_space(ip, offset, len);
832 if (error)
833 goto out_unlock;
83aee9e4
CH
834 } else {
835 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
836 offset + len > i_size_read(inode)) {
837 new_size = offset + len;
838 error = -inode_newsize_ok(inode, new_size);
839 if (error)
840 goto out_unlock;
841 }
2fe17c10 842
376ba313
LC
843 if (mode & FALLOC_FL_ZERO_RANGE)
844 error = xfs_zero_file_space(ip, offset, len);
845 else
846 error = xfs_alloc_file_space(ip, offset, len,
847 XFS_BMAPI_PREALLOC);
2fe17c10
CH
848 if (error)
849 goto out_unlock;
850 }
851
83aee9e4
CH
852 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
853 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
854 if (error) {
855 xfs_trans_cancel(tp, 0);
856 goto out_unlock;
857 }
858
859 xfs_ilock(ip, XFS_ILOCK_EXCL);
860 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
861 ip->i_d.di_mode &= ~S_ISUID;
862 if (ip->i_d.di_mode & S_IXGRP)
863 ip->i_d.di_mode &= ~S_ISGID;
82878897 864
e1d8fb88 865 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
83aee9e4
CH
866 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
867
868 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
869 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
870
871 if (file->f_flags & O_DSYNC)
872 xfs_trans_set_sync(tp);
873 error = xfs_trans_commit(tp, 0);
2fe17c10
CH
874 if (error)
875 goto out_unlock;
876
877 /* Change file size if needed */
878 if (new_size) {
879 struct iattr iattr;
880
881 iattr.ia_valid = ATTR_SIZE;
882 iattr.ia_size = new_size;
83aee9e4 883 error = xfs_setattr_size(ip, &iattr);
2fe17c10
CH
884 }
885
886out_unlock:
887 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
83aee9e4 888 return -error;
2fe17c10
CH
889}
890
891
1da177e4 892STATIC int
3562fd45 893xfs_file_open(
1da177e4 894 struct inode *inode,
f999a5bf 895 struct file *file)
1da177e4 896{
f999a5bf 897 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 898 return -EFBIG;
f999a5bf
CH
899 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
900 return -EIO;
901 return 0;
902}
903
904STATIC int
905xfs_dir_open(
906 struct inode *inode,
907 struct file *file)
908{
909 struct xfs_inode *ip = XFS_I(inode);
910 int mode;
911 int error;
912
913 error = xfs_file_open(inode, file);
914 if (error)
915 return error;
916
917 /*
918 * If there are any blocks, read-ahead block 0 as we're almost
919 * certain to have the next operation be a read there.
920 */
309ecac8 921 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 922 if (ip->i_d.di_nextents > 0)
33363fee 923 xfs_dir3_data_readahead(NULL, ip, 0, -1);
f999a5bf
CH
924 xfs_iunlock(ip, mode);
925 return 0;
1da177e4
LT
926}
927
1da177e4 928STATIC int
3562fd45 929xfs_file_release(
1da177e4
LT
930 struct inode *inode,
931 struct file *filp)
932{
739bfb2a 933 return -xfs_release(XFS_I(inode));
1da177e4
LT
934}
935
1da177e4 936STATIC int
3562fd45 937xfs_file_readdir(
b8227554
AV
938 struct file *file,
939 struct dir_context *ctx)
1da177e4 940{
b8227554 941 struct inode *inode = file_inode(file);
739bfb2a 942 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
943 int error;
944 size_t bufsize;
945
946 /*
947 * The Linux API doesn't pass down the total size of the buffer
948 * we read into down to the filesystem. With the filldir concept
949 * it's not needed for correct information, but the XFS dir2 leaf
950 * code wants an estimate of the buffer size to calculate it's
951 * readahead window and size the buffers used for mapping to
952 * physical blocks.
953 *
954 * Try to give it an estimate that's good enough, maybe at some
955 * point we can change the ->readdir prototype to include the
a9cc799e 956 * buffer size. For now we use the current glibc buffer size.
051e7cd4 957 */
a9cc799e 958 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 959
b8227554 960 error = xfs_readdir(ip, ctx, bufsize);
051e7cd4
CH
961 if (error)
962 return -error;
963 return 0;
1da177e4
LT
964}
965
1da177e4 966STATIC int
3562fd45 967xfs_file_mmap(
1da177e4
LT
968 struct file *filp,
969 struct vm_area_struct *vma)
970{
3562fd45 971 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 972
fbc1462b 973 file_accessed(filp);
1da177e4
LT
974 return 0;
975}
976
4f57dbc6
DC
977/*
978 * mmap()d file has taken write protection fault and is being made
979 * writable. We can set the page state up correctly for a writable
980 * page, which means we can do correct delalloc accounting (ENOSPC
981 * checking!) and unwritten extent mapping.
982 */
983STATIC int
984xfs_vm_page_mkwrite(
985 struct vm_area_struct *vma,
c2ec175c 986 struct vm_fault *vmf)
4f57dbc6 987{
c2ec175c 988 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
989}
990
d126d43f
JL
991/*
992 * This type is designed to indicate the type of offset we would like
993 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
994 */
995enum {
996 HOLE_OFF = 0,
997 DATA_OFF,
998};
999
1000/*
1001 * Lookup the desired type of offset from the given page.
1002 *
1003 * On success, return true and the offset argument will point to the
1004 * start of the region that was found. Otherwise this function will
1005 * return false and keep the offset argument unchanged.
1006 */
1007STATIC bool
1008xfs_lookup_buffer_offset(
1009 struct page *page,
1010 loff_t *offset,
1011 unsigned int type)
1012{
1013 loff_t lastoff = page_offset(page);
1014 bool found = false;
1015 struct buffer_head *bh, *head;
1016
1017 bh = head = page_buffers(page);
1018 do {
1019 /*
1020 * Unwritten extents that have data in the page
1021 * cache covering them can be identified by the
1022 * BH_Unwritten state flag. Pages with multiple
1023 * buffers might have a mix of holes, data and
1024 * unwritten extents - any buffer with valid
1025 * data in it should have BH_Uptodate flag set
1026 * on it.
1027 */
1028 if (buffer_unwritten(bh) ||
1029 buffer_uptodate(bh)) {
1030 if (type == DATA_OFF)
1031 found = true;
1032 } else {
1033 if (type == HOLE_OFF)
1034 found = true;
1035 }
1036
1037 if (found) {
1038 *offset = lastoff;
1039 break;
1040 }
1041 lastoff += bh->b_size;
1042 } while ((bh = bh->b_this_page) != head);
1043
1044 return found;
1045}
1046
1047/*
1048 * This routine is called to find out and return a data or hole offset
1049 * from the page cache for unwritten extents according to the desired
1050 * type for xfs_seek_data() or xfs_seek_hole().
1051 *
1052 * The argument offset is used to tell where we start to search from the
1053 * page cache. Map is used to figure out the end points of the range to
1054 * lookup pages.
1055 *
1056 * Return true if the desired type of offset was found, and the argument
1057 * offset is filled with that address. Otherwise, return false and keep
1058 * offset unchanged.
1059 */
1060STATIC bool
1061xfs_find_get_desired_pgoff(
1062 struct inode *inode,
1063 struct xfs_bmbt_irec *map,
1064 unsigned int type,
1065 loff_t *offset)
1066{
1067 struct xfs_inode *ip = XFS_I(inode);
1068 struct xfs_mount *mp = ip->i_mount;
1069 struct pagevec pvec;
1070 pgoff_t index;
1071 pgoff_t end;
1072 loff_t endoff;
1073 loff_t startoff = *offset;
1074 loff_t lastoff = startoff;
1075 bool found = false;
1076
1077 pagevec_init(&pvec, 0);
1078
1079 index = startoff >> PAGE_CACHE_SHIFT;
1080 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1081 end = endoff >> PAGE_CACHE_SHIFT;
1082 do {
1083 int want;
1084 unsigned nr_pages;
1085 unsigned int i;
1086
1087 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1088 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1089 want);
1090 /*
1091 * No page mapped into given range. If we are searching holes
1092 * and if this is the first time we got into the loop, it means
1093 * that the given offset is landed in a hole, return it.
1094 *
1095 * If we have already stepped through some block buffers to find
1096 * holes but they all contains data. In this case, the last
1097 * offset is already updated and pointed to the end of the last
1098 * mapped page, if it does not reach the endpoint to search,
1099 * that means there should be a hole between them.
1100 */
1101 if (nr_pages == 0) {
1102 /* Data search found nothing */
1103 if (type == DATA_OFF)
1104 break;
1105
1106 ASSERT(type == HOLE_OFF);
1107 if (lastoff == startoff || lastoff < endoff) {
1108 found = true;
1109 *offset = lastoff;
1110 }
1111 break;
1112 }
1113
1114 /*
1115 * At lease we found one page. If this is the first time we
1116 * step into the loop, and if the first page index offset is
1117 * greater than the given search offset, a hole was found.
1118 */
1119 if (type == HOLE_OFF && lastoff == startoff &&
1120 lastoff < page_offset(pvec.pages[0])) {
1121 found = true;
1122 break;
1123 }
1124
1125 for (i = 0; i < nr_pages; i++) {
1126 struct page *page = pvec.pages[i];
1127 loff_t b_offset;
1128
1129 /*
1130 * At this point, the page may be truncated or
1131 * invalidated (changing page->mapping to NULL),
1132 * or even swizzled back from swapper_space to tmpfs
1133 * file mapping. However, page->index will not change
1134 * because we have a reference on the page.
1135 *
1136 * Searching done if the page index is out of range.
1137 * If the current offset is not reaches the end of
1138 * the specified search range, there should be a hole
1139 * between them.
1140 */
1141 if (page->index > end) {
1142 if (type == HOLE_OFF && lastoff < endoff) {
1143 *offset = lastoff;
1144 found = true;
1145 }
1146 goto out;
1147 }
1148
1149 lock_page(page);
1150 /*
1151 * Page truncated or invalidated(page->mapping == NULL).
1152 * We can freely skip it and proceed to check the next
1153 * page.
1154 */
1155 if (unlikely(page->mapping != inode->i_mapping)) {
1156 unlock_page(page);
1157 continue;
1158 }
1159
1160 if (!page_has_buffers(page)) {
1161 unlock_page(page);
1162 continue;
1163 }
1164
1165 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1166 if (found) {
1167 /*
1168 * The found offset may be less than the start
1169 * point to search if this is the first time to
1170 * come here.
1171 */
1172 *offset = max_t(loff_t, startoff, b_offset);
1173 unlock_page(page);
1174 goto out;
1175 }
1176
1177 /*
1178 * We either searching data but nothing was found, or
1179 * searching hole but found a data buffer. In either
1180 * case, probably the next page contains the desired
1181 * things, update the last offset to it so.
1182 */
1183 lastoff = page_offset(page) + PAGE_SIZE;
1184 unlock_page(page);
1185 }
1186
1187 /*
1188 * The number of returned pages less than our desired, search
1189 * done. In this case, nothing was found for searching data,
1190 * but we found a hole behind the last offset.
1191 */
1192 if (nr_pages < want) {
1193 if (type == HOLE_OFF) {
1194 *offset = lastoff;
1195 found = true;
1196 }
1197 break;
1198 }
1199
1200 index = pvec.pages[i - 1]->index + 1;
1201 pagevec_release(&pvec);
1202 } while (index <= end);
1203
1204out:
1205 pagevec_release(&pvec);
1206 return found;
1207}
1208
3fe3e6b1
JL
1209STATIC loff_t
1210xfs_seek_data(
1211 struct file *file,
834ab122 1212 loff_t start)
3fe3e6b1
JL
1213{
1214 struct inode *inode = file->f_mapping->host;
1215 struct xfs_inode *ip = XFS_I(inode);
1216 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1217 loff_t uninitialized_var(offset);
1218 xfs_fsize_t isize;
1219 xfs_fileoff_t fsbno;
1220 xfs_filblks_t end;
1221 uint lock;
1222 int error;
1223
309ecac8 1224 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1225
1226 isize = i_size_read(inode);
1227 if (start >= isize) {
1228 error = ENXIO;
1229 goto out_unlock;
1230 }
1231
3fe3e6b1
JL
1232 /*
1233 * Try to read extents from the first block indicated
1234 * by fsbno to the end block of the file.
1235 */
52f1acc8 1236 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1237 end = XFS_B_TO_FSB(mp, isize);
52f1acc8
JL
1238 for (;;) {
1239 struct xfs_bmbt_irec map[2];
1240 int nmap = 2;
1241 unsigned int i;
3fe3e6b1 1242
52f1acc8
JL
1243 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1244 XFS_BMAPI_ENTIRE);
1245 if (error)
1246 goto out_unlock;
3fe3e6b1 1247
52f1acc8
JL
1248 /* No extents at given offset, must be beyond EOF */
1249 if (nmap == 0) {
1250 error = ENXIO;
1251 goto out_unlock;
1252 }
1253
1254 for (i = 0; i < nmap; i++) {
1255 offset = max_t(loff_t, start,
1256 XFS_FSB_TO_B(mp, map[i].br_startoff));
1257
1258 /* Landed in a data extent */
1259 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1260 (map[i].br_state == XFS_EXT_NORM &&
1261 !isnullstartblock(map[i].br_startblock)))
1262 goto out;
1263
1264 /*
1265 * Landed in an unwritten extent, try to search data
1266 * from page cache.
1267 */
1268 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1269 if (xfs_find_get_desired_pgoff(inode, &map[i],
1270 DATA_OFF, &offset))
1271 goto out;
1272 }
1273 }
1274
1275 /*
1276 * map[0] is hole or its an unwritten extent but
1277 * without data in page cache. Probably means that
1278 * we are reading after EOF if nothing in map[1].
1279 */
3fe3e6b1
JL
1280 if (nmap == 1) {
1281 error = ENXIO;
1282 goto out_unlock;
1283 }
1284
52f1acc8
JL
1285 ASSERT(i > 1);
1286
1287 /*
1288 * Nothing was found, proceed to the next round of search
1289 * if reading offset not beyond or hit EOF.
1290 */
1291 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1292 start = XFS_FSB_TO_B(mp, fsbno);
1293 if (start >= isize) {
1294 error = ENXIO;
1295 goto out_unlock;
1296 }
3fe3e6b1
JL
1297 }
1298
52f1acc8 1299out:
46a1c2c7 1300 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1301
1302out_unlock:
01f4f327 1303 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1304
1305 if (error)
1306 return -error;
1307 return offset;
1308}
1309
1310STATIC loff_t
1311xfs_seek_hole(
1312 struct file *file,
834ab122 1313 loff_t start)
3fe3e6b1
JL
1314{
1315 struct inode *inode = file->f_mapping->host;
1316 struct xfs_inode *ip = XFS_I(inode);
1317 struct xfs_mount *mp = ip->i_mount;
1318 loff_t uninitialized_var(offset);
3fe3e6b1
JL
1319 xfs_fsize_t isize;
1320 xfs_fileoff_t fsbno;
b686d1f7 1321 xfs_filblks_t end;
3fe3e6b1
JL
1322 uint lock;
1323 int error;
1324
1325 if (XFS_FORCED_SHUTDOWN(mp))
1326 return -XFS_ERROR(EIO);
1327
309ecac8 1328 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1329
1330 isize = i_size_read(inode);
1331 if (start >= isize) {
1332 error = ENXIO;
1333 goto out_unlock;
1334 }
1335
1336 fsbno = XFS_B_TO_FSBT(mp, start);
b686d1f7
JL
1337 end = XFS_B_TO_FSB(mp, isize);
1338
1339 for (;;) {
1340 struct xfs_bmbt_irec map[2];
1341 int nmap = 2;
1342 unsigned int i;
1343
1344 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1345 XFS_BMAPI_ENTIRE);
1346 if (error)
1347 goto out_unlock;
1348
1349 /* No extents at given offset, must be beyond EOF */
1350 if (nmap == 0) {
1351 error = ENXIO;
1352 goto out_unlock;
1353 }
1354
1355 for (i = 0; i < nmap; i++) {
1356 offset = max_t(loff_t, start,
1357 XFS_FSB_TO_B(mp, map[i].br_startoff));
1358
1359 /* Landed in a hole */
1360 if (map[i].br_startblock == HOLESTARTBLOCK)
1361 goto out;
1362
1363 /*
1364 * Landed in an unwritten extent, try to search hole
1365 * from page cache.
1366 */
1367 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1368 if (xfs_find_get_desired_pgoff(inode, &map[i],
1369 HOLE_OFF, &offset))
1370 goto out;
1371 }
1372 }
3fe3e6b1 1373
3fe3e6b1 1374 /*
b686d1f7
JL
1375 * map[0] contains data or its unwritten but contains
1376 * data in page cache, probably means that we are
1377 * reading after EOF. We should fix offset to point
1378 * to the end of the file(i.e., there is an implicit
1379 * hole at the end of any file).
3fe3e6b1 1380 */
b686d1f7
JL
1381 if (nmap == 1) {
1382 offset = isize;
1383 break;
1384 }
1385
1386 ASSERT(i > 1);
1387
1388 /*
1389 * Both mappings contains data, proceed to the next round of
1390 * search if the current reading offset not beyond or hit EOF.
1391 */
1392 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1393 start = XFS_FSB_TO_B(mp, fsbno);
1394 if (start >= isize) {
1395 offset = isize;
1396 break;
1397 }
3fe3e6b1
JL
1398 }
1399
b686d1f7
JL
1400out:
1401 /*
1402 * At this point, we must have found a hole. However, the returned
1403 * offset may be bigger than the file size as it may be aligned to
1404 * page boundary for unwritten extents, we need to deal with this
1405 * situation in particular.
1406 */
1407 offset = min_t(loff_t, offset, isize);
46a1c2c7 1408 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1409
1410out_unlock:
01f4f327 1411 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1412
1413 if (error)
1414 return -error;
1415 return offset;
1416}
1417
1418STATIC loff_t
1419xfs_file_llseek(
1420 struct file *file,
1421 loff_t offset,
1422 int origin)
1423{
1424 switch (origin) {
1425 case SEEK_END:
1426 case SEEK_CUR:
1427 case SEEK_SET:
1428 return generic_file_llseek(file, offset, origin);
1429 case SEEK_DATA:
834ab122 1430 return xfs_seek_data(file, offset);
3fe3e6b1 1431 case SEEK_HOLE:
834ab122 1432 return xfs_seek_hole(file, offset);
3fe3e6b1
JL
1433 default:
1434 return -EINVAL;
1435 }
1436}
1437
4b6f5d20 1438const struct file_operations xfs_file_operations = {
3fe3e6b1 1439 .llseek = xfs_file_llseek,
b4f5d2c6 1440 .read = new_sync_read,
bf97f3bc 1441 .write = new_sync_write,
b4f5d2c6 1442 .read_iter = xfs_file_read_iter,
bf97f3bc 1443 .write_iter = xfs_file_write_iter,
1b895840
NS
1444 .splice_read = xfs_file_splice_read,
1445 .splice_write = xfs_file_splice_write,
3562fd45 1446 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1447#ifdef CONFIG_COMPAT
3562fd45 1448 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1449#endif
3562fd45
NS
1450 .mmap = xfs_file_mmap,
1451 .open = xfs_file_open,
1452 .release = xfs_file_release,
1453 .fsync = xfs_file_fsync,
2fe17c10 1454 .fallocate = xfs_file_fallocate,
1da177e4
LT
1455};
1456
4b6f5d20 1457const struct file_operations xfs_dir_file_operations = {
f999a5bf 1458 .open = xfs_dir_open,
1da177e4 1459 .read = generic_read_dir,
b8227554 1460 .iterate = xfs_file_readdir,
59af1584 1461 .llseek = generic_file_llseek,
3562fd45 1462 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1463#ifdef CONFIG_COMPAT
3562fd45 1464 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1465#endif
1da2f2db 1466 .fsync = xfs_dir_fsync,
1da177e4
LT
1467};
1468
f0f37e2f 1469static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1470 .fault = filemap_fault,
f1820361 1471 .map_pages = filemap_map_pages,
4f57dbc6 1472 .page_mkwrite = xfs_vm_page_mkwrite,
0b173bc4 1473 .remap_pages = generic_file_remap_pages,
6fac0cb4 1474};
This page took 0.805089 seconds and 5 git commands to generate.