Inode: export symbol destroy_inode
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451
NS
25#include "xfs_inum.h"
26#include "xfs_imap.h"
1da177e4
LT
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
29#include "xfs_sb.h"
30#include "xfs_ag.h"
1da177e4
LT
31#include "xfs_dir2.h"
32#include "xfs_dmapi.h"
33#include "xfs_mount.h"
1da177e4 34#include "xfs_bmap_btree.h"
a844f451 35#include "xfs_alloc_btree.h"
1da177e4 36#include "xfs_ialloc_btree.h"
1da177e4 37#include "xfs_dir2_sf.h"
a844f451 38#include "xfs_attr_sf.h"
1da177e4 39#include "xfs_dinode.h"
1da177e4 40#include "xfs_inode.h"
1da177e4 41#include "xfs_buf_item.h"
a844f451
NS
42#include "xfs_inode_item.h"
43#include "xfs_btree.h"
8c4ed633 44#include "xfs_btree_trace.h"
a844f451
NS
45#include "xfs_alloc.h"
46#include "xfs_ialloc.h"
47#include "xfs_bmap.h"
1da177e4
LT
48#include "xfs_rw.h"
49#include "xfs_error.h"
1da177e4
LT
50#include "xfs_utils.h"
51#include "xfs_dir2_trace.h"
52#include "xfs_quota.h"
1da177e4 53#include "xfs_acl.h"
2a82b8be 54#include "xfs_filestream.h"
739bfb2a 55#include "xfs_vnodeops.h"
1da177e4 56
1da177e4
LT
57kmem_zone_t *xfs_ifork_zone;
58kmem_zone_t *xfs_inode_zone;
1da177e4
LT
59
60/*
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define XFS_ITRUNC_MAX_EXTENTS 2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
1da177e4
LT
71#ifdef DEBUG
72/*
73 * Make sure that the extents in the given memory buffer
74 * are valid.
75 */
76STATIC void
77xfs_validate_extents(
4eea22f0 78 xfs_ifork_t *ifp,
1da177e4 79 int nrecs,
1da177e4
LT
80 xfs_exntfmt_t fmt)
81{
82 xfs_bmbt_irec_t irec;
a6f64d4a 83 xfs_bmbt_rec_host_t rec;
1da177e4
LT
84 int i;
85
86 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
87 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
88 rec.l0 = get_unaligned(&ep->l0);
89 rec.l1 = get_unaligned(&ep->l1);
90 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
91 if (fmt == XFS_EXTFMT_NOSTATE)
92 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
93 }
94}
95#else /* DEBUG */
a6f64d4a 96#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
97#endif /* DEBUG */
98
99/*
100 * Check that none of the inode's in the buffer have a next
101 * unlinked field of 0.
102 */
103#if defined(DEBUG)
104void
105xfs_inobp_check(
106 xfs_mount_t *mp,
107 xfs_buf_t *bp)
108{
109 int i;
110 int j;
111 xfs_dinode_t *dip;
112
113 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
114
115 for (i = 0; i < j; i++) {
116 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
117 i * mp->m_sb.sb_inodesize);
118 if (!dip->di_next_unlinked) {
119 xfs_fs_cmn_err(CE_ALERT, mp,
120 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 bp);
122 ASSERT(dip->di_next_unlinked);
123 }
124 }
125}
126#endif
127
4ae29b43
DC
128/*
129 * Find the buffer associated with the given inode map
130 * We do basic validation checks on the buffer once it has been
131 * retrieved from disk.
132 */
133STATIC int
134xfs_imap_to_bp(
135 xfs_mount_t *mp,
136 xfs_trans_t *tp,
137 xfs_imap_t *imap,
138 xfs_buf_t **bpp,
139 uint buf_flags,
140 uint imap_flags)
141{
142 int error;
143 int i;
144 int ni;
145 xfs_buf_t *bp;
146
147 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 148 (int)imap->im_len, buf_flags, &bp);
4ae29b43 149 if (error) {
a3f74ffb
DC
150 if (error != EAGAIN) {
151 cmn_err(CE_WARN,
152 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
4ae29b43
DC
153 "an error %d on %s. Returning error.",
154 error, mp->m_fsname);
a3f74ffb
DC
155 } else {
156 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
157 }
4ae29b43
DC
158 return error;
159 }
160
161 /*
162 * Validate the magic number and version of every inode in the buffer
163 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
164 */
165#ifdef DEBUG
166 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
167#else /* usual case */
168 ni = 1;
169#endif
170
171 for (i = 0; i < ni; i++) {
172 int di_ok;
173 xfs_dinode_t *dip;
174
175 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
176 (i << mp->m_sb.sb_inodelog));
177 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
178 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
179 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
180 XFS_ERRTAG_ITOBP_INOTOBP,
181 XFS_RANDOM_ITOBP_INOTOBP))) {
182 if (imap_flags & XFS_IMAP_BULKSTAT) {
183 xfs_trans_brelse(tp, bp);
184 return XFS_ERROR(EINVAL);
185 }
186 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
187 XFS_ERRLEVEL_HIGH, mp, dip);
188#ifdef DEBUG
189 cmn_err(CE_PANIC,
190 "Device %s - bad inode magic/vsn "
191 "daddr %lld #%d (magic=%x)",
192 XFS_BUFTARG_NAME(mp->m_ddev_targp),
193 (unsigned long long)imap->im_blkno, i,
194 be16_to_cpu(dip->di_core.di_magic));
195#endif
196 xfs_trans_brelse(tp, bp);
197 return XFS_ERROR(EFSCORRUPTED);
198 }
199 }
200
201 xfs_inobp_check(mp, bp);
202
203 /*
204 * Mark the buffer as an inode buffer now that it looks good
205 */
206 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
207
208 *bpp = bp;
209 return 0;
210}
211
1da177e4
LT
212/*
213 * This routine is called to map an inode number within a file
214 * system to the buffer containing the on-disk version of the
215 * inode. It returns a pointer to the buffer containing the
216 * on-disk inode in the bpp parameter, and in the dip parameter
217 * it returns a pointer to the on-disk inode within that buffer.
218 *
219 * If a non-zero error is returned, then the contents of bpp and
220 * dipp are undefined.
221 *
222 * Use xfs_imap() to determine the size and location of the
223 * buffer to read from disk.
224 */
c679eef0 225int
1da177e4
LT
226xfs_inotobp(
227 xfs_mount_t *mp,
228 xfs_trans_t *tp,
229 xfs_ino_t ino,
230 xfs_dinode_t **dipp,
231 xfs_buf_t **bpp,
c679eef0
CH
232 int *offset,
233 uint imap_flags)
1da177e4 234{
1da177e4
LT
235 xfs_imap_t imap;
236 xfs_buf_t *bp;
237 int error;
1da177e4 238
1da177e4 239 imap.im_blkno = 0;
c679eef0 240 error = xfs_imap(mp, tp, ino, &imap, imap_flags | XFS_IMAP_LOOKUP);
4ae29b43 241 if (error)
1da177e4 242 return error;
1da177e4 243
c679eef0 244 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
4ae29b43 245 if (error)
1da177e4 246 return error;
1da177e4 247
1da177e4
LT
248 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
249 *bpp = bp;
250 *offset = imap.im_boffset;
251 return 0;
252}
253
254
255/*
256 * This routine is called to map an inode to the buffer containing
257 * the on-disk version of the inode. It returns a pointer to the
258 * buffer containing the on-disk inode in the bpp parameter, and in
259 * the dip parameter it returns a pointer to the on-disk inode within
260 * that buffer.
261 *
262 * If a non-zero error is returned, then the contents of bpp and
263 * dipp are undefined.
264 *
265 * If the inode is new and has not yet been initialized, use xfs_imap()
266 * to determine the size and location of the buffer to read from disk.
267 * If the inode has already been mapped to its buffer and read in once,
268 * then use the mapping information stored in the inode rather than
269 * calling xfs_imap(). This allows us to avoid the overhead of looking
270 * at the inode btree for small block file systems (see xfs_dilocate()).
271 * We can tell whether the inode has been mapped in before by comparing
272 * its disk block address to 0. Only uninitialized inodes will have
273 * 0 for the disk block address.
274 */
275int
276xfs_itobp(
277 xfs_mount_t *mp,
278 xfs_trans_t *tp,
279 xfs_inode_t *ip,
280 xfs_dinode_t **dipp,
281 xfs_buf_t **bpp,
b12dd342 282 xfs_daddr_t bno,
a3f74ffb
DC
283 uint imap_flags,
284 uint buf_flags)
1da177e4 285{
4d1a2ed3 286 xfs_imap_t imap;
1da177e4
LT
287 xfs_buf_t *bp;
288 int error;
1da177e4
LT
289
290 if (ip->i_blkno == (xfs_daddr_t)0) {
1da177e4 291 imap.im_blkno = bno;
4ae29b43
DC
292 error = xfs_imap(mp, tp, ip->i_ino, &imap,
293 XFS_IMAP_LOOKUP | imap_flags);
294 if (error)
1da177e4 295 return error;
1da177e4 296
1da177e4
LT
297 /*
298 * Fill in the fields in the inode that will be used to
299 * map the inode to its buffer from now on.
300 */
301 ip->i_blkno = imap.im_blkno;
302 ip->i_len = imap.im_len;
303 ip->i_boffset = imap.im_boffset;
304 } else {
305 /*
306 * We've already mapped the inode once, so just use the
307 * mapping that we saved the first time.
308 */
309 imap.im_blkno = ip->i_blkno;
310 imap.im_len = ip->i_len;
311 imap.im_boffset = ip->i_boffset;
312 }
313 ASSERT(bno == 0 || bno == imap.im_blkno);
314
a3f74ffb 315 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
4ae29b43 316 if (error)
1da177e4 317 return error;
1da177e4 318
a3f74ffb
DC
319 if (!bp) {
320 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
321 ASSERT(tp == NULL);
322 *bpp = NULL;
323 return EAGAIN;
324 }
325
1da177e4
LT
326 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
327 *bpp = bp;
328 return 0;
329}
330
331/*
332 * Move inode type and inode format specific information from the
333 * on-disk inode to the in-core inode. For fifos, devs, and sockets
334 * this means set if_rdev to the proper value. For files, directories,
335 * and symlinks this means to bring in the in-line data or extent
336 * pointers. For a file in B-tree format, only the root is immediately
337 * brought in-core. The rest will be in-lined in if_extents when it
338 * is first referenced (see xfs_iread_extents()).
339 */
340STATIC int
341xfs_iformat(
342 xfs_inode_t *ip,
343 xfs_dinode_t *dip)
344{
345 xfs_attr_shortform_t *atp;
346 int size;
347 int error;
348 xfs_fsize_t di_size;
349 ip->i_df.if_ext_max =
350 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
351 error = 0;
352
347d1c01
CH
353 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
354 be16_to_cpu(dip->di_core.di_anextents) >
355 be64_to_cpu(dip->di_core.di_nblocks))) {
3762ec6b
NS
356 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
357 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 358 (unsigned long long)ip->i_ino,
347d1c01
CH
359 (int)(be32_to_cpu(dip->di_core.di_nextents) +
360 be16_to_cpu(dip->di_core.di_anextents)),
1da177e4 361 (unsigned long long)
347d1c01 362 be64_to_cpu(dip->di_core.di_nblocks));
1da177e4
LT
363 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
364 ip->i_mount, dip);
365 return XFS_ERROR(EFSCORRUPTED);
366 }
367
347d1c01 368 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
369 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
370 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 371 (unsigned long long)ip->i_ino,
347d1c01 372 dip->di_core.di_forkoff);
1da177e4
LT
373 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
374 ip->i_mount, dip);
375 return XFS_ERROR(EFSCORRUPTED);
376 }
377
378 switch (ip->i_d.di_mode & S_IFMT) {
379 case S_IFIFO:
380 case S_IFCHR:
381 case S_IFBLK:
382 case S_IFSOCK:
347d1c01 383 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
384 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
385 ip->i_mount, dip);
386 return XFS_ERROR(EFSCORRUPTED);
387 }
388 ip->i_d.di_size = 0;
ba87ea69 389 ip->i_size = 0;
347d1c01 390 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
1da177e4
LT
391 break;
392
393 case S_IFREG:
394 case S_IFLNK:
395 case S_IFDIR:
347d1c01 396 switch (dip->di_core.di_format) {
1da177e4
LT
397 case XFS_DINODE_FMT_LOCAL:
398 /*
399 * no local regular files yet
400 */
347d1c01 401 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
402 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
403 "corrupt inode %Lu "
404 "(local format for regular file).",
1da177e4
LT
405 (unsigned long long) ip->i_ino);
406 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
407 XFS_ERRLEVEL_LOW,
408 ip->i_mount, dip);
409 return XFS_ERROR(EFSCORRUPTED);
410 }
411
347d1c01 412 di_size = be64_to_cpu(dip->di_core.di_size);
1da177e4 413 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
414 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
415 "corrupt inode %Lu "
416 "(bad size %Ld for local inode).",
1da177e4
LT
417 (unsigned long long) ip->i_ino,
418 (long long) di_size);
419 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
420 XFS_ERRLEVEL_LOW,
421 ip->i_mount, dip);
422 return XFS_ERROR(EFSCORRUPTED);
423 }
424
425 size = (int)di_size;
426 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
427 break;
428 case XFS_DINODE_FMT_EXTENTS:
429 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
430 break;
431 case XFS_DINODE_FMT_BTREE:
432 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
433 break;
434 default:
435 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
436 ip->i_mount);
437 return XFS_ERROR(EFSCORRUPTED);
438 }
439 break;
440
441 default:
442 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
443 return XFS_ERROR(EFSCORRUPTED);
444 }
445 if (error) {
446 return error;
447 }
448 if (!XFS_DFORK_Q(dip))
449 return 0;
450 ASSERT(ip->i_afp == NULL);
451 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
452 ip->i_afp->if_ext_max =
453 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
347d1c01 454 switch (dip->di_core.di_aformat) {
1da177e4
LT
455 case XFS_DINODE_FMT_LOCAL:
456 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 457 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
458 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
459 break;
460 case XFS_DINODE_FMT_EXTENTS:
461 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
462 break;
463 case XFS_DINODE_FMT_BTREE:
464 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
465 break;
466 default:
467 error = XFS_ERROR(EFSCORRUPTED);
468 break;
469 }
470 if (error) {
471 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
472 ip->i_afp = NULL;
473 xfs_idestroy_fork(ip, XFS_DATA_FORK);
474 }
475 return error;
476}
477
478/*
479 * The file is in-lined in the on-disk inode.
480 * If it fits into if_inline_data, then copy
481 * it there, otherwise allocate a buffer for it
482 * and copy the data there. Either way, set
483 * if_data to point at the data.
484 * If we allocate a buffer for the data, make
485 * sure that its size is a multiple of 4 and
486 * record the real size in i_real_bytes.
487 */
488STATIC int
489xfs_iformat_local(
490 xfs_inode_t *ip,
491 xfs_dinode_t *dip,
492 int whichfork,
493 int size)
494{
495 xfs_ifork_t *ifp;
496 int real_size;
497
498 /*
499 * If the size is unreasonable, then something
500 * is wrong and we just bail out rather than crash in
501 * kmem_alloc() or memcpy() below.
502 */
503 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
504 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
505 "corrupt inode %Lu "
506 "(bad size %d for local fork, size = %d).",
1da177e4
LT
507 (unsigned long long) ip->i_ino, size,
508 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
509 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
510 ip->i_mount, dip);
511 return XFS_ERROR(EFSCORRUPTED);
512 }
513 ifp = XFS_IFORK_PTR(ip, whichfork);
514 real_size = 0;
515 if (size == 0)
516 ifp->if_u1.if_data = NULL;
517 else if (size <= sizeof(ifp->if_u2.if_inline_data))
518 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
519 else {
520 real_size = roundup(size, 4);
521 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
522 }
523 ifp->if_bytes = size;
524 ifp->if_real_bytes = real_size;
525 if (size)
526 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
527 ifp->if_flags &= ~XFS_IFEXTENTS;
528 ifp->if_flags |= XFS_IFINLINE;
529 return 0;
530}
531
532/*
533 * The file consists of a set of extents all
534 * of which fit into the on-disk inode.
535 * If there are few enough extents to fit into
536 * the if_inline_ext, then copy them there.
537 * Otherwise allocate a buffer for them and copy
538 * them into it. Either way, set if_extents
539 * to point at the extents.
540 */
541STATIC int
542xfs_iformat_extents(
543 xfs_inode_t *ip,
544 xfs_dinode_t *dip,
545 int whichfork)
546{
a6f64d4a 547 xfs_bmbt_rec_t *dp;
1da177e4
LT
548 xfs_ifork_t *ifp;
549 int nex;
1da177e4
LT
550 int size;
551 int i;
552
553 ifp = XFS_IFORK_PTR(ip, whichfork);
554 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
555 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
556
557 /*
558 * If the number of extents is unreasonable, then something
559 * is wrong and we just bail out rather than crash in
560 * kmem_alloc() or memcpy() below.
561 */
562 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
563 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
564 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
565 (unsigned long long) ip->i_ino, nex);
566 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
567 ip->i_mount, dip);
568 return XFS_ERROR(EFSCORRUPTED);
569 }
570
4eea22f0 571 ifp->if_real_bytes = 0;
1da177e4
LT
572 if (nex == 0)
573 ifp->if_u1.if_extents = NULL;
574 else if (nex <= XFS_INLINE_EXTS)
575 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
576 else
577 xfs_iext_add(ifp, 0, nex);
578
1da177e4 579 ifp->if_bytes = size;
1da177e4
LT
580 if (size) {
581 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 582 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 583 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 584 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
585 ep->l0 = get_unaligned_be64(&dp->l0);
586 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 587 }
3a59c94c 588 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
589 if (whichfork != XFS_DATA_FORK ||
590 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
591 if (unlikely(xfs_check_nostate_extents(
4eea22f0 592 ifp, 0, nex))) {
1da177e4
LT
593 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
594 XFS_ERRLEVEL_LOW,
595 ip->i_mount);
596 return XFS_ERROR(EFSCORRUPTED);
597 }
598 }
599 ifp->if_flags |= XFS_IFEXTENTS;
600 return 0;
601}
602
603/*
604 * The file has too many extents to fit into
605 * the inode, so they are in B-tree format.
606 * Allocate a buffer for the root of the B-tree
607 * and copy the root into it. The i_extents
608 * field will remain NULL until all of the
609 * extents are read in (when they are needed).
610 */
611STATIC int
612xfs_iformat_btree(
613 xfs_inode_t *ip,
614 xfs_dinode_t *dip,
615 int whichfork)
616{
617 xfs_bmdr_block_t *dfp;
618 xfs_ifork_t *ifp;
619 /* REFERENCED */
620 int nrecs;
621 int size;
622
623 ifp = XFS_IFORK_PTR(ip, whichfork);
624 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
625 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 626 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
627
628 /*
629 * blow out if -- fork has less extents than can fit in
630 * fork (fork shouldn't be a btree format), root btree
631 * block has more records than can fit into the fork,
632 * or the number of extents is greater than the number of
633 * blocks.
634 */
635 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
636 || XFS_BMDR_SPACE_CALC(nrecs) >
637 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
638 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
639 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
640 "corrupt inode %Lu (btree).",
1da177e4
LT
641 (unsigned long long) ip->i_ino);
642 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
643 ip->i_mount);
644 return XFS_ERROR(EFSCORRUPTED);
645 }
646
647 ifp->if_broot_bytes = size;
648 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
649 ASSERT(ifp->if_broot != NULL);
650 /*
651 * Copy and convert from the on-disk structure
652 * to the in-memory structure.
653 */
60197e8d
CH
654 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
655 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
656 ifp->if_broot, size);
1da177e4
LT
657 ifp->if_flags &= ~XFS_IFEXTENTS;
658 ifp->if_flags |= XFS_IFBROOT;
659
660 return 0;
661}
662
1da177e4 663void
347d1c01
CH
664xfs_dinode_from_disk(
665 xfs_icdinode_t *to,
666 xfs_dinode_core_t *from)
1da177e4 667{
347d1c01
CH
668 to->di_magic = be16_to_cpu(from->di_magic);
669 to->di_mode = be16_to_cpu(from->di_mode);
670 to->di_version = from ->di_version;
671 to->di_format = from->di_format;
672 to->di_onlink = be16_to_cpu(from->di_onlink);
673 to->di_uid = be32_to_cpu(from->di_uid);
674 to->di_gid = be32_to_cpu(from->di_gid);
675 to->di_nlink = be32_to_cpu(from->di_nlink);
676 to->di_projid = be16_to_cpu(from->di_projid);
677 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
678 to->di_flushiter = be16_to_cpu(from->di_flushiter);
679 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
680 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
681 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
682 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
683 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
684 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
685 to->di_size = be64_to_cpu(from->di_size);
686 to->di_nblocks = be64_to_cpu(from->di_nblocks);
687 to->di_extsize = be32_to_cpu(from->di_extsize);
688 to->di_nextents = be32_to_cpu(from->di_nextents);
689 to->di_anextents = be16_to_cpu(from->di_anextents);
690 to->di_forkoff = from->di_forkoff;
691 to->di_aformat = from->di_aformat;
692 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
693 to->di_dmstate = be16_to_cpu(from->di_dmstate);
694 to->di_flags = be16_to_cpu(from->di_flags);
695 to->di_gen = be32_to_cpu(from->di_gen);
696}
697
698void
699xfs_dinode_to_disk(
700 xfs_dinode_core_t *to,
701 xfs_icdinode_t *from)
702{
703 to->di_magic = cpu_to_be16(from->di_magic);
704 to->di_mode = cpu_to_be16(from->di_mode);
705 to->di_version = from ->di_version;
706 to->di_format = from->di_format;
707 to->di_onlink = cpu_to_be16(from->di_onlink);
708 to->di_uid = cpu_to_be32(from->di_uid);
709 to->di_gid = cpu_to_be32(from->di_gid);
710 to->di_nlink = cpu_to_be32(from->di_nlink);
711 to->di_projid = cpu_to_be16(from->di_projid);
712 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
713 to->di_flushiter = cpu_to_be16(from->di_flushiter);
714 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
715 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
716 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
717 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
718 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
719 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
720 to->di_size = cpu_to_be64(from->di_size);
721 to->di_nblocks = cpu_to_be64(from->di_nblocks);
722 to->di_extsize = cpu_to_be32(from->di_extsize);
723 to->di_nextents = cpu_to_be32(from->di_nextents);
724 to->di_anextents = cpu_to_be16(from->di_anextents);
725 to->di_forkoff = from->di_forkoff;
726 to->di_aformat = from->di_aformat;
727 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
728 to->di_dmstate = cpu_to_be16(from->di_dmstate);
729 to->di_flags = cpu_to_be16(from->di_flags);
730 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
731}
732
733STATIC uint
734_xfs_dic2xflags(
1da177e4
LT
735 __uint16_t di_flags)
736{
737 uint flags = 0;
738
739 if (di_flags & XFS_DIFLAG_ANY) {
740 if (di_flags & XFS_DIFLAG_REALTIME)
741 flags |= XFS_XFLAG_REALTIME;
742 if (di_flags & XFS_DIFLAG_PREALLOC)
743 flags |= XFS_XFLAG_PREALLOC;
744 if (di_flags & XFS_DIFLAG_IMMUTABLE)
745 flags |= XFS_XFLAG_IMMUTABLE;
746 if (di_flags & XFS_DIFLAG_APPEND)
747 flags |= XFS_XFLAG_APPEND;
748 if (di_flags & XFS_DIFLAG_SYNC)
749 flags |= XFS_XFLAG_SYNC;
750 if (di_flags & XFS_DIFLAG_NOATIME)
751 flags |= XFS_XFLAG_NOATIME;
752 if (di_flags & XFS_DIFLAG_NODUMP)
753 flags |= XFS_XFLAG_NODUMP;
754 if (di_flags & XFS_DIFLAG_RTINHERIT)
755 flags |= XFS_XFLAG_RTINHERIT;
756 if (di_flags & XFS_DIFLAG_PROJINHERIT)
757 flags |= XFS_XFLAG_PROJINHERIT;
758 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
759 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
760 if (di_flags & XFS_DIFLAG_EXTSIZE)
761 flags |= XFS_XFLAG_EXTSIZE;
762 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
763 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
764 if (di_flags & XFS_DIFLAG_NODEFRAG)
765 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
766 if (di_flags & XFS_DIFLAG_FILESTREAM)
767 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
768 }
769
770 return flags;
771}
772
773uint
774xfs_ip2xflags(
775 xfs_inode_t *ip)
776{
347d1c01 777 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 778
a916e2bd 779 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 780 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
781}
782
783uint
784xfs_dic2xflags(
45ba598e 785 xfs_dinode_t *dip)
1da177e4 786{
45ba598e
CH
787 xfs_dinode_core_t *dic = &dip->di_core;
788
347d1c01 789 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
45ba598e 790 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
791}
792
07c8f675
DC
793/*
794 * Allocate and initialise an xfs_inode.
795 */
c679eef0 796STATIC struct xfs_inode *
07c8f675
DC
797xfs_inode_alloc(
798 struct xfs_mount *mp,
799 xfs_ino_t ino)
800{
801 struct xfs_inode *ip;
802
803 /*
804 * if this didn't occur in transactions, we could use
805 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
806 * code up to do this anyway.
807 */
808 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
809 if (!ip)
810 return NULL;
811
812 ASSERT(atomic_read(&ip->i_iocount) == 0);
813 ASSERT(atomic_read(&ip->i_pincount) == 0);
814 ASSERT(!spin_is_locked(&ip->i_flags_lock));
11654513 815 ASSERT(completion_done(&ip->i_flush));
07c8f675 816
bf904248
DC
817 /*
818 * initialise the VFS inode here to get failures
819 * out of the way early.
820 */
821 if (!inode_init_always(mp->m_super, VFS_I(ip))) {
822 kmem_zone_free(xfs_inode_zone, ip);
823 return NULL;
824 }
825
826 /* initialise the xfs inode */
07c8f675
DC
827 ip->i_ino = ino;
828 ip->i_mount = mp;
829 ip->i_blkno = 0;
830 ip->i_len = 0;
831 ip->i_boffset =0;
832 ip->i_afp = NULL;
833 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
834 ip->i_flags = 0;
835 ip->i_update_core = 0;
836 ip->i_update_size = 0;
837 ip->i_delayed_blks = 0;
838 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
839 ip->i_size = 0;
840 ip->i_new_size = 0;
841
842 /*
843 * Initialize inode's trace buffers.
844 */
845#ifdef XFS_INODE_TRACE
846 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
847#endif
848#ifdef XFS_BMAP_TRACE
849 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
850#endif
8c4ed633 851#ifdef XFS_BTREE_TRACE
07c8f675
DC
852 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
853#endif
854#ifdef XFS_RW_TRACE
855 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
856#endif
857#ifdef XFS_ILOCK_TRACE
858 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
859#endif
860#ifdef XFS_DIR2_TRACE
861 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
862#endif
863
864 return ip;
865}
866
1da177e4
LT
867/*
868 * Given a mount structure and an inode number, return a pointer
c41564b5 869 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
870 * inode number.
871 *
872 * Initialize the inode's attributes and extent pointers if it
873 * already has them (it will not if the inode has no links).
874 */
875int
876xfs_iread(
877 xfs_mount_t *mp,
878 xfs_trans_t *tp,
879 xfs_ino_t ino,
880 xfs_inode_t **ipp,
745b1f47
NS
881 xfs_daddr_t bno,
882 uint imap_flags)
1da177e4
LT
883{
884 xfs_buf_t *bp;
885 xfs_dinode_t *dip;
886 xfs_inode_t *ip;
887 int error;
888
07c8f675
DC
889 ip = xfs_inode_alloc(mp, ino);
890 if (!ip)
891 return ENOMEM;
1da177e4
LT
892
893 /*
894 * Get pointer's to the on-disk inode and the buffer containing it.
895 * If the inode number refers to a block outside the file system
896 * then xfs_itobp() will return NULL. In this case we should
897 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
898 * know that this is a new incore inode.
899 */
a3f74ffb 900 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
b12dd342 901 if (error) {
d07c60e5 902 xfs_idestroy(ip);
1da177e4
LT
903 return error;
904 }
905
1da177e4
LT
906 /*
907 * If we got something that isn't an inode it means someone
908 * (nfs or dmi) has a stale handle.
909 */
347d1c01 910 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
07c8f675 911 xfs_idestroy(ip);
1da177e4
LT
912 xfs_trans_brelse(tp, bp);
913#ifdef DEBUG
914 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 "dip->di_core.di_magic (0x%x) != "
916 "XFS_DINODE_MAGIC (0x%x)",
347d1c01 917 be16_to_cpu(dip->di_core.di_magic),
1da177e4
LT
918 XFS_DINODE_MAGIC);
919#endif /* DEBUG */
920 return XFS_ERROR(EINVAL);
921 }
922
923 /*
924 * If the on-disk inode is already linked to a directory
925 * entry, copy all of the inode into the in-core inode.
926 * xfs_iformat() handles copying in the inode format
927 * specific information.
928 * Otherwise, just get the truly permanent information.
929 */
930 if (dip->di_core.di_mode) {
347d1c01 931 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
1da177e4
LT
932 error = xfs_iformat(ip, dip);
933 if (error) {
07c8f675 934 xfs_idestroy(ip);
1da177e4
LT
935 xfs_trans_brelse(tp, bp);
936#ifdef DEBUG
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
939 error);
940#endif /* DEBUG */
941 return error;
942 }
943 } else {
347d1c01
CH
944 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
945 ip->i_d.di_version = dip->di_core.di_version;
946 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
947 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
1da177e4
LT
948 /*
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
954 */
955 ip->i_d.di_mode = 0;
956 /*
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
959 */
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
962 }
963
1da177e4
LT
964 /*
965 * The inode format changed when we moved the link count and
966 * made it 32 bits long. If this is an old format inode,
967 * convert it in memory to look like a new one. If it gets
968 * flushed to disk we will convert back before flushing or
969 * logging it. We zero out the new projid field and the old link
970 * count field. We'll handle clearing the pad field (the remains
971 * of the old uuid field) when we actually convert the inode to
972 * the new format. We don't change the version number so that we
973 * can distinguish this from a real new format inode.
974 */
975 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
976 ip->i_d.di_nlink = ip->i_d.di_onlink;
977 ip->i_d.di_onlink = 0;
978 ip->i_d.di_projid = 0;
979 }
980
981 ip->i_delayed_blks = 0;
ba87ea69 982 ip->i_size = ip->i_d.di_size;
1da177e4
LT
983
984 /*
985 * Mark the buffer containing the inode as something to keep
986 * around for a while. This helps to keep recently accessed
987 * meta-data in-core longer.
988 */
989 XFS_BUF_SET_REF(bp, XFS_INO_REF);
990
991 /*
992 * Use xfs_trans_brelse() to release the buffer containing the
993 * on-disk inode, because it was acquired with xfs_trans_read_buf()
994 * in xfs_itobp() above. If tp is NULL, this is just a normal
995 * brelse(). If we're within a transaction, then xfs_trans_brelse()
996 * will only release the buffer if it is not dirty within the
997 * transaction. It will be OK to release the buffer in this case,
998 * because inodes on disk are never destroyed and we will be
999 * locking the new in-core inode before putting it in the hash
1000 * table where other processes can find it. Thus we don't have
1001 * to worry about the inode being changed just because we released
1002 * the buffer.
1003 */
1004 xfs_trans_brelse(tp, bp);
1005 *ipp = ip;
1006 return 0;
1007}
1008
1009/*
1010 * Read in extents from a btree-format inode.
1011 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1012 */
1013int
1014xfs_iread_extents(
1015 xfs_trans_t *tp,
1016 xfs_inode_t *ip,
1017 int whichfork)
1018{
1019 int error;
1020 xfs_ifork_t *ifp;
4eea22f0 1021 xfs_extnum_t nextents;
1da177e4
LT
1022 size_t size;
1023
1024 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1025 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1026 ip->i_mount);
1027 return XFS_ERROR(EFSCORRUPTED);
1028 }
4eea22f0
MK
1029 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1030 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1031 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1032
1da177e4
LT
1033 /*
1034 * We know that the size is valid (it's checked in iformat_btree)
1035 */
1da177e4 1036 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1037 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1038 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1039 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1040 error = xfs_bmap_read_extents(tp, ip, whichfork);
1041 if (error) {
4eea22f0 1042 xfs_iext_destroy(ifp);
1da177e4
LT
1043 ifp->if_flags &= ~XFS_IFEXTENTS;
1044 return error;
1045 }
a6f64d4a 1046 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1047 return 0;
1048}
1049
1050/*
1051 * Allocate an inode on disk and return a copy of its in-core version.
1052 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1053 * appropriately within the inode. The uid and gid for the inode are
1054 * set according to the contents of the given cred structure.
1055 *
1056 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1057 * has a free inode available, call xfs_iget()
1058 * to obtain the in-core version of the allocated inode. Finally,
1059 * fill in the inode and log its initial contents. In this case,
1060 * ialloc_context would be set to NULL and call_again set to false.
1061 *
1062 * If xfs_dialloc() does not have an available inode,
1063 * it will replenish its supply by doing an allocation. Since we can
1064 * only do one allocation within a transaction without deadlocks, we
1065 * must commit the current transaction before returning the inode itself.
1066 * In this case, therefore, we will set call_again to true and return.
1067 * The caller should then commit the current transaction, start a new
1068 * transaction, and call xfs_ialloc() again to actually get the inode.
1069 *
1070 * To ensure that some other process does not grab the inode that
1071 * was allocated during the first call to xfs_ialloc(), this routine
1072 * also returns the [locked] bp pointing to the head of the freelist
1073 * as ialloc_context. The caller should hold this buffer across
1074 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1075 *
1076 * If we are allocating quota inodes, we do not have a parent inode
1077 * to attach to or associate with (i.e. pip == NULL) because they
1078 * are not linked into the directory structure - they are attached
1079 * directly to the superblock - and so have no parent.
1da177e4
LT
1080 */
1081int
1082xfs_ialloc(
1083 xfs_trans_t *tp,
1084 xfs_inode_t *pip,
1085 mode_t mode,
31b084ae 1086 xfs_nlink_t nlink,
1da177e4
LT
1087 xfs_dev_t rdev,
1088 cred_t *cr,
1089 xfs_prid_t prid,
1090 int okalloc,
1091 xfs_buf_t **ialloc_context,
1092 boolean_t *call_again,
1093 xfs_inode_t **ipp)
1094{
1095 xfs_ino_t ino;
1096 xfs_inode_t *ip;
1da177e4
LT
1097 uint flags;
1098 int error;
dff35fd4 1099 timespec_t tv;
bf904248 1100 int filestreams = 0;
1da177e4
LT
1101
1102 /*
1103 * Call the space management code to pick
1104 * the on-disk inode to be allocated.
1105 */
b11f94d5 1106 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 1107 ialloc_context, call_again, &ino);
bf904248 1108 if (error)
1da177e4 1109 return error;
1da177e4
LT
1110 if (*call_again || ino == NULLFSINO) {
1111 *ipp = NULL;
1112 return 0;
1113 }
1114 ASSERT(*ialloc_context == NULL);
1115
1116 /*
1117 * Get the in-core inode with the lock held exclusively.
1118 * This is because we're setting fields here we need
1119 * to prevent others from looking at until we're done.
1120 */
1121 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1122 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
bf904248 1123 if (error)
1da177e4 1124 return error;
1da177e4
LT
1125 ASSERT(ip != NULL);
1126
1da177e4
LT
1127 ip->i_d.di_mode = (__uint16_t)mode;
1128 ip->i_d.di_onlink = 0;
1129 ip->i_d.di_nlink = nlink;
1130 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1131 ip->i_d.di_uid = current_fsuid();
1132 ip->i_d.di_gid = current_fsgid();
1da177e4
LT
1133 ip->i_d.di_projid = prid;
1134 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1135
1136 /*
1137 * If the superblock version is up to where we support new format
1138 * inodes and this is currently an old format inode, then change
1139 * the inode version number now. This way we only do the conversion
1140 * here rather than here and in the flush/logging code.
1141 */
62118709 1142 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1da177e4
LT
1143 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1144 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1145 /*
1146 * We've already zeroed the old link count, the projid field,
1147 * and the pad field.
1148 */
1149 }
1150
1151 /*
1152 * Project ids won't be stored on disk if we are using a version 1 inode.
1153 */
2a82b8be 1154 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1da177e4
LT
1155 xfs_bump_ino_vers2(tp, ip);
1156
bd186aa9 1157 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1158 ip->i_d.di_gid = pip->i_d.di_gid;
1159 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1160 ip->i_d.di_mode |= S_ISGID;
1161 }
1162 }
1163
1164 /*
1165 * If the group ID of the new file does not match the effective group
1166 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1167 * (and only if the irix_sgid_inherit compatibility variable is set).
1168 */
1169 if ((irix_sgid_inherit) &&
1170 (ip->i_d.di_mode & S_ISGID) &&
1171 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1172 ip->i_d.di_mode &= ~S_ISGID;
1173 }
1174
1175 ip->i_d.di_size = 0;
ba87ea69 1176 ip->i_size = 0;
1da177e4
LT
1177 ip->i_d.di_nextents = 0;
1178 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1179
1180 nanotime(&tv);
1181 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1182 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1183 ip->i_d.di_atime = ip->i_d.di_mtime;
1184 ip->i_d.di_ctime = ip->i_d.di_mtime;
1185
1da177e4
LT
1186 /*
1187 * di_gen will have been taken care of in xfs_iread.
1188 */
1189 ip->i_d.di_extsize = 0;
1190 ip->i_d.di_dmevmask = 0;
1191 ip->i_d.di_dmstate = 0;
1192 ip->i_d.di_flags = 0;
1193 flags = XFS_ILOG_CORE;
1194 switch (mode & S_IFMT) {
1195 case S_IFIFO:
1196 case S_IFCHR:
1197 case S_IFBLK:
1198 case S_IFSOCK:
1199 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1200 ip->i_df.if_u2.if_rdev = rdev;
1201 ip->i_df.if_flags = 0;
1202 flags |= XFS_ILOG_DEV;
1203 break;
1204 case S_IFREG:
bf904248
DC
1205 /*
1206 * we can't set up filestreams until after the VFS inode
1207 * is set up properly.
1208 */
1209 if (pip && xfs_inode_is_filestream(pip))
1210 filestreams = 1;
2a82b8be 1211 /* fall through */
1da177e4 1212 case S_IFDIR:
b11f94d5 1213 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1214 uint di_flags = 0;
1215
1216 if ((mode & S_IFMT) == S_IFDIR) {
1217 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1218 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1219 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1220 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1221 ip->i_d.di_extsize = pip->i_d.di_extsize;
1222 }
1223 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1224 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1225 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1226 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1227 di_flags |= XFS_DIFLAG_EXTSIZE;
1228 ip->i_d.di_extsize = pip->i_d.di_extsize;
1229 }
1da177e4
LT
1230 }
1231 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1232 xfs_inherit_noatime)
365ca83d 1233 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1234 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1235 xfs_inherit_nodump)
365ca83d 1236 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1237 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1238 xfs_inherit_sync)
365ca83d 1239 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1240 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1241 xfs_inherit_nosymlinks)
365ca83d
NS
1242 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1243 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1244 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1245 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1246 xfs_inherit_nodefrag)
1247 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1248 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1249 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1250 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1251 }
1252 /* FALLTHROUGH */
1253 case S_IFLNK:
1254 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1255 ip->i_df.if_flags = XFS_IFEXTENTS;
1256 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1257 ip->i_df.if_u1.if_extents = NULL;
1258 break;
1259 default:
1260 ASSERT(0);
1261 }
1262 /*
1263 * Attribute fork settings for new inode.
1264 */
1265 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1266 ip->i_d.di_anextents = 0;
1267
1268 /*
1269 * Log the new values stuffed into the inode.
1270 */
1271 xfs_trans_log_inode(tp, ip, flags);
1272
b83bd138 1273 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1274 xfs_setup_inode(ip);
1da177e4 1275
bf904248
DC
1276 /* now we have set up the vfs inode we can associate the filestream */
1277 if (filestreams) {
1278 error = xfs_filestream_associate(pip, ip);
1279 if (error < 0)
1280 return -error;
1281 if (!error)
1282 xfs_iflags_set(ip, XFS_IFILESTREAM);
1283 }
1284
1da177e4
LT
1285 *ipp = ip;
1286 return 0;
1287}
1288
1289/*
1290 * Check to make sure that there are no blocks allocated to the
1291 * file beyond the size of the file. We don't check this for
1292 * files with fixed size extents or real time extents, but we
1293 * at least do it for regular files.
1294 */
1295#ifdef DEBUG
1296void
1297xfs_isize_check(
1298 xfs_mount_t *mp,
1299 xfs_inode_t *ip,
1300 xfs_fsize_t isize)
1301{
1302 xfs_fileoff_t map_first;
1303 int nimaps;
1304 xfs_bmbt_irec_t imaps[2];
1305
1306 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1307 return;
1308
71ddabb9
ES
1309 if (XFS_IS_REALTIME_INODE(ip))
1310 return;
1311
1312 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1313 return;
1314
1315 nimaps = 2;
1316 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1317 /*
1318 * The filesystem could be shutting down, so bmapi may return
1319 * an error.
1320 */
1321 if (xfs_bmapi(NULL, ip, map_first,
1322 (XFS_B_TO_FSB(mp,
1323 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1324 map_first),
1325 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1326 NULL, NULL))
1da177e4
LT
1327 return;
1328 ASSERT(nimaps == 1);
1329 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1330}
1331#endif /* DEBUG */
1332
1333/*
1334 * Calculate the last possible buffered byte in a file. This must
1335 * include data that was buffered beyond the EOF by the write code.
1336 * This also needs to deal with overflowing the xfs_fsize_t type
1337 * which can happen for sizes near the limit.
1338 *
1339 * We also need to take into account any blocks beyond the EOF. It
1340 * may be the case that they were buffered by a write which failed.
1341 * In that case the pages will still be in memory, but the inode size
1342 * will never have been updated.
1343 */
1344xfs_fsize_t
1345xfs_file_last_byte(
1346 xfs_inode_t *ip)
1347{
1348 xfs_mount_t *mp;
1349 xfs_fsize_t last_byte;
1350 xfs_fileoff_t last_block;
1351 xfs_fileoff_t size_last_block;
1352 int error;
1353
579aa9ca 1354 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1da177e4
LT
1355
1356 mp = ip->i_mount;
1357 /*
1358 * Only check for blocks beyond the EOF if the extents have
1359 * been read in. This eliminates the need for the inode lock,
1360 * and it also saves us from looking when it really isn't
1361 * necessary.
1362 */
1363 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1364 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1365 XFS_DATA_FORK);
1366 if (error) {
1367 last_block = 0;
1368 }
1369 } else {
1370 last_block = 0;
1371 }
ba87ea69 1372 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1373 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1374
1375 last_byte = XFS_FSB_TO_B(mp, last_block);
1376 if (last_byte < 0) {
1377 return XFS_MAXIOFFSET(mp);
1378 }
1379 last_byte += (1 << mp->m_writeio_log);
1380 if (last_byte < 0) {
1381 return XFS_MAXIOFFSET(mp);
1382 }
1383 return last_byte;
1384}
1385
1386#if defined(XFS_RW_TRACE)
1387STATIC void
1388xfs_itrunc_trace(
1389 int tag,
1390 xfs_inode_t *ip,
1391 int flag,
1392 xfs_fsize_t new_size,
1393 xfs_off_t toss_start,
1394 xfs_off_t toss_finish)
1395{
1396 if (ip->i_rwtrace == NULL) {
1397 return;
1398 }
1399
1400 ktrace_enter(ip->i_rwtrace,
1401 (void*)((long)tag),
1402 (void*)ip,
1403 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1404 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1405 (void*)((long)flag),
1406 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1407 (void*)(unsigned long)(new_size & 0xffffffff),
1408 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1409 (void*)(unsigned long)(toss_start & 0xffffffff),
1410 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1411 (void*)(unsigned long)(toss_finish & 0xffffffff),
1412 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1413 (void*)(unsigned long)current_pid(),
1414 (void*)NULL,
1415 (void*)NULL,
1416 (void*)NULL);
1da177e4
LT
1417}
1418#else
1419#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1420#endif
1421
1422/*
1423 * Start the truncation of the file to new_size. The new size
1424 * must be smaller than the current size. This routine will
1425 * clear the buffer and page caches of file data in the removed
1426 * range, and xfs_itruncate_finish() will remove the underlying
1427 * disk blocks.
1428 *
1429 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1430 * must NOT have the inode lock held at all. This is because we're
1431 * calling into the buffer/page cache code and we can't hold the
1432 * inode lock when we do so.
1433 *
38e2299a
DC
1434 * We need to wait for any direct I/Os in flight to complete before we
1435 * proceed with the truncate. This is needed to prevent the extents
1436 * being read or written by the direct I/Os from being removed while the
1437 * I/O is in flight as there is no other method of synchronising
1438 * direct I/O with the truncate operation. Also, because we hold
1439 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1440 * started until the truncate completes and drops the lock. Essentially,
1441 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1442 * between direct I/Os and the truncate operation.
1443 *
1da177e4
LT
1444 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1445 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1446 * in the case that the caller is locking things out of order and
1447 * may not be able to call xfs_itruncate_finish() with the inode lock
1448 * held without dropping the I/O lock. If the caller must drop the
1449 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1450 * must be called again with all the same restrictions as the initial
1451 * call.
1452 */
d3cf2094 1453int
1da177e4
LT
1454xfs_itruncate_start(
1455 xfs_inode_t *ip,
1456 uint flags,
1457 xfs_fsize_t new_size)
1458{
1459 xfs_fsize_t last_byte;
1460 xfs_off_t toss_start;
1461 xfs_mount_t *mp;
d3cf2094 1462 int error = 0;
1da177e4 1463
579aa9ca 1464 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ba87ea69 1465 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1466 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1467 (flags == XFS_ITRUNC_MAYBE));
1468
1469 mp = ip->i_mount;
9fa8046f 1470
c734c79b 1471 /* wait for the completion of any pending DIOs */
d112f298 1472 if (new_size == 0 || new_size < ip->i_size)
c734c79b
LM
1473 vn_iowait(ip);
1474
1da177e4 1475 /*
67fcaa73 1476 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1477 * overlapping the region being removed. We have to use
67fcaa73 1478 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1479 * caller may not be able to finish the truncate without
1480 * dropping the inode's I/O lock. Make sure
1481 * to catch any pages brought in by buffers overlapping
1482 * the EOF by searching out beyond the isize by our
1483 * block size. We round new_size up to a block boundary
1484 * so that we don't toss things on the same block as
1485 * new_size but before it.
1486 *
67fcaa73 1487 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1488 * call remapf() over the same region if the file is mapped.
1489 * This frees up mapped file references to the pages in the
67fcaa73 1490 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1491 * that we get the latest mapped changes flushed out.
1492 */
1493 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1494 toss_start = XFS_FSB_TO_B(mp, toss_start);
1495 if (toss_start < 0) {
1496 /*
1497 * The place to start tossing is beyond our maximum
1498 * file size, so there is no way that the data extended
1499 * out there.
1500 */
d3cf2094 1501 return 0;
1da177e4
LT
1502 }
1503 last_byte = xfs_file_last_byte(ip);
1504 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1505 last_byte);
1506 if (last_byte > toss_start) {
1507 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1508 xfs_tosspages(ip, toss_start,
1509 -1, FI_REMAPF_LOCKED);
1da177e4 1510 } else {
739bfb2a
CH
1511 error = xfs_flushinval_pages(ip, toss_start,
1512 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1513 }
1514 }
1515
1516#ifdef DEBUG
1517 if (new_size == 0) {
df80c933 1518 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1da177e4
LT
1519 }
1520#endif
d3cf2094 1521 return error;
1da177e4
LT
1522}
1523
1524/*
f6485057
DC
1525 * Shrink the file to the given new_size. The new size must be smaller than
1526 * the current size. This will free up the underlying blocks in the removed
1527 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1da177e4 1528 *
f6485057
DC
1529 * The transaction passed to this routine must have made a permanent log
1530 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1531 * given transaction and start new ones, so make sure everything involved in
1532 * the transaction is tidy before calling here. Some transaction will be
1533 * returned to the caller to be committed. The incoming transaction must
1534 * already include the inode, and both inode locks must be held exclusively.
1535 * The inode must also be "held" within the transaction. On return the inode
1536 * will be "held" within the returned transaction. This routine does NOT
1537 * require any disk space to be reserved for it within the transaction.
1da177e4 1538 *
f6485057
DC
1539 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1540 * indicates the fork which is to be truncated. For the attribute fork we only
1541 * support truncation to size 0.
1da177e4 1542 *
f6485057
DC
1543 * We use the sync parameter to indicate whether or not the first transaction
1544 * we perform might have to be synchronous. For the attr fork, it needs to be
1545 * so if the unlink of the inode is not yet known to be permanent in the log.
1546 * This keeps us from freeing and reusing the blocks of the attribute fork
1547 * before the unlink of the inode becomes permanent.
1da177e4 1548 *
f6485057
DC
1549 * For the data fork, we normally have to run synchronously if we're being
1550 * called out of the inactive path or we're being called out of the create path
1551 * where we're truncating an existing file. Either way, the truncate needs to
1552 * be sync so blocks don't reappear in the file with altered data in case of a
1553 * crash. wsync filesystems can run the first case async because anything that
1554 * shrinks the inode has to run sync so by the time we're called here from
1555 * inactive, the inode size is permanently set to 0.
1da177e4 1556 *
f6485057
DC
1557 * Calls from the truncate path always need to be sync unless we're in a wsync
1558 * filesystem and the file has already been unlinked.
1da177e4 1559 *
f6485057
DC
1560 * The caller is responsible for correctly setting the sync parameter. It gets
1561 * too hard for us to guess here which path we're being called out of just
1562 * based on inode state.
1563 *
1564 * If we get an error, we must return with the inode locked and linked into the
1565 * current transaction. This keeps things simple for the higher level code,
1566 * because it always knows that the inode is locked and held in the transaction
1567 * that returns to it whether errors occur or not. We don't mark the inode
1568 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1569 */
1570int
1571xfs_itruncate_finish(
1572 xfs_trans_t **tp,
1573 xfs_inode_t *ip,
1574 xfs_fsize_t new_size,
1575 int fork,
1576 int sync)
1577{
1578 xfs_fsblock_t first_block;
1579 xfs_fileoff_t first_unmap_block;
1580 xfs_fileoff_t last_block;
1581 xfs_filblks_t unmap_len=0;
1582 xfs_mount_t *mp;
1583 xfs_trans_t *ntp;
1584 int done;
1585 int committed;
1586 xfs_bmap_free_t free_list;
1587 int error;
1588
579aa9ca 1589 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ba87ea69 1590 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1591 ASSERT(*tp != NULL);
1592 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1593 ASSERT(ip->i_transp == *tp);
1594 ASSERT(ip->i_itemp != NULL);
1595 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1596
1597
1598 ntp = *tp;
1599 mp = (ntp)->t_mountp;
1600 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1601
1602 /*
1603 * We only support truncating the entire attribute fork.
1604 */
1605 if (fork == XFS_ATTR_FORK) {
1606 new_size = 0LL;
1607 }
1608 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1609 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1610 /*
1611 * The first thing we do is set the size to new_size permanently
1612 * on disk. This way we don't have to worry about anyone ever
1613 * being able to look at the data being freed even in the face
1614 * of a crash. What we're getting around here is the case where
1615 * we free a block, it is allocated to another file, it is written
1616 * to, and then we crash. If the new data gets written to the
1617 * file but the log buffers containing the free and reallocation
1618 * don't, then we'd end up with garbage in the blocks being freed.
1619 * As long as we make the new_size permanent before actually
1620 * freeing any blocks it doesn't matter if they get writtten to.
1621 *
1622 * The callers must signal into us whether or not the size
1623 * setting here must be synchronous. There are a few cases
1624 * where it doesn't have to be synchronous. Those cases
1625 * occur if the file is unlinked and we know the unlink is
1626 * permanent or if the blocks being truncated are guaranteed
1627 * to be beyond the inode eof (regardless of the link count)
1628 * and the eof value is permanent. Both of these cases occur
1629 * only on wsync-mounted filesystems. In those cases, we're
1630 * guaranteed that no user will ever see the data in the blocks
1631 * that are being truncated so the truncate can run async.
1632 * In the free beyond eof case, the file may wind up with
1633 * more blocks allocated to it than it needs if we crash
1634 * and that won't get fixed until the next time the file
1635 * is re-opened and closed but that's ok as that shouldn't
1636 * be too many blocks.
1637 *
1638 * However, we can't just make all wsync xactions run async
1639 * because there's one call out of the create path that needs
1640 * to run sync where it's truncating an existing file to size
1641 * 0 whose size is > 0.
1642 *
1643 * It's probably possible to come up with a test in this
1644 * routine that would correctly distinguish all the above
1645 * cases from the values of the function parameters and the
1646 * inode state but for sanity's sake, I've decided to let the
1647 * layers above just tell us. It's simpler to correctly figure
1648 * out in the layer above exactly under what conditions we
1649 * can run async and I think it's easier for others read and
1650 * follow the logic in case something has to be changed.
1651 * cscope is your friend -- rcc.
1652 *
1653 * The attribute fork is much simpler.
1654 *
1655 * For the attribute fork we allow the caller to tell us whether
1656 * the unlink of the inode that led to this call is yet permanent
1657 * in the on disk log. If it is not and we will be freeing extents
1658 * in this inode then we make the first transaction synchronous
1659 * to make sure that the unlink is permanent by the time we free
1660 * the blocks.
1661 */
1662 if (fork == XFS_DATA_FORK) {
1663 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1664 /*
1665 * If we are not changing the file size then do
1666 * not update the on-disk file size - we may be
1667 * called from xfs_inactive_free_eofblocks(). If we
1668 * update the on-disk file size and then the system
1669 * crashes before the contents of the file are
1670 * flushed to disk then the files may be full of
1671 * holes (ie NULL files bug).
1672 */
1673 if (ip->i_size != new_size) {
1674 ip->i_d.di_size = new_size;
1675 ip->i_size = new_size;
1676 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1677 }
1da177e4
LT
1678 }
1679 } else if (sync) {
1680 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1681 if (ip->i_d.di_anextents > 0)
1682 xfs_trans_set_sync(ntp);
1683 }
1684 ASSERT(fork == XFS_DATA_FORK ||
1685 (fork == XFS_ATTR_FORK &&
1686 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1687 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1688
1689 /*
1690 * Since it is possible for space to become allocated beyond
1691 * the end of the file (in a crash where the space is allocated
1692 * but the inode size is not yet updated), simply remove any
1693 * blocks which show up between the new EOF and the maximum
1694 * possible file size. If the first block to be removed is
1695 * beyond the maximum file size (ie it is the same as last_block),
1696 * then there is nothing to do.
1697 */
1698 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1699 ASSERT(first_unmap_block <= last_block);
1700 done = 0;
1701 if (last_block == first_unmap_block) {
1702 done = 1;
1703 } else {
1704 unmap_len = last_block - first_unmap_block + 1;
1705 }
1706 while (!done) {
1707 /*
1708 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1709 * will tell us whether it freed the entire range or
1710 * not. If this is a synchronous mount (wsync),
1711 * then we can tell bunmapi to keep all the
1712 * transactions asynchronous since the unlink
1713 * transaction that made this inode inactive has
1714 * already hit the disk. There's no danger of
1715 * the freed blocks being reused, there being a
1716 * crash, and the reused blocks suddenly reappearing
1717 * in this file with garbage in them once recovery
1718 * runs.
1719 */
1720 XFS_BMAP_INIT(&free_list, &first_block);
541d7d3c 1721 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1722 first_unmap_block, unmap_len,
1da177e4
LT
1723 XFS_BMAPI_AFLAG(fork) |
1724 (sync ? 0 : XFS_BMAPI_ASYNC),
1725 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1726 &first_block, &free_list,
1727 NULL, &done);
1da177e4
LT
1728 if (error) {
1729 /*
1730 * If the bunmapi call encounters an error,
1731 * return to the caller where the transaction
1732 * can be properly aborted. We just need to
1733 * make sure we're not holding any resources
1734 * that we were not when we came in.
1735 */
1736 xfs_bmap_cancel(&free_list);
1737 return error;
1738 }
1739
1740 /*
1741 * Duplicate the transaction that has the permanent
1742 * reservation and commit the old transaction.
1743 */
f7c99b6f 1744 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4 1745 ntp = *tp;
f6485057
DC
1746 if (committed) {
1747 /* link the inode into the next xact in the chain */
1748 xfs_trans_ijoin(ntp, ip,
1749 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1750 xfs_trans_ihold(ntp, ip);
1751 }
1752
1da177e4
LT
1753 if (error) {
1754 /*
f6485057
DC
1755 * If the bmap finish call encounters an error, return
1756 * to the caller where the transaction can be properly
1757 * aborted. We just need to make sure we're not
1758 * holding any resources that we were not when we came
1759 * in.
1da177e4 1760 *
f6485057
DC
1761 * Aborting from this point might lose some blocks in
1762 * the file system, but oh well.
1da177e4
LT
1763 */
1764 xfs_bmap_cancel(&free_list);
1da177e4
LT
1765 return error;
1766 }
1767
1768 if (committed) {
1769 /*
f6485057 1770 * Mark the inode dirty so it will be logged and
e5720eec 1771 * moved forward in the log as part of every commit.
1da177e4 1772 */
1da177e4
LT
1773 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1774 }
f6485057 1775
1da177e4 1776 ntp = xfs_trans_dup(ntp);
e5720eec 1777 error = xfs_trans_commit(*tp, 0);
1da177e4 1778 *tp = ntp;
e5720eec 1779
f6485057
DC
1780 /* link the inode into the next transaction in the chain */
1781 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1782 xfs_trans_ihold(ntp, ip);
1783
1784 if (!error)
1785 error = xfs_trans_reserve(ntp, 0,
1786 XFS_ITRUNCATE_LOG_RES(mp), 0,
1787 XFS_TRANS_PERM_LOG_RES,
1788 XFS_ITRUNCATE_LOG_COUNT);
1789 if (error)
1790 return error;
1da177e4
LT
1791 }
1792 /*
1793 * Only update the size in the case of the data fork, but
1794 * always re-log the inode so that our permanent transaction
1795 * can keep on rolling it forward in the log.
1796 */
1797 if (fork == XFS_DATA_FORK) {
1798 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1799 /*
1800 * If we are not changing the file size then do
1801 * not update the on-disk file size - we may be
1802 * called from xfs_inactive_free_eofblocks(). If we
1803 * update the on-disk file size and then the system
1804 * crashes before the contents of the file are
1805 * flushed to disk then the files may be full of
1806 * holes (ie NULL files bug).
1807 */
1808 if (ip->i_size != new_size) {
1809 ip->i_d.di_size = new_size;
1810 ip->i_size = new_size;
1811 }
1da177e4
LT
1812 }
1813 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1814 ASSERT((new_size != 0) ||
1815 (fork == XFS_ATTR_FORK) ||
1816 (ip->i_delayed_blks == 0));
1817 ASSERT((new_size != 0) ||
1818 (fork == XFS_ATTR_FORK) ||
1819 (ip->i_d.di_nextents == 0));
1820 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1821 return 0;
1822}
1823
1da177e4
LT
1824/*
1825 * This is called when the inode's link count goes to 0.
1826 * We place the on-disk inode on a list in the AGI. It
1827 * will be pulled from this list when the inode is freed.
1828 */
1829int
1830xfs_iunlink(
1831 xfs_trans_t *tp,
1832 xfs_inode_t *ip)
1833{
1834 xfs_mount_t *mp;
1835 xfs_agi_t *agi;
1836 xfs_dinode_t *dip;
1837 xfs_buf_t *agibp;
1838 xfs_buf_t *ibp;
1839 xfs_agnumber_t agno;
1840 xfs_daddr_t agdaddr;
1841 xfs_agino_t agino;
1842 short bucket_index;
1843 int offset;
1844 int error;
1845 int agi_ok;
1846
1847 ASSERT(ip->i_d.di_nlink == 0);
1848 ASSERT(ip->i_d.di_mode != 0);
1849 ASSERT(ip->i_transp == tp);
1850
1851 mp = tp->t_mountp;
1852
1853 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1854 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1855
1856 /*
1857 * Get the agi buffer first. It ensures lock ordering
1858 * on the list.
1859 */
1860 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1861 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
859d7182 1862 if (error)
1da177e4 1863 return error;
859d7182 1864
1da177e4
LT
1865 /*
1866 * Validate the magic number of the agi block.
1867 */
1868 agi = XFS_BUF_TO_AGI(agibp);
1869 agi_ok =
16259e7d
CH
1870 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1871 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1872 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1873 XFS_RANDOM_IUNLINK))) {
1874 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1875 xfs_trans_brelse(tp, agibp);
1876 return XFS_ERROR(EFSCORRUPTED);
1877 }
1878 /*
1879 * Get the index into the agi hash table for the
1880 * list this inode will go on.
1881 */
1882 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1883 ASSERT(agino != 0);
1884 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1885 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1886 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1887
16259e7d 1888 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1889 /*
1890 * There is already another inode in the bucket we need
1891 * to add ourselves to. Add us at the front of the list.
1892 * Here we put the head pointer into our next pointer,
1893 * and then we fall through to point the head at us.
1894 */
a3f74ffb 1895 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
1896 if (error)
1897 return error;
1898
347d1c01 1899 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1900 /* both on-disk, don't endian flip twice */
1901 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1902 offset = ip->i_boffset +
1903 offsetof(xfs_dinode_t, di_next_unlinked);
1904 xfs_trans_inode_buf(tp, ibp);
1905 xfs_trans_log_buf(tp, ibp, offset,
1906 (offset + sizeof(xfs_agino_t) - 1));
1907 xfs_inobp_check(mp, ibp);
1908 }
1909
1910 /*
1911 * Point the bucket head pointer at the inode being inserted.
1912 */
1913 ASSERT(agino != 0);
16259e7d 1914 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1915 offset = offsetof(xfs_agi_t, agi_unlinked) +
1916 (sizeof(xfs_agino_t) * bucket_index);
1917 xfs_trans_log_buf(tp, agibp, offset,
1918 (offset + sizeof(xfs_agino_t) - 1));
1919 return 0;
1920}
1921
1922/*
1923 * Pull the on-disk inode from the AGI unlinked list.
1924 */
1925STATIC int
1926xfs_iunlink_remove(
1927 xfs_trans_t *tp,
1928 xfs_inode_t *ip)
1929{
1930 xfs_ino_t next_ino;
1931 xfs_mount_t *mp;
1932 xfs_agi_t *agi;
1933 xfs_dinode_t *dip;
1934 xfs_buf_t *agibp;
1935 xfs_buf_t *ibp;
1936 xfs_agnumber_t agno;
1937 xfs_daddr_t agdaddr;
1938 xfs_agino_t agino;
1939 xfs_agino_t next_agino;
1940 xfs_buf_t *last_ibp;
6fdf8ccc 1941 xfs_dinode_t *last_dip = NULL;
1da177e4 1942 short bucket_index;
6fdf8ccc 1943 int offset, last_offset = 0;
1da177e4
LT
1944 int error;
1945 int agi_ok;
1946
1947 /*
1948 * First pull the on-disk inode from the AGI unlinked list.
1949 */
1950 mp = tp->t_mountp;
1951
1952 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1953 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1954
1955 /*
1956 * Get the agi buffer first. It ensures lock ordering
1957 * on the list.
1958 */
1959 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1960 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1961 if (error) {
1962 cmn_err(CE_WARN,
1963 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1964 error, mp->m_fsname);
1965 return error;
1966 }
1967 /*
1968 * Validate the magic number of the agi block.
1969 */
1970 agi = XFS_BUF_TO_AGI(agibp);
1971 agi_ok =
16259e7d
CH
1972 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1973 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1974 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1975 XFS_RANDOM_IUNLINK_REMOVE))) {
1976 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1977 mp, agi);
1978 xfs_trans_brelse(tp, agibp);
1979 cmn_err(CE_WARN,
1980 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1981 mp->m_fsname);
1982 return XFS_ERROR(EFSCORRUPTED);
1983 }
1984 /*
1985 * Get the index into the agi hash table for the
1986 * list this inode will go on.
1987 */
1988 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1989 ASSERT(agino != 0);
1990 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 1991 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
1992 ASSERT(agi->agi_unlinked[bucket_index]);
1993
16259e7d 1994 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1995 /*
1996 * We're at the head of the list. Get the inode's
1997 * on-disk buffer to see if there is anyone after us
1998 * on the list. Only modify our next pointer if it
1999 * is not already NULLAGINO. This saves us the overhead
2000 * of dealing with the buffer when there is no need to
2001 * change it.
2002 */
a3f74ffb 2003 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
2004 if (error) {
2005 cmn_err(CE_WARN,
2006 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2007 error, mp->m_fsname);
2008 return error;
2009 }
347d1c01 2010 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2011 ASSERT(next_agino != 0);
2012 if (next_agino != NULLAGINO) {
347d1c01 2013 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2014 offset = ip->i_boffset +
2015 offsetof(xfs_dinode_t, di_next_unlinked);
2016 xfs_trans_inode_buf(tp, ibp);
2017 xfs_trans_log_buf(tp, ibp, offset,
2018 (offset + sizeof(xfs_agino_t) - 1));
2019 xfs_inobp_check(mp, ibp);
2020 } else {
2021 xfs_trans_brelse(tp, ibp);
2022 }
2023 /*
2024 * Point the bucket head pointer at the next inode.
2025 */
2026 ASSERT(next_agino != 0);
2027 ASSERT(next_agino != agino);
16259e7d 2028 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2029 offset = offsetof(xfs_agi_t, agi_unlinked) +
2030 (sizeof(xfs_agino_t) * bucket_index);
2031 xfs_trans_log_buf(tp, agibp, offset,
2032 (offset + sizeof(xfs_agino_t) - 1));
2033 } else {
2034 /*
2035 * We need to search the list for the inode being freed.
2036 */
16259e7d 2037 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2038 last_ibp = NULL;
2039 while (next_agino != agino) {
2040 /*
2041 * If the last inode wasn't the one pointing to
2042 * us, then release its buffer since we're not
2043 * going to do anything with it.
2044 */
2045 if (last_ibp != NULL) {
2046 xfs_trans_brelse(tp, last_ibp);
2047 }
2048 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2049 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
c679eef0 2050 &last_ibp, &last_offset, 0);
1da177e4
LT
2051 if (error) {
2052 cmn_err(CE_WARN,
2053 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2054 error, mp->m_fsname);
2055 return error;
2056 }
347d1c01 2057 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2058 ASSERT(next_agino != NULLAGINO);
2059 ASSERT(next_agino != 0);
2060 }
2061 /*
2062 * Now last_ibp points to the buffer previous to us on
2063 * the unlinked list. Pull us from the list.
2064 */
a3f74ffb 2065 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
2066 if (error) {
2067 cmn_err(CE_WARN,
2068 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2069 error, mp->m_fsname);
2070 return error;
2071 }
347d1c01 2072 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2073 ASSERT(next_agino != 0);
2074 ASSERT(next_agino != agino);
2075 if (next_agino != NULLAGINO) {
347d1c01 2076 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2077 offset = ip->i_boffset +
2078 offsetof(xfs_dinode_t, di_next_unlinked);
2079 xfs_trans_inode_buf(tp, ibp);
2080 xfs_trans_log_buf(tp, ibp, offset,
2081 (offset + sizeof(xfs_agino_t) - 1));
2082 xfs_inobp_check(mp, ibp);
2083 } else {
2084 xfs_trans_brelse(tp, ibp);
2085 }
2086 /*
2087 * Point the previous inode on the list to the next inode.
2088 */
347d1c01 2089 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2090 ASSERT(next_agino != 0);
2091 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2092 xfs_trans_inode_buf(tp, last_ibp);
2093 xfs_trans_log_buf(tp, last_ibp, offset,
2094 (offset + sizeof(xfs_agino_t) - 1));
2095 xfs_inobp_check(mp, last_ibp);
2096 }
2097 return 0;
2098}
2099
ba0f32d4 2100STATIC void
1da177e4
LT
2101xfs_ifree_cluster(
2102 xfs_inode_t *free_ip,
2103 xfs_trans_t *tp,
2104 xfs_ino_t inum)
2105{
2106 xfs_mount_t *mp = free_ip->i_mount;
2107 int blks_per_cluster;
2108 int nbufs;
2109 int ninodes;
2110 int i, j, found, pre_flushed;
2111 xfs_daddr_t blkno;
2112 xfs_buf_t *bp;
1da177e4
LT
2113 xfs_inode_t *ip, **ip_found;
2114 xfs_inode_log_item_t *iip;
2115 xfs_log_item_t *lip;
da353b0d 2116 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2117
2118 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2119 blks_per_cluster = 1;
2120 ninodes = mp->m_sb.sb_inopblock;
2121 nbufs = XFS_IALLOC_BLOCKS(mp);
2122 } else {
2123 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2124 mp->m_sb.sb_blocksize;
2125 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2126 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2127 }
2128
2129 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2130
2131 for (j = 0; j < nbufs; j++, inum += ninodes) {
2132 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2133 XFS_INO_TO_AGBNO(mp, inum));
2134
2135
2136 /*
2137 * Look for each inode in memory and attempt to lock it,
2138 * we can be racing with flush and tail pushing here.
2139 * any inode we get the locks on, add to an array of
2140 * inode items to process later.
2141 *
2142 * The get the buffer lock, we could beat a flush
2143 * or tail pushing thread to the lock here, in which
2144 * case they will go looking for the inode buffer
2145 * and fail, we need some other form of interlock
2146 * here.
2147 */
2148 found = 0;
2149 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2150 read_lock(&pag->pag_ici_lock);
2151 ip = radix_tree_lookup(&pag->pag_ici_root,
2152 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2153
2154 /* Inode not in memory or we found it already,
2155 * nothing to do
2156 */
7a18c386 2157 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2158 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2159 continue;
2160 }
2161
2162 if (xfs_inode_clean(ip)) {
da353b0d 2163 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2164 continue;
2165 }
2166
2167 /* If we can get the locks then add it to the
2168 * list, otherwise by the time we get the bp lock
2169 * below it will already be attached to the
2170 * inode buffer.
2171 */
2172
2173 /* This inode will already be locked - by us, lets
2174 * keep it that way.
2175 */
2176
2177 if (ip == free_ip) {
2178 if (xfs_iflock_nowait(ip)) {
7a18c386 2179 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2180 if (xfs_inode_clean(ip)) {
2181 xfs_ifunlock(ip);
2182 } else {
2183 ip_found[found++] = ip;
2184 }
2185 }
da353b0d 2186 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2187 continue;
2188 }
2189
2190 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2191 if (xfs_iflock_nowait(ip)) {
7a18c386 2192 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2193
2194 if (xfs_inode_clean(ip)) {
2195 xfs_ifunlock(ip);
2196 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2197 } else {
2198 ip_found[found++] = ip;
2199 }
2200 } else {
2201 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2202 }
2203 }
da353b0d 2204 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2205 }
2206
2207 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2208 mp->m_bsize * blks_per_cluster,
2209 XFS_BUF_LOCK);
2210
2211 pre_flushed = 0;
2212 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2213 while (lip) {
2214 if (lip->li_type == XFS_LI_INODE) {
2215 iip = (xfs_inode_log_item_t *)lip;
2216 ASSERT(iip->ili_logged == 1);
2217 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
7b2e2a31
DC
2218 xfs_trans_ail_copy_lsn(mp->m_ail,
2219 &iip->ili_flush_lsn,
2220 &iip->ili_item.li_lsn);
e5ffd2bb 2221 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2222 pre_flushed++;
2223 }
2224 lip = lip->li_bio_list;
2225 }
2226
2227 for (i = 0; i < found; i++) {
2228 ip = ip_found[i];
2229 iip = ip->i_itemp;
2230
2231 if (!iip) {
2232 ip->i_update_core = 0;
2233 xfs_ifunlock(ip);
2234 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2235 continue;
2236 }
2237
2238 iip->ili_last_fields = iip->ili_format.ilf_fields;
2239 iip->ili_format.ilf_fields = 0;
2240 iip->ili_logged = 1;
7b2e2a31
DC
2241 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2242 &iip->ili_item.li_lsn);
1da177e4
LT
2243
2244 xfs_buf_attach_iodone(bp,
2245 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2246 xfs_istale_done, (xfs_log_item_t *)iip);
2247 if (ip != free_ip) {
2248 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2249 }
2250 }
2251
2252 if (found || pre_flushed)
2253 xfs_trans_stale_inode_buf(tp, bp);
2254 xfs_trans_binval(tp, bp);
2255 }
2256
f0e2d93c 2257 kmem_free(ip_found);
da353b0d 2258 xfs_put_perag(mp, pag);
1da177e4
LT
2259}
2260
2261/*
2262 * This is called to return an inode to the inode free list.
2263 * The inode should already be truncated to 0 length and have
2264 * no pages associated with it. This routine also assumes that
2265 * the inode is already a part of the transaction.
2266 *
2267 * The on-disk copy of the inode will have been added to the list
2268 * of unlinked inodes in the AGI. We need to remove the inode from
2269 * that list atomically with respect to freeing it here.
2270 */
2271int
2272xfs_ifree(
2273 xfs_trans_t *tp,
2274 xfs_inode_t *ip,
2275 xfs_bmap_free_t *flist)
2276{
2277 int error;
2278 int delete;
2279 xfs_ino_t first_ino;
c319b58b
VA
2280 xfs_dinode_t *dip;
2281 xfs_buf_t *ibp;
1da177e4 2282
579aa9ca 2283 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2284 ASSERT(ip->i_transp == tp);
2285 ASSERT(ip->i_d.di_nlink == 0);
2286 ASSERT(ip->i_d.di_nextents == 0);
2287 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2288 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2289 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2290 ASSERT(ip->i_d.di_nblocks == 0);
2291
2292 /*
2293 * Pull the on-disk inode from the AGI unlinked list.
2294 */
2295 error = xfs_iunlink_remove(tp, ip);
2296 if (error != 0) {
2297 return error;
2298 }
2299
2300 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2301 if (error != 0) {
2302 return error;
2303 }
2304 ip->i_d.di_mode = 0; /* mark incore inode as free */
2305 ip->i_d.di_flags = 0;
2306 ip->i_d.di_dmevmask = 0;
2307 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2308 ip->i_df.if_ext_max =
2309 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2310 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2311 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2312 /*
2313 * Bump the generation count so no one will be confused
2314 * by reincarnations of this inode.
2315 */
2316 ip->i_d.di_gen++;
c319b58b 2317
1da177e4
LT
2318 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2319
a3f74ffb 2320 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
2321 if (error)
2322 return error;
2323
2324 /*
2325 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2326 * from picking up this inode when it is reclaimed (its incore state
2327 * initialzed but not flushed to disk yet). The in-core di_mode is
2328 * already cleared and a corresponding transaction logged.
2329 * The hack here just synchronizes the in-core to on-disk
2330 * di_mode value in advance before the actual inode sync to disk.
2331 * This is OK because the inode is already unlinked and would never
2332 * change its di_mode again for this inode generation.
2333 * This is a temporary hack that would require a proper fix
2334 * in the future.
2335 */
2336 dip->di_core.di_mode = 0;
2337
1da177e4
LT
2338 if (delete) {
2339 xfs_ifree_cluster(ip, tp, first_ino);
2340 }
2341
2342 return 0;
2343}
2344
2345/*
2346 * Reallocate the space for if_broot based on the number of records
2347 * being added or deleted as indicated in rec_diff. Move the records
2348 * and pointers in if_broot to fit the new size. When shrinking this
2349 * will eliminate holes between the records and pointers created by
2350 * the caller. When growing this will create holes to be filled in
2351 * by the caller.
2352 *
2353 * The caller must not request to add more records than would fit in
2354 * the on-disk inode root. If the if_broot is currently NULL, then
2355 * if we adding records one will be allocated. The caller must also
2356 * not request that the number of records go below zero, although
2357 * it can go to zero.
2358 *
2359 * ip -- the inode whose if_broot area is changing
2360 * ext_diff -- the change in the number of records, positive or negative,
2361 * requested for the if_broot array.
2362 */
2363void
2364xfs_iroot_realloc(
2365 xfs_inode_t *ip,
2366 int rec_diff,
2367 int whichfork)
2368{
60197e8d 2369 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
2370 int cur_max;
2371 xfs_ifork_t *ifp;
7cc95a82 2372 struct xfs_btree_block *new_broot;
1da177e4
LT
2373 int new_max;
2374 size_t new_size;
2375 char *np;
2376 char *op;
2377
2378 /*
2379 * Handle the degenerate case quietly.
2380 */
2381 if (rec_diff == 0) {
2382 return;
2383 }
2384
2385 ifp = XFS_IFORK_PTR(ip, whichfork);
2386 if (rec_diff > 0) {
2387 /*
2388 * If there wasn't any memory allocated before, just
2389 * allocate it now and get out.
2390 */
2391 if (ifp->if_broot_bytes == 0) {
2392 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
7cc95a82 2393 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
1da177e4
LT
2394 ifp->if_broot_bytes = (int)new_size;
2395 return;
2396 }
2397
2398 /*
2399 * If there is already an existing if_broot, then we need
2400 * to realloc() it and shift the pointers to their new
2401 * location. The records don't change location because
2402 * they are kept butted up against the btree block header.
2403 */
60197e8d 2404 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2405 new_max = cur_max + rec_diff;
2406 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 2407 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4
LT
2408 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2409 KM_SLEEP);
60197e8d
CH
2410 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2411 ifp->if_broot_bytes);
2412 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2413 (int)new_size);
1da177e4
LT
2414 ifp->if_broot_bytes = (int)new_size;
2415 ASSERT(ifp->if_broot_bytes <=
2416 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2417 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2418 return;
2419 }
2420
2421 /*
2422 * rec_diff is less than 0. In this case, we are shrinking the
2423 * if_broot buffer. It must already exist. If we go to zero
2424 * records, just get rid of the root and clear the status bit.
2425 */
2426 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2427 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2428 new_max = cur_max + rec_diff;
2429 ASSERT(new_max >= 0);
2430 if (new_max > 0)
2431 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2432 else
2433 new_size = 0;
2434 if (new_size > 0) {
7cc95a82 2435 new_broot = kmem_alloc(new_size, KM_SLEEP);
1da177e4
LT
2436 /*
2437 * First copy over the btree block header.
2438 */
7cc95a82 2439 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
2440 } else {
2441 new_broot = NULL;
2442 ifp->if_flags &= ~XFS_IFBROOT;
2443 }
2444
2445 /*
2446 * Only copy the records and pointers if there are any.
2447 */
2448 if (new_max > 0) {
2449 /*
2450 * First copy the records.
2451 */
136341b4
CH
2452 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2453 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2454 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2455
2456 /*
2457 * Then copy the pointers.
2458 */
60197e8d 2459 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2460 ifp->if_broot_bytes);
60197e8d 2461 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2462 (int)new_size);
2463 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2464 }
f0e2d93c 2465 kmem_free(ifp->if_broot);
1da177e4
LT
2466 ifp->if_broot = new_broot;
2467 ifp->if_broot_bytes = (int)new_size;
2468 ASSERT(ifp->if_broot_bytes <=
2469 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2470 return;
2471}
2472
2473
1da177e4
LT
2474/*
2475 * This is called when the amount of space needed for if_data
2476 * is increased or decreased. The change in size is indicated by
2477 * the number of bytes that need to be added or deleted in the
2478 * byte_diff parameter.
2479 *
2480 * If the amount of space needed has decreased below the size of the
2481 * inline buffer, then switch to using the inline buffer. Otherwise,
2482 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2483 * to what is needed.
2484 *
2485 * ip -- the inode whose if_data area is changing
2486 * byte_diff -- the change in the number of bytes, positive or negative,
2487 * requested for the if_data array.
2488 */
2489void
2490xfs_idata_realloc(
2491 xfs_inode_t *ip,
2492 int byte_diff,
2493 int whichfork)
2494{
2495 xfs_ifork_t *ifp;
2496 int new_size;
2497 int real_size;
2498
2499 if (byte_diff == 0) {
2500 return;
2501 }
2502
2503 ifp = XFS_IFORK_PTR(ip, whichfork);
2504 new_size = (int)ifp->if_bytes + byte_diff;
2505 ASSERT(new_size >= 0);
2506
2507 if (new_size == 0) {
2508 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2509 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2510 }
2511 ifp->if_u1.if_data = NULL;
2512 real_size = 0;
2513 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2514 /*
2515 * If the valid extents/data can fit in if_inline_ext/data,
2516 * copy them from the malloc'd vector and free it.
2517 */
2518 if (ifp->if_u1.if_data == NULL) {
2519 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2520 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2521 ASSERT(ifp->if_real_bytes != 0);
2522 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2523 new_size);
f0e2d93c 2524 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2525 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2526 }
2527 real_size = 0;
2528 } else {
2529 /*
2530 * Stuck with malloc/realloc.
2531 * For inline data, the underlying buffer must be
2532 * a multiple of 4 bytes in size so that it can be
2533 * logged and stay on word boundaries. We enforce
2534 * that here.
2535 */
2536 real_size = roundup(new_size, 4);
2537 if (ifp->if_u1.if_data == NULL) {
2538 ASSERT(ifp->if_real_bytes == 0);
2539 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2540 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2541 /*
2542 * Only do the realloc if the underlying size
2543 * is really changing.
2544 */
2545 if (ifp->if_real_bytes != real_size) {
2546 ifp->if_u1.if_data =
2547 kmem_realloc(ifp->if_u1.if_data,
2548 real_size,
2549 ifp->if_real_bytes,
2550 KM_SLEEP);
2551 }
2552 } else {
2553 ASSERT(ifp->if_real_bytes == 0);
2554 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2555 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2556 ifp->if_bytes);
2557 }
2558 }
2559 ifp->if_real_bytes = real_size;
2560 ifp->if_bytes = new_size;
2561 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2562}
2563
2564
2565
2566
2567/*
2568 * Map inode to disk block and offset.
2569 *
2570 * mp -- the mount point structure for the current file system
2571 * tp -- the current transaction
2572 * ino -- the inode number of the inode to be located
2573 * imap -- this structure is filled in with the information necessary
2574 * to retrieve the given inode from disk
2575 * flags -- flags to pass to xfs_dilocate indicating whether or not
2576 * lookups in the inode btree were OK or not
2577 */
2578int
2579xfs_imap(
2580 xfs_mount_t *mp,
2581 xfs_trans_t *tp,
2582 xfs_ino_t ino,
2583 xfs_imap_t *imap,
2584 uint flags)
2585{
2586 xfs_fsblock_t fsbno;
2587 int len;
2588 int off;
2589 int error;
2590
2591 fsbno = imap->im_blkno ?
2592 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2593 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
4ae29b43 2594 if (error)
1da177e4 2595 return error;
4ae29b43 2596
1da177e4
LT
2597 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2598 imap->im_len = XFS_FSB_TO_BB(mp, len);
2599 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2600 imap->im_ioffset = (ushort)off;
2601 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
4ae29b43
DC
2602
2603 /*
2604 * If the inode number maps to a block outside the bounds
2605 * of the file system then return NULL rather than calling
2606 * read_buf and panicing when we get an error from the
2607 * driver.
2608 */
2609 if ((imap->im_blkno + imap->im_len) >
2610 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2611 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2612 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2613 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2614 (unsigned long long) imap->im_blkno,
2615 (unsigned long long) imap->im_len,
2616 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2617 return EINVAL;
2618 }
1da177e4
LT
2619 return 0;
2620}
2621
2622void
2623xfs_idestroy_fork(
2624 xfs_inode_t *ip,
2625 int whichfork)
2626{
2627 xfs_ifork_t *ifp;
2628
2629 ifp = XFS_IFORK_PTR(ip, whichfork);
2630 if (ifp->if_broot != NULL) {
f0e2d93c 2631 kmem_free(ifp->if_broot);
1da177e4
LT
2632 ifp->if_broot = NULL;
2633 }
2634
2635 /*
2636 * If the format is local, then we can't have an extents
2637 * array so just look for an inline data array. If we're
2638 * not local then we may or may not have an extents list,
2639 * so check and free it up if we do.
2640 */
2641 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2642 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2643 (ifp->if_u1.if_data != NULL)) {
2644 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2645 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2646 ifp->if_u1.if_data = NULL;
2647 ifp->if_real_bytes = 0;
2648 }
2649 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2650 ((ifp->if_flags & XFS_IFEXTIREC) ||
2651 ((ifp->if_u1.if_extents != NULL) &&
2652 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2653 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2654 xfs_iext_destroy(ifp);
1da177e4
LT
2655 }
2656 ASSERT(ifp->if_u1.if_extents == NULL ||
2657 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2658 ASSERT(ifp->if_real_bytes == 0);
2659 if (whichfork == XFS_ATTR_FORK) {
2660 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2661 ip->i_afp = NULL;
2662 }
2663}
2664
2665/*
2666 * This is called free all the memory associated with an inode.
2667 * It must free the inode itself and any buffers allocated for
2668 * if_extents/if_data and if_broot. It must also free the lock
2669 * associated with the inode.
bf904248
DC
2670 *
2671 * Note: because we don't initialise everything on reallocation out
2672 * of the zone, we must ensure we nullify everything correctly before
2673 * freeing the structure.
1da177e4
LT
2674 */
2675void
2676xfs_idestroy(
2677 xfs_inode_t *ip)
2678{
1da177e4
LT
2679 switch (ip->i_d.di_mode & S_IFMT) {
2680 case S_IFREG:
2681 case S_IFDIR:
2682 case S_IFLNK:
2683 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2684 break;
2685 }
2686 if (ip->i_afp)
2687 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1543d79c 2688
cf441eeb 2689#ifdef XFS_INODE_TRACE
1543d79c
CH
2690 ktrace_free(ip->i_trace);
2691#endif
1da177e4
LT
2692#ifdef XFS_BMAP_TRACE
2693 ktrace_free(ip->i_xtrace);
2694#endif
8c4ed633 2695#ifdef XFS_BTREE_TRACE
1da177e4
LT
2696 ktrace_free(ip->i_btrace);
2697#endif
2698#ifdef XFS_RW_TRACE
2699 ktrace_free(ip->i_rwtrace);
2700#endif
2701#ifdef XFS_ILOCK_TRACE
2702 ktrace_free(ip->i_lock_trace);
2703#endif
2704#ifdef XFS_DIR2_TRACE
2705 ktrace_free(ip->i_dir_trace);
2706#endif
2707 if (ip->i_itemp) {
f74eaf59
DC
2708 /*
2709 * Only if we are shutting down the fs will we see an
2710 * inode still in the AIL. If it is there, we should remove
2711 * it to prevent a use-after-free from occurring.
2712 */
f74eaf59 2713 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
783a2f65 2714 struct xfs_ail *ailp = lip->li_ailp;
f74eaf59
DC
2715
2716 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2717 XFS_FORCED_SHUTDOWN(ip->i_mount));
2718 if (lip->li_flags & XFS_LI_IN_AIL) {
783a2f65 2719 spin_lock(&ailp->xa_lock);
f74eaf59 2720 if (lip->li_flags & XFS_LI_IN_AIL)
783a2f65 2721 xfs_trans_ail_delete(ailp, lip);
f74eaf59 2722 else
783a2f65 2723 spin_unlock(&ailp->xa_lock);
f74eaf59 2724 }
1da177e4 2725 xfs_inode_item_destroy(ip);
07c8f675 2726 ip->i_itemp = NULL;
1da177e4 2727 }
07c8f675
DC
2728 /* asserts to verify all state is correct here */
2729 ASSERT(atomic_read(&ip->i_iocount) == 0);
2730 ASSERT(atomic_read(&ip->i_pincount) == 0);
2731 ASSERT(!spin_is_locked(&ip->i_flags_lock));
11654513 2732 ASSERT(completion_done(&ip->i_flush));
1da177e4
LT
2733 kmem_zone_free(xfs_inode_zone, ip);
2734}
2735
2736
2737/*
2738 * Increment the pin count of the given buffer.
2739 * This value is protected by ipinlock spinlock in the mount structure.
2740 */
2741void
2742xfs_ipin(
2743 xfs_inode_t *ip)
2744{
579aa9ca 2745 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2746
2747 atomic_inc(&ip->i_pincount);
2748}
2749
2750/*
2751 * Decrement the pin count of the given inode, and wake up
2752 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2753 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2754 */
2755void
2756xfs_iunpin(
2757 xfs_inode_t *ip)
2758{
2759 ASSERT(atomic_read(&ip->i_pincount) > 0);
2760
5d51eff4 2761 if (atomic_dec_and_test(&ip->i_pincount))
1da177e4 2762 wake_up(&ip->i_ipin_wait);
1da177e4
LT
2763}
2764
2765/*
a3f74ffb
DC
2766 * This is called to unpin an inode. It can be directed to wait or to return
2767 * immediately without waiting for the inode to be unpinned. The caller must
2768 * have the inode locked in at least shared mode so that the buffer cannot be
2769 * subsequently pinned once someone is waiting for it to be unpinned.
1da177e4 2770 */
ba0f32d4 2771STATIC void
a3f74ffb
DC
2772__xfs_iunpin_wait(
2773 xfs_inode_t *ip,
2774 int wait)
1da177e4 2775{
a3f74ffb 2776 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 2777
579aa9ca 2778 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
a3f74ffb 2779 if (atomic_read(&ip->i_pincount) == 0)
1da177e4 2780 return;
1da177e4 2781
a3f74ffb
DC
2782 /* Give the log a push to start the unpinning I/O */
2783 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2784 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2785 if (wait)
2786 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2787}
1da177e4 2788
a3f74ffb
DC
2789static inline void
2790xfs_iunpin_wait(
2791 xfs_inode_t *ip)
2792{
2793 __xfs_iunpin_wait(ip, 1);
2794}
1da177e4 2795
a3f74ffb
DC
2796static inline void
2797xfs_iunpin_nowait(
2798 xfs_inode_t *ip)
2799{
2800 __xfs_iunpin_wait(ip, 0);
1da177e4
LT
2801}
2802
2803
2804/*
2805 * xfs_iextents_copy()
2806 *
2807 * This is called to copy the REAL extents (as opposed to the delayed
2808 * allocation extents) from the inode into the given buffer. It
2809 * returns the number of bytes copied into the buffer.
2810 *
2811 * If there are no delayed allocation extents, then we can just
2812 * memcpy() the extents into the buffer. Otherwise, we need to
2813 * examine each extent in turn and skip those which are delayed.
2814 */
2815int
2816xfs_iextents_copy(
2817 xfs_inode_t *ip,
a6f64d4a 2818 xfs_bmbt_rec_t *dp,
1da177e4
LT
2819 int whichfork)
2820{
2821 int copied;
1da177e4
LT
2822 int i;
2823 xfs_ifork_t *ifp;
2824 int nrecs;
2825 xfs_fsblock_t start_block;
2826
2827 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2828 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2829 ASSERT(ifp->if_bytes > 0);
2830
2831 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2832 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2833 ASSERT(nrecs > 0);
2834
2835 /*
2836 * There are some delayed allocation extents in the
2837 * inode, so copy the extents one at a time and skip
2838 * the delayed ones. There must be at least one
2839 * non-delayed extent.
2840 */
1da177e4
LT
2841 copied = 0;
2842 for (i = 0; i < nrecs; i++) {
a6f64d4a 2843 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2844 start_block = xfs_bmbt_get_startblock(ep);
2845 if (ISNULLSTARTBLOCK(start_block)) {
2846 /*
2847 * It's a delayed allocation extent, so skip it.
2848 */
1da177e4
LT
2849 continue;
2850 }
2851
2852 /* Translate to on disk format */
cd8b0a97
CH
2853 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2854 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2855 dp++;
1da177e4
LT
2856 copied++;
2857 }
2858 ASSERT(copied != 0);
a6f64d4a 2859 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2860
2861 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2862}
2863
2864/*
2865 * Each of the following cases stores data into the same region
2866 * of the on-disk inode, so only one of them can be valid at
2867 * any given time. While it is possible to have conflicting formats
2868 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2869 * in EXTENTS format, this can only happen when the fork has
2870 * changed formats after being modified but before being flushed.
2871 * In these cases, the format always takes precedence, because the
2872 * format indicates the current state of the fork.
2873 */
2874/*ARGSUSED*/
e4ac967b 2875STATIC void
1da177e4
LT
2876xfs_iflush_fork(
2877 xfs_inode_t *ip,
2878 xfs_dinode_t *dip,
2879 xfs_inode_log_item_t *iip,
2880 int whichfork,
2881 xfs_buf_t *bp)
2882{
2883 char *cp;
2884 xfs_ifork_t *ifp;
2885 xfs_mount_t *mp;
2886#ifdef XFS_TRANS_DEBUG
2887 int first;
2888#endif
2889 static const short brootflag[2] =
2890 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2891 static const short dataflag[2] =
2892 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2893 static const short extflag[2] =
2894 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2895
e4ac967b
DC
2896 if (!iip)
2897 return;
1da177e4
LT
2898 ifp = XFS_IFORK_PTR(ip, whichfork);
2899 /*
2900 * This can happen if we gave up in iformat in an error path,
2901 * for the attribute fork.
2902 */
e4ac967b 2903 if (!ifp) {
1da177e4 2904 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2905 return;
1da177e4
LT
2906 }
2907 cp = XFS_DFORK_PTR(dip, whichfork);
2908 mp = ip->i_mount;
2909 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2910 case XFS_DINODE_FMT_LOCAL:
2911 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2912 (ifp->if_bytes > 0)) {
2913 ASSERT(ifp->if_u1.if_data != NULL);
2914 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2915 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2916 }
1da177e4
LT
2917 break;
2918
2919 case XFS_DINODE_FMT_EXTENTS:
2920 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2921 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2922 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2923 (ifp->if_bytes == 0));
2924 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2925 (ifp->if_bytes > 0));
1da177e4
LT
2926 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2927 (ifp->if_bytes > 0)) {
2928 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2929 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2930 whichfork);
2931 }
2932 break;
2933
2934 case XFS_DINODE_FMT_BTREE:
2935 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2936 (ifp->if_broot_bytes > 0)) {
2937 ASSERT(ifp->if_broot != NULL);
2938 ASSERT(ifp->if_broot_bytes <=
2939 (XFS_IFORK_SIZE(ip, whichfork) +
2940 XFS_BROOT_SIZE_ADJ));
60197e8d 2941 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2942 (xfs_bmdr_block_t *)cp,
2943 XFS_DFORK_SIZE(dip, mp, whichfork));
2944 }
2945 break;
2946
2947 case XFS_DINODE_FMT_DEV:
2948 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2949 ASSERT(whichfork == XFS_DATA_FORK);
347d1c01 2950 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
1da177e4
LT
2951 }
2952 break;
2953
2954 case XFS_DINODE_FMT_UUID:
2955 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2956 ASSERT(whichfork == XFS_DATA_FORK);
2957 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2958 sizeof(uuid_t));
2959 }
2960 break;
2961
2962 default:
2963 ASSERT(0);
2964 break;
2965 }
1da177e4
LT
2966}
2967
bad55843
DC
2968STATIC int
2969xfs_iflush_cluster(
2970 xfs_inode_t *ip,
2971 xfs_buf_t *bp)
2972{
2973 xfs_mount_t *mp = ip->i_mount;
2974 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2975 unsigned long first_index, mask;
c8f5f12e 2976 unsigned long inodes_per_cluster;
bad55843
DC
2977 int ilist_size;
2978 xfs_inode_t **ilist;
2979 xfs_inode_t *iq;
bad55843
DC
2980 int nr_found;
2981 int clcount = 0;
2982 int bufwasdelwri;
2983 int i;
2984
2985 ASSERT(pag->pagi_inodeok);
2986 ASSERT(pag->pag_ici_init);
2987
c8f5f12e
DC
2988 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2989 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2990 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843
DC
2991 if (!ilist)
2992 return 0;
2993
2994 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2995 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2996 read_lock(&pag->pag_ici_lock);
2997 /* really need a gang lookup range call here */
2998 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2999 first_index, inodes_per_cluster);
bad55843
DC
3000 if (nr_found == 0)
3001 goto out_free;
3002
3003 for (i = 0; i < nr_found; i++) {
3004 iq = ilist[i];
3005 if (iq == ip)
3006 continue;
3007 /* if the inode lies outside this cluster, we're done. */
3008 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
3009 break;
3010 /*
3011 * Do an un-protected check to see if the inode is dirty and
3012 * is a candidate for flushing. These checks will be repeated
3013 * later after the appropriate locks are acquired.
3014 */
33540408 3015 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3016 continue;
bad55843
DC
3017
3018 /*
3019 * Try to get locks. If any are unavailable or it is pinned,
3020 * then this inode cannot be flushed and is skipped.
3021 */
3022
3023 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3024 continue;
3025 if (!xfs_iflock_nowait(iq)) {
3026 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3027 continue;
3028 }
3029 if (xfs_ipincount(iq)) {
3030 xfs_ifunlock(iq);
3031 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3032 continue;
3033 }
3034
3035 /*
3036 * arriving here means that this inode can be flushed. First
3037 * re-check that it's dirty before flushing.
3038 */
33540408
DC
3039 if (!xfs_inode_clean(iq)) {
3040 int error;
bad55843
DC
3041 error = xfs_iflush_int(iq, bp);
3042 if (error) {
3043 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3044 goto cluster_corrupt_out;
3045 }
3046 clcount++;
3047 } else {
3048 xfs_ifunlock(iq);
3049 }
3050 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3051 }
3052
3053 if (clcount) {
3054 XFS_STATS_INC(xs_icluster_flushcnt);
3055 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3056 }
3057
3058out_free:
3059 read_unlock(&pag->pag_ici_lock);
f0e2d93c 3060 kmem_free(ilist);
bad55843
DC
3061 return 0;
3062
3063
3064cluster_corrupt_out:
3065 /*
3066 * Corruption detected in the clustering loop. Invalidate the
3067 * inode buffer and shut down the filesystem.
3068 */
3069 read_unlock(&pag->pag_ici_lock);
3070 /*
3071 * Clean up the buffer. If it was B_DELWRI, just release it --
3072 * brelse can handle it with no problems. If not, shut down the
3073 * filesystem before releasing the buffer.
3074 */
3075 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3076 if (bufwasdelwri)
3077 xfs_buf_relse(bp);
3078
3079 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3080
3081 if (!bufwasdelwri) {
3082 /*
3083 * Just like incore_relse: if we have b_iodone functions,
3084 * mark the buffer as an error and call them. Otherwise
3085 * mark it as stale and brelse.
3086 */
3087 if (XFS_BUF_IODONE_FUNC(bp)) {
3088 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3089 XFS_BUF_UNDONE(bp);
3090 XFS_BUF_STALE(bp);
3091 XFS_BUF_SHUT(bp);
3092 XFS_BUF_ERROR(bp,EIO);
3093 xfs_biodone(bp);
3094 } else {
3095 XFS_BUF_STALE(bp);
3096 xfs_buf_relse(bp);
3097 }
3098 }
3099
3100 /*
3101 * Unlocks the flush lock
3102 */
3103 xfs_iflush_abort(iq);
f0e2d93c 3104 kmem_free(ilist);
bad55843
DC
3105 return XFS_ERROR(EFSCORRUPTED);
3106}
3107
1da177e4
LT
3108/*
3109 * xfs_iflush() will write a modified inode's changes out to the
3110 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
3111 * in at least shared mode and the inode flush completion must be
3112 * active as well. The inode lock will still be held upon return from
1da177e4 3113 * the call and the caller is free to unlock it.
c63942d3 3114 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
3115 * The flags indicate how the inode's buffer should be written out.
3116 */
3117int
3118xfs_iflush(
3119 xfs_inode_t *ip,
3120 uint flags)
3121{
3122 xfs_inode_log_item_t *iip;
3123 xfs_buf_t *bp;
3124 xfs_dinode_t *dip;
3125 xfs_mount_t *mp;
3126 int error;
a3f74ffb 3127 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
bad55843 3128 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3129
3130 XFS_STATS_INC(xs_iflush_count);
3131
579aa9ca 3132 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3133 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3134 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3135 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3136
3137 iip = ip->i_itemp;
3138 mp = ip->i_mount;
3139
3140 /*
3141 * If the inode isn't dirty, then just release the inode
3142 * flush lock and do nothing.
3143 */
33540408 3144 if (xfs_inode_clean(ip)) {
1da177e4
LT
3145 xfs_ifunlock(ip);
3146 return 0;
3147 }
3148
3149 /*
a3f74ffb
DC
3150 * We can't flush the inode until it is unpinned, so wait for it if we
3151 * are allowed to block. We know noone new can pin it, because we are
3152 * holding the inode lock shared and you need to hold it exclusively to
3153 * pin the inode.
3154 *
3155 * If we are not allowed to block, force the log out asynchronously so
3156 * that when we come back the inode will be unpinned. If other inodes
3157 * in the same cluster are dirty, they will probably write the inode
3158 * out for us if they occur after the log force completes.
1da177e4 3159 */
a3f74ffb
DC
3160 if (noblock && xfs_ipincount(ip)) {
3161 xfs_iunpin_nowait(ip);
3162 xfs_ifunlock(ip);
3163 return EAGAIN;
3164 }
1da177e4
LT
3165 xfs_iunpin_wait(ip);
3166
3167 /*
3168 * This may have been unpinned because the filesystem is shutting
3169 * down forcibly. If that's the case we must not write this inode
3170 * to disk, because the log record didn't make it to disk!
3171 */
3172 if (XFS_FORCED_SHUTDOWN(mp)) {
3173 ip->i_update_core = 0;
3174 if (iip)
3175 iip->ili_format.ilf_fields = 0;
3176 xfs_ifunlock(ip);
3177 return XFS_ERROR(EIO);
3178 }
3179
1da177e4
LT
3180 /*
3181 * Decide how buffer will be flushed out. This is done before
3182 * the call to xfs_iflush_int because this field is zeroed by it.
3183 */
3184 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3185 /*
3186 * Flush out the inode buffer according to the directions
3187 * of the caller. In the cases where the caller has given
3188 * us a choice choose the non-delwri case. This is because
3189 * the inode is in the AIL and we need to get it out soon.
3190 */
3191 switch (flags) {
3192 case XFS_IFLUSH_SYNC:
3193 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3194 flags = 0;
3195 break;
a3f74ffb 3196 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3197 case XFS_IFLUSH_ASYNC:
3198 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3199 flags = INT_ASYNC;
3200 break;
3201 case XFS_IFLUSH_DELWRI:
3202 flags = INT_DELWRI;
3203 break;
3204 default:
3205 ASSERT(0);
3206 flags = 0;
3207 break;
3208 }
3209 } else {
3210 switch (flags) {
3211 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3212 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3213 case XFS_IFLUSH_DELWRI:
3214 flags = INT_DELWRI;
3215 break;
a3f74ffb 3216 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3217 case XFS_IFLUSH_ASYNC:
3218 flags = INT_ASYNC;
3219 break;
3220 case XFS_IFLUSH_SYNC:
3221 flags = 0;
3222 break;
3223 default:
3224 ASSERT(0);
3225 flags = 0;
3226 break;
3227 }
3228 }
3229
a3f74ffb
DC
3230 /*
3231 * Get the buffer containing the on-disk inode.
3232 */
3233 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3234 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3235 if (error || !bp) {
3236 xfs_ifunlock(ip);
3237 return error;
3238 }
3239
1da177e4
LT
3240 /*
3241 * First flush out the inode that xfs_iflush was called with.
3242 */
3243 error = xfs_iflush_int(ip, bp);
bad55843 3244 if (error)
1da177e4 3245 goto corrupt_out;
1da177e4 3246
a3f74ffb
DC
3247 /*
3248 * If the buffer is pinned then push on the log now so we won't
3249 * get stuck waiting in the write for too long.
3250 */
3251 if (XFS_BUF_ISPINNED(bp))
3252 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3253
1da177e4
LT
3254 /*
3255 * inode clustering:
3256 * see if other inodes can be gathered into this write
3257 */
bad55843
DC
3258 error = xfs_iflush_cluster(ip, bp);
3259 if (error)
3260 goto cluster_corrupt_out;
1da177e4 3261
1da177e4
LT
3262 if (flags & INT_DELWRI) {
3263 xfs_bdwrite(mp, bp);
3264 } else if (flags & INT_ASYNC) {
db7a19f2 3265 error = xfs_bawrite(mp, bp);
1da177e4
LT
3266 } else {
3267 error = xfs_bwrite(mp, bp);
3268 }
3269 return error;
3270
3271corrupt_out:
3272 xfs_buf_relse(bp);
7d04a335 3273 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3274cluster_corrupt_out:
1da177e4
LT
3275 /*
3276 * Unlocks the flush lock
3277 */
bad55843 3278 xfs_iflush_abort(ip);
1da177e4
LT
3279 return XFS_ERROR(EFSCORRUPTED);
3280}
3281
3282
3283STATIC int
3284xfs_iflush_int(
3285 xfs_inode_t *ip,
3286 xfs_buf_t *bp)
3287{
3288 xfs_inode_log_item_t *iip;
3289 xfs_dinode_t *dip;
3290 xfs_mount_t *mp;
3291#ifdef XFS_TRANS_DEBUG
3292 int first;
3293#endif
1da177e4 3294
579aa9ca 3295 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3296 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3297 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3298 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3299
3300 iip = ip->i_itemp;
3301 mp = ip->i_mount;
3302
3303
3304 /*
3305 * If the inode isn't dirty, then just release the inode
3306 * flush lock and do nothing.
3307 */
33540408 3308 if (xfs_inode_clean(ip)) {
1da177e4
LT
3309 xfs_ifunlock(ip);
3310 return 0;
3311 }
3312
3313 /* set *dip = inode's place in the buffer */
3314 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3315
3316 /*
3317 * Clear i_update_core before copying out the data.
3318 * This is for coordination with our timestamp updates
3319 * that don't hold the inode lock. They will always
3320 * update the timestamps BEFORE setting i_update_core,
3321 * so if we clear i_update_core after they set it we
3322 * are guaranteed to see their updates to the timestamps.
3323 * I believe that this depends on strongly ordered memory
3324 * semantics, but we have that. We use the SYNCHRONIZE
3325 * macro to make sure that the compiler does not reorder
3326 * the i_update_core access below the data copy below.
3327 */
3328 ip->i_update_core = 0;
3329 SYNCHRONIZE();
3330
42fe2b1f
CH
3331 /*
3332 * Make sure to get the latest atime from the Linux inode.
3333 */
3334 xfs_synchronize_atime(ip);
3335
347d1c01 3336 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3337 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3338 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3339 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
347d1c01 3340 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
1da177e4
LT
3341 goto corrupt_out;
3342 }
3343 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3344 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3345 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3346 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3347 ip->i_ino, ip, ip->i_d.di_magic);
3348 goto corrupt_out;
3349 }
3350 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3351 if (XFS_TEST_ERROR(
3352 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3353 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3354 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3355 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3356 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3357 ip->i_ino, ip);
3358 goto corrupt_out;
3359 }
3360 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3361 if (XFS_TEST_ERROR(
3362 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3363 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3364 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3365 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3366 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3367 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3368 ip->i_ino, ip);
3369 goto corrupt_out;
3370 }
3371 }
3372 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3373 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3374 XFS_RANDOM_IFLUSH_5)) {
3375 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3376 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3377 ip->i_ino,
3378 ip->i_d.di_nextents + ip->i_d.di_anextents,
3379 ip->i_d.di_nblocks,
3380 ip);
3381 goto corrupt_out;
3382 }
3383 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3384 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3385 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3386 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3387 ip->i_ino, ip->i_d.di_forkoff, ip);
3388 goto corrupt_out;
3389 }
3390 /*
3391 * bump the flush iteration count, used to detect flushes which
3392 * postdate a log record during recovery.
3393 */
3394
3395 ip->i_d.di_flushiter++;
3396
3397 /*
3398 * Copy the dirty parts of the inode into the on-disk
3399 * inode. We always copy out the core of the inode,
3400 * because if the inode is dirty at all the core must
3401 * be.
3402 */
347d1c01 3403 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
1da177e4
LT
3404
3405 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3406 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3407 ip->i_d.di_flushiter = 0;
3408
3409 /*
3410 * If this is really an old format inode and the superblock version
3411 * has not been updated to support only new format inodes, then
3412 * convert back to the old inode format. If the superblock version
3413 * has been updated, then make the conversion permanent.
3414 */
3415 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
62118709 3416 xfs_sb_version_hasnlink(&mp->m_sb));
1da177e4 3417 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
62118709 3418 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3419 /*
3420 * Convert it back.
3421 */
3422 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
347d1c01 3423 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3424 } else {
3425 /*
3426 * The superblock version has already been bumped,
3427 * so just make the conversion to the new inode
3428 * format permanent.
3429 */
3430 ip->i_d.di_version = XFS_DINODE_VERSION_2;
347d1c01 3431 dip->di_core.di_version = XFS_DINODE_VERSION_2;
1da177e4
LT
3432 ip->i_d.di_onlink = 0;
3433 dip->di_core.di_onlink = 0;
3434 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3435 memset(&(dip->di_core.di_pad[0]), 0,
3436 sizeof(dip->di_core.di_pad));
3437 ASSERT(ip->i_d.di_projid == 0);
3438 }
3439 }
3440
e4ac967b
DC
3441 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3442 if (XFS_IFORK_Q(ip))
3443 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3444 xfs_inobp_check(mp, bp);
3445
3446 /*
3447 * We've recorded everything logged in the inode, so we'd
3448 * like to clear the ilf_fields bits so we don't log and
3449 * flush things unnecessarily. However, we can't stop
3450 * logging all this information until the data we've copied
3451 * into the disk buffer is written to disk. If we did we might
3452 * overwrite the copy of the inode in the log with all the
3453 * data after re-logging only part of it, and in the face of
3454 * a crash we wouldn't have all the data we need to recover.
3455 *
3456 * What we do is move the bits to the ili_last_fields field.
3457 * When logging the inode, these bits are moved back to the
3458 * ilf_fields field. In the xfs_iflush_done() routine we
3459 * clear ili_last_fields, since we know that the information
3460 * those bits represent is permanently on disk. As long as
3461 * the flush completes before the inode is logged again, then
3462 * both ilf_fields and ili_last_fields will be cleared.
3463 *
3464 * We can play with the ilf_fields bits here, because the inode
3465 * lock must be held exclusively in order to set bits there
3466 * and the flush lock protects the ili_last_fields bits.
3467 * Set ili_logged so the flush done
3468 * routine can tell whether or not to look in the AIL.
3469 * Also, store the current LSN of the inode so that we can tell
3470 * whether the item has moved in the AIL from xfs_iflush_done().
3471 * In order to read the lsn we need the AIL lock, because
3472 * it is a 64 bit value that cannot be read atomically.
3473 */
3474 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3475 iip->ili_last_fields = iip->ili_format.ilf_fields;
3476 iip->ili_format.ilf_fields = 0;
3477 iip->ili_logged = 1;
3478
7b2e2a31
DC
3479 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3480 &iip->ili_item.li_lsn);
1da177e4
LT
3481
3482 /*
3483 * Attach the function xfs_iflush_done to the inode's
3484 * buffer. This will remove the inode from the AIL
3485 * and unlock the inode's flush lock when the inode is
3486 * completely written to disk.
3487 */
3488 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3489 xfs_iflush_done, (xfs_log_item_t *)iip);
3490
3491 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3492 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3493 } else {
3494 /*
3495 * We're flushing an inode which is not in the AIL and has
3496 * not been logged but has i_update_core set. For this
3497 * case we can use a B_DELWRI flush and immediately drop
3498 * the inode flush lock because we can avoid the whole
3499 * AIL state thing. It's OK to drop the flush lock now,
3500 * because we've already locked the buffer and to do anything
3501 * you really need both.
3502 */
3503 if (iip != NULL) {
3504 ASSERT(iip->ili_logged == 0);
3505 ASSERT(iip->ili_last_fields == 0);
3506 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3507 }
3508 xfs_ifunlock(ip);
3509 }
3510
3511 return 0;
3512
3513corrupt_out:
3514 return XFS_ERROR(EFSCORRUPTED);
3515}
3516
3517
1da177e4 3518
1da177e4
LT
3519#ifdef XFS_ILOCK_TRACE
3520ktrace_t *xfs_ilock_trace_buf;
3521
3522void
3523xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3524{
3525 ktrace_enter(ip->i_lock_trace,
3526 (void *)ip,
3527 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3528 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3529 (void *)ra, /* caller of ilock */
3530 (void *)(unsigned long)current_cpu(),
3531 (void *)(unsigned long)current_pid(),
3532 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3533}
3534#endif
4eea22f0
MK
3535
3536/*
3537 * Return a pointer to the extent record at file index idx.
3538 */
a6f64d4a 3539xfs_bmbt_rec_host_t *
4eea22f0
MK
3540xfs_iext_get_ext(
3541 xfs_ifork_t *ifp, /* inode fork pointer */
3542 xfs_extnum_t idx) /* index of target extent */
3543{
3544 ASSERT(idx >= 0);
0293ce3a
MK
3545 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3546 return ifp->if_u1.if_ext_irec->er_extbuf;
3547 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3548 xfs_ext_irec_t *erp; /* irec pointer */
3549 int erp_idx = 0; /* irec index */
3550 xfs_extnum_t page_idx = idx; /* ext index in target list */
3551
3552 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3553 return &erp->er_extbuf[page_idx];
3554 } else if (ifp->if_bytes) {
4eea22f0
MK
3555 return &ifp->if_u1.if_extents[idx];
3556 } else {
3557 return NULL;
3558 }
3559}
3560
3561/*
3562 * Insert new item(s) into the extent records for incore inode
3563 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3564 */
3565void
3566xfs_iext_insert(
3567 xfs_ifork_t *ifp, /* inode fork pointer */
3568 xfs_extnum_t idx, /* starting index of new items */
3569 xfs_extnum_t count, /* number of inserted items */
3570 xfs_bmbt_irec_t *new) /* items to insert */
3571{
4eea22f0
MK
3572 xfs_extnum_t i; /* extent record index */
3573
3574 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3575 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3576 for (i = idx; i < idx + count; i++, new++)
3577 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3578}
3579
3580/*
3581 * This is called when the amount of space required for incore file
3582 * extents needs to be increased. The ext_diff parameter stores the
3583 * number of new extents being added and the idx parameter contains
3584 * the extent index where the new extents will be added. If the new
3585 * extents are being appended, then we just need to (re)allocate and
3586 * initialize the space. Otherwise, if the new extents are being
3587 * inserted into the middle of the existing entries, a bit more work
3588 * is required to make room for the new extents to be inserted. The
3589 * caller is responsible for filling in the new extent entries upon
3590 * return.
3591 */
3592void
3593xfs_iext_add(
3594 xfs_ifork_t *ifp, /* inode fork pointer */
3595 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3596 int ext_diff) /* number of extents to add */
4eea22f0
MK
3597{
3598 int byte_diff; /* new bytes being added */
3599 int new_size; /* size of extents after adding */
3600 xfs_extnum_t nextents; /* number of extents in file */
3601
3602 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3603 ASSERT((idx >= 0) && (idx <= nextents));
3604 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3605 new_size = ifp->if_bytes + byte_diff;
3606 /*
3607 * If the new number of extents (nextents + ext_diff)
3608 * fits inside the inode, then continue to use the inline
3609 * extent buffer.
3610 */
3611 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3612 if (idx < nextents) {
3613 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3614 &ifp->if_u2.if_inline_ext[idx],
3615 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3616 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3617 }
3618 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3619 ifp->if_real_bytes = 0;
0293ce3a 3620 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3621 }
3622 /*
3623 * Otherwise use a linear (direct) extent list.
3624 * If the extents are currently inside the inode,
3625 * xfs_iext_realloc_direct will switch us from
3626 * inline to direct extent allocation mode.
3627 */
0293ce3a 3628 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3629 xfs_iext_realloc_direct(ifp, new_size);
3630 if (idx < nextents) {
3631 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3632 &ifp->if_u1.if_extents[idx],
3633 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3634 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3635 }
3636 }
0293ce3a
MK
3637 /* Indirection array */
3638 else {
3639 xfs_ext_irec_t *erp;
3640 int erp_idx = 0;
3641 int page_idx = idx;
3642
3643 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3644 if (ifp->if_flags & XFS_IFEXTIREC) {
3645 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3646 } else {
3647 xfs_iext_irec_init(ifp);
3648 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3649 erp = ifp->if_u1.if_ext_irec;
3650 }
3651 /* Extents fit in target extent page */
3652 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3653 if (page_idx < erp->er_extcount) {
3654 memmove(&erp->er_extbuf[page_idx + ext_diff],
3655 &erp->er_extbuf[page_idx],
3656 (erp->er_extcount - page_idx) *
3657 sizeof(xfs_bmbt_rec_t));
3658 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3659 }
3660 erp->er_extcount += ext_diff;
3661 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3662 }
3663 /* Insert a new extent page */
3664 else if (erp) {
3665 xfs_iext_add_indirect_multi(ifp,
3666 erp_idx, page_idx, ext_diff);
3667 }
3668 /*
3669 * If extent(s) are being appended to the last page in
3670 * the indirection array and the new extent(s) don't fit
3671 * in the page, then erp is NULL and erp_idx is set to
3672 * the next index needed in the indirection array.
3673 */
3674 else {
3675 int count = ext_diff;
3676
3677 while (count) {
3678 erp = xfs_iext_irec_new(ifp, erp_idx);
3679 erp->er_extcount = count;
3680 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3681 if (count) {
3682 erp_idx++;
3683 }
3684 }
3685 }
3686 }
4eea22f0
MK
3687 ifp->if_bytes = new_size;
3688}
3689
0293ce3a
MK
3690/*
3691 * This is called when incore extents are being added to the indirection
3692 * array and the new extents do not fit in the target extent list. The
3693 * erp_idx parameter contains the irec index for the target extent list
3694 * in the indirection array, and the idx parameter contains the extent
3695 * index within the list. The number of extents being added is stored
3696 * in the count parameter.
3697 *
3698 * |-------| |-------|
3699 * | | | | idx - number of extents before idx
3700 * | idx | | count |
3701 * | | | | count - number of extents being inserted at idx
3702 * |-------| |-------|
3703 * | count | | nex2 | nex2 - number of extents after idx + count
3704 * |-------| |-------|
3705 */
3706void
3707xfs_iext_add_indirect_multi(
3708 xfs_ifork_t *ifp, /* inode fork pointer */
3709 int erp_idx, /* target extent irec index */
3710 xfs_extnum_t idx, /* index within target list */
3711 int count) /* new extents being added */
3712{
3713 int byte_diff; /* new bytes being added */
3714 xfs_ext_irec_t *erp; /* pointer to irec entry */
3715 xfs_extnum_t ext_diff; /* number of extents to add */
3716 xfs_extnum_t ext_cnt; /* new extents still needed */
3717 xfs_extnum_t nex2; /* extents after idx + count */
3718 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3719 int nlists; /* number of irec's (lists) */
3720
3721 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3722 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3723 nex2 = erp->er_extcount - idx;
3724 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3725
3726 /*
3727 * Save second part of target extent list
3728 * (all extents past */
3729 if (nex2) {
3730 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3731 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3732 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3733 erp->er_extcount -= nex2;
3734 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3735 memset(&erp->er_extbuf[idx], 0, byte_diff);
3736 }
3737
3738 /*
3739 * Add the new extents to the end of the target
3740 * list, then allocate new irec record(s) and
3741 * extent buffer(s) as needed to store the rest
3742 * of the new extents.
3743 */
3744 ext_cnt = count;
3745 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3746 if (ext_diff) {
3747 erp->er_extcount += ext_diff;
3748 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3749 ext_cnt -= ext_diff;
3750 }
3751 while (ext_cnt) {
3752 erp_idx++;
3753 erp = xfs_iext_irec_new(ifp, erp_idx);
3754 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3755 erp->er_extcount = ext_diff;
3756 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3757 ext_cnt -= ext_diff;
3758 }
3759
3760 /* Add nex2 extents back to indirection array */
3761 if (nex2) {
3762 xfs_extnum_t ext_avail;
3763 int i;
3764
3765 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3766 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3767 i = 0;
3768 /*
3769 * If nex2 extents fit in the current page, append
3770 * nex2_ep after the new extents.
3771 */
3772 if (nex2 <= ext_avail) {
3773 i = erp->er_extcount;
3774 }
3775 /*
3776 * Otherwise, check if space is available in the
3777 * next page.
3778 */
3779 else if ((erp_idx < nlists - 1) &&
3780 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3781 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3782 erp_idx++;
3783 erp++;
3784 /* Create a hole for nex2 extents */
3785 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3786 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3787 }
3788 /*
3789 * Final choice, create a new extent page for
3790 * nex2 extents.
3791 */
3792 else {
3793 erp_idx++;
3794 erp = xfs_iext_irec_new(ifp, erp_idx);
3795 }
3796 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3797 kmem_free(nex2_ep);
0293ce3a
MK
3798 erp->er_extcount += nex2;
3799 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3800 }
3801}
3802
4eea22f0
MK
3803/*
3804 * This is called when the amount of space required for incore file
3805 * extents needs to be decreased. The ext_diff parameter stores the
3806 * number of extents to be removed and the idx parameter contains
3807 * the extent index where the extents will be removed from.
0293ce3a
MK
3808 *
3809 * If the amount of space needed has decreased below the linear
3810 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3811 * extent array. Otherwise, use kmem_realloc() to adjust the
3812 * size to what is needed.
4eea22f0
MK
3813 */
3814void
3815xfs_iext_remove(
3816 xfs_ifork_t *ifp, /* inode fork pointer */
3817 xfs_extnum_t idx, /* index to begin removing exts */
3818 int ext_diff) /* number of extents to remove */
3819{
3820 xfs_extnum_t nextents; /* number of extents in file */
3821 int new_size; /* size of extents after removal */
3822
3823 ASSERT(ext_diff > 0);
3824 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3825 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3826
3827 if (new_size == 0) {
3828 xfs_iext_destroy(ifp);
0293ce3a
MK
3829 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3830 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3831 } else if (ifp->if_real_bytes) {
3832 xfs_iext_remove_direct(ifp, idx, ext_diff);
3833 } else {
3834 xfs_iext_remove_inline(ifp, idx, ext_diff);
3835 }
3836 ifp->if_bytes = new_size;
3837}
3838
3839/*
3840 * This removes ext_diff extents from the inline buffer, beginning
3841 * at extent index idx.
3842 */
3843void
3844xfs_iext_remove_inline(
3845 xfs_ifork_t *ifp, /* inode fork pointer */
3846 xfs_extnum_t idx, /* index to begin removing exts */
3847 int ext_diff) /* number of extents to remove */
3848{
3849 int nextents; /* number of extents in file */
3850
0293ce3a 3851 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3852 ASSERT(idx < XFS_INLINE_EXTS);
3853 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3854 ASSERT(((nextents - ext_diff) > 0) &&
3855 (nextents - ext_diff) < XFS_INLINE_EXTS);
3856
3857 if (idx + ext_diff < nextents) {
3858 memmove(&ifp->if_u2.if_inline_ext[idx],
3859 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3860 (nextents - (idx + ext_diff)) *
3861 sizeof(xfs_bmbt_rec_t));
3862 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3863 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3864 } else {
3865 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3866 ext_diff * sizeof(xfs_bmbt_rec_t));
3867 }
3868}
3869
3870/*
3871 * This removes ext_diff extents from a linear (direct) extent list,
3872 * beginning at extent index idx. If the extents are being removed
3873 * from the end of the list (ie. truncate) then we just need to re-
3874 * allocate the list to remove the extra space. Otherwise, if the
3875 * extents are being removed from the middle of the existing extent
3876 * entries, then we first need to move the extent records beginning
3877 * at idx + ext_diff up in the list to overwrite the records being
3878 * removed, then remove the extra space via kmem_realloc.
3879 */
3880void
3881xfs_iext_remove_direct(
3882 xfs_ifork_t *ifp, /* inode fork pointer */
3883 xfs_extnum_t idx, /* index to begin removing exts */
3884 int ext_diff) /* number of extents to remove */
3885{
3886 xfs_extnum_t nextents; /* number of extents in file */
3887 int new_size; /* size of extents after removal */
3888
0293ce3a 3889 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3890 new_size = ifp->if_bytes -
3891 (ext_diff * sizeof(xfs_bmbt_rec_t));
3892 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3893
3894 if (new_size == 0) {
3895 xfs_iext_destroy(ifp);
3896 return;
3897 }
3898 /* Move extents up in the list (if needed) */
3899 if (idx + ext_diff < nextents) {
3900 memmove(&ifp->if_u1.if_extents[idx],
3901 &ifp->if_u1.if_extents[idx + ext_diff],
3902 (nextents - (idx + ext_diff)) *
3903 sizeof(xfs_bmbt_rec_t));
3904 }
3905 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3906 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3907 /*
3908 * Reallocate the direct extent list. If the extents
3909 * will fit inside the inode then xfs_iext_realloc_direct
3910 * will switch from direct to inline extent allocation
3911 * mode for us.
3912 */
3913 xfs_iext_realloc_direct(ifp, new_size);
3914 ifp->if_bytes = new_size;
3915}
3916
0293ce3a
MK
3917/*
3918 * This is called when incore extents are being removed from the
3919 * indirection array and the extents being removed span multiple extent
3920 * buffers. The idx parameter contains the file extent index where we
3921 * want to begin removing extents, and the count parameter contains
3922 * how many extents need to be removed.
3923 *
3924 * |-------| |-------|
3925 * | nex1 | | | nex1 - number of extents before idx
3926 * |-------| | count |
3927 * | | | | count - number of extents being removed at idx
3928 * | count | |-------|
3929 * | | | nex2 | nex2 - number of extents after idx + count
3930 * |-------| |-------|
3931 */
3932void
3933xfs_iext_remove_indirect(
3934 xfs_ifork_t *ifp, /* inode fork pointer */
3935 xfs_extnum_t idx, /* index to begin removing extents */
3936 int count) /* number of extents to remove */
3937{
3938 xfs_ext_irec_t *erp; /* indirection array pointer */
3939 int erp_idx = 0; /* indirection array index */
3940 xfs_extnum_t ext_cnt; /* extents left to remove */
3941 xfs_extnum_t ext_diff; /* extents to remove in current list */
3942 xfs_extnum_t nex1; /* number of extents before idx */
3943 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 3944 int nlists; /* entries in indirection array */
0293ce3a
MK
3945 int page_idx = idx; /* index in target extent list */
3946
3947 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3948 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3949 ASSERT(erp != NULL);
3950 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3951 nex1 = page_idx;
3952 ext_cnt = count;
3953 while (ext_cnt) {
3954 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3955 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3956 /*
3957 * Check for deletion of entire list;
3958 * xfs_iext_irec_remove() updates extent offsets.
3959 */
3960 if (ext_diff == erp->er_extcount) {
3961 xfs_iext_irec_remove(ifp, erp_idx);
3962 ext_cnt -= ext_diff;
3963 nex1 = 0;
3964 if (ext_cnt) {
3965 ASSERT(erp_idx < ifp->if_real_bytes /
3966 XFS_IEXT_BUFSZ);
3967 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3968 nex1 = 0;
3969 continue;
3970 } else {
3971 break;
3972 }
3973 }
3974 /* Move extents up (if needed) */
3975 if (nex2) {
3976 memmove(&erp->er_extbuf[nex1],
3977 &erp->er_extbuf[nex1 + ext_diff],
3978 nex2 * sizeof(xfs_bmbt_rec_t));
3979 }
3980 /* Zero out rest of page */
3981 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3982 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3983 /* Update remaining counters */
3984 erp->er_extcount -= ext_diff;
3985 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3986 ext_cnt -= ext_diff;
3987 nex1 = 0;
3988 erp_idx++;
3989 erp++;
3990 }
3991 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3992 xfs_iext_irec_compact(ifp);
3993}
3994
4eea22f0
MK
3995/*
3996 * Create, destroy, or resize a linear (direct) block of extents.
3997 */
3998void
3999xfs_iext_realloc_direct(
4000 xfs_ifork_t *ifp, /* inode fork pointer */
4001 int new_size) /* new size of extents */
4002{
4003 int rnew_size; /* real new size of extents */
4004
4005 rnew_size = new_size;
4006
0293ce3a
MK
4007 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4008 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4009 (new_size != ifp->if_real_bytes)));
4010
4eea22f0
MK
4011 /* Free extent records */
4012 if (new_size == 0) {
4013 xfs_iext_destroy(ifp);
4014 }
4015 /* Resize direct extent list and zero any new bytes */
4016 else if (ifp->if_real_bytes) {
4017 /* Check if extents will fit inside the inode */
4018 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4019 xfs_iext_direct_to_inline(ifp, new_size /
4020 (uint)sizeof(xfs_bmbt_rec_t));
4021 ifp->if_bytes = new_size;
4022 return;
4023 }
16a087d8 4024 if (!is_power_of_2(new_size)){
40ebd81d 4025 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4026 }
4027 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 4028 ifp->if_u1.if_extents =
4eea22f0
MK
4029 kmem_realloc(ifp->if_u1.if_extents,
4030 rnew_size,
6785073b 4031 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
4032 }
4033 if (rnew_size > ifp->if_real_bytes) {
4034 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4035 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4036 rnew_size - ifp->if_real_bytes);
4037 }
4038 }
4039 /*
4040 * Switch from the inline extent buffer to a direct
4041 * extent list. Be sure to include the inline extent
4042 * bytes in new_size.
4043 */
4044 else {
4045 new_size += ifp->if_bytes;
16a087d8 4046 if (!is_power_of_2(new_size)) {
40ebd81d 4047 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4048 }
4049 xfs_iext_inline_to_direct(ifp, rnew_size);
4050 }
4051 ifp->if_real_bytes = rnew_size;
4052 ifp->if_bytes = new_size;
4053}
4054
4055/*
4056 * Switch from linear (direct) extent records to inline buffer.
4057 */
4058void
4059xfs_iext_direct_to_inline(
4060 xfs_ifork_t *ifp, /* inode fork pointer */
4061 xfs_extnum_t nextents) /* number of extents in file */
4062{
4063 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4064 ASSERT(nextents <= XFS_INLINE_EXTS);
4065 /*
4066 * The inline buffer was zeroed when we switched
4067 * from inline to direct extent allocation mode,
4068 * so we don't need to clear it here.
4069 */
4070 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4071 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 4072 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4073 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4074 ifp->if_real_bytes = 0;
4075}
4076
4077/*
4078 * Switch from inline buffer to linear (direct) extent records.
4079 * new_size should already be rounded up to the next power of 2
4080 * by the caller (when appropriate), so use new_size as it is.
4081 * However, since new_size may be rounded up, we can't update
4082 * if_bytes here. It is the caller's responsibility to update
4083 * if_bytes upon return.
4084 */
4085void
4086xfs_iext_inline_to_direct(
4087 xfs_ifork_t *ifp, /* inode fork pointer */
4088 int new_size) /* number of extents in file */
4089{
6785073b 4090 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
4091 memset(ifp->if_u1.if_extents, 0, new_size);
4092 if (ifp->if_bytes) {
4093 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4094 ifp->if_bytes);
4095 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4096 sizeof(xfs_bmbt_rec_t));
4097 }
4098 ifp->if_real_bytes = new_size;
4099}
4100
0293ce3a
MK
4101/*
4102 * Resize an extent indirection array to new_size bytes.
4103 */
4104void
4105xfs_iext_realloc_indirect(
4106 xfs_ifork_t *ifp, /* inode fork pointer */
4107 int new_size) /* new indirection array size */
4108{
4109 int nlists; /* number of irec's (ex lists) */
4110 int size; /* current indirection array size */
4111
4112 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4113 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4114 size = nlists * sizeof(xfs_ext_irec_t);
4115 ASSERT(ifp->if_real_bytes);
4116 ASSERT((new_size >= 0) && (new_size != size));
4117 if (new_size == 0) {
4118 xfs_iext_destroy(ifp);
4119 } else {
4120 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4121 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 4122 new_size, size, KM_NOFS);
0293ce3a
MK
4123 }
4124}
4125
4126/*
4127 * Switch from indirection array to linear (direct) extent allocations.
4128 */
4129void
4130xfs_iext_indirect_to_direct(
4131 xfs_ifork_t *ifp) /* inode fork pointer */
4132{
a6f64d4a 4133 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4134 xfs_extnum_t nextents; /* number of extents in file */
4135 int size; /* size of file extents */
4136
4137 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4138 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4139 ASSERT(nextents <= XFS_LINEAR_EXTS);
4140 size = nextents * sizeof(xfs_bmbt_rec_t);
4141
71a8c87f 4142 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
4143 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4144
4145 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 4146 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4147 ifp->if_flags &= ~XFS_IFEXTIREC;
4148 ifp->if_u1.if_extents = ep;
4149 ifp->if_bytes = size;
4150 if (nextents < XFS_LINEAR_EXTS) {
4151 xfs_iext_realloc_direct(ifp, size);
4152 }
4153}
4154
4eea22f0
MK
4155/*
4156 * Free incore file extents.
4157 */
4158void
4159xfs_iext_destroy(
4160 xfs_ifork_t *ifp) /* inode fork pointer */
4161{
0293ce3a
MK
4162 if (ifp->if_flags & XFS_IFEXTIREC) {
4163 int erp_idx;
4164 int nlists;
4165
4166 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4167 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4168 xfs_iext_irec_remove(ifp, erp_idx);
4169 }
4170 ifp->if_flags &= ~XFS_IFEXTIREC;
4171 } else if (ifp->if_real_bytes) {
f0e2d93c 4172 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4173 } else if (ifp->if_bytes) {
4174 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4175 sizeof(xfs_bmbt_rec_t));
4176 }
4177 ifp->if_u1.if_extents = NULL;
4178 ifp->if_real_bytes = 0;
4179 ifp->if_bytes = 0;
4180}
0293ce3a 4181
8867bc9b
MK
4182/*
4183 * Return a pointer to the extent record for file system block bno.
4184 */
a6f64d4a 4185xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4186xfs_iext_bno_to_ext(
4187 xfs_ifork_t *ifp, /* inode fork pointer */
4188 xfs_fileoff_t bno, /* block number to search for */
4189 xfs_extnum_t *idxp) /* index of target extent */
4190{
a6f64d4a 4191 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4192 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4193 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4194 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4195 int high; /* upper boundary in search */
8867bc9b 4196 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4197 int low; /* lower boundary in search */
8867bc9b
MK
4198 xfs_extnum_t nextents; /* number of file extents */
4199 xfs_fileoff_t startoff = 0; /* start offset of extent */
4200
4201 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4202 if (nextents == 0) {
4203 *idxp = 0;
4204 return NULL;
4205 }
4206 low = 0;
4207 if (ifp->if_flags & XFS_IFEXTIREC) {
4208 /* Find target extent list */
4209 int erp_idx = 0;
4210 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4211 base = erp->er_extbuf;
4212 high = erp->er_extcount - 1;
4213 } else {
4214 base = ifp->if_u1.if_extents;
4215 high = nextents - 1;
4216 }
4217 /* Binary search extent records */
4218 while (low <= high) {
4219 idx = (low + high) >> 1;
4220 ep = base + idx;
4221 startoff = xfs_bmbt_get_startoff(ep);
4222 blockcount = xfs_bmbt_get_blockcount(ep);
4223 if (bno < startoff) {
4224 high = idx - 1;
4225 } else if (bno >= startoff + blockcount) {
4226 low = idx + 1;
4227 } else {
4228 /* Convert back to file-based extent index */
4229 if (ifp->if_flags & XFS_IFEXTIREC) {
4230 idx += erp->er_extoff;
4231 }
4232 *idxp = idx;
4233 return ep;
4234 }
4235 }
4236 /* Convert back to file-based extent index */
4237 if (ifp->if_flags & XFS_IFEXTIREC) {
4238 idx += erp->er_extoff;
4239 }
4240 if (bno >= startoff + blockcount) {
4241 if (++idx == nextents) {
4242 ep = NULL;
4243 } else {
4244 ep = xfs_iext_get_ext(ifp, idx);
4245 }
4246 }
4247 *idxp = idx;
4248 return ep;
4249}
4250
0293ce3a
MK
4251/*
4252 * Return a pointer to the indirection array entry containing the
4253 * extent record for filesystem block bno. Store the index of the
4254 * target irec in *erp_idxp.
4255 */
8867bc9b 4256xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4257xfs_iext_bno_to_irec(
4258 xfs_ifork_t *ifp, /* inode fork pointer */
4259 xfs_fileoff_t bno, /* block number to search for */
4260 int *erp_idxp) /* irec index of target ext list */
4261{
4262 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4263 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4264 int erp_idx; /* indirection array index */
0293ce3a
MK
4265 int nlists; /* number of extent irec's (lists) */
4266 int high; /* binary search upper limit */
4267 int low; /* binary search lower limit */
4268
4269 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4270 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4271 erp_idx = 0;
4272 low = 0;
4273 high = nlists - 1;
4274 while (low <= high) {
4275 erp_idx = (low + high) >> 1;
4276 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4277 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4278 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4279 high = erp_idx - 1;
4280 } else if (erp_next && bno >=
4281 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4282 low = erp_idx + 1;
4283 } else {
4284 break;
4285 }
4286 }
4287 *erp_idxp = erp_idx;
4288 return erp;
4289}
4290
4291/*
4292 * Return a pointer to the indirection array entry containing the
4293 * extent record at file extent index *idxp. Store the index of the
4294 * target irec in *erp_idxp and store the page index of the target
4295 * extent record in *idxp.
4296 */
4297xfs_ext_irec_t *
4298xfs_iext_idx_to_irec(
4299 xfs_ifork_t *ifp, /* inode fork pointer */
4300 xfs_extnum_t *idxp, /* extent index (file -> page) */
4301 int *erp_idxp, /* pointer to target irec */
4302 int realloc) /* new bytes were just added */
4303{
4304 xfs_ext_irec_t *prev; /* pointer to previous irec */
4305 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4306 int erp_idx; /* indirection array index */
4307 int nlists; /* number of irec's (ex lists) */
4308 int high; /* binary search upper limit */
4309 int low; /* binary search lower limit */
4310 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4311
4312 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4313 ASSERT(page_idx >= 0 && page_idx <=
4314 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4315 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4316 erp_idx = 0;
4317 low = 0;
4318 high = nlists - 1;
4319
4320 /* Binary search extent irec's */
4321 while (low <= high) {
4322 erp_idx = (low + high) >> 1;
4323 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4324 prev = erp_idx > 0 ? erp - 1 : NULL;
4325 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4326 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4327 high = erp_idx - 1;
4328 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4329 (page_idx == erp->er_extoff + erp->er_extcount &&
4330 !realloc)) {
4331 low = erp_idx + 1;
4332 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4333 erp->er_extcount == XFS_LINEAR_EXTS) {
4334 ASSERT(realloc);
4335 page_idx = 0;
4336 erp_idx++;
4337 erp = erp_idx < nlists ? erp + 1 : NULL;
4338 break;
4339 } else {
4340 page_idx -= erp->er_extoff;
4341 break;
4342 }
4343 }
4344 *idxp = page_idx;
4345 *erp_idxp = erp_idx;
4346 return(erp);
4347}
4348
4349/*
4350 * Allocate and initialize an indirection array once the space needed
4351 * for incore extents increases above XFS_IEXT_BUFSZ.
4352 */
4353void
4354xfs_iext_irec_init(
4355 xfs_ifork_t *ifp) /* inode fork pointer */
4356{
4357 xfs_ext_irec_t *erp; /* indirection array pointer */
4358 xfs_extnum_t nextents; /* number of extents in file */
4359
4360 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4361 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4362 ASSERT(nextents <= XFS_LINEAR_EXTS);
4363
6785073b 4364 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
4365
4366 if (nextents == 0) {
6785073b 4367 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4368 } else if (!ifp->if_real_bytes) {
4369 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4370 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4371 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4372 }
4373 erp->er_extbuf = ifp->if_u1.if_extents;
4374 erp->er_extcount = nextents;
4375 erp->er_extoff = 0;
4376
4377 ifp->if_flags |= XFS_IFEXTIREC;
4378 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4379 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4380 ifp->if_u1.if_ext_irec = erp;
4381
4382 return;
4383}
4384
4385/*
4386 * Allocate and initialize a new entry in the indirection array.
4387 */
4388xfs_ext_irec_t *
4389xfs_iext_irec_new(
4390 xfs_ifork_t *ifp, /* inode fork pointer */
4391 int erp_idx) /* index for new irec */
4392{
4393 xfs_ext_irec_t *erp; /* indirection array pointer */
4394 int i; /* loop counter */
4395 int nlists; /* number of irec's (ex lists) */
4396
4397 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4398 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4399
4400 /* Resize indirection array */
4401 xfs_iext_realloc_indirect(ifp, ++nlists *
4402 sizeof(xfs_ext_irec_t));
4403 /*
4404 * Move records down in the array so the
4405 * new page can use erp_idx.
4406 */
4407 erp = ifp->if_u1.if_ext_irec;
4408 for (i = nlists - 1; i > erp_idx; i--) {
4409 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4410 }
4411 ASSERT(i == erp_idx);
4412
4413 /* Initialize new extent record */
4414 erp = ifp->if_u1.if_ext_irec;
6785073b 4415 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4416 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4417 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4418 erp[erp_idx].er_extcount = 0;
4419 erp[erp_idx].er_extoff = erp_idx > 0 ?
4420 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4421 return (&erp[erp_idx]);
4422}
4423
4424/*
4425 * Remove a record from the indirection array.
4426 */
4427void
4428xfs_iext_irec_remove(
4429 xfs_ifork_t *ifp, /* inode fork pointer */
4430 int erp_idx) /* irec index to remove */
4431{
4432 xfs_ext_irec_t *erp; /* indirection array pointer */
4433 int i; /* loop counter */
4434 int nlists; /* number of irec's (ex lists) */
4435
4436 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4437 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4438 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4439 if (erp->er_extbuf) {
4440 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4441 -erp->er_extcount);
f0e2d93c 4442 kmem_free(erp->er_extbuf);
0293ce3a
MK
4443 }
4444 /* Compact extent records */
4445 erp = ifp->if_u1.if_ext_irec;
4446 for (i = erp_idx; i < nlists - 1; i++) {
4447 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4448 }
4449 /*
4450 * Manually free the last extent record from the indirection
4451 * array. A call to xfs_iext_realloc_indirect() with a size
4452 * of zero would result in a call to xfs_iext_destroy() which
4453 * would in turn call this function again, creating a nasty
4454 * infinite loop.
4455 */
4456 if (--nlists) {
4457 xfs_iext_realloc_indirect(ifp,
4458 nlists * sizeof(xfs_ext_irec_t));
4459 } else {
f0e2d93c 4460 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4461 }
4462 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4463}
4464
4465/*
4466 * This is called to clean up large amounts of unused memory allocated
4467 * by the indirection array. Before compacting anything though, verify
4468 * that the indirection array is still needed and switch back to the
4469 * linear extent list (or even the inline buffer) if possible. The
4470 * compaction policy is as follows:
4471 *
4472 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 4473 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
4474 * No Compaction: Extents occupy at least 50% of allocated space
4475 */
4476void
4477xfs_iext_irec_compact(
4478 xfs_ifork_t *ifp) /* inode fork pointer */
4479{
4480 xfs_extnum_t nextents; /* number of extents in file */
4481 int nlists; /* number of irec's (ex lists) */
4482
4483 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4484 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4485 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4486
4487 if (nextents == 0) {
4488 xfs_iext_destroy(ifp);
4489 } else if (nextents <= XFS_INLINE_EXTS) {
4490 xfs_iext_indirect_to_direct(ifp);
4491 xfs_iext_direct_to_inline(ifp, nextents);
4492 } else if (nextents <= XFS_LINEAR_EXTS) {
4493 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
4494 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4495 xfs_iext_irec_compact_pages(ifp);
4496 }
4497}
4498
4499/*
4500 * Combine extents from neighboring extent pages.
4501 */
4502void
4503xfs_iext_irec_compact_pages(
4504 xfs_ifork_t *ifp) /* inode fork pointer */
4505{
4506 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4507 int erp_idx = 0; /* indirection array index */
4508 int nlists; /* number of irec's (ex lists) */
4509
4510 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4511 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4512 while (erp_idx < nlists - 1) {
4513 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4514 erp_next = erp + 1;
4515 if (erp_next->er_extcount <=
4516 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 4517 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
4518 erp_next->er_extbuf, erp_next->er_extcount *
4519 sizeof(xfs_bmbt_rec_t));
4520 erp->er_extcount += erp_next->er_extcount;
4521 /*
4522 * Free page before removing extent record
4523 * so er_extoffs don't get modified in
4524 * xfs_iext_irec_remove.
4525 */
f0e2d93c 4526 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
4527 erp_next->er_extbuf = NULL;
4528 xfs_iext_irec_remove(ifp, erp_idx + 1);
4529 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4530 } else {
4531 erp_idx++;
4532 }
4533 }
4534}
4535
0293ce3a
MK
4536/*
4537 * This is called to update the er_extoff field in the indirection
4538 * array when extents have been added or removed from one of the
4539 * extent lists. erp_idx contains the irec index to begin updating
4540 * at and ext_diff contains the number of extents that were added
4541 * or removed.
4542 */
4543void
4544xfs_iext_irec_update_extoffs(
4545 xfs_ifork_t *ifp, /* inode fork pointer */
4546 int erp_idx, /* irec index to update */
4547 int ext_diff) /* number of new extents */
4548{
4549 int i; /* loop counter */
4550 int nlists; /* number of irec's (ex lists */
4551
4552 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4553 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4554 for (i = erp_idx; i < nlists; i++) {
4555 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4556 }
4557}
This page took 0.700821 seconds and 5 git commands to generate.