[XFS] Use uninitialized_var macro to stop warning about rtx
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451
NS
23#include "xfs_inum.h"
24#include "xfs_imap.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4
LT
29#include "xfs_dir2.h"
30#include "xfs_dmapi.h"
31#include "xfs_mount.h"
1da177e4 32#include "xfs_bmap_btree.h"
a844f451 33#include "xfs_alloc_btree.h"
1da177e4 34#include "xfs_ialloc_btree.h"
1da177e4 35#include "xfs_dir2_sf.h"
a844f451 36#include "xfs_attr_sf.h"
1da177e4 37#include "xfs_dinode.h"
1da177e4 38#include "xfs_inode.h"
1da177e4 39#include "xfs_buf_item.h"
a844f451
NS
40#include "xfs_inode_item.h"
41#include "xfs_btree.h"
42#include "xfs_alloc.h"
43#include "xfs_ialloc.h"
44#include "xfs_bmap.h"
1da177e4
LT
45#include "xfs_rw.h"
46#include "xfs_error.h"
1da177e4
LT
47#include "xfs_utils.h"
48#include "xfs_dir2_trace.h"
49#include "xfs_quota.h"
1da177e4
LT
50#include "xfs_acl.h"
51
16a087d8 52#include <linux/log2.h>
1da177e4
LT
53
54kmem_zone_t *xfs_ifork_zone;
55kmem_zone_t *xfs_inode_zone;
56kmem_zone_t *xfs_chashlist_zone;
57
58/*
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
61 */
62#define XFS_ITRUNC_MAX_EXTENTS 2
63
64STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68
69
70#ifdef DEBUG
71/*
72 * Make sure that the extents in the given memory buffer
73 * are valid.
74 */
75STATIC void
76xfs_validate_extents(
4eea22f0 77 xfs_ifork_t *ifp,
1da177e4
LT
78 int nrecs,
79 int disk,
80 xfs_exntfmt_t fmt)
81{
4eea22f0 82 xfs_bmbt_rec_t *ep;
1da177e4
LT
83 xfs_bmbt_irec_t irec;
84 xfs_bmbt_rec_t rec;
85 int i;
86
87 for (i = 0; i < nrecs; i++) {
4eea22f0 88 ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
89 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
90 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
91 if (disk)
92 xfs_bmbt_disk_get_all(&rec, &irec);
93 else
94 xfs_bmbt_get_all(&rec, &irec);
95 if (fmt == XFS_EXTFMT_NOSTATE)
96 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
97 }
98}
99#else /* DEBUG */
4eea22f0 100#define xfs_validate_extents(ifp, nrecs, disk, fmt)
1da177e4
LT
101#endif /* DEBUG */
102
103/*
104 * Check that none of the inode's in the buffer have a next
105 * unlinked field of 0.
106 */
107#if defined(DEBUG)
108void
109xfs_inobp_check(
110 xfs_mount_t *mp,
111 xfs_buf_t *bp)
112{
113 int i;
114 int j;
115 xfs_dinode_t *dip;
116
117 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
118
119 for (i = 0; i < j; i++) {
120 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
121 i * mp->m_sb.sb_inodesize);
122 if (!dip->di_next_unlinked) {
123 xfs_fs_cmn_err(CE_ALERT, mp,
124 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
125 bp);
126 ASSERT(dip->di_next_unlinked);
127 }
128 }
129}
130#endif
131
1da177e4
LT
132/*
133 * This routine is called to map an inode number within a file
134 * system to the buffer containing the on-disk version of the
135 * inode. It returns a pointer to the buffer containing the
136 * on-disk inode in the bpp parameter, and in the dip parameter
137 * it returns a pointer to the on-disk inode within that buffer.
138 *
139 * If a non-zero error is returned, then the contents of bpp and
140 * dipp are undefined.
141 *
142 * Use xfs_imap() to determine the size and location of the
143 * buffer to read from disk.
144 */
ba0f32d4 145STATIC int
1da177e4
LT
146xfs_inotobp(
147 xfs_mount_t *mp,
148 xfs_trans_t *tp,
149 xfs_ino_t ino,
150 xfs_dinode_t **dipp,
151 xfs_buf_t **bpp,
152 int *offset)
153{
154 int di_ok;
155 xfs_imap_t imap;
156 xfs_buf_t *bp;
157 int error;
158 xfs_dinode_t *dip;
159
160 /*
c41564b5 161 * Call the space management code to find the location of the
1da177e4
LT
162 * inode on disk.
163 */
164 imap.im_blkno = 0;
165 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
166 if (error != 0) {
167 cmn_err(CE_WARN,
168 "xfs_inotobp: xfs_imap() returned an "
169 "error %d on %s. Returning error.", error, mp->m_fsname);
170 return error;
171 }
172
173 /*
174 * If the inode number maps to a block outside the bounds of the
175 * file system then return NULL rather than calling read_buf
176 * and panicing when we get an error from the driver.
177 */
178 if ((imap.im_blkno + imap.im_len) >
179 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
180 cmn_err(CE_WARN,
da1650a5 181 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
1da177e4 182 "of the file system %s. Returning EINVAL.",
da1650a5
CH
183 (unsigned long long)imap.im_blkno,
184 imap.im_len, mp->m_fsname);
1da177e4
LT
185 return XFS_ERROR(EINVAL);
186 }
187
188 /*
189 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
190 * default to just a read_buf() call.
191 */
192 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
193 (int)imap.im_len, XFS_BUF_LOCK, &bp);
194
195 if (error) {
196 cmn_err(CE_WARN,
197 "xfs_inotobp: xfs_trans_read_buf() returned an "
198 "error %d on %s. Returning error.", error, mp->m_fsname);
199 return error;
200 }
201 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
202 di_ok =
203 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
204 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
205 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
206 XFS_RANDOM_ITOBP_INOTOBP))) {
207 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
208 xfs_trans_brelse(tp, bp);
209 cmn_err(CE_WARN,
210 "xfs_inotobp: XFS_TEST_ERROR() returned an "
211 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
212 return XFS_ERROR(EFSCORRUPTED);
213 }
214
215 xfs_inobp_check(mp, bp);
216
217 /*
218 * Set *dipp to point to the on-disk inode in the buffer.
219 */
220 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
221 *bpp = bp;
222 *offset = imap.im_boffset;
223 return 0;
224}
225
226
227/*
228 * This routine is called to map an inode to the buffer containing
229 * the on-disk version of the inode. It returns a pointer to the
230 * buffer containing the on-disk inode in the bpp parameter, and in
231 * the dip parameter it returns a pointer to the on-disk inode within
232 * that buffer.
233 *
234 * If a non-zero error is returned, then the contents of bpp and
235 * dipp are undefined.
236 *
237 * If the inode is new and has not yet been initialized, use xfs_imap()
238 * to determine the size and location of the buffer to read from disk.
239 * If the inode has already been mapped to its buffer and read in once,
240 * then use the mapping information stored in the inode rather than
241 * calling xfs_imap(). This allows us to avoid the overhead of looking
242 * at the inode btree for small block file systems (see xfs_dilocate()).
243 * We can tell whether the inode has been mapped in before by comparing
244 * its disk block address to 0. Only uninitialized inodes will have
245 * 0 for the disk block address.
246 */
247int
248xfs_itobp(
249 xfs_mount_t *mp,
250 xfs_trans_t *tp,
251 xfs_inode_t *ip,
252 xfs_dinode_t **dipp,
253 xfs_buf_t **bpp,
b12dd342
NS
254 xfs_daddr_t bno,
255 uint imap_flags)
1da177e4 256{
4d1a2ed3 257 xfs_imap_t imap;
1da177e4
LT
258 xfs_buf_t *bp;
259 int error;
1da177e4
LT
260 int i;
261 int ni;
1da177e4
LT
262
263 if (ip->i_blkno == (xfs_daddr_t)0) {
264 /*
265 * Call the space management code to find the location of the
266 * inode on disk.
267 */
268 imap.im_blkno = bno;
b12dd342
NS
269 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
270 XFS_IMAP_LOOKUP | imap_flags)))
1da177e4 271 return error;
1da177e4
LT
272
273 /*
274 * If the inode number maps to a block outside the bounds
275 * of the file system then return NULL rather than calling
276 * read_buf and panicing when we get an error from the
277 * driver.
278 */
279 if ((imap.im_blkno + imap.im_len) >
280 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
281#ifdef DEBUG
282 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
283 "(imap.im_blkno (0x%llx) "
284 "+ imap.im_len (0x%llx)) > "
285 " XFS_FSB_TO_BB(mp, "
286 "mp->m_sb.sb_dblocks) (0x%llx)",
287 (unsigned long long) imap.im_blkno,
288 (unsigned long long) imap.im_len,
289 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
290#endif /* DEBUG */
291 return XFS_ERROR(EINVAL);
292 }
293
294 /*
295 * Fill in the fields in the inode that will be used to
296 * map the inode to its buffer from now on.
297 */
298 ip->i_blkno = imap.im_blkno;
299 ip->i_len = imap.im_len;
300 ip->i_boffset = imap.im_boffset;
301 } else {
302 /*
303 * We've already mapped the inode once, so just use the
304 * mapping that we saved the first time.
305 */
306 imap.im_blkno = ip->i_blkno;
307 imap.im_len = ip->i_len;
308 imap.im_boffset = ip->i_boffset;
309 }
310 ASSERT(bno == 0 || bno == imap.im_blkno);
311
312 /*
313 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
314 * default to just a read_buf() call.
315 */
316 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
317 (int)imap.im_len, XFS_BUF_LOCK, &bp);
1da177e4
LT
318 if (error) {
319#ifdef DEBUG
320 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
321 "xfs_trans_read_buf() returned error %d, "
322 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
323 error, (unsigned long long) imap.im_blkno,
324 (unsigned long long) imap.im_len);
325#endif /* DEBUG */
326 return error;
327 }
4d1a2ed3 328
1da177e4
LT
329 /*
330 * Validate the magic number and version of every inode in the buffer
331 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
4d1a2ed3 332 * No validation is done here in userspace (xfs_repair).
1da177e4 333 */
4d1a2ed3
NS
334#if !defined(__KERNEL__)
335 ni = 0;
336#elif defined(DEBUG)
41ff715a 337 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
4d1a2ed3 338#else /* usual case */
41ff715a 339 ni = 1;
1da177e4 340#endif
4d1a2ed3 341
1da177e4
LT
342 for (i = 0; i < ni; i++) {
343 int di_ok;
344 xfs_dinode_t *dip;
345
346 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
347 (i << mp->m_sb.sb_inodelog));
348 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
349 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
41ff715a
NS
350 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
351 XFS_ERRTAG_ITOBP_INOTOBP,
352 XFS_RANDOM_ITOBP_INOTOBP))) {
353 if (imap_flags & XFS_IMAP_BULKSTAT) {
354 xfs_trans_brelse(tp, bp);
355 return XFS_ERROR(EINVAL);
356 }
1da177e4 357#ifdef DEBUG
41ff715a 358 cmn_err(CE_ALERT,
4d1a2ed3
NS
359 "Device %s - bad inode magic/vsn "
360 "daddr %lld #%d (magic=%x)",
b6574520 361 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1da177e4
LT
362 (unsigned long long)imap.im_blkno, i,
363 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
364#endif
365 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
366 mp, dip);
367 xfs_trans_brelse(tp, bp);
368 return XFS_ERROR(EFSCORRUPTED);
369 }
370 }
1da177e4
LT
371
372 xfs_inobp_check(mp, bp);
373
374 /*
375 * Mark the buffer as an inode buffer now that it looks good
376 */
377 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
378
379 /*
380 * Set *dipp to point to the on-disk inode in the buffer.
381 */
382 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
383 *bpp = bp;
384 return 0;
385}
386
387/*
388 * Move inode type and inode format specific information from the
389 * on-disk inode to the in-core inode. For fifos, devs, and sockets
390 * this means set if_rdev to the proper value. For files, directories,
391 * and symlinks this means to bring in the in-line data or extent
392 * pointers. For a file in B-tree format, only the root is immediately
393 * brought in-core. The rest will be in-lined in if_extents when it
394 * is first referenced (see xfs_iread_extents()).
395 */
396STATIC int
397xfs_iformat(
398 xfs_inode_t *ip,
399 xfs_dinode_t *dip)
400{
401 xfs_attr_shortform_t *atp;
402 int size;
403 int error;
404 xfs_fsize_t di_size;
405 ip->i_df.if_ext_max =
406 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
407 error = 0;
408
409 if (unlikely(
410 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
411 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
412 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
3762ec6b
NS
413 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
414 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4
LT
415 (unsigned long long)ip->i_ino,
416 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
417 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
418 (unsigned long long)
419 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
420 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
421 ip->i_mount, dip);
422 return XFS_ERROR(EFSCORRUPTED);
423 }
424
425 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
426 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
427 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4
LT
428 (unsigned long long)ip->i_ino,
429 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
430 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
431 ip->i_mount, dip);
432 return XFS_ERROR(EFSCORRUPTED);
433 }
434
435 switch (ip->i_d.di_mode & S_IFMT) {
436 case S_IFIFO:
437 case S_IFCHR:
438 case S_IFBLK:
439 case S_IFSOCK:
440 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
441 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
442 ip->i_mount, dip);
443 return XFS_ERROR(EFSCORRUPTED);
444 }
445 ip->i_d.di_size = 0;
ba87ea69 446 ip->i_size = 0;
1da177e4
LT
447 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
448 break;
449
450 case S_IFREG:
451 case S_IFLNK:
452 case S_IFDIR:
453 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
454 case XFS_DINODE_FMT_LOCAL:
455 /*
456 * no local regular files yet
457 */
458 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
459 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
460 "corrupt inode %Lu "
461 "(local format for regular file).",
1da177e4
LT
462 (unsigned long long) ip->i_ino);
463 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
464 XFS_ERRLEVEL_LOW,
465 ip->i_mount, dip);
466 return XFS_ERROR(EFSCORRUPTED);
467 }
468
469 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
470 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
471 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
472 "corrupt inode %Lu "
473 "(bad size %Ld for local inode).",
1da177e4
LT
474 (unsigned long long) ip->i_ino,
475 (long long) di_size);
476 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
477 XFS_ERRLEVEL_LOW,
478 ip->i_mount, dip);
479 return XFS_ERROR(EFSCORRUPTED);
480 }
481
482 size = (int)di_size;
483 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
484 break;
485 case XFS_DINODE_FMT_EXTENTS:
486 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
487 break;
488 case XFS_DINODE_FMT_BTREE:
489 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
490 break;
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
493 ip->i_mount);
494 return XFS_ERROR(EFSCORRUPTED);
495 }
496 break;
497
498 default:
499 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
500 return XFS_ERROR(EFSCORRUPTED);
501 }
502 if (error) {
503 return error;
504 }
505 if (!XFS_DFORK_Q(dip))
506 return 0;
507 ASSERT(ip->i_afp == NULL);
508 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
509 ip->i_afp->if_ext_max =
510 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
511 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
512 case XFS_DINODE_FMT_LOCAL:
513 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 514 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
515 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
516 break;
517 case XFS_DINODE_FMT_EXTENTS:
518 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
519 break;
520 case XFS_DINODE_FMT_BTREE:
521 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
522 break;
523 default:
524 error = XFS_ERROR(EFSCORRUPTED);
525 break;
526 }
527 if (error) {
528 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
529 ip->i_afp = NULL;
530 xfs_idestroy_fork(ip, XFS_DATA_FORK);
531 }
532 return error;
533}
534
535/*
536 * The file is in-lined in the on-disk inode.
537 * If it fits into if_inline_data, then copy
538 * it there, otherwise allocate a buffer for it
539 * and copy the data there. Either way, set
540 * if_data to point at the data.
541 * If we allocate a buffer for the data, make
542 * sure that its size is a multiple of 4 and
543 * record the real size in i_real_bytes.
544 */
545STATIC int
546xfs_iformat_local(
547 xfs_inode_t *ip,
548 xfs_dinode_t *dip,
549 int whichfork,
550 int size)
551{
552 xfs_ifork_t *ifp;
553 int real_size;
554
555 /*
556 * If the size is unreasonable, then something
557 * is wrong and we just bail out rather than crash in
558 * kmem_alloc() or memcpy() below.
559 */
560 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
561 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
562 "corrupt inode %Lu "
563 "(bad size %d for local fork, size = %d).",
1da177e4
LT
564 (unsigned long long) ip->i_ino, size,
565 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
566 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
567 ip->i_mount, dip);
568 return XFS_ERROR(EFSCORRUPTED);
569 }
570 ifp = XFS_IFORK_PTR(ip, whichfork);
571 real_size = 0;
572 if (size == 0)
573 ifp->if_u1.if_data = NULL;
574 else if (size <= sizeof(ifp->if_u2.if_inline_data))
575 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
576 else {
577 real_size = roundup(size, 4);
578 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
579 }
580 ifp->if_bytes = size;
581 ifp->if_real_bytes = real_size;
582 if (size)
583 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
584 ifp->if_flags &= ~XFS_IFEXTENTS;
585 ifp->if_flags |= XFS_IFINLINE;
586 return 0;
587}
588
589/*
590 * The file consists of a set of extents all
591 * of which fit into the on-disk inode.
592 * If there are few enough extents to fit into
593 * the if_inline_ext, then copy them there.
594 * Otherwise allocate a buffer for them and copy
595 * them into it. Either way, set if_extents
596 * to point at the extents.
597 */
598STATIC int
599xfs_iformat_extents(
600 xfs_inode_t *ip,
601 xfs_dinode_t *dip,
602 int whichfork)
603{
604 xfs_bmbt_rec_t *ep, *dp;
605 xfs_ifork_t *ifp;
606 int nex;
1da177e4
LT
607 int size;
608 int i;
609
610 ifp = XFS_IFORK_PTR(ip, whichfork);
611 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
612 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
613
614 /*
615 * If the number of extents is unreasonable, then something
616 * is wrong and we just bail out rather than crash in
617 * kmem_alloc() or memcpy() below.
618 */
619 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
620 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
621 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
622 (unsigned long long) ip->i_ino, nex);
623 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
624 ip->i_mount, dip);
625 return XFS_ERROR(EFSCORRUPTED);
626 }
627
4eea22f0 628 ifp->if_real_bytes = 0;
1da177e4
LT
629 if (nex == 0)
630 ifp->if_u1.if_extents = NULL;
631 else if (nex <= XFS_INLINE_EXTS)
632 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
633 else
634 xfs_iext_add(ifp, 0, nex);
635
1da177e4 636 ifp->if_bytes = size;
1da177e4
LT
637 if (size) {
638 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
4eea22f0
MK
639 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
640 for (i = 0; i < nex; i++, dp++) {
641 ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
642 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
643 ARCH_CONVERT);
644 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
645 ARCH_CONVERT);
646 }
647 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
648 whichfork);
649 if (whichfork != XFS_DATA_FORK ||
650 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
651 if (unlikely(xfs_check_nostate_extents(
4eea22f0 652 ifp, 0, nex))) {
1da177e4
LT
653 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
654 XFS_ERRLEVEL_LOW,
655 ip->i_mount);
656 return XFS_ERROR(EFSCORRUPTED);
657 }
658 }
659 ifp->if_flags |= XFS_IFEXTENTS;
660 return 0;
661}
662
663/*
664 * The file has too many extents to fit into
665 * the inode, so they are in B-tree format.
666 * Allocate a buffer for the root of the B-tree
667 * and copy the root into it. The i_extents
668 * field will remain NULL until all of the
669 * extents are read in (when they are needed).
670 */
671STATIC int
672xfs_iformat_btree(
673 xfs_inode_t *ip,
674 xfs_dinode_t *dip,
675 int whichfork)
676{
677 xfs_bmdr_block_t *dfp;
678 xfs_ifork_t *ifp;
679 /* REFERENCED */
680 int nrecs;
681 int size;
682
683 ifp = XFS_IFORK_PTR(ip, whichfork);
684 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
685 size = XFS_BMAP_BROOT_SPACE(dfp);
686 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
687
688 /*
689 * blow out if -- fork has less extents than can fit in
690 * fork (fork shouldn't be a btree format), root btree
691 * block has more records than can fit into the fork,
692 * or the number of extents is greater than the number of
693 * blocks.
694 */
695 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
696 || XFS_BMDR_SPACE_CALC(nrecs) >
697 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
698 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
699 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
700 "corrupt inode %Lu (btree).",
1da177e4
LT
701 (unsigned long long) ip->i_ino);
702 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
703 ip->i_mount);
704 return XFS_ERROR(EFSCORRUPTED);
705 }
706
707 ifp->if_broot_bytes = size;
708 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
709 ASSERT(ifp->if_broot != NULL);
710 /*
711 * Copy and convert from the on-disk structure
712 * to the in-memory structure.
713 */
714 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
715 ifp->if_broot, size);
716 ifp->if_flags &= ~XFS_IFEXTENTS;
717 ifp->if_flags |= XFS_IFBROOT;
718
719 return 0;
720}
721
722/*
723 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
724 * and native format
725 *
726 * buf = on-disk representation
727 * dip = native representation
728 * dir = direction - +ve -> disk to native
729 * -ve -> native to disk
730 */
731void
732xfs_xlate_dinode_core(
733 xfs_caddr_t buf,
734 xfs_dinode_core_t *dip,
735 int dir)
736{
737 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
738 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
739 xfs_arch_t arch = ARCH_CONVERT;
740
741 ASSERT(dir);
742
743 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
744 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
745 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
746 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
747 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
748 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
749 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
750 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
751 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
752
753 if (dir > 0) {
754 memcpy(mem_core->di_pad, buf_core->di_pad,
755 sizeof(buf_core->di_pad));
756 } else {
757 memcpy(buf_core->di_pad, mem_core->di_pad,
758 sizeof(buf_core->di_pad));
759 }
760
761 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
762
763 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
764 dir, arch);
765 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
766 dir, arch);
767 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
768 dir, arch);
769 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
770 dir, arch);
771 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
772 dir, arch);
773 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
774 dir, arch);
775 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
776 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
777 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
778 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
779 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
780 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
781 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
782 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
783 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
784 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
785 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
786}
787
788STATIC uint
789_xfs_dic2xflags(
1da177e4
LT
790 __uint16_t di_flags)
791{
792 uint flags = 0;
793
794 if (di_flags & XFS_DIFLAG_ANY) {
795 if (di_flags & XFS_DIFLAG_REALTIME)
796 flags |= XFS_XFLAG_REALTIME;
797 if (di_flags & XFS_DIFLAG_PREALLOC)
798 flags |= XFS_XFLAG_PREALLOC;
799 if (di_flags & XFS_DIFLAG_IMMUTABLE)
800 flags |= XFS_XFLAG_IMMUTABLE;
801 if (di_flags & XFS_DIFLAG_APPEND)
802 flags |= XFS_XFLAG_APPEND;
803 if (di_flags & XFS_DIFLAG_SYNC)
804 flags |= XFS_XFLAG_SYNC;
805 if (di_flags & XFS_DIFLAG_NOATIME)
806 flags |= XFS_XFLAG_NOATIME;
807 if (di_flags & XFS_DIFLAG_NODUMP)
808 flags |= XFS_XFLAG_NODUMP;
809 if (di_flags & XFS_DIFLAG_RTINHERIT)
810 flags |= XFS_XFLAG_RTINHERIT;
811 if (di_flags & XFS_DIFLAG_PROJINHERIT)
812 flags |= XFS_XFLAG_PROJINHERIT;
813 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
814 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
815 if (di_flags & XFS_DIFLAG_EXTSIZE)
816 flags |= XFS_XFLAG_EXTSIZE;
817 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
818 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
819 if (di_flags & XFS_DIFLAG_NODEFRAG)
820 flags |= XFS_XFLAG_NODEFRAG;
1da177e4
LT
821 }
822
823 return flags;
824}
825
826uint
827xfs_ip2xflags(
828 xfs_inode_t *ip)
829{
830 xfs_dinode_core_t *dic = &ip->i_d;
831
a916e2bd
NS
832 return _xfs_dic2xflags(dic->di_flags) |
833 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
834}
835
836uint
837xfs_dic2xflags(
838 xfs_dinode_core_t *dic)
839{
a916e2bd
NS
840 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
841 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
842}
843
844/*
845 * Given a mount structure and an inode number, return a pointer
c41564b5 846 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
847 * inode number.
848 *
849 * Initialize the inode's attributes and extent pointers if it
850 * already has them (it will not if the inode has no links).
851 */
852int
853xfs_iread(
854 xfs_mount_t *mp,
855 xfs_trans_t *tp,
856 xfs_ino_t ino,
857 xfs_inode_t **ipp,
745b1f47
NS
858 xfs_daddr_t bno,
859 uint imap_flags)
1da177e4
LT
860{
861 xfs_buf_t *bp;
862 xfs_dinode_t *dip;
863 xfs_inode_t *ip;
864 int error;
865
866 ASSERT(xfs_inode_zone != NULL);
867
868 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
869 ip->i_ino = ino;
870 ip->i_mount = mp;
f273ab84 871 spin_lock_init(&ip->i_flags_lock);
1da177e4
LT
872
873 /*
874 * Get pointer's to the on-disk inode and the buffer containing it.
875 * If the inode number refers to a block outside the file system
876 * then xfs_itobp() will return NULL. In this case we should
877 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
878 * know that this is a new incore inode.
879 */
745b1f47 880 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
b12dd342 881 if (error) {
1da177e4
LT
882 kmem_zone_free(xfs_inode_zone, ip);
883 return error;
884 }
885
886 /*
887 * Initialize inode's trace buffers.
888 * Do this before xfs_iformat in case it adds entries.
889 */
890#ifdef XFS_BMAP_TRACE
891 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
892#endif
893#ifdef XFS_BMBT_TRACE
894 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
895#endif
896#ifdef XFS_RW_TRACE
897 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
898#endif
899#ifdef XFS_ILOCK_TRACE
900 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
901#endif
902#ifdef XFS_DIR2_TRACE
903 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
904#endif
905
906 /*
907 * If we got something that isn't an inode it means someone
908 * (nfs or dmi) has a stale handle.
909 */
910 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
911 kmem_zone_free(xfs_inode_zone, ip);
912 xfs_trans_brelse(tp, bp);
913#ifdef DEBUG
914 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 "dip->di_core.di_magic (0x%x) != "
916 "XFS_DINODE_MAGIC (0x%x)",
917 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
918 XFS_DINODE_MAGIC);
919#endif /* DEBUG */
920 return XFS_ERROR(EINVAL);
921 }
922
923 /*
924 * If the on-disk inode is already linked to a directory
925 * entry, copy all of the inode into the in-core inode.
926 * xfs_iformat() handles copying in the inode format
927 * specific information.
928 * Otherwise, just get the truly permanent information.
929 */
930 if (dip->di_core.di_mode) {
931 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
932 &(ip->i_d), 1);
933 error = xfs_iformat(ip, dip);
934 if (error) {
935 kmem_zone_free(xfs_inode_zone, ip);
936 xfs_trans_brelse(tp, bp);
937#ifdef DEBUG
938 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
939 "xfs_iformat() returned error %d",
940 error);
941#endif /* DEBUG */
942 return error;
943 }
944 } else {
945 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
946 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
947 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
948 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
949 /*
950 * Make sure to pull in the mode here as well in
951 * case the inode is released without being used.
952 * This ensures that xfs_inactive() will see that
953 * the inode is already free and not try to mess
954 * with the uninitialized part of it.
955 */
956 ip->i_d.di_mode = 0;
957 /*
958 * Initialize the per-fork minima and maxima for a new
959 * inode here. xfs_iformat will do it for old inodes.
960 */
961 ip->i_df.if_ext_max =
962 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
963 }
964
965 INIT_LIST_HEAD(&ip->i_reclaim);
966
967 /*
968 * The inode format changed when we moved the link count and
969 * made it 32 bits long. If this is an old format inode,
970 * convert it in memory to look like a new one. If it gets
971 * flushed to disk we will convert back before flushing or
972 * logging it. We zero out the new projid field and the old link
973 * count field. We'll handle clearing the pad field (the remains
974 * of the old uuid field) when we actually convert the inode to
975 * the new format. We don't change the version number so that we
976 * can distinguish this from a real new format inode.
977 */
978 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
979 ip->i_d.di_nlink = ip->i_d.di_onlink;
980 ip->i_d.di_onlink = 0;
981 ip->i_d.di_projid = 0;
982 }
983
984 ip->i_delayed_blks = 0;
ba87ea69 985 ip->i_size = ip->i_d.di_size;
1da177e4
LT
986
987 /*
988 * Mark the buffer containing the inode as something to keep
989 * around for a while. This helps to keep recently accessed
990 * meta-data in-core longer.
991 */
992 XFS_BUF_SET_REF(bp, XFS_INO_REF);
993
994 /*
995 * Use xfs_trans_brelse() to release the buffer containing the
996 * on-disk inode, because it was acquired with xfs_trans_read_buf()
997 * in xfs_itobp() above. If tp is NULL, this is just a normal
998 * brelse(). If we're within a transaction, then xfs_trans_brelse()
999 * will only release the buffer if it is not dirty within the
1000 * transaction. It will be OK to release the buffer in this case,
1001 * because inodes on disk are never destroyed and we will be
1002 * locking the new in-core inode before putting it in the hash
1003 * table where other processes can find it. Thus we don't have
1004 * to worry about the inode being changed just because we released
1005 * the buffer.
1006 */
1007 xfs_trans_brelse(tp, bp);
1008 *ipp = ip;
1009 return 0;
1010}
1011
1012/*
1013 * Read in extents from a btree-format inode.
1014 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1015 */
1016int
1017xfs_iread_extents(
1018 xfs_trans_t *tp,
1019 xfs_inode_t *ip,
1020 int whichfork)
1021{
1022 int error;
1023 xfs_ifork_t *ifp;
4eea22f0 1024 xfs_extnum_t nextents;
1da177e4
LT
1025 size_t size;
1026
1027 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1028 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1029 ip->i_mount);
1030 return XFS_ERROR(EFSCORRUPTED);
1031 }
4eea22f0
MK
1032 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1033 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1034 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1035
1da177e4
LT
1036 /*
1037 * We know that the size is valid (it's checked in iformat_btree)
1038 */
1da177e4 1039 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1040 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1041 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1042 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1043 error = xfs_bmap_read_extents(tp, ip, whichfork);
1044 if (error) {
4eea22f0 1045 xfs_iext_destroy(ifp);
1da177e4
LT
1046 ifp->if_flags &= ~XFS_IFEXTENTS;
1047 return error;
1048 }
4eea22f0 1049 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1050 return 0;
1051}
1052
1053/*
1054 * Allocate an inode on disk and return a copy of its in-core version.
1055 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1056 * appropriately within the inode. The uid and gid for the inode are
1057 * set according to the contents of the given cred structure.
1058 *
1059 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1060 * has a free inode available, call xfs_iget()
1061 * to obtain the in-core version of the allocated inode. Finally,
1062 * fill in the inode and log its initial contents. In this case,
1063 * ialloc_context would be set to NULL and call_again set to false.
1064 *
1065 * If xfs_dialloc() does not have an available inode,
1066 * it will replenish its supply by doing an allocation. Since we can
1067 * only do one allocation within a transaction without deadlocks, we
1068 * must commit the current transaction before returning the inode itself.
1069 * In this case, therefore, we will set call_again to true and return.
1070 * The caller should then commit the current transaction, start a new
1071 * transaction, and call xfs_ialloc() again to actually get the inode.
1072 *
1073 * To ensure that some other process does not grab the inode that
1074 * was allocated during the first call to xfs_ialloc(), this routine
1075 * also returns the [locked] bp pointing to the head of the freelist
1076 * as ialloc_context. The caller should hold this buffer across
1077 * the commit and pass it back into this routine on the second call.
1078 */
1079int
1080xfs_ialloc(
1081 xfs_trans_t *tp,
1082 xfs_inode_t *pip,
1083 mode_t mode,
31b084ae 1084 xfs_nlink_t nlink,
1da177e4
LT
1085 xfs_dev_t rdev,
1086 cred_t *cr,
1087 xfs_prid_t prid,
1088 int okalloc,
1089 xfs_buf_t **ialloc_context,
1090 boolean_t *call_again,
1091 xfs_inode_t **ipp)
1092{
1093 xfs_ino_t ino;
1094 xfs_inode_t *ip;
67fcaa73 1095 bhv_vnode_t *vp;
1da177e4
LT
1096 uint flags;
1097 int error;
1098
1099 /*
1100 * Call the space management code to pick
1101 * the on-disk inode to be allocated.
1102 */
1103 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1104 ialloc_context, call_again, &ino);
1105 if (error != 0) {
1106 return error;
1107 }
1108 if (*call_again || ino == NULLFSINO) {
1109 *ipp = NULL;
1110 return 0;
1111 }
1112 ASSERT(*ialloc_context == NULL);
1113
1114 /*
1115 * Get the in-core inode with the lock held exclusively.
1116 * This is because we're setting fields here we need
1117 * to prevent others from looking at until we're done.
1118 */
1119 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1120 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1da177e4
LT
1121 if (error != 0) {
1122 return error;
1123 }
1124 ASSERT(ip != NULL);
1125
1126 vp = XFS_ITOV(ip);
1da177e4
LT
1127 ip->i_d.di_mode = (__uint16_t)mode;
1128 ip->i_d.di_onlink = 0;
1129 ip->i_d.di_nlink = nlink;
1130 ASSERT(ip->i_d.di_nlink == nlink);
1131 ip->i_d.di_uid = current_fsuid(cr);
1132 ip->i_d.di_gid = current_fsgid(cr);
1133 ip->i_d.di_projid = prid;
1134 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1135
1136 /*
1137 * If the superblock version is up to where we support new format
1138 * inodes and this is currently an old format inode, then change
1139 * the inode version number now. This way we only do the conversion
1140 * here rather than here and in the flush/logging code.
1141 */
1142 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1143 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1144 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1145 /*
1146 * We've already zeroed the old link count, the projid field,
1147 * and the pad field.
1148 */
1149 }
1150
1151 /*
1152 * Project ids won't be stored on disk if we are using a version 1 inode.
1153 */
1154 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1155 xfs_bump_ino_vers2(tp, ip);
1156
1157 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1158 ip->i_d.di_gid = pip->i_d.di_gid;
1159 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1160 ip->i_d.di_mode |= S_ISGID;
1161 }
1162 }
1163
1164 /*
1165 * If the group ID of the new file does not match the effective group
1166 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1167 * (and only if the irix_sgid_inherit compatibility variable is set).
1168 */
1169 if ((irix_sgid_inherit) &&
1170 (ip->i_d.di_mode & S_ISGID) &&
1171 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1172 ip->i_d.di_mode &= ~S_ISGID;
1173 }
1174
1175 ip->i_d.di_size = 0;
ba87ea69 1176 ip->i_size = 0;
1da177e4
LT
1177 ip->i_d.di_nextents = 0;
1178 ASSERT(ip->i_d.di_nblocks == 0);
1179 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1180 /*
1181 * di_gen will have been taken care of in xfs_iread.
1182 */
1183 ip->i_d.di_extsize = 0;
1184 ip->i_d.di_dmevmask = 0;
1185 ip->i_d.di_dmstate = 0;
1186 ip->i_d.di_flags = 0;
1187 flags = XFS_ILOG_CORE;
1188 switch (mode & S_IFMT) {
1189 case S_IFIFO:
1190 case S_IFCHR:
1191 case S_IFBLK:
1192 case S_IFSOCK:
1193 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1194 ip->i_df.if_u2.if_rdev = rdev;
1195 ip->i_df.if_flags = 0;
1196 flags |= XFS_ILOG_DEV;
1197 break;
1198 case S_IFREG:
1199 case S_IFDIR:
1200 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1201 uint di_flags = 0;
1202
1203 if ((mode & S_IFMT) == S_IFDIR) {
1204 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1205 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1206 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1207 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1208 ip->i_d.di_extsize = pip->i_d.di_extsize;
1209 }
1210 } else if ((mode & S_IFMT) == S_IFREG) {
365ca83d
NS
1211 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1212 di_flags |= XFS_DIFLAG_REALTIME;
1da177e4
LT
1213 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1214 }
dd9f438e
NS
1215 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1216 di_flags |= XFS_DIFLAG_EXTSIZE;
1217 ip->i_d.di_extsize = pip->i_d.di_extsize;
1218 }
1da177e4
LT
1219 }
1220 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1221 xfs_inherit_noatime)
365ca83d 1222 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1223 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1224 xfs_inherit_nodump)
365ca83d 1225 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1226 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1227 xfs_inherit_sync)
365ca83d 1228 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1229 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1230 xfs_inherit_nosymlinks)
365ca83d
NS
1231 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1232 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1233 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1234 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1235 xfs_inherit_nodefrag)
1236 di_flags |= XFS_DIFLAG_NODEFRAG;
365ca83d 1237 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1238 }
1239 /* FALLTHROUGH */
1240 case S_IFLNK:
1241 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1242 ip->i_df.if_flags = XFS_IFEXTENTS;
1243 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1244 ip->i_df.if_u1.if_extents = NULL;
1245 break;
1246 default:
1247 ASSERT(0);
1248 }
1249 /*
1250 * Attribute fork settings for new inode.
1251 */
1252 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1253 ip->i_d.di_anextents = 0;
1254
1255 /*
1256 * Log the new values stuffed into the inode.
1257 */
1258 xfs_trans_log_inode(tp, ip, flags);
1259
b83bd138
NS
1260 /* now that we have an i_mode we can setup inode ops and unlock */
1261 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1da177e4
LT
1262
1263 *ipp = ip;
1264 return 0;
1265}
1266
1267/*
1268 * Check to make sure that there are no blocks allocated to the
1269 * file beyond the size of the file. We don't check this for
1270 * files with fixed size extents or real time extents, but we
1271 * at least do it for regular files.
1272 */
1273#ifdef DEBUG
1274void
1275xfs_isize_check(
1276 xfs_mount_t *mp,
1277 xfs_inode_t *ip,
1278 xfs_fsize_t isize)
1279{
1280 xfs_fileoff_t map_first;
1281 int nimaps;
1282 xfs_bmbt_irec_t imaps[2];
1283
1284 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1285 return;
1286
dd9f438e 1287 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1da177e4
LT
1288 return;
1289
1290 nimaps = 2;
1291 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1292 /*
1293 * The filesystem could be shutting down, so bmapi may return
1294 * an error.
1295 */
1296 if (xfs_bmapi(NULL, ip, map_first,
1297 (XFS_B_TO_FSB(mp,
1298 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1299 map_first),
1300 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1301 NULL, NULL))
1da177e4
LT
1302 return;
1303 ASSERT(nimaps == 1);
1304 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1305}
1306#endif /* DEBUG */
1307
1308/*
1309 * Calculate the last possible buffered byte in a file. This must
1310 * include data that was buffered beyond the EOF by the write code.
1311 * This also needs to deal with overflowing the xfs_fsize_t type
1312 * which can happen for sizes near the limit.
1313 *
1314 * We also need to take into account any blocks beyond the EOF. It
1315 * may be the case that they were buffered by a write which failed.
1316 * In that case the pages will still be in memory, but the inode size
1317 * will never have been updated.
1318 */
1319xfs_fsize_t
1320xfs_file_last_byte(
1321 xfs_inode_t *ip)
1322{
1323 xfs_mount_t *mp;
1324 xfs_fsize_t last_byte;
1325 xfs_fileoff_t last_block;
1326 xfs_fileoff_t size_last_block;
1327 int error;
1328
1329 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1330
1331 mp = ip->i_mount;
1332 /*
1333 * Only check for blocks beyond the EOF if the extents have
1334 * been read in. This eliminates the need for the inode lock,
1335 * and it also saves us from looking when it really isn't
1336 * necessary.
1337 */
1338 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1339 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1340 XFS_DATA_FORK);
1341 if (error) {
1342 last_block = 0;
1343 }
1344 } else {
1345 last_block = 0;
1346 }
ba87ea69 1347 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1348 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1349
1350 last_byte = XFS_FSB_TO_B(mp, last_block);
1351 if (last_byte < 0) {
1352 return XFS_MAXIOFFSET(mp);
1353 }
1354 last_byte += (1 << mp->m_writeio_log);
1355 if (last_byte < 0) {
1356 return XFS_MAXIOFFSET(mp);
1357 }
1358 return last_byte;
1359}
1360
1361#if defined(XFS_RW_TRACE)
1362STATIC void
1363xfs_itrunc_trace(
1364 int tag,
1365 xfs_inode_t *ip,
1366 int flag,
1367 xfs_fsize_t new_size,
1368 xfs_off_t toss_start,
1369 xfs_off_t toss_finish)
1370{
1371 if (ip->i_rwtrace == NULL) {
1372 return;
1373 }
1374
1375 ktrace_enter(ip->i_rwtrace,
1376 (void*)((long)tag),
1377 (void*)ip,
1378 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1379 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1380 (void*)((long)flag),
1381 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1382 (void*)(unsigned long)(new_size & 0xffffffff),
1383 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1384 (void*)(unsigned long)(toss_start & 0xffffffff),
1385 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1386 (void*)(unsigned long)(toss_finish & 0xffffffff),
1387 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1388 (void*)(unsigned long)current_pid(),
1389 (void*)NULL,
1390 (void*)NULL,
1391 (void*)NULL);
1da177e4
LT
1392}
1393#else
1394#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1395#endif
1396
1397/*
1398 * Start the truncation of the file to new_size. The new size
1399 * must be smaller than the current size. This routine will
1400 * clear the buffer and page caches of file data in the removed
1401 * range, and xfs_itruncate_finish() will remove the underlying
1402 * disk blocks.
1403 *
1404 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1405 * must NOT have the inode lock held at all. This is because we're
1406 * calling into the buffer/page cache code and we can't hold the
1407 * inode lock when we do so.
1408 *
38e2299a
DC
1409 * We need to wait for any direct I/Os in flight to complete before we
1410 * proceed with the truncate. This is needed to prevent the extents
1411 * being read or written by the direct I/Os from being removed while the
1412 * I/O is in flight as there is no other method of synchronising
1413 * direct I/O with the truncate operation. Also, because we hold
1414 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1415 * started until the truncate completes and drops the lock. Essentially,
1416 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1417 * between direct I/Os and the truncate operation.
1418 *
1da177e4
LT
1419 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1420 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1421 * in the case that the caller is locking things out of order and
1422 * may not be able to call xfs_itruncate_finish() with the inode lock
1423 * held without dropping the I/O lock. If the caller must drop the
1424 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1425 * must be called again with all the same restrictions as the initial
1426 * call.
1427 */
d3cf2094 1428int
1da177e4
LT
1429xfs_itruncate_start(
1430 xfs_inode_t *ip,
1431 uint flags,
1432 xfs_fsize_t new_size)
1433{
1434 xfs_fsize_t last_byte;
1435 xfs_off_t toss_start;
1436 xfs_mount_t *mp;
67fcaa73 1437 bhv_vnode_t *vp;
d3cf2094 1438 int error = 0;
1da177e4
LT
1439
1440 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
ba87ea69 1441 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1442 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1443 (flags == XFS_ITRUNC_MAYBE));
1444
1445 mp = ip->i_mount;
1446 vp = XFS_ITOV(ip);
9fa8046f
YL
1447
1448 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1449
1da177e4 1450 /*
67fcaa73 1451 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1452 * overlapping the region being removed. We have to use
67fcaa73 1453 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1454 * caller may not be able to finish the truncate without
1455 * dropping the inode's I/O lock. Make sure
1456 * to catch any pages brought in by buffers overlapping
1457 * the EOF by searching out beyond the isize by our
1458 * block size. We round new_size up to a block boundary
1459 * so that we don't toss things on the same block as
1460 * new_size but before it.
1461 *
67fcaa73 1462 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1463 * call remapf() over the same region if the file is mapped.
1464 * This frees up mapped file references to the pages in the
67fcaa73 1465 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1466 * that we get the latest mapped changes flushed out.
1467 */
1468 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1469 toss_start = XFS_FSB_TO_B(mp, toss_start);
1470 if (toss_start < 0) {
1471 /*
1472 * The place to start tossing is beyond our maximum
1473 * file size, so there is no way that the data extended
1474 * out there.
1475 */
d3cf2094 1476 return 0;
1da177e4
LT
1477 }
1478 last_byte = xfs_file_last_byte(ip);
1479 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1480 last_byte);
1481 if (last_byte > toss_start) {
1482 if (flags & XFS_ITRUNC_DEFINITE) {
67fcaa73 1483 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1da177e4 1484 } else {
d3cf2094 1485 error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1da177e4
LT
1486 }
1487 }
1488
1489#ifdef DEBUG
1490 if (new_size == 0) {
1491 ASSERT(VN_CACHED(vp) == 0);
1492 }
1493#endif
d3cf2094 1494 return error;
1da177e4
LT
1495}
1496
1497/*
1498 * Shrink the file to the given new_size. The new
1499 * size must be smaller than the current size.
1500 * This will free up the underlying blocks
1501 * in the removed range after a call to xfs_itruncate_start()
1502 * or xfs_atruncate_start().
1503 *
1504 * The transaction passed to this routine must have made
1505 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1506 * This routine may commit the given transaction and
1507 * start new ones, so make sure everything involved in
1508 * the transaction is tidy before calling here.
1509 * Some transaction will be returned to the caller to be
1510 * committed. The incoming transaction must already include
1511 * the inode, and both inode locks must be held exclusively.
1512 * The inode must also be "held" within the transaction. On
1513 * return the inode will be "held" within the returned transaction.
1514 * This routine does NOT require any disk space to be reserved
1515 * for it within the transaction.
1516 *
1517 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1518 * and it indicates the fork which is to be truncated. For the
1519 * attribute fork we only support truncation to size 0.
1520 *
1521 * We use the sync parameter to indicate whether or not the first
1522 * transaction we perform might have to be synchronous. For the attr fork,
1523 * it needs to be so if the unlink of the inode is not yet known to be
1524 * permanent in the log. This keeps us from freeing and reusing the
1525 * blocks of the attribute fork before the unlink of the inode becomes
1526 * permanent.
1527 *
1528 * For the data fork, we normally have to run synchronously if we're
1529 * being called out of the inactive path or we're being called
1530 * out of the create path where we're truncating an existing file.
1531 * Either way, the truncate needs to be sync so blocks don't reappear
1532 * in the file with altered data in case of a crash. wsync filesystems
1533 * can run the first case async because anything that shrinks the inode
1534 * has to run sync so by the time we're called here from inactive, the
1535 * inode size is permanently set to 0.
1536 *
1537 * Calls from the truncate path always need to be sync unless we're
1538 * in a wsync filesystem and the file has already been unlinked.
1539 *
1540 * The caller is responsible for correctly setting the sync parameter.
1541 * It gets too hard for us to guess here which path we're being called
1542 * out of just based on inode state.
1543 */
1544int
1545xfs_itruncate_finish(
1546 xfs_trans_t **tp,
1547 xfs_inode_t *ip,
1548 xfs_fsize_t new_size,
1549 int fork,
1550 int sync)
1551{
1552 xfs_fsblock_t first_block;
1553 xfs_fileoff_t first_unmap_block;
1554 xfs_fileoff_t last_block;
1555 xfs_filblks_t unmap_len=0;
1556 xfs_mount_t *mp;
1557 xfs_trans_t *ntp;
1558 int done;
1559 int committed;
1560 xfs_bmap_free_t free_list;
1561 int error;
1562
1563 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1564 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
ba87ea69 1565 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1566 ASSERT(*tp != NULL);
1567 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1568 ASSERT(ip->i_transp == *tp);
1569 ASSERT(ip->i_itemp != NULL);
1570 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1571
1572
1573 ntp = *tp;
1574 mp = (ntp)->t_mountp;
1575 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1576
1577 /*
1578 * We only support truncating the entire attribute fork.
1579 */
1580 if (fork == XFS_ATTR_FORK) {
1581 new_size = 0LL;
1582 }
1583 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1584 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1585 /*
1586 * The first thing we do is set the size to new_size permanently
1587 * on disk. This way we don't have to worry about anyone ever
1588 * being able to look at the data being freed even in the face
1589 * of a crash. What we're getting around here is the case where
1590 * we free a block, it is allocated to another file, it is written
1591 * to, and then we crash. If the new data gets written to the
1592 * file but the log buffers containing the free and reallocation
1593 * don't, then we'd end up with garbage in the blocks being freed.
1594 * As long as we make the new_size permanent before actually
1595 * freeing any blocks it doesn't matter if they get writtten to.
1596 *
1597 * The callers must signal into us whether or not the size
1598 * setting here must be synchronous. There are a few cases
1599 * where it doesn't have to be synchronous. Those cases
1600 * occur if the file is unlinked and we know the unlink is
1601 * permanent or if the blocks being truncated are guaranteed
1602 * to be beyond the inode eof (regardless of the link count)
1603 * and the eof value is permanent. Both of these cases occur
1604 * only on wsync-mounted filesystems. In those cases, we're
1605 * guaranteed that no user will ever see the data in the blocks
1606 * that are being truncated so the truncate can run async.
1607 * In the free beyond eof case, the file may wind up with
1608 * more blocks allocated to it than it needs if we crash
1609 * and that won't get fixed until the next time the file
1610 * is re-opened and closed but that's ok as that shouldn't
1611 * be too many blocks.
1612 *
1613 * However, we can't just make all wsync xactions run async
1614 * because there's one call out of the create path that needs
1615 * to run sync where it's truncating an existing file to size
1616 * 0 whose size is > 0.
1617 *
1618 * It's probably possible to come up with a test in this
1619 * routine that would correctly distinguish all the above
1620 * cases from the values of the function parameters and the
1621 * inode state but for sanity's sake, I've decided to let the
1622 * layers above just tell us. It's simpler to correctly figure
1623 * out in the layer above exactly under what conditions we
1624 * can run async and I think it's easier for others read and
1625 * follow the logic in case something has to be changed.
1626 * cscope is your friend -- rcc.
1627 *
1628 * The attribute fork is much simpler.
1629 *
1630 * For the attribute fork we allow the caller to tell us whether
1631 * the unlink of the inode that led to this call is yet permanent
1632 * in the on disk log. If it is not and we will be freeing extents
1633 * in this inode then we make the first transaction synchronous
1634 * to make sure that the unlink is permanent by the time we free
1635 * the blocks.
1636 */
1637 if (fork == XFS_DATA_FORK) {
1638 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1639 /*
1640 * If we are not changing the file size then do
1641 * not update the on-disk file size - we may be
1642 * called from xfs_inactive_free_eofblocks(). If we
1643 * update the on-disk file size and then the system
1644 * crashes before the contents of the file are
1645 * flushed to disk then the files may be full of
1646 * holes (ie NULL files bug).
1647 */
1648 if (ip->i_size != new_size) {
1649 ip->i_d.di_size = new_size;
1650 ip->i_size = new_size;
1651 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1652 }
1da177e4
LT
1653 }
1654 } else if (sync) {
1655 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1656 if (ip->i_d.di_anextents > 0)
1657 xfs_trans_set_sync(ntp);
1658 }
1659 ASSERT(fork == XFS_DATA_FORK ||
1660 (fork == XFS_ATTR_FORK &&
1661 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1662 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1663
1664 /*
1665 * Since it is possible for space to become allocated beyond
1666 * the end of the file (in a crash where the space is allocated
1667 * but the inode size is not yet updated), simply remove any
1668 * blocks which show up between the new EOF and the maximum
1669 * possible file size. If the first block to be removed is
1670 * beyond the maximum file size (ie it is the same as last_block),
1671 * then there is nothing to do.
1672 */
1673 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1674 ASSERT(first_unmap_block <= last_block);
1675 done = 0;
1676 if (last_block == first_unmap_block) {
1677 done = 1;
1678 } else {
1679 unmap_len = last_block - first_unmap_block + 1;
1680 }
1681 while (!done) {
1682 /*
1683 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1684 * will tell us whether it freed the entire range or
1685 * not. If this is a synchronous mount (wsync),
1686 * then we can tell bunmapi to keep all the
1687 * transactions asynchronous since the unlink
1688 * transaction that made this inode inactive has
1689 * already hit the disk. There's no danger of
1690 * the freed blocks being reused, there being a
1691 * crash, and the reused blocks suddenly reappearing
1692 * in this file with garbage in them once recovery
1693 * runs.
1694 */
1695 XFS_BMAP_INIT(&free_list, &first_block);
3e57ecf6
OW
1696 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1697 first_unmap_block, unmap_len,
1da177e4
LT
1698 XFS_BMAPI_AFLAG(fork) |
1699 (sync ? 0 : XFS_BMAPI_ASYNC),
1700 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1701 &first_block, &free_list,
1702 NULL, &done);
1da177e4
LT
1703 if (error) {
1704 /*
1705 * If the bunmapi call encounters an error,
1706 * return to the caller where the transaction
1707 * can be properly aborted. We just need to
1708 * make sure we're not holding any resources
1709 * that we were not when we came in.
1710 */
1711 xfs_bmap_cancel(&free_list);
1712 return error;
1713 }
1714
1715 /*
1716 * Duplicate the transaction that has the permanent
1717 * reservation and commit the old transaction.
1718 */
f7c99b6f 1719 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4
LT
1720 ntp = *tp;
1721 if (error) {
1722 /*
1723 * If the bmap finish call encounters an error,
1724 * return to the caller where the transaction
1725 * can be properly aborted. We just need to
1726 * make sure we're not holding any resources
1727 * that we were not when we came in.
1728 *
1729 * Aborting from this point might lose some
1730 * blocks in the file system, but oh well.
1731 */
1732 xfs_bmap_cancel(&free_list);
1733 if (committed) {
1734 /*
1735 * If the passed in transaction committed
1736 * in xfs_bmap_finish(), then we want to
1737 * add the inode to this one before returning.
1738 * This keeps things simple for the higher
1739 * level code, because it always knows that
1740 * the inode is locked and held in the
1741 * transaction that returns to it whether
1742 * errors occur or not. We don't mark the
1743 * inode dirty so that this transaction can
1744 * be easily aborted if possible.
1745 */
1746 xfs_trans_ijoin(ntp, ip,
1747 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1748 xfs_trans_ihold(ntp, ip);
1749 }
1750 return error;
1751 }
1752
1753 if (committed) {
1754 /*
1755 * The first xact was committed,
1756 * so add the inode to the new one.
1757 * Mark it dirty so it will be logged
1758 * and moved forward in the log as
1759 * part of every commit.
1760 */
1761 xfs_trans_ijoin(ntp, ip,
1762 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1763 xfs_trans_ihold(ntp, ip);
1764 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1765 }
1766 ntp = xfs_trans_dup(ntp);
1c72bf90 1767 (void) xfs_trans_commit(*tp, 0);
1da177e4
LT
1768 *tp = ntp;
1769 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1770 XFS_TRANS_PERM_LOG_RES,
1771 XFS_ITRUNCATE_LOG_COUNT);
1772 /*
1773 * Add the inode being truncated to the next chained
1774 * transaction.
1775 */
1776 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1777 xfs_trans_ihold(ntp, ip);
1778 if (error)
1779 return (error);
1780 }
1781 /*
1782 * Only update the size in the case of the data fork, but
1783 * always re-log the inode so that our permanent transaction
1784 * can keep on rolling it forward in the log.
1785 */
1786 if (fork == XFS_DATA_FORK) {
1787 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1788 /*
1789 * If we are not changing the file size then do
1790 * not update the on-disk file size - we may be
1791 * called from xfs_inactive_free_eofblocks(). If we
1792 * update the on-disk file size and then the system
1793 * crashes before the contents of the file are
1794 * flushed to disk then the files may be full of
1795 * holes (ie NULL files bug).
1796 */
1797 if (ip->i_size != new_size) {
1798 ip->i_d.di_size = new_size;
1799 ip->i_size = new_size;
1800 }
1da177e4
LT
1801 }
1802 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1803 ASSERT((new_size != 0) ||
1804 (fork == XFS_ATTR_FORK) ||
1805 (ip->i_delayed_blks == 0));
1806 ASSERT((new_size != 0) ||
1807 (fork == XFS_ATTR_FORK) ||
1808 (ip->i_d.di_nextents == 0));
1809 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1810 return 0;
1811}
1812
1813
1814/*
1815 * xfs_igrow_start
1816 *
1817 * Do the first part of growing a file: zero any data in the last
1818 * block that is beyond the old EOF. We need to do this before
1819 * the inode is joined to the transaction to modify the i_size.
1820 * That way we can drop the inode lock and call into the buffer
1821 * cache to get the buffer mapping the EOF.
1822 */
1823int
1824xfs_igrow_start(
1825 xfs_inode_t *ip,
1826 xfs_fsize_t new_size,
1827 cred_t *credp)
1828{
1da177e4
LT
1829 int error;
1830
1831 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1832 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
ba87ea69 1833 ASSERT(new_size > ip->i_size);
1da177e4 1834
1da177e4
LT
1835 /*
1836 * Zero any pages that may have been created by
1837 * xfs_write_file() beyond the end of the file
1838 * and any blocks between the old and new file sizes.
1839 */
24ee8088 1840 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
ba87ea69 1841 ip->i_size);
1da177e4
LT
1842 return error;
1843}
1844
1845/*
1846 * xfs_igrow_finish
1847 *
1848 * This routine is called to extend the size of a file.
1849 * The inode must have both the iolock and the ilock locked
1850 * for update and it must be a part of the current transaction.
1851 * The xfs_igrow_start() function must have been called previously.
1852 * If the change_flag is not zero, the inode change timestamp will
1853 * be updated.
1854 */
1855void
1856xfs_igrow_finish(
1857 xfs_trans_t *tp,
1858 xfs_inode_t *ip,
1859 xfs_fsize_t new_size,
1860 int change_flag)
1861{
1862 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1863 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1864 ASSERT(ip->i_transp == tp);
ba87ea69 1865 ASSERT(new_size > ip->i_size);
1da177e4
LT
1866
1867 /*
1868 * Update the file size. Update the inode change timestamp
1869 * if change_flag set.
1870 */
1871 ip->i_d.di_size = new_size;
ba87ea69 1872 ip->i_size = new_size;
1da177e4
LT
1873 if (change_flag)
1874 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1875 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1876
1877}
1878
1879
1880/*
1881 * This is called when the inode's link count goes to 0.
1882 * We place the on-disk inode on a list in the AGI. It
1883 * will be pulled from this list when the inode is freed.
1884 */
1885int
1886xfs_iunlink(
1887 xfs_trans_t *tp,
1888 xfs_inode_t *ip)
1889{
1890 xfs_mount_t *mp;
1891 xfs_agi_t *agi;
1892 xfs_dinode_t *dip;
1893 xfs_buf_t *agibp;
1894 xfs_buf_t *ibp;
1895 xfs_agnumber_t agno;
1896 xfs_daddr_t agdaddr;
1897 xfs_agino_t agino;
1898 short bucket_index;
1899 int offset;
1900 int error;
1901 int agi_ok;
1902
1903 ASSERT(ip->i_d.di_nlink == 0);
1904 ASSERT(ip->i_d.di_mode != 0);
1905 ASSERT(ip->i_transp == tp);
1906
1907 mp = tp->t_mountp;
1908
1909 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1910 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1911
1912 /*
1913 * Get the agi buffer first. It ensures lock ordering
1914 * on the list.
1915 */
1916 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1917 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1918 if (error) {
1919 return error;
1920 }
1921 /*
1922 * Validate the magic number of the agi block.
1923 */
1924 agi = XFS_BUF_TO_AGI(agibp);
1925 agi_ok =
16259e7d
CH
1926 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1927 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1928 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1929 XFS_RANDOM_IUNLINK))) {
1930 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1931 xfs_trans_brelse(tp, agibp);
1932 return XFS_ERROR(EFSCORRUPTED);
1933 }
1934 /*
1935 * Get the index into the agi hash table for the
1936 * list this inode will go on.
1937 */
1938 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1939 ASSERT(agino != 0);
1940 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1941 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1942 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1943
16259e7d 1944 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1945 /*
1946 * There is already another inode in the bucket we need
1947 * to add ourselves to. Add us at the front of the list.
1948 * Here we put the head pointer into our next pointer,
1949 * and then we fall through to point the head at us.
1950 */
b12dd342 1951 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
1952 if (error) {
1953 return error;
1954 }
1955 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1956 ASSERT(dip->di_next_unlinked);
1957 /* both on-disk, don't endian flip twice */
1958 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1959 offset = ip->i_boffset +
1960 offsetof(xfs_dinode_t, di_next_unlinked);
1961 xfs_trans_inode_buf(tp, ibp);
1962 xfs_trans_log_buf(tp, ibp, offset,
1963 (offset + sizeof(xfs_agino_t) - 1));
1964 xfs_inobp_check(mp, ibp);
1965 }
1966
1967 /*
1968 * Point the bucket head pointer at the inode being inserted.
1969 */
1970 ASSERT(agino != 0);
16259e7d 1971 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1972 offset = offsetof(xfs_agi_t, agi_unlinked) +
1973 (sizeof(xfs_agino_t) * bucket_index);
1974 xfs_trans_log_buf(tp, agibp, offset,
1975 (offset + sizeof(xfs_agino_t) - 1));
1976 return 0;
1977}
1978
1979/*
1980 * Pull the on-disk inode from the AGI unlinked list.
1981 */
1982STATIC int
1983xfs_iunlink_remove(
1984 xfs_trans_t *tp,
1985 xfs_inode_t *ip)
1986{
1987 xfs_ino_t next_ino;
1988 xfs_mount_t *mp;
1989 xfs_agi_t *agi;
1990 xfs_dinode_t *dip;
1991 xfs_buf_t *agibp;
1992 xfs_buf_t *ibp;
1993 xfs_agnumber_t agno;
1994 xfs_daddr_t agdaddr;
1995 xfs_agino_t agino;
1996 xfs_agino_t next_agino;
1997 xfs_buf_t *last_ibp;
6fdf8ccc 1998 xfs_dinode_t *last_dip = NULL;
1da177e4 1999 short bucket_index;
6fdf8ccc 2000 int offset, last_offset = 0;
1da177e4
LT
2001 int error;
2002 int agi_ok;
2003
2004 /*
2005 * First pull the on-disk inode from the AGI unlinked list.
2006 */
2007 mp = tp->t_mountp;
2008
2009 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2010 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2011
2012 /*
2013 * Get the agi buffer first. It ensures lock ordering
2014 * on the list.
2015 */
2016 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2017 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2018 if (error) {
2019 cmn_err(CE_WARN,
2020 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2021 error, mp->m_fsname);
2022 return error;
2023 }
2024 /*
2025 * Validate the magic number of the agi block.
2026 */
2027 agi = XFS_BUF_TO_AGI(agibp);
2028 agi_ok =
16259e7d
CH
2029 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2030 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
2031 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2032 XFS_RANDOM_IUNLINK_REMOVE))) {
2033 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2034 mp, agi);
2035 xfs_trans_brelse(tp, agibp);
2036 cmn_err(CE_WARN,
2037 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2038 mp->m_fsname);
2039 return XFS_ERROR(EFSCORRUPTED);
2040 }
2041 /*
2042 * Get the index into the agi hash table for the
2043 * list this inode will go on.
2044 */
2045 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2046 ASSERT(agino != 0);
2047 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 2048 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
2049 ASSERT(agi->agi_unlinked[bucket_index]);
2050
16259e7d 2051 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
2052 /*
2053 * We're at the head of the list. Get the inode's
2054 * on-disk buffer to see if there is anyone after us
2055 * on the list. Only modify our next pointer if it
2056 * is not already NULLAGINO. This saves us the overhead
2057 * of dealing with the buffer when there is no need to
2058 * change it.
2059 */
b12dd342 2060 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2061 if (error) {
2062 cmn_err(CE_WARN,
2063 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2064 error, mp->m_fsname);
2065 return error;
2066 }
2067 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2068 ASSERT(next_agino != 0);
2069 if (next_agino != NULLAGINO) {
2070 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2071 offset = ip->i_boffset +
2072 offsetof(xfs_dinode_t, di_next_unlinked);
2073 xfs_trans_inode_buf(tp, ibp);
2074 xfs_trans_log_buf(tp, ibp, offset,
2075 (offset + sizeof(xfs_agino_t) - 1));
2076 xfs_inobp_check(mp, ibp);
2077 } else {
2078 xfs_trans_brelse(tp, ibp);
2079 }
2080 /*
2081 * Point the bucket head pointer at the next inode.
2082 */
2083 ASSERT(next_agino != 0);
2084 ASSERT(next_agino != agino);
16259e7d 2085 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2086 offset = offsetof(xfs_agi_t, agi_unlinked) +
2087 (sizeof(xfs_agino_t) * bucket_index);
2088 xfs_trans_log_buf(tp, agibp, offset,
2089 (offset + sizeof(xfs_agino_t) - 1));
2090 } else {
2091 /*
2092 * We need to search the list for the inode being freed.
2093 */
16259e7d 2094 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2095 last_ibp = NULL;
2096 while (next_agino != agino) {
2097 /*
2098 * If the last inode wasn't the one pointing to
2099 * us, then release its buffer since we're not
2100 * going to do anything with it.
2101 */
2102 if (last_ibp != NULL) {
2103 xfs_trans_brelse(tp, last_ibp);
2104 }
2105 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2106 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2107 &last_ibp, &last_offset);
2108 if (error) {
2109 cmn_err(CE_WARN,
2110 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2111 error, mp->m_fsname);
2112 return error;
2113 }
2114 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2115 ASSERT(next_agino != NULLAGINO);
2116 ASSERT(next_agino != 0);
2117 }
2118 /*
2119 * Now last_ibp points to the buffer previous to us on
2120 * the unlinked list. Pull us from the list.
2121 */
b12dd342 2122 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2123 if (error) {
2124 cmn_err(CE_WARN,
2125 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2126 error, mp->m_fsname);
2127 return error;
2128 }
2129 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2130 ASSERT(next_agino != 0);
2131 ASSERT(next_agino != agino);
2132 if (next_agino != NULLAGINO) {
2133 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2134 offset = ip->i_boffset +
2135 offsetof(xfs_dinode_t, di_next_unlinked);
2136 xfs_trans_inode_buf(tp, ibp);
2137 xfs_trans_log_buf(tp, ibp, offset,
2138 (offset + sizeof(xfs_agino_t) - 1));
2139 xfs_inobp_check(mp, ibp);
2140 } else {
2141 xfs_trans_brelse(tp, ibp);
2142 }
2143 /*
2144 * Point the previous inode on the list to the next inode.
2145 */
2146 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2147 ASSERT(next_agino != 0);
2148 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2149 xfs_trans_inode_buf(tp, last_ibp);
2150 xfs_trans_log_buf(tp, last_ibp, offset,
2151 (offset + sizeof(xfs_agino_t) - 1));
2152 xfs_inobp_check(mp, last_ibp);
2153 }
2154 return 0;
2155}
2156
7989cb8e 2157STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
1da177e4
LT
2158{
2159 return (((ip->i_itemp == NULL) ||
2160 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2161 (ip->i_update_core == 0));
2162}
2163
ba0f32d4 2164STATIC void
1da177e4
LT
2165xfs_ifree_cluster(
2166 xfs_inode_t *free_ip,
2167 xfs_trans_t *tp,
2168 xfs_ino_t inum)
2169{
2170 xfs_mount_t *mp = free_ip->i_mount;
2171 int blks_per_cluster;
2172 int nbufs;
2173 int ninodes;
2174 int i, j, found, pre_flushed;
2175 xfs_daddr_t blkno;
2176 xfs_buf_t *bp;
2177 xfs_ihash_t *ih;
2178 xfs_inode_t *ip, **ip_found;
2179 xfs_inode_log_item_t *iip;
2180 xfs_log_item_t *lip;
2181 SPLDECL(s);
2182
2183 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2184 blks_per_cluster = 1;
2185 ninodes = mp->m_sb.sb_inopblock;
2186 nbufs = XFS_IALLOC_BLOCKS(mp);
2187 } else {
2188 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2189 mp->m_sb.sb_blocksize;
2190 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2191 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2192 }
2193
2194 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2195
2196 for (j = 0; j < nbufs; j++, inum += ninodes) {
2197 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2198 XFS_INO_TO_AGBNO(mp, inum));
2199
2200
2201 /*
2202 * Look for each inode in memory and attempt to lock it,
2203 * we can be racing with flush and tail pushing here.
2204 * any inode we get the locks on, add to an array of
2205 * inode items to process later.
2206 *
2207 * The get the buffer lock, we could beat a flush
2208 * or tail pushing thread to the lock here, in which
2209 * case they will go looking for the inode buffer
2210 * and fail, we need some other form of interlock
2211 * here.
2212 */
2213 found = 0;
2214 for (i = 0; i < ninodes; i++) {
2215 ih = XFS_IHASH(mp, inum + i);
2216 read_lock(&ih->ih_lock);
2217 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2218 if (ip->i_ino == inum + i)
2219 break;
2220 }
2221
2222 /* Inode not in memory or we found it already,
2223 * nothing to do
2224 */
7a18c386 2225 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
1da177e4
LT
2226 read_unlock(&ih->ih_lock);
2227 continue;
2228 }
2229
2230 if (xfs_inode_clean(ip)) {
2231 read_unlock(&ih->ih_lock);
2232 continue;
2233 }
2234
2235 /* If we can get the locks then add it to the
2236 * list, otherwise by the time we get the bp lock
2237 * below it will already be attached to the
2238 * inode buffer.
2239 */
2240
2241 /* This inode will already be locked - by us, lets
2242 * keep it that way.
2243 */
2244
2245 if (ip == free_ip) {
2246 if (xfs_iflock_nowait(ip)) {
7a18c386 2247 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2248 if (xfs_inode_clean(ip)) {
2249 xfs_ifunlock(ip);
2250 } else {
2251 ip_found[found++] = ip;
2252 }
2253 }
2254 read_unlock(&ih->ih_lock);
2255 continue;
2256 }
2257
2258 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2259 if (xfs_iflock_nowait(ip)) {
7a18c386 2260 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2261
2262 if (xfs_inode_clean(ip)) {
2263 xfs_ifunlock(ip);
2264 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2265 } else {
2266 ip_found[found++] = ip;
2267 }
2268 } else {
2269 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2270 }
2271 }
2272
2273 read_unlock(&ih->ih_lock);
2274 }
2275
2276 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2277 mp->m_bsize * blks_per_cluster,
2278 XFS_BUF_LOCK);
2279
2280 pre_flushed = 0;
2281 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2282 while (lip) {
2283 if (lip->li_type == XFS_LI_INODE) {
2284 iip = (xfs_inode_log_item_t *)lip;
2285 ASSERT(iip->ili_logged == 1);
2286 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2287 AIL_LOCK(mp,s);
2288 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2289 AIL_UNLOCK(mp, s);
e5ffd2bb 2290 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2291 pre_flushed++;
2292 }
2293 lip = lip->li_bio_list;
2294 }
2295
2296 for (i = 0; i < found; i++) {
2297 ip = ip_found[i];
2298 iip = ip->i_itemp;
2299
2300 if (!iip) {
2301 ip->i_update_core = 0;
2302 xfs_ifunlock(ip);
2303 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2304 continue;
2305 }
2306
2307 iip->ili_last_fields = iip->ili_format.ilf_fields;
2308 iip->ili_format.ilf_fields = 0;
2309 iip->ili_logged = 1;
2310 AIL_LOCK(mp,s);
2311 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2312 AIL_UNLOCK(mp, s);
2313
2314 xfs_buf_attach_iodone(bp,
2315 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2316 xfs_istale_done, (xfs_log_item_t *)iip);
2317 if (ip != free_ip) {
2318 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2319 }
2320 }
2321
2322 if (found || pre_flushed)
2323 xfs_trans_stale_inode_buf(tp, bp);
2324 xfs_trans_binval(tp, bp);
2325 }
2326
2327 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2328}
2329
2330/*
2331 * This is called to return an inode to the inode free list.
2332 * The inode should already be truncated to 0 length and have
2333 * no pages associated with it. This routine also assumes that
2334 * the inode is already a part of the transaction.
2335 *
2336 * The on-disk copy of the inode will have been added to the list
2337 * of unlinked inodes in the AGI. We need to remove the inode from
2338 * that list atomically with respect to freeing it here.
2339 */
2340int
2341xfs_ifree(
2342 xfs_trans_t *tp,
2343 xfs_inode_t *ip,
2344 xfs_bmap_free_t *flist)
2345{
2346 int error;
2347 int delete;
2348 xfs_ino_t first_ino;
2349
2350 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2351 ASSERT(ip->i_transp == tp);
2352 ASSERT(ip->i_d.di_nlink == 0);
2353 ASSERT(ip->i_d.di_nextents == 0);
2354 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2355 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2356 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2357 ASSERT(ip->i_d.di_nblocks == 0);
2358
2359 /*
2360 * Pull the on-disk inode from the AGI unlinked list.
2361 */
2362 error = xfs_iunlink_remove(tp, ip);
2363 if (error != 0) {
2364 return error;
2365 }
2366
2367 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2368 if (error != 0) {
2369 return error;
2370 }
2371 ip->i_d.di_mode = 0; /* mark incore inode as free */
2372 ip->i_d.di_flags = 0;
2373 ip->i_d.di_dmevmask = 0;
2374 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2375 ip->i_df.if_ext_max =
2376 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2377 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2378 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2379 /*
2380 * Bump the generation count so no one will be confused
2381 * by reincarnations of this inode.
2382 */
2383 ip->i_d.di_gen++;
2384 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2385
2386 if (delete) {
2387 xfs_ifree_cluster(ip, tp, first_ino);
2388 }
2389
2390 return 0;
2391}
2392
2393/*
2394 * Reallocate the space for if_broot based on the number of records
2395 * being added or deleted as indicated in rec_diff. Move the records
2396 * and pointers in if_broot to fit the new size. When shrinking this
2397 * will eliminate holes between the records and pointers created by
2398 * the caller. When growing this will create holes to be filled in
2399 * by the caller.
2400 *
2401 * The caller must not request to add more records than would fit in
2402 * the on-disk inode root. If the if_broot is currently NULL, then
2403 * if we adding records one will be allocated. The caller must also
2404 * not request that the number of records go below zero, although
2405 * it can go to zero.
2406 *
2407 * ip -- the inode whose if_broot area is changing
2408 * ext_diff -- the change in the number of records, positive or negative,
2409 * requested for the if_broot array.
2410 */
2411void
2412xfs_iroot_realloc(
2413 xfs_inode_t *ip,
2414 int rec_diff,
2415 int whichfork)
2416{
2417 int cur_max;
2418 xfs_ifork_t *ifp;
2419 xfs_bmbt_block_t *new_broot;
2420 int new_max;
2421 size_t new_size;
2422 char *np;
2423 char *op;
2424
2425 /*
2426 * Handle the degenerate case quietly.
2427 */
2428 if (rec_diff == 0) {
2429 return;
2430 }
2431
2432 ifp = XFS_IFORK_PTR(ip, whichfork);
2433 if (rec_diff > 0) {
2434 /*
2435 * If there wasn't any memory allocated before, just
2436 * allocate it now and get out.
2437 */
2438 if (ifp->if_broot_bytes == 0) {
2439 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2440 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2441 KM_SLEEP);
2442 ifp->if_broot_bytes = (int)new_size;
2443 return;
2444 }
2445
2446 /*
2447 * If there is already an existing if_broot, then we need
2448 * to realloc() it and shift the pointers to their new
2449 * location. The records don't change location because
2450 * they are kept butted up against the btree block header.
2451 */
2452 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2453 new_max = cur_max + rec_diff;
2454 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2455 ifp->if_broot = (xfs_bmbt_block_t *)
2456 kmem_realloc(ifp->if_broot,
2457 new_size,
2458 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2459 KM_SLEEP);
2460 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2461 ifp->if_broot_bytes);
2462 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2463 (int)new_size);
2464 ifp->if_broot_bytes = (int)new_size;
2465 ASSERT(ifp->if_broot_bytes <=
2466 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2467 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2468 return;
2469 }
2470
2471 /*
2472 * rec_diff is less than 0. In this case, we are shrinking the
2473 * if_broot buffer. It must already exist. If we go to zero
2474 * records, just get rid of the root and clear the status bit.
2475 */
2476 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2477 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2478 new_max = cur_max + rec_diff;
2479 ASSERT(new_max >= 0);
2480 if (new_max > 0)
2481 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2482 else
2483 new_size = 0;
2484 if (new_size > 0) {
2485 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2486 /*
2487 * First copy over the btree block header.
2488 */
2489 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2490 } else {
2491 new_broot = NULL;
2492 ifp->if_flags &= ~XFS_IFBROOT;
2493 }
2494
2495 /*
2496 * Only copy the records and pointers if there are any.
2497 */
2498 if (new_max > 0) {
2499 /*
2500 * First copy the records.
2501 */
2502 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2503 ifp->if_broot_bytes);
2504 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2505 (int)new_size);
2506 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2507
2508 /*
2509 * Then copy the pointers.
2510 */
2511 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2512 ifp->if_broot_bytes);
2513 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2514 (int)new_size);
2515 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2516 }
2517 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2518 ifp->if_broot = new_broot;
2519 ifp->if_broot_bytes = (int)new_size;
2520 ASSERT(ifp->if_broot_bytes <=
2521 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2522 return;
2523}
2524
2525
1da177e4
LT
2526/*
2527 * This is called when the amount of space needed for if_data
2528 * is increased or decreased. The change in size is indicated by
2529 * the number of bytes that need to be added or deleted in the
2530 * byte_diff parameter.
2531 *
2532 * If the amount of space needed has decreased below the size of the
2533 * inline buffer, then switch to using the inline buffer. Otherwise,
2534 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2535 * to what is needed.
2536 *
2537 * ip -- the inode whose if_data area is changing
2538 * byte_diff -- the change in the number of bytes, positive or negative,
2539 * requested for the if_data array.
2540 */
2541void
2542xfs_idata_realloc(
2543 xfs_inode_t *ip,
2544 int byte_diff,
2545 int whichfork)
2546{
2547 xfs_ifork_t *ifp;
2548 int new_size;
2549 int real_size;
2550
2551 if (byte_diff == 0) {
2552 return;
2553 }
2554
2555 ifp = XFS_IFORK_PTR(ip, whichfork);
2556 new_size = (int)ifp->if_bytes + byte_diff;
2557 ASSERT(new_size >= 0);
2558
2559 if (new_size == 0) {
2560 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2561 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2562 }
2563 ifp->if_u1.if_data = NULL;
2564 real_size = 0;
2565 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2566 /*
2567 * If the valid extents/data can fit in if_inline_ext/data,
2568 * copy them from the malloc'd vector and free it.
2569 */
2570 if (ifp->if_u1.if_data == NULL) {
2571 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2572 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2573 ASSERT(ifp->if_real_bytes != 0);
2574 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2575 new_size);
2576 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2577 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2578 }
2579 real_size = 0;
2580 } else {
2581 /*
2582 * Stuck with malloc/realloc.
2583 * For inline data, the underlying buffer must be
2584 * a multiple of 4 bytes in size so that it can be
2585 * logged and stay on word boundaries. We enforce
2586 * that here.
2587 */
2588 real_size = roundup(new_size, 4);
2589 if (ifp->if_u1.if_data == NULL) {
2590 ASSERT(ifp->if_real_bytes == 0);
2591 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2592 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2593 /*
2594 * Only do the realloc if the underlying size
2595 * is really changing.
2596 */
2597 if (ifp->if_real_bytes != real_size) {
2598 ifp->if_u1.if_data =
2599 kmem_realloc(ifp->if_u1.if_data,
2600 real_size,
2601 ifp->if_real_bytes,
2602 KM_SLEEP);
2603 }
2604 } else {
2605 ASSERT(ifp->if_real_bytes == 0);
2606 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2607 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2608 ifp->if_bytes);
2609 }
2610 }
2611 ifp->if_real_bytes = real_size;
2612 ifp->if_bytes = new_size;
2613 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2614}
2615
2616
2617
2618
2619/*
2620 * Map inode to disk block and offset.
2621 *
2622 * mp -- the mount point structure for the current file system
2623 * tp -- the current transaction
2624 * ino -- the inode number of the inode to be located
2625 * imap -- this structure is filled in with the information necessary
2626 * to retrieve the given inode from disk
2627 * flags -- flags to pass to xfs_dilocate indicating whether or not
2628 * lookups in the inode btree were OK or not
2629 */
2630int
2631xfs_imap(
2632 xfs_mount_t *mp,
2633 xfs_trans_t *tp,
2634 xfs_ino_t ino,
2635 xfs_imap_t *imap,
2636 uint flags)
2637{
2638 xfs_fsblock_t fsbno;
2639 int len;
2640 int off;
2641 int error;
2642
2643 fsbno = imap->im_blkno ?
2644 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2645 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2646 if (error != 0) {
2647 return error;
2648 }
2649 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2650 imap->im_len = XFS_FSB_TO_BB(mp, len);
2651 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2652 imap->im_ioffset = (ushort)off;
2653 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2654 return 0;
2655}
2656
2657void
2658xfs_idestroy_fork(
2659 xfs_inode_t *ip,
2660 int whichfork)
2661{
2662 xfs_ifork_t *ifp;
2663
2664 ifp = XFS_IFORK_PTR(ip, whichfork);
2665 if (ifp->if_broot != NULL) {
2666 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2667 ifp->if_broot = NULL;
2668 }
2669
2670 /*
2671 * If the format is local, then we can't have an extents
2672 * array so just look for an inline data array. If we're
2673 * not local then we may or may not have an extents list,
2674 * so check and free it up if we do.
2675 */
2676 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2677 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2678 (ifp->if_u1.if_data != NULL)) {
2679 ASSERT(ifp->if_real_bytes != 0);
2680 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2681 ifp->if_u1.if_data = NULL;
2682 ifp->if_real_bytes = 0;
2683 }
2684 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2685 ((ifp->if_flags & XFS_IFEXTIREC) ||
2686 ((ifp->if_u1.if_extents != NULL) &&
2687 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2688 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2689 xfs_iext_destroy(ifp);
1da177e4
LT
2690 }
2691 ASSERT(ifp->if_u1.if_extents == NULL ||
2692 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2693 ASSERT(ifp->if_real_bytes == 0);
2694 if (whichfork == XFS_ATTR_FORK) {
2695 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2696 ip->i_afp = NULL;
2697 }
2698}
2699
2700/*
2701 * This is called free all the memory associated with an inode.
2702 * It must free the inode itself and any buffers allocated for
2703 * if_extents/if_data and if_broot. It must also free the lock
2704 * associated with the inode.
2705 */
2706void
2707xfs_idestroy(
2708 xfs_inode_t *ip)
2709{
2710
2711 switch (ip->i_d.di_mode & S_IFMT) {
2712 case S_IFREG:
2713 case S_IFDIR:
2714 case S_IFLNK:
2715 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2716 break;
2717 }
2718 if (ip->i_afp)
2719 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2720 mrfree(&ip->i_lock);
2721 mrfree(&ip->i_iolock);
2722 freesema(&ip->i_flock);
2723#ifdef XFS_BMAP_TRACE
2724 ktrace_free(ip->i_xtrace);
2725#endif
2726#ifdef XFS_BMBT_TRACE
2727 ktrace_free(ip->i_btrace);
2728#endif
2729#ifdef XFS_RW_TRACE
2730 ktrace_free(ip->i_rwtrace);
2731#endif
2732#ifdef XFS_ILOCK_TRACE
2733 ktrace_free(ip->i_lock_trace);
2734#endif
2735#ifdef XFS_DIR2_TRACE
2736 ktrace_free(ip->i_dir_trace);
2737#endif
2738 if (ip->i_itemp) {
f74eaf59
DC
2739 /*
2740 * Only if we are shutting down the fs will we see an
2741 * inode still in the AIL. If it is there, we should remove
2742 * it to prevent a use-after-free from occurring.
2743 */
2744 xfs_mount_t *mp = ip->i_mount;
2745 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2746 int s;
2747
2748 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2749 XFS_FORCED_SHUTDOWN(ip->i_mount));
2750 if (lip->li_flags & XFS_LI_IN_AIL) {
2751 AIL_LOCK(mp, s);
2752 if (lip->li_flags & XFS_LI_IN_AIL)
2753 xfs_trans_delete_ail(mp, lip, s);
2754 else
2755 AIL_UNLOCK(mp, s);
2756 }
1da177e4
LT
2757 xfs_inode_item_destroy(ip);
2758 }
2759 kmem_zone_free(xfs_inode_zone, ip);
2760}
2761
2762
2763/*
2764 * Increment the pin count of the given buffer.
2765 * This value is protected by ipinlock spinlock in the mount structure.
2766 */
2767void
2768xfs_ipin(
2769 xfs_inode_t *ip)
2770{
2771 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2772
2773 atomic_inc(&ip->i_pincount);
2774}
2775
2776/*
2777 * Decrement the pin count of the given inode, and wake up
2778 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2779 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2780 */
2781void
2782xfs_iunpin(
2783 xfs_inode_t *ip)
2784{
2785 ASSERT(atomic_read(&ip->i_pincount) > 0);
2786
4c60658e
DC
2787 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2788
58829e49 2789 /*
4c60658e
DC
2790 * If the inode is currently being reclaimed, the link between
2791 * the bhv_vnode and the xfs_inode will be broken after the
2792 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2793 * set, then we can move forward and mark the linux inode dirty
2794 * knowing that it is still valid as it won't freed until after
2795 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2796 * i_flags_lock is used to synchronise the setting of the
2797 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2798 * can execute atomically w.r.t to reclaim by holding this lock
2799 * here.
58829e49 2800 *
4c60658e
DC
2801 * However, we still need to issue the unpin wakeup call as the
2802 * inode reclaim may be blocked waiting for the inode to become
2803 * unpinned.
58829e49 2804 */
f273ab84 2805
7a18c386 2806 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
67fcaa73 2807 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
4c60658e
DC
2808 struct inode *inode = NULL;
2809
2810 BUG_ON(vp == NULL);
2811 inode = vn_to_inode(vp);
2812 BUG_ON(inode->i_state & I_CLEAR);
1da177e4 2813
58829e49 2814 /* make sync come back and flush this inode */
4c60658e
DC
2815 if (!(inode->i_state & (I_NEW|I_FREEING)))
2816 mark_inode_dirty_sync(inode);
1da177e4 2817 }
f273ab84 2818 spin_unlock(&ip->i_flags_lock);
1da177e4
LT
2819 wake_up(&ip->i_ipin_wait);
2820 }
2821}
2822
2823/*
2824 * This is called to wait for the given inode to be unpinned.
2825 * It will sleep until this happens. The caller must have the
2826 * inode locked in at least shared mode so that the buffer cannot
2827 * be subsequently pinned once someone is waiting for it to be
2828 * unpinned.
2829 */
ba0f32d4 2830STATIC void
1da177e4
LT
2831xfs_iunpin_wait(
2832 xfs_inode_t *ip)
2833{
2834 xfs_inode_log_item_t *iip;
2835 xfs_lsn_t lsn;
2836
2837 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2838
2839 if (atomic_read(&ip->i_pincount) == 0) {
2840 return;
2841 }
2842
2843 iip = ip->i_itemp;
2844 if (iip && iip->ili_last_lsn) {
2845 lsn = iip->ili_last_lsn;
2846 } else {
2847 lsn = (xfs_lsn_t)0;
2848 }
2849
2850 /*
2851 * Give the log a push so we don't wait here too long.
2852 */
2853 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2854
2855 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2856}
2857
2858
2859/*
2860 * xfs_iextents_copy()
2861 *
2862 * This is called to copy the REAL extents (as opposed to the delayed
2863 * allocation extents) from the inode into the given buffer. It
2864 * returns the number of bytes copied into the buffer.
2865 *
2866 * If there are no delayed allocation extents, then we can just
2867 * memcpy() the extents into the buffer. Otherwise, we need to
2868 * examine each extent in turn and skip those which are delayed.
2869 */
2870int
2871xfs_iextents_copy(
2872 xfs_inode_t *ip,
2873 xfs_bmbt_rec_t *buffer,
2874 int whichfork)
2875{
2876 int copied;
2877 xfs_bmbt_rec_t *dest_ep;
2878 xfs_bmbt_rec_t *ep;
2879#ifdef XFS_BMAP_TRACE
2880 static char fname[] = "xfs_iextents_copy";
2881#endif
2882 int i;
2883 xfs_ifork_t *ifp;
2884 int nrecs;
2885 xfs_fsblock_t start_block;
2886
2887 ifp = XFS_IFORK_PTR(ip, whichfork);
2888 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2889 ASSERT(ifp->if_bytes > 0);
2890
2891 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2892 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2893 ASSERT(nrecs > 0);
2894
2895 /*
2896 * There are some delayed allocation extents in the
2897 * inode, so copy the extents one at a time and skip
2898 * the delayed ones. There must be at least one
2899 * non-delayed extent.
2900 */
1da177e4
LT
2901 dest_ep = buffer;
2902 copied = 0;
2903 for (i = 0; i < nrecs; i++) {
4eea22f0 2904 ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2905 start_block = xfs_bmbt_get_startblock(ep);
2906 if (ISNULLSTARTBLOCK(start_block)) {
2907 /*
2908 * It's a delayed allocation extent, so skip it.
2909 */
1da177e4
LT
2910 continue;
2911 }
2912
2913 /* Translate to on disk format */
2914 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2915 (__uint64_t*)&dest_ep->l0);
2916 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2917 (__uint64_t*)&dest_ep->l1);
2918 dest_ep++;
1da177e4
LT
2919 copied++;
2920 }
2921 ASSERT(copied != 0);
4eea22f0 2922 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2923
2924 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2925}
2926
2927/*
2928 * Each of the following cases stores data into the same region
2929 * of the on-disk inode, so only one of them can be valid at
2930 * any given time. While it is possible to have conflicting formats
2931 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2932 * in EXTENTS format, this can only happen when the fork has
2933 * changed formats after being modified but before being flushed.
2934 * In these cases, the format always takes precedence, because the
2935 * format indicates the current state of the fork.
2936 */
2937/*ARGSUSED*/
2938STATIC int
2939xfs_iflush_fork(
2940 xfs_inode_t *ip,
2941 xfs_dinode_t *dip,
2942 xfs_inode_log_item_t *iip,
2943 int whichfork,
2944 xfs_buf_t *bp)
2945{
2946 char *cp;
2947 xfs_ifork_t *ifp;
2948 xfs_mount_t *mp;
2949#ifdef XFS_TRANS_DEBUG
2950 int first;
2951#endif
2952 static const short brootflag[2] =
2953 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2954 static const short dataflag[2] =
2955 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2956 static const short extflag[2] =
2957 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2958
2959 if (iip == NULL)
2960 return 0;
2961 ifp = XFS_IFORK_PTR(ip, whichfork);
2962 /*
2963 * This can happen if we gave up in iformat in an error path,
2964 * for the attribute fork.
2965 */
2966 if (ifp == NULL) {
2967 ASSERT(whichfork == XFS_ATTR_FORK);
2968 return 0;
2969 }
2970 cp = XFS_DFORK_PTR(dip, whichfork);
2971 mp = ip->i_mount;
2972 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2973 case XFS_DINODE_FMT_LOCAL:
2974 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2975 (ifp->if_bytes > 0)) {
2976 ASSERT(ifp->if_u1.if_data != NULL);
2977 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2978 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2979 }
1da177e4
LT
2980 break;
2981
2982 case XFS_DINODE_FMT_EXTENTS:
2983 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2984 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2985 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2986 (ifp->if_bytes == 0));
2987 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2988 (ifp->if_bytes > 0));
1da177e4
LT
2989 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2990 (ifp->if_bytes > 0)) {
2991 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2992 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2993 whichfork);
2994 }
2995 break;
2996
2997 case XFS_DINODE_FMT_BTREE:
2998 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2999 (ifp->if_broot_bytes > 0)) {
3000 ASSERT(ifp->if_broot != NULL);
3001 ASSERT(ifp->if_broot_bytes <=
3002 (XFS_IFORK_SIZE(ip, whichfork) +
3003 XFS_BROOT_SIZE_ADJ));
3004 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3005 (xfs_bmdr_block_t *)cp,
3006 XFS_DFORK_SIZE(dip, mp, whichfork));
3007 }
3008 break;
3009
3010 case XFS_DINODE_FMT_DEV:
3011 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3012 ASSERT(whichfork == XFS_DATA_FORK);
3013 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3014 }
3015 break;
3016
3017 case XFS_DINODE_FMT_UUID:
3018 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3019 ASSERT(whichfork == XFS_DATA_FORK);
3020 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3021 sizeof(uuid_t));
3022 }
3023 break;
3024
3025 default:
3026 ASSERT(0);
3027 break;
3028 }
3029
3030 return 0;
3031}
3032
3033/*
3034 * xfs_iflush() will write a modified inode's changes out to the
3035 * inode's on disk home. The caller must have the inode lock held
3036 * in at least shared mode and the inode flush semaphore must be
3037 * held as well. The inode lock will still be held upon return from
3038 * the call and the caller is free to unlock it.
3039 * The inode flush lock will be unlocked when the inode reaches the disk.
3040 * The flags indicate how the inode's buffer should be written out.
3041 */
3042int
3043xfs_iflush(
3044 xfs_inode_t *ip,
3045 uint flags)
3046{
3047 xfs_inode_log_item_t *iip;
3048 xfs_buf_t *bp;
3049 xfs_dinode_t *dip;
3050 xfs_mount_t *mp;
3051 int error;
3052 /* REFERENCED */
3053 xfs_chash_t *ch;
3054 xfs_inode_t *iq;
3055 int clcount; /* count of inodes clustered */
3056 int bufwasdelwri;
3057 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3058 SPLDECL(s);
3059
3060 XFS_STATS_INC(xs_iflush_count);
3061
3062 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3063 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3064 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3065 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3066
3067 iip = ip->i_itemp;
3068 mp = ip->i_mount;
3069
3070 /*
3071 * If the inode isn't dirty, then just release the inode
3072 * flush lock and do nothing.
3073 */
3074 if ((ip->i_update_core == 0) &&
3075 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3076 ASSERT((iip != NULL) ?
3077 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3078 xfs_ifunlock(ip);
3079 return 0;
3080 }
3081
3082 /*
3083 * We can't flush the inode until it is unpinned, so
3084 * wait for it. We know noone new can pin it, because
3085 * we are holding the inode lock shared and you need
3086 * to hold it exclusively to pin the inode.
3087 */
3088 xfs_iunpin_wait(ip);
3089
3090 /*
3091 * This may have been unpinned because the filesystem is shutting
3092 * down forcibly. If that's the case we must not write this inode
3093 * to disk, because the log record didn't make it to disk!
3094 */
3095 if (XFS_FORCED_SHUTDOWN(mp)) {
3096 ip->i_update_core = 0;
3097 if (iip)
3098 iip->ili_format.ilf_fields = 0;
3099 xfs_ifunlock(ip);
3100 return XFS_ERROR(EIO);
3101 }
3102
3103 /*
3104 * Get the buffer containing the on-disk inode.
3105 */
b12dd342
NS
3106 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3107 if (error) {
1da177e4
LT
3108 xfs_ifunlock(ip);
3109 return error;
3110 }
3111
3112 /*
3113 * Decide how buffer will be flushed out. This is done before
3114 * the call to xfs_iflush_int because this field is zeroed by it.
3115 */
3116 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3117 /*
3118 * Flush out the inode buffer according to the directions
3119 * of the caller. In the cases where the caller has given
3120 * us a choice choose the non-delwri case. This is because
3121 * the inode is in the AIL and we need to get it out soon.
3122 */
3123 switch (flags) {
3124 case XFS_IFLUSH_SYNC:
3125 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3126 flags = 0;
3127 break;
3128 case XFS_IFLUSH_ASYNC:
3129 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3130 flags = INT_ASYNC;
3131 break;
3132 case XFS_IFLUSH_DELWRI:
3133 flags = INT_DELWRI;
3134 break;
3135 default:
3136 ASSERT(0);
3137 flags = 0;
3138 break;
3139 }
3140 } else {
3141 switch (flags) {
3142 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3143 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3144 case XFS_IFLUSH_DELWRI:
3145 flags = INT_DELWRI;
3146 break;
3147 case XFS_IFLUSH_ASYNC:
3148 flags = INT_ASYNC;
3149 break;
3150 case XFS_IFLUSH_SYNC:
3151 flags = 0;
3152 break;
3153 default:
3154 ASSERT(0);
3155 flags = 0;
3156 break;
3157 }
3158 }
3159
3160 /*
3161 * First flush out the inode that xfs_iflush was called with.
3162 */
3163 error = xfs_iflush_int(ip, bp);
3164 if (error) {
3165 goto corrupt_out;
3166 }
3167
3168 /*
3169 * inode clustering:
3170 * see if other inodes can be gathered into this write
3171 */
3172
3173 ip->i_chash->chl_buf = bp;
3174
3175 ch = XFS_CHASH(mp, ip->i_blkno);
3176 s = mutex_spinlock(&ch->ch_lock);
3177
3178 clcount = 0;
3179 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3180 /*
3181 * Do an un-protected check to see if the inode is dirty and
3182 * is a candidate for flushing. These checks will be repeated
3183 * later after the appropriate locks are acquired.
3184 */
3185 iip = iq->i_itemp;
3186 if ((iq->i_update_core == 0) &&
3187 ((iip == NULL) ||
3188 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3189 xfs_ipincount(iq) == 0) {
3190 continue;
3191 }
3192
3193 /*
3194 * Try to get locks. If any are unavailable,
3195 * then this inode cannot be flushed and is skipped.
3196 */
3197
3198 /* get inode locks (just i_lock) */
3199 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3200 /* get inode flush lock */
3201 if (xfs_iflock_nowait(iq)) {
3202 /* check if pinned */
3203 if (xfs_ipincount(iq) == 0) {
3204 /* arriving here means that
3205 * this inode can be flushed.
3206 * first re-check that it's
3207 * dirty
3208 */
3209 iip = iq->i_itemp;
3210 if ((iq->i_update_core != 0)||
3211 ((iip != NULL) &&
3212 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3213 clcount++;
3214 error = xfs_iflush_int(iq, bp);
3215 if (error) {
3216 xfs_iunlock(iq,
3217 XFS_ILOCK_SHARED);
3218 goto cluster_corrupt_out;
3219 }
3220 } else {
3221 xfs_ifunlock(iq);
3222 }
3223 } else {
3224 xfs_ifunlock(iq);
3225 }
3226 }
3227 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3228 }
3229 }
3230 mutex_spinunlock(&ch->ch_lock, s);
3231
3232 if (clcount) {
3233 XFS_STATS_INC(xs_icluster_flushcnt);
3234 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3235 }
3236
3237 /*
3238 * If the buffer is pinned then push on the log so we won't
3239 * get stuck waiting in the write for too long.
3240 */
3241 if (XFS_BUF_ISPINNED(bp)){
3242 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3243 }
3244
3245 if (flags & INT_DELWRI) {
3246 xfs_bdwrite(mp, bp);
3247 } else if (flags & INT_ASYNC) {
3248 xfs_bawrite(mp, bp);
3249 } else {
3250 error = xfs_bwrite(mp, bp);
3251 }
3252 return error;
3253
3254corrupt_out:
3255 xfs_buf_relse(bp);
7d04a335 3256 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3257 xfs_iflush_abort(ip);
3258 /*
3259 * Unlocks the flush lock
3260 */
3261 return XFS_ERROR(EFSCORRUPTED);
3262
3263cluster_corrupt_out:
3264 /* Corruption detected in the clustering loop. Invalidate the
3265 * inode buffer and shut down the filesystem.
3266 */
3267 mutex_spinunlock(&ch->ch_lock, s);
3268
3269 /*
3270 * Clean up the buffer. If it was B_DELWRI, just release it --
3271 * brelse can handle it with no problems. If not, shut down the
3272 * filesystem before releasing the buffer.
3273 */
3274 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3275 xfs_buf_relse(bp);
3276 }
3277
7d04a335 3278 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3279
3280 if(!bufwasdelwri) {
3281 /*
3282 * Just like incore_relse: if we have b_iodone functions,
3283 * mark the buffer as an error and call them. Otherwise
3284 * mark it as stale and brelse.
3285 */
3286 if (XFS_BUF_IODONE_FUNC(bp)) {
3287 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3288 XFS_BUF_UNDONE(bp);
3289 XFS_BUF_STALE(bp);
3290 XFS_BUF_SHUT(bp);
3291 XFS_BUF_ERROR(bp,EIO);
3292 xfs_biodone(bp);
3293 } else {
3294 XFS_BUF_STALE(bp);
3295 xfs_buf_relse(bp);
3296 }
3297 }
3298
3299 xfs_iflush_abort(iq);
3300 /*
3301 * Unlocks the flush lock
3302 */
3303 return XFS_ERROR(EFSCORRUPTED);
3304}
3305
3306
3307STATIC int
3308xfs_iflush_int(
3309 xfs_inode_t *ip,
3310 xfs_buf_t *bp)
3311{
3312 xfs_inode_log_item_t *iip;
3313 xfs_dinode_t *dip;
3314 xfs_mount_t *mp;
3315#ifdef XFS_TRANS_DEBUG
3316 int first;
3317#endif
3318 SPLDECL(s);
3319
3320 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3321 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3323 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3324
3325 iip = ip->i_itemp;
3326 mp = ip->i_mount;
3327
3328
3329 /*
3330 * If the inode isn't dirty, then just release the inode
3331 * flush lock and do nothing.
3332 */
3333 if ((ip->i_update_core == 0) &&
3334 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3335 xfs_ifunlock(ip);
3336 return 0;
3337 }
3338
3339 /* set *dip = inode's place in the buffer */
3340 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3341
3342 /*
3343 * Clear i_update_core before copying out the data.
3344 * This is for coordination with our timestamp updates
3345 * that don't hold the inode lock. They will always
3346 * update the timestamps BEFORE setting i_update_core,
3347 * so if we clear i_update_core after they set it we
3348 * are guaranteed to see their updates to the timestamps.
3349 * I believe that this depends on strongly ordered memory
3350 * semantics, but we have that. We use the SYNCHRONIZE
3351 * macro to make sure that the compiler does not reorder
3352 * the i_update_core access below the data copy below.
3353 */
3354 ip->i_update_core = 0;
3355 SYNCHRONIZE();
3356
42fe2b1f
CH
3357 /*
3358 * Make sure to get the latest atime from the Linux inode.
3359 */
3360 xfs_synchronize_atime(ip);
3361
1da177e4
LT
3362 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3363 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3364 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3365 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3366 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3367 goto corrupt_out;
3368 }
3369 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3370 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3371 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3372 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3373 ip->i_ino, ip, ip->i_d.di_magic);
3374 goto corrupt_out;
3375 }
3376 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3377 if (XFS_TEST_ERROR(
3378 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3379 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3380 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3381 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3382 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3383 ip->i_ino, ip);
3384 goto corrupt_out;
3385 }
3386 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3387 if (XFS_TEST_ERROR(
3388 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3389 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3390 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3391 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3392 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3393 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3394 ip->i_ino, ip);
3395 goto corrupt_out;
3396 }
3397 }
3398 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3399 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3400 XFS_RANDOM_IFLUSH_5)) {
3401 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3402 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3403 ip->i_ino,
3404 ip->i_d.di_nextents + ip->i_d.di_anextents,
3405 ip->i_d.di_nblocks,
3406 ip);
3407 goto corrupt_out;
3408 }
3409 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3410 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3411 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3412 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3413 ip->i_ino, ip->i_d.di_forkoff, ip);
3414 goto corrupt_out;
3415 }
3416 /*
3417 * bump the flush iteration count, used to detect flushes which
3418 * postdate a log record during recovery.
3419 */
3420
3421 ip->i_d.di_flushiter++;
3422
3423 /*
3424 * Copy the dirty parts of the inode into the on-disk
3425 * inode. We always copy out the core of the inode,
3426 * because if the inode is dirty at all the core must
3427 * be.
3428 */
3429 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3430
3431 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3432 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3433 ip->i_d.di_flushiter = 0;
3434
3435 /*
3436 * If this is really an old format inode and the superblock version
3437 * has not been updated to support only new format inodes, then
3438 * convert back to the old inode format. If the superblock version
3439 * has been updated, then make the conversion permanent.
3440 */
3441 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3442 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3443 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3444 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3445 /*
3446 * Convert it back.
3447 */
3448 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3449 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3450 } else {
3451 /*
3452 * The superblock version has already been bumped,
3453 * so just make the conversion to the new inode
3454 * format permanent.
3455 */
3456 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3457 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3458 ip->i_d.di_onlink = 0;
3459 dip->di_core.di_onlink = 0;
3460 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3461 memset(&(dip->di_core.di_pad[0]), 0,
3462 sizeof(dip->di_core.di_pad));
3463 ASSERT(ip->i_d.di_projid == 0);
3464 }
3465 }
3466
3467 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3468 goto corrupt_out;
3469 }
3470
3471 if (XFS_IFORK_Q(ip)) {
3472 /*
3473 * The only error from xfs_iflush_fork is on the data fork.
3474 */
3475 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3476 }
3477 xfs_inobp_check(mp, bp);
3478
3479 /*
3480 * We've recorded everything logged in the inode, so we'd
3481 * like to clear the ilf_fields bits so we don't log and
3482 * flush things unnecessarily. However, we can't stop
3483 * logging all this information until the data we've copied
3484 * into the disk buffer is written to disk. If we did we might
3485 * overwrite the copy of the inode in the log with all the
3486 * data after re-logging only part of it, and in the face of
3487 * a crash we wouldn't have all the data we need to recover.
3488 *
3489 * What we do is move the bits to the ili_last_fields field.
3490 * When logging the inode, these bits are moved back to the
3491 * ilf_fields field. In the xfs_iflush_done() routine we
3492 * clear ili_last_fields, since we know that the information
3493 * those bits represent is permanently on disk. As long as
3494 * the flush completes before the inode is logged again, then
3495 * both ilf_fields and ili_last_fields will be cleared.
3496 *
3497 * We can play with the ilf_fields bits here, because the inode
3498 * lock must be held exclusively in order to set bits there
3499 * and the flush lock protects the ili_last_fields bits.
3500 * Set ili_logged so the flush done
3501 * routine can tell whether or not to look in the AIL.
3502 * Also, store the current LSN of the inode so that we can tell
3503 * whether the item has moved in the AIL from xfs_iflush_done().
3504 * In order to read the lsn we need the AIL lock, because
3505 * it is a 64 bit value that cannot be read atomically.
3506 */
3507 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3508 iip->ili_last_fields = iip->ili_format.ilf_fields;
3509 iip->ili_format.ilf_fields = 0;
3510 iip->ili_logged = 1;
3511
3512 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3513 AIL_LOCK(mp,s);
3514 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3515 AIL_UNLOCK(mp, s);
3516
3517 /*
3518 * Attach the function xfs_iflush_done to the inode's
3519 * buffer. This will remove the inode from the AIL
3520 * and unlock the inode's flush lock when the inode is
3521 * completely written to disk.
3522 */
3523 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3524 xfs_iflush_done, (xfs_log_item_t *)iip);
3525
3526 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3527 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3528 } else {
3529 /*
3530 * We're flushing an inode which is not in the AIL and has
3531 * not been logged but has i_update_core set. For this
3532 * case we can use a B_DELWRI flush and immediately drop
3533 * the inode flush lock because we can avoid the whole
3534 * AIL state thing. It's OK to drop the flush lock now,
3535 * because we've already locked the buffer and to do anything
3536 * you really need both.
3537 */
3538 if (iip != NULL) {
3539 ASSERT(iip->ili_logged == 0);
3540 ASSERT(iip->ili_last_fields == 0);
3541 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3542 }
3543 xfs_ifunlock(ip);
3544 }
3545
3546 return 0;
3547
3548corrupt_out:
3549 return XFS_ERROR(EFSCORRUPTED);
3550}
3551
3552
3553/*
efa80278 3554 * Flush all inactive inodes in mp.
1da177e4 3555 */
efa80278 3556void
1da177e4 3557xfs_iflush_all(
efa80278 3558 xfs_mount_t *mp)
1da177e4 3559{
1da177e4 3560 xfs_inode_t *ip;
67fcaa73 3561 bhv_vnode_t *vp;
1da177e4 3562
efa80278
CH
3563 again:
3564 XFS_MOUNT_ILOCK(mp);
3565 ip = mp->m_inodes;
3566 if (ip == NULL)
3567 goto out;
1da177e4 3568
efa80278
CH
3569 do {
3570 /* Make sure we skip markers inserted by sync */
3571 if (ip->i_mount == NULL) {
3572 ip = ip->i_mnext;
3573 continue;
3574 }
1da177e4 3575
efa80278
CH
3576 vp = XFS_ITOV_NULL(ip);
3577 if (!vp) {
1da177e4 3578 XFS_MOUNT_IUNLOCK(mp);
efa80278
CH
3579 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3580 goto again;
3581 }
1da177e4 3582
efa80278 3583 ASSERT(vn_count(vp) == 0);
1da177e4 3584
efa80278
CH
3585 ip = ip->i_mnext;
3586 } while (ip != mp->m_inodes);
3587 out:
1da177e4 3588 XFS_MOUNT_IUNLOCK(mp);
1da177e4
LT
3589}
3590
1da177e4
LT
3591/*
3592 * xfs_iaccess: check accessibility of inode for mode.
3593 */
3594int
3595xfs_iaccess(
3596 xfs_inode_t *ip,
3597 mode_t mode,
3598 cred_t *cr)
3599{
3600 int error;
3601 mode_t orgmode = mode;
ec86dc02 3602 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
1da177e4
LT
3603
3604 if (mode & S_IWUSR) {
3605 umode_t imode = inode->i_mode;
3606
3607 if (IS_RDONLY(inode) &&
3608 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3609 return XFS_ERROR(EROFS);
3610
3611 if (IS_IMMUTABLE(inode))
3612 return XFS_ERROR(EACCES);
3613 }
3614
3615 /*
3616 * If there's an Access Control List it's used instead of
3617 * the mode bits.
3618 */
3619 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3620 return error ? XFS_ERROR(error) : 0;
3621
3622 if (current_fsuid(cr) != ip->i_d.di_uid) {
3623 mode >>= 3;
3624 if (!in_group_p((gid_t)ip->i_d.di_gid))
3625 mode >>= 3;
3626 }
3627
3628 /*
3629 * If the DACs are ok we don't need any capability check.
3630 */
3631 if ((ip->i_d.di_mode & mode) == mode)
3632 return 0;
3633 /*
3634 * Read/write DACs are always overridable.
3635 * Executable DACs are overridable if at least one exec bit is set.
3636 */
3637 if (!(orgmode & S_IXUSR) ||
3638 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3639 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3640 return 0;
3641
3642 if ((orgmode == S_IRUSR) ||
3643 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3644 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3645 return 0;
3646#ifdef NOISE
3647 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3648#endif /* NOISE */
3649 return XFS_ERROR(EACCES);
3650 }
3651 return XFS_ERROR(EACCES);
3652}
3653
3654/*
3655 * xfs_iroundup: round up argument to next power of two
3656 */
3657uint
3658xfs_iroundup(
3659 uint v)
3660{
3661 int i;
3662 uint m;
3663
3664 if ((v & (v - 1)) == 0)
3665 return v;
3666 ASSERT((v & 0x80000000) == 0);
3667 if ((v & (v + 1)) == 0)
3668 return v + 1;
3669 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3670 if (v & m)
3671 continue;
3672 v |= m;
3673 if ((v & (v + 1)) == 0)
3674 return v + 1;
3675 }
3676 ASSERT(0);
3677 return( 0 );
3678}
3679
1da177e4
LT
3680#ifdef XFS_ILOCK_TRACE
3681ktrace_t *xfs_ilock_trace_buf;
3682
3683void
3684xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3685{
3686 ktrace_enter(ip->i_lock_trace,
3687 (void *)ip,
3688 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3689 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3690 (void *)ra, /* caller of ilock */
3691 (void *)(unsigned long)current_cpu(),
3692 (void *)(unsigned long)current_pid(),
3693 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3694}
3695#endif
4eea22f0
MK
3696
3697/*
3698 * Return a pointer to the extent record at file index idx.
3699 */
3700xfs_bmbt_rec_t *
3701xfs_iext_get_ext(
3702 xfs_ifork_t *ifp, /* inode fork pointer */
3703 xfs_extnum_t idx) /* index of target extent */
3704{
3705 ASSERT(idx >= 0);
0293ce3a
MK
3706 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3707 return ifp->if_u1.if_ext_irec->er_extbuf;
3708 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3709 xfs_ext_irec_t *erp; /* irec pointer */
3710 int erp_idx = 0; /* irec index */
3711 xfs_extnum_t page_idx = idx; /* ext index in target list */
3712
3713 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3714 return &erp->er_extbuf[page_idx];
3715 } else if (ifp->if_bytes) {
4eea22f0
MK
3716 return &ifp->if_u1.if_extents[idx];
3717 } else {
3718 return NULL;
3719 }
3720}
3721
3722/*
3723 * Insert new item(s) into the extent records for incore inode
3724 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3725 */
3726void
3727xfs_iext_insert(
3728 xfs_ifork_t *ifp, /* inode fork pointer */
3729 xfs_extnum_t idx, /* starting index of new items */
3730 xfs_extnum_t count, /* number of inserted items */
3731 xfs_bmbt_irec_t *new) /* items to insert */
3732{
3733 xfs_bmbt_rec_t *ep; /* extent record pointer */
3734 xfs_extnum_t i; /* extent record index */
3735
3736 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3737 xfs_iext_add(ifp, idx, count);
3738 for (i = idx; i < idx + count; i++, new++) {
3739 ep = xfs_iext_get_ext(ifp, i);
3740 xfs_bmbt_set_all(ep, new);
3741 }
3742}
3743
3744/*
3745 * This is called when the amount of space required for incore file
3746 * extents needs to be increased. The ext_diff parameter stores the
3747 * number of new extents being added and the idx parameter contains
3748 * the extent index where the new extents will be added. If the new
3749 * extents are being appended, then we just need to (re)allocate and
3750 * initialize the space. Otherwise, if the new extents are being
3751 * inserted into the middle of the existing entries, a bit more work
3752 * is required to make room for the new extents to be inserted. The
3753 * caller is responsible for filling in the new extent entries upon
3754 * return.
3755 */
3756void
3757xfs_iext_add(
3758 xfs_ifork_t *ifp, /* inode fork pointer */
3759 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3760 int ext_diff) /* number of extents to add */
4eea22f0
MK
3761{
3762 int byte_diff; /* new bytes being added */
3763 int new_size; /* size of extents after adding */
3764 xfs_extnum_t nextents; /* number of extents in file */
3765
3766 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3767 ASSERT((idx >= 0) && (idx <= nextents));
3768 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3769 new_size = ifp->if_bytes + byte_diff;
3770 /*
3771 * If the new number of extents (nextents + ext_diff)
3772 * fits inside the inode, then continue to use the inline
3773 * extent buffer.
3774 */
3775 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3776 if (idx < nextents) {
3777 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3778 &ifp->if_u2.if_inline_ext[idx],
3779 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3780 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3781 }
3782 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3783 ifp->if_real_bytes = 0;
0293ce3a 3784 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3785 }
3786 /*
3787 * Otherwise use a linear (direct) extent list.
3788 * If the extents are currently inside the inode,
3789 * xfs_iext_realloc_direct will switch us from
3790 * inline to direct extent allocation mode.
3791 */
0293ce3a 3792 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3793 xfs_iext_realloc_direct(ifp, new_size);
3794 if (idx < nextents) {
3795 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3796 &ifp->if_u1.if_extents[idx],
3797 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3798 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3799 }
3800 }
0293ce3a
MK
3801 /* Indirection array */
3802 else {
3803 xfs_ext_irec_t *erp;
3804 int erp_idx = 0;
3805 int page_idx = idx;
3806
3807 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3808 if (ifp->if_flags & XFS_IFEXTIREC) {
3809 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3810 } else {
3811 xfs_iext_irec_init(ifp);
3812 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3813 erp = ifp->if_u1.if_ext_irec;
3814 }
3815 /* Extents fit in target extent page */
3816 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3817 if (page_idx < erp->er_extcount) {
3818 memmove(&erp->er_extbuf[page_idx + ext_diff],
3819 &erp->er_extbuf[page_idx],
3820 (erp->er_extcount - page_idx) *
3821 sizeof(xfs_bmbt_rec_t));
3822 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3823 }
3824 erp->er_extcount += ext_diff;
3825 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3826 }
3827 /* Insert a new extent page */
3828 else if (erp) {
3829 xfs_iext_add_indirect_multi(ifp,
3830 erp_idx, page_idx, ext_diff);
3831 }
3832 /*
3833 * If extent(s) are being appended to the last page in
3834 * the indirection array and the new extent(s) don't fit
3835 * in the page, then erp is NULL and erp_idx is set to
3836 * the next index needed in the indirection array.
3837 */
3838 else {
3839 int count = ext_diff;
3840
3841 while (count) {
3842 erp = xfs_iext_irec_new(ifp, erp_idx);
3843 erp->er_extcount = count;
3844 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3845 if (count) {
3846 erp_idx++;
3847 }
3848 }
3849 }
3850 }
4eea22f0
MK
3851 ifp->if_bytes = new_size;
3852}
3853
0293ce3a
MK
3854/*
3855 * This is called when incore extents are being added to the indirection
3856 * array and the new extents do not fit in the target extent list. The
3857 * erp_idx parameter contains the irec index for the target extent list
3858 * in the indirection array, and the idx parameter contains the extent
3859 * index within the list. The number of extents being added is stored
3860 * in the count parameter.
3861 *
3862 * |-------| |-------|
3863 * | | | | idx - number of extents before idx
3864 * | idx | | count |
3865 * | | | | count - number of extents being inserted at idx
3866 * |-------| |-------|
3867 * | count | | nex2 | nex2 - number of extents after idx + count
3868 * |-------| |-------|
3869 */
3870void
3871xfs_iext_add_indirect_multi(
3872 xfs_ifork_t *ifp, /* inode fork pointer */
3873 int erp_idx, /* target extent irec index */
3874 xfs_extnum_t idx, /* index within target list */
3875 int count) /* new extents being added */
3876{
3877 int byte_diff; /* new bytes being added */
3878 xfs_ext_irec_t *erp; /* pointer to irec entry */
3879 xfs_extnum_t ext_diff; /* number of extents to add */
3880 xfs_extnum_t ext_cnt; /* new extents still needed */
3881 xfs_extnum_t nex2; /* extents after idx + count */
3882 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3883 int nlists; /* number of irec's (lists) */
3884
3885 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3886 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3887 nex2 = erp->er_extcount - idx;
3888 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3889
3890 /*
3891 * Save second part of target extent list
3892 * (all extents past */
3893 if (nex2) {
3894 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3895 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3896 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3897 erp->er_extcount -= nex2;
3898 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3899 memset(&erp->er_extbuf[idx], 0, byte_diff);
3900 }
3901
3902 /*
3903 * Add the new extents to the end of the target
3904 * list, then allocate new irec record(s) and
3905 * extent buffer(s) as needed to store the rest
3906 * of the new extents.
3907 */
3908 ext_cnt = count;
3909 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3910 if (ext_diff) {
3911 erp->er_extcount += ext_diff;
3912 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3913 ext_cnt -= ext_diff;
3914 }
3915 while (ext_cnt) {
3916 erp_idx++;
3917 erp = xfs_iext_irec_new(ifp, erp_idx);
3918 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3919 erp->er_extcount = ext_diff;
3920 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3921 ext_cnt -= ext_diff;
3922 }
3923
3924 /* Add nex2 extents back to indirection array */
3925 if (nex2) {
3926 xfs_extnum_t ext_avail;
3927 int i;
3928
3929 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3930 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3931 i = 0;
3932 /*
3933 * If nex2 extents fit in the current page, append
3934 * nex2_ep after the new extents.
3935 */
3936 if (nex2 <= ext_avail) {
3937 i = erp->er_extcount;
3938 }
3939 /*
3940 * Otherwise, check if space is available in the
3941 * next page.
3942 */
3943 else if ((erp_idx < nlists - 1) &&
3944 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3945 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3946 erp_idx++;
3947 erp++;
3948 /* Create a hole for nex2 extents */
3949 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3950 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3951 }
3952 /*
3953 * Final choice, create a new extent page for
3954 * nex2 extents.
3955 */
3956 else {
3957 erp_idx++;
3958 erp = xfs_iext_irec_new(ifp, erp_idx);
3959 }
3960 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3961 kmem_free(nex2_ep, byte_diff);
3962 erp->er_extcount += nex2;
3963 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3964 }
3965}
3966
4eea22f0
MK
3967/*
3968 * This is called when the amount of space required for incore file
3969 * extents needs to be decreased. The ext_diff parameter stores the
3970 * number of extents to be removed and the idx parameter contains
3971 * the extent index where the extents will be removed from.
0293ce3a
MK
3972 *
3973 * If the amount of space needed has decreased below the linear
3974 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3975 * extent array. Otherwise, use kmem_realloc() to adjust the
3976 * size to what is needed.
4eea22f0
MK
3977 */
3978void
3979xfs_iext_remove(
3980 xfs_ifork_t *ifp, /* inode fork pointer */
3981 xfs_extnum_t idx, /* index to begin removing exts */
3982 int ext_diff) /* number of extents to remove */
3983{
3984 xfs_extnum_t nextents; /* number of extents in file */
3985 int new_size; /* size of extents after removal */
3986
3987 ASSERT(ext_diff > 0);
3988 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3989 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3990
3991 if (new_size == 0) {
3992 xfs_iext_destroy(ifp);
0293ce3a
MK
3993 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3994 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3995 } else if (ifp->if_real_bytes) {
3996 xfs_iext_remove_direct(ifp, idx, ext_diff);
3997 } else {
3998 xfs_iext_remove_inline(ifp, idx, ext_diff);
3999 }
4000 ifp->if_bytes = new_size;
4001}
4002
4003/*
4004 * This removes ext_diff extents from the inline buffer, beginning
4005 * at extent index idx.
4006 */
4007void
4008xfs_iext_remove_inline(
4009 xfs_ifork_t *ifp, /* inode fork pointer */
4010 xfs_extnum_t idx, /* index to begin removing exts */
4011 int ext_diff) /* number of extents to remove */
4012{
4013 int nextents; /* number of extents in file */
4014
0293ce3a 4015 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4016 ASSERT(idx < XFS_INLINE_EXTS);
4017 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4018 ASSERT(((nextents - ext_diff) > 0) &&
4019 (nextents - ext_diff) < XFS_INLINE_EXTS);
4020
4021 if (idx + ext_diff < nextents) {
4022 memmove(&ifp->if_u2.if_inline_ext[idx],
4023 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4024 (nextents - (idx + ext_diff)) *
4025 sizeof(xfs_bmbt_rec_t));
4026 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4027 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4028 } else {
4029 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4030 ext_diff * sizeof(xfs_bmbt_rec_t));
4031 }
4032}
4033
4034/*
4035 * This removes ext_diff extents from a linear (direct) extent list,
4036 * beginning at extent index idx. If the extents are being removed
4037 * from the end of the list (ie. truncate) then we just need to re-
4038 * allocate the list to remove the extra space. Otherwise, if the
4039 * extents are being removed from the middle of the existing extent
4040 * entries, then we first need to move the extent records beginning
4041 * at idx + ext_diff up in the list to overwrite the records being
4042 * removed, then remove the extra space via kmem_realloc.
4043 */
4044void
4045xfs_iext_remove_direct(
4046 xfs_ifork_t *ifp, /* inode fork pointer */
4047 xfs_extnum_t idx, /* index to begin removing exts */
4048 int ext_diff) /* number of extents to remove */
4049{
4050 xfs_extnum_t nextents; /* number of extents in file */
4051 int new_size; /* size of extents after removal */
4052
0293ce3a 4053 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4054 new_size = ifp->if_bytes -
4055 (ext_diff * sizeof(xfs_bmbt_rec_t));
4056 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4057
4058 if (new_size == 0) {
4059 xfs_iext_destroy(ifp);
4060 return;
4061 }
4062 /* Move extents up in the list (if needed) */
4063 if (idx + ext_diff < nextents) {
4064 memmove(&ifp->if_u1.if_extents[idx],
4065 &ifp->if_u1.if_extents[idx + ext_diff],
4066 (nextents - (idx + ext_diff)) *
4067 sizeof(xfs_bmbt_rec_t));
4068 }
4069 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4070 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4071 /*
4072 * Reallocate the direct extent list. If the extents
4073 * will fit inside the inode then xfs_iext_realloc_direct
4074 * will switch from direct to inline extent allocation
4075 * mode for us.
4076 */
4077 xfs_iext_realloc_direct(ifp, new_size);
4078 ifp->if_bytes = new_size;
4079}
4080
0293ce3a
MK
4081/*
4082 * This is called when incore extents are being removed from the
4083 * indirection array and the extents being removed span multiple extent
4084 * buffers. The idx parameter contains the file extent index where we
4085 * want to begin removing extents, and the count parameter contains
4086 * how many extents need to be removed.
4087 *
4088 * |-------| |-------|
4089 * | nex1 | | | nex1 - number of extents before idx
4090 * |-------| | count |
4091 * | | | | count - number of extents being removed at idx
4092 * | count | |-------|
4093 * | | | nex2 | nex2 - number of extents after idx + count
4094 * |-------| |-------|
4095 */
4096void
4097xfs_iext_remove_indirect(
4098 xfs_ifork_t *ifp, /* inode fork pointer */
4099 xfs_extnum_t idx, /* index to begin removing extents */
4100 int count) /* number of extents to remove */
4101{
4102 xfs_ext_irec_t *erp; /* indirection array pointer */
4103 int erp_idx = 0; /* indirection array index */
4104 xfs_extnum_t ext_cnt; /* extents left to remove */
4105 xfs_extnum_t ext_diff; /* extents to remove in current list */
4106 xfs_extnum_t nex1; /* number of extents before idx */
4107 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 4108 int nlists; /* entries in indirection array */
0293ce3a
MK
4109 int page_idx = idx; /* index in target extent list */
4110
4111 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4112 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4113 ASSERT(erp != NULL);
4114 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4115 nex1 = page_idx;
4116 ext_cnt = count;
4117 while (ext_cnt) {
4118 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4119 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4120 /*
4121 * Check for deletion of entire list;
4122 * xfs_iext_irec_remove() updates extent offsets.
4123 */
4124 if (ext_diff == erp->er_extcount) {
4125 xfs_iext_irec_remove(ifp, erp_idx);
4126 ext_cnt -= ext_diff;
4127 nex1 = 0;
4128 if (ext_cnt) {
4129 ASSERT(erp_idx < ifp->if_real_bytes /
4130 XFS_IEXT_BUFSZ);
4131 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4132 nex1 = 0;
4133 continue;
4134 } else {
4135 break;
4136 }
4137 }
4138 /* Move extents up (if needed) */
4139 if (nex2) {
4140 memmove(&erp->er_extbuf[nex1],
4141 &erp->er_extbuf[nex1 + ext_diff],
4142 nex2 * sizeof(xfs_bmbt_rec_t));
4143 }
4144 /* Zero out rest of page */
4145 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4146 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4147 /* Update remaining counters */
4148 erp->er_extcount -= ext_diff;
4149 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4150 ext_cnt -= ext_diff;
4151 nex1 = 0;
4152 erp_idx++;
4153 erp++;
4154 }
4155 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4156 xfs_iext_irec_compact(ifp);
4157}
4158
4eea22f0
MK
4159/*
4160 * Create, destroy, or resize a linear (direct) block of extents.
4161 */
4162void
4163xfs_iext_realloc_direct(
4164 xfs_ifork_t *ifp, /* inode fork pointer */
4165 int new_size) /* new size of extents */
4166{
4167 int rnew_size; /* real new size of extents */
4168
4169 rnew_size = new_size;
4170
0293ce3a
MK
4171 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4172 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4173 (new_size != ifp->if_real_bytes)));
4174
4eea22f0
MK
4175 /* Free extent records */
4176 if (new_size == 0) {
4177 xfs_iext_destroy(ifp);
4178 }
4179 /* Resize direct extent list and zero any new bytes */
4180 else if (ifp->if_real_bytes) {
4181 /* Check if extents will fit inside the inode */
4182 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4183 xfs_iext_direct_to_inline(ifp, new_size /
4184 (uint)sizeof(xfs_bmbt_rec_t));
4185 ifp->if_bytes = new_size;
4186 return;
4187 }
16a087d8 4188 if (!is_power_of_2(new_size)){
4eea22f0
MK
4189 rnew_size = xfs_iroundup(new_size);
4190 }
4191 if (rnew_size != ifp->if_real_bytes) {
4192 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4193 kmem_realloc(ifp->if_u1.if_extents,
4194 rnew_size,
4195 ifp->if_real_bytes,
4196 KM_SLEEP);
4197 }
4198 if (rnew_size > ifp->if_real_bytes) {
4199 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4200 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4201 rnew_size - ifp->if_real_bytes);
4202 }
4203 }
4204 /*
4205 * Switch from the inline extent buffer to a direct
4206 * extent list. Be sure to include the inline extent
4207 * bytes in new_size.
4208 */
4209 else {
4210 new_size += ifp->if_bytes;
16a087d8 4211 if (!is_power_of_2(new_size)) {
4eea22f0
MK
4212 rnew_size = xfs_iroundup(new_size);
4213 }
4214 xfs_iext_inline_to_direct(ifp, rnew_size);
4215 }
4216 ifp->if_real_bytes = rnew_size;
4217 ifp->if_bytes = new_size;
4218}
4219
4220/*
4221 * Switch from linear (direct) extent records to inline buffer.
4222 */
4223void
4224xfs_iext_direct_to_inline(
4225 xfs_ifork_t *ifp, /* inode fork pointer */
4226 xfs_extnum_t nextents) /* number of extents in file */
4227{
4228 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4229 ASSERT(nextents <= XFS_INLINE_EXTS);
4230 /*
4231 * The inline buffer was zeroed when we switched
4232 * from inline to direct extent allocation mode,
4233 * so we don't need to clear it here.
4234 */
4235 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4236 nextents * sizeof(xfs_bmbt_rec_t));
fe6c1e72 4237 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4eea22f0
MK
4238 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4239 ifp->if_real_bytes = 0;
4240}
4241
4242/*
4243 * Switch from inline buffer to linear (direct) extent records.
4244 * new_size should already be rounded up to the next power of 2
4245 * by the caller (when appropriate), so use new_size as it is.
4246 * However, since new_size may be rounded up, we can't update
4247 * if_bytes here. It is the caller's responsibility to update
4248 * if_bytes upon return.
4249 */
4250void
4251xfs_iext_inline_to_direct(
4252 xfs_ifork_t *ifp, /* inode fork pointer */
4253 int new_size) /* number of extents in file */
4254{
4255 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4256 kmem_alloc(new_size, KM_SLEEP);
4257 memset(ifp->if_u1.if_extents, 0, new_size);
4258 if (ifp->if_bytes) {
4259 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4260 ifp->if_bytes);
4261 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4262 sizeof(xfs_bmbt_rec_t));
4263 }
4264 ifp->if_real_bytes = new_size;
4265}
4266
0293ce3a
MK
4267/*
4268 * Resize an extent indirection array to new_size bytes.
4269 */
4270void
4271xfs_iext_realloc_indirect(
4272 xfs_ifork_t *ifp, /* inode fork pointer */
4273 int new_size) /* new indirection array size */
4274{
4275 int nlists; /* number of irec's (ex lists) */
4276 int size; /* current indirection array size */
4277
4278 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4279 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4280 size = nlists * sizeof(xfs_ext_irec_t);
4281 ASSERT(ifp->if_real_bytes);
4282 ASSERT((new_size >= 0) && (new_size != size));
4283 if (new_size == 0) {
4284 xfs_iext_destroy(ifp);
4285 } else {
4286 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4287 kmem_realloc(ifp->if_u1.if_ext_irec,
4288 new_size, size, KM_SLEEP);
4289 }
4290}
4291
4292/*
4293 * Switch from indirection array to linear (direct) extent allocations.
4294 */
4295void
4296xfs_iext_indirect_to_direct(
4297 xfs_ifork_t *ifp) /* inode fork pointer */
4298{
4299 xfs_bmbt_rec_t *ep; /* extent record pointer */
4300 xfs_extnum_t nextents; /* number of extents in file */
4301 int size; /* size of file extents */
4302
4303 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4304 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4305 ASSERT(nextents <= XFS_LINEAR_EXTS);
4306 size = nextents * sizeof(xfs_bmbt_rec_t);
4307
4308 xfs_iext_irec_compact_full(ifp);
4309 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4310
4311 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4312 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4313 ifp->if_flags &= ~XFS_IFEXTIREC;
4314 ifp->if_u1.if_extents = ep;
4315 ifp->if_bytes = size;
4316 if (nextents < XFS_LINEAR_EXTS) {
4317 xfs_iext_realloc_direct(ifp, size);
4318 }
4319}
4320
4eea22f0
MK
4321/*
4322 * Free incore file extents.
4323 */
4324void
4325xfs_iext_destroy(
4326 xfs_ifork_t *ifp) /* inode fork pointer */
4327{
0293ce3a
MK
4328 if (ifp->if_flags & XFS_IFEXTIREC) {
4329 int erp_idx;
4330 int nlists;
4331
4332 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4333 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4334 xfs_iext_irec_remove(ifp, erp_idx);
4335 }
4336 ifp->if_flags &= ~XFS_IFEXTIREC;
4337 } else if (ifp->if_real_bytes) {
4eea22f0
MK
4338 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4339 } else if (ifp->if_bytes) {
4340 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4341 sizeof(xfs_bmbt_rec_t));
4342 }
4343 ifp->if_u1.if_extents = NULL;
4344 ifp->if_real_bytes = 0;
4345 ifp->if_bytes = 0;
4346}
0293ce3a 4347
8867bc9b
MK
4348/*
4349 * Return a pointer to the extent record for file system block bno.
4350 */
4351xfs_bmbt_rec_t * /* pointer to found extent record */
4352xfs_iext_bno_to_ext(
4353 xfs_ifork_t *ifp, /* inode fork pointer */
4354 xfs_fileoff_t bno, /* block number to search for */
4355 xfs_extnum_t *idxp) /* index of target extent */
4356{
4357 xfs_bmbt_rec_t *base; /* pointer to first extent */
4358 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4359 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4360 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4361 int high; /* upper boundary in search */
8867bc9b 4362 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4363 int low; /* lower boundary in search */
8867bc9b
MK
4364 xfs_extnum_t nextents; /* number of file extents */
4365 xfs_fileoff_t startoff = 0; /* start offset of extent */
4366
4367 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4368 if (nextents == 0) {
4369 *idxp = 0;
4370 return NULL;
4371 }
4372 low = 0;
4373 if (ifp->if_flags & XFS_IFEXTIREC) {
4374 /* Find target extent list */
4375 int erp_idx = 0;
4376 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4377 base = erp->er_extbuf;
4378 high = erp->er_extcount - 1;
4379 } else {
4380 base = ifp->if_u1.if_extents;
4381 high = nextents - 1;
4382 }
4383 /* Binary search extent records */
4384 while (low <= high) {
4385 idx = (low + high) >> 1;
4386 ep = base + idx;
4387 startoff = xfs_bmbt_get_startoff(ep);
4388 blockcount = xfs_bmbt_get_blockcount(ep);
4389 if (bno < startoff) {
4390 high = idx - 1;
4391 } else if (bno >= startoff + blockcount) {
4392 low = idx + 1;
4393 } else {
4394 /* Convert back to file-based extent index */
4395 if (ifp->if_flags & XFS_IFEXTIREC) {
4396 idx += erp->er_extoff;
4397 }
4398 *idxp = idx;
4399 return ep;
4400 }
4401 }
4402 /* Convert back to file-based extent index */
4403 if (ifp->if_flags & XFS_IFEXTIREC) {
4404 idx += erp->er_extoff;
4405 }
4406 if (bno >= startoff + blockcount) {
4407 if (++idx == nextents) {
4408 ep = NULL;
4409 } else {
4410 ep = xfs_iext_get_ext(ifp, idx);
4411 }
4412 }
4413 *idxp = idx;
4414 return ep;
4415}
4416
0293ce3a
MK
4417/*
4418 * Return a pointer to the indirection array entry containing the
4419 * extent record for filesystem block bno. Store the index of the
4420 * target irec in *erp_idxp.
4421 */
8867bc9b 4422xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4423xfs_iext_bno_to_irec(
4424 xfs_ifork_t *ifp, /* inode fork pointer */
4425 xfs_fileoff_t bno, /* block number to search for */
4426 int *erp_idxp) /* irec index of target ext list */
4427{
4428 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4429 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4430 int erp_idx; /* indirection array index */
0293ce3a
MK
4431 int nlists; /* number of extent irec's (lists) */
4432 int high; /* binary search upper limit */
4433 int low; /* binary search lower limit */
4434
4435 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4436 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4437 erp_idx = 0;
4438 low = 0;
4439 high = nlists - 1;
4440 while (low <= high) {
4441 erp_idx = (low + high) >> 1;
4442 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4443 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4444 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4445 high = erp_idx - 1;
4446 } else if (erp_next && bno >=
4447 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4448 low = erp_idx + 1;
4449 } else {
4450 break;
4451 }
4452 }
4453 *erp_idxp = erp_idx;
4454 return erp;
4455}
4456
4457/*
4458 * Return a pointer to the indirection array entry containing the
4459 * extent record at file extent index *idxp. Store the index of the
4460 * target irec in *erp_idxp and store the page index of the target
4461 * extent record in *idxp.
4462 */
4463xfs_ext_irec_t *
4464xfs_iext_idx_to_irec(
4465 xfs_ifork_t *ifp, /* inode fork pointer */
4466 xfs_extnum_t *idxp, /* extent index (file -> page) */
4467 int *erp_idxp, /* pointer to target irec */
4468 int realloc) /* new bytes were just added */
4469{
4470 xfs_ext_irec_t *prev; /* pointer to previous irec */
4471 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4472 int erp_idx; /* indirection array index */
4473 int nlists; /* number of irec's (ex lists) */
4474 int high; /* binary search upper limit */
4475 int low; /* binary search lower limit */
4476 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4477
4478 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4479 ASSERT(page_idx >= 0 && page_idx <=
4480 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4481 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4482 erp_idx = 0;
4483 low = 0;
4484 high = nlists - 1;
4485
4486 /* Binary search extent irec's */
4487 while (low <= high) {
4488 erp_idx = (low + high) >> 1;
4489 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4490 prev = erp_idx > 0 ? erp - 1 : NULL;
4491 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4492 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4493 high = erp_idx - 1;
4494 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4495 (page_idx == erp->er_extoff + erp->er_extcount &&
4496 !realloc)) {
4497 low = erp_idx + 1;
4498 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4499 erp->er_extcount == XFS_LINEAR_EXTS) {
4500 ASSERT(realloc);
4501 page_idx = 0;
4502 erp_idx++;
4503 erp = erp_idx < nlists ? erp + 1 : NULL;
4504 break;
4505 } else {
4506 page_idx -= erp->er_extoff;
4507 break;
4508 }
4509 }
4510 *idxp = page_idx;
4511 *erp_idxp = erp_idx;
4512 return(erp);
4513}
4514
4515/*
4516 * Allocate and initialize an indirection array once the space needed
4517 * for incore extents increases above XFS_IEXT_BUFSZ.
4518 */
4519void
4520xfs_iext_irec_init(
4521 xfs_ifork_t *ifp) /* inode fork pointer */
4522{
4523 xfs_ext_irec_t *erp; /* indirection array pointer */
4524 xfs_extnum_t nextents; /* number of extents in file */
4525
4526 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4527 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4528 ASSERT(nextents <= XFS_LINEAR_EXTS);
4529
4530 erp = (xfs_ext_irec_t *)
4531 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4532
4533 if (nextents == 0) {
4534 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4535 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4536 } else if (!ifp->if_real_bytes) {
4537 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4538 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4539 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4540 }
4541 erp->er_extbuf = ifp->if_u1.if_extents;
4542 erp->er_extcount = nextents;
4543 erp->er_extoff = 0;
4544
4545 ifp->if_flags |= XFS_IFEXTIREC;
4546 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4547 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4548 ifp->if_u1.if_ext_irec = erp;
4549
4550 return;
4551}
4552
4553/*
4554 * Allocate and initialize a new entry in the indirection array.
4555 */
4556xfs_ext_irec_t *
4557xfs_iext_irec_new(
4558 xfs_ifork_t *ifp, /* inode fork pointer */
4559 int erp_idx) /* index for new irec */
4560{
4561 xfs_ext_irec_t *erp; /* indirection array pointer */
4562 int i; /* loop counter */
4563 int nlists; /* number of irec's (ex lists) */
4564
4565 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4566 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4567
4568 /* Resize indirection array */
4569 xfs_iext_realloc_indirect(ifp, ++nlists *
4570 sizeof(xfs_ext_irec_t));
4571 /*
4572 * Move records down in the array so the
4573 * new page can use erp_idx.
4574 */
4575 erp = ifp->if_u1.if_ext_irec;
4576 for (i = nlists - 1; i > erp_idx; i--) {
4577 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4578 }
4579 ASSERT(i == erp_idx);
4580
4581 /* Initialize new extent record */
4582 erp = ifp->if_u1.if_ext_irec;
4583 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4584 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4585 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4586 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4587 erp[erp_idx].er_extcount = 0;
4588 erp[erp_idx].er_extoff = erp_idx > 0 ?
4589 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4590 return (&erp[erp_idx]);
4591}
4592
4593/*
4594 * Remove a record from the indirection array.
4595 */
4596void
4597xfs_iext_irec_remove(
4598 xfs_ifork_t *ifp, /* inode fork pointer */
4599 int erp_idx) /* irec index to remove */
4600{
4601 xfs_ext_irec_t *erp; /* indirection array pointer */
4602 int i; /* loop counter */
4603 int nlists; /* number of irec's (ex lists) */
4604
4605 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4606 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4607 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4608 if (erp->er_extbuf) {
4609 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4610 -erp->er_extcount);
4611 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4612 }
4613 /* Compact extent records */
4614 erp = ifp->if_u1.if_ext_irec;
4615 for (i = erp_idx; i < nlists - 1; i++) {
4616 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4617 }
4618 /*
4619 * Manually free the last extent record from the indirection
4620 * array. A call to xfs_iext_realloc_indirect() with a size
4621 * of zero would result in a call to xfs_iext_destroy() which
4622 * would in turn call this function again, creating a nasty
4623 * infinite loop.
4624 */
4625 if (--nlists) {
4626 xfs_iext_realloc_indirect(ifp,
4627 nlists * sizeof(xfs_ext_irec_t));
4628 } else {
4629 kmem_free(ifp->if_u1.if_ext_irec,
4630 sizeof(xfs_ext_irec_t));
4631 }
4632 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4633}
4634
4635/*
4636 * This is called to clean up large amounts of unused memory allocated
4637 * by the indirection array. Before compacting anything though, verify
4638 * that the indirection array is still needed and switch back to the
4639 * linear extent list (or even the inline buffer) if possible. The
4640 * compaction policy is as follows:
4641 *
4642 * Full Compaction: Extents fit into a single page (or inline buffer)
4643 * Full Compaction: Extents occupy less than 10% of allocated space
4644 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4645 * No Compaction: Extents occupy at least 50% of allocated space
4646 */
4647void
4648xfs_iext_irec_compact(
4649 xfs_ifork_t *ifp) /* inode fork pointer */
4650{
4651 xfs_extnum_t nextents; /* number of extents in file */
4652 int nlists; /* number of irec's (ex lists) */
4653
4654 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4655 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4656 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4657
4658 if (nextents == 0) {
4659 xfs_iext_destroy(ifp);
4660 } else if (nextents <= XFS_INLINE_EXTS) {
4661 xfs_iext_indirect_to_direct(ifp);
4662 xfs_iext_direct_to_inline(ifp, nextents);
4663 } else if (nextents <= XFS_LINEAR_EXTS) {
4664 xfs_iext_indirect_to_direct(ifp);
4665 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4666 xfs_iext_irec_compact_full(ifp);
4667 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4668 xfs_iext_irec_compact_pages(ifp);
4669 }
4670}
4671
4672/*
4673 * Combine extents from neighboring extent pages.
4674 */
4675void
4676xfs_iext_irec_compact_pages(
4677 xfs_ifork_t *ifp) /* inode fork pointer */
4678{
4679 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4680 int erp_idx = 0; /* indirection array index */
4681 int nlists; /* number of irec's (ex lists) */
4682
4683 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4684 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4685 while (erp_idx < nlists - 1) {
4686 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4687 erp_next = erp + 1;
4688 if (erp_next->er_extcount <=
4689 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4690 memmove(&erp->er_extbuf[erp->er_extcount],
4691 erp_next->er_extbuf, erp_next->er_extcount *
4692 sizeof(xfs_bmbt_rec_t));
4693 erp->er_extcount += erp_next->er_extcount;
4694 /*
4695 * Free page before removing extent record
4696 * so er_extoffs don't get modified in
4697 * xfs_iext_irec_remove.
4698 */
4699 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4700 erp_next->er_extbuf = NULL;
4701 xfs_iext_irec_remove(ifp, erp_idx + 1);
4702 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4703 } else {
4704 erp_idx++;
4705 }
4706 }
4707}
4708
4709/*
4710 * Fully compact the extent records managed by the indirection array.
4711 */
4712void
4713xfs_iext_irec_compact_full(
4714 xfs_ifork_t *ifp) /* inode fork pointer */
4715{
4716 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4717 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4718 int erp_idx = 0; /* extent irec index */
4719 int ext_avail; /* empty entries in ex list */
4720 int ext_diff; /* number of exts to add */
4721 int nlists; /* number of irec's (ex lists) */
4722
4723 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4724 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4725 erp = ifp->if_u1.if_ext_irec;
4726 ep = &erp->er_extbuf[erp->er_extcount];
4727 erp_next = erp + 1;
4728 ep_next = erp_next->er_extbuf;
4729 while (erp_idx < nlists - 1) {
4730 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4731 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4732 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4733 erp->er_extcount += ext_diff;
4734 erp_next->er_extcount -= ext_diff;
4735 /* Remove next page */
4736 if (erp_next->er_extcount == 0) {
4737 /*
4738 * Free page before removing extent record
4739 * so er_extoffs don't get modified in
4740 * xfs_iext_irec_remove.
4741 */
4742 kmem_free(erp_next->er_extbuf,
4743 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4744 erp_next->er_extbuf = NULL;
4745 xfs_iext_irec_remove(ifp, erp_idx + 1);
4746 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4747 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4748 /* Update next page */
4749 } else {
4750 /* Move rest of page up to become next new page */
4751 memmove(erp_next->er_extbuf, ep_next,
4752 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4753 ep_next = erp_next->er_extbuf;
4754 memset(&ep_next[erp_next->er_extcount], 0,
4755 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4756 sizeof(xfs_bmbt_rec_t));
4757 }
4758 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4759 erp_idx++;
4760 if (erp_idx < nlists)
4761 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4762 else
4763 break;
4764 }
4765 ep = &erp->er_extbuf[erp->er_extcount];
4766 erp_next = erp + 1;
4767 ep_next = erp_next->er_extbuf;
4768 }
4769}
4770
4771/*
4772 * This is called to update the er_extoff field in the indirection
4773 * array when extents have been added or removed from one of the
4774 * extent lists. erp_idx contains the irec index to begin updating
4775 * at and ext_diff contains the number of extents that were added
4776 * or removed.
4777 */
4778void
4779xfs_iext_irec_update_extoffs(
4780 xfs_ifork_t *ifp, /* inode fork pointer */
4781 int erp_idx, /* irec index to update */
4782 int ext_diff) /* number of new extents */
4783{
4784 int i; /* loop counter */
4785 int nlists; /* number of irec's (ex lists */
4786
4787 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4788 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4789 for (i = erp_idx; i < nlists; i++) {
4790 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4791 }
4792}
This page took 0.676111 seconds and 5 git commands to generate.