[XFS] kill deleted inodes list
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451
NS
25#include "xfs_inum.h"
26#include "xfs_imap.h"
1da177e4
LT
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
29#include "xfs_sb.h"
30#include "xfs_ag.h"
1da177e4
LT
31#include "xfs_dir2.h"
32#include "xfs_dmapi.h"
33#include "xfs_mount.h"
1da177e4 34#include "xfs_bmap_btree.h"
a844f451 35#include "xfs_alloc_btree.h"
1da177e4 36#include "xfs_ialloc_btree.h"
1da177e4 37#include "xfs_dir2_sf.h"
a844f451 38#include "xfs_attr_sf.h"
1da177e4 39#include "xfs_dinode.h"
1da177e4 40#include "xfs_inode.h"
1da177e4 41#include "xfs_buf_item.h"
a844f451
NS
42#include "xfs_inode_item.h"
43#include "xfs_btree.h"
8c4ed633 44#include "xfs_btree_trace.h"
a844f451
NS
45#include "xfs_alloc.h"
46#include "xfs_ialloc.h"
47#include "xfs_bmap.h"
1da177e4
LT
48#include "xfs_rw.h"
49#include "xfs_error.h"
1da177e4
LT
50#include "xfs_utils.h"
51#include "xfs_dir2_trace.h"
52#include "xfs_quota.h"
1da177e4 53#include "xfs_acl.h"
2a82b8be 54#include "xfs_filestream.h"
739bfb2a 55#include "xfs_vnodeops.h"
1da177e4 56
1da177e4
LT
57kmem_zone_t *xfs_ifork_zone;
58kmem_zone_t *xfs_inode_zone;
1da177e4
LT
59
60/*
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define XFS_ITRUNC_MAX_EXTENTS 2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
1da177e4
LT
71#ifdef DEBUG
72/*
73 * Make sure that the extents in the given memory buffer
74 * are valid.
75 */
76STATIC void
77xfs_validate_extents(
4eea22f0 78 xfs_ifork_t *ifp,
1da177e4 79 int nrecs,
1da177e4
LT
80 xfs_exntfmt_t fmt)
81{
82 xfs_bmbt_irec_t irec;
a6f64d4a 83 xfs_bmbt_rec_host_t rec;
1da177e4
LT
84 int i;
85
86 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
87 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
88 rec.l0 = get_unaligned(&ep->l0);
89 rec.l1 = get_unaligned(&ep->l1);
90 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
91 if (fmt == XFS_EXTFMT_NOSTATE)
92 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
93 }
94}
95#else /* DEBUG */
a6f64d4a 96#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
97#endif /* DEBUG */
98
99/*
100 * Check that none of the inode's in the buffer have a next
101 * unlinked field of 0.
102 */
103#if defined(DEBUG)
104void
105xfs_inobp_check(
106 xfs_mount_t *mp,
107 xfs_buf_t *bp)
108{
109 int i;
110 int j;
111 xfs_dinode_t *dip;
112
113 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
114
115 for (i = 0; i < j; i++) {
116 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
117 i * mp->m_sb.sb_inodesize);
118 if (!dip->di_next_unlinked) {
119 xfs_fs_cmn_err(CE_ALERT, mp,
120 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 bp);
122 ASSERT(dip->di_next_unlinked);
123 }
124 }
125}
126#endif
127
4ae29b43
DC
128/*
129 * Find the buffer associated with the given inode map
130 * We do basic validation checks on the buffer once it has been
131 * retrieved from disk.
132 */
133STATIC int
134xfs_imap_to_bp(
135 xfs_mount_t *mp,
136 xfs_trans_t *tp,
137 xfs_imap_t *imap,
138 xfs_buf_t **bpp,
139 uint buf_flags,
140 uint imap_flags)
141{
142 int error;
143 int i;
144 int ni;
145 xfs_buf_t *bp;
146
147 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 148 (int)imap->im_len, buf_flags, &bp);
4ae29b43 149 if (error) {
a3f74ffb
DC
150 if (error != EAGAIN) {
151 cmn_err(CE_WARN,
152 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
4ae29b43
DC
153 "an error %d on %s. Returning error.",
154 error, mp->m_fsname);
a3f74ffb
DC
155 } else {
156 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
157 }
4ae29b43
DC
158 return error;
159 }
160
161 /*
162 * Validate the magic number and version of every inode in the buffer
163 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
164 */
165#ifdef DEBUG
166 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
167#else /* usual case */
168 ni = 1;
169#endif
170
171 for (i = 0; i < ni; i++) {
172 int di_ok;
173 xfs_dinode_t *dip;
174
175 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
176 (i << mp->m_sb.sb_inodelog));
177 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
178 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
179 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
180 XFS_ERRTAG_ITOBP_INOTOBP,
181 XFS_RANDOM_ITOBP_INOTOBP))) {
182 if (imap_flags & XFS_IMAP_BULKSTAT) {
183 xfs_trans_brelse(tp, bp);
184 return XFS_ERROR(EINVAL);
185 }
186 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
187 XFS_ERRLEVEL_HIGH, mp, dip);
188#ifdef DEBUG
189 cmn_err(CE_PANIC,
190 "Device %s - bad inode magic/vsn "
191 "daddr %lld #%d (magic=%x)",
192 XFS_BUFTARG_NAME(mp->m_ddev_targp),
193 (unsigned long long)imap->im_blkno, i,
194 be16_to_cpu(dip->di_core.di_magic));
195#endif
196 xfs_trans_brelse(tp, bp);
197 return XFS_ERROR(EFSCORRUPTED);
198 }
199 }
200
201 xfs_inobp_check(mp, bp);
202
203 /*
204 * Mark the buffer as an inode buffer now that it looks good
205 */
206 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
207
208 *bpp = bp;
209 return 0;
210}
211
1da177e4
LT
212/*
213 * This routine is called to map an inode number within a file
214 * system to the buffer containing the on-disk version of the
215 * inode. It returns a pointer to the buffer containing the
216 * on-disk inode in the bpp parameter, and in the dip parameter
217 * it returns a pointer to the on-disk inode within that buffer.
218 *
219 * If a non-zero error is returned, then the contents of bpp and
220 * dipp are undefined.
221 *
222 * Use xfs_imap() to determine the size and location of the
223 * buffer to read from disk.
224 */
ba0f32d4 225STATIC int
1da177e4
LT
226xfs_inotobp(
227 xfs_mount_t *mp,
228 xfs_trans_t *tp,
229 xfs_ino_t ino,
230 xfs_dinode_t **dipp,
231 xfs_buf_t **bpp,
232 int *offset)
233{
1da177e4
LT
234 xfs_imap_t imap;
235 xfs_buf_t *bp;
236 int error;
1da177e4 237
1da177e4
LT
238 imap.im_blkno = 0;
239 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
4ae29b43 240 if (error)
1da177e4 241 return error;
1da177e4 242
4ae29b43
DC
243 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
244 if (error)
1da177e4 245 return error;
1da177e4 246
1da177e4
LT
247 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
248 *bpp = bp;
249 *offset = imap.im_boffset;
250 return 0;
251}
252
253
254/*
255 * This routine is called to map an inode to the buffer containing
256 * the on-disk version of the inode. It returns a pointer to the
257 * buffer containing the on-disk inode in the bpp parameter, and in
258 * the dip parameter it returns a pointer to the on-disk inode within
259 * that buffer.
260 *
261 * If a non-zero error is returned, then the contents of bpp and
262 * dipp are undefined.
263 *
264 * If the inode is new and has not yet been initialized, use xfs_imap()
265 * to determine the size and location of the buffer to read from disk.
266 * If the inode has already been mapped to its buffer and read in once,
267 * then use the mapping information stored in the inode rather than
268 * calling xfs_imap(). This allows us to avoid the overhead of looking
269 * at the inode btree for small block file systems (see xfs_dilocate()).
270 * We can tell whether the inode has been mapped in before by comparing
271 * its disk block address to 0. Only uninitialized inodes will have
272 * 0 for the disk block address.
273 */
274int
275xfs_itobp(
276 xfs_mount_t *mp,
277 xfs_trans_t *tp,
278 xfs_inode_t *ip,
279 xfs_dinode_t **dipp,
280 xfs_buf_t **bpp,
b12dd342 281 xfs_daddr_t bno,
a3f74ffb
DC
282 uint imap_flags,
283 uint buf_flags)
1da177e4 284{
4d1a2ed3 285 xfs_imap_t imap;
1da177e4
LT
286 xfs_buf_t *bp;
287 int error;
1da177e4
LT
288
289 if (ip->i_blkno == (xfs_daddr_t)0) {
1da177e4 290 imap.im_blkno = bno;
4ae29b43
DC
291 error = xfs_imap(mp, tp, ip->i_ino, &imap,
292 XFS_IMAP_LOOKUP | imap_flags);
293 if (error)
1da177e4 294 return error;
1da177e4 295
1da177e4
LT
296 /*
297 * Fill in the fields in the inode that will be used to
298 * map the inode to its buffer from now on.
299 */
300 ip->i_blkno = imap.im_blkno;
301 ip->i_len = imap.im_len;
302 ip->i_boffset = imap.im_boffset;
303 } else {
304 /*
305 * We've already mapped the inode once, so just use the
306 * mapping that we saved the first time.
307 */
308 imap.im_blkno = ip->i_blkno;
309 imap.im_len = ip->i_len;
310 imap.im_boffset = ip->i_boffset;
311 }
312 ASSERT(bno == 0 || bno == imap.im_blkno);
313
a3f74ffb 314 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
4ae29b43 315 if (error)
1da177e4 316 return error;
1da177e4 317
a3f74ffb
DC
318 if (!bp) {
319 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
320 ASSERT(tp == NULL);
321 *bpp = NULL;
322 return EAGAIN;
323 }
324
1da177e4
LT
325 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
326 *bpp = bp;
327 return 0;
328}
329
330/*
331 * Move inode type and inode format specific information from the
332 * on-disk inode to the in-core inode. For fifos, devs, and sockets
333 * this means set if_rdev to the proper value. For files, directories,
334 * and symlinks this means to bring in the in-line data or extent
335 * pointers. For a file in B-tree format, only the root is immediately
336 * brought in-core. The rest will be in-lined in if_extents when it
337 * is first referenced (see xfs_iread_extents()).
338 */
339STATIC int
340xfs_iformat(
341 xfs_inode_t *ip,
342 xfs_dinode_t *dip)
343{
344 xfs_attr_shortform_t *atp;
345 int size;
346 int error;
347 xfs_fsize_t di_size;
348 ip->i_df.if_ext_max =
349 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
350 error = 0;
351
347d1c01
CH
352 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
353 be16_to_cpu(dip->di_core.di_anextents) >
354 be64_to_cpu(dip->di_core.di_nblocks))) {
3762ec6b
NS
355 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
356 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 357 (unsigned long long)ip->i_ino,
347d1c01
CH
358 (int)(be32_to_cpu(dip->di_core.di_nextents) +
359 be16_to_cpu(dip->di_core.di_anextents)),
1da177e4 360 (unsigned long long)
347d1c01 361 be64_to_cpu(dip->di_core.di_nblocks));
1da177e4
LT
362 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
363 ip->i_mount, dip);
364 return XFS_ERROR(EFSCORRUPTED);
365 }
366
347d1c01 367 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
368 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
369 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 370 (unsigned long long)ip->i_ino,
347d1c01 371 dip->di_core.di_forkoff);
1da177e4
LT
372 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
373 ip->i_mount, dip);
374 return XFS_ERROR(EFSCORRUPTED);
375 }
376
377 switch (ip->i_d.di_mode & S_IFMT) {
378 case S_IFIFO:
379 case S_IFCHR:
380 case S_IFBLK:
381 case S_IFSOCK:
347d1c01 382 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
383 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
384 ip->i_mount, dip);
385 return XFS_ERROR(EFSCORRUPTED);
386 }
387 ip->i_d.di_size = 0;
ba87ea69 388 ip->i_size = 0;
347d1c01 389 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
1da177e4
LT
390 break;
391
392 case S_IFREG:
393 case S_IFLNK:
394 case S_IFDIR:
347d1c01 395 switch (dip->di_core.di_format) {
1da177e4
LT
396 case XFS_DINODE_FMT_LOCAL:
397 /*
398 * no local regular files yet
399 */
347d1c01 400 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
401 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
402 "corrupt inode %Lu "
403 "(local format for regular file).",
1da177e4
LT
404 (unsigned long long) ip->i_ino);
405 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
406 XFS_ERRLEVEL_LOW,
407 ip->i_mount, dip);
408 return XFS_ERROR(EFSCORRUPTED);
409 }
410
347d1c01 411 di_size = be64_to_cpu(dip->di_core.di_size);
1da177e4 412 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
413 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
414 "corrupt inode %Lu "
415 "(bad size %Ld for local inode).",
1da177e4
LT
416 (unsigned long long) ip->i_ino,
417 (long long) di_size);
418 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
419 XFS_ERRLEVEL_LOW,
420 ip->i_mount, dip);
421 return XFS_ERROR(EFSCORRUPTED);
422 }
423
424 size = (int)di_size;
425 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
426 break;
427 case XFS_DINODE_FMT_EXTENTS:
428 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
429 break;
430 case XFS_DINODE_FMT_BTREE:
431 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
432 break;
433 default:
434 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
435 ip->i_mount);
436 return XFS_ERROR(EFSCORRUPTED);
437 }
438 break;
439
440 default:
441 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
442 return XFS_ERROR(EFSCORRUPTED);
443 }
444 if (error) {
445 return error;
446 }
447 if (!XFS_DFORK_Q(dip))
448 return 0;
449 ASSERT(ip->i_afp == NULL);
450 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
451 ip->i_afp->if_ext_max =
452 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
347d1c01 453 switch (dip->di_core.di_aformat) {
1da177e4
LT
454 case XFS_DINODE_FMT_LOCAL:
455 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 456 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
457 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
458 break;
459 case XFS_DINODE_FMT_EXTENTS:
460 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
461 break;
462 case XFS_DINODE_FMT_BTREE:
463 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
464 break;
465 default:
466 error = XFS_ERROR(EFSCORRUPTED);
467 break;
468 }
469 if (error) {
470 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
471 ip->i_afp = NULL;
472 xfs_idestroy_fork(ip, XFS_DATA_FORK);
473 }
474 return error;
475}
476
477/*
478 * The file is in-lined in the on-disk inode.
479 * If it fits into if_inline_data, then copy
480 * it there, otherwise allocate a buffer for it
481 * and copy the data there. Either way, set
482 * if_data to point at the data.
483 * If we allocate a buffer for the data, make
484 * sure that its size is a multiple of 4 and
485 * record the real size in i_real_bytes.
486 */
487STATIC int
488xfs_iformat_local(
489 xfs_inode_t *ip,
490 xfs_dinode_t *dip,
491 int whichfork,
492 int size)
493{
494 xfs_ifork_t *ifp;
495 int real_size;
496
497 /*
498 * If the size is unreasonable, then something
499 * is wrong and we just bail out rather than crash in
500 * kmem_alloc() or memcpy() below.
501 */
502 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
503 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
504 "corrupt inode %Lu "
505 "(bad size %d for local fork, size = %d).",
1da177e4
LT
506 (unsigned long long) ip->i_ino, size,
507 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
508 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
509 ip->i_mount, dip);
510 return XFS_ERROR(EFSCORRUPTED);
511 }
512 ifp = XFS_IFORK_PTR(ip, whichfork);
513 real_size = 0;
514 if (size == 0)
515 ifp->if_u1.if_data = NULL;
516 else if (size <= sizeof(ifp->if_u2.if_inline_data))
517 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
518 else {
519 real_size = roundup(size, 4);
520 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
521 }
522 ifp->if_bytes = size;
523 ifp->if_real_bytes = real_size;
524 if (size)
525 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
526 ifp->if_flags &= ~XFS_IFEXTENTS;
527 ifp->if_flags |= XFS_IFINLINE;
528 return 0;
529}
530
531/*
532 * The file consists of a set of extents all
533 * of which fit into the on-disk inode.
534 * If there are few enough extents to fit into
535 * the if_inline_ext, then copy them there.
536 * Otherwise allocate a buffer for them and copy
537 * them into it. Either way, set if_extents
538 * to point at the extents.
539 */
540STATIC int
541xfs_iformat_extents(
542 xfs_inode_t *ip,
543 xfs_dinode_t *dip,
544 int whichfork)
545{
a6f64d4a 546 xfs_bmbt_rec_t *dp;
1da177e4
LT
547 xfs_ifork_t *ifp;
548 int nex;
1da177e4
LT
549 int size;
550 int i;
551
552 ifp = XFS_IFORK_PTR(ip, whichfork);
553 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
554 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
555
556 /*
557 * If the number of extents is unreasonable, then something
558 * is wrong and we just bail out rather than crash in
559 * kmem_alloc() or memcpy() below.
560 */
561 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
562 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
563 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
564 (unsigned long long) ip->i_ino, nex);
565 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
566 ip->i_mount, dip);
567 return XFS_ERROR(EFSCORRUPTED);
568 }
569
4eea22f0 570 ifp->if_real_bytes = 0;
1da177e4
LT
571 if (nex == 0)
572 ifp->if_u1.if_extents = NULL;
573 else if (nex <= XFS_INLINE_EXTS)
574 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
575 else
576 xfs_iext_add(ifp, 0, nex);
577
1da177e4 578 ifp->if_bytes = size;
1da177e4
LT
579 if (size) {
580 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 581 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 582 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 583 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
584 ep->l0 = get_unaligned_be64(&dp->l0);
585 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 586 }
3a59c94c 587 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
588 if (whichfork != XFS_DATA_FORK ||
589 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
590 if (unlikely(xfs_check_nostate_extents(
4eea22f0 591 ifp, 0, nex))) {
1da177e4
LT
592 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
593 XFS_ERRLEVEL_LOW,
594 ip->i_mount);
595 return XFS_ERROR(EFSCORRUPTED);
596 }
597 }
598 ifp->if_flags |= XFS_IFEXTENTS;
599 return 0;
600}
601
602/*
603 * The file has too many extents to fit into
604 * the inode, so they are in B-tree format.
605 * Allocate a buffer for the root of the B-tree
606 * and copy the root into it. The i_extents
607 * field will remain NULL until all of the
608 * extents are read in (when they are needed).
609 */
610STATIC int
611xfs_iformat_btree(
612 xfs_inode_t *ip,
613 xfs_dinode_t *dip,
614 int whichfork)
615{
616 xfs_bmdr_block_t *dfp;
617 xfs_ifork_t *ifp;
618 /* REFERENCED */
619 int nrecs;
620 int size;
621
622 ifp = XFS_IFORK_PTR(ip, whichfork);
623 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
624 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 625 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
626
627 /*
628 * blow out if -- fork has less extents than can fit in
629 * fork (fork shouldn't be a btree format), root btree
630 * block has more records than can fit into the fork,
631 * or the number of extents is greater than the number of
632 * blocks.
633 */
634 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
635 || XFS_BMDR_SPACE_CALC(nrecs) >
636 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
637 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
638 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
639 "corrupt inode %Lu (btree).",
1da177e4
LT
640 (unsigned long long) ip->i_ino);
641 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
642 ip->i_mount);
643 return XFS_ERROR(EFSCORRUPTED);
644 }
645
646 ifp->if_broot_bytes = size;
647 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
648 ASSERT(ifp->if_broot != NULL);
649 /*
650 * Copy and convert from the on-disk structure
651 * to the in-memory structure.
652 */
60197e8d
CH
653 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
654 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
655 ifp->if_broot, size);
1da177e4
LT
656 ifp->if_flags &= ~XFS_IFEXTENTS;
657 ifp->if_flags |= XFS_IFBROOT;
658
659 return 0;
660}
661
1da177e4 662void
347d1c01
CH
663xfs_dinode_from_disk(
664 xfs_icdinode_t *to,
665 xfs_dinode_core_t *from)
1da177e4 666{
347d1c01
CH
667 to->di_magic = be16_to_cpu(from->di_magic);
668 to->di_mode = be16_to_cpu(from->di_mode);
669 to->di_version = from ->di_version;
670 to->di_format = from->di_format;
671 to->di_onlink = be16_to_cpu(from->di_onlink);
672 to->di_uid = be32_to_cpu(from->di_uid);
673 to->di_gid = be32_to_cpu(from->di_gid);
674 to->di_nlink = be32_to_cpu(from->di_nlink);
675 to->di_projid = be16_to_cpu(from->di_projid);
676 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
677 to->di_flushiter = be16_to_cpu(from->di_flushiter);
678 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
679 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
680 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
681 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
682 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
683 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
684 to->di_size = be64_to_cpu(from->di_size);
685 to->di_nblocks = be64_to_cpu(from->di_nblocks);
686 to->di_extsize = be32_to_cpu(from->di_extsize);
687 to->di_nextents = be32_to_cpu(from->di_nextents);
688 to->di_anextents = be16_to_cpu(from->di_anextents);
689 to->di_forkoff = from->di_forkoff;
690 to->di_aformat = from->di_aformat;
691 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
692 to->di_dmstate = be16_to_cpu(from->di_dmstate);
693 to->di_flags = be16_to_cpu(from->di_flags);
694 to->di_gen = be32_to_cpu(from->di_gen);
695}
696
697void
698xfs_dinode_to_disk(
699 xfs_dinode_core_t *to,
700 xfs_icdinode_t *from)
701{
702 to->di_magic = cpu_to_be16(from->di_magic);
703 to->di_mode = cpu_to_be16(from->di_mode);
704 to->di_version = from ->di_version;
705 to->di_format = from->di_format;
706 to->di_onlink = cpu_to_be16(from->di_onlink);
707 to->di_uid = cpu_to_be32(from->di_uid);
708 to->di_gid = cpu_to_be32(from->di_gid);
709 to->di_nlink = cpu_to_be32(from->di_nlink);
710 to->di_projid = cpu_to_be16(from->di_projid);
711 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
712 to->di_flushiter = cpu_to_be16(from->di_flushiter);
713 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
714 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
715 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
716 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
717 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
718 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
719 to->di_size = cpu_to_be64(from->di_size);
720 to->di_nblocks = cpu_to_be64(from->di_nblocks);
721 to->di_extsize = cpu_to_be32(from->di_extsize);
722 to->di_nextents = cpu_to_be32(from->di_nextents);
723 to->di_anextents = cpu_to_be16(from->di_anextents);
724 to->di_forkoff = from->di_forkoff;
725 to->di_aformat = from->di_aformat;
726 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
727 to->di_dmstate = cpu_to_be16(from->di_dmstate);
728 to->di_flags = cpu_to_be16(from->di_flags);
729 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
730}
731
732STATIC uint
733_xfs_dic2xflags(
1da177e4
LT
734 __uint16_t di_flags)
735{
736 uint flags = 0;
737
738 if (di_flags & XFS_DIFLAG_ANY) {
739 if (di_flags & XFS_DIFLAG_REALTIME)
740 flags |= XFS_XFLAG_REALTIME;
741 if (di_flags & XFS_DIFLAG_PREALLOC)
742 flags |= XFS_XFLAG_PREALLOC;
743 if (di_flags & XFS_DIFLAG_IMMUTABLE)
744 flags |= XFS_XFLAG_IMMUTABLE;
745 if (di_flags & XFS_DIFLAG_APPEND)
746 flags |= XFS_XFLAG_APPEND;
747 if (di_flags & XFS_DIFLAG_SYNC)
748 flags |= XFS_XFLAG_SYNC;
749 if (di_flags & XFS_DIFLAG_NOATIME)
750 flags |= XFS_XFLAG_NOATIME;
751 if (di_flags & XFS_DIFLAG_NODUMP)
752 flags |= XFS_XFLAG_NODUMP;
753 if (di_flags & XFS_DIFLAG_RTINHERIT)
754 flags |= XFS_XFLAG_RTINHERIT;
755 if (di_flags & XFS_DIFLAG_PROJINHERIT)
756 flags |= XFS_XFLAG_PROJINHERIT;
757 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
758 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
759 if (di_flags & XFS_DIFLAG_EXTSIZE)
760 flags |= XFS_XFLAG_EXTSIZE;
761 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
762 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
763 if (di_flags & XFS_DIFLAG_NODEFRAG)
764 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
765 if (di_flags & XFS_DIFLAG_FILESTREAM)
766 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
767 }
768
769 return flags;
770}
771
772uint
773xfs_ip2xflags(
774 xfs_inode_t *ip)
775{
347d1c01 776 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 777
a916e2bd 778 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 779 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
780}
781
782uint
783xfs_dic2xflags(
45ba598e 784 xfs_dinode_t *dip)
1da177e4 785{
45ba598e
CH
786 xfs_dinode_core_t *dic = &dip->di_core;
787
347d1c01 788 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
45ba598e 789 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
790}
791
07c8f675
DC
792/*
793 * Allocate and initialise an xfs_inode.
794 */
795struct xfs_inode *
796xfs_inode_alloc(
797 struct xfs_mount *mp,
798 xfs_ino_t ino)
799{
800 struct xfs_inode *ip;
801
802 /*
803 * if this didn't occur in transactions, we could use
804 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
805 * code up to do this anyway.
806 */
807 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
808 if (!ip)
809 return NULL;
810
811 ASSERT(atomic_read(&ip->i_iocount) == 0);
812 ASSERT(atomic_read(&ip->i_pincount) == 0);
813 ASSERT(!spin_is_locked(&ip->i_flags_lock));
11654513 814 ASSERT(completion_done(&ip->i_flush));
07c8f675 815
bf904248
DC
816 /*
817 * initialise the VFS inode here to get failures
818 * out of the way early.
819 */
820 if (!inode_init_always(mp->m_super, VFS_I(ip))) {
821 kmem_zone_free(xfs_inode_zone, ip);
822 return NULL;
823 }
824
825 /* initialise the xfs inode */
07c8f675
DC
826 ip->i_ino = ino;
827 ip->i_mount = mp;
828 ip->i_blkno = 0;
829 ip->i_len = 0;
830 ip->i_boffset =0;
831 ip->i_afp = NULL;
832 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
833 ip->i_flags = 0;
834 ip->i_update_core = 0;
835 ip->i_update_size = 0;
836 ip->i_delayed_blks = 0;
837 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
838 ip->i_size = 0;
839 ip->i_new_size = 0;
840
841 /*
842 * Initialize inode's trace buffers.
843 */
844#ifdef XFS_INODE_TRACE
845 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
846#endif
847#ifdef XFS_BMAP_TRACE
848 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
849#endif
8c4ed633 850#ifdef XFS_BTREE_TRACE
07c8f675
DC
851 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
852#endif
853#ifdef XFS_RW_TRACE
854 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
855#endif
856#ifdef XFS_ILOCK_TRACE
857 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
858#endif
859#ifdef XFS_DIR2_TRACE
860 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
861#endif
862
863 return ip;
864}
865
1da177e4
LT
866/*
867 * Given a mount structure and an inode number, return a pointer
c41564b5 868 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
869 * inode number.
870 *
871 * Initialize the inode's attributes and extent pointers if it
872 * already has them (it will not if the inode has no links).
873 */
874int
875xfs_iread(
876 xfs_mount_t *mp,
877 xfs_trans_t *tp,
878 xfs_ino_t ino,
879 xfs_inode_t **ipp,
745b1f47
NS
880 xfs_daddr_t bno,
881 uint imap_flags)
1da177e4
LT
882{
883 xfs_buf_t *bp;
884 xfs_dinode_t *dip;
885 xfs_inode_t *ip;
886 int error;
887
07c8f675
DC
888 ip = xfs_inode_alloc(mp, ino);
889 if (!ip)
890 return ENOMEM;
1da177e4
LT
891
892 /*
893 * Get pointer's to the on-disk inode and the buffer containing it.
894 * If the inode number refers to a block outside the file system
895 * then xfs_itobp() will return NULL. In this case we should
896 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
897 * know that this is a new incore inode.
898 */
a3f74ffb 899 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
b12dd342 900 if (error) {
d07c60e5 901 xfs_idestroy(ip);
1da177e4
LT
902 return error;
903 }
904
1da177e4
LT
905 /*
906 * If we got something that isn't an inode it means someone
907 * (nfs or dmi) has a stale handle.
908 */
347d1c01 909 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
07c8f675 910 xfs_idestroy(ip);
1da177e4
LT
911 xfs_trans_brelse(tp, bp);
912#ifdef DEBUG
913 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
914 "dip->di_core.di_magic (0x%x) != "
915 "XFS_DINODE_MAGIC (0x%x)",
347d1c01 916 be16_to_cpu(dip->di_core.di_magic),
1da177e4
LT
917 XFS_DINODE_MAGIC);
918#endif /* DEBUG */
919 return XFS_ERROR(EINVAL);
920 }
921
922 /*
923 * If the on-disk inode is already linked to a directory
924 * entry, copy all of the inode into the in-core inode.
925 * xfs_iformat() handles copying in the inode format
926 * specific information.
927 * Otherwise, just get the truly permanent information.
928 */
929 if (dip->di_core.di_mode) {
347d1c01 930 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
1da177e4
LT
931 error = xfs_iformat(ip, dip);
932 if (error) {
07c8f675 933 xfs_idestroy(ip);
1da177e4
LT
934 xfs_trans_brelse(tp, bp);
935#ifdef DEBUG
936 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
937 "xfs_iformat() returned error %d",
938 error);
939#endif /* DEBUG */
940 return error;
941 }
942 } else {
347d1c01
CH
943 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
944 ip->i_d.di_version = dip->di_core.di_version;
945 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
946 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
1da177e4
LT
947 /*
948 * Make sure to pull in the mode here as well in
949 * case the inode is released without being used.
950 * This ensures that xfs_inactive() will see that
951 * the inode is already free and not try to mess
952 * with the uninitialized part of it.
953 */
954 ip->i_d.di_mode = 0;
955 /*
956 * Initialize the per-fork minima and maxima for a new
957 * inode here. xfs_iformat will do it for old inodes.
958 */
959 ip->i_df.if_ext_max =
960 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
961 }
962
1da177e4
LT
963 /*
964 * The inode format changed when we moved the link count and
965 * made it 32 bits long. If this is an old format inode,
966 * convert it in memory to look like a new one. If it gets
967 * flushed to disk we will convert back before flushing or
968 * logging it. We zero out the new projid field and the old link
969 * count field. We'll handle clearing the pad field (the remains
970 * of the old uuid field) when we actually convert the inode to
971 * the new format. We don't change the version number so that we
972 * can distinguish this from a real new format inode.
973 */
974 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
975 ip->i_d.di_nlink = ip->i_d.di_onlink;
976 ip->i_d.di_onlink = 0;
977 ip->i_d.di_projid = 0;
978 }
979
980 ip->i_delayed_blks = 0;
ba87ea69 981 ip->i_size = ip->i_d.di_size;
1da177e4
LT
982
983 /*
984 * Mark the buffer containing the inode as something to keep
985 * around for a while. This helps to keep recently accessed
986 * meta-data in-core longer.
987 */
988 XFS_BUF_SET_REF(bp, XFS_INO_REF);
989
990 /*
991 * Use xfs_trans_brelse() to release the buffer containing the
992 * on-disk inode, because it was acquired with xfs_trans_read_buf()
993 * in xfs_itobp() above. If tp is NULL, this is just a normal
994 * brelse(). If we're within a transaction, then xfs_trans_brelse()
995 * will only release the buffer if it is not dirty within the
996 * transaction. It will be OK to release the buffer in this case,
997 * because inodes on disk are never destroyed and we will be
998 * locking the new in-core inode before putting it in the hash
999 * table where other processes can find it. Thus we don't have
1000 * to worry about the inode being changed just because we released
1001 * the buffer.
1002 */
1003 xfs_trans_brelse(tp, bp);
1004 *ipp = ip;
1005 return 0;
1006}
1007
1008/*
1009 * Read in extents from a btree-format inode.
1010 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1011 */
1012int
1013xfs_iread_extents(
1014 xfs_trans_t *tp,
1015 xfs_inode_t *ip,
1016 int whichfork)
1017{
1018 int error;
1019 xfs_ifork_t *ifp;
4eea22f0 1020 xfs_extnum_t nextents;
1da177e4
LT
1021 size_t size;
1022
1023 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1024 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1025 ip->i_mount);
1026 return XFS_ERROR(EFSCORRUPTED);
1027 }
4eea22f0
MK
1028 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1029 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1030 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1031
1da177e4
LT
1032 /*
1033 * We know that the size is valid (it's checked in iformat_btree)
1034 */
1da177e4 1035 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1036 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1037 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1038 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1039 error = xfs_bmap_read_extents(tp, ip, whichfork);
1040 if (error) {
4eea22f0 1041 xfs_iext_destroy(ifp);
1da177e4
LT
1042 ifp->if_flags &= ~XFS_IFEXTENTS;
1043 return error;
1044 }
a6f64d4a 1045 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1046 return 0;
1047}
1048
1049/*
1050 * Allocate an inode on disk and return a copy of its in-core version.
1051 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1052 * appropriately within the inode. The uid and gid for the inode are
1053 * set according to the contents of the given cred structure.
1054 *
1055 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1056 * has a free inode available, call xfs_iget()
1057 * to obtain the in-core version of the allocated inode. Finally,
1058 * fill in the inode and log its initial contents. In this case,
1059 * ialloc_context would be set to NULL and call_again set to false.
1060 *
1061 * If xfs_dialloc() does not have an available inode,
1062 * it will replenish its supply by doing an allocation. Since we can
1063 * only do one allocation within a transaction without deadlocks, we
1064 * must commit the current transaction before returning the inode itself.
1065 * In this case, therefore, we will set call_again to true and return.
1066 * The caller should then commit the current transaction, start a new
1067 * transaction, and call xfs_ialloc() again to actually get the inode.
1068 *
1069 * To ensure that some other process does not grab the inode that
1070 * was allocated during the first call to xfs_ialloc(), this routine
1071 * also returns the [locked] bp pointing to the head of the freelist
1072 * as ialloc_context. The caller should hold this buffer across
1073 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1074 *
1075 * If we are allocating quota inodes, we do not have a parent inode
1076 * to attach to or associate with (i.e. pip == NULL) because they
1077 * are not linked into the directory structure - they are attached
1078 * directly to the superblock - and so have no parent.
1da177e4
LT
1079 */
1080int
1081xfs_ialloc(
1082 xfs_trans_t *tp,
1083 xfs_inode_t *pip,
1084 mode_t mode,
31b084ae 1085 xfs_nlink_t nlink,
1da177e4
LT
1086 xfs_dev_t rdev,
1087 cred_t *cr,
1088 xfs_prid_t prid,
1089 int okalloc,
1090 xfs_buf_t **ialloc_context,
1091 boolean_t *call_again,
1092 xfs_inode_t **ipp)
1093{
1094 xfs_ino_t ino;
1095 xfs_inode_t *ip;
1da177e4
LT
1096 uint flags;
1097 int error;
dff35fd4 1098 timespec_t tv;
bf904248 1099 int filestreams = 0;
1da177e4
LT
1100
1101 /*
1102 * Call the space management code to pick
1103 * the on-disk inode to be allocated.
1104 */
b11f94d5 1105 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 1106 ialloc_context, call_again, &ino);
bf904248 1107 if (error)
1da177e4 1108 return error;
1da177e4
LT
1109 if (*call_again || ino == NULLFSINO) {
1110 *ipp = NULL;
1111 return 0;
1112 }
1113 ASSERT(*ialloc_context == NULL);
1114
1115 /*
1116 * Get the in-core inode with the lock held exclusively.
1117 * This is because we're setting fields here we need
1118 * to prevent others from looking at until we're done.
1119 */
1120 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1121 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
bf904248 1122 if (error)
1da177e4 1123 return error;
1da177e4
LT
1124 ASSERT(ip != NULL);
1125
1da177e4
LT
1126 ip->i_d.di_mode = (__uint16_t)mode;
1127 ip->i_d.di_onlink = 0;
1128 ip->i_d.di_nlink = nlink;
1129 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1130 ip->i_d.di_uid = current_fsuid();
1131 ip->i_d.di_gid = current_fsgid();
1da177e4
LT
1132 ip->i_d.di_projid = prid;
1133 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1134
1135 /*
1136 * If the superblock version is up to where we support new format
1137 * inodes and this is currently an old format inode, then change
1138 * the inode version number now. This way we only do the conversion
1139 * here rather than here and in the flush/logging code.
1140 */
62118709 1141 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1da177e4
LT
1142 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1143 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1144 /*
1145 * We've already zeroed the old link count, the projid field,
1146 * and the pad field.
1147 */
1148 }
1149
1150 /*
1151 * Project ids won't be stored on disk if we are using a version 1 inode.
1152 */
2a82b8be 1153 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1da177e4
LT
1154 xfs_bump_ino_vers2(tp, ip);
1155
bd186aa9 1156 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1157 ip->i_d.di_gid = pip->i_d.di_gid;
1158 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1159 ip->i_d.di_mode |= S_ISGID;
1160 }
1161 }
1162
1163 /*
1164 * If the group ID of the new file does not match the effective group
1165 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1166 * (and only if the irix_sgid_inherit compatibility variable is set).
1167 */
1168 if ((irix_sgid_inherit) &&
1169 (ip->i_d.di_mode & S_ISGID) &&
1170 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1171 ip->i_d.di_mode &= ~S_ISGID;
1172 }
1173
1174 ip->i_d.di_size = 0;
ba87ea69 1175 ip->i_size = 0;
1da177e4
LT
1176 ip->i_d.di_nextents = 0;
1177 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1178
1179 nanotime(&tv);
1180 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1181 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1182 ip->i_d.di_atime = ip->i_d.di_mtime;
1183 ip->i_d.di_ctime = ip->i_d.di_mtime;
1184
1da177e4
LT
1185 /*
1186 * di_gen will have been taken care of in xfs_iread.
1187 */
1188 ip->i_d.di_extsize = 0;
1189 ip->i_d.di_dmevmask = 0;
1190 ip->i_d.di_dmstate = 0;
1191 ip->i_d.di_flags = 0;
1192 flags = XFS_ILOG_CORE;
1193 switch (mode & S_IFMT) {
1194 case S_IFIFO:
1195 case S_IFCHR:
1196 case S_IFBLK:
1197 case S_IFSOCK:
1198 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1199 ip->i_df.if_u2.if_rdev = rdev;
1200 ip->i_df.if_flags = 0;
1201 flags |= XFS_ILOG_DEV;
1202 break;
1203 case S_IFREG:
bf904248
DC
1204 /*
1205 * we can't set up filestreams until after the VFS inode
1206 * is set up properly.
1207 */
1208 if (pip && xfs_inode_is_filestream(pip))
1209 filestreams = 1;
2a82b8be 1210 /* fall through */
1da177e4 1211 case S_IFDIR:
b11f94d5 1212 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1213 uint di_flags = 0;
1214
1215 if ((mode & S_IFMT) == S_IFDIR) {
1216 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1217 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1218 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1219 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1220 ip->i_d.di_extsize = pip->i_d.di_extsize;
1221 }
1222 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1223 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1224 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1225 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1226 di_flags |= XFS_DIFLAG_EXTSIZE;
1227 ip->i_d.di_extsize = pip->i_d.di_extsize;
1228 }
1da177e4
LT
1229 }
1230 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1231 xfs_inherit_noatime)
365ca83d 1232 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1233 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1234 xfs_inherit_nodump)
365ca83d 1235 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1236 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1237 xfs_inherit_sync)
365ca83d 1238 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1239 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1240 xfs_inherit_nosymlinks)
365ca83d
NS
1241 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1242 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1243 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1244 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1245 xfs_inherit_nodefrag)
1246 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1247 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1248 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1249 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1250 }
1251 /* FALLTHROUGH */
1252 case S_IFLNK:
1253 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1254 ip->i_df.if_flags = XFS_IFEXTENTS;
1255 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1256 ip->i_df.if_u1.if_extents = NULL;
1257 break;
1258 default:
1259 ASSERT(0);
1260 }
1261 /*
1262 * Attribute fork settings for new inode.
1263 */
1264 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1265 ip->i_d.di_anextents = 0;
1266
1267 /*
1268 * Log the new values stuffed into the inode.
1269 */
1270 xfs_trans_log_inode(tp, ip, flags);
1271
b83bd138 1272 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1273 xfs_setup_inode(ip);
1da177e4 1274
bf904248
DC
1275 /* now we have set up the vfs inode we can associate the filestream */
1276 if (filestreams) {
1277 error = xfs_filestream_associate(pip, ip);
1278 if (error < 0)
1279 return -error;
1280 if (!error)
1281 xfs_iflags_set(ip, XFS_IFILESTREAM);
1282 }
1283
1da177e4
LT
1284 *ipp = ip;
1285 return 0;
1286}
1287
1288/*
1289 * Check to make sure that there are no blocks allocated to the
1290 * file beyond the size of the file. We don't check this for
1291 * files with fixed size extents or real time extents, but we
1292 * at least do it for regular files.
1293 */
1294#ifdef DEBUG
1295void
1296xfs_isize_check(
1297 xfs_mount_t *mp,
1298 xfs_inode_t *ip,
1299 xfs_fsize_t isize)
1300{
1301 xfs_fileoff_t map_first;
1302 int nimaps;
1303 xfs_bmbt_irec_t imaps[2];
1304
1305 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1306 return;
1307
71ddabb9
ES
1308 if (XFS_IS_REALTIME_INODE(ip))
1309 return;
1310
1311 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1312 return;
1313
1314 nimaps = 2;
1315 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1316 /*
1317 * The filesystem could be shutting down, so bmapi may return
1318 * an error.
1319 */
1320 if (xfs_bmapi(NULL, ip, map_first,
1321 (XFS_B_TO_FSB(mp,
1322 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1323 map_first),
1324 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1325 NULL, NULL))
1da177e4
LT
1326 return;
1327 ASSERT(nimaps == 1);
1328 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1329}
1330#endif /* DEBUG */
1331
1332/*
1333 * Calculate the last possible buffered byte in a file. This must
1334 * include data that was buffered beyond the EOF by the write code.
1335 * This also needs to deal with overflowing the xfs_fsize_t type
1336 * which can happen for sizes near the limit.
1337 *
1338 * We also need to take into account any blocks beyond the EOF. It
1339 * may be the case that they were buffered by a write which failed.
1340 * In that case the pages will still be in memory, but the inode size
1341 * will never have been updated.
1342 */
1343xfs_fsize_t
1344xfs_file_last_byte(
1345 xfs_inode_t *ip)
1346{
1347 xfs_mount_t *mp;
1348 xfs_fsize_t last_byte;
1349 xfs_fileoff_t last_block;
1350 xfs_fileoff_t size_last_block;
1351 int error;
1352
579aa9ca 1353 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1da177e4
LT
1354
1355 mp = ip->i_mount;
1356 /*
1357 * Only check for blocks beyond the EOF if the extents have
1358 * been read in. This eliminates the need for the inode lock,
1359 * and it also saves us from looking when it really isn't
1360 * necessary.
1361 */
1362 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1363 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1364 XFS_DATA_FORK);
1365 if (error) {
1366 last_block = 0;
1367 }
1368 } else {
1369 last_block = 0;
1370 }
ba87ea69 1371 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1372 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1373
1374 last_byte = XFS_FSB_TO_B(mp, last_block);
1375 if (last_byte < 0) {
1376 return XFS_MAXIOFFSET(mp);
1377 }
1378 last_byte += (1 << mp->m_writeio_log);
1379 if (last_byte < 0) {
1380 return XFS_MAXIOFFSET(mp);
1381 }
1382 return last_byte;
1383}
1384
1385#if defined(XFS_RW_TRACE)
1386STATIC void
1387xfs_itrunc_trace(
1388 int tag,
1389 xfs_inode_t *ip,
1390 int flag,
1391 xfs_fsize_t new_size,
1392 xfs_off_t toss_start,
1393 xfs_off_t toss_finish)
1394{
1395 if (ip->i_rwtrace == NULL) {
1396 return;
1397 }
1398
1399 ktrace_enter(ip->i_rwtrace,
1400 (void*)((long)tag),
1401 (void*)ip,
1402 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1403 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1404 (void*)((long)flag),
1405 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1406 (void*)(unsigned long)(new_size & 0xffffffff),
1407 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1408 (void*)(unsigned long)(toss_start & 0xffffffff),
1409 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1410 (void*)(unsigned long)(toss_finish & 0xffffffff),
1411 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1412 (void*)(unsigned long)current_pid(),
1413 (void*)NULL,
1414 (void*)NULL,
1415 (void*)NULL);
1da177e4
LT
1416}
1417#else
1418#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1419#endif
1420
1421/*
1422 * Start the truncation of the file to new_size. The new size
1423 * must be smaller than the current size. This routine will
1424 * clear the buffer and page caches of file data in the removed
1425 * range, and xfs_itruncate_finish() will remove the underlying
1426 * disk blocks.
1427 *
1428 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1429 * must NOT have the inode lock held at all. This is because we're
1430 * calling into the buffer/page cache code and we can't hold the
1431 * inode lock when we do so.
1432 *
38e2299a
DC
1433 * We need to wait for any direct I/Os in flight to complete before we
1434 * proceed with the truncate. This is needed to prevent the extents
1435 * being read or written by the direct I/Os from being removed while the
1436 * I/O is in flight as there is no other method of synchronising
1437 * direct I/O with the truncate operation. Also, because we hold
1438 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1439 * started until the truncate completes and drops the lock. Essentially,
1440 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1441 * between direct I/Os and the truncate operation.
1442 *
1da177e4
LT
1443 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1444 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1445 * in the case that the caller is locking things out of order and
1446 * may not be able to call xfs_itruncate_finish() with the inode lock
1447 * held without dropping the I/O lock. If the caller must drop the
1448 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1449 * must be called again with all the same restrictions as the initial
1450 * call.
1451 */
d3cf2094 1452int
1da177e4
LT
1453xfs_itruncate_start(
1454 xfs_inode_t *ip,
1455 uint flags,
1456 xfs_fsize_t new_size)
1457{
1458 xfs_fsize_t last_byte;
1459 xfs_off_t toss_start;
1460 xfs_mount_t *mp;
d3cf2094 1461 int error = 0;
1da177e4 1462
579aa9ca 1463 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ba87ea69 1464 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1465 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1466 (flags == XFS_ITRUNC_MAYBE));
1467
1468 mp = ip->i_mount;
9fa8046f 1469
c734c79b 1470 /* wait for the completion of any pending DIOs */
d112f298 1471 if (new_size == 0 || new_size < ip->i_size)
c734c79b
LM
1472 vn_iowait(ip);
1473
1da177e4 1474 /*
67fcaa73 1475 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1476 * overlapping the region being removed. We have to use
67fcaa73 1477 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1478 * caller may not be able to finish the truncate without
1479 * dropping the inode's I/O lock. Make sure
1480 * to catch any pages brought in by buffers overlapping
1481 * the EOF by searching out beyond the isize by our
1482 * block size. We round new_size up to a block boundary
1483 * so that we don't toss things on the same block as
1484 * new_size but before it.
1485 *
67fcaa73 1486 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1487 * call remapf() over the same region if the file is mapped.
1488 * This frees up mapped file references to the pages in the
67fcaa73 1489 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1490 * that we get the latest mapped changes flushed out.
1491 */
1492 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1493 toss_start = XFS_FSB_TO_B(mp, toss_start);
1494 if (toss_start < 0) {
1495 /*
1496 * The place to start tossing is beyond our maximum
1497 * file size, so there is no way that the data extended
1498 * out there.
1499 */
d3cf2094 1500 return 0;
1da177e4
LT
1501 }
1502 last_byte = xfs_file_last_byte(ip);
1503 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1504 last_byte);
1505 if (last_byte > toss_start) {
1506 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1507 xfs_tosspages(ip, toss_start,
1508 -1, FI_REMAPF_LOCKED);
1da177e4 1509 } else {
739bfb2a
CH
1510 error = xfs_flushinval_pages(ip, toss_start,
1511 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1512 }
1513 }
1514
1515#ifdef DEBUG
1516 if (new_size == 0) {
df80c933 1517 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1da177e4
LT
1518 }
1519#endif
d3cf2094 1520 return error;
1da177e4
LT
1521}
1522
1523/*
f6485057
DC
1524 * Shrink the file to the given new_size. The new size must be smaller than
1525 * the current size. This will free up the underlying blocks in the removed
1526 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1da177e4 1527 *
f6485057
DC
1528 * The transaction passed to this routine must have made a permanent log
1529 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1530 * given transaction and start new ones, so make sure everything involved in
1531 * the transaction is tidy before calling here. Some transaction will be
1532 * returned to the caller to be committed. The incoming transaction must
1533 * already include the inode, and both inode locks must be held exclusively.
1534 * The inode must also be "held" within the transaction. On return the inode
1535 * will be "held" within the returned transaction. This routine does NOT
1536 * require any disk space to be reserved for it within the transaction.
1da177e4 1537 *
f6485057
DC
1538 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1539 * indicates the fork which is to be truncated. For the attribute fork we only
1540 * support truncation to size 0.
1da177e4 1541 *
f6485057
DC
1542 * We use the sync parameter to indicate whether or not the first transaction
1543 * we perform might have to be synchronous. For the attr fork, it needs to be
1544 * so if the unlink of the inode is not yet known to be permanent in the log.
1545 * This keeps us from freeing and reusing the blocks of the attribute fork
1546 * before the unlink of the inode becomes permanent.
1da177e4 1547 *
f6485057
DC
1548 * For the data fork, we normally have to run synchronously if we're being
1549 * called out of the inactive path or we're being called out of the create path
1550 * where we're truncating an existing file. Either way, the truncate needs to
1551 * be sync so blocks don't reappear in the file with altered data in case of a
1552 * crash. wsync filesystems can run the first case async because anything that
1553 * shrinks the inode has to run sync so by the time we're called here from
1554 * inactive, the inode size is permanently set to 0.
1da177e4 1555 *
f6485057
DC
1556 * Calls from the truncate path always need to be sync unless we're in a wsync
1557 * filesystem and the file has already been unlinked.
1da177e4 1558 *
f6485057
DC
1559 * The caller is responsible for correctly setting the sync parameter. It gets
1560 * too hard for us to guess here which path we're being called out of just
1561 * based on inode state.
1562 *
1563 * If we get an error, we must return with the inode locked and linked into the
1564 * current transaction. This keeps things simple for the higher level code,
1565 * because it always knows that the inode is locked and held in the transaction
1566 * that returns to it whether errors occur or not. We don't mark the inode
1567 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1568 */
1569int
1570xfs_itruncate_finish(
1571 xfs_trans_t **tp,
1572 xfs_inode_t *ip,
1573 xfs_fsize_t new_size,
1574 int fork,
1575 int sync)
1576{
1577 xfs_fsblock_t first_block;
1578 xfs_fileoff_t first_unmap_block;
1579 xfs_fileoff_t last_block;
1580 xfs_filblks_t unmap_len=0;
1581 xfs_mount_t *mp;
1582 xfs_trans_t *ntp;
1583 int done;
1584 int committed;
1585 xfs_bmap_free_t free_list;
1586 int error;
1587
579aa9ca 1588 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ba87ea69 1589 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1590 ASSERT(*tp != NULL);
1591 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1592 ASSERT(ip->i_transp == *tp);
1593 ASSERT(ip->i_itemp != NULL);
1594 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1595
1596
1597 ntp = *tp;
1598 mp = (ntp)->t_mountp;
1599 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1600
1601 /*
1602 * We only support truncating the entire attribute fork.
1603 */
1604 if (fork == XFS_ATTR_FORK) {
1605 new_size = 0LL;
1606 }
1607 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1608 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1609 /*
1610 * The first thing we do is set the size to new_size permanently
1611 * on disk. This way we don't have to worry about anyone ever
1612 * being able to look at the data being freed even in the face
1613 * of a crash. What we're getting around here is the case where
1614 * we free a block, it is allocated to another file, it is written
1615 * to, and then we crash. If the new data gets written to the
1616 * file but the log buffers containing the free and reallocation
1617 * don't, then we'd end up with garbage in the blocks being freed.
1618 * As long as we make the new_size permanent before actually
1619 * freeing any blocks it doesn't matter if they get writtten to.
1620 *
1621 * The callers must signal into us whether or not the size
1622 * setting here must be synchronous. There are a few cases
1623 * where it doesn't have to be synchronous. Those cases
1624 * occur if the file is unlinked and we know the unlink is
1625 * permanent or if the blocks being truncated are guaranteed
1626 * to be beyond the inode eof (regardless of the link count)
1627 * and the eof value is permanent. Both of these cases occur
1628 * only on wsync-mounted filesystems. In those cases, we're
1629 * guaranteed that no user will ever see the data in the blocks
1630 * that are being truncated so the truncate can run async.
1631 * In the free beyond eof case, the file may wind up with
1632 * more blocks allocated to it than it needs if we crash
1633 * and that won't get fixed until the next time the file
1634 * is re-opened and closed but that's ok as that shouldn't
1635 * be too many blocks.
1636 *
1637 * However, we can't just make all wsync xactions run async
1638 * because there's one call out of the create path that needs
1639 * to run sync where it's truncating an existing file to size
1640 * 0 whose size is > 0.
1641 *
1642 * It's probably possible to come up with a test in this
1643 * routine that would correctly distinguish all the above
1644 * cases from the values of the function parameters and the
1645 * inode state but for sanity's sake, I've decided to let the
1646 * layers above just tell us. It's simpler to correctly figure
1647 * out in the layer above exactly under what conditions we
1648 * can run async and I think it's easier for others read and
1649 * follow the logic in case something has to be changed.
1650 * cscope is your friend -- rcc.
1651 *
1652 * The attribute fork is much simpler.
1653 *
1654 * For the attribute fork we allow the caller to tell us whether
1655 * the unlink of the inode that led to this call is yet permanent
1656 * in the on disk log. If it is not and we will be freeing extents
1657 * in this inode then we make the first transaction synchronous
1658 * to make sure that the unlink is permanent by the time we free
1659 * the blocks.
1660 */
1661 if (fork == XFS_DATA_FORK) {
1662 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1663 /*
1664 * If we are not changing the file size then do
1665 * not update the on-disk file size - we may be
1666 * called from xfs_inactive_free_eofblocks(). If we
1667 * update the on-disk file size and then the system
1668 * crashes before the contents of the file are
1669 * flushed to disk then the files may be full of
1670 * holes (ie NULL files bug).
1671 */
1672 if (ip->i_size != new_size) {
1673 ip->i_d.di_size = new_size;
1674 ip->i_size = new_size;
1675 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1676 }
1da177e4
LT
1677 }
1678 } else if (sync) {
1679 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1680 if (ip->i_d.di_anextents > 0)
1681 xfs_trans_set_sync(ntp);
1682 }
1683 ASSERT(fork == XFS_DATA_FORK ||
1684 (fork == XFS_ATTR_FORK &&
1685 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1686 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1687
1688 /*
1689 * Since it is possible for space to become allocated beyond
1690 * the end of the file (in a crash where the space is allocated
1691 * but the inode size is not yet updated), simply remove any
1692 * blocks which show up between the new EOF and the maximum
1693 * possible file size. If the first block to be removed is
1694 * beyond the maximum file size (ie it is the same as last_block),
1695 * then there is nothing to do.
1696 */
1697 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1698 ASSERT(first_unmap_block <= last_block);
1699 done = 0;
1700 if (last_block == first_unmap_block) {
1701 done = 1;
1702 } else {
1703 unmap_len = last_block - first_unmap_block + 1;
1704 }
1705 while (!done) {
1706 /*
1707 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1708 * will tell us whether it freed the entire range or
1709 * not. If this is a synchronous mount (wsync),
1710 * then we can tell bunmapi to keep all the
1711 * transactions asynchronous since the unlink
1712 * transaction that made this inode inactive has
1713 * already hit the disk. There's no danger of
1714 * the freed blocks being reused, there being a
1715 * crash, and the reused blocks suddenly reappearing
1716 * in this file with garbage in them once recovery
1717 * runs.
1718 */
1719 XFS_BMAP_INIT(&free_list, &first_block);
541d7d3c 1720 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1721 first_unmap_block, unmap_len,
1da177e4
LT
1722 XFS_BMAPI_AFLAG(fork) |
1723 (sync ? 0 : XFS_BMAPI_ASYNC),
1724 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1725 &first_block, &free_list,
1726 NULL, &done);
1da177e4
LT
1727 if (error) {
1728 /*
1729 * If the bunmapi call encounters an error,
1730 * return to the caller where the transaction
1731 * can be properly aborted. We just need to
1732 * make sure we're not holding any resources
1733 * that we were not when we came in.
1734 */
1735 xfs_bmap_cancel(&free_list);
1736 return error;
1737 }
1738
1739 /*
1740 * Duplicate the transaction that has the permanent
1741 * reservation and commit the old transaction.
1742 */
f7c99b6f 1743 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4 1744 ntp = *tp;
f6485057
DC
1745 if (committed) {
1746 /* link the inode into the next xact in the chain */
1747 xfs_trans_ijoin(ntp, ip,
1748 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1749 xfs_trans_ihold(ntp, ip);
1750 }
1751
1da177e4
LT
1752 if (error) {
1753 /*
f6485057
DC
1754 * If the bmap finish call encounters an error, return
1755 * to the caller where the transaction can be properly
1756 * aborted. We just need to make sure we're not
1757 * holding any resources that we were not when we came
1758 * in.
1da177e4 1759 *
f6485057
DC
1760 * Aborting from this point might lose some blocks in
1761 * the file system, but oh well.
1da177e4
LT
1762 */
1763 xfs_bmap_cancel(&free_list);
1da177e4
LT
1764 return error;
1765 }
1766
1767 if (committed) {
1768 /*
f6485057 1769 * Mark the inode dirty so it will be logged and
e5720eec 1770 * moved forward in the log as part of every commit.
1da177e4 1771 */
1da177e4
LT
1772 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1773 }
f6485057 1774
1da177e4 1775 ntp = xfs_trans_dup(ntp);
e5720eec 1776 error = xfs_trans_commit(*tp, 0);
1da177e4 1777 *tp = ntp;
e5720eec 1778
f6485057
DC
1779 /* link the inode into the next transaction in the chain */
1780 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1781 xfs_trans_ihold(ntp, ip);
1782
1783 if (!error)
1784 error = xfs_trans_reserve(ntp, 0,
1785 XFS_ITRUNCATE_LOG_RES(mp), 0,
1786 XFS_TRANS_PERM_LOG_RES,
1787 XFS_ITRUNCATE_LOG_COUNT);
1788 if (error)
1789 return error;
1da177e4
LT
1790 }
1791 /*
1792 * Only update the size in the case of the data fork, but
1793 * always re-log the inode so that our permanent transaction
1794 * can keep on rolling it forward in the log.
1795 */
1796 if (fork == XFS_DATA_FORK) {
1797 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1798 /*
1799 * If we are not changing the file size then do
1800 * not update the on-disk file size - we may be
1801 * called from xfs_inactive_free_eofblocks(). If we
1802 * update the on-disk file size and then the system
1803 * crashes before the contents of the file are
1804 * flushed to disk then the files may be full of
1805 * holes (ie NULL files bug).
1806 */
1807 if (ip->i_size != new_size) {
1808 ip->i_d.di_size = new_size;
1809 ip->i_size = new_size;
1810 }
1da177e4
LT
1811 }
1812 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1813 ASSERT((new_size != 0) ||
1814 (fork == XFS_ATTR_FORK) ||
1815 (ip->i_delayed_blks == 0));
1816 ASSERT((new_size != 0) ||
1817 (fork == XFS_ATTR_FORK) ||
1818 (ip->i_d.di_nextents == 0));
1819 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1820 return 0;
1821}
1822
1da177e4
LT
1823/*
1824 * This is called when the inode's link count goes to 0.
1825 * We place the on-disk inode on a list in the AGI. It
1826 * will be pulled from this list when the inode is freed.
1827 */
1828int
1829xfs_iunlink(
1830 xfs_trans_t *tp,
1831 xfs_inode_t *ip)
1832{
1833 xfs_mount_t *mp;
1834 xfs_agi_t *agi;
1835 xfs_dinode_t *dip;
1836 xfs_buf_t *agibp;
1837 xfs_buf_t *ibp;
1838 xfs_agnumber_t agno;
1839 xfs_daddr_t agdaddr;
1840 xfs_agino_t agino;
1841 short bucket_index;
1842 int offset;
1843 int error;
1844 int agi_ok;
1845
1846 ASSERT(ip->i_d.di_nlink == 0);
1847 ASSERT(ip->i_d.di_mode != 0);
1848 ASSERT(ip->i_transp == tp);
1849
1850 mp = tp->t_mountp;
1851
1852 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1853 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1854
1855 /*
1856 * Get the agi buffer first. It ensures lock ordering
1857 * on the list.
1858 */
1859 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1860 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
859d7182 1861 if (error)
1da177e4 1862 return error;
859d7182 1863
1da177e4
LT
1864 /*
1865 * Validate the magic number of the agi block.
1866 */
1867 agi = XFS_BUF_TO_AGI(agibp);
1868 agi_ok =
16259e7d
CH
1869 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1870 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1871 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1872 XFS_RANDOM_IUNLINK))) {
1873 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1874 xfs_trans_brelse(tp, agibp);
1875 return XFS_ERROR(EFSCORRUPTED);
1876 }
1877 /*
1878 * Get the index into the agi hash table for the
1879 * list this inode will go on.
1880 */
1881 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1882 ASSERT(agino != 0);
1883 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1884 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1885 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1886
16259e7d 1887 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1888 /*
1889 * There is already another inode in the bucket we need
1890 * to add ourselves to. Add us at the front of the list.
1891 * Here we put the head pointer into our next pointer,
1892 * and then we fall through to point the head at us.
1893 */
a3f74ffb 1894 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
1895 if (error)
1896 return error;
1897
347d1c01 1898 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1899 /* both on-disk, don't endian flip twice */
1900 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1901 offset = ip->i_boffset +
1902 offsetof(xfs_dinode_t, di_next_unlinked);
1903 xfs_trans_inode_buf(tp, ibp);
1904 xfs_trans_log_buf(tp, ibp, offset,
1905 (offset + sizeof(xfs_agino_t) - 1));
1906 xfs_inobp_check(mp, ibp);
1907 }
1908
1909 /*
1910 * Point the bucket head pointer at the inode being inserted.
1911 */
1912 ASSERT(agino != 0);
16259e7d 1913 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1914 offset = offsetof(xfs_agi_t, agi_unlinked) +
1915 (sizeof(xfs_agino_t) * bucket_index);
1916 xfs_trans_log_buf(tp, agibp, offset,
1917 (offset + sizeof(xfs_agino_t) - 1));
1918 return 0;
1919}
1920
1921/*
1922 * Pull the on-disk inode from the AGI unlinked list.
1923 */
1924STATIC int
1925xfs_iunlink_remove(
1926 xfs_trans_t *tp,
1927 xfs_inode_t *ip)
1928{
1929 xfs_ino_t next_ino;
1930 xfs_mount_t *mp;
1931 xfs_agi_t *agi;
1932 xfs_dinode_t *dip;
1933 xfs_buf_t *agibp;
1934 xfs_buf_t *ibp;
1935 xfs_agnumber_t agno;
1936 xfs_daddr_t agdaddr;
1937 xfs_agino_t agino;
1938 xfs_agino_t next_agino;
1939 xfs_buf_t *last_ibp;
6fdf8ccc 1940 xfs_dinode_t *last_dip = NULL;
1da177e4 1941 short bucket_index;
6fdf8ccc 1942 int offset, last_offset = 0;
1da177e4
LT
1943 int error;
1944 int agi_ok;
1945
1946 /*
1947 * First pull the on-disk inode from the AGI unlinked list.
1948 */
1949 mp = tp->t_mountp;
1950
1951 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1952 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1953
1954 /*
1955 * Get the agi buffer first. It ensures lock ordering
1956 * on the list.
1957 */
1958 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1959 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1960 if (error) {
1961 cmn_err(CE_WARN,
1962 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1963 error, mp->m_fsname);
1964 return error;
1965 }
1966 /*
1967 * Validate the magic number of the agi block.
1968 */
1969 agi = XFS_BUF_TO_AGI(agibp);
1970 agi_ok =
16259e7d
CH
1971 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1972 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1973 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1974 XFS_RANDOM_IUNLINK_REMOVE))) {
1975 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1976 mp, agi);
1977 xfs_trans_brelse(tp, agibp);
1978 cmn_err(CE_WARN,
1979 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1980 mp->m_fsname);
1981 return XFS_ERROR(EFSCORRUPTED);
1982 }
1983 /*
1984 * Get the index into the agi hash table for the
1985 * list this inode will go on.
1986 */
1987 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1988 ASSERT(agino != 0);
1989 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 1990 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
1991 ASSERT(agi->agi_unlinked[bucket_index]);
1992
16259e7d 1993 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1994 /*
1995 * We're at the head of the list. Get the inode's
1996 * on-disk buffer to see if there is anyone after us
1997 * on the list. Only modify our next pointer if it
1998 * is not already NULLAGINO. This saves us the overhead
1999 * of dealing with the buffer when there is no need to
2000 * change it.
2001 */
a3f74ffb 2002 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
2003 if (error) {
2004 cmn_err(CE_WARN,
2005 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2006 error, mp->m_fsname);
2007 return error;
2008 }
347d1c01 2009 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2010 ASSERT(next_agino != 0);
2011 if (next_agino != NULLAGINO) {
347d1c01 2012 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2013 offset = ip->i_boffset +
2014 offsetof(xfs_dinode_t, di_next_unlinked);
2015 xfs_trans_inode_buf(tp, ibp);
2016 xfs_trans_log_buf(tp, ibp, offset,
2017 (offset + sizeof(xfs_agino_t) - 1));
2018 xfs_inobp_check(mp, ibp);
2019 } else {
2020 xfs_trans_brelse(tp, ibp);
2021 }
2022 /*
2023 * Point the bucket head pointer at the next inode.
2024 */
2025 ASSERT(next_agino != 0);
2026 ASSERT(next_agino != agino);
16259e7d 2027 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2028 offset = offsetof(xfs_agi_t, agi_unlinked) +
2029 (sizeof(xfs_agino_t) * bucket_index);
2030 xfs_trans_log_buf(tp, agibp, offset,
2031 (offset + sizeof(xfs_agino_t) - 1));
2032 } else {
2033 /*
2034 * We need to search the list for the inode being freed.
2035 */
16259e7d 2036 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2037 last_ibp = NULL;
2038 while (next_agino != agino) {
2039 /*
2040 * If the last inode wasn't the one pointing to
2041 * us, then release its buffer since we're not
2042 * going to do anything with it.
2043 */
2044 if (last_ibp != NULL) {
2045 xfs_trans_brelse(tp, last_ibp);
2046 }
2047 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2048 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2049 &last_ibp, &last_offset);
2050 if (error) {
2051 cmn_err(CE_WARN,
2052 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2053 error, mp->m_fsname);
2054 return error;
2055 }
347d1c01 2056 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2057 ASSERT(next_agino != NULLAGINO);
2058 ASSERT(next_agino != 0);
2059 }
2060 /*
2061 * Now last_ibp points to the buffer previous to us on
2062 * the unlinked list. Pull us from the list.
2063 */
a3f74ffb 2064 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
2065 if (error) {
2066 cmn_err(CE_WARN,
2067 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2068 error, mp->m_fsname);
2069 return error;
2070 }
347d1c01 2071 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2072 ASSERT(next_agino != 0);
2073 ASSERT(next_agino != agino);
2074 if (next_agino != NULLAGINO) {
347d1c01 2075 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2076 offset = ip->i_boffset +
2077 offsetof(xfs_dinode_t, di_next_unlinked);
2078 xfs_trans_inode_buf(tp, ibp);
2079 xfs_trans_log_buf(tp, ibp, offset,
2080 (offset + sizeof(xfs_agino_t) - 1));
2081 xfs_inobp_check(mp, ibp);
2082 } else {
2083 xfs_trans_brelse(tp, ibp);
2084 }
2085 /*
2086 * Point the previous inode on the list to the next inode.
2087 */
347d1c01 2088 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2089 ASSERT(next_agino != 0);
2090 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2091 xfs_trans_inode_buf(tp, last_ibp);
2092 xfs_trans_log_buf(tp, last_ibp, offset,
2093 (offset + sizeof(xfs_agino_t) - 1));
2094 xfs_inobp_check(mp, last_ibp);
2095 }
2096 return 0;
2097}
2098
ba0f32d4 2099STATIC void
1da177e4
LT
2100xfs_ifree_cluster(
2101 xfs_inode_t *free_ip,
2102 xfs_trans_t *tp,
2103 xfs_ino_t inum)
2104{
2105 xfs_mount_t *mp = free_ip->i_mount;
2106 int blks_per_cluster;
2107 int nbufs;
2108 int ninodes;
2109 int i, j, found, pre_flushed;
2110 xfs_daddr_t blkno;
2111 xfs_buf_t *bp;
1da177e4
LT
2112 xfs_inode_t *ip, **ip_found;
2113 xfs_inode_log_item_t *iip;
2114 xfs_log_item_t *lip;
da353b0d 2115 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2116
2117 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2118 blks_per_cluster = 1;
2119 ninodes = mp->m_sb.sb_inopblock;
2120 nbufs = XFS_IALLOC_BLOCKS(mp);
2121 } else {
2122 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2123 mp->m_sb.sb_blocksize;
2124 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2125 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2126 }
2127
2128 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2129
2130 for (j = 0; j < nbufs; j++, inum += ninodes) {
2131 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2132 XFS_INO_TO_AGBNO(mp, inum));
2133
2134
2135 /*
2136 * Look for each inode in memory and attempt to lock it,
2137 * we can be racing with flush and tail pushing here.
2138 * any inode we get the locks on, add to an array of
2139 * inode items to process later.
2140 *
2141 * The get the buffer lock, we could beat a flush
2142 * or tail pushing thread to the lock here, in which
2143 * case they will go looking for the inode buffer
2144 * and fail, we need some other form of interlock
2145 * here.
2146 */
2147 found = 0;
2148 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2149 read_lock(&pag->pag_ici_lock);
2150 ip = radix_tree_lookup(&pag->pag_ici_root,
2151 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2152
2153 /* Inode not in memory or we found it already,
2154 * nothing to do
2155 */
7a18c386 2156 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2157 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2158 continue;
2159 }
2160
2161 if (xfs_inode_clean(ip)) {
da353b0d 2162 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2163 continue;
2164 }
2165
2166 /* If we can get the locks then add it to the
2167 * list, otherwise by the time we get the bp lock
2168 * below it will already be attached to the
2169 * inode buffer.
2170 */
2171
2172 /* This inode will already be locked - by us, lets
2173 * keep it that way.
2174 */
2175
2176 if (ip == free_ip) {
2177 if (xfs_iflock_nowait(ip)) {
7a18c386 2178 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2179 if (xfs_inode_clean(ip)) {
2180 xfs_ifunlock(ip);
2181 } else {
2182 ip_found[found++] = ip;
2183 }
2184 }
da353b0d 2185 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2186 continue;
2187 }
2188
2189 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2190 if (xfs_iflock_nowait(ip)) {
7a18c386 2191 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2192
2193 if (xfs_inode_clean(ip)) {
2194 xfs_ifunlock(ip);
2195 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2196 } else {
2197 ip_found[found++] = ip;
2198 }
2199 } else {
2200 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2201 }
2202 }
da353b0d 2203 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2204 }
2205
2206 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2207 mp->m_bsize * blks_per_cluster,
2208 XFS_BUF_LOCK);
2209
2210 pre_flushed = 0;
2211 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2212 while (lip) {
2213 if (lip->li_type == XFS_LI_INODE) {
2214 iip = (xfs_inode_log_item_t *)lip;
2215 ASSERT(iip->ili_logged == 1);
2216 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
287f3dad 2217 spin_lock(&mp->m_ail_lock);
1da177e4 2218 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2219 spin_unlock(&mp->m_ail_lock);
e5ffd2bb 2220 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2221 pre_flushed++;
2222 }
2223 lip = lip->li_bio_list;
2224 }
2225
2226 for (i = 0; i < found; i++) {
2227 ip = ip_found[i];
2228 iip = ip->i_itemp;
2229
2230 if (!iip) {
2231 ip->i_update_core = 0;
2232 xfs_ifunlock(ip);
2233 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2234 continue;
2235 }
2236
2237 iip->ili_last_fields = iip->ili_format.ilf_fields;
2238 iip->ili_format.ilf_fields = 0;
2239 iip->ili_logged = 1;
287f3dad 2240 spin_lock(&mp->m_ail_lock);
1da177e4 2241 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2242 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
2243
2244 xfs_buf_attach_iodone(bp,
2245 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2246 xfs_istale_done, (xfs_log_item_t *)iip);
2247 if (ip != free_ip) {
2248 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2249 }
2250 }
2251
2252 if (found || pre_flushed)
2253 xfs_trans_stale_inode_buf(tp, bp);
2254 xfs_trans_binval(tp, bp);
2255 }
2256
f0e2d93c 2257 kmem_free(ip_found);
da353b0d 2258 xfs_put_perag(mp, pag);
1da177e4
LT
2259}
2260
2261/*
2262 * This is called to return an inode to the inode free list.
2263 * The inode should already be truncated to 0 length and have
2264 * no pages associated with it. This routine also assumes that
2265 * the inode is already a part of the transaction.
2266 *
2267 * The on-disk copy of the inode will have been added to the list
2268 * of unlinked inodes in the AGI. We need to remove the inode from
2269 * that list atomically with respect to freeing it here.
2270 */
2271int
2272xfs_ifree(
2273 xfs_trans_t *tp,
2274 xfs_inode_t *ip,
2275 xfs_bmap_free_t *flist)
2276{
2277 int error;
2278 int delete;
2279 xfs_ino_t first_ino;
c319b58b
VA
2280 xfs_dinode_t *dip;
2281 xfs_buf_t *ibp;
1da177e4 2282
579aa9ca 2283 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2284 ASSERT(ip->i_transp == tp);
2285 ASSERT(ip->i_d.di_nlink == 0);
2286 ASSERT(ip->i_d.di_nextents == 0);
2287 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2288 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2289 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2290 ASSERT(ip->i_d.di_nblocks == 0);
2291
2292 /*
2293 * Pull the on-disk inode from the AGI unlinked list.
2294 */
2295 error = xfs_iunlink_remove(tp, ip);
2296 if (error != 0) {
2297 return error;
2298 }
2299
2300 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2301 if (error != 0) {
2302 return error;
2303 }
2304 ip->i_d.di_mode = 0; /* mark incore inode as free */
2305 ip->i_d.di_flags = 0;
2306 ip->i_d.di_dmevmask = 0;
2307 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2308 ip->i_df.if_ext_max =
2309 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2310 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2311 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2312 /*
2313 * Bump the generation count so no one will be confused
2314 * by reincarnations of this inode.
2315 */
2316 ip->i_d.di_gen++;
c319b58b 2317
1da177e4
LT
2318 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2319
a3f74ffb 2320 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
2321 if (error)
2322 return error;
2323
2324 /*
2325 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2326 * from picking up this inode when it is reclaimed (its incore state
2327 * initialzed but not flushed to disk yet). The in-core di_mode is
2328 * already cleared and a corresponding transaction logged.
2329 * The hack here just synchronizes the in-core to on-disk
2330 * di_mode value in advance before the actual inode sync to disk.
2331 * This is OK because the inode is already unlinked and would never
2332 * change its di_mode again for this inode generation.
2333 * This is a temporary hack that would require a proper fix
2334 * in the future.
2335 */
2336 dip->di_core.di_mode = 0;
2337
1da177e4
LT
2338 if (delete) {
2339 xfs_ifree_cluster(ip, tp, first_ino);
2340 }
2341
2342 return 0;
2343}
2344
2345/*
2346 * Reallocate the space for if_broot based on the number of records
2347 * being added or deleted as indicated in rec_diff. Move the records
2348 * and pointers in if_broot to fit the new size. When shrinking this
2349 * will eliminate holes between the records and pointers created by
2350 * the caller. When growing this will create holes to be filled in
2351 * by the caller.
2352 *
2353 * The caller must not request to add more records than would fit in
2354 * the on-disk inode root. If the if_broot is currently NULL, then
2355 * if we adding records one will be allocated. The caller must also
2356 * not request that the number of records go below zero, although
2357 * it can go to zero.
2358 *
2359 * ip -- the inode whose if_broot area is changing
2360 * ext_diff -- the change in the number of records, positive or negative,
2361 * requested for the if_broot array.
2362 */
2363void
2364xfs_iroot_realloc(
2365 xfs_inode_t *ip,
2366 int rec_diff,
2367 int whichfork)
2368{
60197e8d 2369 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
2370 int cur_max;
2371 xfs_ifork_t *ifp;
7cc95a82 2372 struct xfs_btree_block *new_broot;
1da177e4
LT
2373 int new_max;
2374 size_t new_size;
2375 char *np;
2376 char *op;
2377
2378 /*
2379 * Handle the degenerate case quietly.
2380 */
2381 if (rec_diff == 0) {
2382 return;
2383 }
2384
2385 ifp = XFS_IFORK_PTR(ip, whichfork);
2386 if (rec_diff > 0) {
2387 /*
2388 * If there wasn't any memory allocated before, just
2389 * allocate it now and get out.
2390 */
2391 if (ifp->if_broot_bytes == 0) {
2392 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
7cc95a82 2393 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
1da177e4
LT
2394 ifp->if_broot_bytes = (int)new_size;
2395 return;
2396 }
2397
2398 /*
2399 * If there is already an existing if_broot, then we need
2400 * to realloc() it and shift the pointers to their new
2401 * location. The records don't change location because
2402 * they are kept butted up against the btree block header.
2403 */
60197e8d 2404 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2405 new_max = cur_max + rec_diff;
2406 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 2407 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4
LT
2408 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2409 KM_SLEEP);
60197e8d
CH
2410 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2411 ifp->if_broot_bytes);
2412 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2413 (int)new_size);
1da177e4
LT
2414 ifp->if_broot_bytes = (int)new_size;
2415 ASSERT(ifp->if_broot_bytes <=
2416 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2417 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2418 return;
2419 }
2420
2421 /*
2422 * rec_diff is less than 0. In this case, we are shrinking the
2423 * if_broot buffer. It must already exist. If we go to zero
2424 * records, just get rid of the root and clear the status bit.
2425 */
2426 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2427 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2428 new_max = cur_max + rec_diff;
2429 ASSERT(new_max >= 0);
2430 if (new_max > 0)
2431 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2432 else
2433 new_size = 0;
2434 if (new_size > 0) {
7cc95a82 2435 new_broot = kmem_alloc(new_size, KM_SLEEP);
1da177e4
LT
2436 /*
2437 * First copy over the btree block header.
2438 */
7cc95a82 2439 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
2440 } else {
2441 new_broot = NULL;
2442 ifp->if_flags &= ~XFS_IFBROOT;
2443 }
2444
2445 /*
2446 * Only copy the records and pointers if there are any.
2447 */
2448 if (new_max > 0) {
2449 /*
2450 * First copy the records.
2451 */
136341b4
CH
2452 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2453 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2454 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2455
2456 /*
2457 * Then copy the pointers.
2458 */
60197e8d 2459 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2460 ifp->if_broot_bytes);
60197e8d 2461 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2462 (int)new_size);
2463 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2464 }
f0e2d93c 2465 kmem_free(ifp->if_broot);
1da177e4
LT
2466 ifp->if_broot = new_broot;
2467 ifp->if_broot_bytes = (int)new_size;
2468 ASSERT(ifp->if_broot_bytes <=
2469 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2470 return;
2471}
2472
2473
1da177e4
LT
2474/*
2475 * This is called when the amount of space needed for if_data
2476 * is increased or decreased. The change in size is indicated by
2477 * the number of bytes that need to be added or deleted in the
2478 * byte_diff parameter.
2479 *
2480 * If the amount of space needed has decreased below the size of the
2481 * inline buffer, then switch to using the inline buffer. Otherwise,
2482 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2483 * to what is needed.
2484 *
2485 * ip -- the inode whose if_data area is changing
2486 * byte_diff -- the change in the number of bytes, positive or negative,
2487 * requested for the if_data array.
2488 */
2489void
2490xfs_idata_realloc(
2491 xfs_inode_t *ip,
2492 int byte_diff,
2493 int whichfork)
2494{
2495 xfs_ifork_t *ifp;
2496 int new_size;
2497 int real_size;
2498
2499 if (byte_diff == 0) {
2500 return;
2501 }
2502
2503 ifp = XFS_IFORK_PTR(ip, whichfork);
2504 new_size = (int)ifp->if_bytes + byte_diff;
2505 ASSERT(new_size >= 0);
2506
2507 if (new_size == 0) {
2508 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2509 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2510 }
2511 ifp->if_u1.if_data = NULL;
2512 real_size = 0;
2513 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2514 /*
2515 * If the valid extents/data can fit in if_inline_ext/data,
2516 * copy them from the malloc'd vector and free it.
2517 */
2518 if (ifp->if_u1.if_data == NULL) {
2519 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2520 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2521 ASSERT(ifp->if_real_bytes != 0);
2522 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2523 new_size);
f0e2d93c 2524 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2525 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2526 }
2527 real_size = 0;
2528 } else {
2529 /*
2530 * Stuck with malloc/realloc.
2531 * For inline data, the underlying buffer must be
2532 * a multiple of 4 bytes in size so that it can be
2533 * logged and stay on word boundaries. We enforce
2534 * that here.
2535 */
2536 real_size = roundup(new_size, 4);
2537 if (ifp->if_u1.if_data == NULL) {
2538 ASSERT(ifp->if_real_bytes == 0);
2539 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2540 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2541 /*
2542 * Only do the realloc if the underlying size
2543 * is really changing.
2544 */
2545 if (ifp->if_real_bytes != real_size) {
2546 ifp->if_u1.if_data =
2547 kmem_realloc(ifp->if_u1.if_data,
2548 real_size,
2549 ifp->if_real_bytes,
2550 KM_SLEEP);
2551 }
2552 } else {
2553 ASSERT(ifp->if_real_bytes == 0);
2554 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2555 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2556 ifp->if_bytes);
2557 }
2558 }
2559 ifp->if_real_bytes = real_size;
2560 ifp->if_bytes = new_size;
2561 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2562}
2563
2564
2565
2566
2567/*
2568 * Map inode to disk block and offset.
2569 *
2570 * mp -- the mount point structure for the current file system
2571 * tp -- the current transaction
2572 * ino -- the inode number of the inode to be located
2573 * imap -- this structure is filled in with the information necessary
2574 * to retrieve the given inode from disk
2575 * flags -- flags to pass to xfs_dilocate indicating whether or not
2576 * lookups in the inode btree were OK or not
2577 */
2578int
2579xfs_imap(
2580 xfs_mount_t *mp,
2581 xfs_trans_t *tp,
2582 xfs_ino_t ino,
2583 xfs_imap_t *imap,
2584 uint flags)
2585{
2586 xfs_fsblock_t fsbno;
2587 int len;
2588 int off;
2589 int error;
2590
2591 fsbno = imap->im_blkno ?
2592 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2593 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
4ae29b43 2594 if (error)
1da177e4 2595 return error;
4ae29b43 2596
1da177e4
LT
2597 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2598 imap->im_len = XFS_FSB_TO_BB(mp, len);
2599 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2600 imap->im_ioffset = (ushort)off;
2601 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
4ae29b43
DC
2602
2603 /*
2604 * If the inode number maps to a block outside the bounds
2605 * of the file system then return NULL rather than calling
2606 * read_buf and panicing when we get an error from the
2607 * driver.
2608 */
2609 if ((imap->im_blkno + imap->im_len) >
2610 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2611 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2612 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2613 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2614 (unsigned long long) imap->im_blkno,
2615 (unsigned long long) imap->im_len,
2616 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2617 return EINVAL;
2618 }
1da177e4
LT
2619 return 0;
2620}
2621
2622void
2623xfs_idestroy_fork(
2624 xfs_inode_t *ip,
2625 int whichfork)
2626{
2627 xfs_ifork_t *ifp;
2628
2629 ifp = XFS_IFORK_PTR(ip, whichfork);
2630 if (ifp->if_broot != NULL) {
f0e2d93c 2631 kmem_free(ifp->if_broot);
1da177e4
LT
2632 ifp->if_broot = NULL;
2633 }
2634
2635 /*
2636 * If the format is local, then we can't have an extents
2637 * array so just look for an inline data array. If we're
2638 * not local then we may or may not have an extents list,
2639 * so check and free it up if we do.
2640 */
2641 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2642 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2643 (ifp->if_u1.if_data != NULL)) {
2644 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2645 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2646 ifp->if_u1.if_data = NULL;
2647 ifp->if_real_bytes = 0;
2648 }
2649 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2650 ((ifp->if_flags & XFS_IFEXTIREC) ||
2651 ((ifp->if_u1.if_extents != NULL) &&
2652 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2653 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2654 xfs_iext_destroy(ifp);
1da177e4
LT
2655 }
2656 ASSERT(ifp->if_u1.if_extents == NULL ||
2657 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2658 ASSERT(ifp->if_real_bytes == 0);
2659 if (whichfork == XFS_ATTR_FORK) {
2660 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2661 ip->i_afp = NULL;
2662 }
2663}
2664
2665/*
2666 * This is called free all the memory associated with an inode.
2667 * It must free the inode itself and any buffers allocated for
2668 * if_extents/if_data and if_broot. It must also free the lock
2669 * associated with the inode.
bf904248
DC
2670 *
2671 * Note: because we don't initialise everything on reallocation out
2672 * of the zone, we must ensure we nullify everything correctly before
2673 * freeing the structure.
1da177e4
LT
2674 */
2675void
2676xfs_idestroy(
2677 xfs_inode_t *ip)
2678{
1da177e4
LT
2679 switch (ip->i_d.di_mode & S_IFMT) {
2680 case S_IFREG:
2681 case S_IFDIR:
2682 case S_IFLNK:
2683 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2684 break;
2685 }
2686 if (ip->i_afp)
2687 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1543d79c 2688
cf441eeb 2689#ifdef XFS_INODE_TRACE
1543d79c
CH
2690 ktrace_free(ip->i_trace);
2691#endif
1da177e4
LT
2692#ifdef XFS_BMAP_TRACE
2693 ktrace_free(ip->i_xtrace);
2694#endif
8c4ed633 2695#ifdef XFS_BTREE_TRACE
1da177e4
LT
2696 ktrace_free(ip->i_btrace);
2697#endif
2698#ifdef XFS_RW_TRACE
2699 ktrace_free(ip->i_rwtrace);
2700#endif
2701#ifdef XFS_ILOCK_TRACE
2702 ktrace_free(ip->i_lock_trace);
2703#endif
2704#ifdef XFS_DIR2_TRACE
2705 ktrace_free(ip->i_dir_trace);
2706#endif
2707 if (ip->i_itemp) {
f74eaf59
DC
2708 /*
2709 * Only if we are shutting down the fs will we see an
2710 * inode still in the AIL. If it is there, we should remove
2711 * it to prevent a use-after-free from occurring.
2712 */
2713 xfs_mount_t *mp = ip->i_mount;
2714 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
f74eaf59
DC
2715
2716 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2717 XFS_FORCED_SHUTDOWN(ip->i_mount));
2718 if (lip->li_flags & XFS_LI_IN_AIL) {
287f3dad 2719 spin_lock(&mp->m_ail_lock);
f74eaf59 2720 if (lip->li_flags & XFS_LI_IN_AIL)
287f3dad 2721 xfs_trans_delete_ail(mp, lip);
f74eaf59 2722 else
287f3dad 2723 spin_unlock(&mp->m_ail_lock);
f74eaf59 2724 }
1da177e4 2725 xfs_inode_item_destroy(ip);
07c8f675 2726 ip->i_itemp = NULL;
1da177e4 2727 }
07c8f675
DC
2728 /* asserts to verify all state is correct here */
2729 ASSERT(atomic_read(&ip->i_iocount) == 0);
2730 ASSERT(atomic_read(&ip->i_pincount) == 0);
2731 ASSERT(!spin_is_locked(&ip->i_flags_lock));
11654513 2732 ASSERT(completion_done(&ip->i_flush));
1da177e4
LT
2733 kmem_zone_free(xfs_inode_zone, ip);
2734}
2735
2736
2737/*
2738 * Increment the pin count of the given buffer.
2739 * This value is protected by ipinlock spinlock in the mount structure.
2740 */
2741void
2742xfs_ipin(
2743 xfs_inode_t *ip)
2744{
579aa9ca 2745 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2746
2747 atomic_inc(&ip->i_pincount);
2748}
2749
2750/*
2751 * Decrement the pin count of the given inode, and wake up
2752 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2753 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2754 */
2755void
2756xfs_iunpin(
2757 xfs_inode_t *ip)
2758{
2759 ASSERT(atomic_read(&ip->i_pincount) > 0);
2760
5d51eff4 2761 if (atomic_dec_and_test(&ip->i_pincount))
1da177e4 2762 wake_up(&ip->i_ipin_wait);
1da177e4
LT
2763}
2764
2765/*
a3f74ffb
DC
2766 * This is called to unpin an inode. It can be directed to wait or to return
2767 * immediately without waiting for the inode to be unpinned. The caller must
2768 * have the inode locked in at least shared mode so that the buffer cannot be
2769 * subsequently pinned once someone is waiting for it to be unpinned.
1da177e4 2770 */
ba0f32d4 2771STATIC void
a3f74ffb
DC
2772__xfs_iunpin_wait(
2773 xfs_inode_t *ip,
2774 int wait)
1da177e4 2775{
a3f74ffb 2776 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 2777
579aa9ca 2778 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
a3f74ffb 2779 if (atomic_read(&ip->i_pincount) == 0)
1da177e4 2780 return;
1da177e4 2781
a3f74ffb
DC
2782 /* Give the log a push to start the unpinning I/O */
2783 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2784 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2785 if (wait)
2786 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2787}
1da177e4 2788
a3f74ffb
DC
2789static inline void
2790xfs_iunpin_wait(
2791 xfs_inode_t *ip)
2792{
2793 __xfs_iunpin_wait(ip, 1);
2794}
1da177e4 2795
a3f74ffb
DC
2796static inline void
2797xfs_iunpin_nowait(
2798 xfs_inode_t *ip)
2799{
2800 __xfs_iunpin_wait(ip, 0);
1da177e4
LT
2801}
2802
2803
2804/*
2805 * xfs_iextents_copy()
2806 *
2807 * This is called to copy the REAL extents (as opposed to the delayed
2808 * allocation extents) from the inode into the given buffer. It
2809 * returns the number of bytes copied into the buffer.
2810 *
2811 * If there are no delayed allocation extents, then we can just
2812 * memcpy() the extents into the buffer. Otherwise, we need to
2813 * examine each extent in turn and skip those which are delayed.
2814 */
2815int
2816xfs_iextents_copy(
2817 xfs_inode_t *ip,
a6f64d4a 2818 xfs_bmbt_rec_t *dp,
1da177e4
LT
2819 int whichfork)
2820{
2821 int copied;
1da177e4
LT
2822 int i;
2823 xfs_ifork_t *ifp;
2824 int nrecs;
2825 xfs_fsblock_t start_block;
2826
2827 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2828 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2829 ASSERT(ifp->if_bytes > 0);
2830
2831 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2832 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2833 ASSERT(nrecs > 0);
2834
2835 /*
2836 * There are some delayed allocation extents in the
2837 * inode, so copy the extents one at a time and skip
2838 * the delayed ones. There must be at least one
2839 * non-delayed extent.
2840 */
1da177e4
LT
2841 copied = 0;
2842 for (i = 0; i < nrecs; i++) {
a6f64d4a 2843 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2844 start_block = xfs_bmbt_get_startblock(ep);
2845 if (ISNULLSTARTBLOCK(start_block)) {
2846 /*
2847 * It's a delayed allocation extent, so skip it.
2848 */
1da177e4
LT
2849 continue;
2850 }
2851
2852 /* Translate to on disk format */
cd8b0a97
CH
2853 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2854 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2855 dp++;
1da177e4
LT
2856 copied++;
2857 }
2858 ASSERT(copied != 0);
a6f64d4a 2859 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2860
2861 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2862}
2863
2864/*
2865 * Each of the following cases stores data into the same region
2866 * of the on-disk inode, so only one of them can be valid at
2867 * any given time. While it is possible to have conflicting formats
2868 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2869 * in EXTENTS format, this can only happen when the fork has
2870 * changed formats after being modified but before being flushed.
2871 * In these cases, the format always takes precedence, because the
2872 * format indicates the current state of the fork.
2873 */
2874/*ARGSUSED*/
e4ac967b 2875STATIC void
1da177e4
LT
2876xfs_iflush_fork(
2877 xfs_inode_t *ip,
2878 xfs_dinode_t *dip,
2879 xfs_inode_log_item_t *iip,
2880 int whichfork,
2881 xfs_buf_t *bp)
2882{
2883 char *cp;
2884 xfs_ifork_t *ifp;
2885 xfs_mount_t *mp;
2886#ifdef XFS_TRANS_DEBUG
2887 int first;
2888#endif
2889 static const short brootflag[2] =
2890 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2891 static const short dataflag[2] =
2892 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2893 static const short extflag[2] =
2894 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2895
e4ac967b
DC
2896 if (!iip)
2897 return;
1da177e4
LT
2898 ifp = XFS_IFORK_PTR(ip, whichfork);
2899 /*
2900 * This can happen if we gave up in iformat in an error path,
2901 * for the attribute fork.
2902 */
e4ac967b 2903 if (!ifp) {
1da177e4 2904 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2905 return;
1da177e4
LT
2906 }
2907 cp = XFS_DFORK_PTR(dip, whichfork);
2908 mp = ip->i_mount;
2909 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2910 case XFS_DINODE_FMT_LOCAL:
2911 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2912 (ifp->if_bytes > 0)) {
2913 ASSERT(ifp->if_u1.if_data != NULL);
2914 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2915 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2916 }
1da177e4
LT
2917 break;
2918
2919 case XFS_DINODE_FMT_EXTENTS:
2920 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2921 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2922 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2923 (ifp->if_bytes == 0));
2924 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2925 (ifp->if_bytes > 0));
1da177e4
LT
2926 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2927 (ifp->if_bytes > 0)) {
2928 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2929 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2930 whichfork);
2931 }
2932 break;
2933
2934 case XFS_DINODE_FMT_BTREE:
2935 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2936 (ifp->if_broot_bytes > 0)) {
2937 ASSERT(ifp->if_broot != NULL);
2938 ASSERT(ifp->if_broot_bytes <=
2939 (XFS_IFORK_SIZE(ip, whichfork) +
2940 XFS_BROOT_SIZE_ADJ));
60197e8d 2941 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2942 (xfs_bmdr_block_t *)cp,
2943 XFS_DFORK_SIZE(dip, mp, whichfork));
2944 }
2945 break;
2946
2947 case XFS_DINODE_FMT_DEV:
2948 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2949 ASSERT(whichfork == XFS_DATA_FORK);
347d1c01 2950 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
1da177e4
LT
2951 }
2952 break;
2953
2954 case XFS_DINODE_FMT_UUID:
2955 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2956 ASSERT(whichfork == XFS_DATA_FORK);
2957 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2958 sizeof(uuid_t));
2959 }
2960 break;
2961
2962 default:
2963 ASSERT(0);
2964 break;
2965 }
1da177e4
LT
2966}
2967
bad55843
DC
2968STATIC int
2969xfs_iflush_cluster(
2970 xfs_inode_t *ip,
2971 xfs_buf_t *bp)
2972{
2973 xfs_mount_t *mp = ip->i_mount;
2974 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2975 unsigned long first_index, mask;
c8f5f12e 2976 unsigned long inodes_per_cluster;
bad55843
DC
2977 int ilist_size;
2978 xfs_inode_t **ilist;
2979 xfs_inode_t *iq;
bad55843
DC
2980 int nr_found;
2981 int clcount = 0;
2982 int bufwasdelwri;
2983 int i;
2984
2985 ASSERT(pag->pagi_inodeok);
2986 ASSERT(pag->pag_ici_init);
2987
c8f5f12e
DC
2988 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2989 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2990 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843
DC
2991 if (!ilist)
2992 return 0;
2993
2994 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2995 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2996 read_lock(&pag->pag_ici_lock);
2997 /* really need a gang lookup range call here */
2998 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2999 first_index, inodes_per_cluster);
bad55843
DC
3000 if (nr_found == 0)
3001 goto out_free;
3002
3003 for (i = 0; i < nr_found; i++) {
3004 iq = ilist[i];
3005 if (iq == ip)
3006 continue;
3007 /* if the inode lies outside this cluster, we're done. */
3008 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
3009 break;
3010 /*
3011 * Do an un-protected check to see if the inode is dirty and
3012 * is a candidate for flushing. These checks will be repeated
3013 * later after the appropriate locks are acquired.
3014 */
33540408 3015 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3016 continue;
bad55843
DC
3017
3018 /*
3019 * Try to get locks. If any are unavailable or it is pinned,
3020 * then this inode cannot be flushed and is skipped.
3021 */
3022
3023 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3024 continue;
3025 if (!xfs_iflock_nowait(iq)) {
3026 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3027 continue;
3028 }
3029 if (xfs_ipincount(iq)) {
3030 xfs_ifunlock(iq);
3031 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3032 continue;
3033 }
3034
3035 /*
3036 * arriving here means that this inode can be flushed. First
3037 * re-check that it's dirty before flushing.
3038 */
33540408
DC
3039 if (!xfs_inode_clean(iq)) {
3040 int error;
bad55843
DC
3041 error = xfs_iflush_int(iq, bp);
3042 if (error) {
3043 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3044 goto cluster_corrupt_out;
3045 }
3046 clcount++;
3047 } else {
3048 xfs_ifunlock(iq);
3049 }
3050 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3051 }
3052
3053 if (clcount) {
3054 XFS_STATS_INC(xs_icluster_flushcnt);
3055 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3056 }
3057
3058out_free:
3059 read_unlock(&pag->pag_ici_lock);
f0e2d93c 3060 kmem_free(ilist);
bad55843
DC
3061 return 0;
3062
3063
3064cluster_corrupt_out:
3065 /*
3066 * Corruption detected in the clustering loop. Invalidate the
3067 * inode buffer and shut down the filesystem.
3068 */
3069 read_unlock(&pag->pag_ici_lock);
3070 /*
3071 * Clean up the buffer. If it was B_DELWRI, just release it --
3072 * brelse can handle it with no problems. If not, shut down the
3073 * filesystem before releasing the buffer.
3074 */
3075 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3076 if (bufwasdelwri)
3077 xfs_buf_relse(bp);
3078
3079 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3080
3081 if (!bufwasdelwri) {
3082 /*
3083 * Just like incore_relse: if we have b_iodone functions,
3084 * mark the buffer as an error and call them. Otherwise
3085 * mark it as stale and brelse.
3086 */
3087 if (XFS_BUF_IODONE_FUNC(bp)) {
3088 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3089 XFS_BUF_UNDONE(bp);
3090 XFS_BUF_STALE(bp);
3091 XFS_BUF_SHUT(bp);
3092 XFS_BUF_ERROR(bp,EIO);
3093 xfs_biodone(bp);
3094 } else {
3095 XFS_BUF_STALE(bp);
3096 xfs_buf_relse(bp);
3097 }
3098 }
3099
3100 /*
3101 * Unlocks the flush lock
3102 */
3103 xfs_iflush_abort(iq);
f0e2d93c 3104 kmem_free(ilist);
bad55843
DC
3105 return XFS_ERROR(EFSCORRUPTED);
3106}
3107
1da177e4
LT
3108/*
3109 * xfs_iflush() will write a modified inode's changes out to the
3110 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
3111 * in at least shared mode and the inode flush completion must be
3112 * active as well. The inode lock will still be held upon return from
1da177e4 3113 * the call and the caller is free to unlock it.
c63942d3 3114 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
3115 * The flags indicate how the inode's buffer should be written out.
3116 */
3117int
3118xfs_iflush(
3119 xfs_inode_t *ip,
3120 uint flags)
3121{
3122 xfs_inode_log_item_t *iip;
3123 xfs_buf_t *bp;
3124 xfs_dinode_t *dip;
3125 xfs_mount_t *mp;
3126 int error;
a3f74ffb 3127 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
bad55843 3128 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3129
3130 XFS_STATS_INC(xs_iflush_count);
3131
579aa9ca 3132 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3133 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3134 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3135 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3136
3137 iip = ip->i_itemp;
3138 mp = ip->i_mount;
3139
3140 /*
3141 * If the inode isn't dirty, then just release the inode
3142 * flush lock and do nothing.
3143 */
33540408 3144 if (xfs_inode_clean(ip)) {
1da177e4
LT
3145 xfs_ifunlock(ip);
3146 return 0;
3147 }
3148
3149 /*
a3f74ffb
DC
3150 * We can't flush the inode until it is unpinned, so wait for it if we
3151 * are allowed to block. We know noone new can pin it, because we are
3152 * holding the inode lock shared and you need to hold it exclusively to
3153 * pin the inode.
3154 *
3155 * If we are not allowed to block, force the log out asynchronously so
3156 * that when we come back the inode will be unpinned. If other inodes
3157 * in the same cluster are dirty, they will probably write the inode
3158 * out for us if they occur after the log force completes.
1da177e4 3159 */
a3f74ffb
DC
3160 if (noblock && xfs_ipincount(ip)) {
3161 xfs_iunpin_nowait(ip);
3162 xfs_ifunlock(ip);
3163 return EAGAIN;
3164 }
1da177e4
LT
3165 xfs_iunpin_wait(ip);
3166
3167 /*
3168 * This may have been unpinned because the filesystem is shutting
3169 * down forcibly. If that's the case we must not write this inode
3170 * to disk, because the log record didn't make it to disk!
3171 */
3172 if (XFS_FORCED_SHUTDOWN(mp)) {
3173 ip->i_update_core = 0;
3174 if (iip)
3175 iip->ili_format.ilf_fields = 0;
3176 xfs_ifunlock(ip);
3177 return XFS_ERROR(EIO);
3178 }
3179
1da177e4
LT
3180 /*
3181 * Decide how buffer will be flushed out. This is done before
3182 * the call to xfs_iflush_int because this field is zeroed by it.
3183 */
3184 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3185 /*
3186 * Flush out the inode buffer according to the directions
3187 * of the caller. In the cases where the caller has given
3188 * us a choice choose the non-delwri case. This is because
3189 * the inode is in the AIL and we need to get it out soon.
3190 */
3191 switch (flags) {
3192 case XFS_IFLUSH_SYNC:
3193 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3194 flags = 0;
3195 break;
a3f74ffb 3196 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3197 case XFS_IFLUSH_ASYNC:
3198 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3199 flags = INT_ASYNC;
3200 break;
3201 case XFS_IFLUSH_DELWRI:
3202 flags = INT_DELWRI;
3203 break;
3204 default:
3205 ASSERT(0);
3206 flags = 0;
3207 break;
3208 }
3209 } else {
3210 switch (flags) {
3211 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3212 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3213 case XFS_IFLUSH_DELWRI:
3214 flags = INT_DELWRI;
3215 break;
a3f74ffb 3216 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3217 case XFS_IFLUSH_ASYNC:
3218 flags = INT_ASYNC;
3219 break;
3220 case XFS_IFLUSH_SYNC:
3221 flags = 0;
3222 break;
3223 default:
3224 ASSERT(0);
3225 flags = 0;
3226 break;
3227 }
3228 }
3229
a3f74ffb
DC
3230 /*
3231 * Get the buffer containing the on-disk inode.
3232 */
3233 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3234 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3235 if (error || !bp) {
3236 xfs_ifunlock(ip);
3237 return error;
3238 }
3239
1da177e4
LT
3240 /*
3241 * First flush out the inode that xfs_iflush was called with.
3242 */
3243 error = xfs_iflush_int(ip, bp);
bad55843 3244 if (error)
1da177e4 3245 goto corrupt_out;
1da177e4 3246
a3f74ffb
DC
3247 /*
3248 * If the buffer is pinned then push on the log now so we won't
3249 * get stuck waiting in the write for too long.
3250 */
3251 if (XFS_BUF_ISPINNED(bp))
3252 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3253
1da177e4
LT
3254 /*
3255 * inode clustering:
3256 * see if other inodes can be gathered into this write
3257 */
bad55843
DC
3258 error = xfs_iflush_cluster(ip, bp);
3259 if (error)
3260 goto cluster_corrupt_out;
1da177e4 3261
1da177e4
LT
3262 if (flags & INT_DELWRI) {
3263 xfs_bdwrite(mp, bp);
3264 } else if (flags & INT_ASYNC) {
db7a19f2 3265 error = xfs_bawrite(mp, bp);
1da177e4
LT
3266 } else {
3267 error = xfs_bwrite(mp, bp);
3268 }
3269 return error;
3270
3271corrupt_out:
3272 xfs_buf_relse(bp);
7d04a335 3273 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3274cluster_corrupt_out:
1da177e4
LT
3275 /*
3276 * Unlocks the flush lock
3277 */
bad55843 3278 xfs_iflush_abort(ip);
1da177e4
LT
3279 return XFS_ERROR(EFSCORRUPTED);
3280}
3281
3282
3283STATIC int
3284xfs_iflush_int(
3285 xfs_inode_t *ip,
3286 xfs_buf_t *bp)
3287{
3288 xfs_inode_log_item_t *iip;
3289 xfs_dinode_t *dip;
3290 xfs_mount_t *mp;
3291#ifdef XFS_TRANS_DEBUG
3292 int first;
3293#endif
1da177e4 3294
579aa9ca 3295 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3296 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3297 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3298 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3299
3300 iip = ip->i_itemp;
3301 mp = ip->i_mount;
3302
3303
3304 /*
3305 * If the inode isn't dirty, then just release the inode
3306 * flush lock and do nothing.
3307 */
33540408 3308 if (xfs_inode_clean(ip)) {
1da177e4
LT
3309 xfs_ifunlock(ip);
3310 return 0;
3311 }
3312
3313 /* set *dip = inode's place in the buffer */
3314 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3315
3316 /*
3317 * Clear i_update_core before copying out the data.
3318 * This is for coordination with our timestamp updates
3319 * that don't hold the inode lock. They will always
3320 * update the timestamps BEFORE setting i_update_core,
3321 * so if we clear i_update_core after they set it we
3322 * are guaranteed to see their updates to the timestamps.
3323 * I believe that this depends on strongly ordered memory
3324 * semantics, but we have that. We use the SYNCHRONIZE
3325 * macro to make sure that the compiler does not reorder
3326 * the i_update_core access below the data copy below.
3327 */
3328 ip->i_update_core = 0;
3329 SYNCHRONIZE();
3330
42fe2b1f
CH
3331 /*
3332 * Make sure to get the latest atime from the Linux inode.
3333 */
3334 xfs_synchronize_atime(ip);
3335
347d1c01 3336 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3337 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3338 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3339 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
347d1c01 3340 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
1da177e4
LT
3341 goto corrupt_out;
3342 }
3343 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3344 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3345 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3346 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3347 ip->i_ino, ip, ip->i_d.di_magic);
3348 goto corrupt_out;
3349 }
3350 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3351 if (XFS_TEST_ERROR(
3352 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3353 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3354 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3355 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3356 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3357 ip->i_ino, ip);
3358 goto corrupt_out;
3359 }
3360 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3361 if (XFS_TEST_ERROR(
3362 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3363 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3364 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3365 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3366 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3367 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3368 ip->i_ino, ip);
3369 goto corrupt_out;
3370 }
3371 }
3372 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3373 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3374 XFS_RANDOM_IFLUSH_5)) {
3375 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3376 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3377 ip->i_ino,
3378 ip->i_d.di_nextents + ip->i_d.di_anextents,
3379 ip->i_d.di_nblocks,
3380 ip);
3381 goto corrupt_out;
3382 }
3383 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3384 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3385 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3386 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3387 ip->i_ino, ip->i_d.di_forkoff, ip);
3388 goto corrupt_out;
3389 }
3390 /*
3391 * bump the flush iteration count, used to detect flushes which
3392 * postdate a log record during recovery.
3393 */
3394
3395 ip->i_d.di_flushiter++;
3396
3397 /*
3398 * Copy the dirty parts of the inode into the on-disk
3399 * inode. We always copy out the core of the inode,
3400 * because if the inode is dirty at all the core must
3401 * be.
3402 */
347d1c01 3403 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
1da177e4
LT
3404
3405 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3406 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3407 ip->i_d.di_flushiter = 0;
3408
3409 /*
3410 * If this is really an old format inode and the superblock version
3411 * has not been updated to support only new format inodes, then
3412 * convert back to the old inode format. If the superblock version
3413 * has been updated, then make the conversion permanent.
3414 */
3415 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
62118709 3416 xfs_sb_version_hasnlink(&mp->m_sb));
1da177e4 3417 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
62118709 3418 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3419 /*
3420 * Convert it back.
3421 */
3422 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
347d1c01 3423 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3424 } else {
3425 /*
3426 * The superblock version has already been bumped,
3427 * so just make the conversion to the new inode
3428 * format permanent.
3429 */
3430 ip->i_d.di_version = XFS_DINODE_VERSION_2;
347d1c01 3431 dip->di_core.di_version = XFS_DINODE_VERSION_2;
1da177e4
LT
3432 ip->i_d.di_onlink = 0;
3433 dip->di_core.di_onlink = 0;
3434 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3435 memset(&(dip->di_core.di_pad[0]), 0,
3436 sizeof(dip->di_core.di_pad));
3437 ASSERT(ip->i_d.di_projid == 0);
3438 }
3439 }
3440
e4ac967b
DC
3441 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3442 if (XFS_IFORK_Q(ip))
3443 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3444 xfs_inobp_check(mp, bp);
3445
3446 /*
3447 * We've recorded everything logged in the inode, so we'd
3448 * like to clear the ilf_fields bits so we don't log and
3449 * flush things unnecessarily. However, we can't stop
3450 * logging all this information until the data we've copied
3451 * into the disk buffer is written to disk. If we did we might
3452 * overwrite the copy of the inode in the log with all the
3453 * data after re-logging only part of it, and in the face of
3454 * a crash we wouldn't have all the data we need to recover.
3455 *
3456 * What we do is move the bits to the ili_last_fields field.
3457 * When logging the inode, these bits are moved back to the
3458 * ilf_fields field. In the xfs_iflush_done() routine we
3459 * clear ili_last_fields, since we know that the information
3460 * those bits represent is permanently on disk. As long as
3461 * the flush completes before the inode is logged again, then
3462 * both ilf_fields and ili_last_fields will be cleared.
3463 *
3464 * We can play with the ilf_fields bits here, because the inode
3465 * lock must be held exclusively in order to set bits there
3466 * and the flush lock protects the ili_last_fields bits.
3467 * Set ili_logged so the flush done
3468 * routine can tell whether or not to look in the AIL.
3469 * Also, store the current LSN of the inode so that we can tell
3470 * whether the item has moved in the AIL from xfs_iflush_done().
3471 * In order to read the lsn we need the AIL lock, because
3472 * it is a 64 bit value that cannot be read atomically.
3473 */
3474 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3475 iip->ili_last_fields = iip->ili_format.ilf_fields;
3476 iip->ili_format.ilf_fields = 0;
3477 iip->ili_logged = 1;
3478
3479 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
287f3dad 3480 spin_lock(&mp->m_ail_lock);
1da177e4 3481 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 3482 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
3483
3484 /*
3485 * Attach the function xfs_iflush_done to the inode's
3486 * buffer. This will remove the inode from the AIL
3487 * and unlock the inode's flush lock when the inode is
3488 * completely written to disk.
3489 */
3490 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3491 xfs_iflush_done, (xfs_log_item_t *)iip);
3492
3493 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3494 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3495 } else {
3496 /*
3497 * We're flushing an inode which is not in the AIL and has
3498 * not been logged but has i_update_core set. For this
3499 * case we can use a B_DELWRI flush and immediately drop
3500 * the inode flush lock because we can avoid the whole
3501 * AIL state thing. It's OK to drop the flush lock now,
3502 * because we've already locked the buffer and to do anything
3503 * you really need both.
3504 */
3505 if (iip != NULL) {
3506 ASSERT(iip->ili_logged == 0);
3507 ASSERT(iip->ili_last_fields == 0);
3508 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3509 }
3510 xfs_ifunlock(ip);
3511 }
3512
3513 return 0;
3514
3515corrupt_out:
3516 return XFS_ERROR(EFSCORRUPTED);
3517}
3518
3519
1da177e4 3520
1da177e4
LT
3521#ifdef XFS_ILOCK_TRACE
3522ktrace_t *xfs_ilock_trace_buf;
3523
3524void
3525xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3526{
3527 ktrace_enter(ip->i_lock_trace,
3528 (void *)ip,
3529 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3530 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3531 (void *)ra, /* caller of ilock */
3532 (void *)(unsigned long)current_cpu(),
3533 (void *)(unsigned long)current_pid(),
3534 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3535}
3536#endif
4eea22f0
MK
3537
3538/*
3539 * Return a pointer to the extent record at file index idx.
3540 */
a6f64d4a 3541xfs_bmbt_rec_host_t *
4eea22f0
MK
3542xfs_iext_get_ext(
3543 xfs_ifork_t *ifp, /* inode fork pointer */
3544 xfs_extnum_t idx) /* index of target extent */
3545{
3546 ASSERT(idx >= 0);
0293ce3a
MK
3547 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3548 return ifp->if_u1.if_ext_irec->er_extbuf;
3549 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3550 xfs_ext_irec_t *erp; /* irec pointer */
3551 int erp_idx = 0; /* irec index */
3552 xfs_extnum_t page_idx = idx; /* ext index in target list */
3553
3554 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3555 return &erp->er_extbuf[page_idx];
3556 } else if (ifp->if_bytes) {
4eea22f0
MK
3557 return &ifp->if_u1.if_extents[idx];
3558 } else {
3559 return NULL;
3560 }
3561}
3562
3563/*
3564 * Insert new item(s) into the extent records for incore inode
3565 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3566 */
3567void
3568xfs_iext_insert(
3569 xfs_ifork_t *ifp, /* inode fork pointer */
3570 xfs_extnum_t idx, /* starting index of new items */
3571 xfs_extnum_t count, /* number of inserted items */
3572 xfs_bmbt_irec_t *new) /* items to insert */
3573{
4eea22f0
MK
3574 xfs_extnum_t i; /* extent record index */
3575
3576 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3577 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3578 for (i = idx; i < idx + count; i++, new++)
3579 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3580}
3581
3582/*
3583 * This is called when the amount of space required for incore file
3584 * extents needs to be increased. The ext_diff parameter stores the
3585 * number of new extents being added and the idx parameter contains
3586 * the extent index where the new extents will be added. If the new
3587 * extents are being appended, then we just need to (re)allocate and
3588 * initialize the space. Otherwise, if the new extents are being
3589 * inserted into the middle of the existing entries, a bit more work
3590 * is required to make room for the new extents to be inserted. The
3591 * caller is responsible for filling in the new extent entries upon
3592 * return.
3593 */
3594void
3595xfs_iext_add(
3596 xfs_ifork_t *ifp, /* inode fork pointer */
3597 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3598 int ext_diff) /* number of extents to add */
4eea22f0
MK
3599{
3600 int byte_diff; /* new bytes being added */
3601 int new_size; /* size of extents after adding */
3602 xfs_extnum_t nextents; /* number of extents in file */
3603
3604 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3605 ASSERT((idx >= 0) && (idx <= nextents));
3606 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3607 new_size = ifp->if_bytes + byte_diff;
3608 /*
3609 * If the new number of extents (nextents + ext_diff)
3610 * fits inside the inode, then continue to use the inline
3611 * extent buffer.
3612 */
3613 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3614 if (idx < nextents) {
3615 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3616 &ifp->if_u2.if_inline_ext[idx],
3617 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3618 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3619 }
3620 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3621 ifp->if_real_bytes = 0;
0293ce3a 3622 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3623 }
3624 /*
3625 * Otherwise use a linear (direct) extent list.
3626 * If the extents are currently inside the inode,
3627 * xfs_iext_realloc_direct will switch us from
3628 * inline to direct extent allocation mode.
3629 */
0293ce3a 3630 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3631 xfs_iext_realloc_direct(ifp, new_size);
3632 if (idx < nextents) {
3633 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3634 &ifp->if_u1.if_extents[idx],
3635 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3636 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3637 }
3638 }
0293ce3a
MK
3639 /* Indirection array */
3640 else {
3641 xfs_ext_irec_t *erp;
3642 int erp_idx = 0;
3643 int page_idx = idx;
3644
3645 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3646 if (ifp->if_flags & XFS_IFEXTIREC) {
3647 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3648 } else {
3649 xfs_iext_irec_init(ifp);
3650 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3651 erp = ifp->if_u1.if_ext_irec;
3652 }
3653 /* Extents fit in target extent page */
3654 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3655 if (page_idx < erp->er_extcount) {
3656 memmove(&erp->er_extbuf[page_idx + ext_diff],
3657 &erp->er_extbuf[page_idx],
3658 (erp->er_extcount - page_idx) *
3659 sizeof(xfs_bmbt_rec_t));
3660 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3661 }
3662 erp->er_extcount += ext_diff;
3663 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3664 }
3665 /* Insert a new extent page */
3666 else if (erp) {
3667 xfs_iext_add_indirect_multi(ifp,
3668 erp_idx, page_idx, ext_diff);
3669 }
3670 /*
3671 * If extent(s) are being appended to the last page in
3672 * the indirection array and the new extent(s) don't fit
3673 * in the page, then erp is NULL and erp_idx is set to
3674 * the next index needed in the indirection array.
3675 */
3676 else {
3677 int count = ext_diff;
3678
3679 while (count) {
3680 erp = xfs_iext_irec_new(ifp, erp_idx);
3681 erp->er_extcount = count;
3682 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3683 if (count) {
3684 erp_idx++;
3685 }
3686 }
3687 }
3688 }
4eea22f0
MK
3689 ifp->if_bytes = new_size;
3690}
3691
0293ce3a
MK
3692/*
3693 * This is called when incore extents are being added to the indirection
3694 * array and the new extents do not fit in the target extent list. The
3695 * erp_idx parameter contains the irec index for the target extent list
3696 * in the indirection array, and the idx parameter contains the extent
3697 * index within the list. The number of extents being added is stored
3698 * in the count parameter.
3699 *
3700 * |-------| |-------|
3701 * | | | | idx - number of extents before idx
3702 * | idx | | count |
3703 * | | | | count - number of extents being inserted at idx
3704 * |-------| |-------|
3705 * | count | | nex2 | nex2 - number of extents after idx + count
3706 * |-------| |-------|
3707 */
3708void
3709xfs_iext_add_indirect_multi(
3710 xfs_ifork_t *ifp, /* inode fork pointer */
3711 int erp_idx, /* target extent irec index */
3712 xfs_extnum_t idx, /* index within target list */
3713 int count) /* new extents being added */
3714{
3715 int byte_diff; /* new bytes being added */
3716 xfs_ext_irec_t *erp; /* pointer to irec entry */
3717 xfs_extnum_t ext_diff; /* number of extents to add */
3718 xfs_extnum_t ext_cnt; /* new extents still needed */
3719 xfs_extnum_t nex2; /* extents after idx + count */
3720 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3721 int nlists; /* number of irec's (lists) */
3722
3723 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3724 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3725 nex2 = erp->er_extcount - idx;
3726 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3727
3728 /*
3729 * Save second part of target extent list
3730 * (all extents past */
3731 if (nex2) {
3732 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3733 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3734 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3735 erp->er_extcount -= nex2;
3736 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3737 memset(&erp->er_extbuf[idx], 0, byte_diff);
3738 }
3739
3740 /*
3741 * Add the new extents to the end of the target
3742 * list, then allocate new irec record(s) and
3743 * extent buffer(s) as needed to store the rest
3744 * of the new extents.
3745 */
3746 ext_cnt = count;
3747 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3748 if (ext_diff) {
3749 erp->er_extcount += ext_diff;
3750 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3751 ext_cnt -= ext_diff;
3752 }
3753 while (ext_cnt) {
3754 erp_idx++;
3755 erp = xfs_iext_irec_new(ifp, erp_idx);
3756 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3757 erp->er_extcount = ext_diff;
3758 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3759 ext_cnt -= ext_diff;
3760 }
3761
3762 /* Add nex2 extents back to indirection array */
3763 if (nex2) {
3764 xfs_extnum_t ext_avail;
3765 int i;
3766
3767 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3768 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3769 i = 0;
3770 /*
3771 * If nex2 extents fit in the current page, append
3772 * nex2_ep after the new extents.
3773 */
3774 if (nex2 <= ext_avail) {
3775 i = erp->er_extcount;
3776 }
3777 /*
3778 * Otherwise, check if space is available in the
3779 * next page.
3780 */
3781 else if ((erp_idx < nlists - 1) &&
3782 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3783 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3784 erp_idx++;
3785 erp++;
3786 /* Create a hole for nex2 extents */
3787 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3788 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3789 }
3790 /*
3791 * Final choice, create a new extent page for
3792 * nex2 extents.
3793 */
3794 else {
3795 erp_idx++;
3796 erp = xfs_iext_irec_new(ifp, erp_idx);
3797 }
3798 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3799 kmem_free(nex2_ep);
0293ce3a
MK
3800 erp->er_extcount += nex2;
3801 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3802 }
3803}
3804
4eea22f0
MK
3805/*
3806 * This is called when the amount of space required for incore file
3807 * extents needs to be decreased. The ext_diff parameter stores the
3808 * number of extents to be removed and the idx parameter contains
3809 * the extent index where the extents will be removed from.
0293ce3a
MK
3810 *
3811 * If the amount of space needed has decreased below the linear
3812 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3813 * extent array. Otherwise, use kmem_realloc() to adjust the
3814 * size to what is needed.
4eea22f0
MK
3815 */
3816void
3817xfs_iext_remove(
3818 xfs_ifork_t *ifp, /* inode fork pointer */
3819 xfs_extnum_t idx, /* index to begin removing exts */
3820 int ext_diff) /* number of extents to remove */
3821{
3822 xfs_extnum_t nextents; /* number of extents in file */
3823 int new_size; /* size of extents after removal */
3824
3825 ASSERT(ext_diff > 0);
3826 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3827 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3828
3829 if (new_size == 0) {
3830 xfs_iext_destroy(ifp);
0293ce3a
MK
3831 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3832 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3833 } else if (ifp->if_real_bytes) {
3834 xfs_iext_remove_direct(ifp, idx, ext_diff);
3835 } else {
3836 xfs_iext_remove_inline(ifp, idx, ext_diff);
3837 }
3838 ifp->if_bytes = new_size;
3839}
3840
3841/*
3842 * This removes ext_diff extents from the inline buffer, beginning
3843 * at extent index idx.
3844 */
3845void
3846xfs_iext_remove_inline(
3847 xfs_ifork_t *ifp, /* inode fork pointer */
3848 xfs_extnum_t idx, /* index to begin removing exts */
3849 int ext_diff) /* number of extents to remove */
3850{
3851 int nextents; /* number of extents in file */
3852
0293ce3a 3853 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3854 ASSERT(idx < XFS_INLINE_EXTS);
3855 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3856 ASSERT(((nextents - ext_diff) > 0) &&
3857 (nextents - ext_diff) < XFS_INLINE_EXTS);
3858
3859 if (idx + ext_diff < nextents) {
3860 memmove(&ifp->if_u2.if_inline_ext[idx],
3861 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3862 (nextents - (idx + ext_diff)) *
3863 sizeof(xfs_bmbt_rec_t));
3864 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3865 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3866 } else {
3867 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3868 ext_diff * sizeof(xfs_bmbt_rec_t));
3869 }
3870}
3871
3872/*
3873 * This removes ext_diff extents from a linear (direct) extent list,
3874 * beginning at extent index idx. If the extents are being removed
3875 * from the end of the list (ie. truncate) then we just need to re-
3876 * allocate the list to remove the extra space. Otherwise, if the
3877 * extents are being removed from the middle of the existing extent
3878 * entries, then we first need to move the extent records beginning
3879 * at idx + ext_diff up in the list to overwrite the records being
3880 * removed, then remove the extra space via kmem_realloc.
3881 */
3882void
3883xfs_iext_remove_direct(
3884 xfs_ifork_t *ifp, /* inode fork pointer */
3885 xfs_extnum_t idx, /* index to begin removing exts */
3886 int ext_diff) /* number of extents to remove */
3887{
3888 xfs_extnum_t nextents; /* number of extents in file */
3889 int new_size; /* size of extents after removal */
3890
0293ce3a 3891 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3892 new_size = ifp->if_bytes -
3893 (ext_diff * sizeof(xfs_bmbt_rec_t));
3894 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3895
3896 if (new_size == 0) {
3897 xfs_iext_destroy(ifp);
3898 return;
3899 }
3900 /* Move extents up in the list (if needed) */
3901 if (idx + ext_diff < nextents) {
3902 memmove(&ifp->if_u1.if_extents[idx],
3903 &ifp->if_u1.if_extents[idx + ext_diff],
3904 (nextents - (idx + ext_diff)) *
3905 sizeof(xfs_bmbt_rec_t));
3906 }
3907 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3908 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3909 /*
3910 * Reallocate the direct extent list. If the extents
3911 * will fit inside the inode then xfs_iext_realloc_direct
3912 * will switch from direct to inline extent allocation
3913 * mode for us.
3914 */
3915 xfs_iext_realloc_direct(ifp, new_size);
3916 ifp->if_bytes = new_size;
3917}
3918
0293ce3a
MK
3919/*
3920 * This is called when incore extents are being removed from the
3921 * indirection array and the extents being removed span multiple extent
3922 * buffers. The idx parameter contains the file extent index where we
3923 * want to begin removing extents, and the count parameter contains
3924 * how many extents need to be removed.
3925 *
3926 * |-------| |-------|
3927 * | nex1 | | | nex1 - number of extents before idx
3928 * |-------| | count |
3929 * | | | | count - number of extents being removed at idx
3930 * | count | |-------|
3931 * | | | nex2 | nex2 - number of extents after idx + count
3932 * |-------| |-------|
3933 */
3934void
3935xfs_iext_remove_indirect(
3936 xfs_ifork_t *ifp, /* inode fork pointer */
3937 xfs_extnum_t idx, /* index to begin removing extents */
3938 int count) /* number of extents to remove */
3939{
3940 xfs_ext_irec_t *erp; /* indirection array pointer */
3941 int erp_idx = 0; /* indirection array index */
3942 xfs_extnum_t ext_cnt; /* extents left to remove */
3943 xfs_extnum_t ext_diff; /* extents to remove in current list */
3944 xfs_extnum_t nex1; /* number of extents before idx */
3945 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 3946 int nlists; /* entries in indirection array */
0293ce3a
MK
3947 int page_idx = idx; /* index in target extent list */
3948
3949 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3950 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3951 ASSERT(erp != NULL);
3952 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3953 nex1 = page_idx;
3954 ext_cnt = count;
3955 while (ext_cnt) {
3956 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3957 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3958 /*
3959 * Check for deletion of entire list;
3960 * xfs_iext_irec_remove() updates extent offsets.
3961 */
3962 if (ext_diff == erp->er_extcount) {
3963 xfs_iext_irec_remove(ifp, erp_idx);
3964 ext_cnt -= ext_diff;
3965 nex1 = 0;
3966 if (ext_cnt) {
3967 ASSERT(erp_idx < ifp->if_real_bytes /
3968 XFS_IEXT_BUFSZ);
3969 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3970 nex1 = 0;
3971 continue;
3972 } else {
3973 break;
3974 }
3975 }
3976 /* Move extents up (if needed) */
3977 if (nex2) {
3978 memmove(&erp->er_extbuf[nex1],
3979 &erp->er_extbuf[nex1 + ext_diff],
3980 nex2 * sizeof(xfs_bmbt_rec_t));
3981 }
3982 /* Zero out rest of page */
3983 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3984 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3985 /* Update remaining counters */
3986 erp->er_extcount -= ext_diff;
3987 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3988 ext_cnt -= ext_diff;
3989 nex1 = 0;
3990 erp_idx++;
3991 erp++;
3992 }
3993 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3994 xfs_iext_irec_compact(ifp);
3995}
3996
4eea22f0
MK
3997/*
3998 * Create, destroy, or resize a linear (direct) block of extents.
3999 */
4000void
4001xfs_iext_realloc_direct(
4002 xfs_ifork_t *ifp, /* inode fork pointer */
4003 int new_size) /* new size of extents */
4004{
4005 int rnew_size; /* real new size of extents */
4006
4007 rnew_size = new_size;
4008
0293ce3a
MK
4009 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4010 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4011 (new_size != ifp->if_real_bytes)));
4012
4eea22f0
MK
4013 /* Free extent records */
4014 if (new_size == 0) {
4015 xfs_iext_destroy(ifp);
4016 }
4017 /* Resize direct extent list and zero any new bytes */
4018 else if (ifp->if_real_bytes) {
4019 /* Check if extents will fit inside the inode */
4020 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4021 xfs_iext_direct_to_inline(ifp, new_size /
4022 (uint)sizeof(xfs_bmbt_rec_t));
4023 ifp->if_bytes = new_size;
4024 return;
4025 }
16a087d8 4026 if (!is_power_of_2(new_size)){
40ebd81d 4027 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4028 }
4029 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 4030 ifp->if_u1.if_extents =
4eea22f0
MK
4031 kmem_realloc(ifp->if_u1.if_extents,
4032 rnew_size,
6785073b 4033 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
4034 }
4035 if (rnew_size > ifp->if_real_bytes) {
4036 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4037 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4038 rnew_size - ifp->if_real_bytes);
4039 }
4040 }
4041 /*
4042 * Switch from the inline extent buffer to a direct
4043 * extent list. Be sure to include the inline extent
4044 * bytes in new_size.
4045 */
4046 else {
4047 new_size += ifp->if_bytes;
16a087d8 4048 if (!is_power_of_2(new_size)) {
40ebd81d 4049 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4050 }
4051 xfs_iext_inline_to_direct(ifp, rnew_size);
4052 }
4053 ifp->if_real_bytes = rnew_size;
4054 ifp->if_bytes = new_size;
4055}
4056
4057/*
4058 * Switch from linear (direct) extent records to inline buffer.
4059 */
4060void
4061xfs_iext_direct_to_inline(
4062 xfs_ifork_t *ifp, /* inode fork pointer */
4063 xfs_extnum_t nextents) /* number of extents in file */
4064{
4065 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4066 ASSERT(nextents <= XFS_INLINE_EXTS);
4067 /*
4068 * The inline buffer was zeroed when we switched
4069 * from inline to direct extent allocation mode,
4070 * so we don't need to clear it here.
4071 */
4072 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4073 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 4074 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4075 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4076 ifp->if_real_bytes = 0;
4077}
4078
4079/*
4080 * Switch from inline buffer to linear (direct) extent records.
4081 * new_size should already be rounded up to the next power of 2
4082 * by the caller (when appropriate), so use new_size as it is.
4083 * However, since new_size may be rounded up, we can't update
4084 * if_bytes here. It is the caller's responsibility to update
4085 * if_bytes upon return.
4086 */
4087void
4088xfs_iext_inline_to_direct(
4089 xfs_ifork_t *ifp, /* inode fork pointer */
4090 int new_size) /* number of extents in file */
4091{
6785073b 4092 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
4093 memset(ifp->if_u1.if_extents, 0, new_size);
4094 if (ifp->if_bytes) {
4095 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4096 ifp->if_bytes);
4097 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4098 sizeof(xfs_bmbt_rec_t));
4099 }
4100 ifp->if_real_bytes = new_size;
4101}
4102
0293ce3a
MK
4103/*
4104 * Resize an extent indirection array to new_size bytes.
4105 */
4106void
4107xfs_iext_realloc_indirect(
4108 xfs_ifork_t *ifp, /* inode fork pointer */
4109 int new_size) /* new indirection array size */
4110{
4111 int nlists; /* number of irec's (ex lists) */
4112 int size; /* current indirection array size */
4113
4114 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4115 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4116 size = nlists * sizeof(xfs_ext_irec_t);
4117 ASSERT(ifp->if_real_bytes);
4118 ASSERT((new_size >= 0) && (new_size != size));
4119 if (new_size == 0) {
4120 xfs_iext_destroy(ifp);
4121 } else {
4122 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4123 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 4124 new_size, size, KM_NOFS);
0293ce3a
MK
4125 }
4126}
4127
4128/*
4129 * Switch from indirection array to linear (direct) extent allocations.
4130 */
4131void
4132xfs_iext_indirect_to_direct(
4133 xfs_ifork_t *ifp) /* inode fork pointer */
4134{
a6f64d4a 4135 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4136 xfs_extnum_t nextents; /* number of extents in file */
4137 int size; /* size of file extents */
4138
4139 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4140 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4141 ASSERT(nextents <= XFS_LINEAR_EXTS);
4142 size = nextents * sizeof(xfs_bmbt_rec_t);
4143
71a8c87f 4144 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
4145 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4146
4147 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 4148 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4149 ifp->if_flags &= ~XFS_IFEXTIREC;
4150 ifp->if_u1.if_extents = ep;
4151 ifp->if_bytes = size;
4152 if (nextents < XFS_LINEAR_EXTS) {
4153 xfs_iext_realloc_direct(ifp, size);
4154 }
4155}
4156
4eea22f0
MK
4157/*
4158 * Free incore file extents.
4159 */
4160void
4161xfs_iext_destroy(
4162 xfs_ifork_t *ifp) /* inode fork pointer */
4163{
0293ce3a
MK
4164 if (ifp->if_flags & XFS_IFEXTIREC) {
4165 int erp_idx;
4166 int nlists;
4167
4168 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4169 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4170 xfs_iext_irec_remove(ifp, erp_idx);
4171 }
4172 ifp->if_flags &= ~XFS_IFEXTIREC;
4173 } else if (ifp->if_real_bytes) {
f0e2d93c 4174 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4175 } else if (ifp->if_bytes) {
4176 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4177 sizeof(xfs_bmbt_rec_t));
4178 }
4179 ifp->if_u1.if_extents = NULL;
4180 ifp->if_real_bytes = 0;
4181 ifp->if_bytes = 0;
4182}
0293ce3a 4183
8867bc9b
MK
4184/*
4185 * Return a pointer to the extent record for file system block bno.
4186 */
a6f64d4a 4187xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4188xfs_iext_bno_to_ext(
4189 xfs_ifork_t *ifp, /* inode fork pointer */
4190 xfs_fileoff_t bno, /* block number to search for */
4191 xfs_extnum_t *idxp) /* index of target extent */
4192{
a6f64d4a 4193 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4194 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4195 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4196 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4197 int high; /* upper boundary in search */
8867bc9b 4198 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4199 int low; /* lower boundary in search */
8867bc9b
MK
4200 xfs_extnum_t nextents; /* number of file extents */
4201 xfs_fileoff_t startoff = 0; /* start offset of extent */
4202
4203 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4204 if (nextents == 0) {
4205 *idxp = 0;
4206 return NULL;
4207 }
4208 low = 0;
4209 if (ifp->if_flags & XFS_IFEXTIREC) {
4210 /* Find target extent list */
4211 int erp_idx = 0;
4212 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4213 base = erp->er_extbuf;
4214 high = erp->er_extcount - 1;
4215 } else {
4216 base = ifp->if_u1.if_extents;
4217 high = nextents - 1;
4218 }
4219 /* Binary search extent records */
4220 while (low <= high) {
4221 idx = (low + high) >> 1;
4222 ep = base + idx;
4223 startoff = xfs_bmbt_get_startoff(ep);
4224 blockcount = xfs_bmbt_get_blockcount(ep);
4225 if (bno < startoff) {
4226 high = idx - 1;
4227 } else if (bno >= startoff + blockcount) {
4228 low = idx + 1;
4229 } else {
4230 /* Convert back to file-based extent index */
4231 if (ifp->if_flags & XFS_IFEXTIREC) {
4232 idx += erp->er_extoff;
4233 }
4234 *idxp = idx;
4235 return ep;
4236 }
4237 }
4238 /* Convert back to file-based extent index */
4239 if (ifp->if_flags & XFS_IFEXTIREC) {
4240 idx += erp->er_extoff;
4241 }
4242 if (bno >= startoff + blockcount) {
4243 if (++idx == nextents) {
4244 ep = NULL;
4245 } else {
4246 ep = xfs_iext_get_ext(ifp, idx);
4247 }
4248 }
4249 *idxp = idx;
4250 return ep;
4251}
4252
0293ce3a
MK
4253/*
4254 * Return a pointer to the indirection array entry containing the
4255 * extent record for filesystem block bno. Store the index of the
4256 * target irec in *erp_idxp.
4257 */
8867bc9b 4258xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4259xfs_iext_bno_to_irec(
4260 xfs_ifork_t *ifp, /* inode fork pointer */
4261 xfs_fileoff_t bno, /* block number to search for */
4262 int *erp_idxp) /* irec index of target ext list */
4263{
4264 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4265 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4266 int erp_idx; /* indirection array index */
0293ce3a
MK
4267 int nlists; /* number of extent irec's (lists) */
4268 int high; /* binary search upper limit */
4269 int low; /* binary search lower limit */
4270
4271 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4272 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4273 erp_idx = 0;
4274 low = 0;
4275 high = nlists - 1;
4276 while (low <= high) {
4277 erp_idx = (low + high) >> 1;
4278 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4279 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4280 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4281 high = erp_idx - 1;
4282 } else if (erp_next && bno >=
4283 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4284 low = erp_idx + 1;
4285 } else {
4286 break;
4287 }
4288 }
4289 *erp_idxp = erp_idx;
4290 return erp;
4291}
4292
4293/*
4294 * Return a pointer to the indirection array entry containing the
4295 * extent record at file extent index *idxp. Store the index of the
4296 * target irec in *erp_idxp and store the page index of the target
4297 * extent record in *idxp.
4298 */
4299xfs_ext_irec_t *
4300xfs_iext_idx_to_irec(
4301 xfs_ifork_t *ifp, /* inode fork pointer */
4302 xfs_extnum_t *idxp, /* extent index (file -> page) */
4303 int *erp_idxp, /* pointer to target irec */
4304 int realloc) /* new bytes were just added */
4305{
4306 xfs_ext_irec_t *prev; /* pointer to previous irec */
4307 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4308 int erp_idx; /* indirection array index */
4309 int nlists; /* number of irec's (ex lists) */
4310 int high; /* binary search upper limit */
4311 int low; /* binary search lower limit */
4312 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4313
4314 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4315 ASSERT(page_idx >= 0 && page_idx <=
4316 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4317 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4318 erp_idx = 0;
4319 low = 0;
4320 high = nlists - 1;
4321
4322 /* Binary search extent irec's */
4323 while (low <= high) {
4324 erp_idx = (low + high) >> 1;
4325 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4326 prev = erp_idx > 0 ? erp - 1 : NULL;
4327 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4328 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4329 high = erp_idx - 1;
4330 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4331 (page_idx == erp->er_extoff + erp->er_extcount &&
4332 !realloc)) {
4333 low = erp_idx + 1;
4334 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4335 erp->er_extcount == XFS_LINEAR_EXTS) {
4336 ASSERT(realloc);
4337 page_idx = 0;
4338 erp_idx++;
4339 erp = erp_idx < nlists ? erp + 1 : NULL;
4340 break;
4341 } else {
4342 page_idx -= erp->er_extoff;
4343 break;
4344 }
4345 }
4346 *idxp = page_idx;
4347 *erp_idxp = erp_idx;
4348 return(erp);
4349}
4350
4351/*
4352 * Allocate and initialize an indirection array once the space needed
4353 * for incore extents increases above XFS_IEXT_BUFSZ.
4354 */
4355void
4356xfs_iext_irec_init(
4357 xfs_ifork_t *ifp) /* inode fork pointer */
4358{
4359 xfs_ext_irec_t *erp; /* indirection array pointer */
4360 xfs_extnum_t nextents; /* number of extents in file */
4361
4362 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4363 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4364 ASSERT(nextents <= XFS_LINEAR_EXTS);
4365
6785073b 4366 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
4367
4368 if (nextents == 0) {
6785073b 4369 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4370 } else if (!ifp->if_real_bytes) {
4371 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4372 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4373 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4374 }
4375 erp->er_extbuf = ifp->if_u1.if_extents;
4376 erp->er_extcount = nextents;
4377 erp->er_extoff = 0;
4378
4379 ifp->if_flags |= XFS_IFEXTIREC;
4380 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4381 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4382 ifp->if_u1.if_ext_irec = erp;
4383
4384 return;
4385}
4386
4387/*
4388 * Allocate and initialize a new entry in the indirection array.
4389 */
4390xfs_ext_irec_t *
4391xfs_iext_irec_new(
4392 xfs_ifork_t *ifp, /* inode fork pointer */
4393 int erp_idx) /* index for new irec */
4394{
4395 xfs_ext_irec_t *erp; /* indirection array pointer */
4396 int i; /* loop counter */
4397 int nlists; /* number of irec's (ex lists) */
4398
4399 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4400 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4401
4402 /* Resize indirection array */
4403 xfs_iext_realloc_indirect(ifp, ++nlists *
4404 sizeof(xfs_ext_irec_t));
4405 /*
4406 * Move records down in the array so the
4407 * new page can use erp_idx.
4408 */
4409 erp = ifp->if_u1.if_ext_irec;
4410 for (i = nlists - 1; i > erp_idx; i--) {
4411 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4412 }
4413 ASSERT(i == erp_idx);
4414
4415 /* Initialize new extent record */
4416 erp = ifp->if_u1.if_ext_irec;
6785073b 4417 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4418 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4419 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4420 erp[erp_idx].er_extcount = 0;
4421 erp[erp_idx].er_extoff = erp_idx > 0 ?
4422 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4423 return (&erp[erp_idx]);
4424}
4425
4426/*
4427 * Remove a record from the indirection array.
4428 */
4429void
4430xfs_iext_irec_remove(
4431 xfs_ifork_t *ifp, /* inode fork pointer */
4432 int erp_idx) /* irec index to remove */
4433{
4434 xfs_ext_irec_t *erp; /* indirection array pointer */
4435 int i; /* loop counter */
4436 int nlists; /* number of irec's (ex lists) */
4437
4438 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4439 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4440 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4441 if (erp->er_extbuf) {
4442 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4443 -erp->er_extcount);
f0e2d93c 4444 kmem_free(erp->er_extbuf);
0293ce3a
MK
4445 }
4446 /* Compact extent records */
4447 erp = ifp->if_u1.if_ext_irec;
4448 for (i = erp_idx; i < nlists - 1; i++) {
4449 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4450 }
4451 /*
4452 * Manually free the last extent record from the indirection
4453 * array. A call to xfs_iext_realloc_indirect() with a size
4454 * of zero would result in a call to xfs_iext_destroy() which
4455 * would in turn call this function again, creating a nasty
4456 * infinite loop.
4457 */
4458 if (--nlists) {
4459 xfs_iext_realloc_indirect(ifp,
4460 nlists * sizeof(xfs_ext_irec_t));
4461 } else {
f0e2d93c 4462 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4463 }
4464 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4465}
4466
4467/*
4468 * This is called to clean up large amounts of unused memory allocated
4469 * by the indirection array. Before compacting anything though, verify
4470 * that the indirection array is still needed and switch back to the
4471 * linear extent list (or even the inline buffer) if possible. The
4472 * compaction policy is as follows:
4473 *
4474 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 4475 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
4476 * No Compaction: Extents occupy at least 50% of allocated space
4477 */
4478void
4479xfs_iext_irec_compact(
4480 xfs_ifork_t *ifp) /* inode fork pointer */
4481{
4482 xfs_extnum_t nextents; /* number of extents in file */
4483 int nlists; /* number of irec's (ex lists) */
4484
4485 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4486 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4487 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4488
4489 if (nextents == 0) {
4490 xfs_iext_destroy(ifp);
4491 } else if (nextents <= XFS_INLINE_EXTS) {
4492 xfs_iext_indirect_to_direct(ifp);
4493 xfs_iext_direct_to_inline(ifp, nextents);
4494 } else if (nextents <= XFS_LINEAR_EXTS) {
4495 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
4496 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4497 xfs_iext_irec_compact_pages(ifp);
4498 }
4499}
4500
4501/*
4502 * Combine extents from neighboring extent pages.
4503 */
4504void
4505xfs_iext_irec_compact_pages(
4506 xfs_ifork_t *ifp) /* inode fork pointer */
4507{
4508 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4509 int erp_idx = 0; /* indirection array index */
4510 int nlists; /* number of irec's (ex lists) */
4511
4512 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4513 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4514 while (erp_idx < nlists - 1) {
4515 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4516 erp_next = erp + 1;
4517 if (erp_next->er_extcount <=
4518 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 4519 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
4520 erp_next->er_extbuf, erp_next->er_extcount *
4521 sizeof(xfs_bmbt_rec_t));
4522 erp->er_extcount += erp_next->er_extcount;
4523 /*
4524 * Free page before removing extent record
4525 * so er_extoffs don't get modified in
4526 * xfs_iext_irec_remove.
4527 */
f0e2d93c 4528 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
4529 erp_next->er_extbuf = NULL;
4530 xfs_iext_irec_remove(ifp, erp_idx + 1);
4531 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4532 } else {
4533 erp_idx++;
4534 }
4535 }
4536}
4537
0293ce3a
MK
4538/*
4539 * This is called to update the er_extoff field in the indirection
4540 * array when extents have been added or removed from one of the
4541 * extent lists. erp_idx contains the irec index to begin updating
4542 * at and ext_diff contains the number of extents that were added
4543 * or removed.
4544 */
4545void
4546xfs_iext_irec_update_extoffs(
4547 xfs_ifork_t *ifp, /* inode fork pointer */
4548 int erp_idx, /* irec index to update */
4549 int ext_diff) /* number of new extents */
4550{
4551 int i; /* loop counter */
4552 int nlists; /* number of irec's (ex lists */
4553
4554 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4555 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4556 for (i = erp_idx; i < nlists; i++) {
4557 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4558 }
4559}
This page took 0.679858 seconds and 5 git commands to generate.