xfs: decouple log and transaction headers
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
a844f451 26#include "xfs_inum.h"
1da177e4
LT
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4 29#include "xfs_mount.h"
57062787 30#include "xfs_da_format.h"
c24b5dfa 31#include "xfs_da_btree.h"
c24b5dfa 32#include "xfs_dir2.h"
1da177e4 33#include "xfs_bmap_btree.h"
a844f451 34#include "xfs_alloc_btree.h"
1da177e4 35#include "xfs_ialloc_btree.h"
a844f451 36#include "xfs_attr_sf.h"
c24b5dfa 37#include "xfs_attr.h"
1da177e4 38#include "xfs_dinode.h"
1da177e4 39#include "xfs_inode.h"
239880ef
DC
40#include "xfs_trans_space.h"
41#include "xfs_trans.h"
1da177e4 42#include "xfs_buf_item.h"
a844f451
NS
43#include "xfs_inode_item.h"
44#include "xfs_btree.h"
45#include "xfs_alloc.h"
46#include "xfs_ialloc.h"
47#include "xfs_bmap.h"
68988114 48#include "xfs_bmap_util.h"
1da177e4 49#include "xfs_error.h"
1da177e4 50#include "xfs_quota.h"
2a82b8be 51#include "xfs_filestream.h"
93848a99 52#include "xfs_cksum.h"
0b1b213f 53#include "xfs_trace.h"
33479e05 54#include "xfs_icache.h"
c24b5dfa 55#include "xfs_symlink.h"
239880ef
DC
56#include "xfs_trans_priv.h"
57#include "xfs_log.h"
1da177e4 58
1da177e4 59kmem_zone_t *xfs_inode_zone;
1da177e4
LT
60
61/*
8f04c47a 62 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
63 * freed from a file in a single transaction.
64 */
65#define XFS_ITRUNC_MAX_EXTENTS 2
66
67STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 68
2a0ec1d9
DC
69/*
70 * helper function to extract extent size hint from inode
71 */
72xfs_extlen_t
73xfs_get_extsz_hint(
74 struct xfs_inode *ip)
75{
76 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
77 return ip->i_d.di_extsize;
78 if (XFS_IS_REALTIME_INODE(ip))
79 return ip->i_mount->m_sb.sb_rextsize;
80 return 0;
81}
82
fa96acad
DC
83/*
84 * This is a wrapper routine around the xfs_ilock() routine used to centralize
85 * some grungy code. It is used in places that wish to lock the inode solely
86 * for reading the extents. The reason these places can't just call
87 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
88 * extents from disk for a file in b-tree format. If the inode is in b-tree
89 * format, then we need to lock the inode exclusively until the extents are read
90 * in. Locking it exclusively all the time would limit our parallelism
91 * unnecessarily, though. What we do instead is check to see if the extents
92 * have been read in yet, and only lock the inode exclusively if they have not.
93 *
94 * The function returns a value which should be given to the corresponding
95 * xfs_iunlock_map_shared(). This value is the mode in which the lock was
96 * actually taken.
97 */
98uint
99xfs_ilock_map_shared(
100 xfs_inode_t *ip)
101{
102 uint lock_mode;
103
104 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
105 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
106 lock_mode = XFS_ILOCK_EXCL;
107 } else {
108 lock_mode = XFS_ILOCK_SHARED;
109 }
110
111 xfs_ilock(ip, lock_mode);
112
113 return lock_mode;
114}
115
116/*
117 * This is simply the unlock routine to go with xfs_ilock_map_shared().
118 * All it does is call xfs_iunlock() with the given lock_mode.
119 */
120void
121xfs_iunlock_map_shared(
122 xfs_inode_t *ip,
123 unsigned int lock_mode)
124{
125 xfs_iunlock(ip, lock_mode);
126}
127
128/*
129 * The xfs inode contains 2 locks: a multi-reader lock called the
130 * i_iolock and a multi-reader lock called the i_lock. This routine
131 * allows either or both of the locks to be obtained.
132 *
133 * The 2 locks should always be ordered so that the IO lock is
134 * obtained first in order to prevent deadlock.
135 *
136 * ip -- the inode being locked
137 * lock_flags -- this parameter indicates the inode's locks
138 * to be locked. It can be:
139 * XFS_IOLOCK_SHARED,
140 * XFS_IOLOCK_EXCL,
141 * XFS_ILOCK_SHARED,
142 * XFS_ILOCK_EXCL,
143 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
144 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
145 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
146 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
147 */
148void
149xfs_ilock(
150 xfs_inode_t *ip,
151 uint lock_flags)
152{
153 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
154
155 /*
156 * You can't set both SHARED and EXCL for the same lock,
157 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
158 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
159 */
160 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
161 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
162 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
163 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
164 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
165
166 if (lock_flags & XFS_IOLOCK_EXCL)
167 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
168 else if (lock_flags & XFS_IOLOCK_SHARED)
169 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
170
171 if (lock_flags & XFS_ILOCK_EXCL)
172 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
173 else if (lock_flags & XFS_ILOCK_SHARED)
174 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
175}
176
177/*
178 * This is just like xfs_ilock(), except that the caller
179 * is guaranteed not to sleep. It returns 1 if it gets
180 * the requested locks and 0 otherwise. If the IO lock is
181 * obtained but the inode lock cannot be, then the IO lock
182 * is dropped before returning.
183 *
184 * ip -- the inode being locked
185 * lock_flags -- this parameter indicates the inode's locks to be
186 * to be locked. See the comment for xfs_ilock() for a list
187 * of valid values.
188 */
189int
190xfs_ilock_nowait(
191 xfs_inode_t *ip,
192 uint lock_flags)
193{
194 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
195
196 /*
197 * You can't set both SHARED and EXCL for the same lock,
198 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
199 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
200 */
201 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
202 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
203 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
204 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
205 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
206
207 if (lock_flags & XFS_IOLOCK_EXCL) {
208 if (!mrtryupdate(&ip->i_iolock))
209 goto out;
210 } else if (lock_flags & XFS_IOLOCK_SHARED) {
211 if (!mrtryaccess(&ip->i_iolock))
212 goto out;
213 }
214 if (lock_flags & XFS_ILOCK_EXCL) {
215 if (!mrtryupdate(&ip->i_lock))
216 goto out_undo_iolock;
217 } else if (lock_flags & XFS_ILOCK_SHARED) {
218 if (!mrtryaccess(&ip->i_lock))
219 goto out_undo_iolock;
220 }
221 return 1;
222
223 out_undo_iolock:
224 if (lock_flags & XFS_IOLOCK_EXCL)
225 mrunlock_excl(&ip->i_iolock);
226 else if (lock_flags & XFS_IOLOCK_SHARED)
227 mrunlock_shared(&ip->i_iolock);
228 out:
229 return 0;
230}
231
232/*
233 * xfs_iunlock() is used to drop the inode locks acquired with
234 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
235 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
236 * that we know which locks to drop.
237 *
238 * ip -- the inode being unlocked
239 * lock_flags -- this parameter indicates the inode's locks to be
240 * to be unlocked. See the comment for xfs_ilock() for a list
241 * of valid values for this parameter.
242 *
243 */
244void
245xfs_iunlock(
246 xfs_inode_t *ip,
247 uint lock_flags)
248{
249 /*
250 * You can't set both SHARED and EXCL for the same lock,
251 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
252 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
253 */
254 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
255 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
256 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
257 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
258 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
259 ASSERT(lock_flags != 0);
260
261 if (lock_flags & XFS_IOLOCK_EXCL)
262 mrunlock_excl(&ip->i_iolock);
263 else if (lock_flags & XFS_IOLOCK_SHARED)
264 mrunlock_shared(&ip->i_iolock);
265
266 if (lock_flags & XFS_ILOCK_EXCL)
267 mrunlock_excl(&ip->i_lock);
268 else if (lock_flags & XFS_ILOCK_SHARED)
269 mrunlock_shared(&ip->i_lock);
270
271 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
272}
273
274/*
275 * give up write locks. the i/o lock cannot be held nested
276 * if it is being demoted.
277 */
278void
279xfs_ilock_demote(
280 xfs_inode_t *ip,
281 uint lock_flags)
282{
283 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
284 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
285
286 if (lock_flags & XFS_ILOCK_EXCL)
287 mrdemote(&ip->i_lock);
288 if (lock_flags & XFS_IOLOCK_EXCL)
289 mrdemote(&ip->i_iolock);
290
291 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
292}
293
742ae1e3 294#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
295int
296xfs_isilocked(
297 xfs_inode_t *ip,
298 uint lock_flags)
299{
300 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
301 if (!(lock_flags & XFS_ILOCK_SHARED))
302 return !!ip->i_lock.mr_writer;
303 return rwsem_is_locked(&ip->i_lock.mr_lock);
304 }
305
306 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
307 if (!(lock_flags & XFS_IOLOCK_SHARED))
308 return !!ip->i_iolock.mr_writer;
309 return rwsem_is_locked(&ip->i_iolock.mr_lock);
310 }
311
312 ASSERT(0);
313 return 0;
314}
315#endif
316
c24b5dfa
DC
317#ifdef DEBUG
318int xfs_locked_n;
319int xfs_small_retries;
320int xfs_middle_retries;
321int xfs_lots_retries;
322int xfs_lock_delays;
323#endif
324
325/*
326 * Bump the subclass so xfs_lock_inodes() acquires each lock with
327 * a different value
328 */
329static inline int
330xfs_lock_inumorder(int lock_mode, int subclass)
331{
332 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
333 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
334 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
335 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
336
337 return lock_mode;
338}
339
340/*
341 * The following routine will lock n inodes in exclusive mode.
342 * We assume the caller calls us with the inodes in i_ino order.
343 *
344 * We need to detect deadlock where an inode that we lock
345 * is in the AIL and we start waiting for another inode that is locked
346 * by a thread in a long running transaction (such as truncate). This can
347 * result in deadlock since the long running trans might need to wait
348 * for the inode we just locked in order to push the tail and free space
349 * in the log.
350 */
351void
352xfs_lock_inodes(
353 xfs_inode_t **ips,
354 int inodes,
355 uint lock_mode)
356{
357 int attempts = 0, i, j, try_lock;
358 xfs_log_item_t *lp;
359
360 ASSERT(ips && (inodes >= 2)); /* we need at least two */
361
362 try_lock = 0;
363 i = 0;
364
365again:
366 for (; i < inodes; i++) {
367 ASSERT(ips[i]);
368
369 if (i && (ips[i] == ips[i-1])) /* Already locked */
370 continue;
371
372 /*
373 * If try_lock is not set yet, make sure all locked inodes
374 * are not in the AIL.
375 * If any are, set try_lock to be used later.
376 */
377
378 if (!try_lock) {
379 for (j = (i - 1); j >= 0 && !try_lock; j--) {
380 lp = (xfs_log_item_t *)ips[j]->i_itemp;
381 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
382 try_lock++;
383 }
384 }
385 }
386
387 /*
388 * If any of the previous locks we have locked is in the AIL,
389 * we must TRY to get the second and subsequent locks. If
390 * we can't get any, we must release all we have
391 * and try again.
392 */
393
394 if (try_lock) {
395 /* try_lock must be 0 if i is 0. */
396 /*
397 * try_lock means we have an inode locked
398 * that is in the AIL.
399 */
400 ASSERT(i != 0);
401 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
402 attempts++;
403
404 /*
405 * Unlock all previous guys and try again.
406 * xfs_iunlock will try to push the tail
407 * if the inode is in the AIL.
408 */
409
410 for(j = i - 1; j >= 0; j--) {
411
412 /*
413 * Check to see if we've already
414 * unlocked this one.
415 * Not the first one going back,
416 * and the inode ptr is the same.
417 */
418 if ((j != (i - 1)) && ips[j] ==
419 ips[j+1])
420 continue;
421
422 xfs_iunlock(ips[j], lock_mode);
423 }
424
425 if ((attempts % 5) == 0) {
426 delay(1); /* Don't just spin the CPU */
427#ifdef DEBUG
428 xfs_lock_delays++;
429#endif
430 }
431 i = 0;
432 try_lock = 0;
433 goto again;
434 }
435 } else {
436 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
437 }
438 }
439
440#ifdef DEBUG
441 if (attempts) {
442 if (attempts < 5) xfs_small_retries++;
443 else if (attempts < 100) xfs_middle_retries++;
444 else xfs_lots_retries++;
445 } else {
446 xfs_locked_n++;
447 }
448#endif
449}
450
451/*
452 * xfs_lock_two_inodes() can only be used to lock one type of lock
453 * at a time - the iolock or the ilock, but not both at once. If
454 * we lock both at once, lockdep will report false positives saying
455 * we have violated locking orders.
456 */
457void
458xfs_lock_two_inodes(
459 xfs_inode_t *ip0,
460 xfs_inode_t *ip1,
461 uint lock_mode)
462{
463 xfs_inode_t *temp;
464 int attempts = 0;
465 xfs_log_item_t *lp;
466
467 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
468 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
469 ASSERT(ip0->i_ino != ip1->i_ino);
470
471 if (ip0->i_ino > ip1->i_ino) {
472 temp = ip0;
473 ip0 = ip1;
474 ip1 = temp;
475 }
476
477 again:
478 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
479
480 /*
481 * If the first lock we have locked is in the AIL, we must TRY to get
482 * the second lock. If we can't get it, we must release the first one
483 * and try again.
484 */
485 lp = (xfs_log_item_t *)ip0->i_itemp;
486 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
487 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
488 xfs_iunlock(ip0, lock_mode);
489 if ((++attempts % 5) == 0)
490 delay(1); /* Don't just spin the CPU */
491 goto again;
492 }
493 } else {
494 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
495 }
496}
497
498
fa96acad
DC
499void
500__xfs_iflock(
501 struct xfs_inode *ip)
502{
503 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
504 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
505
506 do {
507 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
508 if (xfs_isiflocked(ip))
509 io_schedule();
510 } while (!xfs_iflock_nowait(ip));
511
512 finish_wait(wq, &wait.wait);
513}
514
1da177e4
LT
515STATIC uint
516_xfs_dic2xflags(
1da177e4
LT
517 __uint16_t di_flags)
518{
519 uint flags = 0;
520
521 if (di_flags & XFS_DIFLAG_ANY) {
522 if (di_flags & XFS_DIFLAG_REALTIME)
523 flags |= XFS_XFLAG_REALTIME;
524 if (di_flags & XFS_DIFLAG_PREALLOC)
525 flags |= XFS_XFLAG_PREALLOC;
526 if (di_flags & XFS_DIFLAG_IMMUTABLE)
527 flags |= XFS_XFLAG_IMMUTABLE;
528 if (di_flags & XFS_DIFLAG_APPEND)
529 flags |= XFS_XFLAG_APPEND;
530 if (di_flags & XFS_DIFLAG_SYNC)
531 flags |= XFS_XFLAG_SYNC;
532 if (di_flags & XFS_DIFLAG_NOATIME)
533 flags |= XFS_XFLAG_NOATIME;
534 if (di_flags & XFS_DIFLAG_NODUMP)
535 flags |= XFS_XFLAG_NODUMP;
536 if (di_flags & XFS_DIFLAG_RTINHERIT)
537 flags |= XFS_XFLAG_RTINHERIT;
538 if (di_flags & XFS_DIFLAG_PROJINHERIT)
539 flags |= XFS_XFLAG_PROJINHERIT;
540 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
541 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
542 if (di_flags & XFS_DIFLAG_EXTSIZE)
543 flags |= XFS_XFLAG_EXTSIZE;
544 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
545 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
546 if (di_flags & XFS_DIFLAG_NODEFRAG)
547 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
548 if (di_flags & XFS_DIFLAG_FILESTREAM)
549 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
550 }
551
552 return flags;
553}
554
555uint
556xfs_ip2xflags(
557 xfs_inode_t *ip)
558{
347d1c01 559 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 560
a916e2bd 561 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 562 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
563}
564
565uint
566xfs_dic2xflags(
45ba598e 567 xfs_dinode_t *dip)
1da177e4 568{
81591fe2 569 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 570 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
571}
572
c24b5dfa
DC
573/*
574 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
575 * is allowed, otherwise it has to be an exact match. If a CI match is found,
576 * ci_name->name will point to a the actual name (caller must free) or
577 * will be set to NULL if an exact match is found.
578 */
579int
580xfs_lookup(
581 xfs_inode_t *dp,
582 struct xfs_name *name,
583 xfs_inode_t **ipp,
584 struct xfs_name *ci_name)
585{
586 xfs_ino_t inum;
587 int error;
588 uint lock_mode;
589
590 trace_xfs_lookup(dp, name);
591
592 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
593 return XFS_ERROR(EIO);
594
595 lock_mode = xfs_ilock_map_shared(dp);
596 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
597 xfs_iunlock_map_shared(dp, lock_mode);
598
599 if (error)
600 goto out;
601
602 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
603 if (error)
604 goto out_free_name;
605
606 return 0;
607
608out_free_name:
609 if (ci_name)
610 kmem_free(ci_name->name);
611out:
612 *ipp = NULL;
613 return error;
614}
615
1da177e4
LT
616/*
617 * Allocate an inode on disk and return a copy of its in-core version.
618 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
619 * appropriately within the inode. The uid and gid for the inode are
620 * set according to the contents of the given cred structure.
621 *
622 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
623 * has a free inode available, call xfs_iget() to obtain the in-core
624 * version of the allocated inode. Finally, fill in the inode and
625 * log its initial contents. In this case, ialloc_context would be
626 * set to NULL.
1da177e4 627 *
cd856db6
CM
628 * If xfs_dialloc() does not have an available inode, it will replenish
629 * its supply by doing an allocation. Since we can only do one
630 * allocation within a transaction without deadlocks, we must commit
631 * the current transaction before returning the inode itself.
632 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
633 * The caller should then commit the current transaction, start a new
634 * transaction, and call xfs_ialloc() again to actually get the inode.
635 *
636 * To ensure that some other process does not grab the inode that
637 * was allocated during the first call to xfs_ialloc(), this routine
638 * also returns the [locked] bp pointing to the head of the freelist
639 * as ialloc_context. The caller should hold this buffer across
640 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
641 *
642 * If we are allocating quota inodes, we do not have a parent inode
643 * to attach to or associate with (i.e. pip == NULL) because they
644 * are not linked into the directory structure - they are attached
645 * directly to the superblock - and so have no parent.
1da177e4
LT
646 */
647int
648xfs_ialloc(
649 xfs_trans_t *tp,
650 xfs_inode_t *pip,
576b1d67 651 umode_t mode,
31b084ae 652 xfs_nlink_t nlink,
1da177e4 653 xfs_dev_t rdev,
6743099c 654 prid_t prid,
1da177e4
LT
655 int okalloc,
656 xfs_buf_t **ialloc_context,
1da177e4
LT
657 xfs_inode_t **ipp)
658{
93848a99 659 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
660 xfs_ino_t ino;
661 xfs_inode_t *ip;
1da177e4
LT
662 uint flags;
663 int error;
dff35fd4 664 timespec_t tv;
bf904248 665 int filestreams = 0;
1da177e4
LT
666
667 /*
668 * Call the space management code to pick
669 * the on-disk inode to be allocated.
670 */
b11f94d5 671 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 672 ialloc_context, &ino);
bf904248 673 if (error)
1da177e4 674 return error;
08358906 675 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
676 *ipp = NULL;
677 return 0;
678 }
679 ASSERT(*ialloc_context == NULL);
680
681 /*
682 * Get the in-core inode with the lock held exclusively.
683 * This is because we're setting fields here we need
684 * to prevent others from looking at until we're done.
685 */
93848a99 686 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 687 XFS_ILOCK_EXCL, &ip);
bf904248 688 if (error)
1da177e4 689 return error;
1da177e4
LT
690 ASSERT(ip != NULL);
691
576b1d67 692 ip->i_d.di_mode = mode;
1da177e4
LT
693 ip->i_d.di_onlink = 0;
694 ip->i_d.di_nlink = nlink;
695 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
696 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
697 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 698 xfs_set_projid(ip, prid);
1da177e4
LT
699 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
700
701 /*
702 * If the superblock version is up to where we support new format
703 * inodes and this is currently an old format inode, then change
704 * the inode version number now. This way we only do the conversion
705 * here rather than here and in the flush/logging code.
706 */
93848a99 707 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
51ce16d5
CH
708 ip->i_d.di_version == 1) {
709 ip->i_d.di_version = 2;
1da177e4
LT
710 /*
711 * We've already zeroed the old link count, the projid field,
712 * and the pad field.
713 */
714 }
715
716 /*
717 * Project ids won't be stored on disk if we are using a version 1 inode.
718 */
51ce16d5 719 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
720 xfs_bump_ino_vers2(tp, ip);
721
bd186aa9 722 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 723 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 724 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
725 ip->i_d.di_mode |= S_ISGID;
726 }
727 }
728
729 /*
730 * If the group ID of the new file does not match the effective group
731 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
732 * (and only if the irix_sgid_inherit compatibility variable is set).
733 */
734 if ((irix_sgid_inherit) &&
735 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 736 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
737 ip->i_d.di_mode &= ~S_ISGID;
738 }
739
740 ip->i_d.di_size = 0;
741 ip->i_d.di_nextents = 0;
742 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
743
744 nanotime(&tv);
745 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
746 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
747 ip->i_d.di_atime = ip->i_d.di_mtime;
748 ip->i_d.di_ctime = ip->i_d.di_mtime;
749
1da177e4
LT
750 /*
751 * di_gen will have been taken care of in xfs_iread.
752 */
753 ip->i_d.di_extsize = 0;
754 ip->i_d.di_dmevmask = 0;
755 ip->i_d.di_dmstate = 0;
756 ip->i_d.di_flags = 0;
93848a99
CH
757
758 if (ip->i_d.di_version == 3) {
759 ASSERT(ip->i_d.di_ino == ino);
760 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
761 ip->i_d.di_crc = 0;
762 ip->i_d.di_changecount = 1;
763 ip->i_d.di_lsn = 0;
764 ip->i_d.di_flags2 = 0;
765 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
766 ip->i_d.di_crtime = ip->i_d.di_mtime;
767 }
768
769
1da177e4
LT
770 flags = XFS_ILOG_CORE;
771 switch (mode & S_IFMT) {
772 case S_IFIFO:
773 case S_IFCHR:
774 case S_IFBLK:
775 case S_IFSOCK:
776 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
777 ip->i_df.if_u2.if_rdev = rdev;
778 ip->i_df.if_flags = 0;
779 flags |= XFS_ILOG_DEV;
780 break;
781 case S_IFREG:
bf904248
DC
782 /*
783 * we can't set up filestreams until after the VFS inode
784 * is set up properly.
785 */
786 if (pip && xfs_inode_is_filestream(pip))
787 filestreams = 1;
2a82b8be 788 /* fall through */
1da177e4 789 case S_IFDIR:
b11f94d5 790 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
791 uint di_flags = 0;
792
abbede1b 793 if (S_ISDIR(mode)) {
365ca83d
NS
794 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
795 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
796 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
797 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
798 ip->i_d.di_extsize = pip->i_d.di_extsize;
799 }
abbede1b 800 } else if (S_ISREG(mode)) {
613d7043 801 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 802 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
803 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
804 di_flags |= XFS_DIFLAG_EXTSIZE;
805 ip->i_d.di_extsize = pip->i_d.di_extsize;
806 }
1da177e4
LT
807 }
808 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
809 xfs_inherit_noatime)
365ca83d 810 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
811 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
812 xfs_inherit_nodump)
365ca83d 813 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
814 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
815 xfs_inherit_sync)
365ca83d 816 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
817 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
818 xfs_inherit_nosymlinks)
365ca83d
NS
819 di_flags |= XFS_DIFLAG_NOSYMLINKS;
820 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
821 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
822 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
823 xfs_inherit_nodefrag)
824 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
825 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
826 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 827 ip->i_d.di_flags |= di_flags;
1da177e4
LT
828 }
829 /* FALLTHROUGH */
830 case S_IFLNK:
831 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
832 ip->i_df.if_flags = XFS_IFEXTENTS;
833 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
834 ip->i_df.if_u1.if_extents = NULL;
835 break;
836 default:
837 ASSERT(0);
838 }
839 /*
840 * Attribute fork settings for new inode.
841 */
842 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
843 ip->i_d.di_anextents = 0;
844
845 /*
846 * Log the new values stuffed into the inode.
847 */
ddc3415a 848 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
849 xfs_trans_log_inode(tp, ip, flags);
850
b83bd138 851 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 852 xfs_setup_inode(ip);
1da177e4 853
bf904248
DC
854 /* now we have set up the vfs inode we can associate the filestream */
855 if (filestreams) {
856 error = xfs_filestream_associate(pip, ip);
857 if (error < 0)
858 return -error;
859 if (!error)
860 xfs_iflags_set(ip, XFS_IFILESTREAM);
861 }
862
1da177e4
LT
863 *ipp = ip;
864 return 0;
865}
866
e546cb79
DC
867/*
868 * Allocates a new inode from disk and return a pointer to the
869 * incore copy. This routine will internally commit the current
870 * transaction and allocate a new one if the Space Manager needed
871 * to do an allocation to replenish the inode free-list.
872 *
873 * This routine is designed to be called from xfs_create and
874 * xfs_create_dir.
875 *
876 */
877int
878xfs_dir_ialloc(
879 xfs_trans_t **tpp, /* input: current transaction;
880 output: may be a new transaction. */
881 xfs_inode_t *dp, /* directory within whose allocate
882 the inode. */
883 umode_t mode,
884 xfs_nlink_t nlink,
885 xfs_dev_t rdev,
886 prid_t prid, /* project id */
887 int okalloc, /* ok to allocate new space */
888 xfs_inode_t **ipp, /* pointer to inode; it will be
889 locked. */
890 int *committed)
891
892{
893 xfs_trans_t *tp;
894 xfs_trans_t *ntp;
895 xfs_inode_t *ip;
896 xfs_buf_t *ialloc_context = NULL;
897 int code;
e546cb79
DC
898 void *dqinfo;
899 uint tflags;
900
901 tp = *tpp;
902 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
903
904 /*
905 * xfs_ialloc will return a pointer to an incore inode if
906 * the Space Manager has an available inode on the free
907 * list. Otherwise, it will do an allocation and replenish
908 * the freelist. Since we can only do one allocation per
909 * transaction without deadlocks, we will need to commit the
910 * current transaction and start a new one. We will then
911 * need to call xfs_ialloc again to get the inode.
912 *
913 * If xfs_ialloc did an allocation to replenish the freelist,
914 * it returns the bp containing the head of the freelist as
915 * ialloc_context. We will hold a lock on it across the
916 * transaction commit so that no other process can steal
917 * the inode(s) that we've just allocated.
918 */
919 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
920 &ialloc_context, &ip);
921
922 /*
923 * Return an error if we were unable to allocate a new inode.
924 * This should only happen if we run out of space on disk or
925 * encounter a disk error.
926 */
927 if (code) {
928 *ipp = NULL;
929 return code;
930 }
931 if (!ialloc_context && !ip) {
932 *ipp = NULL;
933 return XFS_ERROR(ENOSPC);
934 }
935
936 /*
937 * If the AGI buffer is non-NULL, then we were unable to get an
938 * inode in one operation. We need to commit the current
939 * transaction and call xfs_ialloc() again. It is guaranteed
940 * to succeed the second time.
941 */
942 if (ialloc_context) {
3d3c8b52
JL
943 struct xfs_trans_res tres;
944
e546cb79
DC
945 /*
946 * Normally, xfs_trans_commit releases all the locks.
947 * We call bhold to hang on to the ialloc_context across
948 * the commit. Holding this buffer prevents any other
949 * processes from doing any allocations in this
950 * allocation group.
951 */
952 xfs_trans_bhold(tp, ialloc_context);
953 /*
954 * Save the log reservation so we can use
955 * them in the next transaction.
956 */
3d3c8b52
JL
957 tres.tr_logres = xfs_trans_get_log_res(tp);
958 tres.tr_logcount = xfs_trans_get_log_count(tp);
e546cb79
DC
959
960 /*
961 * We want the quota changes to be associated with the next
962 * transaction, NOT this one. So, detach the dqinfo from this
963 * and attach it to the next transaction.
964 */
965 dqinfo = NULL;
966 tflags = 0;
967 if (tp->t_dqinfo) {
968 dqinfo = (void *)tp->t_dqinfo;
969 tp->t_dqinfo = NULL;
970 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
971 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
972 }
973
974 ntp = xfs_trans_dup(tp);
975 code = xfs_trans_commit(tp, 0);
976 tp = ntp;
977 if (committed != NULL) {
978 *committed = 1;
979 }
980 /*
981 * If we get an error during the commit processing,
982 * release the buffer that is still held and return
983 * to the caller.
984 */
985 if (code) {
986 xfs_buf_relse(ialloc_context);
987 if (dqinfo) {
988 tp->t_dqinfo = dqinfo;
989 xfs_trans_free_dqinfo(tp);
990 }
991 *tpp = ntp;
992 *ipp = NULL;
993 return code;
994 }
995
996 /*
997 * transaction commit worked ok so we can drop the extra ticket
998 * reference that we gained in xfs_trans_dup()
999 */
1000 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52
JL
1001 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1002 code = xfs_trans_reserve(tp, &tres, 0, 0);
1003
e546cb79
DC
1004 /*
1005 * Re-attach the quota info that we detached from prev trx.
1006 */
1007 if (dqinfo) {
1008 tp->t_dqinfo = dqinfo;
1009 tp->t_flags |= tflags;
1010 }
1011
1012 if (code) {
1013 xfs_buf_relse(ialloc_context);
1014 *tpp = ntp;
1015 *ipp = NULL;
1016 return code;
1017 }
1018 xfs_trans_bjoin(tp, ialloc_context);
1019
1020 /*
1021 * Call ialloc again. Since we've locked out all
1022 * other allocations in this allocation group,
1023 * this call should always succeed.
1024 */
1025 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1026 okalloc, &ialloc_context, &ip);
1027
1028 /*
1029 * If we get an error at this point, return to the caller
1030 * so that the current transaction can be aborted.
1031 */
1032 if (code) {
1033 *tpp = tp;
1034 *ipp = NULL;
1035 return code;
1036 }
1037 ASSERT(!ialloc_context && ip);
1038
1039 } else {
1040 if (committed != NULL)
1041 *committed = 0;
1042 }
1043
1044 *ipp = ip;
1045 *tpp = tp;
1046
1047 return 0;
1048}
1049
1050/*
1051 * Decrement the link count on an inode & log the change.
1052 * If this causes the link count to go to zero, initiate the
1053 * logging activity required to truncate a file.
1054 */
1055int /* error */
1056xfs_droplink(
1057 xfs_trans_t *tp,
1058 xfs_inode_t *ip)
1059{
1060 int error;
1061
1062 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1063
1064 ASSERT (ip->i_d.di_nlink > 0);
1065 ip->i_d.di_nlink--;
1066 drop_nlink(VFS_I(ip));
1067 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1068
1069 error = 0;
1070 if (ip->i_d.di_nlink == 0) {
1071 /*
1072 * We're dropping the last link to this file.
1073 * Move the on-disk inode to the AGI unlinked list.
1074 * From xfs_inactive() we will pull the inode from
1075 * the list and free it.
1076 */
1077 error = xfs_iunlink(tp, ip);
1078 }
1079 return error;
1080}
1081
1082/*
1083 * This gets called when the inode's version needs to be changed from 1 to 2.
1084 * Currently this happens when the nlink field overflows the old 16-bit value
1085 * or when chproj is called to change the project for the first time.
1086 * As a side effect the superblock version will also get rev'd
1087 * to contain the NLINK bit.
1088 */
1089void
1090xfs_bump_ino_vers2(
1091 xfs_trans_t *tp,
1092 xfs_inode_t *ip)
1093{
1094 xfs_mount_t *mp;
1095
1096 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1097 ASSERT(ip->i_d.di_version == 1);
1098
1099 ip->i_d.di_version = 2;
1100 ip->i_d.di_onlink = 0;
1101 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1102 mp = tp->t_mountp;
1103 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1104 spin_lock(&mp->m_sb_lock);
1105 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1106 xfs_sb_version_addnlink(&mp->m_sb);
1107 spin_unlock(&mp->m_sb_lock);
1108 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1109 } else {
1110 spin_unlock(&mp->m_sb_lock);
1111 }
1112 }
1113 /* Caller must log the inode */
1114}
1115
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
1119int
1120xfs_bumplink(
1121 xfs_trans_t *tp,
1122 xfs_inode_t *ip)
1123{
1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
1126 ASSERT(ip->i_d.di_nlink > 0);
1127 ip->i_d.di_nlink++;
1128 inc_nlink(VFS_I(ip));
1129 if ((ip->i_d.di_version == 1) &&
1130 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1131 /*
1132 * The inode has increased its number of links beyond
1133 * what can fit in an old format inode. It now needs
1134 * to be converted to a version 2 inode with a 32 bit
1135 * link count. If this is the first inode in the file
1136 * system to do this, then we need to bump the superblock
1137 * version number as well.
1138 */
1139 xfs_bump_ino_vers2(tp, ip);
1140 }
1141
1142 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1143 return 0;
1144}
1145
c24b5dfa
DC
1146int
1147xfs_create(
1148 xfs_inode_t *dp,
1149 struct xfs_name *name,
1150 umode_t mode,
1151 xfs_dev_t rdev,
1152 xfs_inode_t **ipp)
1153{
1154 int is_dir = S_ISDIR(mode);
1155 struct xfs_mount *mp = dp->i_mount;
1156 struct xfs_inode *ip = NULL;
1157 struct xfs_trans *tp = NULL;
1158 int error;
1159 xfs_bmap_free_t free_list;
1160 xfs_fsblock_t first_block;
1161 bool unlock_dp_on_error = false;
1162 uint cancel_flags;
1163 int committed;
1164 prid_t prid;
1165 struct xfs_dquot *udqp = NULL;
1166 struct xfs_dquot *gdqp = NULL;
1167 struct xfs_dquot *pdqp = NULL;
3d3c8b52 1168 struct xfs_trans_res tres;
c24b5dfa 1169 uint resblks;
c24b5dfa
DC
1170
1171 trace_xfs_create(dp, name);
1172
1173 if (XFS_FORCED_SHUTDOWN(mp))
1174 return XFS_ERROR(EIO);
1175
1176 if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1177 prid = xfs_get_projid(dp);
1178 else
1179 prid = XFS_PROJID_DEFAULT;
1180
1181 /*
1182 * Make sure that we have allocated dquot(s) on disk.
1183 */
7aab1b28
DE
1184 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1185 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1186 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1187 &udqp, &gdqp, &pdqp);
1188 if (error)
1189 return error;
1190
1191 if (is_dir) {
1192 rdev = 0;
1193 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
3d3c8b52
JL
1194 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1195 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
c24b5dfa
DC
1196 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1197 } else {
1198 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
3d3c8b52
JL
1199 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1200 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
c24b5dfa
DC
1201 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1202 }
1203
1204 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1205
1206 /*
1207 * Initially assume that the file does not exist and
1208 * reserve the resources for that case. If that is not
1209 * the case we'll drop the one we have and get a more
1210 * appropriate transaction later.
1211 */
3d3c8b52
JL
1212 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1213 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1214 if (error == ENOSPC) {
1215 /* flush outstanding delalloc blocks and retry */
1216 xfs_flush_inodes(mp);
3d3c8b52 1217 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1218 }
1219 if (error == ENOSPC) {
1220 /* No space at all so try a "no-allocation" reservation */
1221 resblks = 0;
3d3c8b52 1222 error = xfs_trans_reserve(tp, &tres, 0, 0);
c24b5dfa
DC
1223 }
1224 if (error) {
1225 cancel_flags = 0;
1226 goto out_trans_cancel;
1227 }
1228
1229 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1230 unlock_dp_on_error = true;
1231
1232 xfs_bmap_init(&free_list, &first_block);
1233
1234 /*
1235 * Reserve disk quota and the inode.
1236 */
1237 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1238 pdqp, resblks, 1, 0);
1239 if (error)
1240 goto out_trans_cancel;
1241
1242 error = xfs_dir_canenter(tp, dp, name, resblks);
1243 if (error)
1244 goto out_trans_cancel;
1245
1246 /*
1247 * A newly created regular or special file just has one directory
1248 * entry pointing to them, but a directory also the "." entry
1249 * pointing to itself.
1250 */
1251 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1252 prid, resblks > 0, &ip, &committed);
1253 if (error) {
1254 if (error == ENOSPC)
1255 goto out_trans_cancel;
1256 goto out_trans_abort;
1257 }
1258
1259 /*
1260 * Now we join the directory inode to the transaction. We do not do it
1261 * earlier because xfs_dir_ialloc might commit the previous transaction
1262 * (and release all the locks). An error from here on will result in
1263 * the transaction cancel unlocking dp so don't do it explicitly in the
1264 * error path.
1265 */
1266 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1267 unlock_dp_on_error = false;
1268
1269 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1270 &first_block, &free_list, resblks ?
1271 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1272 if (error) {
1273 ASSERT(error != ENOSPC);
1274 goto out_trans_abort;
1275 }
1276 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1277 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1278
1279 if (is_dir) {
1280 error = xfs_dir_init(tp, ip, dp);
1281 if (error)
1282 goto out_bmap_cancel;
1283
1284 error = xfs_bumplink(tp, dp);
1285 if (error)
1286 goto out_bmap_cancel;
1287 }
1288
1289 /*
1290 * If this is a synchronous mount, make sure that the
1291 * create transaction goes to disk before returning to
1292 * the user.
1293 */
1294 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1295 xfs_trans_set_sync(tp);
1296
1297 /*
1298 * Attach the dquot(s) to the inodes and modify them incore.
1299 * These ids of the inode couldn't have changed since the new
1300 * inode has been locked ever since it was created.
1301 */
1302 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1303
1304 error = xfs_bmap_finish(&tp, &free_list, &committed);
1305 if (error)
1306 goto out_bmap_cancel;
1307
1308 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1309 if (error)
1310 goto out_release_inode;
1311
1312 xfs_qm_dqrele(udqp);
1313 xfs_qm_dqrele(gdqp);
1314 xfs_qm_dqrele(pdqp);
1315
1316 *ipp = ip;
1317 return 0;
1318
1319 out_bmap_cancel:
1320 xfs_bmap_cancel(&free_list);
1321 out_trans_abort:
1322 cancel_flags |= XFS_TRANS_ABORT;
1323 out_trans_cancel:
1324 xfs_trans_cancel(tp, cancel_flags);
1325 out_release_inode:
1326 /*
1327 * Wait until after the current transaction is aborted to
1328 * release the inode. This prevents recursive transactions
1329 * and deadlocks from xfs_inactive.
1330 */
1331 if (ip)
1332 IRELE(ip);
1333
1334 xfs_qm_dqrele(udqp);
1335 xfs_qm_dqrele(gdqp);
1336 xfs_qm_dqrele(pdqp);
1337
1338 if (unlock_dp_on_error)
1339 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1340 return error;
1341}
1342
1343int
1344xfs_link(
1345 xfs_inode_t *tdp,
1346 xfs_inode_t *sip,
1347 struct xfs_name *target_name)
1348{
1349 xfs_mount_t *mp = tdp->i_mount;
1350 xfs_trans_t *tp;
1351 int error;
1352 xfs_bmap_free_t free_list;
1353 xfs_fsblock_t first_block;
1354 int cancel_flags;
1355 int committed;
1356 int resblks;
1357
1358 trace_xfs_link(tdp, target_name);
1359
1360 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1361
1362 if (XFS_FORCED_SHUTDOWN(mp))
1363 return XFS_ERROR(EIO);
1364
1365 error = xfs_qm_dqattach(sip, 0);
1366 if (error)
1367 goto std_return;
1368
1369 error = xfs_qm_dqattach(tdp, 0);
1370 if (error)
1371 goto std_return;
1372
1373 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1374 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1375 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1376 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
c24b5dfa
DC
1377 if (error == ENOSPC) {
1378 resblks = 0;
3d3c8b52 1379 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa
DC
1380 }
1381 if (error) {
1382 cancel_flags = 0;
1383 goto error_return;
1384 }
1385
1386 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1387
1388 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1389 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1390
1391 /*
1392 * If we are using project inheritance, we only allow hard link
1393 * creation in our tree when the project IDs are the same; else
1394 * the tree quota mechanism could be circumvented.
1395 */
1396 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1397 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1398 error = XFS_ERROR(EXDEV);
1399 goto error_return;
1400 }
1401
1402 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1403 if (error)
1404 goto error_return;
1405
1406 xfs_bmap_init(&free_list, &first_block);
1407
1408 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1409 &first_block, &free_list, resblks);
1410 if (error)
1411 goto abort_return;
1412 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1413 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1414
1415 error = xfs_bumplink(tp, sip);
1416 if (error)
1417 goto abort_return;
1418
1419 /*
1420 * If this is a synchronous mount, make sure that the
1421 * link transaction goes to disk before returning to
1422 * the user.
1423 */
1424 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1425 xfs_trans_set_sync(tp);
1426 }
1427
1428 error = xfs_bmap_finish (&tp, &free_list, &committed);
1429 if (error) {
1430 xfs_bmap_cancel(&free_list);
1431 goto abort_return;
1432 }
1433
1434 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1435
1436 abort_return:
1437 cancel_flags |= XFS_TRANS_ABORT;
1438 error_return:
1439 xfs_trans_cancel(tp, cancel_flags);
1440 std_return:
1441 return error;
1442}
1443
1da177e4 1444/*
8f04c47a
CH
1445 * Free up the underlying blocks past new_size. The new size must be smaller
1446 * than the current size. This routine can be used both for the attribute and
1447 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1448 *
f6485057
DC
1449 * The transaction passed to this routine must have made a permanent log
1450 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1451 * given transaction and start new ones, so make sure everything involved in
1452 * the transaction is tidy before calling here. Some transaction will be
1453 * returned to the caller to be committed. The incoming transaction must
1454 * already include the inode, and both inode locks must be held exclusively.
1455 * The inode must also be "held" within the transaction. On return the inode
1456 * will be "held" within the returned transaction. This routine does NOT
1457 * require any disk space to be reserved for it within the transaction.
1da177e4 1458 *
f6485057
DC
1459 * If we get an error, we must return with the inode locked and linked into the
1460 * current transaction. This keeps things simple for the higher level code,
1461 * because it always knows that the inode is locked and held in the transaction
1462 * that returns to it whether errors occur or not. We don't mark the inode
1463 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1464 */
1465int
8f04c47a
CH
1466xfs_itruncate_extents(
1467 struct xfs_trans **tpp,
1468 struct xfs_inode *ip,
1469 int whichfork,
1470 xfs_fsize_t new_size)
1da177e4 1471{
8f04c47a
CH
1472 struct xfs_mount *mp = ip->i_mount;
1473 struct xfs_trans *tp = *tpp;
1474 struct xfs_trans *ntp;
1475 xfs_bmap_free_t free_list;
1476 xfs_fsblock_t first_block;
1477 xfs_fileoff_t first_unmap_block;
1478 xfs_fileoff_t last_block;
1479 xfs_filblks_t unmap_len;
1480 int committed;
1481 int error = 0;
1482 int done = 0;
1da177e4 1483
0b56185b
CH
1484 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1485 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1486 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1487 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1488 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1489 ASSERT(ip->i_itemp != NULL);
898621d5 1490 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1491 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1492
673e8e59
CH
1493 trace_xfs_itruncate_extents_start(ip, new_size);
1494
1da177e4
LT
1495 /*
1496 * Since it is possible for space to become allocated beyond
1497 * the end of the file (in a crash where the space is allocated
1498 * but the inode size is not yet updated), simply remove any
1499 * blocks which show up between the new EOF and the maximum
1500 * possible file size. If the first block to be removed is
1501 * beyond the maximum file size (ie it is the same as last_block),
1502 * then there is nothing to do.
1503 */
8f04c47a 1504 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1505 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1506 if (first_unmap_block == last_block)
1507 return 0;
1508
1509 ASSERT(first_unmap_block < last_block);
1510 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1511 while (!done) {
9d87c319 1512 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1513 error = xfs_bunmapi(tp, ip,
3e57ecf6 1514 first_unmap_block, unmap_len,
8f04c47a 1515 xfs_bmapi_aflag(whichfork),
1da177e4 1516 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1517 &first_block, &free_list,
b4e9181e 1518 &done);
8f04c47a
CH
1519 if (error)
1520 goto out_bmap_cancel;
1da177e4
LT
1521
1522 /*
1523 * Duplicate the transaction that has the permanent
1524 * reservation and commit the old transaction.
1525 */
8f04c47a 1526 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1527 if (committed)
ddc3415a 1528 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1529 if (error)
1530 goto out_bmap_cancel;
1da177e4
LT
1531
1532 if (committed) {
1533 /*
f6485057 1534 * Mark the inode dirty so it will be logged and
e5720eec 1535 * moved forward in the log as part of every commit.
1da177e4 1536 */
8f04c47a 1537 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1538 }
f6485057 1539
8f04c47a
CH
1540 ntp = xfs_trans_dup(tp);
1541 error = xfs_trans_commit(tp, 0);
1542 tp = ntp;
e5720eec 1543
ddc3415a 1544 xfs_trans_ijoin(tp, ip, 0);
f6485057 1545
cc09c0dc 1546 if (error)
8f04c47a
CH
1547 goto out;
1548
cc09c0dc 1549 /*
8f04c47a 1550 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1551 * reference that we gained in xfs_trans_dup()
1552 */
8f04c47a 1553 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52 1554 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
f6485057 1555 if (error)
8f04c47a 1556 goto out;
1da177e4 1557 }
8f04c47a 1558
673e8e59
CH
1559 /*
1560 * Always re-log the inode so that our permanent transaction can keep
1561 * on rolling it forward in the log.
1562 */
1563 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1564
1565 trace_xfs_itruncate_extents_end(ip, new_size);
1566
8f04c47a
CH
1567out:
1568 *tpp = tp;
1569 return error;
1570out_bmap_cancel:
1da177e4 1571 /*
8f04c47a
CH
1572 * If the bunmapi call encounters an error, return to the caller where
1573 * the transaction can be properly aborted. We just need to make sure
1574 * we're not holding any resources that we were not when we came in.
1da177e4 1575 */
8f04c47a
CH
1576 xfs_bmap_cancel(&free_list);
1577 goto out;
1578}
1579
c24b5dfa
DC
1580int
1581xfs_release(
1582 xfs_inode_t *ip)
1583{
1584 xfs_mount_t *mp = ip->i_mount;
1585 int error;
1586
1587 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1588 return 0;
1589
1590 /* If this is a read-only mount, don't do this (would generate I/O) */
1591 if (mp->m_flags & XFS_MOUNT_RDONLY)
1592 return 0;
1593
1594 if (!XFS_FORCED_SHUTDOWN(mp)) {
1595 int truncated;
1596
1597 /*
1598 * If we are using filestreams, and we have an unlinked
1599 * file that we are processing the last close on, then nothing
1600 * will be able to reopen and write to this file. Purge this
1601 * inode from the filestreams cache so that it doesn't delay
1602 * teardown of the inode.
1603 */
1604 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1605 xfs_filestream_deassociate(ip);
1606
1607 /*
1608 * If we previously truncated this file and removed old data
1609 * in the process, we want to initiate "early" writeout on
1610 * the last close. This is an attempt to combat the notorious
1611 * NULL files problem which is particularly noticeable from a
1612 * truncate down, buffered (re-)write (delalloc), followed by
1613 * a crash. What we are effectively doing here is
1614 * significantly reducing the time window where we'd otherwise
1615 * be exposed to that problem.
1616 */
1617 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1618 if (truncated) {
1619 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1620 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1621 error = -filemap_flush(VFS_I(ip)->i_mapping);
1622 if (error)
1623 return error;
1624 }
1625 }
1626 }
1627
1628 if (ip->i_d.di_nlink == 0)
1629 return 0;
1630
1631 if (xfs_can_free_eofblocks(ip, false)) {
1632
1633 /*
1634 * If we can't get the iolock just skip truncating the blocks
1635 * past EOF because we could deadlock with the mmap_sem
1636 * otherwise. We'll get another chance to drop them once the
1637 * last reference to the inode is dropped, so we'll never leak
1638 * blocks permanently.
1639 *
1640 * Further, check if the inode is being opened, written and
1641 * closed frequently and we have delayed allocation blocks
1642 * outstanding (e.g. streaming writes from the NFS server),
1643 * truncating the blocks past EOF will cause fragmentation to
1644 * occur.
1645 *
1646 * In this case don't do the truncation, either, but we have to
1647 * be careful how we detect this case. Blocks beyond EOF show
1648 * up as i_delayed_blks even when the inode is clean, so we
1649 * need to truncate them away first before checking for a dirty
1650 * release. Hence on the first dirty close we will still remove
1651 * the speculative allocation, but after that we will leave it
1652 * in place.
1653 */
1654 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1655 return 0;
1656
1657 error = xfs_free_eofblocks(mp, ip, true);
1658 if (error && error != EAGAIN)
1659 return error;
1660
1661 /* delalloc blocks after truncation means it really is dirty */
1662 if (ip->i_delayed_blks)
1663 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1664 }
1665 return 0;
1666}
1667
f7be2d7f
BF
1668/*
1669 * xfs_inactive_truncate
1670 *
1671 * Called to perform a truncate when an inode becomes unlinked.
1672 */
1673STATIC int
1674xfs_inactive_truncate(
1675 struct xfs_inode *ip)
1676{
1677 struct xfs_mount *mp = ip->i_mount;
1678 struct xfs_trans *tp;
1679 int error;
1680
1681 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1682 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1683 if (error) {
1684 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1685 xfs_trans_cancel(tp, 0);
1686 return error;
1687 }
1688
1689 xfs_ilock(ip, XFS_ILOCK_EXCL);
1690 xfs_trans_ijoin(tp, ip, 0);
1691
1692 /*
1693 * Log the inode size first to prevent stale data exposure in the event
1694 * of a system crash before the truncate completes. See the related
1695 * comment in xfs_setattr_size() for details.
1696 */
1697 ip->i_d.di_size = 0;
1698 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1699
1700 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1701 if (error)
1702 goto error_trans_cancel;
1703
1704 ASSERT(ip->i_d.di_nextents == 0);
1705
1706 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1707 if (error)
1708 goto error_unlock;
1709
1710 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1711 return 0;
1712
1713error_trans_cancel:
1714 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1715error_unlock:
1716 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1717 return error;
1718}
1719
88877d2b
BF
1720/*
1721 * xfs_inactive_ifree()
1722 *
1723 * Perform the inode free when an inode is unlinked.
1724 */
1725STATIC int
1726xfs_inactive_ifree(
1727 struct xfs_inode *ip)
1728{
1729 xfs_bmap_free_t free_list;
1730 xfs_fsblock_t first_block;
1731 int committed;
1732 struct xfs_mount *mp = ip->i_mount;
1733 struct xfs_trans *tp;
1734 int error;
1735
1736 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1737 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1738 if (error) {
1739 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1740 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1741 return error;
1742 }
1743
1744 xfs_ilock(ip, XFS_ILOCK_EXCL);
1745 xfs_trans_ijoin(tp, ip, 0);
1746
1747 xfs_bmap_init(&free_list, &first_block);
1748 error = xfs_ifree(tp, ip, &free_list);
1749 if (error) {
1750 /*
1751 * If we fail to free the inode, shut down. The cancel
1752 * might do that, we need to make sure. Otherwise the
1753 * inode might be lost for a long time or forever.
1754 */
1755 if (!XFS_FORCED_SHUTDOWN(mp)) {
1756 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1757 __func__, error);
1758 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1759 }
1760 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1761 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1762 return error;
1763 }
1764
1765 /*
1766 * Credit the quota account(s). The inode is gone.
1767 */
1768 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1769
1770 /*
1771 * Just ignore errors at this point. There is nothing we can
1772 * do except to try to keep going. Make sure it's not a silent
1773 * error.
1774 */
1775 error = xfs_bmap_finish(&tp, &free_list, &committed);
1776 if (error)
1777 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1778 __func__, error);
1779 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1780 if (error)
1781 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1782 __func__, error);
1783
1784 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1785 return 0;
1786}
1787
c24b5dfa
DC
1788/*
1789 * xfs_inactive
1790 *
1791 * This is called when the vnode reference count for the vnode
1792 * goes to zero. If the file has been unlinked, then it must
1793 * now be truncated. Also, we clear all of the read-ahead state
1794 * kept for the inode here since the file is now closed.
1795 */
74564fb4 1796void
c24b5dfa
DC
1797xfs_inactive(
1798 xfs_inode_t *ip)
1799{
3d3c8b52 1800 struct xfs_mount *mp;
3d3c8b52
JL
1801 int error;
1802 int truncate = 0;
c24b5dfa
DC
1803
1804 /*
1805 * If the inode is already free, then there can be nothing
1806 * to clean up here.
1807 */
d948709b 1808 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1809 ASSERT(ip->i_df.if_real_bytes == 0);
1810 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1811 return;
c24b5dfa
DC
1812 }
1813
1814 mp = ip->i_mount;
1815
c24b5dfa
DC
1816 /* If this is a read-only mount, don't do this (would generate I/O) */
1817 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1818 return;
c24b5dfa
DC
1819
1820 if (ip->i_d.di_nlink != 0) {
1821 /*
1822 * force is true because we are evicting an inode from the
1823 * cache. Post-eof blocks must be freed, lest we end up with
1824 * broken free space accounting.
1825 */
74564fb4
BF
1826 if (xfs_can_free_eofblocks(ip, true))
1827 xfs_free_eofblocks(mp, ip, false);
1828
1829 return;
c24b5dfa
DC
1830 }
1831
1832 if (S_ISREG(ip->i_d.di_mode) &&
1833 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1834 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1835 truncate = 1;
1836
1837 error = xfs_qm_dqattach(ip, 0);
1838 if (error)
74564fb4 1839 return;
c24b5dfa 1840
f7be2d7f 1841 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1842 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1843 else if (truncate)
1844 error = xfs_inactive_truncate(ip);
1845 if (error)
74564fb4 1846 return;
c24b5dfa
DC
1847
1848 /*
1849 * If there are attributes associated with the file then blow them away
1850 * now. The code calls a routine that recursively deconstructs the
1851 * attribute fork. We need to just commit the current transaction
1852 * because we can't use it for xfs_attr_inactive().
1853 */
1854 if (ip->i_d.di_anextents > 0) {
1855 ASSERT(ip->i_d.di_forkoff != 0);
1856
c24b5dfa
DC
1857 error = xfs_attr_inactive(ip);
1858 if (error)
74564fb4 1859 return;
c24b5dfa
DC
1860 }
1861
1862 if (ip->i_afp)
1863 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1864
1865 ASSERT(ip->i_d.di_anextents == 0);
1866
1867 /*
1868 * Free the inode.
1869 */
88877d2b
BF
1870 error = xfs_inactive_ifree(ip);
1871 if (error)
74564fb4 1872 return;
c24b5dfa
DC
1873
1874 /*
1875 * Release the dquots held by inode, if any.
1876 */
1877 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1878}
1879
1da177e4
LT
1880/*
1881 * This is called when the inode's link count goes to 0.
1882 * We place the on-disk inode on a list in the AGI. It
1883 * will be pulled from this list when the inode is freed.
1884 */
1885int
1886xfs_iunlink(
1887 xfs_trans_t *tp,
1888 xfs_inode_t *ip)
1889{
1890 xfs_mount_t *mp;
1891 xfs_agi_t *agi;
1892 xfs_dinode_t *dip;
1893 xfs_buf_t *agibp;
1894 xfs_buf_t *ibp;
1da177e4
LT
1895 xfs_agino_t agino;
1896 short bucket_index;
1897 int offset;
1898 int error;
1da177e4
LT
1899
1900 ASSERT(ip->i_d.di_nlink == 0);
1901 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1902
1903 mp = tp->t_mountp;
1904
1da177e4
LT
1905 /*
1906 * Get the agi buffer first. It ensures lock ordering
1907 * on the list.
1908 */
5e1be0fb 1909 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1910 if (error)
1da177e4 1911 return error;
1da177e4 1912 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1913
1da177e4
LT
1914 /*
1915 * Get the index into the agi hash table for the
1916 * list this inode will go on.
1917 */
1918 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1919 ASSERT(agino != 0);
1920 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1921 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1922 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1923
69ef921b 1924 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1925 /*
1926 * There is already another inode in the bucket we need
1927 * to add ourselves to. Add us at the front of the list.
1928 * Here we put the head pointer into our next pointer,
1929 * and then we fall through to point the head at us.
1930 */
475ee413
CH
1931 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1932 0, 0);
c319b58b
VA
1933 if (error)
1934 return error;
1935
69ef921b 1936 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1937 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1938 offset = ip->i_imap.im_boffset +
1da177e4 1939 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
1940
1941 /* need to recalc the inode CRC if appropriate */
1942 xfs_dinode_calc_crc(mp, dip);
1943
1da177e4
LT
1944 xfs_trans_inode_buf(tp, ibp);
1945 xfs_trans_log_buf(tp, ibp, offset,
1946 (offset + sizeof(xfs_agino_t) - 1));
1947 xfs_inobp_check(mp, ibp);
1948 }
1949
1950 /*
1951 * Point the bucket head pointer at the inode being inserted.
1952 */
1953 ASSERT(agino != 0);
16259e7d 1954 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1955 offset = offsetof(xfs_agi_t, agi_unlinked) +
1956 (sizeof(xfs_agino_t) * bucket_index);
1957 xfs_trans_log_buf(tp, agibp, offset,
1958 (offset + sizeof(xfs_agino_t) - 1));
1959 return 0;
1960}
1961
1962/*
1963 * Pull the on-disk inode from the AGI unlinked list.
1964 */
1965STATIC int
1966xfs_iunlink_remove(
1967 xfs_trans_t *tp,
1968 xfs_inode_t *ip)
1969{
1970 xfs_ino_t next_ino;
1971 xfs_mount_t *mp;
1972 xfs_agi_t *agi;
1973 xfs_dinode_t *dip;
1974 xfs_buf_t *agibp;
1975 xfs_buf_t *ibp;
1976 xfs_agnumber_t agno;
1da177e4
LT
1977 xfs_agino_t agino;
1978 xfs_agino_t next_agino;
1979 xfs_buf_t *last_ibp;
6fdf8ccc 1980 xfs_dinode_t *last_dip = NULL;
1da177e4 1981 short bucket_index;
6fdf8ccc 1982 int offset, last_offset = 0;
1da177e4 1983 int error;
1da177e4 1984
1da177e4 1985 mp = tp->t_mountp;
1da177e4 1986 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1987
1988 /*
1989 * Get the agi buffer first. It ensures lock ordering
1990 * on the list.
1991 */
5e1be0fb
CH
1992 error = xfs_read_agi(mp, tp, agno, &agibp);
1993 if (error)
1da177e4 1994 return error;
5e1be0fb 1995
1da177e4 1996 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1997
1da177e4
LT
1998 /*
1999 * Get the index into the agi hash table for the
2000 * list this inode will go on.
2001 */
2002 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2003 ASSERT(agino != 0);
2004 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2005 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2006 ASSERT(agi->agi_unlinked[bucket_index]);
2007
16259e7d 2008 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2009 /*
475ee413
CH
2010 * We're at the head of the list. Get the inode's on-disk
2011 * buffer to see if there is anyone after us on the list.
2012 * Only modify our next pointer if it is not already NULLAGINO.
2013 * This saves us the overhead of dealing with the buffer when
2014 * there is no need to change it.
1da177e4 2015 */
475ee413
CH
2016 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2017 0, 0);
1da177e4 2018 if (error) {
475ee413 2019 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2020 __func__, error);
1da177e4
LT
2021 return error;
2022 }
347d1c01 2023 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2024 ASSERT(next_agino != 0);
2025 if (next_agino != NULLAGINO) {
347d1c01 2026 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2027 offset = ip->i_imap.im_boffset +
1da177e4 2028 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2029
2030 /* need to recalc the inode CRC if appropriate */
2031 xfs_dinode_calc_crc(mp, dip);
2032
1da177e4
LT
2033 xfs_trans_inode_buf(tp, ibp);
2034 xfs_trans_log_buf(tp, ibp, offset,
2035 (offset + sizeof(xfs_agino_t) - 1));
2036 xfs_inobp_check(mp, ibp);
2037 } else {
2038 xfs_trans_brelse(tp, ibp);
2039 }
2040 /*
2041 * Point the bucket head pointer at the next inode.
2042 */
2043 ASSERT(next_agino != 0);
2044 ASSERT(next_agino != agino);
16259e7d 2045 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2046 offset = offsetof(xfs_agi_t, agi_unlinked) +
2047 (sizeof(xfs_agino_t) * bucket_index);
2048 xfs_trans_log_buf(tp, agibp, offset,
2049 (offset + sizeof(xfs_agino_t) - 1));
2050 } else {
2051 /*
2052 * We need to search the list for the inode being freed.
2053 */
16259e7d 2054 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2055 last_ibp = NULL;
2056 while (next_agino != agino) {
129dbc9a
CH
2057 struct xfs_imap imap;
2058
2059 if (last_ibp)
1da177e4 2060 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2061
2062 imap.im_blkno = 0;
1da177e4 2063 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2064
2065 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2066 if (error) {
2067 xfs_warn(mp,
2068 "%s: xfs_imap returned error %d.",
2069 __func__, error);
2070 return error;
2071 }
2072
2073 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2074 &last_ibp, 0, 0);
1da177e4 2075 if (error) {
0b932ccc 2076 xfs_warn(mp,
129dbc9a 2077 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2078 __func__, error);
1da177e4
LT
2079 return error;
2080 }
129dbc9a
CH
2081
2082 last_offset = imap.im_boffset;
347d1c01 2083 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2084 ASSERT(next_agino != NULLAGINO);
2085 ASSERT(next_agino != 0);
2086 }
475ee413 2087
1da177e4 2088 /*
475ee413
CH
2089 * Now last_ibp points to the buffer previous to us on the
2090 * unlinked list. Pull us from the list.
1da177e4 2091 */
475ee413
CH
2092 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2093 0, 0);
1da177e4 2094 if (error) {
475ee413 2095 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2096 __func__, error);
1da177e4
LT
2097 return error;
2098 }
347d1c01 2099 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2100 ASSERT(next_agino != 0);
2101 ASSERT(next_agino != agino);
2102 if (next_agino != NULLAGINO) {
347d1c01 2103 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2104 offset = ip->i_imap.im_boffset +
1da177e4 2105 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2106
2107 /* need to recalc the inode CRC if appropriate */
2108 xfs_dinode_calc_crc(mp, dip);
2109
1da177e4
LT
2110 xfs_trans_inode_buf(tp, ibp);
2111 xfs_trans_log_buf(tp, ibp, offset,
2112 (offset + sizeof(xfs_agino_t) - 1));
2113 xfs_inobp_check(mp, ibp);
2114 } else {
2115 xfs_trans_brelse(tp, ibp);
2116 }
2117 /*
2118 * Point the previous inode on the list to the next inode.
2119 */
347d1c01 2120 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2121 ASSERT(next_agino != 0);
2122 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2123
2124 /* need to recalc the inode CRC if appropriate */
2125 xfs_dinode_calc_crc(mp, last_dip);
2126
1da177e4
LT
2127 xfs_trans_inode_buf(tp, last_ibp);
2128 xfs_trans_log_buf(tp, last_ibp, offset,
2129 (offset + sizeof(xfs_agino_t) - 1));
2130 xfs_inobp_check(mp, last_ibp);
2131 }
2132 return 0;
2133}
2134
5b3eed75 2135/*
0b8182db 2136 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2137 * inodes that are in memory - they all must be marked stale and attached to
2138 * the cluster buffer.
2139 */
2a30f36d 2140STATIC int
1da177e4
LT
2141xfs_ifree_cluster(
2142 xfs_inode_t *free_ip,
2143 xfs_trans_t *tp,
2144 xfs_ino_t inum)
2145{
2146 xfs_mount_t *mp = free_ip->i_mount;
2147 int blks_per_cluster;
2148 int nbufs;
2149 int ninodes;
5b257b4a 2150 int i, j;
1da177e4
LT
2151 xfs_daddr_t blkno;
2152 xfs_buf_t *bp;
5b257b4a 2153 xfs_inode_t *ip;
1da177e4
LT
2154 xfs_inode_log_item_t *iip;
2155 xfs_log_item_t *lip;
5017e97d 2156 struct xfs_perag *pag;
1da177e4 2157
5017e97d 2158 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
2159 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2160 blks_per_cluster = 1;
2161 ninodes = mp->m_sb.sb_inopblock;
2162 nbufs = XFS_IALLOC_BLOCKS(mp);
2163 } else {
2164 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2165 mp->m_sb.sb_blocksize;
2166 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2167 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2168 }
2169
1da177e4
LT
2170 for (j = 0; j < nbufs; j++, inum += ninodes) {
2171 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2172 XFS_INO_TO_AGBNO(mp, inum));
2173
5b257b4a
DC
2174 /*
2175 * We obtain and lock the backing buffer first in the process
2176 * here, as we have to ensure that any dirty inode that we
2177 * can't get the flush lock on is attached to the buffer.
2178 * If we scan the in-memory inodes first, then buffer IO can
2179 * complete before we get a lock on it, and hence we may fail
2180 * to mark all the active inodes on the buffer stale.
2181 */
2182 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2183 mp->m_bsize * blks_per_cluster,
2184 XBF_UNMAPPED);
5b257b4a 2185
2a30f36d
CS
2186 if (!bp)
2187 return ENOMEM;
b0f539de
DC
2188
2189 /*
2190 * This buffer may not have been correctly initialised as we
2191 * didn't read it from disk. That's not important because we are
2192 * only using to mark the buffer as stale in the log, and to
2193 * attach stale cached inodes on it. That means it will never be
2194 * dispatched for IO. If it is, we want to know about it, and we
2195 * want it to fail. We can acheive this by adding a write
2196 * verifier to the buffer.
2197 */
1813dd64 2198 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2199
5b257b4a
DC
2200 /*
2201 * Walk the inodes already attached to the buffer and mark them
2202 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2203 * in-memory inode walk can't lock them. By marking them all
2204 * stale first, we will not attempt to lock them in the loop
2205 * below as the XFS_ISTALE flag will be set.
5b257b4a 2206 */
adadbeef 2207 lip = bp->b_fspriv;
5b257b4a
DC
2208 while (lip) {
2209 if (lip->li_type == XFS_LI_INODE) {
2210 iip = (xfs_inode_log_item_t *)lip;
2211 ASSERT(iip->ili_logged == 1);
ca30b2a7 2212 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2213 xfs_trans_ail_copy_lsn(mp->m_ail,
2214 &iip->ili_flush_lsn,
2215 &iip->ili_item.li_lsn);
2216 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2217 }
2218 lip = lip->li_bio_list;
2219 }
1da177e4 2220
5b3eed75 2221
1da177e4 2222 /*
5b257b4a
DC
2223 * For each inode in memory attempt to add it to the inode
2224 * buffer and set it up for being staled on buffer IO
2225 * completion. This is safe as we've locked out tail pushing
2226 * and flushing by locking the buffer.
1da177e4 2227 *
5b257b4a
DC
2228 * We have already marked every inode that was part of a
2229 * transaction stale above, which means there is no point in
2230 * even trying to lock them.
1da177e4 2231 */
1da177e4 2232 for (i = 0; i < ninodes; i++) {
5b3eed75 2233retry:
1a3e8f3d 2234 rcu_read_lock();
da353b0d
DC
2235 ip = radix_tree_lookup(&pag->pag_ici_root,
2236 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2237
1a3e8f3d
DC
2238 /* Inode not in memory, nothing to do */
2239 if (!ip) {
2240 rcu_read_unlock();
1da177e4
LT
2241 continue;
2242 }
2243
1a3e8f3d
DC
2244 /*
2245 * because this is an RCU protected lookup, we could
2246 * find a recently freed or even reallocated inode
2247 * during the lookup. We need to check under the
2248 * i_flags_lock for a valid inode here. Skip it if it
2249 * is not valid, the wrong inode or stale.
2250 */
2251 spin_lock(&ip->i_flags_lock);
2252 if (ip->i_ino != inum + i ||
2253 __xfs_iflags_test(ip, XFS_ISTALE)) {
2254 spin_unlock(&ip->i_flags_lock);
2255 rcu_read_unlock();
2256 continue;
2257 }
2258 spin_unlock(&ip->i_flags_lock);
2259
5b3eed75
DC
2260 /*
2261 * Don't try to lock/unlock the current inode, but we
2262 * _cannot_ skip the other inodes that we did not find
2263 * in the list attached to the buffer and are not
2264 * already marked stale. If we can't lock it, back off
2265 * and retry.
2266 */
5b257b4a
DC
2267 if (ip != free_ip &&
2268 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2269 rcu_read_unlock();
5b3eed75
DC
2270 delay(1);
2271 goto retry;
1da177e4 2272 }
1a3e8f3d 2273 rcu_read_unlock();
1da177e4 2274
5b3eed75 2275 xfs_iflock(ip);
5b257b4a 2276 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2277
5b3eed75
DC
2278 /*
2279 * we don't need to attach clean inodes or those only
2280 * with unlogged changes (which we throw away, anyway).
2281 */
1da177e4 2282 iip = ip->i_itemp;
5b3eed75 2283 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2284 ASSERT(ip != free_ip);
1da177e4
LT
2285 xfs_ifunlock(ip);
2286 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2287 continue;
2288 }
2289
f5d8d5c4
CH
2290 iip->ili_last_fields = iip->ili_fields;
2291 iip->ili_fields = 0;
1da177e4 2292 iip->ili_logged = 1;
7b2e2a31
DC
2293 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2294 &iip->ili_item.li_lsn);
1da177e4 2295
ca30b2a7
CH
2296 xfs_buf_attach_iodone(bp, xfs_istale_done,
2297 &iip->ili_item);
5b257b4a
DC
2298
2299 if (ip != free_ip)
1da177e4 2300 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2301 }
2302
5b3eed75 2303 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2304 xfs_trans_binval(tp, bp);
2305 }
2306
5017e97d 2307 xfs_perag_put(pag);
2a30f36d 2308 return 0;
1da177e4
LT
2309}
2310
2311/*
2312 * This is called to return an inode to the inode free list.
2313 * The inode should already be truncated to 0 length and have
2314 * no pages associated with it. This routine also assumes that
2315 * the inode is already a part of the transaction.
2316 *
2317 * The on-disk copy of the inode will have been added to the list
2318 * of unlinked inodes in the AGI. We need to remove the inode from
2319 * that list atomically with respect to freeing it here.
2320 */
2321int
2322xfs_ifree(
2323 xfs_trans_t *tp,
2324 xfs_inode_t *ip,
2325 xfs_bmap_free_t *flist)
2326{
2327 int error;
2328 int delete;
2329 xfs_ino_t first_ino;
2330
579aa9ca 2331 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2332 ASSERT(ip->i_d.di_nlink == 0);
2333 ASSERT(ip->i_d.di_nextents == 0);
2334 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2335 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2336 ASSERT(ip->i_d.di_nblocks == 0);
2337
2338 /*
2339 * Pull the on-disk inode from the AGI unlinked list.
2340 */
2341 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2342 if (error)
1da177e4 2343 return error;
1da177e4
LT
2344
2345 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1baaed8f 2346 if (error)
1da177e4 2347 return error;
1baaed8f 2348
1da177e4
LT
2349 ip->i_d.di_mode = 0; /* mark incore inode as free */
2350 ip->i_d.di_flags = 0;
2351 ip->i_d.di_dmevmask = 0;
2352 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2353 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2354 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2355 /*
2356 * Bump the generation count so no one will be confused
2357 * by reincarnations of this inode.
2358 */
2359 ip->i_d.di_gen++;
2360 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2361
1baaed8f 2362 if (delete)
2a30f36d 2363 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4 2364
2a30f36d 2365 return error;
1da177e4
LT
2366}
2367
1da177e4 2368/*
60ec6783
CH
2369 * This is called to unpin an inode. The caller must have the inode locked
2370 * in at least shared mode so that the buffer cannot be subsequently pinned
2371 * once someone is waiting for it to be unpinned.
1da177e4 2372 */
60ec6783 2373static void
f392e631 2374xfs_iunpin(
60ec6783 2375 struct xfs_inode *ip)
1da177e4 2376{
579aa9ca 2377 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2378
4aaf15d1
DC
2379 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2380
a3f74ffb 2381 /* Give the log a push to start the unpinning I/O */
60ec6783 2382 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2383
a3f74ffb 2384}
1da177e4 2385
f392e631
CH
2386static void
2387__xfs_iunpin_wait(
2388 struct xfs_inode *ip)
2389{
2390 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2391 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2392
2393 xfs_iunpin(ip);
2394
2395 do {
2396 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2397 if (xfs_ipincount(ip))
2398 io_schedule();
2399 } while (xfs_ipincount(ip));
2400 finish_wait(wq, &wait.wait);
2401}
2402
777df5af 2403void
a3f74ffb 2404xfs_iunpin_wait(
60ec6783 2405 struct xfs_inode *ip)
a3f74ffb 2406{
f392e631
CH
2407 if (xfs_ipincount(ip))
2408 __xfs_iunpin_wait(ip);
1da177e4
LT
2409}
2410
c24b5dfa
DC
2411int
2412xfs_remove(
2413 xfs_inode_t *dp,
2414 struct xfs_name *name,
2415 xfs_inode_t *ip)
2416{
2417 xfs_mount_t *mp = dp->i_mount;
2418 xfs_trans_t *tp = NULL;
2419 int is_dir = S_ISDIR(ip->i_d.di_mode);
2420 int error = 0;
2421 xfs_bmap_free_t free_list;
2422 xfs_fsblock_t first_block;
2423 int cancel_flags;
2424 int committed;
2425 int link_zero;
2426 uint resblks;
2427 uint log_count;
2428
2429 trace_xfs_remove(dp, name);
2430
2431 if (XFS_FORCED_SHUTDOWN(mp))
2432 return XFS_ERROR(EIO);
2433
2434 error = xfs_qm_dqattach(dp, 0);
2435 if (error)
2436 goto std_return;
2437
2438 error = xfs_qm_dqattach(ip, 0);
2439 if (error)
2440 goto std_return;
2441
2442 if (is_dir) {
2443 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2444 log_count = XFS_DEFAULT_LOG_COUNT;
2445 } else {
2446 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2447 log_count = XFS_REMOVE_LOG_COUNT;
2448 }
2449 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2450
2451 /*
2452 * We try to get the real space reservation first,
2453 * allowing for directory btree deletion(s) implying
2454 * possible bmap insert(s). If we can't get the space
2455 * reservation then we use 0 instead, and avoid the bmap
2456 * btree insert(s) in the directory code by, if the bmap
2457 * insert tries to happen, instead trimming the LAST
2458 * block from the directory.
2459 */
2460 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2461 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
c24b5dfa
DC
2462 if (error == ENOSPC) {
2463 resblks = 0;
3d3c8b52 2464 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2465 }
2466 if (error) {
2467 ASSERT(error != ENOSPC);
2468 cancel_flags = 0;
2469 goto out_trans_cancel;
2470 }
2471
2472 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2473
2474 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2475 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2476
2477 /*
2478 * If we're removing a directory perform some additional validation.
2479 */
2480 if (is_dir) {
2481 ASSERT(ip->i_d.di_nlink >= 2);
2482 if (ip->i_d.di_nlink != 2) {
2483 error = XFS_ERROR(ENOTEMPTY);
2484 goto out_trans_cancel;
2485 }
2486 if (!xfs_dir_isempty(ip)) {
2487 error = XFS_ERROR(ENOTEMPTY);
2488 goto out_trans_cancel;
2489 }
2490 }
2491
2492 xfs_bmap_init(&free_list, &first_block);
2493 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2494 &first_block, &free_list, resblks);
2495 if (error) {
2496 ASSERT(error != ENOENT);
2497 goto out_bmap_cancel;
2498 }
2499 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2500
2501 if (is_dir) {
2502 /*
2503 * Drop the link from ip's "..".
2504 */
2505 error = xfs_droplink(tp, dp);
2506 if (error)
2507 goto out_bmap_cancel;
2508
2509 /*
2510 * Drop the "." link from ip to self.
2511 */
2512 error = xfs_droplink(tp, ip);
2513 if (error)
2514 goto out_bmap_cancel;
2515 } else {
2516 /*
2517 * When removing a non-directory we need to log the parent
2518 * inode here. For a directory this is done implicitly
2519 * by the xfs_droplink call for the ".." entry.
2520 */
2521 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2522 }
2523
2524 /*
2525 * Drop the link from dp to ip.
2526 */
2527 error = xfs_droplink(tp, ip);
2528 if (error)
2529 goto out_bmap_cancel;
2530
2531 /*
2532 * Determine if this is the last link while
2533 * we are in the transaction.
2534 */
2535 link_zero = (ip->i_d.di_nlink == 0);
2536
2537 /*
2538 * If this is a synchronous mount, make sure that the
2539 * remove transaction goes to disk before returning to
2540 * the user.
2541 */
2542 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2543 xfs_trans_set_sync(tp);
2544
2545 error = xfs_bmap_finish(&tp, &free_list, &committed);
2546 if (error)
2547 goto out_bmap_cancel;
2548
2549 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2550 if (error)
2551 goto std_return;
2552
2553 /*
2554 * If we are using filestreams, kill the stream association.
2555 * If the file is still open it may get a new one but that
2556 * will get killed on last close in xfs_close() so we don't
2557 * have to worry about that.
2558 */
2559 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2560 xfs_filestream_deassociate(ip);
2561
2562 return 0;
2563
2564 out_bmap_cancel:
2565 xfs_bmap_cancel(&free_list);
2566 cancel_flags |= XFS_TRANS_ABORT;
2567 out_trans_cancel:
2568 xfs_trans_cancel(tp, cancel_flags);
2569 std_return:
2570 return error;
2571}
2572
f6bba201
DC
2573/*
2574 * Enter all inodes for a rename transaction into a sorted array.
2575 */
2576STATIC void
2577xfs_sort_for_rename(
2578 xfs_inode_t *dp1, /* in: old (source) directory inode */
2579 xfs_inode_t *dp2, /* in: new (target) directory inode */
2580 xfs_inode_t *ip1, /* in: inode of old entry */
2581 xfs_inode_t *ip2, /* in: inode of new entry, if it
2582 already exists, NULL otherwise. */
2583 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2584 int *num_inodes) /* out: number of inodes in array */
2585{
2586 xfs_inode_t *temp;
2587 int i, j;
2588
2589 /*
2590 * i_tab contains a list of pointers to inodes. We initialize
2591 * the table here & we'll sort it. We will then use it to
2592 * order the acquisition of the inode locks.
2593 *
2594 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2595 */
2596 i_tab[0] = dp1;
2597 i_tab[1] = dp2;
2598 i_tab[2] = ip1;
2599 if (ip2) {
2600 *num_inodes = 4;
2601 i_tab[3] = ip2;
2602 } else {
2603 *num_inodes = 3;
2604 i_tab[3] = NULL;
2605 }
2606
2607 /*
2608 * Sort the elements via bubble sort. (Remember, there are at
2609 * most 4 elements to sort, so this is adequate.)
2610 */
2611 for (i = 0; i < *num_inodes; i++) {
2612 for (j = 1; j < *num_inodes; j++) {
2613 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2614 temp = i_tab[j];
2615 i_tab[j] = i_tab[j-1];
2616 i_tab[j-1] = temp;
2617 }
2618 }
2619 }
2620}
2621
2622/*
2623 * xfs_rename
2624 */
2625int
2626xfs_rename(
2627 xfs_inode_t *src_dp,
2628 struct xfs_name *src_name,
2629 xfs_inode_t *src_ip,
2630 xfs_inode_t *target_dp,
2631 struct xfs_name *target_name,
2632 xfs_inode_t *target_ip)
2633{
2634 xfs_trans_t *tp = NULL;
2635 xfs_mount_t *mp = src_dp->i_mount;
2636 int new_parent; /* moving to a new dir */
2637 int src_is_directory; /* src_name is a directory */
2638 int error;
2639 xfs_bmap_free_t free_list;
2640 xfs_fsblock_t first_block;
2641 int cancel_flags;
2642 int committed;
2643 xfs_inode_t *inodes[4];
2644 int spaceres;
2645 int num_inodes;
2646
2647 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2648
2649 new_parent = (src_dp != target_dp);
2650 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2651
2652 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2653 inodes, &num_inodes);
2654
2655 xfs_bmap_init(&free_list, &first_block);
2656 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2657 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2658 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2659 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
f6bba201
DC
2660 if (error == ENOSPC) {
2661 spaceres = 0;
3d3c8b52 2662 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201
DC
2663 }
2664 if (error) {
2665 xfs_trans_cancel(tp, 0);
2666 goto std_return;
2667 }
2668
2669 /*
2670 * Attach the dquots to the inodes
2671 */
2672 error = xfs_qm_vop_rename_dqattach(inodes);
2673 if (error) {
2674 xfs_trans_cancel(tp, cancel_flags);
2675 goto std_return;
2676 }
2677
2678 /*
2679 * Lock all the participating inodes. Depending upon whether
2680 * the target_name exists in the target directory, and
2681 * whether the target directory is the same as the source
2682 * directory, we can lock from 2 to 4 inodes.
2683 */
2684 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2685
2686 /*
2687 * Join all the inodes to the transaction. From this point on,
2688 * we can rely on either trans_commit or trans_cancel to unlock
2689 * them.
2690 */
2691 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2692 if (new_parent)
2693 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2694 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2695 if (target_ip)
2696 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2697
2698 /*
2699 * If we are using project inheritance, we only allow renames
2700 * into our tree when the project IDs are the same; else the
2701 * tree quota mechanism would be circumvented.
2702 */
2703 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2704 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2705 error = XFS_ERROR(EXDEV);
2706 goto error_return;
2707 }
2708
2709 /*
2710 * Set up the target.
2711 */
2712 if (target_ip == NULL) {
2713 /*
2714 * If there's no space reservation, check the entry will
2715 * fit before actually inserting it.
2716 */
2717 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2718 if (error)
2719 goto error_return;
2720 /*
2721 * If target does not exist and the rename crosses
2722 * directories, adjust the target directory link count
2723 * to account for the ".." reference from the new entry.
2724 */
2725 error = xfs_dir_createname(tp, target_dp, target_name,
2726 src_ip->i_ino, &first_block,
2727 &free_list, spaceres);
2728 if (error == ENOSPC)
2729 goto error_return;
2730 if (error)
2731 goto abort_return;
2732
2733 xfs_trans_ichgtime(tp, target_dp,
2734 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2735
2736 if (new_parent && src_is_directory) {
2737 error = xfs_bumplink(tp, target_dp);
2738 if (error)
2739 goto abort_return;
2740 }
2741 } else { /* target_ip != NULL */
2742 /*
2743 * If target exists and it's a directory, check that both
2744 * target and source are directories and that target can be
2745 * destroyed, or that neither is a directory.
2746 */
2747 if (S_ISDIR(target_ip->i_d.di_mode)) {
2748 /*
2749 * Make sure target dir is empty.
2750 */
2751 if (!(xfs_dir_isempty(target_ip)) ||
2752 (target_ip->i_d.di_nlink > 2)) {
2753 error = XFS_ERROR(EEXIST);
2754 goto error_return;
2755 }
2756 }
2757
2758 /*
2759 * Link the source inode under the target name.
2760 * If the source inode is a directory and we are moving
2761 * it across directories, its ".." entry will be
2762 * inconsistent until we replace that down below.
2763 *
2764 * In case there is already an entry with the same
2765 * name at the destination directory, remove it first.
2766 */
2767 error = xfs_dir_replace(tp, target_dp, target_name,
2768 src_ip->i_ino,
2769 &first_block, &free_list, spaceres);
2770 if (error)
2771 goto abort_return;
2772
2773 xfs_trans_ichgtime(tp, target_dp,
2774 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2775
2776 /*
2777 * Decrement the link count on the target since the target
2778 * dir no longer points to it.
2779 */
2780 error = xfs_droplink(tp, target_ip);
2781 if (error)
2782 goto abort_return;
2783
2784 if (src_is_directory) {
2785 /*
2786 * Drop the link from the old "." entry.
2787 */
2788 error = xfs_droplink(tp, target_ip);
2789 if (error)
2790 goto abort_return;
2791 }
2792 } /* target_ip != NULL */
2793
2794 /*
2795 * Remove the source.
2796 */
2797 if (new_parent && src_is_directory) {
2798 /*
2799 * Rewrite the ".." entry to point to the new
2800 * directory.
2801 */
2802 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2803 target_dp->i_ino,
2804 &first_block, &free_list, spaceres);
2805 ASSERT(error != EEXIST);
2806 if (error)
2807 goto abort_return;
2808 }
2809
2810 /*
2811 * We always want to hit the ctime on the source inode.
2812 *
2813 * This isn't strictly required by the standards since the source
2814 * inode isn't really being changed, but old unix file systems did
2815 * it and some incremental backup programs won't work without it.
2816 */
2817 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2818 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2819
2820 /*
2821 * Adjust the link count on src_dp. This is necessary when
2822 * renaming a directory, either within one parent when
2823 * the target existed, or across two parent directories.
2824 */
2825 if (src_is_directory && (new_parent || target_ip != NULL)) {
2826
2827 /*
2828 * Decrement link count on src_directory since the
2829 * entry that's moved no longer points to it.
2830 */
2831 error = xfs_droplink(tp, src_dp);
2832 if (error)
2833 goto abort_return;
2834 }
2835
2836 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2837 &first_block, &free_list, spaceres);
2838 if (error)
2839 goto abort_return;
2840
2841 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2842 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2843 if (new_parent)
2844 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2845
2846 /*
2847 * If this is a synchronous mount, make sure that the
2848 * rename transaction goes to disk before returning to
2849 * the user.
2850 */
2851 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2852 xfs_trans_set_sync(tp);
2853 }
2854
2855 error = xfs_bmap_finish(&tp, &free_list, &committed);
2856 if (error) {
2857 xfs_bmap_cancel(&free_list);
2858 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2859 XFS_TRANS_ABORT));
2860 goto std_return;
2861 }
2862
2863 /*
2864 * trans_commit will unlock src_ip, target_ip & decrement
2865 * the vnode references.
2866 */
2867 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2868
2869 abort_return:
2870 cancel_flags |= XFS_TRANS_ABORT;
2871 error_return:
2872 xfs_bmap_cancel(&free_list);
2873 xfs_trans_cancel(tp, cancel_flags);
2874 std_return:
2875 return error;
2876}
2877
5c4d97d0
DC
2878STATIC int
2879xfs_iflush_cluster(
2880 xfs_inode_t *ip,
2881 xfs_buf_t *bp)
1da177e4 2882{
5c4d97d0
DC
2883 xfs_mount_t *mp = ip->i_mount;
2884 struct xfs_perag *pag;
2885 unsigned long first_index, mask;
2886 unsigned long inodes_per_cluster;
2887 int ilist_size;
2888 xfs_inode_t **ilist;
2889 xfs_inode_t *iq;
2890 int nr_found;
2891 int clcount = 0;
2892 int bufwasdelwri;
1da177e4 2893 int i;
1da177e4 2894
5c4d97d0 2895 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 2896
5c4d97d0
DC
2897 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2898 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2899 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2900 if (!ilist)
2901 goto out_put;
1da177e4 2902
5c4d97d0
DC
2903 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2904 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2905 rcu_read_lock();
2906 /* really need a gang lookup range call here */
2907 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2908 first_index, inodes_per_cluster);
2909 if (nr_found == 0)
2910 goto out_free;
2911
2912 for (i = 0; i < nr_found; i++) {
2913 iq = ilist[i];
2914 if (iq == ip)
bad55843 2915 continue;
1a3e8f3d
DC
2916
2917 /*
2918 * because this is an RCU protected lookup, we could find a
2919 * recently freed or even reallocated inode during the lookup.
2920 * We need to check under the i_flags_lock for a valid inode
2921 * here. Skip it if it is not valid or the wrong inode.
2922 */
2923 spin_lock(&ip->i_flags_lock);
2924 if (!ip->i_ino ||
2925 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2926 spin_unlock(&ip->i_flags_lock);
2927 continue;
2928 }
2929 spin_unlock(&ip->i_flags_lock);
2930
bad55843
DC
2931 /*
2932 * Do an un-protected check to see if the inode is dirty and
2933 * is a candidate for flushing. These checks will be repeated
2934 * later after the appropriate locks are acquired.
2935 */
33540408 2936 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2937 continue;
bad55843
DC
2938
2939 /*
2940 * Try to get locks. If any are unavailable or it is pinned,
2941 * then this inode cannot be flushed and is skipped.
2942 */
2943
2944 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2945 continue;
2946 if (!xfs_iflock_nowait(iq)) {
2947 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2948 continue;
2949 }
2950 if (xfs_ipincount(iq)) {
2951 xfs_ifunlock(iq);
2952 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2953 continue;
2954 }
2955
2956 /*
2957 * arriving here means that this inode can be flushed. First
2958 * re-check that it's dirty before flushing.
2959 */
33540408
DC
2960 if (!xfs_inode_clean(iq)) {
2961 int error;
bad55843
DC
2962 error = xfs_iflush_int(iq, bp);
2963 if (error) {
2964 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2965 goto cluster_corrupt_out;
2966 }
2967 clcount++;
2968 } else {
2969 xfs_ifunlock(iq);
2970 }
2971 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2972 }
2973
2974 if (clcount) {
2975 XFS_STATS_INC(xs_icluster_flushcnt);
2976 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2977 }
2978
2979out_free:
1a3e8f3d 2980 rcu_read_unlock();
f0e2d93c 2981 kmem_free(ilist);
44b56e0a
DC
2982out_put:
2983 xfs_perag_put(pag);
bad55843
DC
2984 return 0;
2985
2986
2987cluster_corrupt_out:
2988 /*
2989 * Corruption detected in the clustering loop. Invalidate the
2990 * inode buffer and shut down the filesystem.
2991 */
1a3e8f3d 2992 rcu_read_unlock();
bad55843 2993 /*
43ff2122 2994 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
2995 * brelse can handle it with no problems. If not, shut down the
2996 * filesystem before releasing the buffer.
2997 */
43ff2122 2998 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
2999 if (bufwasdelwri)
3000 xfs_buf_relse(bp);
3001
3002 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3003
3004 if (!bufwasdelwri) {
3005 /*
3006 * Just like incore_relse: if we have b_iodone functions,
3007 * mark the buffer as an error and call them. Otherwise
3008 * mark it as stale and brelse.
3009 */
cb669ca5 3010 if (bp->b_iodone) {
bad55843 3011 XFS_BUF_UNDONE(bp);
c867cb61 3012 xfs_buf_stale(bp);
5a52c2a5 3013 xfs_buf_ioerror(bp, EIO);
1a1a3e97 3014 xfs_buf_ioend(bp, 0);
bad55843 3015 } else {
c867cb61 3016 xfs_buf_stale(bp);
bad55843
DC
3017 xfs_buf_relse(bp);
3018 }
3019 }
3020
3021 /*
3022 * Unlocks the flush lock
3023 */
04913fdd 3024 xfs_iflush_abort(iq, false);
f0e2d93c 3025 kmem_free(ilist);
44b56e0a 3026 xfs_perag_put(pag);
bad55843
DC
3027 return XFS_ERROR(EFSCORRUPTED);
3028}
3029
1da177e4 3030/*
4c46819a
CH
3031 * Flush dirty inode metadata into the backing buffer.
3032 *
3033 * The caller must have the inode lock and the inode flush lock held. The
3034 * inode lock will still be held upon return to the caller, and the inode
3035 * flush lock will be released after the inode has reached the disk.
3036 *
3037 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3038 */
3039int
3040xfs_iflush(
4c46819a
CH
3041 struct xfs_inode *ip,
3042 struct xfs_buf **bpp)
1da177e4 3043{
4c46819a
CH
3044 struct xfs_mount *mp = ip->i_mount;
3045 struct xfs_buf *bp;
3046 struct xfs_dinode *dip;
1da177e4 3047 int error;
1da177e4
LT
3048
3049 XFS_STATS_INC(xs_iflush_count);
3050
579aa9ca 3051 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3052 ASSERT(xfs_isiflocked(ip));
1da177e4 3053 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3054 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3055
4c46819a 3056 *bpp = NULL;
1da177e4 3057
1da177e4
LT
3058 xfs_iunpin_wait(ip);
3059
4b6a4688
DC
3060 /*
3061 * For stale inodes we cannot rely on the backing buffer remaining
3062 * stale in cache for the remaining life of the stale inode and so
475ee413 3063 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3064 * inodes below. We have to check this after ensuring the inode is
3065 * unpinned so that it is safe to reclaim the stale inode after the
3066 * flush call.
3067 */
3068 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3069 xfs_ifunlock(ip);
3070 return 0;
3071 }
3072
1da177e4
LT
3073 /*
3074 * This may have been unpinned because the filesystem is shutting
3075 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3076 * to disk, because the log record didn't make it to disk.
3077 *
3078 * We also have to remove the log item from the AIL in this case,
3079 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3080 */
3081 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
3082 error = XFS_ERROR(EIO);
3083 goto abort_out;
1da177e4
LT
3084 }
3085
a3f74ffb
DC
3086 /*
3087 * Get the buffer containing the on-disk inode.
3088 */
475ee413
CH
3089 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3090 0);
a3f74ffb
DC
3091 if (error || !bp) {
3092 xfs_ifunlock(ip);
3093 return error;
3094 }
3095
1da177e4
LT
3096 /*
3097 * First flush out the inode that xfs_iflush was called with.
3098 */
3099 error = xfs_iflush_int(ip, bp);
bad55843 3100 if (error)
1da177e4 3101 goto corrupt_out;
1da177e4 3102
a3f74ffb
DC
3103 /*
3104 * If the buffer is pinned then push on the log now so we won't
3105 * get stuck waiting in the write for too long.
3106 */
811e64c7 3107 if (xfs_buf_ispinned(bp))
a14a348b 3108 xfs_log_force(mp, 0);
a3f74ffb 3109
1da177e4
LT
3110 /*
3111 * inode clustering:
3112 * see if other inodes can be gathered into this write
3113 */
bad55843
DC
3114 error = xfs_iflush_cluster(ip, bp);
3115 if (error)
3116 goto cluster_corrupt_out;
1da177e4 3117
4c46819a
CH
3118 *bpp = bp;
3119 return 0;
1da177e4
LT
3120
3121corrupt_out:
3122 xfs_buf_relse(bp);
7d04a335 3123 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3124cluster_corrupt_out:
32ce90a4
CH
3125 error = XFS_ERROR(EFSCORRUPTED);
3126abort_out:
1da177e4
LT
3127 /*
3128 * Unlocks the flush lock
3129 */
04913fdd 3130 xfs_iflush_abort(ip, false);
32ce90a4 3131 return error;
1da177e4
LT
3132}
3133
1da177e4
LT
3134STATIC int
3135xfs_iflush_int(
93848a99
CH
3136 struct xfs_inode *ip,
3137 struct xfs_buf *bp)
1da177e4 3138{
93848a99
CH
3139 struct xfs_inode_log_item *iip = ip->i_itemp;
3140 struct xfs_dinode *dip;
3141 struct xfs_mount *mp = ip->i_mount;
1da177e4 3142
579aa9ca 3143 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3144 ASSERT(xfs_isiflocked(ip));
1da177e4 3145 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3146 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3147 ASSERT(iip != NULL && iip->ili_fields != 0);
1da177e4 3148
1da177e4 3149 /* set *dip = inode's place in the buffer */
92bfc6e7 3150 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3151
69ef921b 3152 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3153 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3154 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3155 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3156 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3157 goto corrupt_out;
3158 }
3159 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3160 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3161 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3162 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3163 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3164 goto corrupt_out;
3165 }
abbede1b 3166 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3167 if (XFS_TEST_ERROR(
3168 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3169 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3170 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3171 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3172 "%s: Bad regular inode %Lu, ptr 0x%p",
3173 __func__, ip->i_ino, ip);
1da177e4
LT
3174 goto corrupt_out;
3175 }
abbede1b 3176 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3177 if (XFS_TEST_ERROR(
3178 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3179 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3180 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3181 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3182 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3183 "%s: Bad directory inode %Lu, ptr 0x%p",
3184 __func__, ip->i_ino, ip);
1da177e4
LT
3185 goto corrupt_out;
3186 }
3187 }
3188 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3189 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3190 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3191 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3192 "%s: detected corrupt incore inode %Lu, "
3193 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3194 __func__, ip->i_ino,
1da177e4 3195 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3196 ip->i_d.di_nblocks, ip);
1da177e4
LT
3197 goto corrupt_out;
3198 }
3199 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3200 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3201 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3202 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3203 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3204 goto corrupt_out;
3205 }
e60896d8 3206
1da177e4 3207 /*
e60896d8
DC
3208 * Inode item log recovery for v1/v2 inodes are dependent on the
3209 * di_flushiter count for correct sequencing. We bump the flush
3210 * iteration count so we can detect flushes which postdate a log record
3211 * during recovery. This is redundant as we now log every change and
3212 * hence this can't happen but we need to still do it to ensure
3213 * backwards compatibility with old kernels that predate logging all
3214 * inode changes.
1da177e4 3215 */
e60896d8
DC
3216 if (ip->i_d.di_version < 3)
3217 ip->i_d.di_flushiter++;
1da177e4
LT
3218
3219 /*
3220 * Copy the dirty parts of the inode into the on-disk
3221 * inode. We always copy out the core of the inode,
3222 * because if the inode is dirty at all the core must
3223 * be.
3224 */
81591fe2 3225 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3226
3227 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3228 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3229 ip->i_d.di_flushiter = 0;
3230
3231 /*
3232 * If this is really an old format inode and the superblock version
3233 * has not been updated to support only new format inodes, then
3234 * convert back to the old inode format. If the superblock version
3235 * has been updated, then make the conversion permanent.
3236 */
51ce16d5
CH
3237 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3238 if (ip->i_d.di_version == 1) {
62118709 3239 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3240 /*
3241 * Convert it back.
3242 */
3243 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 3244 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3245 } else {
3246 /*
3247 * The superblock version has already been bumped,
3248 * so just make the conversion to the new inode
3249 * format permanent.
3250 */
51ce16d5
CH
3251 ip->i_d.di_version = 2;
3252 dip->di_version = 2;
1da177e4 3253 ip->i_d.di_onlink = 0;
81591fe2 3254 dip->di_onlink = 0;
1da177e4 3255 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
3256 memset(&(dip->di_pad[0]), 0,
3257 sizeof(dip->di_pad));
6743099c 3258 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
3259 }
3260 }
3261
e4ac967b
DC
3262 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3263 if (XFS_IFORK_Q(ip))
3264 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3265 xfs_inobp_check(mp, bp);
3266
3267 /*
f5d8d5c4
CH
3268 * We've recorded everything logged in the inode, so we'd like to clear
3269 * the ili_fields bits so we don't log and flush things unnecessarily.
3270 * However, we can't stop logging all this information until the data
3271 * we've copied into the disk buffer is written to disk. If we did we
3272 * might overwrite the copy of the inode in the log with all the data
3273 * after re-logging only part of it, and in the face of a crash we
3274 * wouldn't have all the data we need to recover.
1da177e4 3275 *
f5d8d5c4
CH
3276 * What we do is move the bits to the ili_last_fields field. When
3277 * logging the inode, these bits are moved back to the ili_fields field.
3278 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3279 * know that the information those bits represent is permanently on
3280 * disk. As long as the flush completes before the inode is logged
3281 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3282 *
f5d8d5c4
CH
3283 * We can play with the ili_fields bits here, because the inode lock
3284 * must be held exclusively in order to set bits there and the flush
3285 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3286 * done routine can tell whether or not to look in the AIL. Also, store
3287 * the current LSN of the inode so that we can tell whether the item has
3288 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3289 * need the AIL lock, because it is a 64 bit value that cannot be read
3290 * atomically.
1da177e4 3291 */
93848a99
CH
3292 iip->ili_last_fields = iip->ili_fields;
3293 iip->ili_fields = 0;
3294 iip->ili_logged = 1;
1da177e4 3295
93848a99
CH
3296 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3297 &iip->ili_item.li_lsn);
1da177e4 3298
93848a99
CH
3299 /*
3300 * Attach the function xfs_iflush_done to the inode's
3301 * buffer. This will remove the inode from the AIL
3302 * and unlock the inode's flush lock when the inode is
3303 * completely written to disk.
3304 */
3305 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3306
93848a99
CH
3307 /* update the lsn in the on disk inode if required */
3308 if (ip->i_d.di_version == 3)
3309 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3310
3311 /* generate the checksum. */
3312 xfs_dinode_calc_crc(mp, dip);
1da177e4 3313
93848a99
CH
3314 ASSERT(bp->b_fspriv != NULL);
3315 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3316 return 0;
3317
3318corrupt_out:
3319 return XFS_ERROR(EFSCORRUPTED);
3320}
This page took 0.803124 seconds and 5 git commands to generate.