xfs: rename xfs_ilock_map_shared
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
a844f451 26#include "xfs_inum.h"
1da177e4
LT
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4 29#include "xfs_mount.h"
a4fbe6ab 30#include "xfs_inode.h"
57062787 31#include "xfs_da_format.h"
c24b5dfa 32#include "xfs_da_btree.h"
c24b5dfa 33#include "xfs_dir2.h"
a844f451 34#include "xfs_attr_sf.h"
c24b5dfa 35#include "xfs_attr.h"
239880ef
DC
36#include "xfs_trans_space.h"
37#include "xfs_trans.h"
1da177e4 38#include "xfs_buf_item.h"
a844f451 39#include "xfs_inode_item.h"
a844f451
NS
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
68988114 42#include "xfs_bmap_util.h"
1da177e4 43#include "xfs_error.h"
1da177e4 44#include "xfs_quota.h"
a4fbe6ab 45#include "xfs_dinode.h"
2a82b8be 46#include "xfs_filestream.h"
93848a99 47#include "xfs_cksum.h"
0b1b213f 48#include "xfs_trace.h"
33479e05 49#include "xfs_icache.h"
c24b5dfa 50#include "xfs_symlink.h"
239880ef
DC
51#include "xfs_trans_priv.h"
52#include "xfs_log.h"
a4fbe6ab 53#include "xfs_bmap_btree.h"
1da177e4 54
1da177e4 55kmem_zone_t *xfs_inode_zone;
1da177e4
LT
56
57/*
8f04c47a 58 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
59 * freed from a file in a single transaction.
60 */
61#define XFS_ITRUNC_MAX_EXTENTS 2
62
63STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 64
2a0ec1d9
DC
65/*
66 * helper function to extract extent size hint from inode
67 */
68xfs_extlen_t
69xfs_get_extsz_hint(
70 struct xfs_inode *ip)
71{
72 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
73 return ip->i_d.di_extsize;
74 if (XFS_IS_REALTIME_INODE(ip))
75 return ip->i_mount->m_sb.sb_rextsize;
76 return 0;
77}
78
fa96acad
DC
79/*
80 * This is a wrapper routine around the xfs_ilock() routine used to centralize
81 * some grungy code. It is used in places that wish to lock the inode solely
82 * for reading the extents. The reason these places can't just call
83 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
84 * extents from disk for a file in b-tree format. If the inode is in b-tree
85 * format, then we need to lock the inode exclusively until the extents are read
86 * in. Locking it exclusively all the time would limit our parallelism
87 * unnecessarily, though. What we do instead is check to see if the extents
88 * have been read in yet, and only lock the inode exclusively if they have not.
89 *
90 * The function returns a value which should be given to the corresponding
01f4f327 91 * xfs_iunlock() call.
fa96acad
DC
92 */
93uint
309ecac8
CH
94xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
fa96acad 96{
309ecac8 97 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 98
309ecac8
CH
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 101 lock_mode = XFS_ILOCK_EXCL;
fa96acad 102 xfs_ilock(ip, lock_mode);
fa96acad
DC
103 return lock_mode;
104}
105
fa96acad
DC
106/*
107 * The xfs inode contains 2 locks: a multi-reader lock called the
108 * i_iolock and a multi-reader lock called the i_lock. This routine
109 * allows either or both of the locks to be obtained.
110 *
111 * The 2 locks should always be ordered so that the IO lock is
112 * obtained first in order to prevent deadlock.
113 *
114 * ip -- the inode being locked
115 * lock_flags -- this parameter indicates the inode's locks
116 * to be locked. It can be:
117 * XFS_IOLOCK_SHARED,
118 * XFS_IOLOCK_EXCL,
119 * XFS_ILOCK_SHARED,
120 * XFS_ILOCK_EXCL,
121 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
122 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
123 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
124 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
125 */
126void
127xfs_ilock(
128 xfs_inode_t *ip,
129 uint lock_flags)
130{
131 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
132
133 /*
134 * You can't set both SHARED and EXCL for the same lock,
135 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
136 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
137 */
138 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
139 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
140 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
141 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
142 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
143
144 if (lock_flags & XFS_IOLOCK_EXCL)
145 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
146 else if (lock_flags & XFS_IOLOCK_SHARED)
147 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
148
149 if (lock_flags & XFS_ILOCK_EXCL)
150 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
151 else if (lock_flags & XFS_ILOCK_SHARED)
152 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
153}
154
155/*
156 * This is just like xfs_ilock(), except that the caller
157 * is guaranteed not to sleep. It returns 1 if it gets
158 * the requested locks and 0 otherwise. If the IO lock is
159 * obtained but the inode lock cannot be, then the IO lock
160 * is dropped before returning.
161 *
162 * ip -- the inode being locked
163 * lock_flags -- this parameter indicates the inode's locks to be
164 * to be locked. See the comment for xfs_ilock() for a list
165 * of valid values.
166 */
167int
168xfs_ilock_nowait(
169 xfs_inode_t *ip,
170 uint lock_flags)
171{
172 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
173
174 /*
175 * You can't set both SHARED and EXCL for the same lock,
176 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
177 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
178 */
179 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
180 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
184
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 if (!mrtryupdate(&ip->i_iolock))
187 goto out;
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 if (!mrtryaccess(&ip->i_iolock))
190 goto out;
191 }
192 if (lock_flags & XFS_ILOCK_EXCL) {
193 if (!mrtryupdate(&ip->i_lock))
194 goto out_undo_iolock;
195 } else if (lock_flags & XFS_ILOCK_SHARED) {
196 if (!mrtryaccess(&ip->i_lock))
197 goto out_undo_iolock;
198 }
199 return 1;
200
201 out_undo_iolock:
202 if (lock_flags & XFS_IOLOCK_EXCL)
203 mrunlock_excl(&ip->i_iolock);
204 else if (lock_flags & XFS_IOLOCK_SHARED)
205 mrunlock_shared(&ip->i_iolock);
206 out:
207 return 0;
208}
209
210/*
211 * xfs_iunlock() is used to drop the inode locks acquired with
212 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
213 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
214 * that we know which locks to drop.
215 *
216 * ip -- the inode being unlocked
217 * lock_flags -- this parameter indicates the inode's locks to be
218 * to be unlocked. See the comment for xfs_ilock() for a list
219 * of valid values for this parameter.
220 *
221 */
222void
223xfs_iunlock(
224 xfs_inode_t *ip,
225 uint lock_flags)
226{
227 /*
228 * You can't set both SHARED and EXCL for the same lock,
229 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
230 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
231 */
232 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
233 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
234 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
235 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
236 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
237 ASSERT(lock_flags != 0);
238
239 if (lock_flags & XFS_IOLOCK_EXCL)
240 mrunlock_excl(&ip->i_iolock);
241 else if (lock_flags & XFS_IOLOCK_SHARED)
242 mrunlock_shared(&ip->i_iolock);
243
244 if (lock_flags & XFS_ILOCK_EXCL)
245 mrunlock_excl(&ip->i_lock);
246 else if (lock_flags & XFS_ILOCK_SHARED)
247 mrunlock_shared(&ip->i_lock);
248
249 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
250}
251
252/*
253 * give up write locks. the i/o lock cannot be held nested
254 * if it is being demoted.
255 */
256void
257xfs_ilock_demote(
258 xfs_inode_t *ip,
259 uint lock_flags)
260{
261 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
262 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
263
264 if (lock_flags & XFS_ILOCK_EXCL)
265 mrdemote(&ip->i_lock);
266 if (lock_flags & XFS_IOLOCK_EXCL)
267 mrdemote(&ip->i_iolock);
268
269 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
270}
271
742ae1e3 272#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
273int
274xfs_isilocked(
275 xfs_inode_t *ip,
276 uint lock_flags)
277{
278 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
279 if (!(lock_flags & XFS_ILOCK_SHARED))
280 return !!ip->i_lock.mr_writer;
281 return rwsem_is_locked(&ip->i_lock.mr_lock);
282 }
283
284 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
285 if (!(lock_flags & XFS_IOLOCK_SHARED))
286 return !!ip->i_iolock.mr_writer;
287 return rwsem_is_locked(&ip->i_iolock.mr_lock);
288 }
289
290 ASSERT(0);
291 return 0;
292}
293#endif
294
c24b5dfa
DC
295#ifdef DEBUG
296int xfs_locked_n;
297int xfs_small_retries;
298int xfs_middle_retries;
299int xfs_lots_retries;
300int xfs_lock_delays;
301#endif
302
303/*
304 * Bump the subclass so xfs_lock_inodes() acquires each lock with
305 * a different value
306 */
307static inline int
308xfs_lock_inumorder(int lock_mode, int subclass)
309{
310 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
311 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
312 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
313 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
314
315 return lock_mode;
316}
317
318/*
319 * The following routine will lock n inodes in exclusive mode.
320 * We assume the caller calls us with the inodes in i_ino order.
321 *
322 * We need to detect deadlock where an inode that we lock
323 * is in the AIL and we start waiting for another inode that is locked
324 * by a thread in a long running transaction (such as truncate). This can
325 * result in deadlock since the long running trans might need to wait
326 * for the inode we just locked in order to push the tail and free space
327 * in the log.
328 */
329void
330xfs_lock_inodes(
331 xfs_inode_t **ips,
332 int inodes,
333 uint lock_mode)
334{
335 int attempts = 0, i, j, try_lock;
336 xfs_log_item_t *lp;
337
338 ASSERT(ips && (inodes >= 2)); /* we need at least two */
339
340 try_lock = 0;
341 i = 0;
342
343again:
344 for (; i < inodes; i++) {
345 ASSERT(ips[i]);
346
347 if (i && (ips[i] == ips[i-1])) /* Already locked */
348 continue;
349
350 /*
351 * If try_lock is not set yet, make sure all locked inodes
352 * are not in the AIL.
353 * If any are, set try_lock to be used later.
354 */
355
356 if (!try_lock) {
357 for (j = (i - 1); j >= 0 && !try_lock; j--) {
358 lp = (xfs_log_item_t *)ips[j]->i_itemp;
359 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
360 try_lock++;
361 }
362 }
363 }
364
365 /*
366 * If any of the previous locks we have locked is in the AIL,
367 * we must TRY to get the second and subsequent locks. If
368 * we can't get any, we must release all we have
369 * and try again.
370 */
371
372 if (try_lock) {
373 /* try_lock must be 0 if i is 0. */
374 /*
375 * try_lock means we have an inode locked
376 * that is in the AIL.
377 */
378 ASSERT(i != 0);
379 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
380 attempts++;
381
382 /*
383 * Unlock all previous guys and try again.
384 * xfs_iunlock will try to push the tail
385 * if the inode is in the AIL.
386 */
387
388 for(j = i - 1; j >= 0; j--) {
389
390 /*
391 * Check to see if we've already
392 * unlocked this one.
393 * Not the first one going back,
394 * and the inode ptr is the same.
395 */
396 if ((j != (i - 1)) && ips[j] ==
397 ips[j+1])
398 continue;
399
400 xfs_iunlock(ips[j], lock_mode);
401 }
402
403 if ((attempts % 5) == 0) {
404 delay(1); /* Don't just spin the CPU */
405#ifdef DEBUG
406 xfs_lock_delays++;
407#endif
408 }
409 i = 0;
410 try_lock = 0;
411 goto again;
412 }
413 } else {
414 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
415 }
416 }
417
418#ifdef DEBUG
419 if (attempts) {
420 if (attempts < 5) xfs_small_retries++;
421 else if (attempts < 100) xfs_middle_retries++;
422 else xfs_lots_retries++;
423 } else {
424 xfs_locked_n++;
425 }
426#endif
427}
428
429/*
430 * xfs_lock_two_inodes() can only be used to lock one type of lock
431 * at a time - the iolock or the ilock, but not both at once. If
432 * we lock both at once, lockdep will report false positives saying
433 * we have violated locking orders.
434 */
435void
436xfs_lock_two_inodes(
437 xfs_inode_t *ip0,
438 xfs_inode_t *ip1,
439 uint lock_mode)
440{
441 xfs_inode_t *temp;
442 int attempts = 0;
443 xfs_log_item_t *lp;
444
445 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
446 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
447 ASSERT(ip0->i_ino != ip1->i_ino);
448
449 if (ip0->i_ino > ip1->i_ino) {
450 temp = ip0;
451 ip0 = ip1;
452 ip1 = temp;
453 }
454
455 again:
456 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
457
458 /*
459 * If the first lock we have locked is in the AIL, we must TRY to get
460 * the second lock. If we can't get it, we must release the first one
461 * and try again.
462 */
463 lp = (xfs_log_item_t *)ip0->i_itemp;
464 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
465 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
466 xfs_iunlock(ip0, lock_mode);
467 if ((++attempts % 5) == 0)
468 delay(1); /* Don't just spin the CPU */
469 goto again;
470 }
471 } else {
472 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
473 }
474}
475
476
fa96acad
DC
477void
478__xfs_iflock(
479 struct xfs_inode *ip)
480{
481 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
482 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
483
484 do {
485 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
486 if (xfs_isiflocked(ip))
487 io_schedule();
488 } while (!xfs_iflock_nowait(ip));
489
490 finish_wait(wq, &wait.wait);
491}
492
1da177e4
LT
493STATIC uint
494_xfs_dic2xflags(
1da177e4
LT
495 __uint16_t di_flags)
496{
497 uint flags = 0;
498
499 if (di_flags & XFS_DIFLAG_ANY) {
500 if (di_flags & XFS_DIFLAG_REALTIME)
501 flags |= XFS_XFLAG_REALTIME;
502 if (di_flags & XFS_DIFLAG_PREALLOC)
503 flags |= XFS_XFLAG_PREALLOC;
504 if (di_flags & XFS_DIFLAG_IMMUTABLE)
505 flags |= XFS_XFLAG_IMMUTABLE;
506 if (di_flags & XFS_DIFLAG_APPEND)
507 flags |= XFS_XFLAG_APPEND;
508 if (di_flags & XFS_DIFLAG_SYNC)
509 flags |= XFS_XFLAG_SYNC;
510 if (di_flags & XFS_DIFLAG_NOATIME)
511 flags |= XFS_XFLAG_NOATIME;
512 if (di_flags & XFS_DIFLAG_NODUMP)
513 flags |= XFS_XFLAG_NODUMP;
514 if (di_flags & XFS_DIFLAG_RTINHERIT)
515 flags |= XFS_XFLAG_RTINHERIT;
516 if (di_flags & XFS_DIFLAG_PROJINHERIT)
517 flags |= XFS_XFLAG_PROJINHERIT;
518 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
519 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
520 if (di_flags & XFS_DIFLAG_EXTSIZE)
521 flags |= XFS_XFLAG_EXTSIZE;
522 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
523 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
524 if (di_flags & XFS_DIFLAG_NODEFRAG)
525 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
526 if (di_flags & XFS_DIFLAG_FILESTREAM)
527 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
528 }
529
530 return flags;
531}
532
533uint
534xfs_ip2xflags(
535 xfs_inode_t *ip)
536{
347d1c01 537 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 538
a916e2bd 539 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 540 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
541}
542
543uint
544xfs_dic2xflags(
45ba598e 545 xfs_dinode_t *dip)
1da177e4 546{
81591fe2 547 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 548 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
549}
550
c24b5dfa
DC
551/*
552 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
553 * is allowed, otherwise it has to be an exact match. If a CI match is found,
554 * ci_name->name will point to a the actual name (caller must free) or
555 * will be set to NULL if an exact match is found.
556 */
557int
558xfs_lookup(
559 xfs_inode_t *dp,
560 struct xfs_name *name,
561 xfs_inode_t **ipp,
562 struct xfs_name *ci_name)
563{
564 xfs_ino_t inum;
565 int error;
566 uint lock_mode;
567
568 trace_xfs_lookup(dp, name);
569
570 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
571 return XFS_ERROR(EIO);
572
309ecac8 573 lock_mode = xfs_ilock_data_map_shared(dp);
c24b5dfa 574 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
01f4f327 575 xfs_iunlock(dp, lock_mode);
c24b5dfa
DC
576
577 if (error)
578 goto out;
579
580 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
581 if (error)
582 goto out_free_name;
583
584 return 0;
585
586out_free_name:
587 if (ci_name)
588 kmem_free(ci_name->name);
589out:
590 *ipp = NULL;
591 return error;
592}
593
1da177e4
LT
594/*
595 * Allocate an inode on disk and return a copy of its in-core version.
596 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
597 * appropriately within the inode. The uid and gid for the inode are
598 * set according to the contents of the given cred structure.
599 *
600 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
601 * has a free inode available, call xfs_iget() to obtain the in-core
602 * version of the allocated inode. Finally, fill in the inode and
603 * log its initial contents. In this case, ialloc_context would be
604 * set to NULL.
1da177e4 605 *
cd856db6
CM
606 * If xfs_dialloc() does not have an available inode, it will replenish
607 * its supply by doing an allocation. Since we can only do one
608 * allocation within a transaction without deadlocks, we must commit
609 * the current transaction before returning the inode itself.
610 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
611 * The caller should then commit the current transaction, start a new
612 * transaction, and call xfs_ialloc() again to actually get the inode.
613 *
614 * To ensure that some other process does not grab the inode that
615 * was allocated during the first call to xfs_ialloc(), this routine
616 * also returns the [locked] bp pointing to the head of the freelist
617 * as ialloc_context. The caller should hold this buffer across
618 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
619 *
620 * If we are allocating quota inodes, we do not have a parent inode
621 * to attach to or associate with (i.e. pip == NULL) because they
622 * are not linked into the directory structure - they are attached
623 * directly to the superblock - and so have no parent.
1da177e4
LT
624 */
625int
626xfs_ialloc(
627 xfs_trans_t *tp,
628 xfs_inode_t *pip,
576b1d67 629 umode_t mode,
31b084ae 630 xfs_nlink_t nlink,
1da177e4 631 xfs_dev_t rdev,
6743099c 632 prid_t prid,
1da177e4
LT
633 int okalloc,
634 xfs_buf_t **ialloc_context,
1da177e4
LT
635 xfs_inode_t **ipp)
636{
93848a99 637 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
638 xfs_ino_t ino;
639 xfs_inode_t *ip;
1da177e4
LT
640 uint flags;
641 int error;
dff35fd4 642 timespec_t tv;
bf904248 643 int filestreams = 0;
1da177e4
LT
644
645 /*
646 * Call the space management code to pick
647 * the on-disk inode to be allocated.
648 */
b11f94d5 649 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 650 ialloc_context, &ino);
bf904248 651 if (error)
1da177e4 652 return error;
08358906 653 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
654 *ipp = NULL;
655 return 0;
656 }
657 ASSERT(*ialloc_context == NULL);
658
659 /*
660 * Get the in-core inode with the lock held exclusively.
661 * This is because we're setting fields here we need
662 * to prevent others from looking at until we're done.
663 */
93848a99 664 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 665 XFS_ILOCK_EXCL, &ip);
bf904248 666 if (error)
1da177e4 667 return error;
1da177e4
LT
668 ASSERT(ip != NULL);
669
576b1d67 670 ip->i_d.di_mode = mode;
1da177e4
LT
671 ip->i_d.di_onlink = 0;
672 ip->i_d.di_nlink = nlink;
673 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
674 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
675 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 676 xfs_set_projid(ip, prid);
1da177e4
LT
677 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
678
679 /*
680 * If the superblock version is up to where we support new format
681 * inodes and this is currently an old format inode, then change
682 * the inode version number now. This way we only do the conversion
683 * here rather than here and in the flush/logging code.
684 */
93848a99 685 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
51ce16d5
CH
686 ip->i_d.di_version == 1) {
687 ip->i_d.di_version = 2;
1da177e4
LT
688 /*
689 * We've already zeroed the old link count, the projid field,
690 * and the pad field.
691 */
692 }
693
694 /*
695 * Project ids won't be stored on disk if we are using a version 1 inode.
696 */
51ce16d5 697 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
698 xfs_bump_ino_vers2(tp, ip);
699
bd186aa9 700 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 701 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 702 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
703 ip->i_d.di_mode |= S_ISGID;
704 }
705 }
706
707 /*
708 * If the group ID of the new file does not match the effective group
709 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
710 * (and only if the irix_sgid_inherit compatibility variable is set).
711 */
712 if ((irix_sgid_inherit) &&
713 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 714 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
715 ip->i_d.di_mode &= ~S_ISGID;
716 }
717
718 ip->i_d.di_size = 0;
719 ip->i_d.di_nextents = 0;
720 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
721
722 nanotime(&tv);
723 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
724 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
725 ip->i_d.di_atime = ip->i_d.di_mtime;
726 ip->i_d.di_ctime = ip->i_d.di_mtime;
727
1da177e4
LT
728 /*
729 * di_gen will have been taken care of in xfs_iread.
730 */
731 ip->i_d.di_extsize = 0;
732 ip->i_d.di_dmevmask = 0;
733 ip->i_d.di_dmstate = 0;
734 ip->i_d.di_flags = 0;
93848a99
CH
735
736 if (ip->i_d.di_version == 3) {
737 ASSERT(ip->i_d.di_ino == ino);
738 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
739 ip->i_d.di_crc = 0;
740 ip->i_d.di_changecount = 1;
741 ip->i_d.di_lsn = 0;
742 ip->i_d.di_flags2 = 0;
743 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
744 ip->i_d.di_crtime = ip->i_d.di_mtime;
745 }
746
747
1da177e4
LT
748 flags = XFS_ILOG_CORE;
749 switch (mode & S_IFMT) {
750 case S_IFIFO:
751 case S_IFCHR:
752 case S_IFBLK:
753 case S_IFSOCK:
754 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
755 ip->i_df.if_u2.if_rdev = rdev;
756 ip->i_df.if_flags = 0;
757 flags |= XFS_ILOG_DEV;
758 break;
759 case S_IFREG:
bf904248
DC
760 /*
761 * we can't set up filestreams until after the VFS inode
762 * is set up properly.
763 */
764 if (pip && xfs_inode_is_filestream(pip))
765 filestreams = 1;
2a82b8be 766 /* fall through */
1da177e4 767 case S_IFDIR:
b11f94d5 768 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
769 uint di_flags = 0;
770
abbede1b 771 if (S_ISDIR(mode)) {
365ca83d
NS
772 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
773 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
774 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
775 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
776 ip->i_d.di_extsize = pip->i_d.di_extsize;
777 }
abbede1b 778 } else if (S_ISREG(mode)) {
613d7043 779 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 780 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
781 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
782 di_flags |= XFS_DIFLAG_EXTSIZE;
783 ip->i_d.di_extsize = pip->i_d.di_extsize;
784 }
1da177e4
LT
785 }
786 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
787 xfs_inherit_noatime)
365ca83d 788 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
789 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
790 xfs_inherit_nodump)
365ca83d 791 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
792 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
793 xfs_inherit_sync)
365ca83d 794 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
795 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
796 xfs_inherit_nosymlinks)
365ca83d
NS
797 di_flags |= XFS_DIFLAG_NOSYMLINKS;
798 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
799 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
800 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
801 xfs_inherit_nodefrag)
802 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
803 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
804 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 805 ip->i_d.di_flags |= di_flags;
1da177e4
LT
806 }
807 /* FALLTHROUGH */
808 case S_IFLNK:
809 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
810 ip->i_df.if_flags = XFS_IFEXTENTS;
811 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
812 ip->i_df.if_u1.if_extents = NULL;
813 break;
814 default:
815 ASSERT(0);
816 }
817 /*
818 * Attribute fork settings for new inode.
819 */
820 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
821 ip->i_d.di_anextents = 0;
822
823 /*
824 * Log the new values stuffed into the inode.
825 */
ddc3415a 826 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
827 xfs_trans_log_inode(tp, ip, flags);
828
b83bd138 829 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 830 xfs_setup_inode(ip);
1da177e4 831
bf904248
DC
832 /* now we have set up the vfs inode we can associate the filestream */
833 if (filestreams) {
834 error = xfs_filestream_associate(pip, ip);
835 if (error < 0)
836 return -error;
837 if (!error)
838 xfs_iflags_set(ip, XFS_IFILESTREAM);
839 }
840
1da177e4
LT
841 *ipp = ip;
842 return 0;
843}
844
e546cb79
DC
845/*
846 * Allocates a new inode from disk and return a pointer to the
847 * incore copy. This routine will internally commit the current
848 * transaction and allocate a new one if the Space Manager needed
849 * to do an allocation to replenish the inode free-list.
850 *
851 * This routine is designed to be called from xfs_create and
852 * xfs_create_dir.
853 *
854 */
855int
856xfs_dir_ialloc(
857 xfs_trans_t **tpp, /* input: current transaction;
858 output: may be a new transaction. */
859 xfs_inode_t *dp, /* directory within whose allocate
860 the inode. */
861 umode_t mode,
862 xfs_nlink_t nlink,
863 xfs_dev_t rdev,
864 prid_t prid, /* project id */
865 int okalloc, /* ok to allocate new space */
866 xfs_inode_t **ipp, /* pointer to inode; it will be
867 locked. */
868 int *committed)
869
870{
871 xfs_trans_t *tp;
872 xfs_trans_t *ntp;
873 xfs_inode_t *ip;
874 xfs_buf_t *ialloc_context = NULL;
875 int code;
e546cb79
DC
876 void *dqinfo;
877 uint tflags;
878
879 tp = *tpp;
880 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
881
882 /*
883 * xfs_ialloc will return a pointer to an incore inode if
884 * the Space Manager has an available inode on the free
885 * list. Otherwise, it will do an allocation and replenish
886 * the freelist. Since we can only do one allocation per
887 * transaction without deadlocks, we will need to commit the
888 * current transaction and start a new one. We will then
889 * need to call xfs_ialloc again to get the inode.
890 *
891 * If xfs_ialloc did an allocation to replenish the freelist,
892 * it returns the bp containing the head of the freelist as
893 * ialloc_context. We will hold a lock on it across the
894 * transaction commit so that no other process can steal
895 * the inode(s) that we've just allocated.
896 */
897 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
898 &ialloc_context, &ip);
899
900 /*
901 * Return an error if we were unable to allocate a new inode.
902 * This should only happen if we run out of space on disk or
903 * encounter a disk error.
904 */
905 if (code) {
906 *ipp = NULL;
907 return code;
908 }
909 if (!ialloc_context && !ip) {
910 *ipp = NULL;
911 return XFS_ERROR(ENOSPC);
912 }
913
914 /*
915 * If the AGI buffer is non-NULL, then we were unable to get an
916 * inode in one operation. We need to commit the current
917 * transaction and call xfs_ialloc() again. It is guaranteed
918 * to succeed the second time.
919 */
920 if (ialloc_context) {
3d3c8b52
JL
921 struct xfs_trans_res tres;
922
e546cb79
DC
923 /*
924 * Normally, xfs_trans_commit releases all the locks.
925 * We call bhold to hang on to the ialloc_context across
926 * the commit. Holding this buffer prevents any other
927 * processes from doing any allocations in this
928 * allocation group.
929 */
930 xfs_trans_bhold(tp, ialloc_context);
931 /*
932 * Save the log reservation so we can use
933 * them in the next transaction.
934 */
3d3c8b52
JL
935 tres.tr_logres = xfs_trans_get_log_res(tp);
936 tres.tr_logcount = xfs_trans_get_log_count(tp);
e546cb79
DC
937
938 /*
939 * We want the quota changes to be associated with the next
940 * transaction, NOT this one. So, detach the dqinfo from this
941 * and attach it to the next transaction.
942 */
943 dqinfo = NULL;
944 tflags = 0;
945 if (tp->t_dqinfo) {
946 dqinfo = (void *)tp->t_dqinfo;
947 tp->t_dqinfo = NULL;
948 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
949 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
950 }
951
952 ntp = xfs_trans_dup(tp);
953 code = xfs_trans_commit(tp, 0);
954 tp = ntp;
955 if (committed != NULL) {
956 *committed = 1;
957 }
958 /*
959 * If we get an error during the commit processing,
960 * release the buffer that is still held and return
961 * to the caller.
962 */
963 if (code) {
964 xfs_buf_relse(ialloc_context);
965 if (dqinfo) {
966 tp->t_dqinfo = dqinfo;
967 xfs_trans_free_dqinfo(tp);
968 }
969 *tpp = ntp;
970 *ipp = NULL;
971 return code;
972 }
973
974 /*
975 * transaction commit worked ok so we can drop the extra ticket
976 * reference that we gained in xfs_trans_dup()
977 */
978 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52
JL
979 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
980 code = xfs_trans_reserve(tp, &tres, 0, 0);
981
e546cb79
DC
982 /*
983 * Re-attach the quota info that we detached from prev trx.
984 */
985 if (dqinfo) {
986 tp->t_dqinfo = dqinfo;
987 tp->t_flags |= tflags;
988 }
989
990 if (code) {
991 xfs_buf_relse(ialloc_context);
992 *tpp = ntp;
993 *ipp = NULL;
994 return code;
995 }
996 xfs_trans_bjoin(tp, ialloc_context);
997
998 /*
999 * Call ialloc again. Since we've locked out all
1000 * other allocations in this allocation group,
1001 * this call should always succeed.
1002 */
1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1004 okalloc, &ialloc_context, &ip);
1005
1006 /*
1007 * If we get an error at this point, return to the caller
1008 * so that the current transaction can be aborted.
1009 */
1010 if (code) {
1011 *tpp = tp;
1012 *ipp = NULL;
1013 return code;
1014 }
1015 ASSERT(!ialloc_context && ip);
1016
1017 } else {
1018 if (committed != NULL)
1019 *committed = 0;
1020 }
1021
1022 *ipp = ip;
1023 *tpp = tp;
1024
1025 return 0;
1026}
1027
1028/*
1029 * Decrement the link count on an inode & log the change.
1030 * If this causes the link count to go to zero, initiate the
1031 * logging activity required to truncate a file.
1032 */
1033int /* error */
1034xfs_droplink(
1035 xfs_trans_t *tp,
1036 xfs_inode_t *ip)
1037{
1038 int error;
1039
1040 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1041
1042 ASSERT (ip->i_d.di_nlink > 0);
1043 ip->i_d.di_nlink--;
1044 drop_nlink(VFS_I(ip));
1045 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1046
1047 error = 0;
1048 if (ip->i_d.di_nlink == 0) {
1049 /*
1050 * We're dropping the last link to this file.
1051 * Move the on-disk inode to the AGI unlinked list.
1052 * From xfs_inactive() we will pull the inode from
1053 * the list and free it.
1054 */
1055 error = xfs_iunlink(tp, ip);
1056 }
1057 return error;
1058}
1059
1060/*
1061 * This gets called when the inode's version needs to be changed from 1 to 2.
1062 * Currently this happens when the nlink field overflows the old 16-bit value
1063 * or when chproj is called to change the project for the first time.
1064 * As a side effect the superblock version will also get rev'd
1065 * to contain the NLINK bit.
1066 */
1067void
1068xfs_bump_ino_vers2(
1069 xfs_trans_t *tp,
1070 xfs_inode_t *ip)
1071{
1072 xfs_mount_t *mp;
1073
1074 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1075 ASSERT(ip->i_d.di_version == 1);
1076
1077 ip->i_d.di_version = 2;
1078 ip->i_d.di_onlink = 0;
1079 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1080 mp = tp->t_mountp;
1081 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1082 spin_lock(&mp->m_sb_lock);
1083 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1084 xfs_sb_version_addnlink(&mp->m_sb);
1085 spin_unlock(&mp->m_sb_lock);
1086 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1087 } else {
1088 spin_unlock(&mp->m_sb_lock);
1089 }
1090 }
1091 /* Caller must log the inode */
1092}
1093
1094/*
1095 * Increment the link count on an inode & log the change.
1096 */
1097int
1098xfs_bumplink(
1099 xfs_trans_t *tp,
1100 xfs_inode_t *ip)
1101{
1102 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1103
1104 ASSERT(ip->i_d.di_nlink > 0);
1105 ip->i_d.di_nlink++;
1106 inc_nlink(VFS_I(ip));
1107 if ((ip->i_d.di_version == 1) &&
1108 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1109 /*
1110 * The inode has increased its number of links beyond
1111 * what can fit in an old format inode. It now needs
1112 * to be converted to a version 2 inode with a 32 bit
1113 * link count. If this is the first inode in the file
1114 * system to do this, then we need to bump the superblock
1115 * version number as well.
1116 */
1117 xfs_bump_ino_vers2(tp, ip);
1118 }
1119
1120 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1121 return 0;
1122}
1123
c24b5dfa
DC
1124int
1125xfs_create(
1126 xfs_inode_t *dp,
1127 struct xfs_name *name,
1128 umode_t mode,
1129 xfs_dev_t rdev,
1130 xfs_inode_t **ipp)
1131{
1132 int is_dir = S_ISDIR(mode);
1133 struct xfs_mount *mp = dp->i_mount;
1134 struct xfs_inode *ip = NULL;
1135 struct xfs_trans *tp = NULL;
1136 int error;
1137 xfs_bmap_free_t free_list;
1138 xfs_fsblock_t first_block;
1139 bool unlock_dp_on_error = false;
1140 uint cancel_flags;
1141 int committed;
1142 prid_t prid;
1143 struct xfs_dquot *udqp = NULL;
1144 struct xfs_dquot *gdqp = NULL;
1145 struct xfs_dquot *pdqp = NULL;
3d3c8b52 1146 struct xfs_trans_res tres;
c24b5dfa 1147 uint resblks;
c24b5dfa
DC
1148
1149 trace_xfs_create(dp, name);
1150
1151 if (XFS_FORCED_SHUTDOWN(mp))
1152 return XFS_ERROR(EIO);
1153
1154 if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1155 prid = xfs_get_projid(dp);
1156 else
1157 prid = XFS_PROJID_DEFAULT;
1158
1159 /*
1160 * Make sure that we have allocated dquot(s) on disk.
1161 */
7aab1b28
DE
1162 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1163 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1164 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1165 &udqp, &gdqp, &pdqp);
1166 if (error)
1167 return error;
1168
1169 if (is_dir) {
1170 rdev = 0;
1171 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
3d3c8b52
JL
1172 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1173 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
c24b5dfa
DC
1174 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1175 } else {
1176 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
3d3c8b52
JL
1177 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1178 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
c24b5dfa
DC
1179 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1180 }
1181
1182 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1183
1184 /*
1185 * Initially assume that the file does not exist and
1186 * reserve the resources for that case. If that is not
1187 * the case we'll drop the one we have and get a more
1188 * appropriate transaction later.
1189 */
3d3c8b52
JL
1190 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1191 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1192 if (error == ENOSPC) {
1193 /* flush outstanding delalloc blocks and retry */
1194 xfs_flush_inodes(mp);
3d3c8b52 1195 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1196 }
1197 if (error == ENOSPC) {
1198 /* No space at all so try a "no-allocation" reservation */
1199 resblks = 0;
3d3c8b52 1200 error = xfs_trans_reserve(tp, &tres, 0, 0);
c24b5dfa
DC
1201 }
1202 if (error) {
1203 cancel_flags = 0;
1204 goto out_trans_cancel;
1205 }
1206
1207 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1208 unlock_dp_on_error = true;
1209
1210 xfs_bmap_init(&free_list, &first_block);
1211
1212 /*
1213 * Reserve disk quota and the inode.
1214 */
1215 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1216 pdqp, resblks, 1, 0);
1217 if (error)
1218 goto out_trans_cancel;
1219
1220 error = xfs_dir_canenter(tp, dp, name, resblks);
1221 if (error)
1222 goto out_trans_cancel;
1223
1224 /*
1225 * A newly created regular or special file just has one directory
1226 * entry pointing to them, but a directory also the "." entry
1227 * pointing to itself.
1228 */
1229 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1230 prid, resblks > 0, &ip, &committed);
1231 if (error) {
1232 if (error == ENOSPC)
1233 goto out_trans_cancel;
1234 goto out_trans_abort;
1235 }
1236
1237 /*
1238 * Now we join the directory inode to the transaction. We do not do it
1239 * earlier because xfs_dir_ialloc might commit the previous transaction
1240 * (and release all the locks). An error from here on will result in
1241 * the transaction cancel unlocking dp so don't do it explicitly in the
1242 * error path.
1243 */
1244 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1245 unlock_dp_on_error = false;
1246
1247 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1248 &first_block, &free_list, resblks ?
1249 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1250 if (error) {
1251 ASSERT(error != ENOSPC);
1252 goto out_trans_abort;
1253 }
1254 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1255 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1256
1257 if (is_dir) {
1258 error = xfs_dir_init(tp, ip, dp);
1259 if (error)
1260 goto out_bmap_cancel;
1261
1262 error = xfs_bumplink(tp, dp);
1263 if (error)
1264 goto out_bmap_cancel;
1265 }
1266
1267 /*
1268 * If this is a synchronous mount, make sure that the
1269 * create transaction goes to disk before returning to
1270 * the user.
1271 */
1272 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1273 xfs_trans_set_sync(tp);
1274
1275 /*
1276 * Attach the dquot(s) to the inodes and modify them incore.
1277 * These ids of the inode couldn't have changed since the new
1278 * inode has been locked ever since it was created.
1279 */
1280 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1281
1282 error = xfs_bmap_finish(&tp, &free_list, &committed);
1283 if (error)
1284 goto out_bmap_cancel;
1285
1286 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1287 if (error)
1288 goto out_release_inode;
1289
1290 xfs_qm_dqrele(udqp);
1291 xfs_qm_dqrele(gdqp);
1292 xfs_qm_dqrele(pdqp);
1293
1294 *ipp = ip;
1295 return 0;
1296
1297 out_bmap_cancel:
1298 xfs_bmap_cancel(&free_list);
1299 out_trans_abort:
1300 cancel_flags |= XFS_TRANS_ABORT;
1301 out_trans_cancel:
1302 xfs_trans_cancel(tp, cancel_flags);
1303 out_release_inode:
1304 /*
1305 * Wait until after the current transaction is aborted to
1306 * release the inode. This prevents recursive transactions
1307 * and deadlocks from xfs_inactive.
1308 */
1309 if (ip)
1310 IRELE(ip);
1311
1312 xfs_qm_dqrele(udqp);
1313 xfs_qm_dqrele(gdqp);
1314 xfs_qm_dqrele(pdqp);
1315
1316 if (unlock_dp_on_error)
1317 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1318 return error;
1319}
1320
1321int
1322xfs_link(
1323 xfs_inode_t *tdp,
1324 xfs_inode_t *sip,
1325 struct xfs_name *target_name)
1326{
1327 xfs_mount_t *mp = tdp->i_mount;
1328 xfs_trans_t *tp;
1329 int error;
1330 xfs_bmap_free_t free_list;
1331 xfs_fsblock_t first_block;
1332 int cancel_flags;
1333 int committed;
1334 int resblks;
1335
1336 trace_xfs_link(tdp, target_name);
1337
1338 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1339
1340 if (XFS_FORCED_SHUTDOWN(mp))
1341 return XFS_ERROR(EIO);
1342
1343 error = xfs_qm_dqattach(sip, 0);
1344 if (error)
1345 goto std_return;
1346
1347 error = xfs_qm_dqattach(tdp, 0);
1348 if (error)
1349 goto std_return;
1350
1351 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1352 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1353 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1354 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
c24b5dfa
DC
1355 if (error == ENOSPC) {
1356 resblks = 0;
3d3c8b52 1357 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa
DC
1358 }
1359 if (error) {
1360 cancel_flags = 0;
1361 goto error_return;
1362 }
1363
1364 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1365
1366 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1367 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1368
1369 /*
1370 * If we are using project inheritance, we only allow hard link
1371 * creation in our tree when the project IDs are the same; else
1372 * the tree quota mechanism could be circumvented.
1373 */
1374 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1375 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1376 error = XFS_ERROR(EXDEV);
1377 goto error_return;
1378 }
1379
1380 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1381 if (error)
1382 goto error_return;
1383
1384 xfs_bmap_init(&free_list, &first_block);
1385
1386 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1387 &first_block, &free_list, resblks);
1388 if (error)
1389 goto abort_return;
1390 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1391 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1392
1393 error = xfs_bumplink(tp, sip);
1394 if (error)
1395 goto abort_return;
1396
1397 /*
1398 * If this is a synchronous mount, make sure that the
1399 * link transaction goes to disk before returning to
1400 * the user.
1401 */
1402 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1403 xfs_trans_set_sync(tp);
1404 }
1405
1406 error = xfs_bmap_finish (&tp, &free_list, &committed);
1407 if (error) {
1408 xfs_bmap_cancel(&free_list);
1409 goto abort_return;
1410 }
1411
1412 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1413
1414 abort_return:
1415 cancel_flags |= XFS_TRANS_ABORT;
1416 error_return:
1417 xfs_trans_cancel(tp, cancel_flags);
1418 std_return:
1419 return error;
1420}
1421
1da177e4 1422/*
8f04c47a
CH
1423 * Free up the underlying blocks past new_size. The new size must be smaller
1424 * than the current size. This routine can be used both for the attribute and
1425 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1426 *
f6485057
DC
1427 * The transaction passed to this routine must have made a permanent log
1428 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1429 * given transaction and start new ones, so make sure everything involved in
1430 * the transaction is tidy before calling here. Some transaction will be
1431 * returned to the caller to be committed. The incoming transaction must
1432 * already include the inode, and both inode locks must be held exclusively.
1433 * The inode must also be "held" within the transaction. On return the inode
1434 * will be "held" within the returned transaction. This routine does NOT
1435 * require any disk space to be reserved for it within the transaction.
1da177e4 1436 *
f6485057
DC
1437 * If we get an error, we must return with the inode locked and linked into the
1438 * current transaction. This keeps things simple for the higher level code,
1439 * because it always knows that the inode is locked and held in the transaction
1440 * that returns to it whether errors occur or not. We don't mark the inode
1441 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1442 */
1443int
8f04c47a
CH
1444xfs_itruncate_extents(
1445 struct xfs_trans **tpp,
1446 struct xfs_inode *ip,
1447 int whichfork,
1448 xfs_fsize_t new_size)
1da177e4 1449{
8f04c47a
CH
1450 struct xfs_mount *mp = ip->i_mount;
1451 struct xfs_trans *tp = *tpp;
1452 struct xfs_trans *ntp;
1453 xfs_bmap_free_t free_list;
1454 xfs_fsblock_t first_block;
1455 xfs_fileoff_t first_unmap_block;
1456 xfs_fileoff_t last_block;
1457 xfs_filblks_t unmap_len;
1458 int committed;
1459 int error = 0;
1460 int done = 0;
1da177e4 1461
0b56185b
CH
1462 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1463 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1464 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1465 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1466 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1467 ASSERT(ip->i_itemp != NULL);
898621d5 1468 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1469 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1470
673e8e59
CH
1471 trace_xfs_itruncate_extents_start(ip, new_size);
1472
1da177e4
LT
1473 /*
1474 * Since it is possible for space to become allocated beyond
1475 * the end of the file (in a crash where the space is allocated
1476 * but the inode size is not yet updated), simply remove any
1477 * blocks which show up between the new EOF and the maximum
1478 * possible file size. If the first block to be removed is
1479 * beyond the maximum file size (ie it is the same as last_block),
1480 * then there is nothing to do.
1481 */
8f04c47a 1482 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1483 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1484 if (first_unmap_block == last_block)
1485 return 0;
1486
1487 ASSERT(first_unmap_block < last_block);
1488 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1489 while (!done) {
9d87c319 1490 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1491 error = xfs_bunmapi(tp, ip,
3e57ecf6 1492 first_unmap_block, unmap_len,
8f04c47a 1493 xfs_bmapi_aflag(whichfork),
1da177e4 1494 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1495 &first_block, &free_list,
b4e9181e 1496 &done);
8f04c47a
CH
1497 if (error)
1498 goto out_bmap_cancel;
1da177e4
LT
1499
1500 /*
1501 * Duplicate the transaction that has the permanent
1502 * reservation and commit the old transaction.
1503 */
8f04c47a 1504 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1505 if (committed)
ddc3415a 1506 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1507 if (error)
1508 goto out_bmap_cancel;
1da177e4
LT
1509
1510 if (committed) {
1511 /*
f6485057 1512 * Mark the inode dirty so it will be logged and
e5720eec 1513 * moved forward in the log as part of every commit.
1da177e4 1514 */
8f04c47a 1515 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1516 }
f6485057 1517
8f04c47a
CH
1518 ntp = xfs_trans_dup(tp);
1519 error = xfs_trans_commit(tp, 0);
1520 tp = ntp;
e5720eec 1521
ddc3415a 1522 xfs_trans_ijoin(tp, ip, 0);
f6485057 1523
cc09c0dc 1524 if (error)
8f04c47a
CH
1525 goto out;
1526
cc09c0dc 1527 /*
8f04c47a 1528 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1529 * reference that we gained in xfs_trans_dup()
1530 */
8f04c47a 1531 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52 1532 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
f6485057 1533 if (error)
8f04c47a 1534 goto out;
1da177e4 1535 }
8f04c47a 1536
673e8e59
CH
1537 /*
1538 * Always re-log the inode so that our permanent transaction can keep
1539 * on rolling it forward in the log.
1540 */
1541 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1542
1543 trace_xfs_itruncate_extents_end(ip, new_size);
1544
8f04c47a
CH
1545out:
1546 *tpp = tp;
1547 return error;
1548out_bmap_cancel:
1da177e4 1549 /*
8f04c47a
CH
1550 * If the bunmapi call encounters an error, return to the caller where
1551 * the transaction can be properly aborted. We just need to make sure
1552 * we're not holding any resources that we were not when we came in.
1da177e4 1553 */
8f04c47a
CH
1554 xfs_bmap_cancel(&free_list);
1555 goto out;
1556}
1557
c24b5dfa
DC
1558int
1559xfs_release(
1560 xfs_inode_t *ip)
1561{
1562 xfs_mount_t *mp = ip->i_mount;
1563 int error;
1564
1565 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1566 return 0;
1567
1568 /* If this is a read-only mount, don't do this (would generate I/O) */
1569 if (mp->m_flags & XFS_MOUNT_RDONLY)
1570 return 0;
1571
1572 if (!XFS_FORCED_SHUTDOWN(mp)) {
1573 int truncated;
1574
1575 /*
1576 * If we are using filestreams, and we have an unlinked
1577 * file that we are processing the last close on, then nothing
1578 * will be able to reopen and write to this file. Purge this
1579 * inode from the filestreams cache so that it doesn't delay
1580 * teardown of the inode.
1581 */
1582 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1583 xfs_filestream_deassociate(ip);
1584
1585 /*
1586 * If we previously truncated this file and removed old data
1587 * in the process, we want to initiate "early" writeout on
1588 * the last close. This is an attempt to combat the notorious
1589 * NULL files problem which is particularly noticeable from a
1590 * truncate down, buffered (re-)write (delalloc), followed by
1591 * a crash. What we are effectively doing here is
1592 * significantly reducing the time window where we'd otherwise
1593 * be exposed to that problem.
1594 */
1595 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1596 if (truncated) {
1597 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1598 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1599 error = -filemap_flush(VFS_I(ip)->i_mapping);
1600 if (error)
1601 return error;
1602 }
1603 }
1604 }
1605
1606 if (ip->i_d.di_nlink == 0)
1607 return 0;
1608
1609 if (xfs_can_free_eofblocks(ip, false)) {
1610
1611 /*
1612 * If we can't get the iolock just skip truncating the blocks
1613 * past EOF because we could deadlock with the mmap_sem
1614 * otherwise. We'll get another chance to drop them once the
1615 * last reference to the inode is dropped, so we'll never leak
1616 * blocks permanently.
1617 *
1618 * Further, check if the inode is being opened, written and
1619 * closed frequently and we have delayed allocation blocks
1620 * outstanding (e.g. streaming writes from the NFS server),
1621 * truncating the blocks past EOF will cause fragmentation to
1622 * occur.
1623 *
1624 * In this case don't do the truncation, either, but we have to
1625 * be careful how we detect this case. Blocks beyond EOF show
1626 * up as i_delayed_blks even when the inode is clean, so we
1627 * need to truncate them away first before checking for a dirty
1628 * release. Hence on the first dirty close we will still remove
1629 * the speculative allocation, but after that we will leave it
1630 * in place.
1631 */
1632 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1633 return 0;
1634
1635 error = xfs_free_eofblocks(mp, ip, true);
1636 if (error && error != EAGAIN)
1637 return error;
1638
1639 /* delalloc blocks after truncation means it really is dirty */
1640 if (ip->i_delayed_blks)
1641 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1642 }
1643 return 0;
1644}
1645
f7be2d7f
BF
1646/*
1647 * xfs_inactive_truncate
1648 *
1649 * Called to perform a truncate when an inode becomes unlinked.
1650 */
1651STATIC int
1652xfs_inactive_truncate(
1653 struct xfs_inode *ip)
1654{
1655 struct xfs_mount *mp = ip->i_mount;
1656 struct xfs_trans *tp;
1657 int error;
1658
1659 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1660 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1661 if (error) {
1662 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1663 xfs_trans_cancel(tp, 0);
1664 return error;
1665 }
1666
1667 xfs_ilock(ip, XFS_ILOCK_EXCL);
1668 xfs_trans_ijoin(tp, ip, 0);
1669
1670 /*
1671 * Log the inode size first to prevent stale data exposure in the event
1672 * of a system crash before the truncate completes. See the related
1673 * comment in xfs_setattr_size() for details.
1674 */
1675 ip->i_d.di_size = 0;
1676 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1677
1678 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1679 if (error)
1680 goto error_trans_cancel;
1681
1682 ASSERT(ip->i_d.di_nextents == 0);
1683
1684 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1685 if (error)
1686 goto error_unlock;
1687
1688 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1689 return 0;
1690
1691error_trans_cancel:
1692 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1693error_unlock:
1694 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1695 return error;
1696}
1697
88877d2b
BF
1698/*
1699 * xfs_inactive_ifree()
1700 *
1701 * Perform the inode free when an inode is unlinked.
1702 */
1703STATIC int
1704xfs_inactive_ifree(
1705 struct xfs_inode *ip)
1706{
1707 xfs_bmap_free_t free_list;
1708 xfs_fsblock_t first_block;
1709 int committed;
1710 struct xfs_mount *mp = ip->i_mount;
1711 struct xfs_trans *tp;
1712 int error;
1713
1714 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1715 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1716 if (error) {
1717 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1718 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1719 return error;
1720 }
1721
1722 xfs_ilock(ip, XFS_ILOCK_EXCL);
1723 xfs_trans_ijoin(tp, ip, 0);
1724
1725 xfs_bmap_init(&free_list, &first_block);
1726 error = xfs_ifree(tp, ip, &free_list);
1727 if (error) {
1728 /*
1729 * If we fail to free the inode, shut down. The cancel
1730 * might do that, we need to make sure. Otherwise the
1731 * inode might be lost for a long time or forever.
1732 */
1733 if (!XFS_FORCED_SHUTDOWN(mp)) {
1734 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1735 __func__, error);
1736 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1737 }
1738 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1739 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1740 return error;
1741 }
1742
1743 /*
1744 * Credit the quota account(s). The inode is gone.
1745 */
1746 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1747
1748 /*
1749 * Just ignore errors at this point. There is nothing we can
1750 * do except to try to keep going. Make sure it's not a silent
1751 * error.
1752 */
1753 error = xfs_bmap_finish(&tp, &free_list, &committed);
1754 if (error)
1755 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1756 __func__, error);
1757 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1758 if (error)
1759 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1760 __func__, error);
1761
1762 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763 return 0;
1764}
1765
c24b5dfa
DC
1766/*
1767 * xfs_inactive
1768 *
1769 * This is called when the vnode reference count for the vnode
1770 * goes to zero. If the file has been unlinked, then it must
1771 * now be truncated. Also, we clear all of the read-ahead state
1772 * kept for the inode here since the file is now closed.
1773 */
74564fb4 1774void
c24b5dfa
DC
1775xfs_inactive(
1776 xfs_inode_t *ip)
1777{
3d3c8b52 1778 struct xfs_mount *mp;
3d3c8b52
JL
1779 int error;
1780 int truncate = 0;
c24b5dfa
DC
1781
1782 /*
1783 * If the inode is already free, then there can be nothing
1784 * to clean up here.
1785 */
d948709b 1786 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1787 ASSERT(ip->i_df.if_real_bytes == 0);
1788 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1789 return;
c24b5dfa
DC
1790 }
1791
1792 mp = ip->i_mount;
1793
c24b5dfa
DC
1794 /* If this is a read-only mount, don't do this (would generate I/O) */
1795 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1796 return;
c24b5dfa
DC
1797
1798 if (ip->i_d.di_nlink != 0) {
1799 /*
1800 * force is true because we are evicting an inode from the
1801 * cache. Post-eof blocks must be freed, lest we end up with
1802 * broken free space accounting.
1803 */
74564fb4
BF
1804 if (xfs_can_free_eofblocks(ip, true))
1805 xfs_free_eofblocks(mp, ip, false);
1806
1807 return;
c24b5dfa
DC
1808 }
1809
1810 if (S_ISREG(ip->i_d.di_mode) &&
1811 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1812 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1813 truncate = 1;
1814
1815 error = xfs_qm_dqattach(ip, 0);
1816 if (error)
74564fb4 1817 return;
c24b5dfa 1818
f7be2d7f 1819 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1820 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1821 else if (truncate)
1822 error = xfs_inactive_truncate(ip);
1823 if (error)
74564fb4 1824 return;
c24b5dfa
DC
1825
1826 /*
1827 * If there are attributes associated with the file then blow them away
1828 * now. The code calls a routine that recursively deconstructs the
1829 * attribute fork. We need to just commit the current transaction
1830 * because we can't use it for xfs_attr_inactive().
1831 */
1832 if (ip->i_d.di_anextents > 0) {
1833 ASSERT(ip->i_d.di_forkoff != 0);
1834
c24b5dfa
DC
1835 error = xfs_attr_inactive(ip);
1836 if (error)
74564fb4 1837 return;
c24b5dfa
DC
1838 }
1839
1840 if (ip->i_afp)
1841 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1842
1843 ASSERT(ip->i_d.di_anextents == 0);
1844
1845 /*
1846 * Free the inode.
1847 */
88877d2b
BF
1848 error = xfs_inactive_ifree(ip);
1849 if (error)
74564fb4 1850 return;
c24b5dfa
DC
1851
1852 /*
1853 * Release the dquots held by inode, if any.
1854 */
1855 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1856}
1857
1da177e4
LT
1858/*
1859 * This is called when the inode's link count goes to 0.
1860 * We place the on-disk inode on a list in the AGI. It
1861 * will be pulled from this list when the inode is freed.
1862 */
1863int
1864xfs_iunlink(
1865 xfs_trans_t *tp,
1866 xfs_inode_t *ip)
1867{
1868 xfs_mount_t *mp;
1869 xfs_agi_t *agi;
1870 xfs_dinode_t *dip;
1871 xfs_buf_t *agibp;
1872 xfs_buf_t *ibp;
1da177e4
LT
1873 xfs_agino_t agino;
1874 short bucket_index;
1875 int offset;
1876 int error;
1da177e4
LT
1877
1878 ASSERT(ip->i_d.di_nlink == 0);
1879 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1880
1881 mp = tp->t_mountp;
1882
1da177e4
LT
1883 /*
1884 * Get the agi buffer first. It ensures lock ordering
1885 * on the list.
1886 */
5e1be0fb 1887 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1888 if (error)
1da177e4 1889 return error;
1da177e4 1890 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1891
1da177e4
LT
1892 /*
1893 * Get the index into the agi hash table for the
1894 * list this inode will go on.
1895 */
1896 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1897 ASSERT(agino != 0);
1898 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1899 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1900 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1901
69ef921b 1902 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1903 /*
1904 * There is already another inode in the bucket we need
1905 * to add ourselves to. Add us at the front of the list.
1906 * Here we put the head pointer into our next pointer,
1907 * and then we fall through to point the head at us.
1908 */
475ee413
CH
1909 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1910 0, 0);
c319b58b
VA
1911 if (error)
1912 return error;
1913
69ef921b 1914 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1915 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1916 offset = ip->i_imap.im_boffset +
1da177e4 1917 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
1918
1919 /* need to recalc the inode CRC if appropriate */
1920 xfs_dinode_calc_crc(mp, dip);
1921
1da177e4
LT
1922 xfs_trans_inode_buf(tp, ibp);
1923 xfs_trans_log_buf(tp, ibp, offset,
1924 (offset + sizeof(xfs_agino_t) - 1));
1925 xfs_inobp_check(mp, ibp);
1926 }
1927
1928 /*
1929 * Point the bucket head pointer at the inode being inserted.
1930 */
1931 ASSERT(agino != 0);
16259e7d 1932 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1933 offset = offsetof(xfs_agi_t, agi_unlinked) +
1934 (sizeof(xfs_agino_t) * bucket_index);
1935 xfs_trans_log_buf(tp, agibp, offset,
1936 (offset + sizeof(xfs_agino_t) - 1));
1937 return 0;
1938}
1939
1940/*
1941 * Pull the on-disk inode from the AGI unlinked list.
1942 */
1943STATIC int
1944xfs_iunlink_remove(
1945 xfs_trans_t *tp,
1946 xfs_inode_t *ip)
1947{
1948 xfs_ino_t next_ino;
1949 xfs_mount_t *mp;
1950 xfs_agi_t *agi;
1951 xfs_dinode_t *dip;
1952 xfs_buf_t *agibp;
1953 xfs_buf_t *ibp;
1954 xfs_agnumber_t agno;
1da177e4
LT
1955 xfs_agino_t agino;
1956 xfs_agino_t next_agino;
1957 xfs_buf_t *last_ibp;
6fdf8ccc 1958 xfs_dinode_t *last_dip = NULL;
1da177e4 1959 short bucket_index;
6fdf8ccc 1960 int offset, last_offset = 0;
1da177e4 1961 int error;
1da177e4 1962
1da177e4 1963 mp = tp->t_mountp;
1da177e4 1964 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1965
1966 /*
1967 * Get the agi buffer first. It ensures lock ordering
1968 * on the list.
1969 */
5e1be0fb
CH
1970 error = xfs_read_agi(mp, tp, agno, &agibp);
1971 if (error)
1da177e4 1972 return error;
5e1be0fb 1973
1da177e4 1974 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1975
1da177e4
LT
1976 /*
1977 * Get the index into the agi hash table for the
1978 * list this inode will go on.
1979 */
1980 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1981 ASSERT(agino != 0);
1982 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 1983 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
1984 ASSERT(agi->agi_unlinked[bucket_index]);
1985
16259e7d 1986 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 1987 /*
475ee413
CH
1988 * We're at the head of the list. Get the inode's on-disk
1989 * buffer to see if there is anyone after us on the list.
1990 * Only modify our next pointer if it is not already NULLAGINO.
1991 * This saves us the overhead of dealing with the buffer when
1992 * there is no need to change it.
1da177e4 1993 */
475ee413
CH
1994 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1995 0, 0);
1da177e4 1996 if (error) {
475ee413 1997 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 1998 __func__, error);
1da177e4
LT
1999 return error;
2000 }
347d1c01 2001 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2002 ASSERT(next_agino != 0);
2003 if (next_agino != NULLAGINO) {
347d1c01 2004 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2005 offset = ip->i_imap.im_boffset +
1da177e4 2006 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2007
2008 /* need to recalc the inode CRC if appropriate */
2009 xfs_dinode_calc_crc(mp, dip);
2010
1da177e4
LT
2011 xfs_trans_inode_buf(tp, ibp);
2012 xfs_trans_log_buf(tp, ibp, offset,
2013 (offset + sizeof(xfs_agino_t) - 1));
2014 xfs_inobp_check(mp, ibp);
2015 } else {
2016 xfs_trans_brelse(tp, ibp);
2017 }
2018 /*
2019 * Point the bucket head pointer at the next inode.
2020 */
2021 ASSERT(next_agino != 0);
2022 ASSERT(next_agino != agino);
16259e7d 2023 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2024 offset = offsetof(xfs_agi_t, agi_unlinked) +
2025 (sizeof(xfs_agino_t) * bucket_index);
2026 xfs_trans_log_buf(tp, agibp, offset,
2027 (offset + sizeof(xfs_agino_t) - 1));
2028 } else {
2029 /*
2030 * We need to search the list for the inode being freed.
2031 */
16259e7d 2032 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2033 last_ibp = NULL;
2034 while (next_agino != agino) {
129dbc9a
CH
2035 struct xfs_imap imap;
2036
2037 if (last_ibp)
1da177e4 2038 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2039
2040 imap.im_blkno = 0;
1da177e4 2041 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2042
2043 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2044 if (error) {
2045 xfs_warn(mp,
2046 "%s: xfs_imap returned error %d.",
2047 __func__, error);
2048 return error;
2049 }
2050
2051 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2052 &last_ibp, 0, 0);
1da177e4 2053 if (error) {
0b932ccc 2054 xfs_warn(mp,
129dbc9a 2055 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2056 __func__, error);
1da177e4
LT
2057 return error;
2058 }
129dbc9a
CH
2059
2060 last_offset = imap.im_boffset;
347d1c01 2061 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2062 ASSERT(next_agino != NULLAGINO);
2063 ASSERT(next_agino != 0);
2064 }
475ee413 2065
1da177e4 2066 /*
475ee413
CH
2067 * Now last_ibp points to the buffer previous to us on the
2068 * unlinked list. Pull us from the list.
1da177e4 2069 */
475ee413
CH
2070 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2071 0, 0);
1da177e4 2072 if (error) {
475ee413 2073 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2074 __func__, error);
1da177e4
LT
2075 return error;
2076 }
347d1c01 2077 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2078 ASSERT(next_agino != 0);
2079 ASSERT(next_agino != agino);
2080 if (next_agino != NULLAGINO) {
347d1c01 2081 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2082 offset = ip->i_imap.im_boffset +
1da177e4 2083 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2084
2085 /* need to recalc the inode CRC if appropriate */
2086 xfs_dinode_calc_crc(mp, dip);
2087
1da177e4
LT
2088 xfs_trans_inode_buf(tp, ibp);
2089 xfs_trans_log_buf(tp, ibp, offset,
2090 (offset + sizeof(xfs_agino_t) - 1));
2091 xfs_inobp_check(mp, ibp);
2092 } else {
2093 xfs_trans_brelse(tp, ibp);
2094 }
2095 /*
2096 * Point the previous inode on the list to the next inode.
2097 */
347d1c01 2098 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2099 ASSERT(next_agino != 0);
2100 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2101
2102 /* need to recalc the inode CRC if appropriate */
2103 xfs_dinode_calc_crc(mp, last_dip);
2104
1da177e4
LT
2105 xfs_trans_inode_buf(tp, last_ibp);
2106 xfs_trans_log_buf(tp, last_ibp, offset,
2107 (offset + sizeof(xfs_agino_t) - 1));
2108 xfs_inobp_check(mp, last_ibp);
2109 }
2110 return 0;
2111}
2112
5b3eed75 2113/*
0b8182db 2114 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2115 * inodes that are in memory - they all must be marked stale and attached to
2116 * the cluster buffer.
2117 */
2a30f36d 2118STATIC int
1da177e4
LT
2119xfs_ifree_cluster(
2120 xfs_inode_t *free_ip,
2121 xfs_trans_t *tp,
2122 xfs_ino_t inum)
2123{
2124 xfs_mount_t *mp = free_ip->i_mount;
2125 int blks_per_cluster;
2126 int nbufs;
2127 int ninodes;
5b257b4a 2128 int i, j;
1da177e4
LT
2129 xfs_daddr_t blkno;
2130 xfs_buf_t *bp;
5b257b4a 2131 xfs_inode_t *ip;
1da177e4
LT
2132 xfs_inode_log_item_t *iip;
2133 xfs_log_item_t *lip;
5017e97d 2134 struct xfs_perag *pag;
1da177e4 2135
5017e97d 2136 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
2137 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2138 blks_per_cluster = 1;
2139 ninodes = mp->m_sb.sb_inopblock;
2140 nbufs = XFS_IALLOC_BLOCKS(mp);
2141 } else {
2142 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2143 mp->m_sb.sb_blocksize;
2144 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2145 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2146 }
2147
1da177e4
LT
2148 for (j = 0; j < nbufs; j++, inum += ninodes) {
2149 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2150 XFS_INO_TO_AGBNO(mp, inum));
2151
5b257b4a
DC
2152 /*
2153 * We obtain and lock the backing buffer first in the process
2154 * here, as we have to ensure that any dirty inode that we
2155 * can't get the flush lock on is attached to the buffer.
2156 * If we scan the in-memory inodes first, then buffer IO can
2157 * complete before we get a lock on it, and hence we may fail
2158 * to mark all the active inodes on the buffer stale.
2159 */
2160 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2161 mp->m_bsize * blks_per_cluster,
2162 XBF_UNMAPPED);
5b257b4a 2163
2a30f36d
CS
2164 if (!bp)
2165 return ENOMEM;
b0f539de
DC
2166
2167 /*
2168 * This buffer may not have been correctly initialised as we
2169 * didn't read it from disk. That's not important because we are
2170 * only using to mark the buffer as stale in the log, and to
2171 * attach stale cached inodes on it. That means it will never be
2172 * dispatched for IO. If it is, we want to know about it, and we
2173 * want it to fail. We can acheive this by adding a write
2174 * verifier to the buffer.
2175 */
1813dd64 2176 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2177
5b257b4a
DC
2178 /*
2179 * Walk the inodes already attached to the buffer and mark them
2180 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2181 * in-memory inode walk can't lock them. By marking them all
2182 * stale first, we will not attempt to lock them in the loop
2183 * below as the XFS_ISTALE flag will be set.
5b257b4a 2184 */
adadbeef 2185 lip = bp->b_fspriv;
5b257b4a
DC
2186 while (lip) {
2187 if (lip->li_type == XFS_LI_INODE) {
2188 iip = (xfs_inode_log_item_t *)lip;
2189 ASSERT(iip->ili_logged == 1);
ca30b2a7 2190 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2191 xfs_trans_ail_copy_lsn(mp->m_ail,
2192 &iip->ili_flush_lsn,
2193 &iip->ili_item.li_lsn);
2194 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2195 }
2196 lip = lip->li_bio_list;
2197 }
1da177e4 2198
5b3eed75 2199
1da177e4 2200 /*
5b257b4a
DC
2201 * For each inode in memory attempt to add it to the inode
2202 * buffer and set it up for being staled on buffer IO
2203 * completion. This is safe as we've locked out tail pushing
2204 * and flushing by locking the buffer.
1da177e4 2205 *
5b257b4a
DC
2206 * We have already marked every inode that was part of a
2207 * transaction stale above, which means there is no point in
2208 * even trying to lock them.
1da177e4 2209 */
1da177e4 2210 for (i = 0; i < ninodes; i++) {
5b3eed75 2211retry:
1a3e8f3d 2212 rcu_read_lock();
da353b0d
DC
2213 ip = radix_tree_lookup(&pag->pag_ici_root,
2214 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2215
1a3e8f3d
DC
2216 /* Inode not in memory, nothing to do */
2217 if (!ip) {
2218 rcu_read_unlock();
1da177e4
LT
2219 continue;
2220 }
2221
1a3e8f3d
DC
2222 /*
2223 * because this is an RCU protected lookup, we could
2224 * find a recently freed or even reallocated inode
2225 * during the lookup. We need to check under the
2226 * i_flags_lock for a valid inode here. Skip it if it
2227 * is not valid, the wrong inode or stale.
2228 */
2229 spin_lock(&ip->i_flags_lock);
2230 if (ip->i_ino != inum + i ||
2231 __xfs_iflags_test(ip, XFS_ISTALE)) {
2232 spin_unlock(&ip->i_flags_lock);
2233 rcu_read_unlock();
2234 continue;
2235 }
2236 spin_unlock(&ip->i_flags_lock);
2237
5b3eed75
DC
2238 /*
2239 * Don't try to lock/unlock the current inode, but we
2240 * _cannot_ skip the other inodes that we did not find
2241 * in the list attached to the buffer and are not
2242 * already marked stale. If we can't lock it, back off
2243 * and retry.
2244 */
5b257b4a
DC
2245 if (ip != free_ip &&
2246 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2247 rcu_read_unlock();
5b3eed75
DC
2248 delay(1);
2249 goto retry;
1da177e4 2250 }
1a3e8f3d 2251 rcu_read_unlock();
1da177e4 2252
5b3eed75 2253 xfs_iflock(ip);
5b257b4a 2254 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2255
5b3eed75
DC
2256 /*
2257 * we don't need to attach clean inodes or those only
2258 * with unlogged changes (which we throw away, anyway).
2259 */
1da177e4 2260 iip = ip->i_itemp;
5b3eed75 2261 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2262 ASSERT(ip != free_ip);
1da177e4
LT
2263 xfs_ifunlock(ip);
2264 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2265 continue;
2266 }
2267
f5d8d5c4
CH
2268 iip->ili_last_fields = iip->ili_fields;
2269 iip->ili_fields = 0;
1da177e4 2270 iip->ili_logged = 1;
7b2e2a31
DC
2271 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2272 &iip->ili_item.li_lsn);
1da177e4 2273
ca30b2a7
CH
2274 xfs_buf_attach_iodone(bp, xfs_istale_done,
2275 &iip->ili_item);
5b257b4a
DC
2276
2277 if (ip != free_ip)
1da177e4 2278 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2279 }
2280
5b3eed75 2281 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2282 xfs_trans_binval(tp, bp);
2283 }
2284
5017e97d 2285 xfs_perag_put(pag);
2a30f36d 2286 return 0;
1da177e4
LT
2287}
2288
2289/*
2290 * This is called to return an inode to the inode free list.
2291 * The inode should already be truncated to 0 length and have
2292 * no pages associated with it. This routine also assumes that
2293 * the inode is already a part of the transaction.
2294 *
2295 * The on-disk copy of the inode will have been added to the list
2296 * of unlinked inodes in the AGI. We need to remove the inode from
2297 * that list atomically with respect to freeing it here.
2298 */
2299int
2300xfs_ifree(
2301 xfs_trans_t *tp,
2302 xfs_inode_t *ip,
2303 xfs_bmap_free_t *flist)
2304{
2305 int error;
2306 int delete;
2307 xfs_ino_t first_ino;
2308
579aa9ca 2309 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2310 ASSERT(ip->i_d.di_nlink == 0);
2311 ASSERT(ip->i_d.di_nextents == 0);
2312 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2313 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2314 ASSERT(ip->i_d.di_nblocks == 0);
2315
2316 /*
2317 * Pull the on-disk inode from the AGI unlinked list.
2318 */
2319 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2320 if (error)
1da177e4 2321 return error;
1da177e4
LT
2322
2323 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1baaed8f 2324 if (error)
1da177e4 2325 return error;
1baaed8f 2326
1da177e4
LT
2327 ip->i_d.di_mode = 0; /* mark incore inode as free */
2328 ip->i_d.di_flags = 0;
2329 ip->i_d.di_dmevmask = 0;
2330 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2331 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2332 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2333 /*
2334 * Bump the generation count so no one will be confused
2335 * by reincarnations of this inode.
2336 */
2337 ip->i_d.di_gen++;
2338 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2339
1baaed8f 2340 if (delete)
2a30f36d 2341 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4 2342
2a30f36d 2343 return error;
1da177e4
LT
2344}
2345
1da177e4 2346/*
60ec6783
CH
2347 * This is called to unpin an inode. The caller must have the inode locked
2348 * in at least shared mode so that the buffer cannot be subsequently pinned
2349 * once someone is waiting for it to be unpinned.
1da177e4 2350 */
60ec6783 2351static void
f392e631 2352xfs_iunpin(
60ec6783 2353 struct xfs_inode *ip)
1da177e4 2354{
579aa9ca 2355 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2356
4aaf15d1
DC
2357 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2358
a3f74ffb 2359 /* Give the log a push to start the unpinning I/O */
60ec6783 2360 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2361
a3f74ffb 2362}
1da177e4 2363
f392e631
CH
2364static void
2365__xfs_iunpin_wait(
2366 struct xfs_inode *ip)
2367{
2368 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2369 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2370
2371 xfs_iunpin(ip);
2372
2373 do {
2374 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2375 if (xfs_ipincount(ip))
2376 io_schedule();
2377 } while (xfs_ipincount(ip));
2378 finish_wait(wq, &wait.wait);
2379}
2380
777df5af 2381void
a3f74ffb 2382xfs_iunpin_wait(
60ec6783 2383 struct xfs_inode *ip)
a3f74ffb 2384{
f392e631
CH
2385 if (xfs_ipincount(ip))
2386 __xfs_iunpin_wait(ip);
1da177e4
LT
2387}
2388
27320369
DC
2389/*
2390 * Removing an inode from the namespace involves removing the directory entry
2391 * and dropping the link count on the inode. Removing the directory entry can
2392 * result in locking an AGF (directory blocks were freed) and removing a link
2393 * count can result in placing the inode on an unlinked list which results in
2394 * locking an AGI.
2395 *
2396 * The big problem here is that we have an ordering constraint on AGF and AGI
2397 * locking - inode allocation locks the AGI, then can allocate a new extent for
2398 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2399 * removes the inode from the unlinked list, requiring that we lock the AGI
2400 * first, and then freeing the inode can result in an inode chunk being freed
2401 * and hence freeing disk space requiring that we lock an AGF.
2402 *
2403 * Hence the ordering that is imposed by other parts of the code is AGI before
2404 * AGF. This means we cannot remove the directory entry before we drop the inode
2405 * reference count and put it on the unlinked list as this results in a lock
2406 * order of AGF then AGI, and this can deadlock against inode allocation and
2407 * freeing. Therefore we must drop the link counts before we remove the
2408 * directory entry.
2409 *
2410 * This is still safe from a transactional point of view - it is not until we
2411 * get to xfs_bmap_finish() that we have the possibility of multiple
2412 * transactions in this operation. Hence as long as we remove the directory
2413 * entry and drop the link count in the first transaction of the remove
2414 * operation, there are no transactional constraints on the ordering here.
2415 */
c24b5dfa
DC
2416int
2417xfs_remove(
2418 xfs_inode_t *dp,
2419 struct xfs_name *name,
2420 xfs_inode_t *ip)
2421{
2422 xfs_mount_t *mp = dp->i_mount;
2423 xfs_trans_t *tp = NULL;
2424 int is_dir = S_ISDIR(ip->i_d.di_mode);
2425 int error = 0;
2426 xfs_bmap_free_t free_list;
2427 xfs_fsblock_t first_block;
2428 int cancel_flags;
2429 int committed;
2430 int link_zero;
2431 uint resblks;
2432 uint log_count;
2433
2434 trace_xfs_remove(dp, name);
2435
2436 if (XFS_FORCED_SHUTDOWN(mp))
2437 return XFS_ERROR(EIO);
2438
2439 error = xfs_qm_dqattach(dp, 0);
2440 if (error)
2441 goto std_return;
2442
2443 error = xfs_qm_dqattach(ip, 0);
2444 if (error)
2445 goto std_return;
2446
2447 if (is_dir) {
2448 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2449 log_count = XFS_DEFAULT_LOG_COUNT;
2450 } else {
2451 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2452 log_count = XFS_REMOVE_LOG_COUNT;
2453 }
2454 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2455
2456 /*
2457 * We try to get the real space reservation first,
2458 * allowing for directory btree deletion(s) implying
2459 * possible bmap insert(s). If we can't get the space
2460 * reservation then we use 0 instead, and avoid the bmap
2461 * btree insert(s) in the directory code by, if the bmap
2462 * insert tries to happen, instead trimming the LAST
2463 * block from the directory.
2464 */
2465 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2466 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
c24b5dfa
DC
2467 if (error == ENOSPC) {
2468 resblks = 0;
3d3c8b52 2469 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2470 }
2471 if (error) {
2472 ASSERT(error != ENOSPC);
2473 cancel_flags = 0;
2474 goto out_trans_cancel;
2475 }
2476
2477 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2478
2479 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2480 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2481
2482 /*
2483 * If we're removing a directory perform some additional validation.
2484 */
27320369 2485 cancel_flags |= XFS_TRANS_ABORT;
c24b5dfa
DC
2486 if (is_dir) {
2487 ASSERT(ip->i_d.di_nlink >= 2);
2488 if (ip->i_d.di_nlink != 2) {
2489 error = XFS_ERROR(ENOTEMPTY);
2490 goto out_trans_cancel;
2491 }
2492 if (!xfs_dir_isempty(ip)) {
2493 error = XFS_ERROR(ENOTEMPTY);
2494 goto out_trans_cancel;
2495 }
c24b5dfa 2496
27320369 2497 /* Drop the link from ip's "..". */
c24b5dfa
DC
2498 error = xfs_droplink(tp, dp);
2499 if (error)
27320369 2500 goto out_trans_cancel;
c24b5dfa 2501
27320369 2502 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2503 error = xfs_droplink(tp, ip);
2504 if (error)
27320369 2505 goto out_trans_cancel;
c24b5dfa
DC
2506 } else {
2507 /*
2508 * When removing a non-directory we need to log the parent
2509 * inode here. For a directory this is done implicitly
2510 * by the xfs_droplink call for the ".." entry.
2511 */
2512 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2513 }
27320369 2514 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2515
27320369 2516 /* Drop the link from dp to ip. */
c24b5dfa
DC
2517 error = xfs_droplink(tp, ip);
2518 if (error)
27320369 2519 goto out_trans_cancel;
c24b5dfa 2520
27320369 2521 /* Determine if this is the last link while the inode is locked */
c24b5dfa
DC
2522 link_zero = (ip->i_d.di_nlink == 0);
2523
27320369
DC
2524 xfs_bmap_init(&free_list, &first_block);
2525 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2526 &first_block, &free_list, resblks);
2527 if (error) {
2528 ASSERT(error != ENOENT);
2529 goto out_bmap_cancel;
2530 }
2531
c24b5dfa
DC
2532 /*
2533 * If this is a synchronous mount, make sure that the
2534 * remove transaction goes to disk before returning to
2535 * the user.
2536 */
2537 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2538 xfs_trans_set_sync(tp);
2539
2540 error = xfs_bmap_finish(&tp, &free_list, &committed);
2541 if (error)
2542 goto out_bmap_cancel;
2543
2544 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2545 if (error)
2546 goto std_return;
2547
2548 /*
2549 * If we are using filestreams, kill the stream association.
2550 * If the file is still open it may get a new one but that
2551 * will get killed on last close in xfs_close() so we don't
2552 * have to worry about that.
2553 */
2554 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2555 xfs_filestream_deassociate(ip);
2556
2557 return 0;
2558
2559 out_bmap_cancel:
2560 xfs_bmap_cancel(&free_list);
c24b5dfa
DC
2561 out_trans_cancel:
2562 xfs_trans_cancel(tp, cancel_flags);
2563 std_return:
2564 return error;
2565}
2566
f6bba201
DC
2567/*
2568 * Enter all inodes for a rename transaction into a sorted array.
2569 */
2570STATIC void
2571xfs_sort_for_rename(
2572 xfs_inode_t *dp1, /* in: old (source) directory inode */
2573 xfs_inode_t *dp2, /* in: new (target) directory inode */
2574 xfs_inode_t *ip1, /* in: inode of old entry */
2575 xfs_inode_t *ip2, /* in: inode of new entry, if it
2576 already exists, NULL otherwise. */
2577 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2578 int *num_inodes) /* out: number of inodes in array */
2579{
2580 xfs_inode_t *temp;
2581 int i, j;
2582
2583 /*
2584 * i_tab contains a list of pointers to inodes. We initialize
2585 * the table here & we'll sort it. We will then use it to
2586 * order the acquisition of the inode locks.
2587 *
2588 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2589 */
2590 i_tab[0] = dp1;
2591 i_tab[1] = dp2;
2592 i_tab[2] = ip1;
2593 if (ip2) {
2594 *num_inodes = 4;
2595 i_tab[3] = ip2;
2596 } else {
2597 *num_inodes = 3;
2598 i_tab[3] = NULL;
2599 }
2600
2601 /*
2602 * Sort the elements via bubble sort. (Remember, there are at
2603 * most 4 elements to sort, so this is adequate.)
2604 */
2605 for (i = 0; i < *num_inodes; i++) {
2606 for (j = 1; j < *num_inodes; j++) {
2607 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2608 temp = i_tab[j];
2609 i_tab[j] = i_tab[j-1];
2610 i_tab[j-1] = temp;
2611 }
2612 }
2613 }
2614}
2615
2616/*
2617 * xfs_rename
2618 */
2619int
2620xfs_rename(
2621 xfs_inode_t *src_dp,
2622 struct xfs_name *src_name,
2623 xfs_inode_t *src_ip,
2624 xfs_inode_t *target_dp,
2625 struct xfs_name *target_name,
2626 xfs_inode_t *target_ip)
2627{
2628 xfs_trans_t *tp = NULL;
2629 xfs_mount_t *mp = src_dp->i_mount;
2630 int new_parent; /* moving to a new dir */
2631 int src_is_directory; /* src_name is a directory */
2632 int error;
2633 xfs_bmap_free_t free_list;
2634 xfs_fsblock_t first_block;
2635 int cancel_flags;
2636 int committed;
2637 xfs_inode_t *inodes[4];
2638 int spaceres;
2639 int num_inodes;
2640
2641 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2642
2643 new_parent = (src_dp != target_dp);
2644 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2645
2646 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2647 inodes, &num_inodes);
2648
2649 xfs_bmap_init(&free_list, &first_block);
2650 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2651 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2652 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2653 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
f6bba201
DC
2654 if (error == ENOSPC) {
2655 spaceres = 0;
3d3c8b52 2656 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201
DC
2657 }
2658 if (error) {
2659 xfs_trans_cancel(tp, 0);
2660 goto std_return;
2661 }
2662
2663 /*
2664 * Attach the dquots to the inodes
2665 */
2666 error = xfs_qm_vop_rename_dqattach(inodes);
2667 if (error) {
2668 xfs_trans_cancel(tp, cancel_flags);
2669 goto std_return;
2670 }
2671
2672 /*
2673 * Lock all the participating inodes. Depending upon whether
2674 * the target_name exists in the target directory, and
2675 * whether the target directory is the same as the source
2676 * directory, we can lock from 2 to 4 inodes.
2677 */
2678 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2679
2680 /*
2681 * Join all the inodes to the transaction. From this point on,
2682 * we can rely on either trans_commit or trans_cancel to unlock
2683 * them.
2684 */
2685 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2686 if (new_parent)
2687 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2688 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2689 if (target_ip)
2690 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2691
2692 /*
2693 * If we are using project inheritance, we only allow renames
2694 * into our tree when the project IDs are the same; else the
2695 * tree quota mechanism would be circumvented.
2696 */
2697 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2698 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2699 error = XFS_ERROR(EXDEV);
2700 goto error_return;
2701 }
2702
2703 /*
2704 * Set up the target.
2705 */
2706 if (target_ip == NULL) {
2707 /*
2708 * If there's no space reservation, check the entry will
2709 * fit before actually inserting it.
2710 */
2711 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2712 if (error)
2713 goto error_return;
2714 /*
2715 * If target does not exist and the rename crosses
2716 * directories, adjust the target directory link count
2717 * to account for the ".." reference from the new entry.
2718 */
2719 error = xfs_dir_createname(tp, target_dp, target_name,
2720 src_ip->i_ino, &first_block,
2721 &free_list, spaceres);
2722 if (error == ENOSPC)
2723 goto error_return;
2724 if (error)
2725 goto abort_return;
2726
2727 xfs_trans_ichgtime(tp, target_dp,
2728 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2729
2730 if (new_parent && src_is_directory) {
2731 error = xfs_bumplink(tp, target_dp);
2732 if (error)
2733 goto abort_return;
2734 }
2735 } else { /* target_ip != NULL */
2736 /*
2737 * If target exists and it's a directory, check that both
2738 * target and source are directories and that target can be
2739 * destroyed, or that neither is a directory.
2740 */
2741 if (S_ISDIR(target_ip->i_d.di_mode)) {
2742 /*
2743 * Make sure target dir is empty.
2744 */
2745 if (!(xfs_dir_isempty(target_ip)) ||
2746 (target_ip->i_d.di_nlink > 2)) {
2747 error = XFS_ERROR(EEXIST);
2748 goto error_return;
2749 }
2750 }
2751
2752 /*
2753 * Link the source inode under the target name.
2754 * If the source inode is a directory and we are moving
2755 * it across directories, its ".." entry will be
2756 * inconsistent until we replace that down below.
2757 *
2758 * In case there is already an entry with the same
2759 * name at the destination directory, remove it first.
2760 */
2761 error = xfs_dir_replace(tp, target_dp, target_name,
2762 src_ip->i_ino,
2763 &first_block, &free_list, spaceres);
2764 if (error)
2765 goto abort_return;
2766
2767 xfs_trans_ichgtime(tp, target_dp,
2768 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2769
2770 /*
2771 * Decrement the link count on the target since the target
2772 * dir no longer points to it.
2773 */
2774 error = xfs_droplink(tp, target_ip);
2775 if (error)
2776 goto abort_return;
2777
2778 if (src_is_directory) {
2779 /*
2780 * Drop the link from the old "." entry.
2781 */
2782 error = xfs_droplink(tp, target_ip);
2783 if (error)
2784 goto abort_return;
2785 }
2786 } /* target_ip != NULL */
2787
2788 /*
2789 * Remove the source.
2790 */
2791 if (new_parent && src_is_directory) {
2792 /*
2793 * Rewrite the ".." entry to point to the new
2794 * directory.
2795 */
2796 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2797 target_dp->i_ino,
2798 &first_block, &free_list, spaceres);
2799 ASSERT(error != EEXIST);
2800 if (error)
2801 goto abort_return;
2802 }
2803
2804 /*
2805 * We always want to hit the ctime on the source inode.
2806 *
2807 * This isn't strictly required by the standards since the source
2808 * inode isn't really being changed, but old unix file systems did
2809 * it and some incremental backup programs won't work without it.
2810 */
2811 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2812 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2813
2814 /*
2815 * Adjust the link count on src_dp. This is necessary when
2816 * renaming a directory, either within one parent when
2817 * the target existed, or across two parent directories.
2818 */
2819 if (src_is_directory && (new_parent || target_ip != NULL)) {
2820
2821 /*
2822 * Decrement link count on src_directory since the
2823 * entry that's moved no longer points to it.
2824 */
2825 error = xfs_droplink(tp, src_dp);
2826 if (error)
2827 goto abort_return;
2828 }
2829
2830 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2831 &first_block, &free_list, spaceres);
2832 if (error)
2833 goto abort_return;
2834
2835 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2836 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2837 if (new_parent)
2838 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2839
2840 /*
2841 * If this is a synchronous mount, make sure that the
2842 * rename transaction goes to disk before returning to
2843 * the user.
2844 */
2845 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2846 xfs_trans_set_sync(tp);
2847 }
2848
2849 error = xfs_bmap_finish(&tp, &free_list, &committed);
2850 if (error) {
2851 xfs_bmap_cancel(&free_list);
2852 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2853 XFS_TRANS_ABORT));
2854 goto std_return;
2855 }
2856
2857 /*
2858 * trans_commit will unlock src_ip, target_ip & decrement
2859 * the vnode references.
2860 */
2861 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2862
2863 abort_return:
2864 cancel_flags |= XFS_TRANS_ABORT;
2865 error_return:
2866 xfs_bmap_cancel(&free_list);
2867 xfs_trans_cancel(tp, cancel_flags);
2868 std_return:
2869 return error;
2870}
2871
5c4d97d0
DC
2872STATIC int
2873xfs_iflush_cluster(
2874 xfs_inode_t *ip,
2875 xfs_buf_t *bp)
1da177e4 2876{
5c4d97d0
DC
2877 xfs_mount_t *mp = ip->i_mount;
2878 struct xfs_perag *pag;
2879 unsigned long first_index, mask;
2880 unsigned long inodes_per_cluster;
2881 int ilist_size;
2882 xfs_inode_t **ilist;
2883 xfs_inode_t *iq;
2884 int nr_found;
2885 int clcount = 0;
2886 int bufwasdelwri;
1da177e4 2887 int i;
1da177e4 2888
5c4d97d0 2889 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 2890
5c4d97d0
DC
2891 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2892 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2893 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2894 if (!ilist)
2895 goto out_put;
1da177e4 2896
5c4d97d0
DC
2897 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2898 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2899 rcu_read_lock();
2900 /* really need a gang lookup range call here */
2901 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2902 first_index, inodes_per_cluster);
2903 if (nr_found == 0)
2904 goto out_free;
2905
2906 for (i = 0; i < nr_found; i++) {
2907 iq = ilist[i];
2908 if (iq == ip)
bad55843 2909 continue;
1a3e8f3d
DC
2910
2911 /*
2912 * because this is an RCU protected lookup, we could find a
2913 * recently freed or even reallocated inode during the lookup.
2914 * We need to check under the i_flags_lock for a valid inode
2915 * here. Skip it if it is not valid or the wrong inode.
2916 */
2917 spin_lock(&ip->i_flags_lock);
2918 if (!ip->i_ino ||
2919 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2920 spin_unlock(&ip->i_flags_lock);
2921 continue;
2922 }
2923 spin_unlock(&ip->i_flags_lock);
2924
bad55843
DC
2925 /*
2926 * Do an un-protected check to see if the inode is dirty and
2927 * is a candidate for flushing. These checks will be repeated
2928 * later after the appropriate locks are acquired.
2929 */
33540408 2930 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2931 continue;
bad55843
DC
2932
2933 /*
2934 * Try to get locks. If any are unavailable or it is pinned,
2935 * then this inode cannot be flushed and is skipped.
2936 */
2937
2938 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2939 continue;
2940 if (!xfs_iflock_nowait(iq)) {
2941 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2942 continue;
2943 }
2944 if (xfs_ipincount(iq)) {
2945 xfs_ifunlock(iq);
2946 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2947 continue;
2948 }
2949
2950 /*
2951 * arriving here means that this inode can be flushed. First
2952 * re-check that it's dirty before flushing.
2953 */
33540408
DC
2954 if (!xfs_inode_clean(iq)) {
2955 int error;
bad55843
DC
2956 error = xfs_iflush_int(iq, bp);
2957 if (error) {
2958 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2959 goto cluster_corrupt_out;
2960 }
2961 clcount++;
2962 } else {
2963 xfs_ifunlock(iq);
2964 }
2965 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2966 }
2967
2968 if (clcount) {
2969 XFS_STATS_INC(xs_icluster_flushcnt);
2970 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2971 }
2972
2973out_free:
1a3e8f3d 2974 rcu_read_unlock();
f0e2d93c 2975 kmem_free(ilist);
44b56e0a
DC
2976out_put:
2977 xfs_perag_put(pag);
bad55843
DC
2978 return 0;
2979
2980
2981cluster_corrupt_out:
2982 /*
2983 * Corruption detected in the clustering loop. Invalidate the
2984 * inode buffer and shut down the filesystem.
2985 */
1a3e8f3d 2986 rcu_read_unlock();
bad55843 2987 /*
43ff2122 2988 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
2989 * brelse can handle it with no problems. If not, shut down the
2990 * filesystem before releasing the buffer.
2991 */
43ff2122 2992 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
2993 if (bufwasdelwri)
2994 xfs_buf_relse(bp);
2995
2996 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2997
2998 if (!bufwasdelwri) {
2999 /*
3000 * Just like incore_relse: if we have b_iodone functions,
3001 * mark the buffer as an error and call them. Otherwise
3002 * mark it as stale and brelse.
3003 */
cb669ca5 3004 if (bp->b_iodone) {
bad55843 3005 XFS_BUF_UNDONE(bp);
c867cb61 3006 xfs_buf_stale(bp);
5a52c2a5 3007 xfs_buf_ioerror(bp, EIO);
1a1a3e97 3008 xfs_buf_ioend(bp, 0);
bad55843 3009 } else {
c867cb61 3010 xfs_buf_stale(bp);
bad55843
DC
3011 xfs_buf_relse(bp);
3012 }
3013 }
3014
3015 /*
3016 * Unlocks the flush lock
3017 */
04913fdd 3018 xfs_iflush_abort(iq, false);
f0e2d93c 3019 kmem_free(ilist);
44b56e0a 3020 xfs_perag_put(pag);
bad55843
DC
3021 return XFS_ERROR(EFSCORRUPTED);
3022}
3023
1da177e4 3024/*
4c46819a
CH
3025 * Flush dirty inode metadata into the backing buffer.
3026 *
3027 * The caller must have the inode lock and the inode flush lock held. The
3028 * inode lock will still be held upon return to the caller, and the inode
3029 * flush lock will be released after the inode has reached the disk.
3030 *
3031 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3032 */
3033int
3034xfs_iflush(
4c46819a
CH
3035 struct xfs_inode *ip,
3036 struct xfs_buf **bpp)
1da177e4 3037{
4c46819a
CH
3038 struct xfs_mount *mp = ip->i_mount;
3039 struct xfs_buf *bp;
3040 struct xfs_dinode *dip;
1da177e4 3041 int error;
1da177e4
LT
3042
3043 XFS_STATS_INC(xs_iflush_count);
3044
579aa9ca 3045 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3046 ASSERT(xfs_isiflocked(ip));
1da177e4 3047 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3048 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3049
4c46819a 3050 *bpp = NULL;
1da177e4 3051
1da177e4
LT
3052 xfs_iunpin_wait(ip);
3053
4b6a4688
DC
3054 /*
3055 * For stale inodes we cannot rely on the backing buffer remaining
3056 * stale in cache for the remaining life of the stale inode and so
475ee413 3057 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3058 * inodes below. We have to check this after ensuring the inode is
3059 * unpinned so that it is safe to reclaim the stale inode after the
3060 * flush call.
3061 */
3062 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3063 xfs_ifunlock(ip);
3064 return 0;
3065 }
3066
1da177e4
LT
3067 /*
3068 * This may have been unpinned because the filesystem is shutting
3069 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3070 * to disk, because the log record didn't make it to disk.
3071 *
3072 * We also have to remove the log item from the AIL in this case,
3073 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3074 */
3075 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
3076 error = XFS_ERROR(EIO);
3077 goto abort_out;
1da177e4
LT
3078 }
3079
a3f74ffb
DC
3080 /*
3081 * Get the buffer containing the on-disk inode.
3082 */
475ee413
CH
3083 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3084 0);
a3f74ffb
DC
3085 if (error || !bp) {
3086 xfs_ifunlock(ip);
3087 return error;
3088 }
3089
1da177e4
LT
3090 /*
3091 * First flush out the inode that xfs_iflush was called with.
3092 */
3093 error = xfs_iflush_int(ip, bp);
bad55843 3094 if (error)
1da177e4 3095 goto corrupt_out;
1da177e4 3096
a3f74ffb
DC
3097 /*
3098 * If the buffer is pinned then push on the log now so we won't
3099 * get stuck waiting in the write for too long.
3100 */
811e64c7 3101 if (xfs_buf_ispinned(bp))
a14a348b 3102 xfs_log_force(mp, 0);
a3f74ffb 3103
1da177e4
LT
3104 /*
3105 * inode clustering:
3106 * see if other inodes can be gathered into this write
3107 */
bad55843
DC
3108 error = xfs_iflush_cluster(ip, bp);
3109 if (error)
3110 goto cluster_corrupt_out;
1da177e4 3111
4c46819a
CH
3112 *bpp = bp;
3113 return 0;
1da177e4
LT
3114
3115corrupt_out:
3116 xfs_buf_relse(bp);
7d04a335 3117 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3118cluster_corrupt_out:
32ce90a4
CH
3119 error = XFS_ERROR(EFSCORRUPTED);
3120abort_out:
1da177e4
LT
3121 /*
3122 * Unlocks the flush lock
3123 */
04913fdd 3124 xfs_iflush_abort(ip, false);
32ce90a4 3125 return error;
1da177e4
LT
3126}
3127
1da177e4
LT
3128STATIC int
3129xfs_iflush_int(
93848a99
CH
3130 struct xfs_inode *ip,
3131 struct xfs_buf *bp)
1da177e4 3132{
93848a99
CH
3133 struct xfs_inode_log_item *iip = ip->i_itemp;
3134 struct xfs_dinode *dip;
3135 struct xfs_mount *mp = ip->i_mount;
1da177e4 3136
579aa9ca 3137 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3138 ASSERT(xfs_isiflocked(ip));
1da177e4 3139 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3140 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3141 ASSERT(iip != NULL && iip->ili_fields != 0);
1da177e4 3142
1da177e4 3143 /* set *dip = inode's place in the buffer */
92bfc6e7 3144 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3145
69ef921b 3146 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3147 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3148 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3149 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3150 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3151 goto corrupt_out;
3152 }
3153 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3154 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3155 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3156 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3157 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3158 goto corrupt_out;
3159 }
abbede1b 3160 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3161 if (XFS_TEST_ERROR(
3162 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3163 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3164 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3165 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3166 "%s: Bad regular inode %Lu, ptr 0x%p",
3167 __func__, ip->i_ino, ip);
1da177e4
LT
3168 goto corrupt_out;
3169 }
abbede1b 3170 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3171 if (XFS_TEST_ERROR(
3172 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3173 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3174 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3175 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3176 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3177 "%s: Bad directory inode %Lu, ptr 0x%p",
3178 __func__, ip->i_ino, ip);
1da177e4
LT
3179 goto corrupt_out;
3180 }
3181 }
3182 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3183 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3184 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3185 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3186 "%s: detected corrupt incore inode %Lu, "
3187 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3188 __func__, ip->i_ino,
1da177e4 3189 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3190 ip->i_d.di_nblocks, ip);
1da177e4
LT
3191 goto corrupt_out;
3192 }
3193 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3194 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3195 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3196 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3197 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3198 goto corrupt_out;
3199 }
e60896d8 3200
1da177e4 3201 /*
e60896d8
DC
3202 * Inode item log recovery for v1/v2 inodes are dependent on the
3203 * di_flushiter count for correct sequencing. We bump the flush
3204 * iteration count so we can detect flushes which postdate a log record
3205 * during recovery. This is redundant as we now log every change and
3206 * hence this can't happen but we need to still do it to ensure
3207 * backwards compatibility with old kernels that predate logging all
3208 * inode changes.
1da177e4 3209 */
e60896d8
DC
3210 if (ip->i_d.di_version < 3)
3211 ip->i_d.di_flushiter++;
1da177e4
LT
3212
3213 /*
3214 * Copy the dirty parts of the inode into the on-disk
3215 * inode. We always copy out the core of the inode,
3216 * because if the inode is dirty at all the core must
3217 * be.
3218 */
81591fe2 3219 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3220
3221 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3222 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3223 ip->i_d.di_flushiter = 0;
3224
3225 /*
3226 * If this is really an old format inode and the superblock version
3227 * has not been updated to support only new format inodes, then
3228 * convert back to the old inode format. If the superblock version
3229 * has been updated, then make the conversion permanent.
3230 */
51ce16d5
CH
3231 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3232 if (ip->i_d.di_version == 1) {
62118709 3233 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3234 /*
3235 * Convert it back.
3236 */
3237 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 3238 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3239 } else {
3240 /*
3241 * The superblock version has already been bumped,
3242 * so just make the conversion to the new inode
3243 * format permanent.
3244 */
51ce16d5
CH
3245 ip->i_d.di_version = 2;
3246 dip->di_version = 2;
1da177e4 3247 ip->i_d.di_onlink = 0;
81591fe2 3248 dip->di_onlink = 0;
1da177e4 3249 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
3250 memset(&(dip->di_pad[0]), 0,
3251 sizeof(dip->di_pad));
6743099c 3252 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
3253 }
3254 }
3255
e4ac967b
DC
3256 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3257 if (XFS_IFORK_Q(ip))
3258 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3259 xfs_inobp_check(mp, bp);
3260
3261 /*
f5d8d5c4
CH
3262 * We've recorded everything logged in the inode, so we'd like to clear
3263 * the ili_fields bits so we don't log and flush things unnecessarily.
3264 * However, we can't stop logging all this information until the data
3265 * we've copied into the disk buffer is written to disk. If we did we
3266 * might overwrite the copy of the inode in the log with all the data
3267 * after re-logging only part of it, and in the face of a crash we
3268 * wouldn't have all the data we need to recover.
1da177e4 3269 *
f5d8d5c4
CH
3270 * What we do is move the bits to the ili_last_fields field. When
3271 * logging the inode, these bits are moved back to the ili_fields field.
3272 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3273 * know that the information those bits represent is permanently on
3274 * disk. As long as the flush completes before the inode is logged
3275 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3276 *
f5d8d5c4
CH
3277 * We can play with the ili_fields bits here, because the inode lock
3278 * must be held exclusively in order to set bits there and the flush
3279 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3280 * done routine can tell whether or not to look in the AIL. Also, store
3281 * the current LSN of the inode so that we can tell whether the item has
3282 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3283 * need the AIL lock, because it is a 64 bit value that cannot be read
3284 * atomically.
1da177e4 3285 */
93848a99
CH
3286 iip->ili_last_fields = iip->ili_fields;
3287 iip->ili_fields = 0;
3288 iip->ili_logged = 1;
1da177e4 3289
93848a99
CH
3290 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3291 &iip->ili_item.li_lsn);
1da177e4 3292
93848a99
CH
3293 /*
3294 * Attach the function xfs_iflush_done to the inode's
3295 * buffer. This will remove the inode from the AIL
3296 * and unlock the inode's flush lock when the inode is
3297 * completely written to disk.
3298 */
3299 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3300
93848a99
CH
3301 /* update the lsn in the on disk inode if required */
3302 if (ip->i_d.di_version == 3)
3303 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3304
3305 /* generate the checksum. */
3306 xfs_dinode_calc_crc(mp, dip);
1da177e4 3307
93848a99
CH
3308 ASSERT(bp->b_fspriv != NULL);
3309 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3310 return 0;
3311
3312corrupt_out:
3313 return XFS_ERROR(EFSCORRUPTED);
3314}
This page took 0.785613 seconds and 5 git commands to generate.