xfs: remove xfs_iget.c
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
1da177e4 23#include "xfs_log.h"
a844f451 24#include "xfs_inum.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4 29#include "xfs_mount.h"
1da177e4 30#include "xfs_bmap_btree.h"
a844f451 31#include "xfs_alloc_btree.h"
1da177e4 32#include "xfs_ialloc_btree.h"
a844f451 33#include "xfs_attr_sf.h"
1da177e4 34#include "xfs_dinode.h"
1da177e4 35#include "xfs_inode.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451
NS
37#include "xfs_inode_item.h"
38#include "xfs_btree.h"
39#include "xfs_alloc.h"
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
1da177e4 42#include "xfs_error.h"
1da177e4 43#include "xfs_utils.h"
1da177e4 44#include "xfs_quota.h"
2a82b8be 45#include "xfs_filestream.h"
739bfb2a 46#include "xfs_vnodeops.h"
0b1b213f 47#include "xfs_trace.h"
33479e05 48#include "xfs_icache.h"
1da177e4 49
1da177e4
LT
50kmem_zone_t *xfs_ifork_zone;
51kmem_zone_t *xfs_inode_zone;
1da177e4
LT
52
53/*
8f04c47a 54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
55 * freed from a file in a single transaction.
56 */
57#define XFS_ITRUNC_MAX_EXTENTS 2
58
59STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
63
2a0ec1d9
DC
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
fa96acad
DC
78/*
79 * This is a wrapper routine around the xfs_ilock() routine used to centralize
80 * some grungy code. It is used in places that wish to lock the inode solely
81 * for reading the extents. The reason these places can't just call
82 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
83 * extents from disk for a file in b-tree format. If the inode is in b-tree
84 * format, then we need to lock the inode exclusively until the extents are read
85 * in. Locking it exclusively all the time would limit our parallelism
86 * unnecessarily, though. What we do instead is check to see if the extents
87 * have been read in yet, and only lock the inode exclusively if they have not.
88 *
89 * The function returns a value which should be given to the corresponding
90 * xfs_iunlock_map_shared(). This value is the mode in which the lock was
91 * actually taken.
92 */
93uint
94xfs_ilock_map_shared(
95 xfs_inode_t *ip)
96{
97 uint lock_mode;
98
99 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
100 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
101 lock_mode = XFS_ILOCK_EXCL;
102 } else {
103 lock_mode = XFS_ILOCK_SHARED;
104 }
105
106 xfs_ilock(ip, lock_mode);
107
108 return lock_mode;
109}
110
111/*
112 * This is simply the unlock routine to go with xfs_ilock_map_shared().
113 * All it does is call xfs_iunlock() with the given lock_mode.
114 */
115void
116xfs_iunlock_map_shared(
117 xfs_inode_t *ip,
118 unsigned int lock_mode)
119{
120 xfs_iunlock(ip, lock_mode);
121}
122
123/*
124 * The xfs inode contains 2 locks: a multi-reader lock called the
125 * i_iolock and a multi-reader lock called the i_lock. This routine
126 * allows either or both of the locks to be obtained.
127 *
128 * The 2 locks should always be ordered so that the IO lock is
129 * obtained first in order to prevent deadlock.
130 *
131 * ip -- the inode being locked
132 * lock_flags -- this parameter indicates the inode's locks
133 * to be locked. It can be:
134 * XFS_IOLOCK_SHARED,
135 * XFS_IOLOCK_EXCL,
136 * XFS_ILOCK_SHARED,
137 * XFS_ILOCK_EXCL,
138 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
139 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
140 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
141 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
142 */
143void
144xfs_ilock(
145 xfs_inode_t *ip,
146 uint lock_flags)
147{
148 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
149
150 /*
151 * You can't set both SHARED and EXCL for the same lock,
152 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
153 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
154 */
155 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
156 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
157 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
158 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
159 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
160
161 if (lock_flags & XFS_IOLOCK_EXCL)
162 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
163 else if (lock_flags & XFS_IOLOCK_SHARED)
164 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
165
166 if (lock_flags & XFS_ILOCK_EXCL)
167 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168 else if (lock_flags & XFS_ILOCK_SHARED)
169 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
170}
171
172/*
173 * This is just like xfs_ilock(), except that the caller
174 * is guaranteed not to sleep. It returns 1 if it gets
175 * the requested locks and 0 otherwise. If the IO lock is
176 * obtained but the inode lock cannot be, then the IO lock
177 * is dropped before returning.
178 *
179 * ip -- the inode being locked
180 * lock_flags -- this parameter indicates the inode's locks to be
181 * to be locked. See the comment for xfs_ilock() for a list
182 * of valid values.
183 */
184int
185xfs_ilock_nowait(
186 xfs_inode_t *ip,
187 uint lock_flags)
188{
189 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
190
191 /*
192 * You can't set both SHARED and EXCL for the same lock,
193 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
194 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
195 */
196 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
197 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
198 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
199 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
200 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
201
202 if (lock_flags & XFS_IOLOCK_EXCL) {
203 if (!mrtryupdate(&ip->i_iolock))
204 goto out;
205 } else if (lock_flags & XFS_IOLOCK_SHARED) {
206 if (!mrtryaccess(&ip->i_iolock))
207 goto out;
208 }
209 if (lock_flags & XFS_ILOCK_EXCL) {
210 if (!mrtryupdate(&ip->i_lock))
211 goto out_undo_iolock;
212 } else if (lock_flags & XFS_ILOCK_SHARED) {
213 if (!mrtryaccess(&ip->i_lock))
214 goto out_undo_iolock;
215 }
216 return 1;
217
218 out_undo_iolock:
219 if (lock_flags & XFS_IOLOCK_EXCL)
220 mrunlock_excl(&ip->i_iolock);
221 else if (lock_flags & XFS_IOLOCK_SHARED)
222 mrunlock_shared(&ip->i_iolock);
223 out:
224 return 0;
225}
226
227/*
228 * xfs_iunlock() is used to drop the inode locks acquired with
229 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
230 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
231 * that we know which locks to drop.
232 *
233 * ip -- the inode being unlocked
234 * lock_flags -- this parameter indicates the inode's locks to be
235 * to be unlocked. See the comment for xfs_ilock() for a list
236 * of valid values for this parameter.
237 *
238 */
239void
240xfs_iunlock(
241 xfs_inode_t *ip,
242 uint lock_flags)
243{
244 /*
245 * You can't set both SHARED and EXCL for the same lock,
246 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
247 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
248 */
249 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
250 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
251 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
252 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
253 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
254 ASSERT(lock_flags != 0);
255
256 if (lock_flags & XFS_IOLOCK_EXCL)
257 mrunlock_excl(&ip->i_iolock);
258 else if (lock_flags & XFS_IOLOCK_SHARED)
259 mrunlock_shared(&ip->i_iolock);
260
261 if (lock_flags & XFS_ILOCK_EXCL)
262 mrunlock_excl(&ip->i_lock);
263 else if (lock_flags & XFS_ILOCK_SHARED)
264 mrunlock_shared(&ip->i_lock);
265
266 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
267}
268
269/*
270 * give up write locks. the i/o lock cannot be held nested
271 * if it is being demoted.
272 */
273void
274xfs_ilock_demote(
275 xfs_inode_t *ip,
276 uint lock_flags)
277{
278 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
279 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
280
281 if (lock_flags & XFS_ILOCK_EXCL)
282 mrdemote(&ip->i_lock);
283 if (lock_flags & XFS_IOLOCK_EXCL)
284 mrdemote(&ip->i_iolock);
285
286 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
287}
288
289#ifdef DEBUG
290int
291xfs_isilocked(
292 xfs_inode_t *ip,
293 uint lock_flags)
294{
295 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
296 if (!(lock_flags & XFS_ILOCK_SHARED))
297 return !!ip->i_lock.mr_writer;
298 return rwsem_is_locked(&ip->i_lock.mr_lock);
299 }
300
301 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
302 if (!(lock_flags & XFS_IOLOCK_SHARED))
303 return !!ip->i_iolock.mr_writer;
304 return rwsem_is_locked(&ip->i_iolock.mr_lock);
305 }
306
307 ASSERT(0);
308 return 0;
309}
310#endif
311
312void
313__xfs_iflock(
314 struct xfs_inode *ip)
315{
316 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
317 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
318
319 do {
320 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
321 if (xfs_isiflocked(ip))
322 io_schedule();
323 } while (!xfs_iflock_nowait(ip));
324
325 finish_wait(wq, &wait.wait);
326}
327
1da177e4
LT
328#ifdef DEBUG
329/*
330 * Make sure that the extents in the given memory buffer
331 * are valid.
332 */
333STATIC void
334xfs_validate_extents(
4eea22f0 335 xfs_ifork_t *ifp,
1da177e4 336 int nrecs,
1da177e4
LT
337 xfs_exntfmt_t fmt)
338{
339 xfs_bmbt_irec_t irec;
a6f64d4a 340 xfs_bmbt_rec_host_t rec;
1da177e4
LT
341 int i;
342
343 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
344 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
345 rec.l0 = get_unaligned(&ep->l0);
346 rec.l1 = get_unaligned(&ep->l1);
347 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
348 if (fmt == XFS_EXTFMT_NOSTATE)
349 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
350 }
351}
352#else /* DEBUG */
a6f64d4a 353#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
354#endif /* DEBUG */
355
356/*
357 * Check that none of the inode's in the buffer have a next
358 * unlinked field of 0.
359 */
360#if defined(DEBUG)
361void
362xfs_inobp_check(
363 xfs_mount_t *mp,
364 xfs_buf_t *bp)
365{
366 int i;
367 int j;
368 xfs_dinode_t *dip;
369
370 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
371
372 for (i = 0; i < j; i++) {
373 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
374 i * mp->m_sb.sb_inodesize);
375 if (!dip->di_next_unlinked) {
53487786
DC
376 xfs_alert(mp,
377 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
1da177e4
LT
378 bp);
379 ASSERT(dip->di_next_unlinked);
380 }
381 }
382}
383#endif
384
4ae29b43 385/*
475ee413
CH
386 * This routine is called to map an inode to the buffer containing the on-disk
387 * version of the inode. It returns a pointer to the buffer containing the
388 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
389 * pointer to the on-disk inode within that buffer.
390 *
391 * If a non-zero error is returned, then the contents of bpp and dipp are
392 * undefined.
4ae29b43 393 */
475ee413 394int
4ae29b43 395xfs_imap_to_bp(
475ee413
CH
396 struct xfs_mount *mp,
397 struct xfs_trans *tp,
398 struct xfs_imap *imap,
399 struct xfs_dinode **dipp,
400 struct xfs_buf **bpp,
401 uint buf_flags,
402 uint iget_flags)
4ae29b43 403{
475ee413
CH
404 struct xfs_buf *bp;
405 int error;
406 int i;
407 int ni;
4ae29b43 408
611c9946 409 buf_flags |= XBF_UNMAPPED;
4ae29b43 410 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 411 (int)imap->im_len, buf_flags, &bp);
4ae29b43 412 if (error) {
a3f74ffb 413 if (error != EAGAIN) {
0b932ccc
DC
414 xfs_warn(mp,
415 "%s: xfs_trans_read_buf() returned error %d.",
416 __func__, error);
a3f74ffb 417 } else {
0cadda1c 418 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb 419 }
4ae29b43
DC
420 return error;
421 }
422
423 /*
424 * Validate the magic number and version of every inode in the buffer
425 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
426 */
427#ifdef DEBUG
428 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
429#else /* usual case */
430 ni = 1;
431#endif
432
433 for (i = 0; i < ni; i++) {
434 int di_ok;
435 xfs_dinode_t *dip;
436
437 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
438 (i << mp->m_sb.sb_inodelog));
69ef921b 439 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
81591fe2 440 XFS_DINODE_GOOD_VERSION(dip->di_version);
4ae29b43
DC
441 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
442 XFS_ERRTAG_ITOBP_INOTOBP,
443 XFS_RANDOM_ITOBP_INOTOBP))) {
1920779e 444 if (iget_flags & XFS_IGET_UNTRUSTED) {
4ae29b43
DC
445 xfs_trans_brelse(tp, bp);
446 return XFS_ERROR(EINVAL);
447 }
475ee413
CH
448 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
449 mp, dip);
4ae29b43 450#ifdef DEBUG
0b932ccc
DC
451 xfs_emerg(mp,
452 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
4ae29b43 453 (unsigned long long)imap->im_blkno, i,
81591fe2 454 be16_to_cpu(dip->di_magic));
0b932ccc 455 ASSERT(0);
4ae29b43
DC
456#endif
457 xfs_trans_brelse(tp, bp);
458 return XFS_ERROR(EFSCORRUPTED);
459 }
460 }
461
462 xfs_inobp_check(mp, bp);
475ee413 463
4ae29b43 464 *bpp = bp;
475ee413 465 *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
4ae29b43
DC
466 return 0;
467}
468
1da177e4
LT
469/*
470 * Move inode type and inode format specific information from the
471 * on-disk inode to the in-core inode. For fifos, devs, and sockets
472 * this means set if_rdev to the proper value. For files, directories,
473 * and symlinks this means to bring in the in-line data or extent
474 * pointers. For a file in B-tree format, only the root is immediately
475 * brought in-core. The rest will be in-lined in if_extents when it
476 * is first referenced (see xfs_iread_extents()).
477 */
478STATIC int
479xfs_iformat(
480 xfs_inode_t *ip,
481 xfs_dinode_t *dip)
482{
483 xfs_attr_shortform_t *atp;
484 int size;
8096b1eb 485 int error = 0;
1da177e4 486 xfs_fsize_t di_size;
1da177e4 487
81591fe2
CH
488 if (unlikely(be32_to_cpu(dip->di_nextents) +
489 be16_to_cpu(dip->di_anextents) >
490 be64_to_cpu(dip->di_nblocks))) {
65333b4c 491 xfs_warn(ip->i_mount,
3762ec6b 492 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 493 (unsigned long long)ip->i_ino,
81591fe2
CH
494 (int)(be32_to_cpu(dip->di_nextents) +
495 be16_to_cpu(dip->di_anextents)),
1da177e4 496 (unsigned long long)
81591fe2 497 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
498 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
499 ip->i_mount, dip);
500 return XFS_ERROR(EFSCORRUPTED);
501 }
502
81591fe2 503 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
65333b4c 504 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 505 (unsigned long long)ip->i_ino,
81591fe2 506 dip->di_forkoff);
1da177e4
LT
507 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
508 ip->i_mount, dip);
509 return XFS_ERROR(EFSCORRUPTED);
510 }
511
b89d4208
CH
512 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
513 !ip->i_mount->m_rtdev_targp)) {
65333b4c 514 xfs_warn(ip->i_mount,
b89d4208
CH
515 "corrupt dinode %Lu, has realtime flag set.",
516 ip->i_ino);
517 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
518 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
519 return XFS_ERROR(EFSCORRUPTED);
520 }
521
1da177e4
LT
522 switch (ip->i_d.di_mode & S_IFMT) {
523 case S_IFIFO:
524 case S_IFCHR:
525 case S_IFBLK:
526 case S_IFSOCK:
81591fe2 527 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
528 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
529 ip->i_mount, dip);
530 return XFS_ERROR(EFSCORRUPTED);
531 }
532 ip->i_d.di_size = 0;
81591fe2 533 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
534 break;
535
536 case S_IFREG:
537 case S_IFLNK:
538 case S_IFDIR:
81591fe2 539 switch (dip->di_format) {
1da177e4
LT
540 case XFS_DINODE_FMT_LOCAL:
541 /*
542 * no local regular files yet
543 */
abbede1b 544 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
65333b4c
DC
545 xfs_warn(ip->i_mount,
546 "corrupt inode %Lu (local format for regular file).",
1da177e4
LT
547 (unsigned long long) ip->i_ino);
548 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
549 XFS_ERRLEVEL_LOW,
550 ip->i_mount, dip);
551 return XFS_ERROR(EFSCORRUPTED);
552 }
553
81591fe2 554 di_size = be64_to_cpu(dip->di_size);
1da177e4 555 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
65333b4c
DC
556 xfs_warn(ip->i_mount,
557 "corrupt inode %Lu (bad size %Ld for local inode).",
1da177e4
LT
558 (unsigned long long) ip->i_ino,
559 (long long) di_size);
560 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
561 XFS_ERRLEVEL_LOW,
562 ip->i_mount, dip);
563 return XFS_ERROR(EFSCORRUPTED);
564 }
565
566 size = (int)di_size;
567 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
568 break;
569 case XFS_DINODE_FMT_EXTENTS:
570 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
571 break;
572 case XFS_DINODE_FMT_BTREE:
573 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
574 break;
575 default:
576 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
577 ip->i_mount);
578 return XFS_ERROR(EFSCORRUPTED);
579 }
580 break;
581
582 default:
583 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
584 return XFS_ERROR(EFSCORRUPTED);
585 }
586 if (error) {
587 return error;
588 }
589 if (!XFS_DFORK_Q(dip))
590 return 0;
8096b1eb 591
1da177e4 592 ASSERT(ip->i_afp == NULL);
4a7edddc 593 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
8096b1eb 594
81591fe2 595 switch (dip->di_aformat) {
1da177e4
LT
596 case XFS_DINODE_FMT_LOCAL:
597 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 598 size = be16_to_cpu(atp->hdr.totsize);
2809f76a
CH
599
600 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
65333b4c
DC
601 xfs_warn(ip->i_mount,
602 "corrupt inode %Lu (bad attr fork size %Ld).",
2809f76a
CH
603 (unsigned long long) ip->i_ino,
604 (long long) size);
605 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
606 XFS_ERRLEVEL_LOW,
607 ip->i_mount, dip);
608 return XFS_ERROR(EFSCORRUPTED);
609 }
610
1da177e4
LT
611 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
612 break;
613 case XFS_DINODE_FMT_EXTENTS:
614 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
615 break;
616 case XFS_DINODE_FMT_BTREE:
617 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
618 break;
619 default:
620 error = XFS_ERROR(EFSCORRUPTED);
621 break;
622 }
623 if (error) {
624 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
625 ip->i_afp = NULL;
626 xfs_idestroy_fork(ip, XFS_DATA_FORK);
627 }
628 return error;
629}
630
631/*
632 * The file is in-lined in the on-disk inode.
633 * If it fits into if_inline_data, then copy
634 * it there, otherwise allocate a buffer for it
635 * and copy the data there. Either way, set
636 * if_data to point at the data.
637 * If we allocate a buffer for the data, make
638 * sure that its size is a multiple of 4 and
639 * record the real size in i_real_bytes.
640 */
641STATIC int
642xfs_iformat_local(
643 xfs_inode_t *ip,
644 xfs_dinode_t *dip,
645 int whichfork,
646 int size)
647{
648 xfs_ifork_t *ifp;
649 int real_size;
650
651 /*
652 * If the size is unreasonable, then something
653 * is wrong and we just bail out rather than crash in
654 * kmem_alloc() or memcpy() below.
655 */
656 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c
DC
657 xfs_warn(ip->i_mount,
658 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
1da177e4
LT
659 (unsigned long long) ip->i_ino, size,
660 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
661 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
662 ip->i_mount, dip);
663 return XFS_ERROR(EFSCORRUPTED);
664 }
665 ifp = XFS_IFORK_PTR(ip, whichfork);
666 real_size = 0;
667 if (size == 0)
668 ifp->if_u1.if_data = NULL;
669 else if (size <= sizeof(ifp->if_u2.if_inline_data))
670 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
671 else {
672 real_size = roundup(size, 4);
4a7edddc 673 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
674 }
675 ifp->if_bytes = size;
676 ifp->if_real_bytes = real_size;
677 if (size)
678 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
679 ifp->if_flags &= ~XFS_IFEXTENTS;
680 ifp->if_flags |= XFS_IFINLINE;
681 return 0;
682}
683
684/*
685 * The file consists of a set of extents all
686 * of which fit into the on-disk inode.
687 * If there are few enough extents to fit into
688 * the if_inline_ext, then copy them there.
689 * Otherwise allocate a buffer for them and copy
690 * them into it. Either way, set if_extents
691 * to point at the extents.
692 */
693STATIC int
694xfs_iformat_extents(
695 xfs_inode_t *ip,
696 xfs_dinode_t *dip,
697 int whichfork)
698{
a6f64d4a 699 xfs_bmbt_rec_t *dp;
1da177e4
LT
700 xfs_ifork_t *ifp;
701 int nex;
1da177e4
LT
702 int size;
703 int i;
704
705 ifp = XFS_IFORK_PTR(ip, whichfork);
706 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
707 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
708
709 /*
710 * If the number of extents is unreasonable, then something
711 * is wrong and we just bail out rather than crash in
712 * kmem_alloc() or memcpy() below.
713 */
714 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c 715 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
716 (unsigned long long) ip->i_ino, nex);
717 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
718 ip->i_mount, dip);
719 return XFS_ERROR(EFSCORRUPTED);
720 }
721
4eea22f0 722 ifp->if_real_bytes = 0;
1da177e4
LT
723 if (nex == 0)
724 ifp->if_u1.if_extents = NULL;
725 else if (nex <= XFS_INLINE_EXTS)
726 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
727 else
728 xfs_iext_add(ifp, 0, nex);
729
1da177e4 730 ifp->if_bytes = size;
1da177e4
LT
731 if (size) {
732 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 733 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 734 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 735 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
736 ep->l0 = get_unaligned_be64(&dp->l0);
737 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 738 }
3a59c94c 739 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
740 if (whichfork != XFS_DATA_FORK ||
741 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
742 if (unlikely(xfs_check_nostate_extents(
4eea22f0 743 ifp, 0, nex))) {
1da177e4
LT
744 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
745 XFS_ERRLEVEL_LOW,
746 ip->i_mount);
747 return XFS_ERROR(EFSCORRUPTED);
748 }
749 }
750 ifp->if_flags |= XFS_IFEXTENTS;
751 return 0;
752}
753
754/*
755 * The file has too many extents to fit into
756 * the inode, so they are in B-tree format.
757 * Allocate a buffer for the root of the B-tree
758 * and copy the root into it. The i_extents
759 * field will remain NULL until all of the
760 * extents are read in (when they are needed).
761 */
762STATIC int
763xfs_iformat_btree(
764 xfs_inode_t *ip,
765 xfs_dinode_t *dip,
766 int whichfork)
767{
768 xfs_bmdr_block_t *dfp;
769 xfs_ifork_t *ifp;
770 /* REFERENCED */
771 int nrecs;
772 int size;
773
774 ifp = XFS_IFORK_PTR(ip, whichfork);
775 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
776 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 777 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
778
779 /*
780 * blow out if -- fork has less extents than can fit in
781 * fork (fork shouldn't be a btree format), root btree
782 * block has more records than can fit into the fork,
783 * or the number of extents is greater than the number of
784 * blocks.
785 */
8096b1eb
CH
786 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
787 XFS_IFORK_MAXEXT(ip, whichfork) ||
788 XFS_BMDR_SPACE_CALC(nrecs) >
789 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
790 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
65333b4c 791 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
1da177e4 792 (unsigned long long) ip->i_ino);
65333b4c
DC
793 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
794 ip->i_mount, dip);
1da177e4
LT
795 return XFS_ERROR(EFSCORRUPTED);
796 }
797
798 ifp->if_broot_bytes = size;
4a7edddc 799 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
1da177e4
LT
800 ASSERT(ifp->if_broot != NULL);
801 /*
802 * Copy and convert from the on-disk structure
803 * to the in-memory structure.
804 */
60197e8d
CH
805 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
806 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
807 ifp->if_broot, size);
1da177e4
LT
808 ifp->if_flags &= ~XFS_IFEXTENTS;
809 ifp->if_flags |= XFS_IFBROOT;
810
811 return 0;
812}
813
d96f8f89 814STATIC void
347d1c01
CH
815xfs_dinode_from_disk(
816 xfs_icdinode_t *to,
81591fe2 817 xfs_dinode_t *from)
1da177e4 818{
347d1c01
CH
819 to->di_magic = be16_to_cpu(from->di_magic);
820 to->di_mode = be16_to_cpu(from->di_mode);
821 to->di_version = from ->di_version;
822 to->di_format = from->di_format;
823 to->di_onlink = be16_to_cpu(from->di_onlink);
824 to->di_uid = be32_to_cpu(from->di_uid);
825 to->di_gid = be32_to_cpu(from->di_gid);
826 to->di_nlink = be32_to_cpu(from->di_nlink);
6743099c
AM
827 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
828 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
347d1c01
CH
829 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
830 to->di_flushiter = be16_to_cpu(from->di_flushiter);
831 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
832 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
833 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
834 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
835 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
836 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
837 to->di_size = be64_to_cpu(from->di_size);
838 to->di_nblocks = be64_to_cpu(from->di_nblocks);
839 to->di_extsize = be32_to_cpu(from->di_extsize);
840 to->di_nextents = be32_to_cpu(from->di_nextents);
841 to->di_anextents = be16_to_cpu(from->di_anextents);
842 to->di_forkoff = from->di_forkoff;
843 to->di_aformat = from->di_aformat;
844 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
845 to->di_dmstate = be16_to_cpu(from->di_dmstate);
846 to->di_flags = be16_to_cpu(from->di_flags);
847 to->di_gen = be32_to_cpu(from->di_gen);
848}
849
850void
851xfs_dinode_to_disk(
81591fe2 852 xfs_dinode_t *to,
347d1c01
CH
853 xfs_icdinode_t *from)
854{
855 to->di_magic = cpu_to_be16(from->di_magic);
856 to->di_mode = cpu_to_be16(from->di_mode);
857 to->di_version = from ->di_version;
858 to->di_format = from->di_format;
859 to->di_onlink = cpu_to_be16(from->di_onlink);
860 to->di_uid = cpu_to_be32(from->di_uid);
861 to->di_gid = cpu_to_be32(from->di_gid);
862 to->di_nlink = cpu_to_be32(from->di_nlink);
6743099c
AM
863 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
864 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
347d1c01
CH
865 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
866 to->di_flushiter = cpu_to_be16(from->di_flushiter);
867 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
868 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
869 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
870 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
871 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
872 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
873 to->di_size = cpu_to_be64(from->di_size);
874 to->di_nblocks = cpu_to_be64(from->di_nblocks);
875 to->di_extsize = cpu_to_be32(from->di_extsize);
876 to->di_nextents = cpu_to_be32(from->di_nextents);
877 to->di_anextents = cpu_to_be16(from->di_anextents);
878 to->di_forkoff = from->di_forkoff;
879 to->di_aformat = from->di_aformat;
880 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
881 to->di_dmstate = cpu_to_be16(from->di_dmstate);
882 to->di_flags = cpu_to_be16(from->di_flags);
883 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
884}
885
886STATIC uint
887_xfs_dic2xflags(
1da177e4
LT
888 __uint16_t di_flags)
889{
890 uint flags = 0;
891
892 if (di_flags & XFS_DIFLAG_ANY) {
893 if (di_flags & XFS_DIFLAG_REALTIME)
894 flags |= XFS_XFLAG_REALTIME;
895 if (di_flags & XFS_DIFLAG_PREALLOC)
896 flags |= XFS_XFLAG_PREALLOC;
897 if (di_flags & XFS_DIFLAG_IMMUTABLE)
898 flags |= XFS_XFLAG_IMMUTABLE;
899 if (di_flags & XFS_DIFLAG_APPEND)
900 flags |= XFS_XFLAG_APPEND;
901 if (di_flags & XFS_DIFLAG_SYNC)
902 flags |= XFS_XFLAG_SYNC;
903 if (di_flags & XFS_DIFLAG_NOATIME)
904 flags |= XFS_XFLAG_NOATIME;
905 if (di_flags & XFS_DIFLAG_NODUMP)
906 flags |= XFS_XFLAG_NODUMP;
907 if (di_flags & XFS_DIFLAG_RTINHERIT)
908 flags |= XFS_XFLAG_RTINHERIT;
909 if (di_flags & XFS_DIFLAG_PROJINHERIT)
910 flags |= XFS_XFLAG_PROJINHERIT;
911 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
912 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
913 if (di_flags & XFS_DIFLAG_EXTSIZE)
914 flags |= XFS_XFLAG_EXTSIZE;
915 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
916 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
917 if (di_flags & XFS_DIFLAG_NODEFRAG)
918 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
919 if (di_flags & XFS_DIFLAG_FILESTREAM)
920 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
921 }
922
923 return flags;
924}
925
926uint
927xfs_ip2xflags(
928 xfs_inode_t *ip)
929{
347d1c01 930 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 931
a916e2bd 932 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 933 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
934}
935
936uint
937xfs_dic2xflags(
45ba598e 938 xfs_dinode_t *dip)
1da177e4 939{
81591fe2 940 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 941 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
942}
943
07c8f675 944/*
24f211ba 945 * Read the disk inode attributes into the in-core inode structure.
1da177e4
LT
946 */
947int
948xfs_iread(
949 xfs_mount_t *mp,
950 xfs_trans_t *tp,
24f211ba 951 xfs_inode_t *ip,
24f211ba 952 uint iget_flags)
1da177e4
LT
953{
954 xfs_buf_t *bp;
955 xfs_dinode_t *dip;
1da177e4
LT
956 int error;
957
1da177e4 958 /*
92bfc6e7 959 * Fill in the location information in the in-core inode.
1da177e4 960 */
24f211ba 961 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
76d8b277 962 if (error)
24f211ba 963 return error;
76d8b277
CH
964
965 /*
92bfc6e7 966 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 967 */
475ee413 968 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
9ed0451e 969 if (error)
24f211ba 970 return error;
1da177e4 971
1da177e4
LT
972 /*
973 * If we got something that isn't an inode it means someone
974 * (nfs or dmi) has a stale handle.
975 */
69ef921b 976 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
1da177e4 977#ifdef DEBUG
53487786
DC
978 xfs_alert(mp,
979 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
980 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
1da177e4 981#endif /* DEBUG */
9ed0451e
CH
982 error = XFS_ERROR(EINVAL);
983 goto out_brelse;
1da177e4
LT
984 }
985
986 /*
987 * If the on-disk inode is already linked to a directory
988 * entry, copy all of the inode into the in-core inode.
989 * xfs_iformat() handles copying in the inode format
990 * specific information.
991 * Otherwise, just get the truly permanent information.
992 */
81591fe2
CH
993 if (dip->di_mode) {
994 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
995 error = xfs_iformat(ip, dip);
996 if (error) {
1da177e4 997#ifdef DEBUG
53487786
DC
998 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
999 __func__, error);
1da177e4 1000#endif /* DEBUG */
9ed0451e 1001 goto out_brelse;
1da177e4
LT
1002 }
1003 } else {
81591fe2
CH
1004 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
1005 ip->i_d.di_version = dip->di_version;
1006 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
1007 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
1008 /*
1009 * Make sure to pull in the mode here as well in
1010 * case the inode is released without being used.
1011 * This ensures that xfs_inactive() will see that
1012 * the inode is already free and not try to mess
1013 * with the uninitialized part of it.
1014 */
1015 ip->i_d.di_mode = 0;
1da177e4
LT
1016 }
1017
1da177e4
LT
1018 /*
1019 * The inode format changed when we moved the link count and
1020 * made it 32 bits long. If this is an old format inode,
1021 * convert it in memory to look like a new one. If it gets
1022 * flushed to disk we will convert back before flushing or
1023 * logging it. We zero out the new projid field and the old link
1024 * count field. We'll handle clearing the pad field (the remains
1025 * of the old uuid field) when we actually convert the inode to
1026 * the new format. We don't change the version number so that we
1027 * can distinguish this from a real new format inode.
1028 */
51ce16d5 1029 if (ip->i_d.di_version == 1) {
1da177e4
LT
1030 ip->i_d.di_nlink = ip->i_d.di_onlink;
1031 ip->i_d.di_onlink = 0;
6743099c 1032 xfs_set_projid(ip, 0);
1da177e4
LT
1033 }
1034
1035 ip->i_delayed_blks = 0;
1036
1037 /*
1038 * Mark the buffer containing the inode as something to keep
1039 * around for a while. This helps to keep recently accessed
1040 * meta-data in-core longer.
1041 */
821eb21d 1042 xfs_buf_set_ref(bp, XFS_INO_REF);
1da177e4
LT
1043
1044 /*
1045 * Use xfs_trans_brelse() to release the buffer containing the
1046 * on-disk inode, because it was acquired with xfs_trans_read_buf()
475ee413 1047 * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal
1da177e4
LT
1048 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1049 * will only release the buffer if it is not dirty within the
1050 * transaction. It will be OK to release the buffer in this case,
1051 * because inodes on disk are never destroyed and we will be
1052 * locking the new in-core inode before putting it in the hash
1053 * table where other processes can find it. Thus we don't have
1054 * to worry about the inode being changed just because we released
1055 * the buffer.
1056 */
9ed0451e
CH
1057 out_brelse:
1058 xfs_trans_brelse(tp, bp);
9ed0451e 1059 return error;
1da177e4
LT
1060}
1061
1062/*
1063 * Read in extents from a btree-format inode.
1064 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1065 */
1066int
1067xfs_iread_extents(
1068 xfs_trans_t *tp,
1069 xfs_inode_t *ip,
1070 int whichfork)
1071{
1072 int error;
1073 xfs_ifork_t *ifp;
4eea22f0 1074 xfs_extnum_t nextents;
1da177e4
LT
1075
1076 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1077 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1078 ip->i_mount);
1079 return XFS_ERROR(EFSCORRUPTED);
1080 }
4eea22f0 1081 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1da177e4 1082 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1083
1da177e4
LT
1084 /*
1085 * We know that the size is valid (it's checked in iformat_btree)
1086 */
4eea22f0 1087 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1088 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1089 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1090 error = xfs_bmap_read_extents(tp, ip, whichfork);
1091 if (error) {
4eea22f0 1092 xfs_iext_destroy(ifp);
1da177e4
LT
1093 ifp->if_flags &= ~XFS_IFEXTENTS;
1094 return error;
1095 }
a6f64d4a 1096 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1097 return 0;
1098}
1099
1100/*
1101 * Allocate an inode on disk and return a copy of its in-core version.
1102 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1103 * appropriately within the inode. The uid and gid for the inode are
1104 * set according to the contents of the given cred structure.
1105 *
1106 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1107 * has a free inode available, call xfs_iget()
1108 * to obtain the in-core version of the allocated inode. Finally,
1109 * fill in the inode and log its initial contents. In this case,
1110 * ialloc_context would be set to NULL and call_again set to false.
1111 *
1112 * If xfs_dialloc() does not have an available inode,
1113 * it will replenish its supply by doing an allocation. Since we can
1114 * only do one allocation within a transaction without deadlocks, we
1115 * must commit the current transaction before returning the inode itself.
1116 * In this case, therefore, we will set call_again to true and return.
1117 * The caller should then commit the current transaction, start a new
1118 * transaction, and call xfs_ialloc() again to actually get the inode.
1119 *
1120 * To ensure that some other process does not grab the inode that
1121 * was allocated during the first call to xfs_ialloc(), this routine
1122 * also returns the [locked] bp pointing to the head of the freelist
1123 * as ialloc_context. The caller should hold this buffer across
1124 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1125 *
1126 * If we are allocating quota inodes, we do not have a parent inode
1127 * to attach to or associate with (i.e. pip == NULL) because they
1128 * are not linked into the directory structure - they are attached
1129 * directly to the superblock - and so have no parent.
1da177e4
LT
1130 */
1131int
1132xfs_ialloc(
1133 xfs_trans_t *tp,
1134 xfs_inode_t *pip,
576b1d67 1135 umode_t mode,
31b084ae 1136 xfs_nlink_t nlink,
1da177e4 1137 xfs_dev_t rdev,
6743099c 1138 prid_t prid,
1da177e4
LT
1139 int okalloc,
1140 xfs_buf_t **ialloc_context,
1da177e4
LT
1141 xfs_inode_t **ipp)
1142{
1143 xfs_ino_t ino;
1144 xfs_inode_t *ip;
1da177e4
LT
1145 uint flags;
1146 int error;
dff35fd4 1147 timespec_t tv;
bf904248 1148 int filestreams = 0;
1da177e4
LT
1149
1150 /*
1151 * Call the space management code to pick
1152 * the on-disk inode to be allocated.
1153 */
b11f94d5 1154 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 1155 ialloc_context, &ino);
bf904248 1156 if (error)
1da177e4 1157 return error;
08358906 1158 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
1159 *ipp = NULL;
1160 return 0;
1161 }
1162 ASSERT(*ialloc_context == NULL);
1163
1164 /*
1165 * Get the in-core inode with the lock held exclusively.
1166 * This is because we're setting fields here we need
1167 * to prevent others from looking at until we're done.
1168 */
ec3ba85f
CH
1169 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1170 XFS_ILOCK_EXCL, &ip);
bf904248 1171 if (error)
1da177e4 1172 return error;
1da177e4
LT
1173 ASSERT(ip != NULL);
1174
576b1d67 1175 ip->i_d.di_mode = mode;
1da177e4
LT
1176 ip->i_d.di_onlink = 0;
1177 ip->i_d.di_nlink = nlink;
1178 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1179 ip->i_d.di_uid = current_fsuid();
1180 ip->i_d.di_gid = current_fsgid();
6743099c 1181 xfs_set_projid(ip, prid);
1da177e4
LT
1182 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1183
1184 /*
1185 * If the superblock version is up to where we support new format
1186 * inodes and this is currently an old format inode, then change
1187 * the inode version number now. This way we only do the conversion
1188 * here rather than here and in the flush/logging code.
1189 */
62118709 1190 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1191 ip->i_d.di_version == 1) {
1192 ip->i_d.di_version = 2;
1da177e4
LT
1193 /*
1194 * We've already zeroed the old link count, the projid field,
1195 * and the pad field.
1196 */
1197 }
1198
1199 /*
1200 * Project ids won't be stored on disk if we are using a version 1 inode.
1201 */
51ce16d5 1202 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1203 xfs_bump_ino_vers2(tp, ip);
1204
bd186aa9 1205 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 1206 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 1207 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
1208 ip->i_d.di_mode |= S_ISGID;
1209 }
1210 }
1211
1212 /*
1213 * If the group ID of the new file does not match the effective group
1214 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1215 * (and only if the irix_sgid_inherit compatibility variable is set).
1216 */
1217 if ((irix_sgid_inherit) &&
1218 (ip->i_d.di_mode & S_ISGID) &&
1219 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1220 ip->i_d.di_mode &= ~S_ISGID;
1221 }
1222
1223 ip->i_d.di_size = 0;
1224 ip->i_d.di_nextents = 0;
1225 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1226
1227 nanotime(&tv);
1228 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1229 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1230 ip->i_d.di_atime = ip->i_d.di_mtime;
1231 ip->i_d.di_ctime = ip->i_d.di_mtime;
1232
1da177e4
LT
1233 /*
1234 * di_gen will have been taken care of in xfs_iread.
1235 */
1236 ip->i_d.di_extsize = 0;
1237 ip->i_d.di_dmevmask = 0;
1238 ip->i_d.di_dmstate = 0;
1239 ip->i_d.di_flags = 0;
1240 flags = XFS_ILOG_CORE;
1241 switch (mode & S_IFMT) {
1242 case S_IFIFO:
1243 case S_IFCHR:
1244 case S_IFBLK:
1245 case S_IFSOCK:
1246 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1247 ip->i_df.if_u2.if_rdev = rdev;
1248 ip->i_df.if_flags = 0;
1249 flags |= XFS_ILOG_DEV;
1250 break;
1251 case S_IFREG:
bf904248
DC
1252 /*
1253 * we can't set up filestreams until after the VFS inode
1254 * is set up properly.
1255 */
1256 if (pip && xfs_inode_is_filestream(pip))
1257 filestreams = 1;
2a82b8be 1258 /* fall through */
1da177e4 1259 case S_IFDIR:
b11f94d5 1260 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1261 uint di_flags = 0;
1262
abbede1b 1263 if (S_ISDIR(mode)) {
365ca83d
NS
1264 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1265 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1266 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1267 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1268 ip->i_d.di_extsize = pip->i_d.di_extsize;
1269 }
abbede1b 1270 } else if (S_ISREG(mode)) {
613d7043 1271 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1272 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1273 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1274 di_flags |= XFS_DIFLAG_EXTSIZE;
1275 ip->i_d.di_extsize = pip->i_d.di_extsize;
1276 }
1da177e4
LT
1277 }
1278 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1279 xfs_inherit_noatime)
365ca83d 1280 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1281 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1282 xfs_inherit_nodump)
365ca83d 1283 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1284 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1285 xfs_inherit_sync)
365ca83d 1286 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1287 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1288 xfs_inherit_nosymlinks)
365ca83d
NS
1289 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1290 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1291 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1292 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1293 xfs_inherit_nodefrag)
1294 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1295 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1296 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1297 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1298 }
1299 /* FALLTHROUGH */
1300 case S_IFLNK:
1301 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1302 ip->i_df.if_flags = XFS_IFEXTENTS;
1303 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1304 ip->i_df.if_u1.if_extents = NULL;
1305 break;
1306 default:
1307 ASSERT(0);
1308 }
1309 /*
1310 * Attribute fork settings for new inode.
1311 */
1312 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1313 ip->i_d.di_anextents = 0;
1314
1315 /*
1316 * Log the new values stuffed into the inode.
1317 */
ddc3415a 1318 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
1319 xfs_trans_log_inode(tp, ip, flags);
1320
b83bd138 1321 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1322 xfs_setup_inode(ip);
1da177e4 1323
bf904248
DC
1324 /* now we have set up the vfs inode we can associate the filestream */
1325 if (filestreams) {
1326 error = xfs_filestream_associate(pip, ip);
1327 if (error < 0)
1328 return -error;
1329 if (!error)
1330 xfs_iflags_set(ip, XFS_IFILESTREAM);
1331 }
1332
1da177e4
LT
1333 *ipp = ip;
1334 return 0;
1335}
1336
1da177e4 1337/*
8f04c47a
CH
1338 * Free up the underlying blocks past new_size. The new size must be smaller
1339 * than the current size. This routine can be used both for the attribute and
1340 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1341 *
f6485057
DC
1342 * The transaction passed to this routine must have made a permanent log
1343 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1344 * given transaction and start new ones, so make sure everything involved in
1345 * the transaction is tidy before calling here. Some transaction will be
1346 * returned to the caller to be committed. The incoming transaction must
1347 * already include the inode, and both inode locks must be held exclusively.
1348 * The inode must also be "held" within the transaction. On return the inode
1349 * will be "held" within the returned transaction. This routine does NOT
1350 * require any disk space to be reserved for it within the transaction.
1da177e4 1351 *
f6485057
DC
1352 * If we get an error, we must return with the inode locked and linked into the
1353 * current transaction. This keeps things simple for the higher level code,
1354 * because it always knows that the inode is locked and held in the transaction
1355 * that returns to it whether errors occur or not. We don't mark the inode
1356 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1357 */
1358int
8f04c47a
CH
1359xfs_itruncate_extents(
1360 struct xfs_trans **tpp,
1361 struct xfs_inode *ip,
1362 int whichfork,
1363 xfs_fsize_t new_size)
1da177e4 1364{
8f04c47a
CH
1365 struct xfs_mount *mp = ip->i_mount;
1366 struct xfs_trans *tp = *tpp;
1367 struct xfs_trans *ntp;
1368 xfs_bmap_free_t free_list;
1369 xfs_fsblock_t first_block;
1370 xfs_fileoff_t first_unmap_block;
1371 xfs_fileoff_t last_block;
1372 xfs_filblks_t unmap_len;
1373 int committed;
1374 int error = 0;
1375 int done = 0;
1da177e4 1376
0b56185b
CH
1377 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1378 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1379 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1380 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1381 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1382 ASSERT(ip->i_itemp != NULL);
898621d5 1383 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1384 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1385
673e8e59
CH
1386 trace_xfs_itruncate_extents_start(ip, new_size);
1387
1da177e4
LT
1388 /*
1389 * Since it is possible for space to become allocated beyond
1390 * the end of the file (in a crash where the space is allocated
1391 * but the inode size is not yet updated), simply remove any
1392 * blocks which show up between the new EOF and the maximum
1393 * possible file size. If the first block to be removed is
1394 * beyond the maximum file size (ie it is the same as last_block),
1395 * then there is nothing to do.
1396 */
8f04c47a 1397 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1398 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1399 if (first_unmap_block == last_block)
1400 return 0;
1401
1402 ASSERT(first_unmap_block < last_block);
1403 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1404 while (!done) {
9d87c319 1405 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1406 error = xfs_bunmapi(tp, ip,
3e57ecf6 1407 first_unmap_block, unmap_len,
8f04c47a 1408 xfs_bmapi_aflag(whichfork),
1da177e4 1409 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1410 &first_block, &free_list,
b4e9181e 1411 &done);
8f04c47a
CH
1412 if (error)
1413 goto out_bmap_cancel;
1da177e4
LT
1414
1415 /*
1416 * Duplicate the transaction that has the permanent
1417 * reservation and commit the old transaction.
1418 */
8f04c47a 1419 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1420 if (committed)
ddc3415a 1421 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1422 if (error)
1423 goto out_bmap_cancel;
1da177e4
LT
1424
1425 if (committed) {
1426 /*
f6485057 1427 * Mark the inode dirty so it will be logged and
e5720eec 1428 * moved forward in the log as part of every commit.
1da177e4 1429 */
8f04c47a 1430 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1431 }
f6485057 1432
8f04c47a
CH
1433 ntp = xfs_trans_dup(tp);
1434 error = xfs_trans_commit(tp, 0);
1435 tp = ntp;
e5720eec 1436
ddc3415a 1437 xfs_trans_ijoin(tp, ip, 0);
f6485057 1438
cc09c0dc 1439 if (error)
8f04c47a
CH
1440 goto out;
1441
cc09c0dc 1442 /*
8f04c47a 1443 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1444 * reference that we gained in xfs_trans_dup()
1445 */
8f04c47a
CH
1446 xfs_log_ticket_put(tp->t_ticket);
1447 error = xfs_trans_reserve(tp, 0,
f6485057
DC
1448 XFS_ITRUNCATE_LOG_RES(mp), 0,
1449 XFS_TRANS_PERM_LOG_RES,
1450 XFS_ITRUNCATE_LOG_COUNT);
1451 if (error)
8f04c47a 1452 goto out;
1da177e4 1453 }
8f04c47a 1454
673e8e59
CH
1455 /*
1456 * Always re-log the inode so that our permanent transaction can keep
1457 * on rolling it forward in the log.
1458 */
1459 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1460
1461 trace_xfs_itruncate_extents_end(ip, new_size);
1462
8f04c47a
CH
1463out:
1464 *tpp = tp;
1465 return error;
1466out_bmap_cancel:
1da177e4 1467 /*
8f04c47a
CH
1468 * If the bunmapi call encounters an error, return to the caller where
1469 * the transaction can be properly aborted. We just need to make sure
1470 * we're not holding any resources that we were not when we came in.
1da177e4 1471 */
8f04c47a
CH
1472 xfs_bmap_cancel(&free_list);
1473 goto out;
1474}
1475
1da177e4
LT
1476/*
1477 * This is called when the inode's link count goes to 0.
1478 * We place the on-disk inode on a list in the AGI. It
1479 * will be pulled from this list when the inode is freed.
1480 */
1481int
1482xfs_iunlink(
1483 xfs_trans_t *tp,
1484 xfs_inode_t *ip)
1485{
1486 xfs_mount_t *mp;
1487 xfs_agi_t *agi;
1488 xfs_dinode_t *dip;
1489 xfs_buf_t *agibp;
1490 xfs_buf_t *ibp;
1da177e4
LT
1491 xfs_agino_t agino;
1492 short bucket_index;
1493 int offset;
1494 int error;
1da177e4
LT
1495
1496 ASSERT(ip->i_d.di_nlink == 0);
1497 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1498
1499 mp = tp->t_mountp;
1500
1da177e4
LT
1501 /*
1502 * Get the agi buffer first. It ensures lock ordering
1503 * on the list.
1504 */
5e1be0fb 1505 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1506 if (error)
1da177e4 1507 return error;
1da177e4 1508 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1509
1da177e4
LT
1510 /*
1511 * Get the index into the agi hash table for the
1512 * list this inode will go on.
1513 */
1514 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1515 ASSERT(agino != 0);
1516 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1517 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1518 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1519
69ef921b 1520 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1521 /*
1522 * There is already another inode in the bucket we need
1523 * to add ourselves to. Add us at the front of the list.
1524 * Here we put the head pointer into our next pointer,
1525 * and then we fall through to point the head at us.
1526 */
475ee413
CH
1527 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1528 0, 0);
c319b58b
VA
1529 if (error)
1530 return error;
1531
69ef921b 1532 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1533 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1534 offset = ip->i_imap.im_boffset +
1da177e4
LT
1535 offsetof(xfs_dinode_t, di_next_unlinked);
1536 xfs_trans_inode_buf(tp, ibp);
1537 xfs_trans_log_buf(tp, ibp, offset,
1538 (offset + sizeof(xfs_agino_t) - 1));
1539 xfs_inobp_check(mp, ibp);
1540 }
1541
1542 /*
1543 * Point the bucket head pointer at the inode being inserted.
1544 */
1545 ASSERT(agino != 0);
16259e7d 1546 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1547 offset = offsetof(xfs_agi_t, agi_unlinked) +
1548 (sizeof(xfs_agino_t) * bucket_index);
1549 xfs_trans_log_buf(tp, agibp, offset,
1550 (offset + sizeof(xfs_agino_t) - 1));
1551 return 0;
1552}
1553
1554/*
1555 * Pull the on-disk inode from the AGI unlinked list.
1556 */
1557STATIC int
1558xfs_iunlink_remove(
1559 xfs_trans_t *tp,
1560 xfs_inode_t *ip)
1561{
1562 xfs_ino_t next_ino;
1563 xfs_mount_t *mp;
1564 xfs_agi_t *agi;
1565 xfs_dinode_t *dip;
1566 xfs_buf_t *agibp;
1567 xfs_buf_t *ibp;
1568 xfs_agnumber_t agno;
1da177e4
LT
1569 xfs_agino_t agino;
1570 xfs_agino_t next_agino;
1571 xfs_buf_t *last_ibp;
6fdf8ccc 1572 xfs_dinode_t *last_dip = NULL;
1da177e4 1573 short bucket_index;
6fdf8ccc 1574 int offset, last_offset = 0;
1da177e4 1575 int error;
1da177e4 1576
1da177e4 1577 mp = tp->t_mountp;
1da177e4 1578 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1579
1580 /*
1581 * Get the agi buffer first. It ensures lock ordering
1582 * on the list.
1583 */
5e1be0fb
CH
1584 error = xfs_read_agi(mp, tp, agno, &agibp);
1585 if (error)
1da177e4 1586 return error;
5e1be0fb 1587
1da177e4 1588 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1589
1da177e4
LT
1590 /*
1591 * Get the index into the agi hash table for the
1592 * list this inode will go on.
1593 */
1594 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1595 ASSERT(agino != 0);
1596 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 1597 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
1598 ASSERT(agi->agi_unlinked[bucket_index]);
1599
16259e7d 1600 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 1601 /*
475ee413
CH
1602 * We're at the head of the list. Get the inode's on-disk
1603 * buffer to see if there is anyone after us on the list.
1604 * Only modify our next pointer if it is not already NULLAGINO.
1605 * This saves us the overhead of dealing with the buffer when
1606 * there is no need to change it.
1da177e4 1607 */
475ee413
CH
1608 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1609 0, 0);
1da177e4 1610 if (error) {
475ee413 1611 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 1612 __func__, error);
1da177e4
LT
1613 return error;
1614 }
347d1c01 1615 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1616 ASSERT(next_agino != 0);
1617 if (next_agino != NULLAGINO) {
347d1c01 1618 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1619 offset = ip->i_imap.im_boffset +
1da177e4
LT
1620 offsetof(xfs_dinode_t, di_next_unlinked);
1621 xfs_trans_inode_buf(tp, ibp);
1622 xfs_trans_log_buf(tp, ibp, offset,
1623 (offset + sizeof(xfs_agino_t) - 1));
1624 xfs_inobp_check(mp, ibp);
1625 } else {
1626 xfs_trans_brelse(tp, ibp);
1627 }
1628 /*
1629 * Point the bucket head pointer at the next inode.
1630 */
1631 ASSERT(next_agino != 0);
1632 ASSERT(next_agino != agino);
16259e7d 1633 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1634 offset = offsetof(xfs_agi_t, agi_unlinked) +
1635 (sizeof(xfs_agino_t) * bucket_index);
1636 xfs_trans_log_buf(tp, agibp, offset,
1637 (offset + sizeof(xfs_agino_t) - 1));
1638 } else {
1639 /*
1640 * We need to search the list for the inode being freed.
1641 */
16259e7d 1642 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1643 last_ibp = NULL;
1644 while (next_agino != agino) {
129dbc9a
CH
1645 struct xfs_imap imap;
1646
1647 if (last_ibp)
1da177e4 1648 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
1649
1650 imap.im_blkno = 0;
1da177e4 1651 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
1652
1653 error = xfs_imap(mp, tp, next_ino, &imap, 0);
1654 if (error) {
1655 xfs_warn(mp,
1656 "%s: xfs_imap returned error %d.",
1657 __func__, error);
1658 return error;
1659 }
1660
1661 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
1662 &last_ibp, 0, 0);
1da177e4 1663 if (error) {
0b932ccc 1664 xfs_warn(mp,
129dbc9a 1665 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 1666 __func__, error);
1da177e4
LT
1667 return error;
1668 }
129dbc9a
CH
1669
1670 last_offset = imap.im_boffset;
347d1c01 1671 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1672 ASSERT(next_agino != NULLAGINO);
1673 ASSERT(next_agino != 0);
1674 }
475ee413 1675
1da177e4 1676 /*
475ee413
CH
1677 * Now last_ibp points to the buffer previous to us on the
1678 * unlinked list. Pull us from the list.
1da177e4 1679 */
475ee413
CH
1680 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1681 0, 0);
1da177e4 1682 if (error) {
475ee413 1683 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 1684 __func__, error);
1da177e4
LT
1685 return error;
1686 }
347d1c01 1687 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1688 ASSERT(next_agino != 0);
1689 ASSERT(next_agino != agino);
1690 if (next_agino != NULLAGINO) {
347d1c01 1691 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1692 offset = ip->i_imap.im_boffset +
1da177e4
LT
1693 offsetof(xfs_dinode_t, di_next_unlinked);
1694 xfs_trans_inode_buf(tp, ibp);
1695 xfs_trans_log_buf(tp, ibp, offset,
1696 (offset + sizeof(xfs_agino_t) - 1));
1697 xfs_inobp_check(mp, ibp);
1698 } else {
1699 xfs_trans_brelse(tp, ibp);
1700 }
1701 /*
1702 * Point the previous inode on the list to the next inode.
1703 */
347d1c01 1704 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
1705 ASSERT(next_agino != 0);
1706 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1707 xfs_trans_inode_buf(tp, last_ibp);
1708 xfs_trans_log_buf(tp, last_ibp, offset,
1709 (offset + sizeof(xfs_agino_t) - 1));
1710 xfs_inobp_check(mp, last_ibp);
1711 }
1712 return 0;
1713}
1714
5b3eed75
DC
1715/*
1716 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1717 * inodes that are in memory - they all must be marked stale and attached to
1718 * the cluster buffer.
1719 */
2a30f36d 1720STATIC int
1da177e4
LT
1721xfs_ifree_cluster(
1722 xfs_inode_t *free_ip,
1723 xfs_trans_t *tp,
1724 xfs_ino_t inum)
1725{
1726 xfs_mount_t *mp = free_ip->i_mount;
1727 int blks_per_cluster;
1728 int nbufs;
1729 int ninodes;
5b257b4a 1730 int i, j;
1da177e4
LT
1731 xfs_daddr_t blkno;
1732 xfs_buf_t *bp;
5b257b4a 1733 xfs_inode_t *ip;
1da177e4
LT
1734 xfs_inode_log_item_t *iip;
1735 xfs_log_item_t *lip;
5017e97d 1736 struct xfs_perag *pag;
1da177e4 1737
5017e97d 1738 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
1739 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1740 blks_per_cluster = 1;
1741 ninodes = mp->m_sb.sb_inopblock;
1742 nbufs = XFS_IALLOC_BLOCKS(mp);
1743 } else {
1744 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1745 mp->m_sb.sb_blocksize;
1746 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1747 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1748 }
1749
1da177e4
LT
1750 for (j = 0; j < nbufs; j++, inum += ninodes) {
1751 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1752 XFS_INO_TO_AGBNO(mp, inum));
1753
5b257b4a
DC
1754 /*
1755 * We obtain and lock the backing buffer first in the process
1756 * here, as we have to ensure that any dirty inode that we
1757 * can't get the flush lock on is attached to the buffer.
1758 * If we scan the in-memory inodes first, then buffer IO can
1759 * complete before we get a lock on it, and hence we may fail
1760 * to mark all the active inodes on the buffer stale.
1761 */
1762 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
a8acad70 1763 mp->m_bsize * blks_per_cluster, 0);
5b257b4a 1764
2a30f36d
CS
1765 if (!bp)
1766 return ENOMEM;
5b257b4a
DC
1767 /*
1768 * Walk the inodes already attached to the buffer and mark them
1769 * stale. These will all have the flush locks held, so an
5b3eed75
DC
1770 * in-memory inode walk can't lock them. By marking them all
1771 * stale first, we will not attempt to lock them in the loop
1772 * below as the XFS_ISTALE flag will be set.
5b257b4a 1773 */
adadbeef 1774 lip = bp->b_fspriv;
5b257b4a
DC
1775 while (lip) {
1776 if (lip->li_type == XFS_LI_INODE) {
1777 iip = (xfs_inode_log_item_t *)lip;
1778 ASSERT(iip->ili_logged == 1);
ca30b2a7 1779 lip->li_cb = xfs_istale_done;
5b257b4a
DC
1780 xfs_trans_ail_copy_lsn(mp->m_ail,
1781 &iip->ili_flush_lsn,
1782 &iip->ili_item.li_lsn);
1783 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
1784 }
1785 lip = lip->li_bio_list;
1786 }
1da177e4 1787
5b3eed75 1788
1da177e4 1789 /*
5b257b4a
DC
1790 * For each inode in memory attempt to add it to the inode
1791 * buffer and set it up for being staled on buffer IO
1792 * completion. This is safe as we've locked out tail pushing
1793 * and flushing by locking the buffer.
1da177e4 1794 *
5b257b4a
DC
1795 * We have already marked every inode that was part of a
1796 * transaction stale above, which means there is no point in
1797 * even trying to lock them.
1da177e4 1798 */
1da177e4 1799 for (i = 0; i < ninodes; i++) {
5b3eed75 1800retry:
1a3e8f3d 1801 rcu_read_lock();
da353b0d
DC
1802 ip = radix_tree_lookup(&pag->pag_ici_root,
1803 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 1804
1a3e8f3d
DC
1805 /* Inode not in memory, nothing to do */
1806 if (!ip) {
1807 rcu_read_unlock();
1da177e4
LT
1808 continue;
1809 }
1810
1a3e8f3d
DC
1811 /*
1812 * because this is an RCU protected lookup, we could
1813 * find a recently freed or even reallocated inode
1814 * during the lookup. We need to check under the
1815 * i_flags_lock for a valid inode here. Skip it if it
1816 * is not valid, the wrong inode or stale.
1817 */
1818 spin_lock(&ip->i_flags_lock);
1819 if (ip->i_ino != inum + i ||
1820 __xfs_iflags_test(ip, XFS_ISTALE)) {
1821 spin_unlock(&ip->i_flags_lock);
1822 rcu_read_unlock();
1823 continue;
1824 }
1825 spin_unlock(&ip->i_flags_lock);
1826
5b3eed75
DC
1827 /*
1828 * Don't try to lock/unlock the current inode, but we
1829 * _cannot_ skip the other inodes that we did not find
1830 * in the list attached to the buffer and are not
1831 * already marked stale. If we can't lock it, back off
1832 * and retry.
1833 */
5b257b4a
DC
1834 if (ip != free_ip &&
1835 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 1836 rcu_read_unlock();
5b3eed75
DC
1837 delay(1);
1838 goto retry;
1da177e4 1839 }
1a3e8f3d 1840 rcu_read_unlock();
1da177e4 1841
5b3eed75 1842 xfs_iflock(ip);
5b257b4a 1843 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 1844
5b3eed75
DC
1845 /*
1846 * we don't need to attach clean inodes or those only
1847 * with unlogged changes (which we throw away, anyway).
1848 */
1da177e4 1849 iip = ip->i_itemp;
5b3eed75 1850 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 1851 ASSERT(ip != free_ip);
1da177e4
LT
1852 xfs_ifunlock(ip);
1853 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1854 continue;
1855 }
1856
f5d8d5c4
CH
1857 iip->ili_last_fields = iip->ili_fields;
1858 iip->ili_fields = 0;
1da177e4 1859 iip->ili_logged = 1;
7b2e2a31
DC
1860 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1861 &iip->ili_item.li_lsn);
1da177e4 1862
ca30b2a7
CH
1863 xfs_buf_attach_iodone(bp, xfs_istale_done,
1864 &iip->ili_item);
5b257b4a
DC
1865
1866 if (ip != free_ip)
1da177e4 1867 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
1868 }
1869
5b3eed75 1870 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
1871 xfs_trans_binval(tp, bp);
1872 }
1873
5017e97d 1874 xfs_perag_put(pag);
2a30f36d 1875 return 0;
1da177e4
LT
1876}
1877
1878/*
1879 * This is called to return an inode to the inode free list.
1880 * The inode should already be truncated to 0 length and have
1881 * no pages associated with it. This routine also assumes that
1882 * the inode is already a part of the transaction.
1883 *
1884 * The on-disk copy of the inode will have been added to the list
1885 * of unlinked inodes in the AGI. We need to remove the inode from
1886 * that list atomically with respect to freeing it here.
1887 */
1888int
1889xfs_ifree(
1890 xfs_trans_t *tp,
1891 xfs_inode_t *ip,
1892 xfs_bmap_free_t *flist)
1893{
1894 int error;
1895 int delete;
1896 xfs_ino_t first_ino;
c319b58b
VA
1897 xfs_dinode_t *dip;
1898 xfs_buf_t *ibp;
1da177e4 1899
579aa9ca 1900 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
1901 ASSERT(ip->i_d.di_nlink == 0);
1902 ASSERT(ip->i_d.di_nextents == 0);
1903 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 1904 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
1905 ASSERT(ip->i_d.di_nblocks == 0);
1906
1907 /*
1908 * Pull the on-disk inode from the AGI unlinked list.
1909 */
1910 error = xfs_iunlink_remove(tp, ip);
1911 if (error != 0) {
1912 return error;
1913 }
1914
1915 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1916 if (error != 0) {
1917 return error;
1918 }
1919 ip->i_d.di_mode = 0; /* mark incore inode as free */
1920 ip->i_d.di_flags = 0;
1921 ip->i_d.di_dmevmask = 0;
1922 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
1923 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1924 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1925 /*
1926 * Bump the generation count so no one will be confused
1927 * by reincarnations of this inode.
1928 */
1929 ip->i_d.di_gen++;
c319b58b 1930
1da177e4
LT
1931 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1932
475ee413
CH
1933 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp,
1934 0, 0);
c319b58b
VA
1935 if (error)
1936 return error;
1937
1938 /*
1939 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1940 * from picking up this inode when it is reclaimed (its incore state
1941 * initialzed but not flushed to disk yet). The in-core di_mode is
1942 * already cleared and a corresponding transaction logged.
1943 * The hack here just synchronizes the in-core to on-disk
1944 * di_mode value in advance before the actual inode sync to disk.
1945 * This is OK because the inode is already unlinked and would never
1946 * change its di_mode again for this inode generation.
1947 * This is a temporary hack that would require a proper fix
1948 * in the future.
1949 */
81591fe2 1950 dip->di_mode = 0;
c319b58b 1951
1da177e4 1952 if (delete) {
2a30f36d 1953 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4
LT
1954 }
1955
2a30f36d 1956 return error;
1da177e4
LT
1957}
1958
1959/*
1960 * Reallocate the space for if_broot based on the number of records
1961 * being added or deleted as indicated in rec_diff. Move the records
1962 * and pointers in if_broot to fit the new size. When shrinking this
1963 * will eliminate holes between the records and pointers created by
1964 * the caller. When growing this will create holes to be filled in
1965 * by the caller.
1966 *
1967 * The caller must not request to add more records than would fit in
1968 * the on-disk inode root. If the if_broot is currently NULL, then
1969 * if we adding records one will be allocated. The caller must also
1970 * not request that the number of records go below zero, although
1971 * it can go to zero.
1972 *
1973 * ip -- the inode whose if_broot area is changing
1974 * ext_diff -- the change in the number of records, positive or negative,
1975 * requested for the if_broot array.
1976 */
1977void
1978xfs_iroot_realloc(
1979 xfs_inode_t *ip,
1980 int rec_diff,
1981 int whichfork)
1982{
60197e8d 1983 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
1984 int cur_max;
1985 xfs_ifork_t *ifp;
7cc95a82 1986 struct xfs_btree_block *new_broot;
1da177e4
LT
1987 int new_max;
1988 size_t new_size;
1989 char *np;
1990 char *op;
1991
1992 /*
1993 * Handle the degenerate case quietly.
1994 */
1995 if (rec_diff == 0) {
1996 return;
1997 }
1998
1999 ifp = XFS_IFORK_PTR(ip, whichfork);
2000 if (rec_diff > 0) {
2001 /*
2002 * If there wasn't any memory allocated before, just
2003 * allocate it now and get out.
2004 */
2005 if (ifp->if_broot_bytes == 0) {
2006 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
4a7edddc 2007 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2008 ifp->if_broot_bytes = (int)new_size;
2009 return;
2010 }
2011
2012 /*
2013 * If there is already an existing if_broot, then we need
2014 * to realloc() it and shift the pointers to their new
2015 * location. The records don't change location because
2016 * they are kept butted up against the btree block header.
2017 */
60197e8d 2018 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2019 new_max = cur_max + rec_diff;
2020 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 2021 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4 2022 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
4a7edddc 2023 KM_SLEEP | KM_NOFS);
60197e8d
CH
2024 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2025 ifp->if_broot_bytes);
2026 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2027 (int)new_size);
1da177e4
LT
2028 ifp->if_broot_bytes = (int)new_size;
2029 ASSERT(ifp->if_broot_bytes <=
2030 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2031 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2032 return;
2033 }
2034
2035 /*
2036 * rec_diff is less than 0. In this case, we are shrinking the
2037 * if_broot buffer. It must already exist. If we go to zero
2038 * records, just get rid of the root and clear the status bit.
2039 */
2040 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2041 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2042 new_max = cur_max + rec_diff;
2043 ASSERT(new_max >= 0);
2044 if (new_max > 0)
2045 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2046 else
2047 new_size = 0;
2048 if (new_size > 0) {
4a7edddc 2049 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2050 /*
2051 * First copy over the btree block header.
2052 */
7cc95a82 2053 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
2054 } else {
2055 new_broot = NULL;
2056 ifp->if_flags &= ~XFS_IFBROOT;
2057 }
2058
2059 /*
2060 * Only copy the records and pointers if there are any.
2061 */
2062 if (new_max > 0) {
2063 /*
2064 * First copy the records.
2065 */
136341b4
CH
2066 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2067 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2068 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2069
2070 /*
2071 * Then copy the pointers.
2072 */
60197e8d 2073 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2074 ifp->if_broot_bytes);
60197e8d 2075 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2076 (int)new_size);
2077 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2078 }
f0e2d93c 2079 kmem_free(ifp->if_broot);
1da177e4
LT
2080 ifp->if_broot = new_broot;
2081 ifp->if_broot_bytes = (int)new_size;
2082 ASSERT(ifp->if_broot_bytes <=
2083 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2084 return;
2085}
2086
2087
1da177e4
LT
2088/*
2089 * This is called when the amount of space needed for if_data
2090 * is increased or decreased. The change in size is indicated by
2091 * the number of bytes that need to be added or deleted in the
2092 * byte_diff parameter.
2093 *
2094 * If the amount of space needed has decreased below the size of the
2095 * inline buffer, then switch to using the inline buffer. Otherwise,
2096 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2097 * to what is needed.
2098 *
2099 * ip -- the inode whose if_data area is changing
2100 * byte_diff -- the change in the number of bytes, positive or negative,
2101 * requested for the if_data array.
2102 */
2103void
2104xfs_idata_realloc(
2105 xfs_inode_t *ip,
2106 int byte_diff,
2107 int whichfork)
2108{
2109 xfs_ifork_t *ifp;
2110 int new_size;
2111 int real_size;
2112
2113 if (byte_diff == 0) {
2114 return;
2115 }
2116
2117 ifp = XFS_IFORK_PTR(ip, whichfork);
2118 new_size = (int)ifp->if_bytes + byte_diff;
2119 ASSERT(new_size >= 0);
2120
2121 if (new_size == 0) {
2122 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2123 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2124 }
2125 ifp->if_u1.if_data = NULL;
2126 real_size = 0;
2127 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2128 /*
2129 * If the valid extents/data can fit in if_inline_ext/data,
2130 * copy them from the malloc'd vector and free it.
2131 */
2132 if (ifp->if_u1.if_data == NULL) {
2133 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2134 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2135 ASSERT(ifp->if_real_bytes != 0);
2136 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2137 new_size);
f0e2d93c 2138 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2139 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2140 }
2141 real_size = 0;
2142 } else {
2143 /*
2144 * Stuck with malloc/realloc.
2145 * For inline data, the underlying buffer must be
2146 * a multiple of 4 bytes in size so that it can be
2147 * logged and stay on word boundaries. We enforce
2148 * that here.
2149 */
2150 real_size = roundup(new_size, 4);
2151 if (ifp->if_u1.if_data == NULL) {
2152 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2153 ifp->if_u1.if_data = kmem_alloc(real_size,
2154 KM_SLEEP | KM_NOFS);
1da177e4
LT
2155 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2156 /*
2157 * Only do the realloc if the underlying size
2158 * is really changing.
2159 */
2160 if (ifp->if_real_bytes != real_size) {
2161 ifp->if_u1.if_data =
2162 kmem_realloc(ifp->if_u1.if_data,
2163 real_size,
2164 ifp->if_real_bytes,
4a7edddc 2165 KM_SLEEP | KM_NOFS);
1da177e4
LT
2166 }
2167 } else {
2168 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2169 ifp->if_u1.if_data = kmem_alloc(real_size,
2170 KM_SLEEP | KM_NOFS);
1da177e4
LT
2171 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2172 ifp->if_bytes);
2173 }
2174 }
2175 ifp->if_real_bytes = real_size;
2176 ifp->if_bytes = new_size;
2177 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2178}
2179
1da177e4
LT
2180void
2181xfs_idestroy_fork(
2182 xfs_inode_t *ip,
2183 int whichfork)
2184{
2185 xfs_ifork_t *ifp;
2186
2187 ifp = XFS_IFORK_PTR(ip, whichfork);
2188 if (ifp->if_broot != NULL) {
f0e2d93c 2189 kmem_free(ifp->if_broot);
1da177e4
LT
2190 ifp->if_broot = NULL;
2191 }
2192
2193 /*
2194 * If the format is local, then we can't have an extents
2195 * array so just look for an inline data array. If we're
2196 * not local then we may or may not have an extents list,
2197 * so check and free it up if we do.
2198 */
2199 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2200 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2201 (ifp->if_u1.if_data != NULL)) {
2202 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2203 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2204 ifp->if_u1.if_data = NULL;
2205 ifp->if_real_bytes = 0;
2206 }
2207 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2208 ((ifp->if_flags & XFS_IFEXTIREC) ||
2209 ((ifp->if_u1.if_extents != NULL) &&
2210 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2211 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2212 xfs_iext_destroy(ifp);
1da177e4
LT
2213 }
2214 ASSERT(ifp->if_u1.if_extents == NULL ||
2215 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2216 ASSERT(ifp->if_real_bytes == 0);
2217 if (whichfork == XFS_ATTR_FORK) {
2218 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2219 ip->i_afp = NULL;
2220 }
2221}
2222
1da177e4 2223/*
60ec6783
CH
2224 * This is called to unpin an inode. The caller must have the inode locked
2225 * in at least shared mode so that the buffer cannot be subsequently pinned
2226 * once someone is waiting for it to be unpinned.
1da177e4 2227 */
60ec6783 2228static void
f392e631 2229xfs_iunpin(
60ec6783 2230 struct xfs_inode *ip)
1da177e4 2231{
579aa9ca 2232 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2233
4aaf15d1
DC
2234 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2235
a3f74ffb 2236 /* Give the log a push to start the unpinning I/O */
60ec6783 2237 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2238
a3f74ffb 2239}
1da177e4 2240
f392e631
CH
2241static void
2242__xfs_iunpin_wait(
2243 struct xfs_inode *ip)
2244{
2245 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2246 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2247
2248 xfs_iunpin(ip);
2249
2250 do {
2251 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2252 if (xfs_ipincount(ip))
2253 io_schedule();
2254 } while (xfs_ipincount(ip));
2255 finish_wait(wq, &wait.wait);
2256}
2257
777df5af 2258void
a3f74ffb 2259xfs_iunpin_wait(
60ec6783 2260 struct xfs_inode *ip)
a3f74ffb 2261{
f392e631
CH
2262 if (xfs_ipincount(ip))
2263 __xfs_iunpin_wait(ip);
1da177e4
LT
2264}
2265
1da177e4
LT
2266/*
2267 * xfs_iextents_copy()
2268 *
2269 * This is called to copy the REAL extents (as opposed to the delayed
2270 * allocation extents) from the inode into the given buffer. It
2271 * returns the number of bytes copied into the buffer.
2272 *
2273 * If there are no delayed allocation extents, then we can just
2274 * memcpy() the extents into the buffer. Otherwise, we need to
2275 * examine each extent in turn and skip those which are delayed.
2276 */
2277int
2278xfs_iextents_copy(
2279 xfs_inode_t *ip,
a6f64d4a 2280 xfs_bmbt_rec_t *dp,
1da177e4
LT
2281 int whichfork)
2282{
2283 int copied;
1da177e4
LT
2284 int i;
2285 xfs_ifork_t *ifp;
2286 int nrecs;
2287 xfs_fsblock_t start_block;
2288
2289 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2290 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2291 ASSERT(ifp->if_bytes > 0);
2292
2293 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2294 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2295 ASSERT(nrecs > 0);
2296
2297 /*
2298 * There are some delayed allocation extents in the
2299 * inode, so copy the extents one at a time and skip
2300 * the delayed ones. There must be at least one
2301 * non-delayed extent.
2302 */
1da177e4
LT
2303 copied = 0;
2304 for (i = 0; i < nrecs; i++) {
a6f64d4a 2305 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4 2306 start_block = xfs_bmbt_get_startblock(ep);
9d87c319 2307 if (isnullstartblock(start_block)) {
1da177e4
LT
2308 /*
2309 * It's a delayed allocation extent, so skip it.
2310 */
1da177e4
LT
2311 continue;
2312 }
2313
2314 /* Translate to on disk format */
cd8b0a97
CH
2315 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2316 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2317 dp++;
1da177e4
LT
2318 copied++;
2319 }
2320 ASSERT(copied != 0);
a6f64d4a 2321 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2322
2323 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2324}
2325
2326/*
2327 * Each of the following cases stores data into the same region
2328 * of the on-disk inode, so only one of them can be valid at
2329 * any given time. While it is possible to have conflicting formats
2330 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2331 * in EXTENTS format, this can only happen when the fork has
2332 * changed formats after being modified but before being flushed.
2333 * In these cases, the format always takes precedence, because the
2334 * format indicates the current state of the fork.
2335 */
2336/*ARGSUSED*/
e4ac967b 2337STATIC void
1da177e4
LT
2338xfs_iflush_fork(
2339 xfs_inode_t *ip,
2340 xfs_dinode_t *dip,
2341 xfs_inode_log_item_t *iip,
2342 int whichfork,
2343 xfs_buf_t *bp)
2344{
2345 char *cp;
2346 xfs_ifork_t *ifp;
2347 xfs_mount_t *mp;
2348#ifdef XFS_TRANS_DEBUG
2349 int first;
2350#endif
2351 static const short brootflag[2] =
2352 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2353 static const short dataflag[2] =
2354 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2355 static const short extflag[2] =
2356 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2357
e4ac967b
DC
2358 if (!iip)
2359 return;
1da177e4
LT
2360 ifp = XFS_IFORK_PTR(ip, whichfork);
2361 /*
2362 * This can happen if we gave up in iformat in an error path,
2363 * for the attribute fork.
2364 */
e4ac967b 2365 if (!ifp) {
1da177e4 2366 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2367 return;
1da177e4
LT
2368 }
2369 cp = XFS_DFORK_PTR(dip, whichfork);
2370 mp = ip->i_mount;
2371 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2372 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 2373 if ((iip->ili_fields & dataflag[whichfork]) &&
1da177e4
LT
2374 (ifp->if_bytes > 0)) {
2375 ASSERT(ifp->if_u1.if_data != NULL);
2376 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2377 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2378 }
1da177e4
LT
2379 break;
2380
2381 case XFS_DINODE_FMT_EXTENTS:
2382 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
f5d8d5c4
CH
2383 !(iip->ili_fields & extflag[whichfork]));
2384 if ((iip->ili_fields & extflag[whichfork]) &&
1da177e4 2385 (ifp->if_bytes > 0)) {
ab1908a5 2386 ASSERT(xfs_iext_get_ext(ifp, 0));
1da177e4
LT
2387 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2388 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2389 whichfork);
2390 }
2391 break;
2392
2393 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 2394 if ((iip->ili_fields & brootflag[whichfork]) &&
1da177e4
LT
2395 (ifp->if_broot_bytes > 0)) {
2396 ASSERT(ifp->if_broot != NULL);
2397 ASSERT(ifp->if_broot_bytes <=
2398 (XFS_IFORK_SIZE(ip, whichfork) +
2399 XFS_BROOT_SIZE_ADJ));
60197e8d 2400 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2401 (xfs_bmdr_block_t *)cp,
2402 XFS_DFORK_SIZE(dip, mp, whichfork));
2403 }
2404 break;
2405
2406 case XFS_DINODE_FMT_DEV:
f5d8d5c4 2407 if (iip->ili_fields & XFS_ILOG_DEV) {
1da177e4 2408 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2409 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2410 }
2411 break;
2412
2413 case XFS_DINODE_FMT_UUID:
f5d8d5c4 2414 if (iip->ili_fields & XFS_ILOG_UUID) {
1da177e4 2415 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2416 memcpy(XFS_DFORK_DPTR(dip),
2417 &ip->i_df.if_u2.if_uuid,
2418 sizeof(uuid_t));
1da177e4
LT
2419 }
2420 break;
2421
2422 default:
2423 ASSERT(0);
2424 break;
2425 }
1da177e4
LT
2426}
2427
bad55843
DC
2428STATIC int
2429xfs_iflush_cluster(
2430 xfs_inode_t *ip,
2431 xfs_buf_t *bp)
2432{
2433 xfs_mount_t *mp = ip->i_mount;
5017e97d 2434 struct xfs_perag *pag;
bad55843 2435 unsigned long first_index, mask;
c8f5f12e 2436 unsigned long inodes_per_cluster;
bad55843
DC
2437 int ilist_size;
2438 xfs_inode_t **ilist;
2439 xfs_inode_t *iq;
bad55843
DC
2440 int nr_found;
2441 int clcount = 0;
2442 int bufwasdelwri;
2443 int i;
2444
5017e97d 2445 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
bad55843 2446
c8f5f12e
DC
2447 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2448 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2449 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843 2450 if (!ilist)
44b56e0a 2451 goto out_put;
bad55843
DC
2452
2453 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2454 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
1a3e8f3d 2455 rcu_read_lock();
bad55843
DC
2456 /* really need a gang lookup range call here */
2457 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2458 first_index, inodes_per_cluster);
bad55843
DC
2459 if (nr_found == 0)
2460 goto out_free;
2461
2462 for (i = 0; i < nr_found; i++) {
2463 iq = ilist[i];
2464 if (iq == ip)
2465 continue;
1a3e8f3d
DC
2466
2467 /*
2468 * because this is an RCU protected lookup, we could find a
2469 * recently freed or even reallocated inode during the lookup.
2470 * We need to check under the i_flags_lock for a valid inode
2471 * here. Skip it if it is not valid or the wrong inode.
2472 */
2473 spin_lock(&ip->i_flags_lock);
2474 if (!ip->i_ino ||
2475 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2476 spin_unlock(&ip->i_flags_lock);
2477 continue;
2478 }
2479 spin_unlock(&ip->i_flags_lock);
2480
bad55843
DC
2481 /*
2482 * Do an un-protected check to see if the inode is dirty and
2483 * is a candidate for flushing. These checks will be repeated
2484 * later after the appropriate locks are acquired.
2485 */
33540408 2486 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2487 continue;
bad55843
DC
2488
2489 /*
2490 * Try to get locks. If any are unavailable or it is pinned,
2491 * then this inode cannot be flushed and is skipped.
2492 */
2493
2494 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2495 continue;
2496 if (!xfs_iflock_nowait(iq)) {
2497 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2498 continue;
2499 }
2500 if (xfs_ipincount(iq)) {
2501 xfs_ifunlock(iq);
2502 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2503 continue;
2504 }
2505
2506 /*
2507 * arriving here means that this inode can be flushed. First
2508 * re-check that it's dirty before flushing.
2509 */
33540408
DC
2510 if (!xfs_inode_clean(iq)) {
2511 int error;
bad55843
DC
2512 error = xfs_iflush_int(iq, bp);
2513 if (error) {
2514 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2515 goto cluster_corrupt_out;
2516 }
2517 clcount++;
2518 } else {
2519 xfs_ifunlock(iq);
2520 }
2521 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2522 }
2523
2524 if (clcount) {
2525 XFS_STATS_INC(xs_icluster_flushcnt);
2526 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2527 }
2528
2529out_free:
1a3e8f3d 2530 rcu_read_unlock();
f0e2d93c 2531 kmem_free(ilist);
44b56e0a
DC
2532out_put:
2533 xfs_perag_put(pag);
bad55843
DC
2534 return 0;
2535
2536
2537cluster_corrupt_out:
2538 /*
2539 * Corruption detected in the clustering loop. Invalidate the
2540 * inode buffer and shut down the filesystem.
2541 */
1a3e8f3d 2542 rcu_read_unlock();
bad55843 2543 /*
43ff2122 2544 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
2545 * brelse can handle it with no problems. If not, shut down the
2546 * filesystem before releasing the buffer.
2547 */
43ff2122 2548 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
2549 if (bufwasdelwri)
2550 xfs_buf_relse(bp);
2551
2552 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2553
2554 if (!bufwasdelwri) {
2555 /*
2556 * Just like incore_relse: if we have b_iodone functions,
2557 * mark the buffer as an error and call them. Otherwise
2558 * mark it as stale and brelse.
2559 */
cb669ca5 2560 if (bp->b_iodone) {
bad55843 2561 XFS_BUF_UNDONE(bp);
c867cb61 2562 xfs_buf_stale(bp);
5a52c2a5 2563 xfs_buf_ioerror(bp, EIO);
1a1a3e97 2564 xfs_buf_ioend(bp, 0);
bad55843 2565 } else {
c867cb61 2566 xfs_buf_stale(bp);
bad55843
DC
2567 xfs_buf_relse(bp);
2568 }
2569 }
2570
2571 /*
2572 * Unlocks the flush lock
2573 */
04913fdd 2574 xfs_iflush_abort(iq, false);
f0e2d93c 2575 kmem_free(ilist);
44b56e0a 2576 xfs_perag_put(pag);
bad55843
DC
2577 return XFS_ERROR(EFSCORRUPTED);
2578}
2579
1da177e4 2580/*
4c46819a
CH
2581 * Flush dirty inode metadata into the backing buffer.
2582 *
2583 * The caller must have the inode lock and the inode flush lock held. The
2584 * inode lock will still be held upon return to the caller, and the inode
2585 * flush lock will be released after the inode has reached the disk.
2586 *
2587 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
2588 */
2589int
2590xfs_iflush(
4c46819a
CH
2591 struct xfs_inode *ip,
2592 struct xfs_buf **bpp)
1da177e4 2593{
4c46819a
CH
2594 struct xfs_mount *mp = ip->i_mount;
2595 struct xfs_buf *bp;
2596 struct xfs_dinode *dip;
1da177e4 2597 int error;
1da177e4
LT
2598
2599 XFS_STATS_INC(xs_iflush_count);
2600
579aa9ca 2601 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 2602 ASSERT(xfs_isiflocked(ip));
1da177e4 2603 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2604 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 2605
4c46819a 2606 *bpp = NULL;
1da177e4 2607
1da177e4
LT
2608 xfs_iunpin_wait(ip);
2609
4b6a4688
DC
2610 /*
2611 * For stale inodes we cannot rely on the backing buffer remaining
2612 * stale in cache for the remaining life of the stale inode and so
475ee413 2613 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
2614 * inodes below. We have to check this after ensuring the inode is
2615 * unpinned so that it is safe to reclaim the stale inode after the
2616 * flush call.
2617 */
2618 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2619 xfs_ifunlock(ip);
2620 return 0;
2621 }
2622
1da177e4
LT
2623 /*
2624 * This may have been unpinned because the filesystem is shutting
2625 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
2626 * to disk, because the log record didn't make it to disk.
2627 *
2628 * We also have to remove the log item from the AIL in this case,
2629 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
2630 */
2631 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
2632 error = XFS_ERROR(EIO);
2633 goto abort_out;
1da177e4
LT
2634 }
2635
a3f74ffb
DC
2636 /*
2637 * Get the buffer containing the on-disk inode.
2638 */
475ee413
CH
2639 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
2640 0);
a3f74ffb
DC
2641 if (error || !bp) {
2642 xfs_ifunlock(ip);
2643 return error;
2644 }
2645
1da177e4
LT
2646 /*
2647 * First flush out the inode that xfs_iflush was called with.
2648 */
2649 error = xfs_iflush_int(ip, bp);
bad55843 2650 if (error)
1da177e4 2651 goto corrupt_out;
1da177e4 2652
a3f74ffb
DC
2653 /*
2654 * If the buffer is pinned then push on the log now so we won't
2655 * get stuck waiting in the write for too long.
2656 */
811e64c7 2657 if (xfs_buf_ispinned(bp))
a14a348b 2658 xfs_log_force(mp, 0);
a3f74ffb 2659
1da177e4
LT
2660 /*
2661 * inode clustering:
2662 * see if other inodes can be gathered into this write
2663 */
bad55843
DC
2664 error = xfs_iflush_cluster(ip, bp);
2665 if (error)
2666 goto cluster_corrupt_out;
1da177e4 2667
4c46819a
CH
2668 *bpp = bp;
2669 return 0;
1da177e4
LT
2670
2671corrupt_out:
2672 xfs_buf_relse(bp);
7d04a335 2673 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 2674cluster_corrupt_out:
32ce90a4
CH
2675 error = XFS_ERROR(EFSCORRUPTED);
2676abort_out:
1da177e4
LT
2677 /*
2678 * Unlocks the flush lock
2679 */
04913fdd 2680 xfs_iflush_abort(ip, false);
32ce90a4 2681 return error;
1da177e4
LT
2682}
2683
2684
2685STATIC int
2686xfs_iflush_int(
2687 xfs_inode_t *ip,
2688 xfs_buf_t *bp)
2689{
2690 xfs_inode_log_item_t *iip;
2691 xfs_dinode_t *dip;
2692 xfs_mount_t *mp;
2693#ifdef XFS_TRANS_DEBUG
2694 int first;
2695#endif
1da177e4 2696
579aa9ca 2697 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 2698 ASSERT(xfs_isiflocked(ip));
1da177e4 2699 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2700 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4
LT
2701
2702 iip = ip->i_itemp;
2703 mp = ip->i_mount;
2704
1da177e4 2705 /* set *dip = inode's place in the buffer */
92bfc6e7 2706 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 2707
69ef921b 2708 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 2709 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
2710 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2711 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2712 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
2713 goto corrupt_out;
2714 }
2715 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2716 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
2717 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2718 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2719 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
2720 goto corrupt_out;
2721 }
abbede1b 2722 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
2723 if (XFS_TEST_ERROR(
2724 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2725 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2726 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
2727 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2728 "%s: Bad regular inode %Lu, ptr 0x%p",
2729 __func__, ip->i_ino, ip);
1da177e4
LT
2730 goto corrupt_out;
2731 }
abbede1b 2732 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
2733 if (XFS_TEST_ERROR(
2734 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2735 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2736 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2737 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
2738 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2739 "%s: Bad directory inode %Lu, ptr 0x%p",
2740 __func__, ip->i_ino, ip);
1da177e4
LT
2741 goto corrupt_out;
2742 }
2743 }
2744 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2745 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2746 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
2747 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2748 "%s: detected corrupt incore inode %Lu, "
2749 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2750 __func__, ip->i_ino,
1da177e4 2751 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 2752 ip->i_d.di_nblocks, ip);
1da177e4
LT
2753 goto corrupt_out;
2754 }
2755 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2756 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
2757 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2758 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2759 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
2760 goto corrupt_out;
2761 }
2762 /*
2763 * bump the flush iteration count, used to detect flushes which
2764 * postdate a log record during recovery.
2765 */
2766
2767 ip->i_d.di_flushiter++;
2768
2769 /*
2770 * Copy the dirty parts of the inode into the on-disk
2771 * inode. We always copy out the core of the inode,
2772 * because if the inode is dirty at all the core must
2773 * be.
2774 */
81591fe2 2775 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
2776
2777 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2778 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2779 ip->i_d.di_flushiter = 0;
2780
2781 /*
2782 * If this is really an old format inode and the superblock version
2783 * has not been updated to support only new format inodes, then
2784 * convert back to the old inode format. If the superblock version
2785 * has been updated, then make the conversion permanent.
2786 */
51ce16d5
CH
2787 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2788 if (ip->i_d.di_version == 1) {
62118709 2789 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
2790 /*
2791 * Convert it back.
2792 */
2793 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 2794 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
2795 } else {
2796 /*
2797 * The superblock version has already been bumped,
2798 * so just make the conversion to the new inode
2799 * format permanent.
2800 */
51ce16d5
CH
2801 ip->i_d.di_version = 2;
2802 dip->di_version = 2;
1da177e4 2803 ip->i_d.di_onlink = 0;
81591fe2 2804 dip->di_onlink = 0;
1da177e4 2805 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
2806 memset(&(dip->di_pad[0]), 0,
2807 sizeof(dip->di_pad));
6743099c 2808 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
2809 }
2810 }
2811
e4ac967b
DC
2812 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2813 if (XFS_IFORK_Q(ip))
2814 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
2815 xfs_inobp_check(mp, bp);
2816
2817 /*
f5d8d5c4
CH
2818 * We've recorded everything logged in the inode, so we'd like to clear
2819 * the ili_fields bits so we don't log and flush things unnecessarily.
2820 * However, we can't stop logging all this information until the data
2821 * we've copied into the disk buffer is written to disk. If we did we
2822 * might overwrite the copy of the inode in the log with all the data
2823 * after re-logging only part of it, and in the face of a crash we
2824 * wouldn't have all the data we need to recover.
1da177e4 2825 *
f5d8d5c4
CH
2826 * What we do is move the bits to the ili_last_fields field. When
2827 * logging the inode, these bits are moved back to the ili_fields field.
2828 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2829 * know that the information those bits represent is permanently on
2830 * disk. As long as the flush completes before the inode is logged
2831 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 2832 *
f5d8d5c4
CH
2833 * We can play with the ili_fields bits here, because the inode lock
2834 * must be held exclusively in order to set bits there and the flush
2835 * lock protects the ili_last_fields bits. Set ili_logged so the flush
2836 * done routine can tell whether or not to look in the AIL. Also, store
2837 * the current LSN of the inode so that we can tell whether the item has
2838 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
2839 * need the AIL lock, because it is a 64 bit value that cannot be read
2840 * atomically.
1da177e4 2841 */
f5d8d5c4
CH
2842 if (iip != NULL && iip->ili_fields != 0) {
2843 iip->ili_last_fields = iip->ili_fields;
2844 iip->ili_fields = 0;
1da177e4
LT
2845 iip->ili_logged = 1;
2846
7b2e2a31
DC
2847 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2848 &iip->ili_item.li_lsn);
1da177e4
LT
2849
2850 /*
2851 * Attach the function xfs_iflush_done to the inode's
2852 * buffer. This will remove the inode from the AIL
2853 * and unlock the inode's flush lock when the inode is
2854 * completely written to disk.
2855 */
ca30b2a7 2856 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 2857
adadbeef 2858 ASSERT(bp->b_fspriv != NULL);
cb669ca5 2859 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
2860 } else {
2861 /*
2862 * We're flushing an inode which is not in the AIL and has
8a9c9980 2863 * not been logged. For this case we can immediately drop
1da177e4
LT
2864 * the inode flush lock because we can avoid the whole
2865 * AIL state thing. It's OK to drop the flush lock now,
2866 * because we've already locked the buffer and to do anything
2867 * you really need both.
2868 */
2869 if (iip != NULL) {
2870 ASSERT(iip->ili_logged == 0);
2871 ASSERT(iip->ili_last_fields == 0);
2872 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2873 }
2874 xfs_ifunlock(ip);
2875 }
2876
2877 return 0;
2878
2879corrupt_out:
2880 return XFS_ERROR(EFSCORRUPTED);
2881}
2882
4eea22f0
MK
2883/*
2884 * Return a pointer to the extent record at file index idx.
2885 */
a6f64d4a 2886xfs_bmbt_rec_host_t *
4eea22f0
MK
2887xfs_iext_get_ext(
2888 xfs_ifork_t *ifp, /* inode fork pointer */
2889 xfs_extnum_t idx) /* index of target extent */
2890{
2891 ASSERT(idx >= 0);
87bef181
CH
2892 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2893
0293ce3a
MK
2894 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2895 return ifp->if_u1.if_ext_irec->er_extbuf;
2896 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2897 xfs_ext_irec_t *erp; /* irec pointer */
2898 int erp_idx = 0; /* irec index */
2899 xfs_extnum_t page_idx = idx; /* ext index in target list */
2900
2901 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2902 return &erp->er_extbuf[page_idx];
2903 } else if (ifp->if_bytes) {
4eea22f0
MK
2904 return &ifp->if_u1.if_extents[idx];
2905 } else {
2906 return NULL;
2907 }
2908}
2909
2910/*
2911 * Insert new item(s) into the extent records for incore inode
2912 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2913 */
2914void
2915xfs_iext_insert(
6ef35544 2916 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0
MK
2917 xfs_extnum_t idx, /* starting index of new items */
2918 xfs_extnum_t count, /* number of inserted items */
6ef35544
CH
2919 xfs_bmbt_irec_t *new, /* items to insert */
2920 int state) /* type of extent conversion */
4eea22f0 2921{
6ef35544 2922 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
2923 xfs_extnum_t i; /* extent record index */
2924
0b1b213f
CH
2925 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2926
4eea22f0
MK
2927 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2928 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
2929 for (i = idx; i < idx + count; i++, new++)
2930 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
2931}
2932
2933/*
2934 * This is called when the amount of space required for incore file
2935 * extents needs to be increased. The ext_diff parameter stores the
2936 * number of new extents being added and the idx parameter contains
2937 * the extent index where the new extents will be added. If the new
2938 * extents are being appended, then we just need to (re)allocate and
2939 * initialize the space. Otherwise, if the new extents are being
2940 * inserted into the middle of the existing entries, a bit more work
2941 * is required to make room for the new extents to be inserted. The
2942 * caller is responsible for filling in the new extent entries upon
2943 * return.
2944 */
2945void
2946xfs_iext_add(
2947 xfs_ifork_t *ifp, /* inode fork pointer */
2948 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 2949 int ext_diff) /* number of extents to add */
4eea22f0
MK
2950{
2951 int byte_diff; /* new bytes being added */
2952 int new_size; /* size of extents after adding */
2953 xfs_extnum_t nextents; /* number of extents in file */
2954
2955 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2956 ASSERT((idx >= 0) && (idx <= nextents));
2957 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2958 new_size = ifp->if_bytes + byte_diff;
2959 /*
2960 * If the new number of extents (nextents + ext_diff)
2961 * fits inside the inode, then continue to use the inline
2962 * extent buffer.
2963 */
2964 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2965 if (idx < nextents) {
2966 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2967 &ifp->if_u2.if_inline_ext[idx],
2968 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2969 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2970 }
2971 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2972 ifp->if_real_bytes = 0;
2973 }
2974 /*
2975 * Otherwise use a linear (direct) extent list.
2976 * If the extents are currently inside the inode,
2977 * xfs_iext_realloc_direct will switch us from
2978 * inline to direct extent allocation mode.
2979 */
0293ce3a 2980 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
2981 xfs_iext_realloc_direct(ifp, new_size);
2982 if (idx < nextents) {
2983 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2984 &ifp->if_u1.if_extents[idx],
2985 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2986 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2987 }
2988 }
0293ce3a
MK
2989 /* Indirection array */
2990 else {
2991 xfs_ext_irec_t *erp;
2992 int erp_idx = 0;
2993 int page_idx = idx;
2994
2995 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2996 if (ifp->if_flags & XFS_IFEXTIREC) {
2997 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2998 } else {
2999 xfs_iext_irec_init(ifp);
3000 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3001 erp = ifp->if_u1.if_ext_irec;
3002 }
3003 /* Extents fit in target extent page */
3004 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3005 if (page_idx < erp->er_extcount) {
3006 memmove(&erp->er_extbuf[page_idx + ext_diff],
3007 &erp->er_extbuf[page_idx],
3008 (erp->er_extcount - page_idx) *
3009 sizeof(xfs_bmbt_rec_t));
3010 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3011 }
3012 erp->er_extcount += ext_diff;
3013 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3014 }
3015 /* Insert a new extent page */
3016 else if (erp) {
3017 xfs_iext_add_indirect_multi(ifp,
3018 erp_idx, page_idx, ext_diff);
3019 }
3020 /*
3021 * If extent(s) are being appended to the last page in
3022 * the indirection array and the new extent(s) don't fit
3023 * in the page, then erp is NULL and erp_idx is set to
3024 * the next index needed in the indirection array.
3025 */
3026 else {
3027 int count = ext_diff;
3028
3029 while (count) {
3030 erp = xfs_iext_irec_new(ifp, erp_idx);
3031 erp->er_extcount = count;
3032 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3033 if (count) {
3034 erp_idx++;
3035 }
3036 }
3037 }
3038 }
4eea22f0
MK
3039 ifp->if_bytes = new_size;
3040}
3041
0293ce3a
MK
3042/*
3043 * This is called when incore extents are being added to the indirection
3044 * array and the new extents do not fit in the target extent list. The
3045 * erp_idx parameter contains the irec index for the target extent list
3046 * in the indirection array, and the idx parameter contains the extent
3047 * index within the list. The number of extents being added is stored
3048 * in the count parameter.
3049 *
3050 * |-------| |-------|
3051 * | | | | idx - number of extents before idx
3052 * | idx | | count |
3053 * | | | | count - number of extents being inserted at idx
3054 * |-------| |-------|
3055 * | count | | nex2 | nex2 - number of extents after idx + count
3056 * |-------| |-------|
3057 */
3058void
3059xfs_iext_add_indirect_multi(
3060 xfs_ifork_t *ifp, /* inode fork pointer */
3061 int erp_idx, /* target extent irec index */
3062 xfs_extnum_t idx, /* index within target list */
3063 int count) /* new extents being added */
3064{
3065 int byte_diff; /* new bytes being added */
3066 xfs_ext_irec_t *erp; /* pointer to irec entry */
3067 xfs_extnum_t ext_diff; /* number of extents to add */
3068 xfs_extnum_t ext_cnt; /* new extents still needed */
3069 xfs_extnum_t nex2; /* extents after idx + count */
3070 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3071 int nlists; /* number of irec's (lists) */
3072
3073 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3074 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3075 nex2 = erp->er_extcount - idx;
3076 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3077
3078 /*
3079 * Save second part of target extent list
3080 * (all extents past */
3081 if (nex2) {
3082 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3083 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3084 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3085 erp->er_extcount -= nex2;
3086 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3087 memset(&erp->er_extbuf[idx], 0, byte_diff);
3088 }
3089
3090 /*
3091 * Add the new extents to the end of the target
3092 * list, then allocate new irec record(s) and
3093 * extent buffer(s) as needed to store the rest
3094 * of the new extents.
3095 */
3096 ext_cnt = count;
3097 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3098 if (ext_diff) {
3099 erp->er_extcount += ext_diff;
3100 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3101 ext_cnt -= ext_diff;
3102 }
3103 while (ext_cnt) {
3104 erp_idx++;
3105 erp = xfs_iext_irec_new(ifp, erp_idx);
3106 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3107 erp->er_extcount = ext_diff;
3108 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3109 ext_cnt -= ext_diff;
3110 }
3111
3112 /* Add nex2 extents back to indirection array */
3113 if (nex2) {
3114 xfs_extnum_t ext_avail;
3115 int i;
3116
3117 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3118 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3119 i = 0;
3120 /*
3121 * If nex2 extents fit in the current page, append
3122 * nex2_ep after the new extents.
3123 */
3124 if (nex2 <= ext_avail) {
3125 i = erp->er_extcount;
3126 }
3127 /*
3128 * Otherwise, check if space is available in the
3129 * next page.
3130 */
3131 else if ((erp_idx < nlists - 1) &&
3132 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3133 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3134 erp_idx++;
3135 erp++;
3136 /* Create a hole for nex2 extents */
3137 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3138 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3139 }
3140 /*
3141 * Final choice, create a new extent page for
3142 * nex2 extents.
3143 */
3144 else {
3145 erp_idx++;
3146 erp = xfs_iext_irec_new(ifp, erp_idx);
3147 }
3148 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3149 kmem_free(nex2_ep);
0293ce3a
MK
3150 erp->er_extcount += nex2;
3151 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3152 }
3153}
3154
4eea22f0
MK
3155/*
3156 * This is called when the amount of space required for incore file
3157 * extents needs to be decreased. The ext_diff parameter stores the
3158 * number of extents to be removed and the idx parameter contains
3159 * the extent index where the extents will be removed from.
0293ce3a
MK
3160 *
3161 * If the amount of space needed has decreased below the linear
3162 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3163 * extent array. Otherwise, use kmem_realloc() to adjust the
3164 * size to what is needed.
4eea22f0
MK
3165 */
3166void
3167xfs_iext_remove(
6ef35544 3168 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0 3169 xfs_extnum_t idx, /* index to begin removing exts */
6ef35544
CH
3170 int ext_diff, /* number of extents to remove */
3171 int state) /* type of extent conversion */
4eea22f0 3172{
6ef35544 3173 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3174 xfs_extnum_t nextents; /* number of extents in file */
3175 int new_size; /* size of extents after removal */
3176
0b1b213f
CH
3177 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3178
4eea22f0
MK
3179 ASSERT(ext_diff > 0);
3180 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3181 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3182
3183 if (new_size == 0) {
3184 xfs_iext_destroy(ifp);
0293ce3a
MK
3185 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3186 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3187 } else if (ifp->if_real_bytes) {
3188 xfs_iext_remove_direct(ifp, idx, ext_diff);
3189 } else {
3190 xfs_iext_remove_inline(ifp, idx, ext_diff);
3191 }
3192 ifp->if_bytes = new_size;
3193}
3194
3195/*
3196 * This removes ext_diff extents from the inline buffer, beginning
3197 * at extent index idx.
3198 */
3199void
3200xfs_iext_remove_inline(
3201 xfs_ifork_t *ifp, /* inode fork pointer */
3202 xfs_extnum_t idx, /* index to begin removing exts */
3203 int ext_diff) /* number of extents to remove */
3204{
3205 int nextents; /* number of extents in file */
3206
0293ce3a 3207 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3208 ASSERT(idx < XFS_INLINE_EXTS);
3209 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3210 ASSERT(((nextents - ext_diff) > 0) &&
3211 (nextents - ext_diff) < XFS_INLINE_EXTS);
3212
3213 if (idx + ext_diff < nextents) {
3214 memmove(&ifp->if_u2.if_inline_ext[idx],
3215 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3216 (nextents - (idx + ext_diff)) *
3217 sizeof(xfs_bmbt_rec_t));
3218 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3219 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3220 } else {
3221 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3222 ext_diff * sizeof(xfs_bmbt_rec_t));
3223 }
3224}
3225
3226/*
3227 * This removes ext_diff extents from a linear (direct) extent list,
3228 * beginning at extent index idx. If the extents are being removed
3229 * from the end of the list (ie. truncate) then we just need to re-
3230 * allocate the list to remove the extra space. Otherwise, if the
3231 * extents are being removed from the middle of the existing extent
3232 * entries, then we first need to move the extent records beginning
3233 * at idx + ext_diff up in the list to overwrite the records being
3234 * removed, then remove the extra space via kmem_realloc.
3235 */
3236void
3237xfs_iext_remove_direct(
3238 xfs_ifork_t *ifp, /* inode fork pointer */
3239 xfs_extnum_t idx, /* index to begin removing exts */
3240 int ext_diff) /* number of extents to remove */
3241{
3242 xfs_extnum_t nextents; /* number of extents in file */
3243 int new_size; /* size of extents after removal */
3244
0293ce3a 3245 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3246 new_size = ifp->if_bytes -
3247 (ext_diff * sizeof(xfs_bmbt_rec_t));
3248 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3249
3250 if (new_size == 0) {
3251 xfs_iext_destroy(ifp);
3252 return;
3253 }
3254 /* Move extents up in the list (if needed) */
3255 if (idx + ext_diff < nextents) {
3256 memmove(&ifp->if_u1.if_extents[idx],
3257 &ifp->if_u1.if_extents[idx + ext_diff],
3258 (nextents - (idx + ext_diff)) *
3259 sizeof(xfs_bmbt_rec_t));
3260 }
3261 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3262 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3263 /*
3264 * Reallocate the direct extent list. If the extents
3265 * will fit inside the inode then xfs_iext_realloc_direct
3266 * will switch from direct to inline extent allocation
3267 * mode for us.
3268 */
3269 xfs_iext_realloc_direct(ifp, new_size);
3270 ifp->if_bytes = new_size;
3271}
3272
0293ce3a
MK
3273/*
3274 * This is called when incore extents are being removed from the
3275 * indirection array and the extents being removed span multiple extent
3276 * buffers. The idx parameter contains the file extent index where we
3277 * want to begin removing extents, and the count parameter contains
3278 * how many extents need to be removed.
3279 *
3280 * |-------| |-------|
3281 * | nex1 | | | nex1 - number of extents before idx
3282 * |-------| | count |
3283 * | | | | count - number of extents being removed at idx
3284 * | count | |-------|
3285 * | | | nex2 | nex2 - number of extents after idx + count
3286 * |-------| |-------|
3287 */
3288void
3289xfs_iext_remove_indirect(
3290 xfs_ifork_t *ifp, /* inode fork pointer */
3291 xfs_extnum_t idx, /* index to begin removing extents */
3292 int count) /* number of extents to remove */
3293{
3294 xfs_ext_irec_t *erp; /* indirection array pointer */
3295 int erp_idx = 0; /* indirection array index */
3296 xfs_extnum_t ext_cnt; /* extents left to remove */
3297 xfs_extnum_t ext_diff; /* extents to remove in current list */
3298 xfs_extnum_t nex1; /* number of extents before idx */
3299 xfs_extnum_t nex2; /* extents after idx + count */
0293ce3a
MK
3300 int page_idx = idx; /* index in target extent list */
3301
3302 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3303 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3304 ASSERT(erp != NULL);
0293ce3a
MK
3305 nex1 = page_idx;
3306 ext_cnt = count;
3307 while (ext_cnt) {
3308 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3309 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3310 /*
3311 * Check for deletion of entire list;
3312 * xfs_iext_irec_remove() updates extent offsets.
3313 */
3314 if (ext_diff == erp->er_extcount) {
3315 xfs_iext_irec_remove(ifp, erp_idx);
3316 ext_cnt -= ext_diff;
3317 nex1 = 0;
3318 if (ext_cnt) {
3319 ASSERT(erp_idx < ifp->if_real_bytes /
3320 XFS_IEXT_BUFSZ);
3321 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3322 nex1 = 0;
3323 continue;
3324 } else {
3325 break;
3326 }
3327 }
3328 /* Move extents up (if needed) */
3329 if (nex2) {
3330 memmove(&erp->er_extbuf[nex1],
3331 &erp->er_extbuf[nex1 + ext_diff],
3332 nex2 * sizeof(xfs_bmbt_rec_t));
3333 }
3334 /* Zero out rest of page */
3335 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3336 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3337 /* Update remaining counters */
3338 erp->er_extcount -= ext_diff;
3339 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3340 ext_cnt -= ext_diff;
3341 nex1 = 0;
3342 erp_idx++;
3343 erp++;
3344 }
3345 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3346 xfs_iext_irec_compact(ifp);
3347}
3348
4eea22f0
MK
3349/*
3350 * Create, destroy, or resize a linear (direct) block of extents.
3351 */
3352void
3353xfs_iext_realloc_direct(
3354 xfs_ifork_t *ifp, /* inode fork pointer */
3355 int new_size) /* new size of extents */
3356{
3357 int rnew_size; /* real new size of extents */
3358
3359 rnew_size = new_size;
3360
0293ce3a
MK
3361 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3362 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3363 (new_size != ifp->if_real_bytes)));
3364
4eea22f0
MK
3365 /* Free extent records */
3366 if (new_size == 0) {
3367 xfs_iext_destroy(ifp);
3368 }
3369 /* Resize direct extent list and zero any new bytes */
3370 else if (ifp->if_real_bytes) {
3371 /* Check if extents will fit inside the inode */
3372 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3373 xfs_iext_direct_to_inline(ifp, new_size /
3374 (uint)sizeof(xfs_bmbt_rec_t));
3375 ifp->if_bytes = new_size;
3376 return;
3377 }
16a087d8 3378 if (!is_power_of_2(new_size)){
40ebd81d 3379 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3380 }
3381 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3382 ifp->if_u1.if_extents =
4eea22f0
MK
3383 kmem_realloc(ifp->if_u1.if_extents,
3384 rnew_size,
6785073b 3385 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3386 }
3387 if (rnew_size > ifp->if_real_bytes) {
3388 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3389 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3390 rnew_size - ifp->if_real_bytes);
3391 }
3392 }
3393 /*
3394 * Switch from the inline extent buffer to a direct
3395 * extent list. Be sure to include the inline extent
3396 * bytes in new_size.
3397 */
3398 else {
3399 new_size += ifp->if_bytes;
16a087d8 3400 if (!is_power_of_2(new_size)) {
40ebd81d 3401 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3402 }
3403 xfs_iext_inline_to_direct(ifp, rnew_size);
3404 }
3405 ifp->if_real_bytes = rnew_size;
3406 ifp->if_bytes = new_size;
3407}
3408
3409/*
3410 * Switch from linear (direct) extent records to inline buffer.
3411 */
3412void
3413xfs_iext_direct_to_inline(
3414 xfs_ifork_t *ifp, /* inode fork pointer */
3415 xfs_extnum_t nextents) /* number of extents in file */
3416{
3417 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3418 ASSERT(nextents <= XFS_INLINE_EXTS);
3419 /*
3420 * The inline buffer was zeroed when we switched
3421 * from inline to direct extent allocation mode,
3422 * so we don't need to clear it here.
3423 */
3424 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3425 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3426 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3427 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3428 ifp->if_real_bytes = 0;
3429}
3430
3431/*
3432 * Switch from inline buffer to linear (direct) extent records.
3433 * new_size should already be rounded up to the next power of 2
3434 * by the caller (when appropriate), so use new_size as it is.
3435 * However, since new_size may be rounded up, we can't update
3436 * if_bytes here. It is the caller's responsibility to update
3437 * if_bytes upon return.
3438 */
3439void
3440xfs_iext_inline_to_direct(
3441 xfs_ifork_t *ifp, /* inode fork pointer */
3442 int new_size) /* number of extents in file */
3443{
6785073b 3444 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3445 memset(ifp->if_u1.if_extents, 0, new_size);
3446 if (ifp->if_bytes) {
3447 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3448 ifp->if_bytes);
3449 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3450 sizeof(xfs_bmbt_rec_t));
3451 }
3452 ifp->if_real_bytes = new_size;
3453}
3454
0293ce3a
MK
3455/*
3456 * Resize an extent indirection array to new_size bytes.
3457 */
d96f8f89 3458STATIC void
0293ce3a
MK
3459xfs_iext_realloc_indirect(
3460 xfs_ifork_t *ifp, /* inode fork pointer */
3461 int new_size) /* new indirection array size */
3462{
3463 int nlists; /* number of irec's (ex lists) */
3464 int size; /* current indirection array size */
3465
3466 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3467 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3468 size = nlists * sizeof(xfs_ext_irec_t);
3469 ASSERT(ifp->if_real_bytes);
3470 ASSERT((new_size >= 0) && (new_size != size));
3471 if (new_size == 0) {
3472 xfs_iext_destroy(ifp);
3473 } else {
3474 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3475 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3476 new_size, size, KM_NOFS);
0293ce3a
MK
3477 }
3478}
3479
3480/*
3481 * Switch from indirection array to linear (direct) extent allocations.
3482 */
d96f8f89 3483STATIC void
0293ce3a
MK
3484xfs_iext_indirect_to_direct(
3485 xfs_ifork_t *ifp) /* inode fork pointer */
3486{
a6f64d4a 3487 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
3488 xfs_extnum_t nextents; /* number of extents in file */
3489 int size; /* size of file extents */
3490
3491 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3492 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3493 ASSERT(nextents <= XFS_LINEAR_EXTS);
3494 size = nextents * sizeof(xfs_bmbt_rec_t);
3495
71a8c87f 3496 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
3497 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3498
3499 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 3500 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3501 ifp->if_flags &= ~XFS_IFEXTIREC;
3502 ifp->if_u1.if_extents = ep;
3503 ifp->if_bytes = size;
3504 if (nextents < XFS_LINEAR_EXTS) {
3505 xfs_iext_realloc_direct(ifp, size);
3506 }
3507}
3508
4eea22f0
MK
3509/*
3510 * Free incore file extents.
3511 */
3512void
3513xfs_iext_destroy(
3514 xfs_ifork_t *ifp) /* inode fork pointer */
3515{
0293ce3a
MK
3516 if (ifp->if_flags & XFS_IFEXTIREC) {
3517 int erp_idx;
3518 int nlists;
3519
3520 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3521 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3522 xfs_iext_irec_remove(ifp, erp_idx);
3523 }
3524 ifp->if_flags &= ~XFS_IFEXTIREC;
3525 } else if (ifp->if_real_bytes) {
f0e2d93c 3526 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3527 } else if (ifp->if_bytes) {
3528 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3529 sizeof(xfs_bmbt_rec_t));
3530 }
3531 ifp->if_u1.if_extents = NULL;
3532 ifp->if_real_bytes = 0;
3533 ifp->if_bytes = 0;
3534}
0293ce3a 3535
8867bc9b
MK
3536/*
3537 * Return a pointer to the extent record for file system block bno.
3538 */
a6f64d4a 3539xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
3540xfs_iext_bno_to_ext(
3541 xfs_ifork_t *ifp, /* inode fork pointer */
3542 xfs_fileoff_t bno, /* block number to search for */
3543 xfs_extnum_t *idxp) /* index of target extent */
3544{
a6f64d4a 3545 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 3546 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 3547 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 3548 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 3549 int high; /* upper boundary in search */
8867bc9b 3550 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 3551 int low; /* lower boundary in search */
8867bc9b
MK
3552 xfs_extnum_t nextents; /* number of file extents */
3553 xfs_fileoff_t startoff = 0; /* start offset of extent */
3554
3555 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3556 if (nextents == 0) {
3557 *idxp = 0;
3558 return NULL;
3559 }
3560 low = 0;
3561 if (ifp->if_flags & XFS_IFEXTIREC) {
3562 /* Find target extent list */
3563 int erp_idx = 0;
3564 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3565 base = erp->er_extbuf;
3566 high = erp->er_extcount - 1;
3567 } else {
3568 base = ifp->if_u1.if_extents;
3569 high = nextents - 1;
3570 }
3571 /* Binary search extent records */
3572 while (low <= high) {
3573 idx = (low + high) >> 1;
3574 ep = base + idx;
3575 startoff = xfs_bmbt_get_startoff(ep);
3576 blockcount = xfs_bmbt_get_blockcount(ep);
3577 if (bno < startoff) {
3578 high = idx - 1;
3579 } else if (bno >= startoff + blockcount) {
3580 low = idx + 1;
3581 } else {
3582 /* Convert back to file-based extent index */
3583 if (ifp->if_flags & XFS_IFEXTIREC) {
3584 idx += erp->er_extoff;
3585 }
3586 *idxp = idx;
3587 return ep;
3588 }
3589 }
3590 /* Convert back to file-based extent index */
3591 if (ifp->if_flags & XFS_IFEXTIREC) {
3592 idx += erp->er_extoff;
3593 }
3594 if (bno >= startoff + blockcount) {
3595 if (++idx == nextents) {
3596 ep = NULL;
3597 } else {
3598 ep = xfs_iext_get_ext(ifp, idx);
3599 }
3600 }
3601 *idxp = idx;
3602 return ep;
3603}
3604
0293ce3a
MK
3605/*
3606 * Return a pointer to the indirection array entry containing the
3607 * extent record for filesystem block bno. Store the index of the
3608 * target irec in *erp_idxp.
3609 */
8867bc9b 3610xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
3611xfs_iext_bno_to_irec(
3612 xfs_ifork_t *ifp, /* inode fork pointer */
3613 xfs_fileoff_t bno, /* block number to search for */
3614 int *erp_idxp) /* irec index of target ext list */
3615{
3616 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3617 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 3618 int erp_idx; /* indirection array index */
0293ce3a
MK
3619 int nlists; /* number of extent irec's (lists) */
3620 int high; /* binary search upper limit */
3621 int low; /* binary search lower limit */
3622
3623 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3624 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3625 erp_idx = 0;
3626 low = 0;
3627 high = nlists - 1;
3628 while (low <= high) {
3629 erp_idx = (low + high) >> 1;
3630 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3631 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3632 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3633 high = erp_idx - 1;
3634 } else if (erp_next && bno >=
3635 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3636 low = erp_idx + 1;
3637 } else {
3638 break;
3639 }
3640 }
3641 *erp_idxp = erp_idx;
3642 return erp;
3643}
3644
3645/*
3646 * Return a pointer to the indirection array entry containing the
3647 * extent record at file extent index *idxp. Store the index of the
3648 * target irec in *erp_idxp and store the page index of the target
3649 * extent record in *idxp.
3650 */
3651xfs_ext_irec_t *
3652xfs_iext_idx_to_irec(
3653 xfs_ifork_t *ifp, /* inode fork pointer */
3654 xfs_extnum_t *idxp, /* extent index (file -> page) */
3655 int *erp_idxp, /* pointer to target irec */
3656 int realloc) /* new bytes were just added */
3657{
3658 xfs_ext_irec_t *prev; /* pointer to previous irec */
3659 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3660 int erp_idx; /* indirection array index */
3661 int nlists; /* number of irec's (ex lists) */
3662 int high; /* binary search upper limit */
3663 int low; /* binary search lower limit */
3664 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3665
3666 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
87bef181
CH
3667 ASSERT(page_idx >= 0);
3668 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3669 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3670
0293ce3a
MK
3671 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3672 erp_idx = 0;
3673 low = 0;
3674 high = nlists - 1;
3675
3676 /* Binary search extent irec's */
3677 while (low <= high) {
3678 erp_idx = (low + high) >> 1;
3679 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3680 prev = erp_idx > 0 ? erp - 1 : NULL;
3681 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3682 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3683 high = erp_idx - 1;
3684 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3685 (page_idx == erp->er_extoff + erp->er_extcount &&
3686 !realloc)) {
3687 low = erp_idx + 1;
3688 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3689 erp->er_extcount == XFS_LINEAR_EXTS) {
3690 ASSERT(realloc);
3691 page_idx = 0;
3692 erp_idx++;
3693 erp = erp_idx < nlists ? erp + 1 : NULL;
3694 break;
3695 } else {
3696 page_idx -= erp->er_extoff;
3697 break;
3698 }
3699 }
3700 *idxp = page_idx;
3701 *erp_idxp = erp_idx;
3702 return(erp);
3703}
3704
3705/*
3706 * Allocate and initialize an indirection array once the space needed
3707 * for incore extents increases above XFS_IEXT_BUFSZ.
3708 */
3709void
3710xfs_iext_irec_init(
3711 xfs_ifork_t *ifp) /* inode fork pointer */
3712{
3713 xfs_ext_irec_t *erp; /* indirection array pointer */
3714 xfs_extnum_t nextents; /* number of extents in file */
3715
3716 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3717 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3718 ASSERT(nextents <= XFS_LINEAR_EXTS);
3719
6785073b 3720 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
3721
3722 if (nextents == 0) {
6785073b 3723 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3724 } else if (!ifp->if_real_bytes) {
3725 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3726 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3727 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3728 }
3729 erp->er_extbuf = ifp->if_u1.if_extents;
3730 erp->er_extcount = nextents;
3731 erp->er_extoff = 0;
3732
3733 ifp->if_flags |= XFS_IFEXTIREC;
3734 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3735 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3736 ifp->if_u1.if_ext_irec = erp;
3737
3738 return;
3739}
3740
3741/*
3742 * Allocate and initialize a new entry in the indirection array.
3743 */
3744xfs_ext_irec_t *
3745xfs_iext_irec_new(
3746 xfs_ifork_t *ifp, /* inode fork pointer */
3747 int erp_idx) /* index for new irec */
3748{
3749 xfs_ext_irec_t *erp; /* indirection array pointer */
3750 int i; /* loop counter */
3751 int nlists; /* number of irec's (ex lists) */
3752
3753 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3754 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3755
3756 /* Resize indirection array */
3757 xfs_iext_realloc_indirect(ifp, ++nlists *
3758 sizeof(xfs_ext_irec_t));
3759 /*
3760 * Move records down in the array so the
3761 * new page can use erp_idx.
3762 */
3763 erp = ifp->if_u1.if_ext_irec;
3764 for (i = nlists - 1; i > erp_idx; i--) {
3765 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3766 }
3767 ASSERT(i == erp_idx);
3768
3769 /* Initialize new extent record */
3770 erp = ifp->if_u1.if_ext_irec;
6785073b 3771 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3772 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3773 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3774 erp[erp_idx].er_extcount = 0;
3775 erp[erp_idx].er_extoff = erp_idx > 0 ?
3776 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3777 return (&erp[erp_idx]);
3778}
3779
3780/*
3781 * Remove a record from the indirection array.
3782 */
3783void
3784xfs_iext_irec_remove(
3785 xfs_ifork_t *ifp, /* inode fork pointer */
3786 int erp_idx) /* irec index to remove */
3787{
3788 xfs_ext_irec_t *erp; /* indirection array pointer */
3789 int i; /* loop counter */
3790 int nlists; /* number of irec's (ex lists) */
3791
3792 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3793 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3794 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3795 if (erp->er_extbuf) {
3796 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3797 -erp->er_extcount);
f0e2d93c 3798 kmem_free(erp->er_extbuf);
0293ce3a
MK
3799 }
3800 /* Compact extent records */
3801 erp = ifp->if_u1.if_ext_irec;
3802 for (i = erp_idx; i < nlists - 1; i++) {
3803 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3804 }
3805 /*
3806 * Manually free the last extent record from the indirection
3807 * array. A call to xfs_iext_realloc_indirect() with a size
3808 * of zero would result in a call to xfs_iext_destroy() which
3809 * would in turn call this function again, creating a nasty
3810 * infinite loop.
3811 */
3812 if (--nlists) {
3813 xfs_iext_realloc_indirect(ifp,
3814 nlists * sizeof(xfs_ext_irec_t));
3815 } else {
f0e2d93c 3816 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3817 }
3818 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3819}
3820
3821/*
3822 * This is called to clean up large amounts of unused memory allocated
3823 * by the indirection array. Before compacting anything though, verify
3824 * that the indirection array is still needed and switch back to the
3825 * linear extent list (or even the inline buffer) if possible. The
3826 * compaction policy is as follows:
3827 *
3828 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 3829 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
3830 * No Compaction: Extents occupy at least 50% of allocated space
3831 */
3832void
3833xfs_iext_irec_compact(
3834 xfs_ifork_t *ifp) /* inode fork pointer */
3835{
3836 xfs_extnum_t nextents; /* number of extents in file */
3837 int nlists; /* number of irec's (ex lists) */
3838
3839 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3840 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3841 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3842
3843 if (nextents == 0) {
3844 xfs_iext_destroy(ifp);
3845 } else if (nextents <= XFS_INLINE_EXTS) {
3846 xfs_iext_indirect_to_direct(ifp);
3847 xfs_iext_direct_to_inline(ifp, nextents);
3848 } else if (nextents <= XFS_LINEAR_EXTS) {
3849 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
3850 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3851 xfs_iext_irec_compact_pages(ifp);
3852 }
3853}
3854
3855/*
3856 * Combine extents from neighboring extent pages.
3857 */
3858void
3859xfs_iext_irec_compact_pages(
3860 xfs_ifork_t *ifp) /* inode fork pointer */
3861{
3862 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3863 int erp_idx = 0; /* indirection array index */
3864 int nlists; /* number of irec's (ex lists) */
3865
3866 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3867 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3868 while (erp_idx < nlists - 1) {
3869 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3870 erp_next = erp + 1;
3871 if (erp_next->er_extcount <=
3872 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 3873 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
3874 erp_next->er_extbuf, erp_next->er_extcount *
3875 sizeof(xfs_bmbt_rec_t));
3876 erp->er_extcount += erp_next->er_extcount;
3877 /*
3878 * Free page before removing extent record
3879 * so er_extoffs don't get modified in
3880 * xfs_iext_irec_remove.
3881 */
f0e2d93c 3882 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
3883 erp_next->er_extbuf = NULL;
3884 xfs_iext_irec_remove(ifp, erp_idx + 1);
3885 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3886 } else {
3887 erp_idx++;
3888 }
3889 }
3890}
3891
0293ce3a
MK
3892/*
3893 * This is called to update the er_extoff field in the indirection
3894 * array when extents have been added or removed from one of the
3895 * extent lists. erp_idx contains the irec index to begin updating
3896 * at and ext_diff contains the number of extents that were added
3897 * or removed.
3898 */
3899void
3900xfs_iext_irec_update_extoffs(
3901 xfs_ifork_t *ifp, /* inode fork pointer */
3902 int erp_idx, /* irec index to update */
3903 int ext_diff) /* number of new extents */
3904{
3905 int i; /* loop counter */
3906 int nlists; /* number of irec's (ex lists */
3907
3908 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3909 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3910 for (i = erp_idx; i < nlists; i++) {
3911 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3912 }
3913}
This page took 0.763466 seconds and 5 git commands to generate.