xfs: add CRC checks for quota blocks
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
1da177e4 23#include "xfs_log.h"
a844f451 24#include "xfs_inum.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4 29#include "xfs_mount.h"
1da177e4 30#include "xfs_bmap_btree.h"
a844f451 31#include "xfs_alloc_btree.h"
1da177e4 32#include "xfs_ialloc_btree.h"
a844f451 33#include "xfs_attr_sf.h"
1da177e4 34#include "xfs_dinode.h"
1da177e4 35#include "xfs_inode.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451
NS
37#include "xfs_inode_item.h"
38#include "xfs_btree.h"
39#include "xfs_alloc.h"
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
1da177e4 42#include "xfs_error.h"
1da177e4 43#include "xfs_utils.h"
1da177e4 44#include "xfs_quota.h"
2a82b8be 45#include "xfs_filestream.h"
739bfb2a 46#include "xfs_vnodeops.h"
0b1b213f 47#include "xfs_trace.h"
33479e05 48#include "xfs_icache.h"
1da177e4 49
1da177e4
LT
50kmem_zone_t *xfs_ifork_zone;
51kmem_zone_t *xfs_inode_zone;
1da177e4
LT
52
53/*
8f04c47a 54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
55 * freed from a file in a single transaction.
56 */
57#define XFS_ITRUNC_MAX_EXTENTS 2
58
59STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
63
2a0ec1d9
DC
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
fa96acad
DC
78/*
79 * This is a wrapper routine around the xfs_ilock() routine used to centralize
80 * some grungy code. It is used in places that wish to lock the inode solely
81 * for reading the extents. The reason these places can't just call
82 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
83 * extents from disk for a file in b-tree format. If the inode is in b-tree
84 * format, then we need to lock the inode exclusively until the extents are read
85 * in. Locking it exclusively all the time would limit our parallelism
86 * unnecessarily, though. What we do instead is check to see if the extents
87 * have been read in yet, and only lock the inode exclusively if they have not.
88 *
89 * The function returns a value which should be given to the corresponding
90 * xfs_iunlock_map_shared(). This value is the mode in which the lock was
91 * actually taken.
92 */
93uint
94xfs_ilock_map_shared(
95 xfs_inode_t *ip)
96{
97 uint lock_mode;
98
99 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
100 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
101 lock_mode = XFS_ILOCK_EXCL;
102 } else {
103 lock_mode = XFS_ILOCK_SHARED;
104 }
105
106 xfs_ilock(ip, lock_mode);
107
108 return lock_mode;
109}
110
111/*
112 * This is simply the unlock routine to go with xfs_ilock_map_shared().
113 * All it does is call xfs_iunlock() with the given lock_mode.
114 */
115void
116xfs_iunlock_map_shared(
117 xfs_inode_t *ip,
118 unsigned int lock_mode)
119{
120 xfs_iunlock(ip, lock_mode);
121}
122
123/*
124 * The xfs inode contains 2 locks: a multi-reader lock called the
125 * i_iolock and a multi-reader lock called the i_lock. This routine
126 * allows either or both of the locks to be obtained.
127 *
128 * The 2 locks should always be ordered so that the IO lock is
129 * obtained first in order to prevent deadlock.
130 *
131 * ip -- the inode being locked
132 * lock_flags -- this parameter indicates the inode's locks
133 * to be locked. It can be:
134 * XFS_IOLOCK_SHARED,
135 * XFS_IOLOCK_EXCL,
136 * XFS_ILOCK_SHARED,
137 * XFS_ILOCK_EXCL,
138 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
139 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
140 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
141 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
142 */
143void
144xfs_ilock(
145 xfs_inode_t *ip,
146 uint lock_flags)
147{
148 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
149
150 /*
151 * You can't set both SHARED and EXCL for the same lock,
152 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
153 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
154 */
155 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
156 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
157 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
158 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
159 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
160
161 if (lock_flags & XFS_IOLOCK_EXCL)
162 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
163 else if (lock_flags & XFS_IOLOCK_SHARED)
164 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
165
166 if (lock_flags & XFS_ILOCK_EXCL)
167 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168 else if (lock_flags & XFS_ILOCK_SHARED)
169 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
170}
171
172/*
173 * This is just like xfs_ilock(), except that the caller
174 * is guaranteed not to sleep. It returns 1 if it gets
175 * the requested locks and 0 otherwise. If the IO lock is
176 * obtained but the inode lock cannot be, then the IO lock
177 * is dropped before returning.
178 *
179 * ip -- the inode being locked
180 * lock_flags -- this parameter indicates the inode's locks to be
181 * to be locked. See the comment for xfs_ilock() for a list
182 * of valid values.
183 */
184int
185xfs_ilock_nowait(
186 xfs_inode_t *ip,
187 uint lock_flags)
188{
189 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
190
191 /*
192 * You can't set both SHARED and EXCL for the same lock,
193 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
194 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
195 */
196 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
197 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
198 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
199 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
200 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
201
202 if (lock_flags & XFS_IOLOCK_EXCL) {
203 if (!mrtryupdate(&ip->i_iolock))
204 goto out;
205 } else if (lock_flags & XFS_IOLOCK_SHARED) {
206 if (!mrtryaccess(&ip->i_iolock))
207 goto out;
208 }
209 if (lock_flags & XFS_ILOCK_EXCL) {
210 if (!mrtryupdate(&ip->i_lock))
211 goto out_undo_iolock;
212 } else if (lock_flags & XFS_ILOCK_SHARED) {
213 if (!mrtryaccess(&ip->i_lock))
214 goto out_undo_iolock;
215 }
216 return 1;
217
218 out_undo_iolock:
219 if (lock_flags & XFS_IOLOCK_EXCL)
220 mrunlock_excl(&ip->i_iolock);
221 else if (lock_flags & XFS_IOLOCK_SHARED)
222 mrunlock_shared(&ip->i_iolock);
223 out:
224 return 0;
225}
226
227/*
228 * xfs_iunlock() is used to drop the inode locks acquired with
229 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
230 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
231 * that we know which locks to drop.
232 *
233 * ip -- the inode being unlocked
234 * lock_flags -- this parameter indicates the inode's locks to be
235 * to be unlocked. See the comment for xfs_ilock() for a list
236 * of valid values for this parameter.
237 *
238 */
239void
240xfs_iunlock(
241 xfs_inode_t *ip,
242 uint lock_flags)
243{
244 /*
245 * You can't set both SHARED and EXCL for the same lock,
246 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
247 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
248 */
249 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
250 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
251 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
252 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
253 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
254 ASSERT(lock_flags != 0);
255
256 if (lock_flags & XFS_IOLOCK_EXCL)
257 mrunlock_excl(&ip->i_iolock);
258 else if (lock_flags & XFS_IOLOCK_SHARED)
259 mrunlock_shared(&ip->i_iolock);
260
261 if (lock_flags & XFS_ILOCK_EXCL)
262 mrunlock_excl(&ip->i_lock);
263 else if (lock_flags & XFS_ILOCK_SHARED)
264 mrunlock_shared(&ip->i_lock);
265
266 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
267}
268
269/*
270 * give up write locks. the i/o lock cannot be held nested
271 * if it is being demoted.
272 */
273void
274xfs_ilock_demote(
275 xfs_inode_t *ip,
276 uint lock_flags)
277{
278 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
279 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
280
281 if (lock_flags & XFS_ILOCK_EXCL)
282 mrdemote(&ip->i_lock);
283 if (lock_flags & XFS_IOLOCK_EXCL)
284 mrdemote(&ip->i_iolock);
285
286 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
287}
288
289#ifdef DEBUG
290int
291xfs_isilocked(
292 xfs_inode_t *ip,
293 uint lock_flags)
294{
295 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
296 if (!(lock_flags & XFS_ILOCK_SHARED))
297 return !!ip->i_lock.mr_writer;
298 return rwsem_is_locked(&ip->i_lock.mr_lock);
299 }
300
301 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
302 if (!(lock_flags & XFS_IOLOCK_SHARED))
303 return !!ip->i_iolock.mr_writer;
304 return rwsem_is_locked(&ip->i_iolock.mr_lock);
305 }
306
307 ASSERT(0);
308 return 0;
309}
310#endif
311
312void
313__xfs_iflock(
314 struct xfs_inode *ip)
315{
316 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
317 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
318
319 do {
320 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
321 if (xfs_isiflocked(ip))
322 io_schedule();
323 } while (!xfs_iflock_nowait(ip));
324
325 finish_wait(wq, &wait.wait);
326}
327
1da177e4
LT
328#ifdef DEBUG
329/*
330 * Make sure that the extents in the given memory buffer
331 * are valid.
332 */
333STATIC void
334xfs_validate_extents(
4eea22f0 335 xfs_ifork_t *ifp,
1da177e4 336 int nrecs,
1da177e4
LT
337 xfs_exntfmt_t fmt)
338{
339 xfs_bmbt_irec_t irec;
a6f64d4a 340 xfs_bmbt_rec_host_t rec;
1da177e4
LT
341 int i;
342
343 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
344 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
345 rec.l0 = get_unaligned(&ep->l0);
346 rec.l1 = get_unaligned(&ep->l1);
347 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
348 if (fmt == XFS_EXTFMT_NOSTATE)
349 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
350 }
351}
352#else /* DEBUG */
a6f64d4a 353#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
354#endif /* DEBUG */
355
356/*
357 * Check that none of the inode's in the buffer have a next
358 * unlinked field of 0.
359 */
360#if defined(DEBUG)
361void
362xfs_inobp_check(
363 xfs_mount_t *mp,
364 xfs_buf_t *bp)
365{
366 int i;
367 int j;
368 xfs_dinode_t *dip;
369
370 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
371
372 for (i = 0; i < j; i++) {
373 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
374 i * mp->m_sb.sb_inodesize);
375 if (!dip->di_next_unlinked) {
53487786
DC
376 xfs_alert(mp,
377 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
1da177e4
LT
378 bp);
379 ASSERT(dip->di_next_unlinked);
380 }
381 }
382}
383#endif
384
612cfbfe 385static void
af133e86
DC
386xfs_inode_buf_verify(
387 struct xfs_buf *bp)
388{
389 struct xfs_mount *mp = bp->b_target->bt_mount;
390 int i;
391 int ni;
392
393 /*
394 * Validate the magic number and version of every inode in the buffer
395 */
396 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
397 for (i = 0; i < ni; i++) {
398 int di_ok;
399 xfs_dinode_t *dip;
400
401 dip = (struct xfs_dinode *)xfs_buf_offset(bp,
402 (i << mp->m_sb.sb_inodelog));
403 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
404 XFS_DINODE_GOOD_VERSION(dip->di_version);
405 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
406 XFS_ERRTAG_ITOBP_INOTOBP,
407 XFS_RANDOM_ITOBP_INOTOBP))) {
408 xfs_buf_ioerror(bp, EFSCORRUPTED);
409 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
410 mp, dip);
411#ifdef DEBUG
412 xfs_emerg(mp,
413 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
414 (unsigned long long)bp->b_bn, i,
415 be16_to_cpu(dip->di_magic));
416 ASSERT(0);
417#endif
418 }
419 }
420 xfs_inobp_check(mp, bp);
612cfbfe
DC
421}
422
1813dd64
DC
423
424static void
425xfs_inode_buf_read_verify(
612cfbfe
DC
426 struct xfs_buf *bp)
427{
428 xfs_inode_buf_verify(bp);
429}
430
1813dd64
DC
431static void
432xfs_inode_buf_write_verify(
612cfbfe
DC
433 struct xfs_buf *bp)
434{
435 xfs_inode_buf_verify(bp);
af133e86
DC
436}
437
1813dd64
DC
438const struct xfs_buf_ops xfs_inode_buf_ops = {
439 .verify_read = xfs_inode_buf_read_verify,
440 .verify_write = xfs_inode_buf_write_verify,
441};
442
443
4ae29b43 444/*
475ee413
CH
445 * This routine is called to map an inode to the buffer containing the on-disk
446 * version of the inode. It returns a pointer to the buffer containing the
447 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
448 * pointer to the on-disk inode within that buffer.
449 *
450 * If a non-zero error is returned, then the contents of bpp and dipp are
451 * undefined.
4ae29b43 452 */
475ee413 453int
4ae29b43 454xfs_imap_to_bp(
475ee413
CH
455 struct xfs_mount *mp,
456 struct xfs_trans *tp,
457 struct xfs_imap *imap,
af133e86 458 struct xfs_dinode **dipp,
475ee413
CH
459 struct xfs_buf **bpp,
460 uint buf_flags,
461 uint iget_flags)
4ae29b43 462{
475ee413
CH
463 struct xfs_buf *bp;
464 int error;
4ae29b43 465
611c9946 466 buf_flags |= XBF_UNMAPPED;
4ae29b43 467 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
af133e86 468 (int)imap->im_len, buf_flags, &bp,
1813dd64 469 &xfs_inode_buf_ops);
4ae29b43 470 if (error) {
af133e86 471 if (error == EAGAIN) {
0cadda1c 472 ASSERT(buf_flags & XBF_TRYLOCK);
af133e86 473 return error;
a3f74ffb 474 }
4ae29b43 475
af133e86
DC
476 if (error == EFSCORRUPTED &&
477 (iget_flags & XFS_IGET_UNTRUSTED))
478 return XFS_ERROR(EINVAL);
4ae29b43 479
af133e86
DC
480 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
481 __func__, error);
482 return error;
4ae29b43
DC
483 }
484
4ae29b43 485 *bpp = bp;
475ee413 486 *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
4ae29b43
DC
487 return 0;
488}
489
1da177e4
LT
490/*
491 * Move inode type and inode format specific information from the
492 * on-disk inode to the in-core inode. For fifos, devs, and sockets
493 * this means set if_rdev to the proper value. For files, directories,
494 * and symlinks this means to bring in the in-line data or extent
495 * pointers. For a file in B-tree format, only the root is immediately
496 * brought in-core. The rest will be in-lined in if_extents when it
497 * is first referenced (see xfs_iread_extents()).
498 */
499STATIC int
500xfs_iformat(
501 xfs_inode_t *ip,
502 xfs_dinode_t *dip)
503{
504 xfs_attr_shortform_t *atp;
505 int size;
8096b1eb 506 int error = 0;
1da177e4 507 xfs_fsize_t di_size;
1da177e4 508
81591fe2
CH
509 if (unlikely(be32_to_cpu(dip->di_nextents) +
510 be16_to_cpu(dip->di_anextents) >
511 be64_to_cpu(dip->di_nblocks))) {
65333b4c 512 xfs_warn(ip->i_mount,
3762ec6b 513 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 514 (unsigned long long)ip->i_ino,
81591fe2
CH
515 (int)(be32_to_cpu(dip->di_nextents) +
516 be16_to_cpu(dip->di_anextents)),
1da177e4 517 (unsigned long long)
81591fe2 518 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
519 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
520 ip->i_mount, dip);
521 return XFS_ERROR(EFSCORRUPTED);
522 }
523
81591fe2 524 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
65333b4c 525 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 526 (unsigned long long)ip->i_ino,
81591fe2 527 dip->di_forkoff);
1da177e4
LT
528 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
529 ip->i_mount, dip);
530 return XFS_ERROR(EFSCORRUPTED);
531 }
532
b89d4208
CH
533 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
534 !ip->i_mount->m_rtdev_targp)) {
65333b4c 535 xfs_warn(ip->i_mount,
b89d4208
CH
536 "corrupt dinode %Lu, has realtime flag set.",
537 ip->i_ino);
538 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
539 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
540 return XFS_ERROR(EFSCORRUPTED);
541 }
542
1da177e4
LT
543 switch (ip->i_d.di_mode & S_IFMT) {
544 case S_IFIFO:
545 case S_IFCHR:
546 case S_IFBLK:
547 case S_IFSOCK:
81591fe2 548 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
549 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
550 ip->i_mount, dip);
551 return XFS_ERROR(EFSCORRUPTED);
552 }
553 ip->i_d.di_size = 0;
81591fe2 554 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
555 break;
556
557 case S_IFREG:
558 case S_IFLNK:
559 case S_IFDIR:
81591fe2 560 switch (dip->di_format) {
1da177e4
LT
561 case XFS_DINODE_FMT_LOCAL:
562 /*
563 * no local regular files yet
564 */
abbede1b 565 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
65333b4c
DC
566 xfs_warn(ip->i_mount,
567 "corrupt inode %Lu (local format for regular file).",
1da177e4
LT
568 (unsigned long long) ip->i_ino);
569 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
570 XFS_ERRLEVEL_LOW,
571 ip->i_mount, dip);
572 return XFS_ERROR(EFSCORRUPTED);
573 }
574
81591fe2 575 di_size = be64_to_cpu(dip->di_size);
1da177e4 576 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
65333b4c
DC
577 xfs_warn(ip->i_mount,
578 "corrupt inode %Lu (bad size %Ld for local inode).",
1da177e4
LT
579 (unsigned long long) ip->i_ino,
580 (long long) di_size);
581 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
582 XFS_ERRLEVEL_LOW,
583 ip->i_mount, dip);
584 return XFS_ERROR(EFSCORRUPTED);
585 }
586
587 size = (int)di_size;
588 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
589 break;
590 case XFS_DINODE_FMT_EXTENTS:
591 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
592 break;
593 case XFS_DINODE_FMT_BTREE:
594 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
595 break;
596 default:
597 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
598 ip->i_mount);
599 return XFS_ERROR(EFSCORRUPTED);
600 }
601 break;
602
603 default:
604 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
605 return XFS_ERROR(EFSCORRUPTED);
606 }
607 if (error) {
608 return error;
609 }
610 if (!XFS_DFORK_Q(dip))
611 return 0;
8096b1eb 612
1da177e4 613 ASSERT(ip->i_afp == NULL);
4a7edddc 614 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
8096b1eb 615
81591fe2 616 switch (dip->di_aformat) {
1da177e4
LT
617 case XFS_DINODE_FMT_LOCAL:
618 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 619 size = be16_to_cpu(atp->hdr.totsize);
2809f76a
CH
620
621 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
65333b4c
DC
622 xfs_warn(ip->i_mount,
623 "corrupt inode %Lu (bad attr fork size %Ld).",
2809f76a
CH
624 (unsigned long long) ip->i_ino,
625 (long long) size);
626 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
627 XFS_ERRLEVEL_LOW,
628 ip->i_mount, dip);
629 return XFS_ERROR(EFSCORRUPTED);
630 }
631
1da177e4
LT
632 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
633 break;
634 case XFS_DINODE_FMT_EXTENTS:
635 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
636 break;
637 case XFS_DINODE_FMT_BTREE:
638 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
639 break;
640 default:
641 error = XFS_ERROR(EFSCORRUPTED);
642 break;
643 }
644 if (error) {
645 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
646 ip->i_afp = NULL;
647 xfs_idestroy_fork(ip, XFS_DATA_FORK);
648 }
649 return error;
650}
651
652/*
653 * The file is in-lined in the on-disk inode.
654 * If it fits into if_inline_data, then copy
655 * it there, otherwise allocate a buffer for it
656 * and copy the data there. Either way, set
657 * if_data to point at the data.
658 * If we allocate a buffer for the data, make
659 * sure that its size is a multiple of 4 and
660 * record the real size in i_real_bytes.
661 */
662STATIC int
663xfs_iformat_local(
664 xfs_inode_t *ip,
665 xfs_dinode_t *dip,
666 int whichfork,
667 int size)
668{
669 xfs_ifork_t *ifp;
670 int real_size;
671
672 /*
673 * If the size is unreasonable, then something
674 * is wrong and we just bail out rather than crash in
675 * kmem_alloc() or memcpy() below.
676 */
677 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c
DC
678 xfs_warn(ip->i_mount,
679 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
1da177e4
LT
680 (unsigned long long) ip->i_ino, size,
681 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
682 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
683 ip->i_mount, dip);
684 return XFS_ERROR(EFSCORRUPTED);
685 }
686 ifp = XFS_IFORK_PTR(ip, whichfork);
687 real_size = 0;
688 if (size == 0)
689 ifp->if_u1.if_data = NULL;
690 else if (size <= sizeof(ifp->if_u2.if_inline_data))
691 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
692 else {
693 real_size = roundup(size, 4);
4a7edddc 694 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
695 }
696 ifp->if_bytes = size;
697 ifp->if_real_bytes = real_size;
698 if (size)
699 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
700 ifp->if_flags &= ~XFS_IFEXTENTS;
701 ifp->if_flags |= XFS_IFINLINE;
702 return 0;
703}
704
705/*
706 * The file consists of a set of extents all
707 * of which fit into the on-disk inode.
708 * If there are few enough extents to fit into
709 * the if_inline_ext, then copy them there.
710 * Otherwise allocate a buffer for them and copy
711 * them into it. Either way, set if_extents
712 * to point at the extents.
713 */
714STATIC int
715xfs_iformat_extents(
716 xfs_inode_t *ip,
717 xfs_dinode_t *dip,
718 int whichfork)
719{
a6f64d4a 720 xfs_bmbt_rec_t *dp;
1da177e4
LT
721 xfs_ifork_t *ifp;
722 int nex;
1da177e4
LT
723 int size;
724 int i;
725
726 ifp = XFS_IFORK_PTR(ip, whichfork);
727 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
728 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
729
730 /*
731 * If the number of extents is unreasonable, then something
732 * is wrong and we just bail out rather than crash in
733 * kmem_alloc() or memcpy() below.
734 */
735 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c 736 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
737 (unsigned long long) ip->i_ino, nex);
738 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
739 ip->i_mount, dip);
740 return XFS_ERROR(EFSCORRUPTED);
741 }
742
4eea22f0 743 ifp->if_real_bytes = 0;
1da177e4
LT
744 if (nex == 0)
745 ifp->if_u1.if_extents = NULL;
746 else if (nex <= XFS_INLINE_EXTS)
747 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
748 else
749 xfs_iext_add(ifp, 0, nex);
750
1da177e4 751 ifp->if_bytes = size;
1da177e4
LT
752 if (size) {
753 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 754 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 755 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 756 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
757 ep->l0 = get_unaligned_be64(&dp->l0);
758 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 759 }
3a59c94c 760 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
761 if (whichfork != XFS_DATA_FORK ||
762 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
763 if (unlikely(xfs_check_nostate_extents(
4eea22f0 764 ifp, 0, nex))) {
1da177e4
LT
765 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
766 XFS_ERRLEVEL_LOW,
767 ip->i_mount);
768 return XFS_ERROR(EFSCORRUPTED);
769 }
770 }
771 ifp->if_flags |= XFS_IFEXTENTS;
772 return 0;
773}
774
775/*
776 * The file has too many extents to fit into
777 * the inode, so they are in B-tree format.
778 * Allocate a buffer for the root of the B-tree
779 * and copy the root into it. The i_extents
780 * field will remain NULL until all of the
781 * extents are read in (when they are needed).
782 */
783STATIC int
784xfs_iformat_btree(
785 xfs_inode_t *ip,
786 xfs_dinode_t *dip,
787 int whichfork)
788{
ee1a47ab 789 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
790 xfs_bmdr_block_t *dfp;
791 xfs_ifork_t *ifp;
792 /* REFERENCED */
793 int nrecs;
794 int size;
795
796 ifp = XFS_IFORK_PTR(ip, whichfork);
797 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
ee1a47ab 798 size = XFS_BMAP_BROOT_SPACE(mp, dfp);
60197e8d 799 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
800
801 /*
802 * blow out if -- fork has less extents than can fit in
803 * fork (fork shouldn't be a btree format), root btree
804 * block has more records than can fit into the fork,
805 * or the number of extents is greater than the number of
806 * blocks.
807 */
8096b1eb 808 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
ee1a47ab 809 XFS_IFORK_MAXEXT(ip, whichfork) ||
8096b1eb 810 XFS_BMDR_SPACE_CALC(nrecs) >
ee1a47ab 811 XFS_DFORK_SIZE(dip, mp, whichfork) ||
8096b1eb 812 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
ee1a47ab
CH
813 xfs_warn(mp, "corrupt inode %Lu (btree).",
814 (unsigned long long) ip->i_ino);
65333b4c 815 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
ee1a47ab 816 mp, dip);
1da177e4
LT
817 return XFS_ERROR(EFSCORRUPTED);
818 }
819
820 ifp->if_broot_bytes = size;
4a7edddc 821 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
1da177e4
LT
822 ASSERT(ifp->if_broot != NULL);
823 /*
824 * Copy and convert from the on-disk structure
825 * to the in-memory structure.
826 */
ee1a47ab 827 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
60197e8d 828 ifp->if_broot, size);
1da177e4
LT
829 ifp->if_flags &= ~XFS_IFEXTENTS;
830 ifp->if_flags |= XFS_IFBROOT;
831
832 return 0;
833}
834
d96f8f89 835STATIC void
347d1c01
CH
836xfs_dinode_from_disk(
837 xfs_icdinode_t *to,
81591fe2 838 xfs_dinode_t *from)
1da177e4 839{
347d1c01
CH
840 to->di_magic = be16_to_cpu(from->di_magic);
841 to->di_mode = be16_to_cpu(from->di_mode);
842 to->di_version = from ->di_version;
843 to->di_format = from->di_format;
844 to->di_onlink = be16_to_cpu(from->di_onlink);
845 to->di_uid = be32_to_cpu(from->di_uid);
846 to->di_gid = be32_to_cpu(from->di_gid);
847 to->di_nlink = be32_to_cpu(from->di_nlink);
6743099c
AM
848 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
849 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
347d1c01
CH
850 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
851 to->di_flushiter = be16_to_cpu(from->di_flushiter);
852 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
853 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
854 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
855 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
856 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
857 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
858 to->di_size = be64_to_cpu(from->di_size);
859 to->di_nblocks = be64_to_cpu(from->di_nblocks);
860 to->di_extsize = be32_to_cpu(from->di_extsize);
861 to->di_nextents = be32_to_cpu(from->di_nextents);
862 to->di_anextents = be16_to_cpu(from->di_anextents);
863 to->di_forkoff = from->di_forkoff;
864 to->di_aformat = from->di_aformat;
865 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
866 to->di_dmstate = be16_to_cpu(from->di_dmstate);
867 to->di_flags = be16_to_cpu(from->di_flags);
868 to->di_gen = be32_to_cpu(from->di_gen);
869}
870
871void
872xfs_dinode_to_disk(
81591fe2 873 xfs_dinode_t *to,
347d1c01
CH
874 xfs_icdinode_t *from)
875{
876 to->di_magic = cpu_to_be16(from->di_magic);
877 to->di_mode = cpu_to_be16(from->di_mode);
878 to->di_version = from ->di_version;
879 to->di_format = from->di_format;
880 to->di_onlink = cpu_to_be16(from->di_onlink);
881 to->di_uid = cpu_to_be32(from->di_uid);
882 to->di_gid = cpu_to_be32(from->di_gid);
883 to->di_nlink = cpu_to_be32(from->di_nlink);
6743099c
AM
884 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
885 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
347d1c01
CH
886 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
887 to->di_flushiter = cpu_to_be16(from->di_flushiter);
888 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
889 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
890 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
891 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
892 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
893 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
894 to->di_size = cpu_to_be64(from->di_size);
895 to->di_nblocks = cpu_to_be64(from->di_nblocks);
896 to->di_extsize = cpu_to_be32(from->di_extsize);
897 to->di_nextents = cpu_to_be32(from->di_nextents);
898 to->di_anextents = cpu_to_be16(from->di_anextents);
899 to->di_forkoff = from->di_forkoff;
900 to->di_aformat = from->di_aformat;
901 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
902 to->di_dmstate = cpu_to_be16(from->di_dmstate);
903 to->di_flags = cpu_to_be16(from->di_flags);
904 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
905}
906
907STATIC uint
908_xfs_dic2xflags(
1da177e4
LT
909 __uint16_t di_flags)
910{
911 uint flags = 0;
912
913 if (di_flags & XFS_DIFLAG_ANY) {
914 if (di_flags & XFS_DIFLAG_REALTIME)
915 flags |= XFS_XFLAG_REALTIME;
916 if (di_flags & XFS_DIFLAG_PREALLOC)
917 flags |= XFS_XFLAG_PREALLOC;
918 if (di_flags & XFS_DIFLAG_IMMUTABLE)
919 flags |= XFS_XFLAG_IMMUTABLE;
920 if (di_flags & XFS_DIFLAG_APPEND)
921 flags |= XFS_XFLAG_APPEND;
922 if (di_flags & XFS_DIFLAG_SYNC)
923 flags |= XFS_XFLAG_SYNC;
924 if (di_flags & XFS_DIFLAG_NOATIME)
925 flags |= XFS_XFLAG_NOATIME;
926 if (di_flags & XFS_DIFLAG_NODUMP)
927 flags |= XFS_XFLAG_NODUMP;
928 if (di_flags & XFS_DIFLAG_RTINHERIT)
929 flags |= XFS_XFLAG_RTINHERIT;
930 if (di_flags & XFS_DIFLAG_PROJINHERIT)
931 flags |= XFS_XFLAG_PROJINHERIT;
932 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
933 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
934 if (di_flags & XFS_DIFLAG_EXTSIZE)
935 flags |= XFS_XFLAG_EXTSIZE;
936 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
937 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
938 if (di_flags & XFS_DIFLAG_NODEFRAG)
939 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
940 if (di_flags & XFS_DIFLAG_FILESTREAM)
941 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
942 }
943
944 return flags;
945}
946
947uint
948xfs_ip2xflags(
949 xfs_inode_t *ip)
950{
347d1c01 951 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 952
a916e2bd 953 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 954 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
955}
956
957uint
958xfs_dic2xflags(
45ba598e 959 xfs_dinode_t *dip)
1da177e4 960{
81591fe2 961 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 962 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
963}
964
07c8f675 965/*
24f211ba 966 * Read the disk inode attributes into the in-core inode structure.
1da177e4
LT
967 */
968int
969xfs_iread(
970 xfs_mount_t *mp,
971 xfs_trans_t *tp,
24f211ba 972 xfs_inode_t *ip,
24f211ba 973 uint iget_flags)
1da177e4
LT
974{
975 xfs_buf_t *bp;
976 xfs_dinode_t *dip;
1da177e4
LT
977 int error;
978
1da177e4 979 /*
92bfc6e7 980 * Fill in the location information in the in-core inode.
1da177e4 981 */
24f211ba 982 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
76d8b277 983 if (error)
24f211ba 984 return error;
76d8b277
CH
985
986 /*
92bfc6e7 987 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 988 */
475ee413 989 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
9ed0451e 990 if (error)
24f211ba 991 return error;
1da177e4 992
1da177e4
LT
993 /*
994 * If we got something that isn't an inode it means someone
995 * (nfs or dmi) has a stale handle.
996 */
69ef921b 997 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
1da177e4 998#ifdef DEBUG
53487786
DC
999 xfs_alert(mp,
1000 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
1001 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
1da177e4 1002#endif /* DEBUG */
9ed0451e
CH
1003 error = XFS_ERROR(EINVAL);
1004 goto out_brelse;
1da177e4
LT
1005 }
1006
1007 /*
1008 * If the on-disk inode is already linked to a directory
1009 * entry, copy all of the inode into the in-core inode.
1010 * xfs_iformat() handles copying in the inode format
1011 * specific information.
1012 * Otherwise, just get the truly permanent information.
1013 */
81591fe2
CH
1014 if (dip->di_mode) {
1015 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
1016 error = xfs_iformat(ip, dip);
1017 if (error) {
1da177e4 1018#ifdef DEBUG
53487786
DC
1019 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
1020 __func__, error);
1da177e4 1021#endif /* DEBUG */
9ed0451e 1022 goto out_brelse;
1da177e4
LT
1023 }
1024 } else {
81591fe2
CH
1025 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
1026 ip->i_d.di_version = dip->di_version;
1027 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
1028 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
1029 /*
1030 * Make sure to pull in the mode here as well in
1031 * case the inode is released without being used.
1032 * This ensures that xfs_inactive() will see that
1033 * the inode is already free and not try to mess
1034 * with the uninitialized part of it.
1035 */
1036 ip->i_d.di_mode = 0;
1da177e4
LT
1037 }
1038
1da177e4
LT
1039 /*
1040 * The inode format changed when we moved the link count and
1041 * made it 32 bits long. If this is an old format inode,
1042 * convert it in memory to look like a new one. If it gets
1043 * flushed to disk we will convert back before flushing or
1044 * logging it. We zero out the new projid field and the old link
1045 * count field. We'll handle clearing the pad field (the remains
1046 * of the old uuid field) when we actually convert the inode to
1047 * the new format. We don't change the version number so that we
1048 * can distinguish this from a real new format inode.
1049 */
51ce16d5 1050 if (ip->i_d.di_version == 1) {
1da177e4
LT
1051 ip->i_d.di_nlink = ip->i_d.di_onlink;
1052 ip->i_d.di_onlink = 0;
6743099c 1053 xfs_set_projid(ip, 0);
1da177e4
LT
1054 }
1055
1056 ip->i_delayed_blks = 0;
1057
1058 /*
1059 * Mark the buffer containing the inode as something to keep
1060 * around for a while. This helps to keep recently accessed
1061 * meta-data in-core longer.
1062 */
821eb21d 1063 xfs_buf_set_ref(bp, XFS_INO_REF);
1da177e4
LT
1064
1065 /*
1066 * Use xfs_trans_brelse() to release the buffer containing the
1067 * on-disk inode, because it was acquired with xfs_trans_read_buf()
475ee413 1068 * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal
1da177e4
LT
1069 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1070 * will only release the buffer if it is not dirty within the
1071 * transaction. It will be OK to release the buffer in this case,
1072 * because inodes on disk are never destroyed and we will be
1073 * locking the new in-core inode before putting it in the hash
1074 * table where other processes can find it. Thus we don't have
1075 * to worry about the inode being changed just because we released
1076 * the buffer.
1077 */
9ed0451e
CH
1078 out_brelse:
1079 xfs_trans_brelse(tp, bp);
9ed0451e 1080 return error;
1da177e4
LT
1081}
1082
1083/*
1084 * Read in extents from a btree-format inode.
1085 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1086 */
1087int
1088xfs_iread_extents(
1089 xfs_trans_t *tp,
1090 xfs_inode_t *ip,
1091 int whichfork)
1092{
1093 int error;
1094 xfs_ifork_t *ifp;
4eea22f0 1095 xfs_extnum_t nextents;
1da177e4
LT
1096
1097 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1098 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1099 ip->i_mount);
1100 return XFS_ERROR(EFSCORRUPTED);
1101 }
4eea22f0 1102 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1da177e4 1103 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1104
1da177e4
LT
1105 /*
1106 * We know that the size is valid (it's checked in iformat_btree)
1107 */
4eea22f0 1108 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1109 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1110 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1111 error = xfs_bmap_read_extents(tp, ip, whichfork);
1112 if (error) {
4eea22f0 1113 xfs_iext_destroy(ifp);
1da177e4
LT
1114 ifp->if_flags &= ~XFS_IFEXTENTS;
1115 return error;
1116 }
a6f64d4a 1117 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1118 return 0;
1119}
1120
1121/*
1122 * Allocate an inode on disk and return a copy of its in-core version.
1123 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1124 * appropriately within the inode. The uid and gid for the inode are
1125 * set according to the contents of the given cred structure.
1126 *
1127 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
1128 * has a free inode available, call xfs_iget() to obtain the in-core
1129 * version of the allocated inode. Finally, fill in the inode and
1130 * log its initial contents. In this case, ialloc_context would be
1131 * set to NULL.
1da177e4 1132 *
cd856db6
CM
1133 * If xfs_dialloc() does not have an available inode, it will replenish
1134 * its supply by doing an allocation. Since we can only do one
1135 * allocation within a transaction without deadlocks, we must commit
1136 * the current transaction before returning the inode itself.
1137 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
1138 * The caller should then commit the current transaction, start a new
1139 * transaction, and call xfs_ialloc() again to actually get the inode.
1140 *
1141 * To ensure that some other process does not grab the inode that
1142 * was allocated during the first call to xfs_ialloc(), this routine
1143 * also returns the [locked] bp pointing to the head of the freelist
1144 * as ialloc_context. The caller should hold this buffer across
1145 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1146 *
1147 * If we are allocating quota inodes, we do not have a parent inode
1148 * to attach to or associate with (i.e. pip == NULL) because they
1149 * are not linked into the directory structure - they are attached
1150 * directly to the superblock - and so have no parent.
1da177e4
LT
1151 */
1152int
1153xfs_ialloc(
1154 xfs_trans_t *tp,
1155 xfs_inode_t *pip,
576b1d67 1156 umode_t mode,
31b084ae 1157 xfs_nlink_t nlink,
1da177e4 1158 xfs_dev_t rdev,
6743099c 1159 prid_t prid,
1da177e4
LT
1160 int okalloc,
1161 xfs_buf_t **ialloc_context,
1da177e4
LT
1162 xfs_inode_t **ipp)
1163{
1164 xfs_ino_t ino;
1165 xfs_inode_t *ip;
1da177e4
LT
1166 uint flags;
1167 int error;
dff35fd4 1168 timespec_t tv;
bf904248 1169 int filestreams = 0;
1da177e4
LT
1170
1171 /*
1172 * Call the space management code to pick
1173 * the on-disk inode to be allocated.
1174 */
b11f94d5 1175 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 1176 ialloc_context, &ino);
bf904248 1177 if (error)
1da177e4 1178 return error;
08358906 1179 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
1180 *ipp = NULL;
1181 return 0;
1182 }
1183 ASSERT(*ialloc_context == NULL);
1184
1185 /*
1186 * Get the in-core inode with the lock held exclusively.
1187 * This is because we're setting fields here we need
1188 * to prevent others from looking at until we're done.
1189 */
ec3ba85f
CH
1190 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1191 XFS_ILOCK_EXCL, &ip);
bf904248 1192 if (error)
1da177e4 1193 return error;
1da177e4
LT
1194 ASSERT(ip != NULL);
1195
576b1d67 1196 ip->i_d.di_mode = mode;
1da177e4
LT
1197 ip->i_d.di_onlink = 0;
1198 ip->i_d.di_nlink = nlink;
1199 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1200 ip->i_d.di_uid = current_fsuid();
1201 ip->i_d.di_gid = current_fsgid();
6743099c 1202 xfs_set_projid(ip, prid);
1da177e4
LT
1203 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1204
1205 /*
1206 * If the superblock version is up to where we support new format
1207 * inodes and this is currently an old format inode, then change
1208 * the inode version number now. This way we only do the conversion
1209 * here rather than here and in the flush/logging code.
1210 */
62118709 1211 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1212 ip->i_d.di_version == 1) {
1213 ip->i_d.di_version = 2;
1da177e4
LT
1214 /*
1215 * We've already zeroed the old link count, the projid field,
1216 * and the pad field.
1217 */
1218 }
1219
1220 /*
1221 * Project ids won't be stored on disk if we are using a version 1 inode.
1222 */
51ce16d5 1223 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1224 xfs_bump_ino_vers2(tp, ip);
1225
bd186aa9 1226 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 1227 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 1228 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
1229 ip->i_d.di_mode |= S_ISGID;
1230 }
1231 }
1232
1233 /*
1234 * If the group ID of the new file does not match the effective group
1235 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1236 * (and only if the irix_sgid_inherit compatibility variable is set).
1237 */
1238 if ((irix_sgid_inherit) &&
1239 (ip->i_d.di_mode & S_ISGID) &&
1240 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1241 ip->i_d.di_mode &= ~S_ISGID;
1242 }
1243
1244 ip->i_d.di_size = 0;
1245 ip->i_d.di_nextents = 0;
1246 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1247
1248 nanotime(&tv);
1249 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1250 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1251 ip->i_d.di_atime = ip->i_d.di_mtime;
1252 ip->i_d.di_ctime = ip->i_d.di_mtime;
1253
1da177e4
LT
1254 /*
1255 * di_gen will have been taken care of in xfs_iread.
1256 */
1257 ip->i_d.di_extsize = 0;
1258 ip->i_d.di_dmevmask = 0;
1259 ip->i_d.di_dmstate = 0;
1260 ip->i_d.di_flags = 0;
1261 flags = XFS_ILOG_CORE;
1262 switch (mode & S_IFMT) {
1263 case S_IFIFO:
1264 case S_IFCHR:
1265 case S_IFBLK:
1266 case S_IFSOCK:
1267 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1268 ip->i_df.if_u2.if_rdev = rdev;
1269 ip->i_df.if_flags = 0;
1270 flags |= XFS_ILOG_DEV;
1271 break;
1272 case S_IFREG:
bf904248
DC
1273 /*
1274 * we can't set up filestreams until after the VFS inode
1275 * is set up properly.
1276 */
1277 if (pip && xfs_inode_is_filestream(pip))
1278 filestreams = 1;
2a82b8be 1279 /* fall through */
1da177e4 1280 case S_IFDIR:
b11f94d5 1281 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1282 uint di_flags = 0;
1283
abbede1b 1284 if (S_ISDIR(mode)) {
365ca83d
NS
1285 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1286 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1287 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1288 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1289 ip->i_d.di_extsize = pip->i_d.di_extsize;
1290 }
abbede1b 1291 } else if (S_ISREG(mode)) {
613d7043 1292 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1293 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1294 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1295 di_flags |= XFS_DIFLAG_EXTSIZE;
1296 ip->i_d.di_extsize = pip->i_d.di_extsize;
1297 }
1da177e4
LT
1298 }
1299 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1300 xfs_inherit_noatime)
365ca83d 1301 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1302 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1303 xfs_inherit_nodump)
365ca83d 1304 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1305 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1306 xfs_inherit_sync)
365ca83d 1307 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1308 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1309 xfs_inherit_nosymlinks)
365ca83d
NS
1310 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1311 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1312 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1313 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1314 xfs_inherit_nodefrag)
1315 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1316 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1317 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1318 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1319 }
1320 /* FALLTHROUGH */
1321 case S_IFLNK:
1322 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1323 ip->i_df.if_flags = XFS_IFEXTENTS;
1324 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1325 ip->i_df.if_u1.if_extents = NULL;
1326 break;
1327 default:
1328 ASSERT(0);
1329 }
1330 /*
1331 * Attribute fork settings for new inode.
1332 */
1333 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1334 ip->i_d.di_anextents = 0;
1335
1336 /*
1337 * Log the new values stuffed into the inode.
1338 */
ddc3415a 1339 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
1340 xfs_trans_log_inode(tp, ip, flags);
1341
b83bd138 1342 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1343 xfs_setup_inode(ip);
1da177e4 1344
bf904248
DC
1345 /* now we have set up the vfs inode we can associate the filestream */
1346 if (filestreams) {
1347 error = xfs_filestream_associate(pip, ip);
1348 if (error < 0)
1349 return -error;
1350 if (!error)
1351 xfs_iflags_set(ip, XFS_IFILESTREAM);
1352 }
1353
1da177e4
LT
1354 *ipp = ip;
1355 return 0;
1356}
1357
1da177e4 1358/*
8f04c47a
CH
1359 * Free up the underlying blocks past new_size. The new size must be smaller
1360 * than the current size. This routine can be used both for the attribute and
1361 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1362 *
f6485057
DC
1363 * The transaction passed to this routine must have made a permanent log
1364 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1365 * given transaction and start new ones, so make sure everything involved in
1366 * the transaction is tidy before calling here. Some transaction will be
1367 * returned to the caller to be committed. The incoming transaction must
1368 * already include the inode, and both inode locks must be held exclusively.
1369 * The inode must also be "held" within the transaction. On return the inode
1370 * will be "held" within the returned transaction. This routine does NOT
1371 * require any disk space to be reserved for it within the transaction.
1da177e4 1372 *
f6485057
DC
1373 * If we get an error, we must return with the inode locked and linked into the
1374 * current transaction. This keeps things simple for the higher level code,
1375 * because it always knows that the inode is locked and held in the transaction
1376 * that returns to it whether errors occur or not. We don't mark the inode
1377 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1378 */
1379int
8f04c47a
CH
1380xfs_itruncate_extents(
1381 struct xfs_trans **tpp,
1382 struct xfs_inode *ip,
1383 int whichfork,
1384 xfs_fsize_t new_size)
1da177e4 1385{
8f04c47a
CH
1386 struct xfs_mount *mp = ip->i_mount;
1387 struct xfs_trans *tp = *tpp;
1388 struct xfs_trans *ntp;
1389 xfs_bmap_free_t free_list;
1390 xfs_fsblock_t first_block;
1391 xfs_fileoff_t first_unmap_block;
1392 xfs_fileoff_t last_block;
1393 xfs_filblks_t unmap_len;
1394 int committed;
1395 int error = 0;
1396 int done = 0;
1da177e4 1397
0b56185b
CH
1398 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1399 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1400 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1401 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1402 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1403 ASSERT(ip->i_itemp != NULL);
898621d5 1404 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1405 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1406
673e8e59
CH
1407 trace_xfs_itruncate_extents_start(ip, new_size);
1408
1da177e4
LT
1409 /*
1410 * Since it is possible for space to become allocated beyond
1411 * the end of the file (in a crash where the space is allocated
1412 * but the inode size is not yet updated), simply remove any
1413 * blocks which show up between the new EOF and the maximum
1414 * possible file size. If the first block to be removed is
1415 * beyond the maximum file size (ie it is the same as last_block),
1416 * then there is nothing to do.
1417 */
8f04c47a 1418 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1419 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1420 if (first_unmap_block == last_block)
1421 return 0;
1422
1423 ASSERT(first_unmap_block < last_block);
1424 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1425 while (!done) {
9d87c319 1426 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1427 error = xfs_bunmapi(tp, ip,
3e57ecf6 1428 first_unmap_block, unmap_len,
8f04c47a 1429 xfs_bmapi_aflag(whichfork),
1da177e4 1430 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1431 &first_block, &free_list,
b4e9181e 1432 &done);
8f04c47a
CH
1433 if (error)
1434 goto out_bmap_cancel;
1da177e4
LT
1435
1436 /*
1437 * Duplicate the transaction that has the permanent
1438 * reservation and commit the old transaction.
1439 */
8f04c47a 1440 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1441 if (committed)
ddc3415a 1442 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1443 if (error)
1444 goto out_bmap_cancel;
1da177e4
LT
1445
1446 if (committed) {
1447 /*
f6485057 1448 * Mark the inode dirty so it will be logged and
e5720eec 1449 * moved forward in the log as part of every commit.
1da177e4 1450 */
8f04c47a 1451 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1452 }
f6485057 1453
8f04c47a
CH
1454 ntp = xfs_trans_dup(tp);
1455 error = xfs_trans_commit(tp, 0);
1456 tp = ntp;
e5720eec 1457
ddc3415a 1458 xfs_trans_ijoin(tp, ip, 0);
f6485057 1459
cc09c0dc 1460 if (error)
8f04c47a
CH
1461 goto out;
1462
cc09c0dc 1463 /*
8f04c47a 1464 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1465 * reference that we gained in xfs_trans_dup()
1466 */
8f04c47a
CH
1467 xfs_log_ticket_put(tp->t_ticket);
1468 error = xfs_trans_reserve(tp, 0,
f6485057
DC
1469 XFS_ITRUNCATE_LOG_RES(mp), 0,
1470 XFS_TRANS_PERM_LOG_RES,
1471 XFS_ITRUNCATE_LOG_COUNT);
1472 if (error)
8f04c47a 1473 goto out;
1da177e4 1474 }
8f04c47a 1475
673e8e59
CH
1476 /*
1477 * Always re-log the inode so that our permanent transaction can keep
1478 * on rolling it forward in the log.
1479 */
1480 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1481
1482 trace_xfs_itruncate_extents_end(ip, new_size);
1483
8f04c47a
CH
1484out:
1485 *tpp = tp;
1486 return error;
1487out_bmap_cancel:
1da177e4 1488 /*
8f04c47a
CH
1489 * If the bunmapi call encounters an error, return to the caller where
1490 * the transaction can be properly aborted. We just need to make sure
1491 * we're not holding any resources that we were not when we came in.
1da177e4 1492 */
8f04c47a
CH
1493 xfs_bmap_cancel(&free_list);
1494 goto out;
1495}
1496
1da177e4
LT
1497/*
1498 * This is called when the inode's link count goes to 0.
1499 * We place the on-disk inode on a list in the AGI. It
1500 * will be pulled from this list when the inode is freed.
1501 */
1502int
1503xfs_iunlink(
1504 xfs_trans_t *tp,
1505 xfs_inode_t *ip)
1506{
1507 xfs_mount_t *mp;
1508 xfs_agi_t *agi;
1509 xfs_dinode_t *dip;
1510 xfs_buf_t *agibp;
1511 xfs_buf_t *ibp;
1da177e4
LT
1512 xfs_agino_t agino;
1513 short bucket_index;
1514 int offset;
1515 int error;
1da177e4
LT
1516
1517 ASSERT(ip->i_d.di_nlink == 0);
1518 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1519
1520 mp = tp->t_mountp;
1521
1da177e4
LT
1522 /*
1523 * Get the agi buffer first. It ensures lock ordering
1524 * on the list.
1525 */
5e1be0fb 1526 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1527 if (error)
1da177e4 1528 return error;
1da177e4 1529 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1530
1da177e4
LT
1531 /*
1532 * Get the index into the agi hash table for the
1533 * list this inode will go on.
1534 */
1535 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1536 ASSERT(agino != 0);
1537 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1538 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1539 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1540
69ef921b 1541 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1542 /*
1543 * There is already another inode in the bucket we need
1544 * to add ourselves to. Add us at the front of the list.
1545 * Here we put the head pointer into our next pointer,
1546 * and then we fall through to point the head at us.
1547 */
475ee413
CH
1548 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1549 0, 0);
c319b58b
VA
1550 if (error)
1551 return error;
1552
69ef921b 1553 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1554 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1555 offset = ip->i_imap.im_boffset +
1da177e4
LT
1556 offsetof(xfs_dinode_t, di_next_unlinked);
1557 xfs_trans_inode_buf(tp, ibp);
1558 xfs_trans_log_buf(tp, ibp, offset,
1559 (offset + sizeof(xfs_agino_t) - 1));
1560 xfs_inobp_check(mp, ibp);
1561 }
1562
1563 /*
1564 * Point the bucket head pointer at the inode being inserted.
1565 */
1566 ASSERT(agino != 0);
16259e7d 1567 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1568 offset = offsetof(xfs_agi_t, agi_unlinked) +
1569 (sizeof(xfs_agino_t) * bucket_index);
1570 xfs_trans_log_buf(tp, agibp, offset,
1571 (offset + sizeof(xfs_agino_t) - 1));
1572 return 0;
1573}
1574
1575/*
1576 * Pull the on-disk inode from the AGI unlinked list.
1577 */
1578STATIC int
1579xfs_iunlink_remove(
1580 xfs_trans_t *tp,
1581 xfs_inode_t *ip)
1582{
1583 xfs_ino_t next_ino;
1584 xfs_mount_t *mp;
1585 xfs_agi_t *agi;
1586 xfs_dinode_t *dip;
1587 xfs_buf_t *agibp;
1588 xfs_buf_t *ibp;
1589 xfs_agnumber_t agno;
1da177e4
LT
1590 xfs_agino_t agino;
1591 xfs_agino_t next_agino;
1592 xfs_buf_t *last_ibp;
6fdf8ccc 1593 xfs_dinode_t *last_dip = NULL;
1da177e4 1594 short bucket_index;
6fdf8ccc 1595 int offset, last_offset = 0;
1da177e4 1596 int error;
1da177e4 1597
1da177e4 1598 mp = tp->t_mountp;
1da177e4 1599 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1600
1601 /*
1602 * Get the agi buffer first. It ensures lock ordering
1603 * on the list.
1604 */
5e1be0fb
CH
1605 error = xfs_read_agi(mp, tp, agno, &agibp);
1606 if (error)
1da177e4 1607 return error;
5e1be0fb 1608
1da177e4 1609 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1610
1da177e4
LT
1611 /*
1612 * Get the index into the agi hash table for the
1613 * list this inode will go on.
1614 */
1615 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1616 ASSERT(agino != 0);
1617 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 1618 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
1619 ASSERT(agi->agi_unlinked[bucket_index]);
1620
16259e7d 1621 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 1622 /*
475ee413
CH
1623 * We're at the head of the list. Get the inode's on-disk
1624 * buffer to see if there is anyone after us on the list.
1625 * Only modify our next pointer if it is not already NULLAGINO.
1626 * This saves us the overhead of dealing with the buffer when
1627 * there is no need to change it.
1da177e4 1628 */
475ee413
CH
1629 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1630 0, 0);
1da177e4 1631 if (error) {
475ee413 1632 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 1633 __func__, error);
1da177e4
LT
1634 return error;
1635 }
347d1c01 1636 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1637 ASSERT(next_agino != 0);
1638 if (next_agino != NULLAGINO) {
347d1c01 1639 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1640 offset = ip->i_imap.im_boffset +
1da177e4
LT
1641 offsetof(xfs_dinode_t, di_next_unlinked);
1642 xfs_trans_inode_buf(tp, ibp);
1643 xfs_trans_log_buf(tp, ibp, offset,
1644 (offset + sizeof(xfs_agino_t) - 1));
1645 xfs_inobp_check(mp, ibp);
1646 } else {
1647 xfs_trans_brelse(tp, ibp);
1648 }
1649 /*
1650 * Point the bucket head pointer at the next inode.
1651 */
1652 ASSERT(next_agino != 0);
1653 ASSERT(next_agino != agino);
16259e7d 1654 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1655 offset = offsetof(xfs_agi_t, agi_unlinked) +
1656 (sizeof(xfs_agino_t) * bucket_index);
1657 xfs_trans_log_buf(tp, agibp, offset,
1658 (offset + sizeof(xfs_agino_t) - 1));
1659 } else {
1660 /*
1661 * We need to search the list for the inode being freed.
1662 */
16259e7d 1663 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1664 last_ibp = NULL;
1665 while (next_agino != agino) {
129dbc9a
CH
1666 struct xfs_imap imap;
1667
1668 if (last_ibp)
1da177e4 1669 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
1670
1671 imap.im_blkno = 0;
1da177e4 1672 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
1673
1674 error = xfs_imap(mp, tp, next_ino, &imap, 0);
1675 if (error) {
1676 xfs_warn(mp,
1677 "%s: xfs_imap returned error %d.",
1678 __func__, error);
1679 return error;
1680 }
1681
1682 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
1683 &last_ibp, 0, 0);
1da177e4 1684 if (error) {
0b932ccc 1685 xfs_warn(mp,
129dbc9a 1686 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 1687 __func__, error);
1da177e4
LT
1688 return error;
1689 }
129dbc9a
CH
1690
1691 last_offset = imap.im_boffset;
347d1c01 1692 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1693 ASSERT(next_agino != NULLAGINO);
1694 ASSERT(next_agino != 0);
1695 }
475ee413 1696
1da177e4 1697 /*
475ee413
CH
1698 * Now last_ibp points to the buffer previous to us on the
1699 * unlinked list. Pull us from the list.
1da177e4 1700 */
475ee413
CH
1701 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1702 0, 0);
1da177e4 1703 if (error) {
475ee413 1704 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 1705 __func__, error);
1da177e4
LT
1706 return error;
1707 }
347d1c01 1708 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1709 ASSERT(next_agino != 0);
1710 ASSERT(next_agino != agino);
1711 if (next_agino != NULLAGINO) {
347d1c01 1712 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1713 offset = ip->i_imap.im_boffset +
1da177e4
LT
1714 offsetof(xfs_dinode_t, di_next_unlinked);
1715 xfs_trans_inode_buf(tp, ibp);
1716 xfs_trans_log_buf(tp, ibp, offset,
1717 (offset + sizeof(xfs_agino_t) - 1));
1718 xfs_inobp_check(mp, ibp);
1719 } else {
1720 xfs_trans_brelse(tp, ibp);
1721 }
1722 /*
1723 * Point the previous inode on the list to the next inode.
1724 */
347d1c01 1725 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
1726 ASSERT(next_agino != 0);
1727 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1728 xfs_trans_inode_buf(tp, last_ibp);
1729 xfs_trans_log_buf(tp, last_ibp, offset,
1730 (offset + sizeof(xfs_agino_t) - 1));
1731 xfs_inobp_check(mp, last_ibp);
1732 }
1733 return 0;
1734}
1735
5b3eed75
DC
1736/*
1737 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1738 * inodes that are in memory - they all must be marked stale and attached to
1739 * the cluster buffer.
1740 */
2a30f36d 1741STATIC int
1da177e4
LT
1742xfs_ifree_cluster(
1743 xfs_inode_t *free_ip,
1744 xfs_trans_t *tp,
1745 xfs_ino_t inum)
1746{
1747 xfs_mount_t *mp = free_ip->i_mount;
1748 int blks_per_cluster;
1749 int nbufs;
1750 int ninodes;
5b257b4a 1751 int i, j;
1da177e4
LT
1752 xfs_daddr_t blkno;
1753 xfs_buf_t *bp;
5b257b4a 1754 xfs_inode_t *ip;
1da177e4
LT
1755 xfs_inode_log_item_t *iip;
1756 xfs_log_item_t *lip;
5017e97d 1757 struct xfs_perag *pag;
1da177e4 1758
5017e97d 1759 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
1760 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1761 blks_per_cluster = 1;
1762 ninodes = mp->m_sb.sb_inopblock;
1763 nbufs = XFS_IALLOC_BLOCKS(mp);
1764 } else {
1765 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1766 mp->m_sb.sb_blocksize;
1767 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1768 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1769 }
1770
1da177e4
LT
1771 for (j = 0; j < nbufs; j++, inum += ninodes) {
1772 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1773 XFS_INO_TO_AGBNO(mp, inum));
1774
5b257b4a
DC
1775 /*
1776 * We obtain and lock the backing buffer first in the process
1777 * here, as we have to ensure that any dirty inode that we
1778 * can't get the flush lock on is attached to the buffer.
1779 * If we scan the in-memory inodes first, then buffer IO can
1780 * complete before we get a lock on it, and hence we may fail
1781 * to mark all the active inodes on the buffer stale.
1782 */
1783 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
1784 mp->m_bsize * blks_per_cluster,
1785 XBF_UNMAPPED);
5b257b4a 1786
2a30f36d
CS
1787 if (!bp)
1788 return ENOMEM;
b0f539de
DC
1789
1790 /*
1791 * This buffer may not have been correctly initialised as we
1792 * didn't read it from disk. That's not important because we are
1793 * only using to mark the buffer as stale in the log, and to
1794 * attach stale cached inodes on it. That means it will never be
1795 * dispatched for IO. If it is, we want to know about it, and we
1796 * want it to fail. We can acheive this by adding a write
1797 * verifier to the buffer.
1798 */
1813dd64 1799 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 1800
5b257b4a
DC
1801 /*
1802 * Walk the inodes already attached to the buffer and mark them
1803 * stale. These will all have the flush locks held, so an
5b3eed75
DC
1804 * in-memory inode walk can't lock them. By marking them all
1805 * stale first, we will not attempt to lock them in the loop
1806 * below as the XFS_ISTALE flag will be set.
5b257b4a 1807 */
adadbeef 1808 lip = bp->b_fspriv;
5b257b4a
DC
1809 while (lip) {
1810 if (lip->li_type == XFS_LI_INODE) {
1811 iip = (xfs_inode_log_item_t *)lip;
1812 ASSERT(iip->ili_logged == 1);
ca30b2a7 1813 lip->li_cb = xfs_istale_done;
5b257b4a
DC
1814 xfs_trans_ail_copy_lsn(mp->m_ail,
1815 &iip->ili_flush_lsn,
1816 &iip->ili_item.li_lsn);
1817 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
1818 }
1819 lip = lip->li_bio_list;
1820 }
1da177e4 1821
5b3eed75 1822
1da177e4 1823 /*
5b257b4a
DC
1824 * For each inode in memory attempt to add it to the inode
1825 * buffer and set it up for being staled on buffer IO
1826 * completion. This is safe as we've locked out tail pushing
1827 * and flushing by locking the buffer.
1da177e4 1828 *
5b257b4a
DC
1829 * We have already marked every inode that was part of a
1830 * transaction stale above, which means there is no point in
1831 * even trying to lock them.
1da177e4 1832 */
1da177e4 1833 for (i = 0; i < ninodes; i++) {
5b3eed75 1834retry:
1a3e8f3d 1835 rcu_read_lock();
da353b0d
DC
1836 ip = radix_tree_lookup(&pag->pag_ici_root,
1837 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 1838
1a3e8f3d
DC
1839 /* Inode not in memory, nothing to do */
1840 if (!ip) {
1841 rcu_read_unlock();
1da177e4
LT
1842 continue;
1843 }
1844
1a3e8f3d
DC
1845 /*
1846 * because this is an RCU protected lookup, we could
1847 * find a recently freed or even reallocated inode
1848 * during the lookup. We need to check under the
1849 * i_flags_lock for a valid inode here. Skip it if it
1850 * is not valid, the wrong inode or stale.
1851 */
1852 spin_lock(&ip->i_flags_lock);
1853 if (ip->i_ino != inum + i ||
1854 __xfs_iflags_test(ip, XFS_ISTALE)) {
1855 spin_unlock(&ip->i_flags_lock);
1856 rcu_read_unlock();
1857 continue;
1858 }
1859 spin_unlock(&ip->i_flags_lock);
1860
5b3eed75
DC
1861 /*
1862 * Don't try to lock/unlock the current inode, but we
1863 * _cannot_ skip the other inodes that we did not find
1864 * in the list attached to the buffer and are not
1865 * already marked stale. If we can't lock it, back off
1866 * and retry.
1867 */
5b257b4a
DC
1868 if (ip != free_ip &&
1869 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 1870 rcu_read_unlock();
5b3eed75
DC
1871 delay(1);
1872 goto retry;
1da177e4 1873 }
1a3e8f3d 1874 rcu_read_unlock();
1da177e4 1875
5b3eed75 1876 xfs_iflock(ip);
5b257b4a 1877 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 1878
5b3eed75
DC
1879 /*
1880 * we don't need to attach clean inodes or those only
1881 * with unlogged changes (which we throw away, anyway).
1882 */
1da177e4 1883 iip = ip->i_itemp;
5b3eed75 1884 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 1885 ASSERT(ip != free_ip);
1da177e4
LT
1886 xfs_ifunlock(ip);
1887 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1888 continue;
1889 }
1890
f5d8d5c4
CH
1891 iip->ili_last_fields = iip->ili_fields;
1892 iip->ili_fields = 0;
1da177e4 1893 iip->ili_logged = 1;
7b2e2a31
DC
1894 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1895 &iip->ili_item.li_lsn);
1da177e4 1896
ca30b2a7
CH
1897 xfs_buf_attach_iodone(bp, xfs_istale_done,
1898 &iip->ili_item);
5b257b4a
DC
1899
1900 if (ip != free_ip)
1da177e4 1901 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
1902 }
1903
5b3eed75 1904 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
1905 xfs_trans_binval(tp, bp);
1906 }
1907
5017e97d 1908 xfs_perag_put(pag);
2a30f36d 1909 return 0;
1da177e4
LT
1910}
1911
1912/*
1913 * This is called to return an inode to the inode free list.
1914 * The inode should already be truncated to 0 length and have
1915 * no pages associated with it. This routine also assumes that
1916 * the inode is already a part of the transaction.
1917 *
1918 * The on-disk copy of the inode will have been added to the list
1919 * of unlinked inodes in the AGI. We need to remove the inode from
1920 * that list atomically with respect to freeing it here.
1921 */
1922int
1923xfs_ifree(
1924 xfs_trans_t *tp,
1925 xfs_inode_t *ip,
1926 xfs_bmap_free_t *flist)
1927{
1928 int error;
1929 int delete;
1930 xfs_ino_t first_ino;
c319b58b
VA
1931 xfs_dinode_t *dip;
1932 xfs_buf_t *ibp;
1da177e4 1933
579aa9ca 1934 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
1935 ASSERT(ip->i_d.di_nlink == 0);
1936 ASSERT(ip->i_d.di_nextents == 0);
1937 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 1938 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
1939 ASSERT(ip->i_d.di_nblocks == 0);
1940
1941 /*
1942 * Pull the on-disk inode from the AGI unlinked list.
1943 */
1944 error = xfs_iunlink_remove(tp, ip);
1945 if (error != 0) {
1946 return error;
1947 }
1948
1949 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1950 if (error != 0) {
1951 return error;
1952 }
1953 ip->i_d.di_mode = 0; /* mark incore inode as free */
1954 ip->i_d.di_flags = 0;
1955 ip->i_d.di_dmevmask = 0;
1956 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
1957 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1958 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1959 /*
1960 * Bump the generation count so no one will be confused
1961 * by reincarnations of this inode.
1962 */
1963 ip->i_d.di_gen++;
c319b58b 1964
1da177e4
LT
1965 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1966
475ee413
CH
1967 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp,
1968 0, 0);
c319b58b
VA
1969 if (error)
1970 return error;
1971
1972 /*
1973 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1974 * from picking up this inode when it is reclaimed (its incore state
1975 * initialzed but not flushed to disk yet). The in-core di_mode is
1976 * already cleared and a corresponding transaction logged.
1977 * The hack here just synchronizes the in-core to on-disk
1978 * di_mode value in advance before the actual inode sync to disk.
1979 * This is OK because the inode is already unlinked and would never
1980 * change its di_mode again for this inode generation.
1981 * This is a temporary hack that would require a proper fix
1982 * in the future.
1983 */
81591fe2 1984 dip->di_mode = 0;
c319b58b 1985
1da177e4 1986 if (delete) {
2a30f36d 1987 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4
LT
1988 }
1989
2a30f36d 1990 return error;
1da177e4
LT
1991}
1992
1993/*
1994 * Reallocate the space for if_broot based on the number of records
1995 * being added or deleted as indicated in rec_diff. Move the records
1996 * and pointers in if_broot to fit the new size. When shrinking this
1997 * will eliminate holes between the records and pointers created by
1998 * the caller. When growing this will create holes to be filled in
1999 * by the caller.
2000 *
2001 * The caller must not request to add more records than would fit in
2002 * the on-disk inode root. If the if_broot is currently NULL, then
2003 * if we adding records one will be allocated. The caller must also
2004 * not request that the number of records go below zero, although
2005 * it can go to zero.
2006 *
2007 * ip -- the inode whose if_broot area is changing
2008 * ext_diff -- the change in the number of records, positive or negative,
2009 * requested for the if_broot array.
2010 */
2011void
2012xfs_iroot_realloc(
2013 xfs_inode_t *ip,
2014 int rec_diff,
2015 int whichfork)
2016{
60197e8d 2017 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
2018 int cur_max;
2019 xfs_ifork_t *ifp;
7cc95a82 2020 struct xfs_btree_block *new_broot;
1da177e4
LT
2021 int new_max;
2022 size_t new_size;
2023 char *np;
2024 char *op;
2025
2026 /*
2027 * Handle the degenerate case quietly.
2028 */
2029 if (rec_diff == 0) {
2030 return;
2031 }
2032
2033 ifp = XFS_IFORK_PTR(ip, whichfork);
2034 if (rec_diff > 0) {
2035 /*
2036 * If there wasn't any memory allocated before, just
2037 * allocate it now and get out.
2038 */
2039 if (ifp->if_broot_bytes == 0) {
ee1a47ab 2040 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
4a7edddc 2041 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2042 ifp->if_broot_bytes = (int)new_size;
2043 return;
2044 }
2045
2046 /*
2047 * If there is already an existing if_broot, then we need
2048 * to realloc() it and shift the pointers to their new
2049 * location. The records don't change location because
2050 * they are kept butted up against the btree block header.
2051 */
60197e8d 2052 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4 2053 new_max = cur_max + rec_diff;
ee1a47ab 2054 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
7cc95a82 2055 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
ee1a47ab 2056 XFS_BMAP_BROOT_SPACE_CALC(mp, cur_max),
4a7edddc 2057 KM_SLEEP | KM_NOFS);
60197e8d
CH
2058 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2059 ifp->if_broot_bytes);
2060 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2061 (int)new_size);
1da177e4
LT
2062 ifp->if_broot_bytes = (int)new_size;
2063 ASSERT(ifp->if_broot_bytes <=
ee1a47ab 2064 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip));
1da177e4
LT
2065 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2066 return;
2067 }
2068
2069 /*
2070 * rec_diff is less than 0. In this case, we are shrinking the
2071 * if_broot buffer. It must already exist. If we go to zero
2072 * records, just get rid of the root and clear the status bit.
2073 */
2074 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2075 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2076 new_max = cur_max + rec_diff;
2077 ASSERT(new_max >= 0);
2078 if (new_max > 0)
ee1a47ab 2079 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
1da177e4
LT
2080 else
2081 new_size = 0;
2082 if (new_size > 0) {
4a7edddc 2083 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2084 /*
2085 * First copy over the btree block header.
2086 */
ee1a47ab
CH
2087 memcpy(new_broot, ifp->if_broot,
2088 XFS_BMBT_BLOCK_LEN(ip->i_mount));
1da177e4
LT
2089 } else {
2090 new_broot = NULL;
2091 ifp->if_flags &= ~XFS_IFBROOT;
2092 }
2093
2094 /*
2095 * Only copy the records and pointers if there are any.
2096 */
2097 if (new_max > 0) {
2098 /*
2099 * First copy the records.
2100 */
136341b4
CH
2101 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2102 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2103 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2104
2105 /*
2106 * Then copy the pointers.
2107 */
60197e8d 2108 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2109 ifp->if_broot_bytes);
60197e8d 2110 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2111 (int)new_size);
2112 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2113 }
f0e2d93c 2114 kmem_free(ifp->if_broot);
1da177e4
LT
2115 ifp->if_broot = new_broot;
2116 ifp->if_broot_bytes = (int)new_size;
2117 ASSERT(ifp->if_broot_bytes <=
ee1a47ab 2118 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip));
1da177e4
LT
2119 return;
2120}
2121
2122
1da177e4
LT
2123/*
2124 * This is called when the amount of space needed for if_data
2125 * is increased or decreased. The change in size is indicated by
2126 * the number of bytes that need to be added or deleted in the
2127 * byte_diff parameter.
2128 *
2129 * If the amount of space needed has decreased below the size of the
2130 * inline buffer, then switch to using the inline buffer. Otherwise,
2131 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2132 * to what is needed.
2133 *
2134 * ip -- the inode whose if_data area is changing
2135 * byte_diff -- the change in the number of bytes, positive or negative,
2136 * requested for the if_data array.
2137 */
2138void
2139xfs_idata_realloc(
2140 xfs_inode_t *ip,
2141 int byte_diff,
2142 int whichfork)
2143{
2144 xfs_ifork_t *ifp;
2145 int new_size;
2146 int real_size;
2147
2148 if (byte_diff == 0) {
2149 return;
2150 }
2151
2152 ifp = XFS_IFORK_PTR(ip, whichfork);
2153 new_size = (int)ifp->if_bytes + byte_diff;
2154 ASSERT(new_size >= 0);
2155
2156 if (new_size == 0) {
2157 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2158 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2159 }
2160 ifp->if_u1.if_data = NULL;
2161 real_size = 0;
2162 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2163 /*
2164 * If the valid extents/data can fit in if_inline_ext/data,
2165 * copy them from the malloc'd vector and free it.
2166 */
2167 if (ifp->if_u1.if_data == NULL) {
2168 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2169 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2170 ASSERT(ifp->if_real_bytes != 0);
2171 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2172 new_size);
f0e2d93c 2173 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2174 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2175 }
2176 real_size = 0;
2177 } else {
2178 /*
2179 * Stuck with malloc/realloc.
2180 * For inline data, the underlying buffer must be
2181 * a multiple of 4 bytes in size so that it can be
2182 * logged and stay on word boundaries. We enforce
2183 * that here.
2184 */
2185 real_size = roundup(new_size, 4);
2186 if (ifp->if_u1.if_data == NULL) {
2187 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2188 ifp->if_u1.if_data = kmem_alloc(real_size,
2189 KM_SLEEP | KM_NOFS);
1da177e4
LT
2190 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2191 /*
2192 * Only do the realloc if the underlying size
2193 * is really changing.
2194 */
2195 if (ifp->if_real_bytes != real_size) {
2196 ifp->if_u1.if_data =
2197 kmem_realloc(ifp->if_u1.if_data,
2198 real_size,
2199 ifp->if_real_bytes,
4a7edddc 2200 KM_SLEEP | KM_NOFS);
1da177e4
LT
2201 }
2202 } else {
2203 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2204 ifp->if_u1.if_data = kmem_alloc(real_size,
2205 KM_SLEEP | KM_NOFS);
1da177e4
LT
2206 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2207 ifp->if_bytes);
2208 }
2209 }
2210 ifp->if_real_bytes = real_size;
2211 ifp->if_bytes = new_size;
2212 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2213}
2214
1da177e4
LT
2215void
2216xfs_idestroy_fork(
2217 xfs_inode_t *ip,
2218 int whichfork)
2219{
2220 xfs_ifork_t *ifp;
2221
2222 ifp = XFS_IFORK_PTR(ip, whichfork);
2223 if (ifp->if_broot != NULL) {
f0e2d93c 2224 kmem_free(ifp->if_broot);
1da177e4
LT
2225 ifp->if_broot = NULL;
2226 }
2227
2228 /*
2229 * If the format is local, then we can't have an extents
2230 * array so just look for an inline data array. If we're
2231 * not local then we may or may not have an extents list,
2232 * so check and free it up if we do.
2233 */
2234 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2235 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2236 (ifp->if_u1.if_data != NULL)) {
2237 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2238 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2239 ifp->if_u1.if_data = NULL;
2240 ifp->if_real_bytes = 0;
2241 }
2242 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2243 ((ifp->if_flags & XFS_IFEXTIREC) ||
2244 ((ifp->if_u1.if_extents != NULL) &&
2245 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2246 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2247 xfs_iext_destroy(ifp);
1da177e4
LT
2248 }
2249 ASSERT(ifp->if_u1.if_extents == NULL ||
2250 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2251 ASSERT(ifp->if_real_bytes == 0);
2252 if (whichfork == XFS_ATTR_FORK) {
2253 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2254 ip->i_afp = NULL;
2255 }
2256}
2257
1da177e4 2258/*
60ec6783
CH
2259 * This is called to unpin an inode. The caller must have the inode locked
2260 * in at least shared mode so that the buffer cannot be subsequently pinned
2261 * once someone is waiting for it to be unpinned.
1da177e4 2262 */
60ec6783 2263static void
f392e631 2264xfs_iunpin(
60ec6783 2265 struct xfs_inode *ip)
1da177e4 2266{
579aa9ca 2267 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2268
4aaf15d1
DC
2269 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2270
a3f74ffb 2271 /* Give the log a push to start the unpinning I/O */
60ec6783 2272 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2273
a3f74ffb 2274}
1da177e4 2275
f392e631
CH
2276static void
2277__xfs_iunpin_wait(
2278 struct xfs_inode *ip)
2279{
2280 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2281 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2282
2283 xfs_iunpin(ip);
2284
2285 do {
2286 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2287 if (xfs_ipincount(ip))
2288 io_schedule();
2289 } while (xfs_ipincount(ip));
2290 finish_wait(wq, &wait.wait);
2291}
2292
777df5af 2293void
a3f74ffb 2294xfs_iunpin_wait(
60ec6783 2295 struct xfs_inode *ip)
a3f74ffb 2296{
f392e631
CH
2297 if (xfs_ipincount(ip))
2298 __xfs_iunpin_wait(ip);
1da177e4
LT
2299}
2300
1da177e4
LT
2301/*
2302 * xfs_iextents_copy()
2303 *
2304 * This is called to copy the REAL extents (as opposed to the delayed
2305 * allocation extents) from the inode into the given buffer. It
2306 * returns the number of bytes copied into the buffer.
2307 *
2308 * If there are no delayed allocation extents, then we can just
2309 * memcpy() the extents into the buffer. Otherwise, we need to
2310 * examine each extent in turn and skip those which are delayed.
2311 */
2312int
2313xfs_iextents_copy(
2314 xfs_inode_t *ip,
a6f64d4a 2315 xfs_bmbt_rec_t *dp,
1da177e4
LT
2316 int whichfork)
2317{
2318 int copied;
1da177e4
LT
2319 int i;
2320 xfs_ifork_t *ifp;
2321 int nrecs;
2322 xfs_fsblock_t start_block;
2323
2324 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2325 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2326 ASSERT(ifp->if_bytes > 0);
2327
2328 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2329 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2330 ASSERT(nrecs > 0);
2331
2332 /*
2333 * There are some delayed allocation extents in the
2334 * inode, so copy the extents one at a time and skip
2335 * the delayed ones. There must be at least one
2336 * non-delayed extent.
2337 */
1da177e4
LT
2338 copied = 0;
2339 for (i = 0; i < nrecs; i++) {
a6f64d4a 2340 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4 2341 start_block = xfs_bmbt_get_startblock(ep);
9d87c319 2342 if (isnullstartblock(start_block)) {
1da177e4
LT
2343 /*
2344 * It's a delayed allocation extent, so skip it.
2345 */
1da177e4
LT
2346 continue;
2347 }
2348
2349 /* Translate to on disk format */
cd8b0a97
CH
2350 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2351 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2352 dp++;
1da177e4
LT
2353 copied++;
2354 }
2355 ASSERT(copied != 0);
a6f64d4a 2356 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2357
2358 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2359}
2360
2361/*
2362 * Each of the following cases stores data into the same region
2363 * of the on-disk inode, so only one of them can be valid at
2364 * any given time. While it is possible to have conflicting formats
2365 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2366 * in EXTENTS format, this can only happen when the fork has
2367 * changed formats after being modified but before being flushed.
2368 * In these cases, the format always takes precedence, because the
2369 * format indicates the current state of the fork.
2370 */
2371/*ARGSUSED*/
e4ac967b 2372STATIC void
1da177e4
LT
2373xfs_iflush_fork(
2374 xfs_inode_t *ip,
2375 xfs_dinode_t *dip,
2376 xfs_inode_log_item_t *iip,
2377 int whichfork,
2378 xfs_buf_t *bp)
2379{
2380 char *cp;
2381 xfs_ifork_t *ifp;
2382 xfs_mount_t *mp;
1da177e4
LT
2383 static const short brootflag[2] =
2384 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2385 static const short dataflag[2] =
2386 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2387 static const short extflag[2] =
2388 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2389
e4ac967b
DC
2390 if (!iip)
2391 return;
1da177e4
LT
2392 ifp = XFS_IFORK_PTR(ip, whichfork);
2393 /*
2394 * This can happen if we gave up in iformat in an error path,
2395 * for the attribute fork.
2396 */
e4ac967b 2397 if (!ifp) {
1da177e4 2398 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2399 return;
1da177e4
LT
2400 }
2401 cp = XFS_DFORK_PTR(dip, whichfork);
2402 mp = ip->i_mount;
2403 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2404 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 2405 if ((iip->ili_fields & dataflag[whichfork]) &&
1da177e4
LT
2406 (ifp->if_bytes > 0)) {
2407 ASSERT(ifp->if_u1.if_data != NULL);
2408 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2409 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2410 }
1da177e4
LT
2411 break;
2412
2413 case XFS_DINODE_FMT_EXTENTS:
2414 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
f5d8d5c4
CH
2415 !(iip->ili_fields & extflag[whichfork]));
2416 if ((iip->ili_fields & extflag[whichfork]) &&
1da177e4 2417 (ifp->if_bytes > 0)) {
ab1908a5 2418 ASSERT(xfs_iext_get_ext(ifp, 0));
1da177e4
LT
2419 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2420 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2421 whichfork);
2422 }
2423 break;
2424
2425 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 2426 if ((iip->ili_fields & brootflag[whichfork]) &&
1da177e4
LT
2427 (ifp->if_broot_bytes > 0)) {
2428 ASSERT(ifp->if_broot != NULL);
2429 ASSERT(ifp->if_broot_bytes <=
2430 (XFS_IFORK_SIZE(ip, whichfork) +
ee1a47ab 2431 XFS_BROOT_SIZE_ADJ(ip)));
60197e8d 2432 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2433 (xfs_bmdr_block_t *)cp,
2434 XFS_DFORK_SIZE(dip, mp, whichfork));
2435 }
2436 break;
2437
2438 case XFS_DINODE_FMT_DEV:
f5d8d5c4 2439 if (iip->ili_fields & XFS_ILOG_DEV) {
1da177e4 2440 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2441 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2442 }
2443 break;
2444
2445 case XFS_DINODE_FMT_UUID:
f5d8d5c4 2446 if (iip->ili_fields & XFS_ILOG_UUID) {
1da177e4 2447 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2448 memcpy(XFS_DFORK_DPTR(dip),
2449 &ip->i_df.if_u2.if_uuid,
2450 sizeof(uuid_t));
1da177e4
LT
2451 }
2452 break;
2453
2454 default:
2455 ASSERT(0);
2456 break;
2457 }
1da177e4
LT
2458}
2459
bad55843
DC
2460STATIC int
2461xfs_iflush_cluster(
2462 xfs_inode_t *ip,
2463 xfs_buf_t *bp)
2464{
2465 xfs_mount_t *mp = ip->i_mount;
5017e97d 2466 struct xfs_perag *pag;
bad55843 2467 unsigned long first_index, mask;
c8f5f12e 2468 unsigned long inodes_per_cluster;
bad55843
DC
2469 int ilist_size;
2470 xfs_inode_t **ilist;
2471 xfs_inode_t *iq;
bad55843
DC
2472 int nr_found;
2473 int clcount = 0;
2474 int bufwasdelwri;
2475 int i;
2476
5017e97d 2477 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
bad55843 2478
c8f5f12e
DC
2479 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2480 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2481 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843 2482 if (!ilist)
44b56e0a 2483 goto out_put;
bad55843
DC
2484
2485 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2486 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
1a3e8f3d 2487 rcu_read_lock();
bad55843
DC
2488 /* really need a gang lookup range call here */
2489 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2490 first_index, inodes_per_cluster);
bad55843
DC
2491 if (nr_found == 0)
2492 goto out_free;
2493
2494 for (i = 0; i < nr_found; i++) {
2495 iq = ilist[i];
2496 if (iq == ip)
2497 continue;
1a3e8f3d
DC
2498
2499 /*
2500 * because this is an RCU protected lookup, we could find a
2501 * recently freed or even reallocated inode during the lookup.
2502 * We need to check under the i_flags_lock for a valid inode
2503 * here. Skip it if it is not valid or the wrong inode.
2504 */
2505 spin_lock(&ip->i_flags_lock);
2506 if (!ip->i_ino ||
2507 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2508 spin_unlock(&ip->i_flags_lock);
2509 continue;
2510 }
2511 spin_unlock(&ip->i_flags_lock);
2512
bad55843
DC
2513 /*
2514 * Do an un-protected check to see if the inode is dirty and
2515 * is a candidate for flushing. These checks will be repeated
2516 * later after the appropriate locks are acquired.
2517 */
33540408 2518 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2519 continue;
bad55843
DC
2520
2521 /*
2522 * Try to get locks. If any are unavailable or it is pinned,
2523 * then this inode cannot be flushed and is skipped.
2524 */
2525
2526 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2527 continue;
2528 if (!xfs_iflock_nowait(iq)) {
2529 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2530 continue;
2531 }
2532 if (xfs_ipincount(iq)) {
2533 xfs_ifunlock(iq);
2534 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2535 continue;
2536 }
2537
2538 /*
2539 * arriving here means that this inode can be flushed. First
2540 * re-check that it's dirty before flushing.
2541 */
33540408
DC
2542 if (!xfs_inode_clean(iq)) {
2543 int error;
bad55843
DC
2544 error = xfs_iflush_int(iq, bp);
2545 if (error) {
2546 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2547 goto cluster_corrupt_out;
2548 }
2549 clcount++;
2550 } else {
2551 xfs_ifunlock(iq);
2552 }
2553 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2554 }
2555
2556 if (clcount) {
2557 XFS_STATS_INC(xs_icluster_flushcnt);
2558 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2559 }
2560
2561out_free:
1a3e8f3d 2562 rcu_read_unlock();
f0e2d93c 2563 kmem_free(ilist);
44b56e0a
DC
2564out_put:
2565 xfs_perag_put(pag);
bad55843
DC
2566 return 0;
2567
2568
2569cluster_corrupt_out:
2570 /*
2571 * Corruption detected in the clustering loop. Invalidate the
2572 * inode buffer and shut down the filesystem.
2573 */
1a3e8f3d 2574 rcu_read_unlock();
bad55843 2575 /*
43ff2122 2576 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
2577 * brelse can handle it with no problems. If not, shut down the
2578 * filesystem before releasing the buffer.
2579 */
43ff2122 2580 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
2581 if (bufwasdelwri)
2582 xfs_buf_relse(bp);
2583
2584 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2585
2586 if (!bufwasdelwri) {
2587 /*
2588 * Just like incore_relse: if we have b_iodone functions,
2589 * mark the buffer as an error and call them. Otherwise
2590 * mark it as stale and brelse.
2591 */
cb669ca5 2592 if (bp->b_iodone) {
bad55843 2593 XFS_BUF_UNDONE(bp);
c867cb61 2594 xfs_buf_stale(bp);
5a52c2a5 2595 xfs_buf_ioerror(bp, EIO);
1a1a3e97 2596 xfs_buf_ioend(bp, 0);
bad55843 2597 } else {
c867cb61 2598 xfs_buf_stale(bp);
bad55843
DC
2599 xfs_buf_relse(bp);
2600 }
2601 }
2602
2603 /*
2604 * Unlocks the flush lock
2605 */
04913fdd 2606 xfs_iflush_abort(iq, false);
f0e2d93c 2607 kmem_free(ilist);
44b56e0a 2608 xfs_perag_put(pag);
bad55843
DC
2609 return XFS_ERROR(EFSCORRUPTED);
2610}
2611
1da177e4 2612/*
4c46819a
CH
2613 * Flush dirty inode metadata into the backing buffer.
2614 *
2615 * The caller must have the inode lock and the inode flush lock held. The
2616 * inode lock will still be held upon return to the caller, and the inode
2617 * flush lock will be released after the inode has reached the disk.
2618 *
2619 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
2620 */
2621int
2622xfs_iflush(
4c46819a
CH
2623 struct xfs_inode *ip,
2624 struct xfs_buf **bpp)
1da177e4 2625{
4c46819a
CH
2626 struct xfs_mount *mp = ip->i_mount;
2627 struct xfs_buf *bp;
2628 struct xfs_dinode *dip;
1da177e4 2629 int error;
1da177e4
LT
2630
2631 XFS_STATS_INC(xs_iflush_count);
2632
579aa9ca 2633 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 2634 ASSERT(xfs_isiflocked(ip));
1da177e4 2635 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2636 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 2637
4c46819a 2638 *bpp = NULL;
1da177e4 2639
1da177e4
LT
2640 xfs_iunpin_wait(ip);
2641
4b6a4688
DC
2642 /*
2643 * For stale inodes we cannot rely on the backing buffer remaining
2644 * stale in cache for the remaining life of the stale inode and so
475ee413 2645 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
2646 * inodes below. We have to check this after ensuring the inode is
2647 * unpinned so that it is safe to reclaim the stale inode after the
2648 * flush call.
2649 */
2650 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2651 xfs_ifunlock(ip);
2652 return 0;
2653 }
2654
1da177e4
LT
2655 /*
2656 * This may have been unpinned because the filesystem is shutting
2657 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
2658 * to disk, because the log record didn't make it to disk.
2659 *
2660 * We also have to remove the log item from the AIL in this case,
2661 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
2662 */
2663 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
2664 error = XFS_ERROR(EIO);
2665 goto abort_out;
1da177e4
LT
2666 }
2667
a3f74ffb
DC
2668 /*
2669 * Get the buffer containing the on-disk inode.
2670 */
475ee413
CH
2671 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
2672 0);
a3f74ffb
DC
2673 if (error || !bp) {
2674 xfs_ifunlock(ip);
2675 return error;
2676 }
2677
1da177e4
LT
2678 /*
2679 * First flush out the inode that xfs_iflush was called with.
2680 */
2681 error = xfs_iflush_int(ip, bp);
bad55843 2682 if (error)
1da177e4 2683 goto corrupt_out;
1da177e4 2684
a3f74ffb
DC
2685 /*
2686 * If the buffer is pinned then push on the log now so we won't
2687 * get stuck waiting in the write for too long.
2688 */
811e64c7 2689 if (xfs_buf_ispinned(bp))
a14a348b 2690 xfs_log_force(mp, 0);
a3f74ffb 2691
1da177e4
LT
2692 /*
2693 * inode clustering:
2694 * see if other inodes can be gathered into this write
2695 */
bad55843
DC
2696 error = xfs_iflush_cluster(ip, bp);
2697 if (error)
2698 goto cluster_corrupt_out;
1da177e4 2699
4c46819a
CH
2700 *bpp = bp;
2701 return 0;
1da177e4
LT
2702
2703corrupt_out:
2704 xfs_buf_relse(bp);
7d04a335 2705 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 2706cluster_corrupt_out:
32ce90a4
CH
2707 error = XFS_ERROR(EFSCORRUPTED);
2708abort_out:
1da177e4
LT
2709 /*
2710 * Unlocks the flush lock
2711 */
04913fdd 2712 xfs_iflush_abort(ip, false);
32ce90a4 2713 return error;
1da177e4
LT
2714}
2715
2716
2717STATIC int
2718xfs_iflush_int(
2719 xfs_inode_t *ip,
2720 xfs_buf_t *bp)
2721{
2722 xfs_inode_log_item_t *iip;
2723 xfs_dinode_t *dip;
2724 xfs_mount_t *mp;
1da177e4 2725
579aa9ca 2726 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 2727 ASSERT(xfs_isiflocked(ip));
1da177e4 2728 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2729 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4
LT
2730
2731 iip = ip->i_itemp;
2732 mp = ip->i_mount;
2733
1da177e4 2734 /* set *dip = inode's place in the buffer */
92bfc6e7 2735 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 2736
69ef921b 2737 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 2738 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
2739 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2740 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2741 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
2742 goto corrupt_out;
2743 }
2744 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2745 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
2746 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2747 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2748 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
2749 goto corrupt_out;
2750 }
abbede1b 2751 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
2752 if (XFS_TEST_ERROR(
2753 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2754 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2755 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
2756 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2757 "%s: Bad regular inode %Lu, ptr 0x%p",
2758 __func__, ip->i_ino, ip);
1da177e4
LT
2759 goto corrupt_out;
2760 }
abbede1b 2761 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
2762 if (XFS_TEST_ERROR(
2763 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2764 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2765 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2766 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
2767 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2768 "%s: Bad directory inode %Lu, ptr 0x%p",
2769 __func__, ip->i_ino, ip);
1da177e4
LT
2770 goto corrupt_out;
2771 }
2772 }
2773 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2774 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2775 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
2776 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2777 "%s: detected corrupt incore inode %Lu, "
2778 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2779 __func__, ip->i_ino,
1da177e4 2780 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 2781 ip->i_d.di_nblocks, ip);
1da177e4
LT
2782 goto corrupt_out;
2783 }
2784 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2785 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
2786 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2787 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2788 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
2789 goto corrupt_out;
2790 }
2791 /*
2792 * bump the flush iteration count, used to detect flushes which
2793 * postdate a log record during recovery.
2794 */
2795
2796 ip->i_d.di_flushiter++;
2797
2798 /*
2799 * Copy the dirty parts of the inode into the on-disk
2800 * inode. We always copy out the core of the inode,
2801 * because if the inode is dirty at all the core must
2802 * be.
2803 */
81591fe2 2804 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
2805
2806 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2807 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2808 ip->i_d.di_flushiter = 0;
2809
2810 /*
2811 * If this is really an old format inode and the superblock version
2812 * has not been updated to support only new format inodes, then
2813 * convert back to the old inode format. If the superblock version
2814 * has been updated, then make the conversion permanent.
2815 */
51ce16d5
CH
2816 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2817 if (ip->i_d.di_version == 1) {
62118709 2818 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
2819 /*
2820 * Convert it back.
2821 */
2822 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 2823 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
2824 } else {
2825 /*
2826 * The superblock version has already been bumped,
2827 * so just make the conversion to the new inode
2828 * format permanent.
2829 */
51ce16d5
CH
2830 ip->i_d.di_version = 2;
2831 dip->di_version = 2;
1da177e4 2832 ip->i_d.di_onlink = 0;
81591fe2 2833 dip->di_onlink = 0;
1da177e4 2834 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
2835 memset(&(dip->di_pad[0]), 0,
2836 sizeof(dip->di_pad));
6743099c 2837 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
2838 }
2839 }
2840
e4ac967b
DC
2841 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2842 if (XFS_IFORK_Q(ip))
2843 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
2844 xfs_inobp_check(mp, bp);
2845
2846 /*
f5d8d5c4
CH
2847 * We've recorded everything logged in the inode, so we'd like to clear
2848 * the ili_fields bits so we don't log and flush things unnecessarily.
2849 * However, we can't stop logging all this information until the data
2850 * we've copied into the disk buffer is written to disk. If we did we
2851 * might overwrite the copy of the inode in the log with all the data
2852 * after re-logging only part of it, and in the face of a crash we
2853 * wouldn't have all the data we need to recover.
1da177e4 2854 *
f5d8d5c4
CH
2855 * What we do is move the bits to the ili_last_fields field. When
2856 * logging the inode, these bits are moved back to the ili_fields field.
2857 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2858 * know that the information those bits represent is permanently on
2859 * disk. As long as the flush completes before the inode is logged
2860 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 2861 *
f5d8d5c4
CH
2862 * We can play with the ili_fields bits here, because the inode lock
2863 * must be held exclusively in order to set bits there and the flush
2864 * lock protects the ili_last_fields bits. Set ili_logged so the flush
2865 * done routine can tell whether or not to look in the AIL. Also, store
2866 * the current LSN of the inode so that we can tell whether the item has
2867 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
2868 * need the AIL lock, because it is a 64 bit value that cannot be read
2869 * atomically.
1da177e4 2870 */
f5d8d5c4
CH
2871 if (iip != NULL && iip->ili_fields != 0) {
2872 iip->ili_last_fields = iip->ili_fields;
2873 iip->ili_fields = 0;
1da177e4
LT
2874 iip->ili_logged = 1;
2875
7b2e2a31
DC
2876 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2877 &iip->ili_item.li_lsn);
1da177e4
LT
2878
2879 /*
2880 * Attach the function xfs_iflush_done to the inode's
2881 * buffer. This will remove the inode from the AIL
2882 * and unlock the inode's flush lock when the inode is
2883 * completely written to disk.
2884 */
ca30b2a7 2885 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 2886
adadbeef 2887 ASSERT(bp->b_fspriv != NULL);
cb669ca5 2888 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
2889 } else {
2890 /*
2891 * We're flushing an inode which is not in the AIL and has
8a9c9980 2892 * not been logged. For this case we can immediately drop
1da177e4
LT
2893 * the inode flush lock because we can avoid the whole
2894 * AIL state thing. It's OK to drop the flush lock now,
2895 * because we've already locked the buffer and to do anything
2896 * you really need both.
2897 */
2898 if (iip != NULL) {
2899 ASSERT(iip->ili_logged == 0);
2900 ASSERT(iip->ili_last_fields == 0);
2901 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2902 }
2903 xfs_ifunlock(ip);
2904 }
2905
2906 return 0;
2907
2908corrupt_out:
2909 return XFS_ERROR(EFSCORRUPTED);
2910}
2911
4eea22f0
MK
2912/*
2913 * Return a pointer to the extent record at file index idx.
2914 */
a6f64d4a 2915xfs_bmbt_rec_host_t *
4eea22f0
MK
2916xfs_iext_get_ext(
2917 xfs_ifork_t *ifp, /* inode fork pointer */
2918 xfs_extnum_t idx) /* index of target extent */
2919{
2920 ASSERT(idx >= 0);
87bef181
CH
2921 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2922
0293ce3a
MK
2923 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2924 return ifp->if_u1.if_ext_irec->er_extbuf;
2925 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2926 xfs_ext_irec_t *erp; /* irec pointer */
2927 int erp_idx = 0; /* irec index */
2928 xfs_extnum_t page_idx = idx; /* ext index in target list */
2929
2930 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2931 return &erp->er_extbuf[page_idx];
2932 } else if (ifp->if_bytes) {
4eea22f0
MK
2933 return &ifp->if_u1.if_extents[idx];
2934 } else {
2935 return NULL;
2936 }
2937}
2938
2939/*
2940 * Insert new item(s) into the extent records for incore inode
2941 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2942 */
2943void
2944xfs_iext_insert(
6ef35544 2945 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0
MK
2946 xfs_extnum_t idx, /* starting index of new items */
2947 xfs_extnum_t count, /* number of inserted items */
6ef35544
CH
2948 xfs_bmbt_irec_t *new, /* items to insert */
2949 int state) /* type of extent conversion */
4eea22f0 2950{
6ef35544 2951 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
2952 xfs_extnum_t i; /* extent record index */
2953
0b1b213f
CH
2954 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2955
4eea22f0
MK
2956 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2957 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
2958 for (i = idx; i < idx + count; i++, new++)
2959 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
2960}
2961
2962/*
2963 * This is called when the amount of space required for incore file
2964 * extents needs to be increased. The ext_diff parameter stores the
2965 * number of new extents being added and the idx parameter contains
2966 * the extent index where the new extents will be added. If the new
2967 * extents are being appended, then we just need to (re)allocate and
2968 * initialize the space. Otherwise, if the new extents are being
2969 * inserted into the middle of the existing entries, a bit more work
2970 * is required to make room for the new extents to be inserted. The
2971 * caller is responsible for filling in the new extent entries upon
2972 * return.
2973 */
2974void
2975xfs_iext_add(
2976 xfs_ifork_t *ifp, /* inode fork pointer */
2977 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 2978 int ext_diff) /* number of extents to add */
4eea22f0
MK
2979{
2980 int byte_diff; /* new bytes being added */
2981 int new_size; /* size of extents after adding */
2982 xfs_extnum_t nextents; /* number of extents in file */
2983
2984 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2985 ASSERT((idx >= 0) && (idx <= nextents));
2986 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2987 new_size = ifp->if_bytes + byte_diff;
2988 /*
2989 * If the new number of extents (nextents + ext_diff)
2990 * fits inside the inode, then continue to use the inline
2991 * extent buffer.
2992 */
2993 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2994 if (idx < nextents) {
2995 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2996 &ifp->if_u2.if_inline_ext[idx],
2997 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2998 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2999 }
3000 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3001 ifp->if_real_bytes = 0;
3002 }
3003 /*
3004 * Otherwise use a linear (direct) extent list.
3005 * If the extents are currently inside the inode,
3006 * xfs_iext_realloc_direct will switch us from
3007 * inline to direct extent allocation mode.
3008 */
0293ce3a 3009 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3010 xfs_iext_realloc_direct(ifp, new_size);
3011 if (idx < nextents) {
3012 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3013 &ifp->if_u1.if_extents[idx],
3014 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3015 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3016 }
3017 }
0293ce3a
MK
3018 /* Indirection array */
3019 else {
3020 xfs_ext_irec_t *erp;
3021 int erp_idx = 0;
3022 int page_idx = idx;
3023
3024 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3025 if (ifp->if_flags & XFS_IFEXTIREC) {
3026 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3027 } else {
3028 xfs_iext_irec_init(ifp);
3029 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3030 erp = ifp->if_u1.if_ext_irec;
3031 }
3032 /* Extents fit in target extent page */
3033 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3034 if (page_idx < erp->er_extcount) {
3035 memmove(&erp->er_extbuf[page_idx + ext_diff],
3036 &erp->er_extbuf[page_idx],
3037 (erp->er_extcount - page_idx) *
3038 sizeof(xfs_bmbt_rec_t));
3039 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3040 }
3041 erp->er_extcount += ext_diff;
3042 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3043 }
3044 /* Insert a new extent page */
3045 else if (erp) {
3046 xfs_iext_add_indirect_multi(ifp,
3047 erp_idx, page_idx, ext_diff);
3048 }
3049 /*
3050 * If extent(s) are being appended to the last page in
3051 * the indirection array and the new extent(s) don't fit
3052 * in the page, then erp is NULL and erp_idx is set to
3053 * the next index needed in the indirection array.
3054 */
3055 else {
3056 int count = ext_diff;
3057
3058 while (count) {
3059 erp = xfs_iext_irec_new(ifp, erp_idx);
3060 erp->er_extcount = count;
3061 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3062 if (count) {
3063 erp_idx++;
3064 }
3065 }
3066 }
3067 }
4eea22f0
MK
3068 ifp->if_bytes = new_size;
3069}
3070
0293ce3a
MK
3071/*
3072 * This is called when incore extents are being added to the indirection
3073 * array and the new extents do not fit in the target extent list. The
3074 * erp_idx parameter contains the irec index for the target extent list
3075 * in the indirection array, and the idx parameter contains the extent
3076 * index within the list. The number of extents being added is stored
3077 * in the count parameter.
3078 *
3079 * |-------| |-------|
3080 * | | | | idx - number of extents before idx
3081 * | idx | | count |
3082 * | | | | count - number of extents being inserted at idx
3083 * |-------| |-------|
3084 * | count | | nex2 | nex2 - number of extents after idx + count
3085 * |-------| |-------|
3086 */
3087void
3088xfs_iext_add_indirect_multi(
3089 xfs_ifork_t *ifp, /* inode fork pointer */
3090 int erp_idx, /* target extent irec index */
3091 xfs_extnum_t idx, /* index within target list */
3092 int count) /* new extents being added */
3093{
3094 int byte_diff; /* new bytes being added */
3095 xfs_ext_irec_t *erp; /* pointer to irec entry */
3096 xfs_extnum_t ext_diff; /* number of extents to add */
3097 xfs_extnum_t ext_cnt; /* new extents still needed */
3098 xfs_extnum_t nex2; /* extents after idx + count */
3099 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3100 int nlists; /* number of irec's (lists) */
3101
3102 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3103 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3104 nex2 = erp->er_extcount - idx;
3105 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3106
3107 /*
3108 * Save second part of target extent list
3109 * (all extents past */
3110 if (nex2) {
3111 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3112 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3113 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3114 erp->er_extcount -= nex2;
3115 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3116 memset(&erp->er_extbuf[idx], 0, byte_diff);
3117 }
3118
3119 /*
3120 * Add the new extents to the end of the target
3121 * list, then allocate new irec record(s) and
3122 * extent buffer(s) as needed to store the rest
3123 * of the new extents.
3124 */
3125 ext_cnt = count;
3126 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3127 if (ext_diff) {
3128 erp->er_extcount += ext_diff;
3129 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3130 ext_cnt -= ext_diff;
3131 }
3132 while (ext_cnt) {
3133 erp_idx++;
3134 erp = xfs_iext_irec_new(ifp, erp_idx);
3135 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3136 erp->er_extcount = ext_diff;
3137 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3138 ext_cnt -= ext_diff;
3139 }
3140
3141 /* Add nex2 extents back to indirection array */
3142 if (nex2) {
3143 xfs_extnum_t ext_avail;
3144 int i;
3145
3146 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3147 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3148 i = 0;
3149 /*
3150 * If nex2 extents fit in the current page, append
3151 * nex2_ep after the new extents.
3152 */
3153 if (nex2 <= ext_avail) {
3154 i = erp->er_extcount;
3155 }
3156 /*
3157 * Otherwise, check if space is available in the
3158 * next page.
3159 */
3160 else if ((erp_idx < nlists - 1) &&
3161 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3162 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3163 erp_idx++;
3164 erp++;
3165 /* Create a hole for nex2 extents */
3166 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3167 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3168 }
3169 /*
3170 * Final choice, create a new extent page for
3171 * nex2 extents.
3172 */
3173 else {
3174 erp_idx++;
3175 erp = xfs_iext_irec_new(ifp, erp_idx);
3176 }
3177 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3178 kmem_free(nex2_ep);
0293ce3a
MK
3179 erp->er_extcount += nex2;
3180 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3181 }
3182}
3183
4eea22f0
MK
3184/*
3185 * This is called when the amount of space required for incore file
3186 * extents needs to be decreased. The ext_diff parameter stores the
3187 * number of extents to be removed and the idx parameter contains
3188 * the extent index where the extents will be removed from.
0293ce3a
MK
3189 *
3190 * If the amount of space needed has decreased below the linear
3191 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3192 * extent array. Otherwise, use kmem_realloc() to adjust the
3193 * size to what is needed.
4eea22f0
MK
3194 */
3195void
3196xfs_iext_remove(
6ef35544 3197 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0 3198 xfs_extnum_t idx, /* index to begin removing exts */
6ef35544
CH
3199 int ext_diff, /* number of extents to remove */
3200 int state) /* type of extent conversion */
4eea22f0 3201{
6ef35544 3202 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3203 xfs_extnum_t nextents; /* number of extents in file */
3204 int new_size; /* size of extents after removal */
3205
0b1b213f
CH
3206 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3207
4eea22f0
MK
3208 ASSERT(ext_diff > 0);
3209 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3210 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3211
3212 if (new_size == 0) {
3213 xfs_iext_destroy(ifp);
0293ce3a
MK
3214 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3215 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3216 } else if (ifp->if_real_bytes) {
3217 xfs_iext_remove_direct(ifp, idx, ext_diff);
3218 } else {
3219 xfs_iext_remove_inline(ifp, idx, ext_diff);
3220 }
3221 ifp->if_bytes = new_size;
3222}
3223
3224/*
3225 * This removes ext_diff extents from the inline buffer, beginning
3226 * at extent index idx.
3227 */
3228void
3229xfs_iext_remove_inline(
3230 xfs_ifork_t *ifp, /* inode fork pointer */
3231 xfs_extnum_t idx, /* index to begin removing exts */
3232 int ext_diff) /* number of extents to remove */
3233{
3234 int nextents; /* number of extents in file */
3235
0293ce3a 3236 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3237 ASSERT(idx < XFS_INLINE_EXTS);
3238 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3239 ASSERT(((nextents - ext_diff) > 0) &&
3240 (nextents - ext_diff) < XFS_INLINE_EXTS);
3241
3242 if (idx + ext_diff < nextents) {
3243 memmove(&ifp->if_u2.if_inline_ext[idx],
3244 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3245 (nextents - (idx + ext_diff)) *
3246 sizeof(xfs_bmbt_rec_t));
3247 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3248 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3249 } else {
3250 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3251 ext_diff * sizeof(xfs_bmbt_rec_t));
3252 }
3253}
3254
3255/*
3256 * This removes ext_diff extents from a linear (direct) extent list,
3257 * beginning at extent index idx. If the extents are being removed
3258 * from the end of the list (ie. truncate) then we just need to re-
3259 * allocate the list to remove the extra space. Otherwise, if the
3260 * extents are being removed from the middle of the existing extent
3261 * entries, then we first need to move the extent records beginning
3262 * at idx + ext_diff up in the list to overwrite the records being
3263 * removed, then remove the extra space via kmem_realloc.
3264 */
3265void
3266xfs_iext_remove_direct(
3267 xfs_ifork_t *ifp, /* inode fork pointer */
3268 xfs_extnum_t idx, /* index to begin removing exts */
3269 int ext_diff) /* number of extents to remove */
3270{
3271 xfs_extnum_t nextents; /* number of extents in file */
3272 int new_size; /* size of extents after removal */
3273
0293ce3a 3274 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3275 new_size = ifp->if_bytes -
3276 (ext_diff * sizeof(xfs_bmbt_rec_t));
3277 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3278
3279 if (new_size == 0) {
3280 xfs_iext_destroy(ifp);
3281 return;
3282 }
3283 /* Move extents up in the list (if needed) */
3284 if (idx + ext_diff < nextents) {
3285 memmove(&ifp->if_u1.if_extents[idx],
3286 &ifp->if_u1.if_extents[idx + ext_diff],
3287 (nextents - (idx + ext_diff)) *
3288 sizeof(xfs_bmbt_rec_t));
3289 }
3290 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3291 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3292 /*
3293 * Reallocate the direct extent list. If the extents
3294 * will fit inside the inode then xfs_iext_realloc_direct
3295 * will switch from direct to inline extent allocation
3296 * mode for us.
3297 */
3298 xfs_iext_realloc_direct(ifp, new_size);
3299 ifp->if_bytes = new_size;
3300}
3301
0293ce3a
MK
3302/*
3303 * This is called when incore extents are being removed from the
3304 * indirection array and the extents being removed span multiple extent
3305 * buffers. The idx parameter contains the file extent index where we
3306 * want to begin removing extents, and the count parameter contains
3307 * how many extents need to be removed.
3308 *
3309 * |-------| |-------|
3310 * | nex1 | | | nex1 - number of extents before idx
3311 * |-------| | count |
3312 * | | | | count - number of extents being removed at idx
3313 * | count | |-------|
3314 * | | | nex2 | nex2 - number of extents after idx + count
3315 * |-------| |-------|
3316 */
3317void
3318xfs_iext_remove_indirect(
3319 xfs_ifork_t *ifp, /* inode fork pointer */
3320 xfs_extnum_t idx, /* index to begin removing extents */
3321 int count) /* number of extents to remove */
3322{
3323 xfs_ext_irec_t *erp; /* indirection array pointer */
3324 int erp_idx = 0; /* indirection array index */
3325 xfs_extnum_t ext_cnt; /* extents left to remove */
3326 xfs_extnum_t ext_diff; /* extents to remove in current list */
3327 xfs_extnum_t nex1; /* number of extents before idx */
3328 xfs_extnum_t nex2; /* extents after idx + count */
0293ce3a
MK
3329 int page_idx = idx; /* index in target extent list */
3330
3331 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3332 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3333 ASSERT(erp != NULL);
0293ce3a
MK
3334 nex1 = page_idx;
3335 ext_cnt = count;
3336 while (ext_cnt) {
3337 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3338 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3339 /*
3340 * Check for deletion of entire list;
3341 * xfs_iext_irec_remove() updates extent offsets.
3342 */
3343 if (ext_diff == erp->er_extcount) {
3344 xfs_iext_irec_remove(ifp, erp_idx);
3345 ext_cnt -= ext_diff;
3346 nex1 = 0;
3347 if (ext_cnt) {
3348 ASSERT(erp_idx < ifp->if_real_bytes /
3349 XFS_IEXT_BUFSZ);
3350 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3351 nex1 = 0;
3352 continue;
3353 } else {
3354 break;
3355 }
3356 }
3357 /* Move extents up (if needed) */
3358 if (nex2) {
3359 memmove(&erp->er_extbuf[nex1],
3360 &erp->er_extbuf[nex1 + ext_diff],
3361 nex2 * sizeof(xfs_bmbt_rec_t));
3362 }
3363 /* Zero out rest of page */
3364 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3365 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3366 /* Update remaining counters */
3367 erp->er_extcount -= ext_diff;
3368 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3369 ext_cnt -= ext_diff;
3370 nex1 = 0;
3371 erp_idx++;
3372 erp++;
3373 }
3374 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3375 xfs_iext_irec_compact(ifp);
3376}
3377
4eea22f0
MK
3378/*
3379 * Create, destroy, or resize a linear (direct) block of extents.
3380 */
3381void
3382xfs_iext_realloc_direct(
3383 xfs_ifork_t *ifp, /* inode fork pointer */
3384 int new_size) /* new size of extents */
3385{
3386 int rnew_size; /* real new size of extents */
3387
3388 rnew_size = new_size;
3389
0293ce3a
MK
3390 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3391 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3392 (new_size != ifp->if_real_bytes)));
3393
4eea22f0
MK
3394 /* Free extent records */
3395 if (new_size == 0) {
3396 xfs_iext_destroy(ifp);
3397 }
3398 /* Resize direct extent list and zero any new bytes */
3399 else if (ifp->if_real_bytes) {
3400 /* Check if extents will fit inside the inode */
3401 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3402 xfs_iext_direct_to_inline(ifp, new_size /
3403 (uint)sizeof(xfs_bmbt_rec_t));
3404 ifp->if_bytes = new_size;
3405 return;
3406 }
16a087d8 3407 if (!is_power_of_2(new_size)){
40ebd81d 3408 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3409 }
3410 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3411 ifp->if_u1.if_extents =
4eea22f0
MK
3412 kmem_realloc(ifp->if_u1.if_extents,
3413 rnew_size,
6785073b 3414 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3415 }
3416 if (rnew_size > ifp->if_real_bytes) {
3417 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3418 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3419 rnew_size - ifp->if_real_bytes);
3420 }
3421 }
3422 /*
3423 * Switch from the inline extent buffer to a direct
3424 * extent list. Be sure to include the inline extent
3425 * bytes in new_size.
3426 */
3427 else {
3428 new_size += ifp->if_bytes;
16a087d8 3429 if (!is_power_of_2(new_size)) {
40ebd81d 3430 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3431 }
3432 xfs_iext_inline_to_direct(ifp, rnew_size);
3433 }
3434 ifp->if_real_bytes = rnew_size;
3435 ifp->if_bytes = new_size;
3436}
3437
3438/*
3439 * Switch from linear (direct) extent records to inline buffer.
3440 */
3441void
3442xfs_iext_direct_to_inline(
3443 xfs_ifork_t *ifp, /* inode fork pointer */
3444 xfs_extnum_t nextents) /* number of extents in file */
3445{
3446 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3447 ASSERT(nextents <= XFS_INLINE_EXTS);
3448 /*
3449 * The inline buffer was zeroed when we switched
3450 * from inline to direct extent allocation mode,
3451 * so we don't need to clear it here.
3452 */
3453 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3454 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3455 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3456 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3457 ifp->if_real_bytes = 0;
3458}
3459
3460/*
3461 * Switch from inline buffer to linear (direct) extent records.
3462 * new_size should already be rounded up to the next power of 2
3463 * by the caller (when appropriate), so use new_size as it is.
3464 * However, since new_size may be rounded up, we can't update
3465 * if_bytes here. It is the caller's responsibility to update
3466 * if_bytes upon return.
3467 */
3468void
3469xfs_iext_inline_to_direct(
3470 xfs_ifork_t *ifp, /* inode fork pointer */
3471 int new_size) /* number of extents in file */
3472{
6785073b 3473 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3474 memset(ifp->if_u1.if_extents, 0, new_size);
3475 if (ifp->if_bytes) {
3476 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3477 ifp->if_bytes);
3478 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3479 sizeof(xfs_bmbt_rec_t));
3480 }
3481 ifp->if_real_bytes = new_size;
3482}
3483
0293ce3a
MK
3484/*
3485 * Resize an extent indirection array to new_size bytes.
3486 */
d96f8f89 3487STATIC void
0293ce3a
MK
3488xfs_iext_realloc_indirect(
3489 xfs_ifork_t *ifp, /* inode fork pointer */
3490 int new_size) /* new indirection array size */
3491{
3492 int nlists; /* number of irec's (ex lists) */
3493 int size; /* current indirection array size */
3494
3495 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3496 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3497 size = nlists * sizeof(xfs_ext_irec_t);
3498 ASSERT(ifp->if_real_bytes);
3499 ASSERT((new_size >= 0) && (new_size != size));
3500 if (new_size == 0) {
3501 xfs_iext_destroy(ifp);
3502 } else {
3503 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3504 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3505 new_size, size, KM_NOFS);
0293ce3a
MK
3506 }
3507}
3508
3509/*
3510 * Switch from indirection array to linear (direct) extent allocations.
3511 */
d96f8f89 3512STATIC void
0293ce3a
MK
3513xfs_iext_indirect_to_direct(
3514 xfs_ifork_t *ifp) /* inode fork pointer */
3515{
a6f64d4a 3516 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
3517 xfs_extnum_t nextents; /* number of extents in file */
3518 int size; /* size of file extents */
3519
3520 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3521 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3522 ASSERT(nextents <= XFS_LINEAR_EXTS);
3523 size = nextents * sizeof(xfs_bmbt_rec_t);
3524
71a8c87f 3525 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
3526 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3527
3528 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 3529 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3530 ifp->if_flags &= ~XFS_IFEXTIREC;
3531 ifp->if_u1.if_extents = ep;
3532 ifp->if_bytes = size;
3533 if (nextents < XFS_LINEAR_EXTS) {
3534 xfs_iext_realloc_direct(ifp, size);
3535 }
3536}
3537
4eea22f0
MK
3538/*
3539 * Free incore file extents.
3540 */
3541void
3542xfs_iext_destroy(
3543 xfs_ifork_t *ifp) /* inode fork pointer */
3544{
0293ce3a
MK
3545 if (ifp->if_flags & XFS_IFEXTIREC) {
3546 int erp_idx;
3547 int nlists;
3548
3549 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3550 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3551 xfs_iext_irec_remove(ifp, erp_idx);
3552 }
3553 ifp->if_flags &= ~XFS_IFEXTIREC;
3554 } else if (ifp->if_real_bytes) {
f0e2d93c 3555 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3556 } else if (ifp->if_bytes) {
3557 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3558 sizeof(xfs_bmbt_rec_t));
3559 }
3560 ifp->if_u1.if_extents = NULL;
3561 ifp->if_real_bytes = 0;
3562 ifp->if_bytes = 0;
3563}
0293ce3a 3564
8867bc9b
MK
3565/*
3566 * Return a pointer to the extent record for file system block bno.
3567 */
a6f64d4a 3568xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
3569xfs_iext_bno_to_ext(
3570 xfs_ifork_t *ifp, /* inode fork pointer */
3571 xfs_fileoff_t bno, /* block number to search for */
3572 xfs_extnum_t *idxp) /* index of target extent */
3573{
a6f64d4a 3574 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 3575 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 3576 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 3577 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 3578 int high; /* upper boundary in search */
8867bc9b 3579 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 3580 int low; /* lower boundary in search */
8867bc9b
MK
3581 xfs_extnum_t nextents; /* number of file extents */
3582 xfs_fileoff_t startoff = 0; /* start offset of extent */
3583
3584 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3585 if (nextents == 0) {
3586 *idxp = 0;
3587 return NULL;
3588 }
3589 low = 0;
3590 if (ifp->if_flags & XFS_IFEXTIREC) {
3591 /* Find target extent list */
3592 int erp_idx = 0;
3593 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3594 base = erp->er_extbuf;
3595 high = erp->er_extcount - 1;
3596 } else {
3597 base = ifp->if_u1.if_extents;
3598 high = nextents - 1;
3599 }
3600 /* Binary search extent records */
3601 while (low <= high) {
3602 idx = (low + high) >> 1;
3603 ep = base + idx;
3604 startoff = xfs_bmbt_get_startoff(ep);
3605 blockcount = xfs_bmbt_get_blockcount(ep);
3606 if (bno < startoff) {
3607 high = idx - 1;
3608 } else if (bno >= startoff + blockcount) {
3609 low = idx + 1;
3610 } else {
3611 /* Convert back to file-based extent index */
3612 if (ifp->if_flags & XFS_IFEXTIREC) {
3613 idx += erp->er_extoff;
3614 }
3615 *idxp = idx;
3616 return ep;
3617 }
3618 }
3619 /* Convert back to file-based extent index */
3620 if (ifp->if_flags & XFS_IFEXTIREC) {
3621 idx += erp->er_extoff;
3622 }
3623 if (bno >= startoff + blockcount) {
3624 if (++idx == nextents) {
3625 ep = NULL;
3626 } else {
3627 ep = xfs_iext_get_ext(ifp, idx);
3628 }
3629 }
3630 *idxp = idx;
3631 return ep;
3632}
3633
0293ce3a
MK
3634/*
3635 * Return a pointer to the indirection array entry containing the
3636 * extent record for filesystem block bno. Store the index of the
3637 * target irec in *erp_idxp.
3638 */
8867bc9b 3639xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
3640xfs_iext_bno_to_irec(
3641 xfs_ifork_t *ifp, /* inode fork pointer */
3642 xfs_fileoff_t bno, /* block number to search for */
3643 int *erp_idxp) /* irec index of target ext list */
3644{
3645 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3646 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 3647 int erp_idx; /* indirection array index */
0293ce3a
MK
3648 int nlists; /* number of extent irec's (lists) */
3649 int high; /* binary search upper limit */
3650 int low; /* binary search lower limit */
3651
3652 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3653 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3654 erp_idx = 0;
3655 low = 0;
3656 high = nlists - 1;
3657 while (low <= high) {
3658 erp_idx = (low + high) >> 1;
3659 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3660 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3661 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3662 high = erp_idx - 1;
3663 } else if (erp_next && bno >=
3664 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3665 low = erp_idx + 1;
3666 } else {
3667 break;
3668 }
3669 }
3670 *erp_idxp = erp_idx;
3671 return erp;
3672}
3673
3674/*
3675 * Return a pointer to the indirection array entry containing the
3676 * extent record at file extent index *idxp. Store the index of the
3677 * target irec in *erp_idxp and store the page index of the target
3678 * extent record in *idxp.
3679 */
3680xfs_ext_irec_t *
3681xfs_iext_idx_to_irec(
3682 xfs_ifork_t *ifp, /* inode fork pointer */
3683 xfs_extnum_t *idxp, /* extent index (file -> page) */
3684 int *erp_idxp, /* pointer to target irec */
3685 int realloc) /* new bytes were just added */
3686{
3687 xfs_ext_irec_t *prev; /* pointer to previous irec */
3688 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3689 int erp_idx; /* indirection array index */
3690 int nlists; /* number of irec's (ex lists) */
3691 int high; /* binary search upper limit */
3692 int low; /* binary search lower limit */
3693 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3694
3695 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
87bef181
CH
3696 ASSERT(page_idx >= 0);
3697 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3698 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3699
0293ce3a
MK
3700 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3701 erp_idx = 0;
3702 low = 0;
3703 high = nlists - 1;
3704
3705 /* Binary search extent irec's */
3706 while (low <= high) {
3707 erp_idx = (low + high) >> 1;
3708 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3709 prev = erp_idx > 0 ? erp - 1 : NULL;
3710 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3711 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3712 high = erp_idx - 1;
3713 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3714 (page_idx == erp->er_extoff + erp->er_extcount &&
3715 !realloc)) {
3716 low = erp_idx + 1;
3717 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3718 erp->er_extcount == XFS_LINEAR_EXTS) {
3719 ASSERT(realloc);
3720 page_idx = 0;
3721 erp_idx++;
3722 erp = erp_idx < nlists ? erp + 1 : NULL;
3723 break;
3724 } else {
3725 page_idx -= erp->er_extoff;
3726 break;
3727 }
3728 }
3729 *idxp = page_idx;
3730 *erp_idxp = erp_idx;
3731 return(erp);
3732}
3733
3734/*
3735 * Allocate and initialize an indirection array once the space needed
3736 * for incore extents increases above XFS_IEXT_BUFSZ.
3737 */
3738void
3739xfs_iext_irec_init(
3740 xfs_ifork_t *ifp) /* inode fork pointer */
3741{
3742 xfs_ext_irec_t *erp; /* indirection array pointer */
3743 xfs_extnum_t nextents; /* number of extents in file */
3744
3745 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3746 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3747 ASSERT(nextents <= XFS_LINEAR_EXTS);
3748
6785073b 3749 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
3750
3751 if (nextents == 0) {
6785073b 3752 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3753 } else if (!ifp->if_real_bytes) {
3754 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3755 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3756 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3757 }
3758 erp->er_extbuf = ifp->if_u1.if_extents;
3759 erp->er_extcount = nextents;
3760 erp->er_extoff = 0;
3761
3762 ifp->if_flags |= XFS_IFEXTIREC;
3763 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3764 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3765 ifp->if_u1.if_ext_irec = erp;
3766
3767 return;
3768}
3769
3770/*
3771 * Allocate and initialize a new entry in the indirection array.
3772 */
3773xfs_ext_irec_t *
3774xfs_iext_irec_new(
3775 xfs_ifork_t *ifp, /* inode fork pointer */
3776 int erp_idx) /* index for new irec */
3777{
3778 xfs_ext_irec_t *erp; /* indirection array pointer */
3779 int i; /* loop counter */
3780 int nlists; /* number of irec's (ex lists) */
3781
3782 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3783 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3784
3785 /* Resize indirection array */
3786 xfs_iext_realloc_indirect(ifp, ++nlists *
3787 sizeof(xfs_ext_irec_t));
3788 /*
3789 * Move records down in the array so the
3790 * new page can use erp_idx.
3791 */
3792 erp = ifp->if_u1.if_ext_irec;
3793 for (i = nlists - 1; i > erp_idx; i--) {
3794 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3795 }
3796 ASSERT(i == erp_idx);
3797
3798 /* Initialize new extent record */
3799 erp = ifp->if_u1.if_ext_irec;
6785073b 3800 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3801 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3802 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3803 erp[erp_idx].er_extcount = 0;
3804 erp[erp_idx].er_extoff = erp_idx > 0 ?
3805 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3806 return (&erp[erp_idx]);
3807}
3808
3809/*
3810 * Remove a record from the indirection array.
3811 */
3812void
3813xfs_iext_irec_remove(
3814 xfs_ifork_t *ifp, /* inode fork pointer */
3815 int erp_idx) /* irec index to remove */
3816{
3817 xfs_ext_irec_t *erp; /* indirection array pointer */
3818 int i; /* loop counter */
3819 int nlists; /* number of irec's (ex lists) */
3820
3821 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3822 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3823 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3824 if (erp->er_extbuf) {
3825 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3826 -erp->er_extcount);
f0e2d93c 3827 kmem_free(erp->er_extbuf);
0293ce3a
MK
3828 }
3829 /* Compact extent records */
3830 erp = ifp->if_u1.if_ext_irec;
3831 for (i = erp_idx; i < nlists - 1; i++) {
3832 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3833 }
3834 /*
3835 * Manually free the last extent record from the indirection
3836 * array. A call to xfs_iext_realloc_indirect() with a size
3837 * of zero would result in a call to xfs_iext_destroy() which
3838 * would in turn call this function again, creating a nasty
3839 * infinite loop.
3840 */
3841 if (--nlists) {
3842 xfs_iext_realloc_indirect(ifp,
3843 nlists * sizeof(xfs_ext_irec_t));
3844 } else {
f0e2d93c 3845 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3846 }
3847 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3848}
3849
3850/*
3851 * This is called to clean up large amounts of unused memory allocated
3852 * by the indirection array. Before compacting anything though, verify
3853 * that the indirection array is still needed and switch back to the
3854 * linear extent list (or even the inline buffer) if possible. The
3855 * compaction policy is as follows:
3856 *
3857 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 3858 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
3859 * No Compaction: Extents occupy at least 50% of allocated space
3860 */
3861void
3862xfs_iext_irec_compact(
3863 xfs_ifork_t *ifp) /* inode fork pointer */
3864{
3865 xfs_extnum_t nextents; /* number of extents in file */
3866 int nlists; /* number of irec's (ex lists) */
3867
3868 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3869 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3870 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3871
3872 if (nextents == 0) {
3873 xfs_iext_destroy(ifp);
3874 } else if (nextents <= XFS_INLINE_EXTS) {
3875 xfs_iext_indirect_to_direct(ifp);
3876 xfs_iext_direct_to_inline(ifp, nextents);
3877 } else if (nextents <= XFS_LINEAR_EXTS) {
3878 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
3879 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3880 xfs_iext_irec_compact_pages(ifp);
3881 }
3882}
3883
3884/*
3885 * Combine extents from neighboring extent pages.
3886 */
3887void
3888xfs_iext_irec_compact_pages(
3889 xfs_ifork_t *ifp) /* inode fork pointer */
3890{
3891 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3892 int erp_idx = 0; /* indirection array index */
3893 int nlists; /* number of irec's (ex lists) */
3894
3895 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3896 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3897 while (erp_idx < nlists - 1) {
3898 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3899 erp_next = erp + 1;
3900 if (erp_next->er_extcount <=
3901 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 3902 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
3903 erp_next->er_extbuf, erp_next->er_extcount *
3904 sizeof(xfs_bmbt_rec_t));
3905 erp->er_extcount += erp_next->er_extcount;
3906 /*
3907 * Free page before removing extent record
3908 * so er_extoffs don't get modified in
3909 * xfs_iext_irec_remove.
3910 */
f0e2d93c 3911 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
3912 erp_next->er_extbuf = NULL;
3913 xfs_iext_irec_remove(ifp, erp_idx + 1);
3914 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3915 } else {
3916 erp_idx++;
3917 }
3918 }
3919}
3920
0293ce3a
MK
3921/*
3922 * This is called to update the er_extoff field in the indirection
3923 * array when extents have been added or removed from one of the
3924 * extent lists. erp_idx contains the irec index to begin updating
3925 * at and ext_diff contains the number of extents that were added
3926 * or removed.
3927 */
3928void
3929xfs_iext_irec_update_extoffs(
3930 xfs_ifork_t *ifp, /* inode fork pointer */
3931 int erp_idx, /* irec index to update */
3932 int ext_diff) /* number of new extents */
3933{
3934 int i; /* loop counter */
3935 int nlists; /* number of irec's (ex lists */
3936
3937 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3938 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3939 for (i = erp_idx; i < nlists; i++) {
3940 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3941 }
3942}
72b53efa
BF
3943
3944/*
3945 * Test whether it is appropriate to check an inode for and free post EOF
3946 * blocks. The 'force' parameter determines whether we should also consider
3947 * regular files that are marked preallocated or append-only.
3948 */
3949bool
3950xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
3951{
3952 /* prealloc/delalloc exists only on regular files */
3953 if (!S_ISREG(ip->i_d.di_mode))
3954 return false;
3955
3956 /*
3957 * Zero sized files with no cached pages and delalloc blocks will not
3958 * have speculative prealloc/delalloc blocks to remove.
3959 */
3960 if (VFS_I(ip)->i_size == 0 &&
3961 VN_CACHED(VFS_I(ip)) == 0 &&
3962 ip->i_delayed_blks == 0)
3963 return false;
3964
3965 /* If we haven't read in the extent list, then don't do it now. */
3966 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
3967 return false;
3968
3969 /*
3970 * Do not free real preallocated or append-only files unless the file
3971 * has delalloc blocks and we are forced to remove them.
3972 */
3973 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
3974 if (!force || ip->i_delayed_blks == 0)
3975 return false;
3976
3977 return true;
3978}
3979
This page took 0.86666 seconds and 5 git commands to generate.