xfs: merge xfs_ag.h into xfs_format.h
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
a844f451 26#include "xfs_inum.h"
1da177e4 27#include "xfs_sb.h"
1da177e4 28#include "xfs_mount.h"
a4fbe6ab 29#include "xfs_inode.h"
57062787 30#include "xfs_da_format.h"
c24b5dfa 31#include "xfs_da_btree.h"
c24b5dfa 32#include "xfs_dir2.h"
a844f451 33#include "xfs_attr_sf.h"
c24b5dfa 34#include "xfs_attr.h"
239880ef
DC
35#include "xfs_trans_space.h"
36#include "xfs_trans.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451 38#include "xfs_inode_item.h"
a844f451
NS
39#include "xfs_ialloc.h"
40#include "xfs_bmap.h"
68988114 41#include "xfs_bmap_util.h"
1da177e4 42#include "xfs_error.h"
1da177e4 43#include "xfs_quota.h"
2a82b8be 44#include "xfs_filestream.h"
93848a99 45#include "xfs_cksum.h"
0b1b213f 46#include "xfs_trace.h"
33479e05 47#include "xfs_icache.h"
c24b5dfa 48#include "xfs_symlink.h"
239880ef
DC
49#include "xfs_trans_priv.h"
50#include "xfs_log.h"
a4fbe6ab 51#include "xfs_bmap_btree.h"
1da177e4 52
1da177e4 53kmem_zone_t *xfs_inode_zone;
1da177e4
LT
54
55/*
8f04c47a 56 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
57 * freed from a file in a single transaction.
58 */
59#define XFS_ITRUNC_MAX_EXTENTS 2
60
61STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 62
ab297431
ZYW
63STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
64
2a0ec1d9
DC
65/*
66 * helper function to extract extent size hint from inode
67 */
68xfs_extlen_t
69xfs_get_extsz_hint(
70 struct xfs_inode *ip)
71{
72 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
73 return ip->i_d.di_extsize;
74 if (XFS_IS_REALTIME_INODE(ip))
75 return ip->i_mount->m_sb.sb_rextsize;
76 return 0;
77}
78
fa96acad 79/*
efa70be1
CH
80 * These two are wrapper routines around the xfs_ilock() routine used to
81 * centralize some grungy code. They are used in places that wish to lock the
82 * inode solely for reading the extents. The reason these places can't just
83 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
84 * bringing in of the extents from disk for a file in b-tree format. If the
85 * inode is in b-tree format, then we need to lock the inode exclusively until
86 * the extents are read in. Locking it exclusively all the time would limit
87 * our parallelism unnecessarily, though. What we do instead is check to see
88 * if the extents have been read in yet, and only lock the inode exclusively
89 * if they have not.
fa96acad 90 *
efa70be1 91 * The functions return a value which should be given to the corresponding
01f4f327 92 * xfs_iunlock() call.
fa96acad
DC
93 */
94uint
309ecac8
CH
95xfs_ilock_data_map_shared(
96 struct xfs_inode *ip)
fa96acad 97{
309ecac8 98 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 99
309ecac8
CH
100 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
101 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 102 lock_mode = XFS_ILOCK_EXCL;
fa96acad 103 xfs_ilock(ip, lock_mode);
fa96acad
DC
104 return lock_mode;
105}
106
efa70be1
CH
107uint
108xfs_ilock_attr_map_shared(
109 struct xfs_inode *ip)
fa96acad 110{
efa70be1
CH
111 uint lock_mode = XFS_ILOCK_SHARED;
112
113 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
114 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
115 lock_mode = XFS_ILOCK_EXCL;
116 xfs_ilock(ip, lock_mode);
117 return lock_mode;
fa96acad
DC
118}
119
120/*
121 * The xfs inode contains 2 locks: a multi-reader lock called the
122 * i_iolock and a multi-reader lock called the i_lock. This routine
123 * allows either or both of the locks to be obtained.
124 *
125 * The 2 locks should always be ordered so that the IO lock is
126 * obtained first in order to prevent deadlock.
127 *
128 * ip -- the inode being locked
129 * lock_flags -- this parameter indicates the inode's locks
130 * to be locked. It can be:
131 * XFS_IOLOCK_SHARED,
132 * XFS_IOLOCK_EXCL,
133 * XFS_ILOCK_SHARED,
134 * XFS_ILOCK_EXCL,
135 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
136 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
137 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
138 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
139 */
140void
141xfs_ilock(
142 xfs_inode_t *ip,
143 uint lock_flags)
144{
145 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
146
147 /*
148 * You can't set both SHARED and EXCL for the same lock,
149 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
150 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
151 */
152 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
153 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
154 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
155 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
156 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
157
158 if (lock_flags & XFS_IOLOCK_EXCL)
159 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
160 else if (lock_flags & XFS_IOLOCK_SHARED)
161 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
162
163 if (lock_flags & XFS_ILOCK_EXCL)
164 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
165 else if (lock_flags & XFS_ILOCK_SHARED)
166 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
167}
168
169/*
170 * This is just like xfs_ilock(), except that the caller
171 * is guaranteed not to sleep. It returns 1 if it gets
172 * the requested locks and 0 otherwise. If the IO lock is
173 * obtained but the inode lock cannot be, then the IO lock
174 * is dropped before returning.
175 *
176 * ip -- the inode being locked
177 * lock_flags -- this parameter indicates the inode's locks to be
178 * to be locked. See the comment for xfs_ilock() for a list
179 * of valid values.
180 */
181int
182xfs_ilock_nowait(
183 xfs_inode_t *ip,
184 uint lock_flags)
185{
186 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
187
188 /*
189 * You can't set both SHARED and EXCL for the same lock,
190 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
191 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
192 */
193 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
194 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
195 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
196 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
197 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
198
199 if (lock_flags & XFS_IOLOCK_EXCL) {
200 if (!mrtryupdate(&ip->i_iolock))
201 goto out;
202 } else if (lock_flags & XFS_IOLOCK_SHARED) {
203 if (!mrtryaccess(&ip->i_iolock))
204 goto out;
205 }
206 if (lock_flags & XFS_ILOCK_EXCL) {
207 if (!mrtryupdate(&ip->i_lock))
208 goto out_undo_iolock;
209 } else if (lock_flags & XFS_ILOCK_SHARED) {
210 if (!mrtryaccess(&ip->i_lock))
211 goto out_undo_iolock;
212 }
213 return 1;
214
215 out_undo_iolock:
216 if (lock_flags & XFS_IOLOCK_EXCL)
217 mrunlock_excl(&ip->i_iolock);
218 else if (lock_flags & XFS_IOLOCK_SHARED)
219 mrunlock_shared(&ip->i_iolock);
220 out:
221 return 0;
222}
223
224/*
225 * xfs_iunlock() is used to drop the inode locks acquired with
226 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
227 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
228 * that we know which locks to drop.
229 *
230 * ip -- the inode being unlocked
231 * lock_flags -- this parameter indicates the inode's locks to be
232 * to be unlocked. See the comment for xfs_ilock() for a list
233 * of valid values for this parameter.
234 *
235 */
236void
237xfs_iunlock(
238 xfs_inode_t *ip,
239 uint lock_flags)
240{
241 /*
242 * You can't set both SHARED and EXCL for the same lock,
243 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
244 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
245 */
246 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
247 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
248 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
249 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
250 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
251 ASSERT(lock_flags != 0);
252
253 if (lock_flags & XFS_IOLOCK_EXCL)
254 mrunlock_excl(&ip->i_iolock);
255 else if (lock_flags & XFS_IOLOCK_SHARED)
256 mrunlock_shared(&ip->i_iolock);
257
258 if (lock_flags & XFS_ILOCK_EXCL)
259 mrunlock_excl(&ip->i_lock);
260 else if (lock_flags & XFS_ILOCK_SHARED)
261 mrunlock_shared(&ip->i_lock);
262
263 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
264}
265
266/*
267 * give up write locks. the i/o lock cannot be held nested
268 * if it is being demoted.
269 */
270void
271xfs_ilock_demote(
272 xfs_inode_t *ip,
273 uint lock_flags)
274{
275 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
276 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
277
278 if (lock_flags & XFS_ILOCK_EXCL)
279 mrdemote(&ip->i_lock);
280 if (lock_flags & XFS_IOLOCK_EXCL)
281 mrdemote(&ip->i_iolock);
282
283 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
284}
285
742ae1e3 286#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
287int
288xfs_isilocked(
289 xfs_inode_t *ip,
290 uint lock_flags)
291{
292 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
293 if (!(lock_flags & XFS_ILOCK_SHARED))
294 return !!ip->i_lock.mr_writer;
295 return rwsem_is_locked(&ip->i_lock.mr_lock);
296 }
297
298 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
299 if (!(lock_flags & XFS_IOLOCK_SHARED))
300 return !!ip->i_iolock.mr_writer;
301 return rwsem_is_locked(&ip->i_iolock.mr_lock);
302 }
303
304 ASSERT(0);
305 return 0;
306}
307#endif
308
c24b5dfa
DC
309#ifdef DEBUG
310int xfs_locked_n;
311int xfs_small_retries;
312int xfs_middle_retries;
313int xfs_lots_retries;
314int xfs_lock_delays;
315#endif
316
317/*
318 * Bump the subclass so xfs_lock_inodes() acquires each lock with
319 * a different value
320 */
321static inline int
322xfs_lock_inumorder(int lock_mode, int subclass)
323{
324 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
325 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
326 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
327 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
328
329 return lock_mode;
330}
331
332/*
333 * The following routine will lock n inodes in exclusive mode.
334 * We assume the caller calls us with the inodes in i_ino order.
335 *
336 * We need to detect deadlock where an inode that we lock
337 * is in the AIL and we start waiting for another inode that is locked
338 * by a thread in a long running transaction (such as truncate). This can
339 * result in deadlock since the long running trans might need to wait
340 * for the inode we just locked in order to push the tail and free space
341 * in the log.
342 */
343void
344xfs_lock_inodes(
345 xfs_inode_t **ips,
346 int inodes,
347 uint lock_mode)
348{
349 int attempts = 0, i, j, try_lock;
350 xfs_log_item_t *lp;
351
352 ASSERT(ips && (inodes >= 2)); /* we need at least two */
353
354 try_lock = 0;
355 i = 0;
356
357again:
358 for (; i < inodes; i++) {
359 ASSERT(ips[i]);
360
361 if (i && (ips[i] == ips[i-1])) /* Already locked */
362 continue;
363
364 /*
365 * If try_lock is not set yet, make sure all locked inodes
366 * are not in the AIL.
367 * If any are, set try_lock to be used later.
368 */
369
370 if (!try_lock) {
371 for (j = (i - 1); j >= 0 && !try_lock; j--) {
372 lp = (xfs_log_item_t *)ips[j]->i_itemp;
373 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
374 try_lock++;
375 }
376 }
377 }
378
379 /*
380 * If any of the previous locks we have locked is in the AIL,
381 * we must TRY to get the second and subsequent locks. If
382 * we can't get any, we must release all we have
383 * and try again.
384 */
385
386 if (try_lock) {
387 /* try_lock must be 0 if i is 0. */
388 /*
389 * try_lock means we have an inode locked
390 * that is in the AIL.
391 */
392 ASSERT(i != 0);
393 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
394 attempts++;
395
396 /*
397 * Unlock all previous guys and try again.
398 * xfs_iunlock will try to push the tail
399 * if the inode is in the AIL.
400 */
401
402 for(j = i - 1; j >= 0; j--) {
403
404 /*
405 * Check to see if we've already
406 * unlocked this one.
407 * Not the first one going back,
408 * and the inode ptr is the same.
409 */
410 if ((j != (i - 1)) && ips[j] ==
411 ips[j+1])
412 continue;
413
414 xfs_iunlock(ips[j], lock_mode);
415 }
416
417 if ((attempts % 5) == 0) {
418 delay(1); /* Don't just spin the CPU */
419#ifdef DEBUG
420 xfs_lock_delays++;
421#endif
422 }
423 i = 0;
424 try_lock = 0;
425 goto again;
426 }
427 } else {
428 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
429 }
430 }
431
432#ifdef DEBUG
433 if (attempts) {
434 if (attempts < 5) xfs_small_retries++;
435 else if (attempts < 100) xfs_middle_retries++;
436 else xfs_lots_retries++;
437 } else {
438 xfs_locked_n++;
439 }
440#endif
441}
442
443/*
444 * xfs_lock_two_inodes() can only be used to lock one type of lock
445 * at a time - the iolock or the ilock, but not both at once. If
446 * we lock both at once, lockdep will report false positives saying
447 * we have violated locking orders.
448 */
449void
450xfs_lock_two_inodes(
451 xfs_inode_t *ip0,
452 xfs_inode_t *ip1,
453 uint lock_mode)
454{
455 xfs_inode_t *temp;
456 int attempts = 0;
457 xfs_log_item_t *lp;
458
459 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
460 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
461 ASSERT(ip0->i_ino != ip1->i_ino);
462
463 if (ip0->i_ino > ip1->i_ino) {
464 temp = ip0;
465 ip0 = ip1;
466 ip1 = temp;
467 }
468
469 again:
470 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
471
472 /*
473 * If the first lock we have locked is in the AIL, we must TRY to get
474 * the second lock. If we can't get it, we must release the first one
475 * and try again.
476 */
477 lp = (xfs_log_item_t *)ip0->i_itemp;
478 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
479 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
480 xfs_iunlock(ip0, lock_mode);
481 if ((++attempts % 5) == 0)
482 delay(1); /* Don't just spin the CPU */
483 goto again;
484 }
485 } else {
486 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
487 }
488}
489
490
fa96acad
DC
491void
492__xfs_iflock(
493 struct xfs_inode *ip)
494{
495 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
496 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
497
498 do {
499 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
500 if (xfs_isiflocked(ip))
501 io_schedule();
502 } while (!xfs_iflock_nowait(ip));
503
504 finish_wait(wq, &wait.wait);
505}
506
1da177e4
LT
507STATIC uint
508_xfs_dic2xflags(
1da177e4
LT
509 __uint16_t di_flags)
510{
511 uint flags = 0;
512
513 if (di_flags & XFS_DIFLAG_ANY) {
514 if (di_flags & XFS_DIFLAG_REALTIME)
515 flags |= XFS_XFLAG_REALTIME;
516 if (di_flags & XFS_DIFLAG_PREALLOC)
517 flags |= XFS_XFLAG_PREALLOC;
518 if (di_flags & XFS_DIFLAG_IMMUTABLE)
519 flags |= XFS_XFLAG_IMMUTABLE;
520 if (di_flags & XFS_DIFLAG_APPEND)
521 flags |= XFS_XFLAG_APPEND;
522 if (di_flags & XFS_DIFLAG_SYNC)
523 flags |= XFS_XFLAG_SYNC;
524 if (di_flags & XFS_DIFLAG_NOATIME)
525 flags |= XFS_XFLAG_NOATIME;
526 if (di_flags & XFS_DIFLAG_NODUMP)
527 flags |= XFS_XFLAG_NODUMP;
528 if (di_flags & XFS_DIFLAG_RTINHERIT)
529 flags |= XFS_XFLAG_RTINHERIT;
530 if (di_flags & XFS_DIFLAG_PROJINHERIT)
531 flags |= XFS_XFLAG_PROJINHERIT;
532 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
533 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
534 if (di_flags & XFS_DIFLAG_EXTSIZE)
535 flags |= XFS_XFLAG_EXTSIZE;
536 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
537 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
538 if (di_flags & XFS_DIFLAG_NODEFRAG)
539 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
540 if (di_flags & XFS_DIFLAG_FILESTREAM)
541 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
542 }
543
544 return flags;
545}
546
547uint
548xfs_ip2xflags(
549 xfs_inode_t *ip)
550{
347d1c01 551 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 552
a916e2bd 553 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 554 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
555}
556
557uint
558xfs_dic2xflags(
45ba598e 559 xfs_dinode_t *dip)
1da177e4 560{
81591fe2 561 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 562 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
563}
564
c24b5dfa
DC
565/*
566 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
567 * is allowed, otherwise it has to be an exact match. If a CI match is found,
568 * ci_name->name will point to a the actual name (caller must free) or
569 * will be set to NULL if an exact match is found.
570 */
571int
572xfs_lookup(
573 xfs_inode_t *dp,
574 struct xfs_name *name,
575 xfs_inode_t **ipp,
576 struct xfs_name *ci_name)
577{
578 xfs_ino_t inum;
579 int error;
580 uint lock_mode;
581
582 trace_xfs_lookup(dp, name);
583
584 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 585 return -EIO;
c24b5dfa 586
309ecac8 587 lock_mode = xfs_ilock_data_map_shared(dp);
c24b5dfa 588 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
01f4f327 589 xfs_iunlock(dp, lock_mode);
c24b5dfa
DC
590
591 if (error)
592 goto out;
593
594 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
595 if (error)
596 goto out_free_name;
597
598 return 0;
599
600out_free_name:
601 if (ci_name)
602 kmem_free(ci_name->name);
603out:
604 *ipp = NULL;
605 return error;
606}
607
1da177e4
LT
608/*
609 * Allocate an inode on disk and return a copy of its in-core version.
610 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
611 * appropriately within the inode. The uid and gid for the inode are
612 * set according to the contents of the given cred structure.
613 *
614 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
615 * has a free inode available, call xfs_iget() to obtain the in-core
616 * version of the allocated inode. Finally, fill in the inode and
617 * log its initial contents. In this case, ialloc_context would be
618 * set to NULL.
1da177e4 619 *
cd856db6
CM
620 * If xfs_dialloc() does not have an available inode, it will replenish
621 * its supply by doing an allocation. Since we can only do one
622 * allocation within a transaction without deadlocks, we must commit
623 * the current transaction before returning the inode itself.
624 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
625 * The caller should then commit the current transaction, start a new
626 * transaction, and call xfs_ialloc() again to actually get the inode.
627 *
628 * To ensure that some other process does not grab the inode that
629 * was allocated during the first call to xfs_ialloc(), this routine
630 * also returns the [locked] bp pointing to the head of the freelist
631 * as ialloc_context. The caller should hold this buffer across
632 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
633 *
634 * If we are allocating quota inodes, we do not have a parent inode
635 * to attach to or associate with (i.e. pip == NULL) because they
636 * are not linked into the directory structure - they are attached
637 * directly to the superblock - and so have no parent.
1da177e4
LT
638 */
639int
640xfs_ialloc(
641 xfs_trans_t *tp,
642 xfs_inode_t *pip,
576b1d67 643 umode_t mode,
31b084ae 644 xfs_nlink_t nlink,
1da177e4 645 xfs_dev_t rdev,
6743099c 646 prid_t prid,
1da177e4
LT
647 int okalloc,
648 xfs_buf_t **ialloc_context,
1da177e4
LT
649 xfs_inode_t **ipp)
650{
93848a99 651 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
652 xfs_ino_t ino;
653 xfs_inode_t *ip;
1da177e4
LT
654 uint flags;
655 int error;
e076b0f3 656 struct timespec tv;
1da177e4
LT
657
658 /*
659 * Call the space management code to pick
660 * the on-disk inode to be allocated.
661 */
b11f94d5 662 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 663 ialloc_context, &ino);
bf904248 664 if (error)
1da177e4 665 return error;
08358906 666 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
667 *ipp = NULL;
668 return 0;
669 }
670 ASSERT(*ialloc_context == NULL);
671
672 /*
673 * Get the in-core inode with the lock held exclusively.
674 * This is because we're setting fields here we need
675 * to prevent others from looking at until we're done.
676 */
93848a99 677 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 678 XFS_ILOCK_EXCL, &ip);
bf904248 679 if (error)
1da177e4 680 return error;
1da177e4
LT
681 ASSERT(ip != NULL);
682
263997a6
DC
683 /*
684 * We always convert v1 inodes to v2 now - we only support filesystems
685 * with >= v2 inode capability, so there is no reason for ever leaving
686 * an inode in v1 format.
687 */
688 if (ip->i_d.di_version == 1)
689 ip->i_d.di_version = 2;
690
576b1d67 691 ip->i_d.di_mode = mode;
1da177e4
LT
692 ip->i_d.di_onlink = 0;
693 ip->i_d.di_nlink = nlink;
694 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
695 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
696 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 697 xfs_set_projid(ip, prid);
1da177e4
LT
698 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
699
bd186aa9 700 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 701 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 702 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
703 ip->i_d.di_mode |= S_ISGID;
704 }
705 }
706
707 /*
708 * If the group ID of the new file does not match the effective group
709 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
710 * (and only if the irix_sgid_inherit compatibility variable is set).
711 */
712 if ((irix_sgid_inherit) &&
713 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 714 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
715 ip->i_d.di_mode &= ~S_ISGID;
716 }
717
718 ip->i_d.di_size = 0;
719 ip->i_d.di_nextents = 0;
720 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 721
e076b0f3 722 tv = current_fs_time(mp->m_super);
dff35fd4
CH
723 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
724 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
725 ip->i_d.di_atime = ip->i_d.di_mtime;
726 ip->i_d.di_ctime = ip->i_d.di_mtime;
727
1da177e4
LT
728 /*
729 * di_gen will have been taken care of in xfs_iread.
730 */
731 ip->i_d.di_extsize = 0;
732 ip->i_d.di_dmevmask = 0;
733 ip->i_d.di_dmstate = 0;
734 ip->i_d.di_flags = 0;
93848a99
CH
735
736 if (ip->i_d.di_version == 3) {
737 ASSERT(ip->i_d.di_ino == ino);
738 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
739 ip->i_d.di_crc = 0;
740 ip->i_d.di_changecount = 1;
741 ip->i_d.di_lsn = 0;
742 ip->i_d.di_flags2 = 0;
743 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
744 ip->i_d.di_crtime = ip->i_d.di_mtime;
745 }
746
747
1da177e4
LT
748 flags = XFS_ILOG_CORE;
749 switch (mode & S_IFMT) {
750 case S_IFIFO:
751 case S_IFCHR:
752 case S_IFBLK:
753 case S_IFSOCK:
754 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
755 ip->i_df.if_u2.if_rdev = rdev;
756 ip->i_df.if_flags = 0;
757 flags |= XFS_ILOG_DEV;
758 break;
759 case S_IFREG:
760 case S_IFDIR:
b11f94d5 761 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
762 uint di_flags = 0;
763
abbede1b 764 if (S_ISDIR(mode)) {
365ca83d
NS
765 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
766 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
767 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
768 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
769 ip->i_d.di_extsize = pip->i_d.di_extsize;
770 }
9336e3a7
DC
771 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
772 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 773 } else if (S_ISREG(mode)) {
613d7043 774 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 775 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
776 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
777 di_flags |= XFS_DIFLAG_EXTSIZE;
778 ip->i_d.di_extsize = pip->i_d.di_extsize;
779 }
1da177e4
LT
780 }
781 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
782 xfs_inherit_noatime)
365ca83d 783 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
784 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
785 xfs_inherit_nodump)
365ca83d 786 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
787 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
788 xfs_inherit_sync)
365ca83d 789 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
790 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
791 xfs_inherit_nosymlinks)
365ca83d 792 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
793 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
794 xfs_inherit_nodefrag)
795 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
796 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
797 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 798 ip->i_d.di_flags |= di_flags;
1da177e4
LT
799 }
800 /* FALLTHROUGH */
801 case S_IFLNK:
802 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
803 ip->i_df.if_flags = XFS_IFEXTENTS;
804 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
805 ip->i_df.if_u1.if_extents = NULL;
806 break;
807 default:
808 ASSERT(0);
809 }
810 /*
811 * Attribute fork settings for new inode.
812 */
813 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
814 ip->i_d.di_anextents = 0;
815
816 /*
817 * Log the new values stuffed into the inode.
818 */
ddc3415a 819 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
820 xfs_trans_log_inode(tp, ip, flags);
821
b83bd138 822 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 823 xfs_setup_inode(ip);
1da177e4
LT
824
825 *ipp = ip;
826 return 0;
827}
828
e546cb79
DC
829/*
830 * Allocates a new inode from disk and return a pointer to the
831 * incore copy. This routine will internally commit the current
832 * transaction and allocate a new one if the Space Manager needed
833 * to do an allocation to replenish the inode free-list.
834 *
835 * This routine is designed to be called from xfs_create and
836 * xfs_create_dir.
837 *
838 */
839int
840xfs_dir_ialloc(
841 xfs_trans_t **tpp, /* input: current transaction;
842 output: may be a new transaction. */
843 xfs_inode_t *dp, /* directory within whose allocate
844 the inode. */
845 umode_t mode,
846 xfs_nlink_t nlink,
847 xfs_dev_t rdev,
848 prid_t prid, /* project id */
849 int okalloc, /* ok to allocate new space */
850 xfs_inode_t **ipp, /* pointer to inode; it will be
851 locked. */
852 int *committed)
853
854{
855 xfs_trans_t *tp;
856 xfs_trans_t *ntp;
857 xfs_inode_t *ip;
858 xfs_buf_t *ialloc_context = NULL;
859 int code;
e546cb79
DC
860 void *dqinfo;
861 uint tflags;
862
863 tp = *tpp;
864 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
865
866 /*
867 * xfs_ialloc will return a pointer to an incore inode if
868 * the Space Manager has an available inode on the free
869 * list. Otherwise, it will do an allocation and replenish
870 * the freelist. Since we can only do one allocation per
871 * transaction without deadlocks, we will need to commit the
872 * current transaction and start a new one. We will then
873 * need to call xfs_ialloc again to get the inode.
874 *
875 * If xfs_ialloc did an allocation to replenish the freelist,
876 * it returns the bp containing the head of the freelist as
877 * ialloc_context. We will hold a lock on it across the
878 * transaction commit so that no other process can steal
879 * the inode(s) that we've just allocated.
880 */
881 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
882 &ialloc_context, &ip);
883
884 /*
885 * Return an error if we were unable to allocate a new inode.
886 * This should only happen if we run out of space on disk or
887 * encounter a disk error.
888 */
889 if (code) {
890 *ipp = NULL;
891 return code;
892 }
893 if (!ialloc_context && !ip) {
894 *ipp = NULL;
2451337d 895 return -ENOSPC;
e546cb79
DC
896 }
897
898 /*
899 * If the AGI buffer is non-NULL, then we were unable to get an
900 * inode in one operation. We need to commit the current
901 * transaction and call xfs_ialloc() again. It is guaranteed
902 * to succeed the second time.
903 */
904 if (ialloc_context) {
3d3c8b52
JL
905 struct xfs_trans_res tres;
906
e546cb79
DC
907 /*
908 * Normally, xfs_trans_commit releases all the locks.
909 * We call bhold to hang on to the ialloc_context across
910 * the commit. Holding this buffer prevents any other
911 * processes from doing any allocations in this
912 * allocation group.
913 */
914 xfs_trans_bhold(tp, ialloc_context);
915 /*
916 * Save the log reservation so we can use
917 * them in the next transaction.
918 */
3d3c8b52
JL
919 tres.tr_logres = xfs_trans_get_log_res(tp);
920 tres.tr_logcount = xfs_trans_get_log_count(tp);
e546cb79
DC
921
922 /*
923 * We want the quota changes to be associated with the next
924 * transaction, NOT this one. So, detach the dqinfo from this
925 * and attach it to the next transaction.
926 */
927 dqinfo = NULL;
928 tflags = 0;
929 if (tp->t_dqinfo) {
930 dqinfo = (void *)tp->t_dqinfo;
931 tp->t_dqinfo = NULL;
932 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
933 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
934 }
935
936 ntp = xfs_trans_dup(tp);
937 code = xfs_trans_commit(tp, 0);
938 tp = ntp;
939 if (committed != NULL) {
940 *committed = 1;
941 }
942 /*
943 * If we get an error during the commit processing,
944 * release the buffer that is still held and return
945 * to the caller.
946 */
947 if (code) {
948 xfs_buf_relse(ialloc_context);
949 if (dqinfo) {
950 tp->t_dqinfo = dqinfo;
951 xfs_trans_free_dqinfo(tp);
952 }
953 *tpp = ntp;
954 *ipp = NULL;
955 return code;
956 }
957
958 /*
959 * transaction commit worked ok so we can drop the extra ticket
960 * reference that we gained in xfs_trans_dup()
961 */
962 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52
JL
963 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
964 code = xfs_trans_reserve(tp, &tres, 0, 0);
965
e546cb79
DC
966 /*
967 * Re-attach the quota info that we detached from prev trx.
968 */
969 if (dqinfo) {
970 tp->t_dqinfo = dqinfo;
971 tp->t_flags |= tflags;
972 }
973
974 if (code) {
975 xfs_buf_relse(ialloc_context);
976 *tpp = ntp;
977 *ipp = NULL;
978 return code;
979 }
980 xfs_trans_bjoin(tp, ialloc_context);
981
982 /*
983 * Call ialloc again. Since we've locked out all
984 * other allocations in this allocation group,
985 * this call should always succeed.
986 */
987 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
988 okalloc, &ialloc_context, &ip);
989
990 /*
991 * If we get an error at this point, return to the caller
992 * so that the current transaction can be aborted.
993 */
994 if (code) {
995 *tpp = tp;
996 *ipp = NULL;
997 return code;
998 }
999 ASSERT(!ialloc_context && ip);
1000
1001 } else {
1002 if (committed != NULL)
1003 *committed = 0;
1004 }
1005
1006 *ipp = ip;
1007 *tpp = tp;
1008
1009 return 0;
1010}
1011
1012/*
1013 * Decrement the link count on an inode & log the change.
1014 * If this causes the link count to go to zero, initiate the
1015 * logging activity required to truncate a file.
1016 */
1017int /* error */
1018xfs_droplink(
1019 xfs_trans_t *tp,
1020 xfs_inode_t *ip)
1021{
1022 int error;
1023
1024 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1025
1026 ASSERT (ip->i_d.di_nlink > 0);
1027 ip->i_d.di_nlink--;
1028 drop_nlink(VFS_I(ip));
1029 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1030
1031 error = 0;
1032 if (ip->i_d.di_nlink == 0) {
1033 /*
1034 * We're dropping the last link to this file.
1035 * Move the on-disk inode to the AGI unlinked list.
1036 * From xfs_inactive() we will pull the inode from
1037 * the list and free it.
1038 */
1039 error = xfs_iunlink(tp, ip);
1040 }
1041 return error;
1042}
1043
e546cb79
DC
1044/*
1045 * Increment the link count on an inode & log the change.
1046 */
1047int
1048xfs_bumplink(
1049 xfs_trans_t *tp,
1050 xfs_inode_t *ip)
1051{
1052 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1053
263997a6 1054 ASSERT(ip->i_d.di_version > 1);
ab297431 1055 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
e546cb79
DC
1056 ip->i_d.di_nlink++;
1057 inc_nlink(VFS_I(ip));
e546cb79
DC
1058 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1059 return 0;
1060}
1061
c24b5dfa
DC
1062int
1063xfs_create(
1064 xfs_inode_t *dp,
1065 struct xfs_name *name,
1066 umode_t mode,
1067 xfs_dev_t rdev,
1068 xfs_inode_t **ipp)
1069{
1070 int is_dir = S_ISDIR(mode);
1071 struct xfs_mount *mp = dp->i_mount;
1072 struct xfs_inode *ip = NULL;
1073 struct xfs_trans *tp = NULL;
1074 int error;
1075 xfs_bmap_free_t free_list;
1076 xfs_fsblock_t first_block;
1077 bool unlock_dp_on_error = false;
1078 uint cancel_flags;
1079 int committed;
1080 prid_t prid;
1081 struct xfs_dquot *udqp = NULL;
1082 struct xfs_dquot *gdqp = NULL;
1083 struct xfs_dquot *pdqp = NULL;
3d3c8b52 1084 struct xfs_trans_res tres;
c24b5dfa 1085 uint resblks;
c24b5dfa
DC
1086
1087 trace_xfs_create(dp, name);
1088
1089 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1090 return -EIO;
c24b5dfa 1091
163467d3 1092 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1093
1094 /*
1095 * Make sure that we have allocated dquot(s) on disk.
1096 */
7aab1b28
DE
1097 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1098 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1099 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1100 &udqp, &gdqp, &pdqp);
1101 if (error)
1102 return error;
1103
1104 if (is_dir) {
1105 rdev = 0;
1106 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
3d3c8b52
JL
1107 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1108 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
c24b5dfa
DC
1109 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1110 } else {
1111 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
3d3c8b52
JL
1112 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1113 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
c24b5dfa
DC
1114 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1115 }
1116
1117 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1118
1119 /*
1120 * Initially assume that the file does not exist and
1121 * reserve the resources for that case. If that is not
1122 * the case we'll drop the one we have and get a more
1123 * appropriate transaction later.
1124 */
3d3c8b52
JL
1125 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1126 error = xfs_trans_reserve(tp, &tres, resblks, 0);
2451337d 1127 if (error == -ENOSPC) {
c24b5dfa
DC
1128 /* flush outstanding delalloc blocks and retry */
1129 xfs_flush_inodes(mp);
3d3c8b52 1130 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa 1131 }
2451337d 1132 if (error == -ENOSPC) {
c24b5dfa
DC
1133 /* No space at all so try a "no-allocation" reservation */
1134 resblks = 0;
3d3c8b52 1135 error = xfs_trans_reserve(tp, &tres, 0, 0);
c24b5dfa
DC
1136 }
1137 if (error) {
1138 cancel_flags = 0;
1139 goto out_trans_cancel;
1140 }
1141
1142 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1143 unlock_dp_on_error = true;
1144
1145 xfs_bmap_init(&free_list, &first_block);
1146
1147 /*
1148 * Reserve disk quota and the inode.
1149 */
1150 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1151 pdqp, resblks, 1, 0);
1152 if (error)
1153 goto out_trans_cancel;
1154
94f3cad5
ES
1155 if (!resblks) {
1156 error = xfs_dir_canenter(tp, dp, name);
1157 if (error)
1158 goto out_trans_cancel;
1159 }
c24b5dfa
DC
1160
1161 /*
1162 * A newly created regular or special file just has one directory
1163 * entry pointing to them, but a directory also the "." entry
1164 * pointing to itself.
1165 */
1166 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1167 prid, resblks > 0, &ip, &committed);
1168 if (error) {
2451337d 1169 if (error == -ENOSPC)
c24b5dfa
DC
1170 goto out_trans_cancel;
1171 goto out_trans_abort;
1172 }
1173
1174 /*
1175 * Now we join the directory inode to the transaction. We do not do it
1176 * earlier because xfs_dir_ialloc might commit the previous transaction
1177 * (and release all the locks). An error from here on will result in
1178 * the transaction cancel unlocking dp so don't do it explicitly in the
1179 * error path.
1180 */
1181 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1182 unlock_dp_on_error = false;
1183
1184 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1185 &first_block, &free_list, resblks ?
1186 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1187 if (error) {
2451337d 1188 ASSERT(error != -ENOSPC);
c24b5dfa
DC
1189 goto out_trans_abort;
1190 }
1191 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1192 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1193
1194 if (is_dir) {
1195 error = xfs_dir_init(tp, ip, dp);
1196 if (error)
1197 goto out_bmap_cancel;
1198
1199 error = xfs_bumplink(tp, dp);
1200 if (error)
1201 goto out_bmap_cancel;
1202 }
1203
1204 /*
1205 * If this is a synchronous mount, make sure that the
1206 * create transaction goes to disk before returning to
1207 * the user.
1208 */
1209 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1210 xfs_trans_set_sync(tp);
1211
1212 /*
1213 * Attach the dquot(s) to the inodes and modify them incore.
1214 * These ids of the inode couldn't have changed since the new
1215 * inode has been locked ever since it was created.
1216 */
1217 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1218
1219 error = xfs_bmap_finish(&tp, &free_list, &committed);
1220 if (error)
1221 goto out_bmap_cancel;
1222
1223 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1224 if (error)
1225 goto out_release_inode;
1226
1227 xfs_qm_dqrele(udqp);
1228 xfs_qm_dqrele(gdqp);
1229 xfs_qm_dqrele(pdqp);
1230
1231 *ipp = ip;
1232 return 0;
1233
1234 out_bmap_cancel:
1235 xfs_bmap_cancel(&free_list);
1236 out_trans_abort:
1237 cancel_flags |= XFS_TRANS_ABORT;
1238 out_trans_cancel:
1239 xfs_trans_cancel(tp, cancel_flags);
1240 out_release_inode:
1241 /*
1242 * Wait until after the current transaction is aborted to
1243 * release the inode. This prevents recursive transactions
1244 * and deadlocks from xfs_inactive.
1245 */
1246 if (ip)
1247 IRELE(ip);
1248
1249 xfs_qm_dqrele(udqp);
1250 xfs_qm_dqrele(gdqp);
1251 xfs_qm_dqrele(pdqp);
1252
1253 if (unlock_dp_on_error)
1254 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1255 return error;
1256}
1257
99b6436b
ZYW
1258int
1259xfs_create_tmpfile(
1260 struct xfs_inode *dp,
1261 struct dentry *dentry,
330033d6
BF
1262 umode_t mode,
1263 struct xfs_inode **ipp)
99b6436b
ZYW
1264{
1265 struct xfs_mount *mp = dp->i_mount;
1266 struct xfs_inode *ip = NULL;
1267 struct xfs_trans *tp = NULL;
1268 int error;
1269 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1270 prid_t prid;
1271 struct xfs_dquot *udqp = NULL;
1272 struct xfs_dquot *gdqp = NULL;
1273 struct xfs_dquot *pdqp = NULL;
1274 struct xfs_trans_res *tres;
1275 uint resblks;
1276
1277 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1278 return -EIO;
99b6436b
ZYW
1279
1280 prid = xfs_get_initial_prid(dp);
1281
1282 /*
1283 * Make sure that we have allocated dquot(s) on disk.
1284 */
1285 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1286 xfs_kgid_to_gid(current_fsgid()), prid,
1287 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1288 &udqp, &gdqp, &pdqp);
1289 if (error)
1290 return error;
1291
1292 resblks = XFS_IALLOC_SPACE_RES(mp);
1293 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1294
1295 tres = &M_RES(mp)->tr_create_tmpfile;
1296 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1297 if (error == -ENOSPC) {
99b6436b
ZYW
1298 /* No space at all so try a "no-allocation" reservation */
1299 resblks = 0;
1300 error = xfs_trans_reserve(tp, tres, 0, 0);
1301 }
1302 if (error) {
1303 cancel_flags = 0;
1304 goto out_trans_cancel;
1305 }
1306
1307 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1308 pdqp, resblks, 1, 0);
1309 if (error)
1310 goto out_trans_cancel;
1311
1312 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1313 prid, resblks > 0, &ip, NULL);
1314 if (error) {
2451337d 1315 if (error == -ENOSPC)
99b6436b
ZYW
1316 goto out_trans_cancel;
1317 goto out_trans_abort;
1318 }
1319
1320 if (mp->m_flags & XFS_MOUNT_WSYNC)
1321 xfs_trans_set_sync(tp);
1322
1323 /*
1324 * Attach the dquot(s) to the inodes and modify them incore.
1325 * These ids of the inode couldn't have changed since the new
1326 * inode has been locked ever since it was created.
1327 */
1328 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1329
1330 ip->i_d.di_nlink--;
99b6436b
ZYW
1331 error = xfs_iunlink(tp, ip);
1332 if (error)
1333 goto out_trans_abort;
1334
1335 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1336 if (error)
1337 goto out_release_inode;
1338
1339 xfs_qm_dqrele(udqp);
1340 xfs_qm_dqrele(gdqp);
1341 xfs_qm_dqrele(pdqp);
1342
330033d6 1343 *ipp = ip;
99b6436b
ZYW
1344 return 0;
1345
1346 out_trans_abort:
1347 cancel_flags |= XFS_TRANS_ABORT;
1348 out_trans_cancel:
1349 xfs_trans_cancel(tp, cancel_flags);
1350 out_release_inode:
1351 /*
1352 * Wait until after the current transaction is aborted to
1353 * release the inode. This prevents recursive transactions
1354 * and deadlocks from xfs_inactive.
1355 */
1356 if (ip)
1357 IRELE(ip);
1358
1359 xfs_qm_dqrele(udqp);
1360 xfs_qm_dqrele(gdqp);
1361 xfs_qm_dqrele(pdqp);
1362
1363 return error;
1364}
1365
c24b5dfa
DC
1366int
1367xfs_link(
1368 xfs_inode_t *tdp,
1369 xfs_inode_t *sip,
1370 struct xfs_name *target_name)
1371{
1372 xfs_mount_t *mp = tdp->i_mount;
1373 xfs_trans_t *tp;
1374 int error;
1375 xfs_bmap_free_t free_list;
1376 xfs_fsblock_t first_block;
1377 int cancel_flags;
1378 int committed;
1379 int resblks;
1380
1381 trace_xfs_link(tdp, target_name);
1382
1383 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1384
1385 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1386 return -EIO;
c24b5dfa
DC
1387
1388 error = xfs_qm_dqattach(sip, 0);
1389 if (error)
1390 goto std_return;
1391
1392 error = xfs_qm_dqattach(tdp, 0);
1393 if (error)
1394 goto std_return;
1395
1396 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1397 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1398 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1399 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
2451337d 1400 if (error == -ENOSPC) {
c24b5dfa 1401 resblks = 0;
3d3c8b52 1402 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa
DC
1403 }
1404 if (error) {
1405 cancel_flags = 0;
1406 goto error_return;
1407 }
1408
1409 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1410
1411 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1412 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1413
1414 /*
1415 * If we are using project inheritance, we only allow hard link
1416 * creation in our tree when the project IDs are the same; else
1417 * the tree quota mechanism could be circumvented.
1418 */
1419 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1420 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1421 error = -EXDEV;
c24b5dfa
DC
1422 goto error_return;
1423 }
1424
94f3cad5
ES
1425 if (!resblks) {
1426 error = xfs_dir_canenter(tp, tdp, target_name);
1427 if (error)
1428 goto error_return;
1429 }
c24b5dfa
DC
1430
1431 xfs_bmap_init(&free_list, &first_block);
1432
ab297431
ZYW
1433 if (sip->i_d.di_nlink == 0) {
1434 error = xfs_iunlink_remove(tp, sip);
1435 if (error)
1436 goto abort_return;
1437 }
1438
c24b5dfa
DC
1439 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1440 &first_block, &free_list, resblks);
1441 if (error)
1442 goto abort_return;
1443 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1444 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1445
1446 error = xfs_bumplink(tp, sip);
1447 if (error)
1448 goto abort_return;
1449
1450 /*
1451 * If this is a synchronous mount, make sure that the
1452 * link transaction goes to disk before returning to
1453 * the user.
1454 */
1455 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1456 xfs_trans_set_sync(tp);
1457 }
1458
1459 error = xfs_bmap_finish (&tp, &free_list, &committed);
1460 if (error) {
1461 xfs_bmap_cancel(&free_list);
1462 goto abort_return;
1463 }
1464
1465 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1466
1467 abort_return:
1468 cancel_flags |= XFS_TRANS_ABORT;
1469 error_return:
1470 xfs_trans_cancel(tp, cancel_flags);
1471 std_return:
1472 return error;
1473}
1474
1da177e4 1475/*
8f04c47a
CH
1476 * Free up the underlying blocks past new_size. The new size must be smaller
1477 * than the current size. This routine can be used both for the attribute and
1478 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1479 *
f6485057
DC
1480 * The transaction passed to this routine must have made a permanent log
1481 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1482 * given transaction and start new ones, so make sure everything involved in
1483 * the transaction is tidy before calling here. Some transaction will be
1484 * returned to the caller to be committed. The incoming transaction must
1485 * already include the inode, and both inode locks must be held exclusively.
1486 * The inode must also be "held" within the transaction. On return the inode
1487 * will be "held" within the returned transaction. This routine does NOT
1488 * require any disk space to be reserved for it within the transaction.
1da177e4 1489 *
f6485057
DC
1490 * If we get an error, we must return with the inode locked and linked into the
1491 * current transaction. This keeps things simple for the higher level code,
1492 * because it always knows that the inode is locked and held in the transaction
1493 * that returns to it whether errors occur or not. We don't mark the inode
1494 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1495 */
1496int
8f04c47a
CH
1497xfs_itruncate_extents(
1498 struct xfs_trans **tpp,
1499 struct xfs_inode *ip,
1500 int whichfork,
1501 xfs_fsize_t new_size)
1da177e4 1502{
8f04c47a
CH
1503 struct xfs_mount *mp = ip->i_mount;
1504 struct xfs_trans *tp = *tpp;
1505 struct xfs_trans *ntp;
1506 xfs_bmap_free_t free_list;
1507 xfs_fsblock_t first_block;
1508 xfs_fileoff_t first_unmap_block;
1509 xfs_fileoff_t last_block;
1510 xfs_filblks_t unmap_len;
1511 int committed;
1512 int error = 0;
1513 int done = 0;
1da177e4 1514
0b56185b
CH
1515 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1516 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1517 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1518 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1519 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1520 ASSERT(ip->i_itemp != NULL);
898621d5 1521 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1522 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1523
673e8e59
CH
1524 trace_xfs_itruncate_extents_start(ip, new_size);
1525
1da177e4
LT
1526 /*
1527 * Since it is possible for space to become allocated beyond
1528 * the end of the file (in a crash where the space is allocated
1529 * but the inode size is not yet updated), simply remove any
1530 * blocks which show up between the new EOF and the maximum
1531 * possible file size. If the first block to be removed is
1532 * beyond the maximum file size (ie it is the same as last_block),
1533 * then there is nothing to do.
1534 */
8f04c47a 1535 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1536 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1537 if (first_unmap_block == last_block)
1538 return 0;
1539
1540 ASSERT(first_unmap_block < last_block);
1541 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1542 while (!done) {
9d87c319 1543 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1544 error = xfs_bunmapi(tp, ip,
3e57ecf6 1545 first_unmap_block, unmap_len,
8f04c47a 1546 xfs_bmapi_aflag(whichfork),
1da177e4 1547 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1548 &first_block, &free_list,
b4e9181e 1549 &done);
8f04c47a
CH
1550 if (error)
1551 goto out_bmap_cancel;
1da177e4
LT
1552
1553 /*
1554 * Duplicate the transaction that has the permanent
1555 * reservation and commit the old transaction.
1556 */
8f04c47a 1557 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1558 if (committed)
ddc3415a 1559 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1560 if (error)
1561 goto out_bmap_cancel;
1da177e4
LT
1562
1563 if (committed) {
1564 /*
f6485057 1565 * Mark the inode dirty so it will be logged and
e5720eec 1566 * moved forward in the log as part of every commit.
1da177e4 1567 */
8f04c47a 1568 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1569 }
f6485057 1570
8f04c47a
CH
1571 ntp = xfs_trans_dup(tp);
1572 error = xfs_trans_commit(tp, 0);
1573 tp = ntp;
e5720eec 1574
ddc3415a 1575 xfs_trans_ijoin(tp, ip, 0);
f6485057 1576
cc09c0dc 1577 if (error)
8f04c47a
CH
1578 goto out;
1579
cc09c0dc 1580 /*
8f04c47a 1581 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1582 * reference that we gained in xfs_trans_dup()
1583 */
8f04c47a 1584 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52 1585 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
f6485057 1586 if (error)
8f04c47a 1587 goto out;
1da177e4 1588 }
8f04c47a 1589
673e8e59
CH
1590 /*
1591 * Always re-log the inode so that our permanent transaction can keep
1592 * on rolling it forward in the log.
1593 */
1594 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1595
1596 trace_xfs_itruncate_extents_end(ip, new_size);
1597
8f04c47a
CH
1598out:
1599 *tpp = tp;
1600 return error;
1601out_bmap_cancel:
1da177e4 1602 /*
8f04c47a
CH
1603 * If the bunmapi call encounters an error, return to the caller where
1604 * the transaction can be properly aborted. We just need to make sure
1605 * we're not holding any resources that we were not when we came in.
1da177e4 1606 */
8f04c47a
CH
1607 xfs_bmap_cancel(&free_list);
1608 goto out;
1609}
1610
c24b5dfa
DC
1611int
1612xfs_release(
1613 xfs_inode_t *ip)
1614{
1615 xfs_mount_t *mp = ip->i_mount;
1616 int error;
1617
1618 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1619 return 0;
1620
1621 /* If this is a read-only mount, don't do this (would generate I/O) */
1622 if (mp->m_flags & XFS_MOUNT_RDONLY)
1623 return 0;
1624
1625 if (!XFS_FORCED_SHUTDOWN(mp)) {
1626 int truncated;
1627
c24b5dfa
DC
1628 /*
1629 * If we previously truncated this file and removed old data
1630 * in the process, we want to initiate "early" writeout on
1631 * the last close. This is an attempt to combat the notorious
1632 * NULL files problem which is particularly noticeable from a
1633 * truncate down, buffered (re-)write (delalloc), followed by
1634 * a crash. What we are effectively doing here is
1635 * significantly reducing the time window where we'd otherwise
1636 * be exposed to that problem.
1637 */
1638 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1639 if (truncated) {
1640 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1641 if (ip->i_delayed_blks > 0) {
2451337d 1642 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1643 if (error)
1644 return error;
1645 }
1646 }
1647 }
1648
1649 if (ip->i_d.di_nlink == 0)
1650 return 0;
1651
1652 if (xfs_can_free_eofblocks(ip, false)) {
1653
1654 /*
1655 * If we can't get the iolock just skip truncating the blocks
1656 * past EOF because we could deadlock with the mmap_sem
1657 * otherwise. We'll get another chance to drop them once the
1658 * last reference to the inode is dropped, so we'll never leak
1659 * blocks permanently.
1660 *
1661 * Further, check if the inode is being opened, written and
1662 * closed frequently and we have delayed allocation blocks
1663 * outstanding (e.g. streaming writes from the NFS server),
1664 * truncating the blocks past EOF will cause fragmentation to
1665 * occur.
1666 *
1667 * In this case don't do the truncation, either, but we have to
1668 * be careful how we detect this case. Blocks beyond EOF show
1669 * up as i_delayed_blks even when the inode is clean, so we
1670 * need to truncate them away first before checking for a dirty
1671 * release. Hence on the first dirty close we will still remove
1672 * the speculative allocation, but after that we will leave it
1673 * in place.
1674 */
1675 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1676 return 0;
1677
1678 error = xfs_free_eofblocks(mp, ip, true);
2451337d 1679 if (error && error != -EAGAIN)
c24b5dfa
DC
1680 return error;
1681
1682 /* delalloc blocks after truncation means it really is dirty */
1683 if (ip->i_delayed_blks)
1684 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1685 }
1686 return 0;
1687}
1688
f7be2d7f
BF
1689/*
1690 * xfs_inactive_truncate
1691 *
1692 * Called to perform a truncate when an inode becomes unlinked.
1693 */
1694STATIC int
1695xfs_inactive_truncate(
1696 struct xfs_inode *ip)
1697{
1698 struct xfs_mount *mp = ip->i_mount;
1699 struct xfs_trans *tp;
1700 int error;
1701
1702 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1703 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1704 if (error) {
1705 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1706 xfs_trans_cancel(tp, 0);
1707 return error;
1708 }
1709
1710 xfs_ilock(ip, XFS_ILOCK_EXCL);
1711 xfs_trans_ijoin(tp, ip, 0);
1712
1713 /*
1714 * Log the inode size first to prevent stale data exposure in the event
1715 * of a system crash before the truncate completes. See the related
1716 * comment in xfs_setattr_size() for details.
1717 */
1718 ip->i_d.di_size = 0;
1719 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1720
1721 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1722 if (error)
1723 goto error_trans_cancel;
1724
1725 ASSERT(ip->i_d.di_nextents == 0);
1726
1727 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1728 if (error)
1729 goto error_unlock;
1730
1731 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1732 return 0;
1733
1734error_trans_cancel:
1735 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1736error_unlock:
1737 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1738 return error;
1739}
1740
88877d2b
BF
1741/*
1742 * xfs_inactive_ifree()
1743 *
1744 * Perform the inode free when an inode is unlinked.
1745 */
1746STATIC int
1747xfs_inactive_ifree(
1748 struct xfs_inode *ip)
1749{
1750 xfs_bmap_free_t free_list;
1751 xfs_fsblock_t first_block;
1752 int committed;
1753 struct xfs_mount *mp = ip->i_mount;
1754 struct xfs_trans *tp;
1755 int error;
1756
1757 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
9d43b180
BF
1758
1759 /*
1760 * The ifree transaction might need to allocate blocks for record
1761 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1762 * allow ifree to dip into the reserved block pool if necessary.
1763 *
1764 * Freeing large sets of inodes generally means freeing inode chunks,
1765 * directory and file data blocks, so this should be relatively safe.
1766 * Only under severe circumstances should it be possible to free enough
1767 * inodes to exhaust the reserve block pool via finobt expansion while
1768 * at the same time not creating free space in the filesystem.
1769 *
1770 * Send a warning if the reservation does happen to fail, as the inode
1771 * now remains allocated and sits on the unlinked list until the fs is
1772 * repaired.
1773 */
1774 tp->t_flags |= XFS_TRANS_RESERVE;
1775 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1776 XFS_IFREE_SPACE_RES(mp), 0);
88877d2b 1777 if (error) {
2451337d 1778 if (error == -ENOSPC) {
9d43b180
BF
1779 xfs_warn_ratelimited(mp,
1780 "Failed to remove inode(s) from unlinked list. "
1781 "Please free space, unmount and run xfs_repair.");
1782 } else {
1783 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1784 }
88877d2b
BF
1785 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1786 return error;
1787 }
1788
1789 xfs_ilock(ip, XFS_ILOCK_EXCL);
1790 xfs_trans_ijoin(tp, ip, 0);
1791
1792 xfs_bmap_init(&free_list, &first_block);
1793 error = xfs_ifree(tp, ip, &free_list);
1794 if (error) {
1795 /*
1796 * If we fail to free the inode, shut down. The cancel
1797 * might do that, we need to make sure. Otherwise the
1798 * inode might be lost for a long time or forever.
1799 */
1800 if (!XFS_FORCED_SHUTDOWN(mp)) {
1801 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1802 __func__, error);
1803 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1804 }
1805 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1806 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1807 return error;
1808 }
1809
1810 /*
1811 * Credit the quota account(s). The inode is gone.
1812 */
1813 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1814
1815 /*
1816 * Just ignore errors at this point. There is nothing we can
1817 * do except to try to keep going. Make sure it's not a silent
1818 * error.
1819 */
1820 error = xfs_bmap_finish(&tp, &free_list, &committed);
1821 if (error)
1822 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1823 __func__, error);
1824 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1825 if (error)
1826 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1827 __func__, error);
1828
1829 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1830 return 0;
1831}
1832
c24b5dfa
DC
1833/*
1834 * xfs_inactive
1835 *
1836 * This is called when the vnode reference count for the vnode
1837 * goes to zero. If the file has been unlinked, then it must
1838 * now be truncated. Also, we clear all of the read-ahead state
1839 * kept for the inode here since the file is now closed.
1840 */
74564fb4 1841void
c24b5dfa
DC
1842xfs_inactive(
1843 xfs_inode_t *ip)
1844{
3d3c8b52 1845 struct xfs_mount *mp;
3d3c8b52
JL
1846 int error;
1847 int truncate = 0;
c24b5dfa
DC
1848
1849 /*
1850 * If the inode is already free, then there can be nothing
1851 * to clean up here.
1852 */
d948709b 1853 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1854 ASSERT(ip->i_df.if_real_bytes == 0);
1855 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1856 return;
c24b5dfa
DC
1857 }
1858
1859 mp = ip->i_mount;
1860
c24b5dfa
DC
1861 /* If this is a read-only mount, don't do this (would generate I/O) */
1862 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1863 return;
c24b5dfa
DC
1864
1865 if (ip->i_d.di_nlink != 0) {
1866 /*
1867 * force is true because we are evicting an inode from the
1868 * cache. Post-eof blocks must be freed, lest we end up with
1869 * broken free space accounting.
1870 */
74564fb4
BF
1871 if (xfs_can_free_eofblocks(ip, true))
1872 xfs_free_eofblocks(mp, ip, false);
1873
1874 return;
c24b5dfa
DC
1875 }
1876
1877 if (S_ISREG(ip->i_d.di_mode) &&
1878 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1879 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1880 truncate = 1;
1881
1882 error = xfs_qm_dqattach(ip, 0);
1883 if (error)
74564fb4 1884 return;
c24b5dfa 1885
f7be2d7f 1886 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1887 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1888 else if (truncate)
1889 error = xfs_inactive_truncate(ip);
1890 if (error)
74564fb4 1891 return;
c24b5dfa
DC
1892
1893 /*
1894 * If there are attributes associated with the file then blow them away
1895 * now. The code calls a routine that recursively deconstructs the
1896 * attribute fork. We need to just commit the current transaction
1897 * because we can't use it for xfs_attr_inactive().
1898 */
1899 if (ip->i_d.di_anextents > 0) {
1900 ASSERT(ip->i_d.di_forkoff != 0);
1901
c24b5dfa
DC
1902 error = xfs_attr_inactive(ip);
1903 if (error)
74564fb4 1904 return;
c24b5dfa
DC
1905 }
1906
1907 if (ip->i_afp)
1908 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1909
1910 ASSERT(ip->i_d.di_anextents == 0);
1911
1912 /*
1913 * Free the inode.
1914 */
88877d2b
BF
1915 error = xfs_inactive_ifree(ip);
1916 if (error)
74564fb4 1917 return;
c24b5dfa
DC
1918
1919 /*
1920 * Release the dquots held by inode, if any.
1921 */
1922 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1923}
1924
1da177e4
LT
1925/*
1926 * This is called when the inode's link count goes to 0.
1927 * We place the on-disk inode on a list in the AGI. It
1928 * will be pulled from this list when the inode is freed.
1929 */
1930int
1931xfs_iunlink(
1932 xfs_trans_t *tp,
1933 xfs_inode_t *ip)
1934{
1935 xfs_mount_t *mp;
1936 xfs_agi_t *agi;
1937 xfs_dinode_t *dip;
1938 xfs_buf_t *agibp;
1939 xfs_buf_t *ibp;
1da177e4
LT
1940 xfs_agino_t agino;
1941 short bucket_index;
1942 int offset;
1943 int error;
1da177e4
LT
1944
1945 ASSERT(ip->i_d.di_nlink == 0);
1946 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1947
1948 mp = tp->t_mountp;
1949
1da177e4
LT
1950 /*
1951 * Get the agi buffer first. It ensures lock ordering
1952 * on the list.
1953 */
5e1be0fb 1954 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1955 if (error)
1da177e4 1956 return error;
1da177e4 1957 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1958
1da177e4
LT
1959 /*
1960 * Get the index into the agi hash table for the
1961 * list this inode will go on.
1962 */
1963 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1964 ASSERT(agino != 0);
1965 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1966 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1967 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1968
69ef921b 1969 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1970 /*
1971 * There is already another inode in the bucket we need
1972 * to add ourselves to. Add us at the front of the list.
1973 * Here we put the head pointer into our next pointer,
1974 * and then we fall through to point the head at us.
1975 */
475ee413
CH
1976 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1977 0, 0);
c319b58b
VA
1978 if (error)
1979 return error;
1980
69ef921b 1981 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1982 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1983 offset = ip->i_imap.im_boffset +
1da177e4 1984 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
1985
1986 /* need to recalc the inode CRC if appropriate */
1987 xfs_dinode_calc_crc(mp, dip);
1988
1da177e4
LT
1989 xfs_trans_inode_buf(tp, ibp);
1990 xfs_trans_log_buf(tp, ibp, offset,
1991 (offset + sizeof(xfs_agino_t) - 1));
1992 xfs_inobp_check(mp, ibp);
1993 }
1994
1995 /*
1996 * Point the bucket head pointer at the inode being inserted.
1997 */
1998 ASSERT(agino != 0);
16259e7d 1999 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2000 offset = offsetof(xfs_agi_t, agi_unlinked) +
2001 (sizeof(xfs_agino_t) * bucket_index);
2002 xfs_trans_log_buf(tp, agibp, offset,
2003 (offset + sizeof(xfs_agino_t) - 1));
2004 return 0;
2005}
2006
2007/*
2008 * Pull the on-disk inode from the AGI unlinked list.
2009 */
2010STATIC int
2011xfs_iunlink_remove(
2012 xfs_trans_t *tp,
2013 xfs_inode_t *ip)
2014{
2015 xfs_ino_t next_ino;
2016 xfs_mount_t *mp;
2017 xfs_agi_t *agi;
2018 xfs_dinode_t *dip;
2019 xfs_buf_t *agibp;
2020 xfs_buf_t *ibp;
2021 xfs_agnumber_t agno;
1da177e4
LT
2022 xfs_agino_t agino;
2023 xfs_agino_t next_agino;
2024 xfs_buf_t *last_ibp;
6fdf8ccc 2025 xfs_dinode_t *last_dip = NULL;
1da177e4 2026 short bucket_index;
6fdf8ccc 2027 int offset, last_offset = 0;
1da177e4 2028 int error;
1da177e4 2029
1da177e4 2030 mp = tp->t_mountp;
1da177e4 2031 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2032
2033 /*
2034 * Get the agi buffer first. It ensures lock ordering
2035 * on the list.
2036 */
5e1be0fb
CH
2037 error = xfs_read_agi(mp, tp, agno, &agibp);
2038 if (error)
1da177e4 2039 return error;
5e1be0fb 2040
1da177e4 2041 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2042
1da177e4
LT
2043 /*
2044 * Get the index into the agi hash table for the
2045 * list this inode will go on.
2046 */
2047 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2048 ASSERT(agino != 0);
2049 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2050 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2051 ASSERT(agi->agi_unlinked[bucket_index]);
2052
16259e7d 2053 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2054 /*
475ee413
CH
2055 * We're at the head of the list. Get the inode's on-disk
2056 * buffer to see if there is anyone after us on the list.
2057 * Only modify our next pointer if it is not already NULLAGINO.
2058 * This saves us the overhead of dealing with the buffer when
2059 * there is no need to change it.
1da177e4 2060 */
475ee413
CH
2061 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2062 0, 0);
1da177e4 2063 if (error) {
475ee413 2064 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2065 __func__, error);
1da177e4
LT
2066 return error;
2067 }
347d1c01 2068 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2069 ASSERT(next_agino != 0);
2070 if (next_agino != NULLAGINO) {
347d1c01 2071 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2072 offset = ip->i_imap.im_boffset +
1da177e4 2073 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2074
2075 /* need to recalc the inode CRC if appropriate */
2076 xfs_dinode_calc_crc(mp, dip);
2077
1da177e4
LT
2078 xfs_trans_inode_buf(tp, ibp);
2079 xfs_trans_log_buf(tp, ibp, offset,
2080 (offset + sizeof(xfs_agino_t) - 1));
2081 xfs_inobp_check(mp, ibp);
2082 } else {
2083 xfs_trans_brelse(tp, ibp);
2084 }
2085 /*
2086 * Point the bucket head pointer at the next inode.
2087 */
2088 ASSERT(next_agino != 0);
2089 ASSERT(next_agino != agino);
16259e7d 2090 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2091 offset = offsetof(xfs_agi_t, agi_unlinked) +
2092 (sizeof(xfs_agino_t) * bucket_index);
2093 xfs_trans_log_buf(tp, agibp, offset,
2094 (offset + sizeof(xfs_agino_t) - 1));
2095 } else {
2096 /*
2097 * We need to search the list for the inode being freed.
2098 */
16259e7d 2099 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2100 last_ibp = NULL;
2101 while (next_agino != agino) {
129dbc9a
CH
2102 struct xfs_imap imap;
2103
2104 if (last_ibp)
1da177e4 2105 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2106
2107 imap.im_blkno = 0;
1da177e4 2108 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2109
2110 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2111 if (error) {
2112 xfs_warn(mp,
2113 "%s: xfs_imap returned error %d.",
2114 __func__, error);
2115 return error;
2116 }
2117
2118 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2119 &last_ibp, 0, 0);
1da177e4 2120 if (error) {
0b932ccc 2121 xfs_warn(mp,
129dbc9a 2122 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2123 __func__, error);
1da177e4
LT
2124 return error;
2125 }
129dbc9a
CH
2126
2127 last_offset = imap.im_boffset;
347d1c01 2128 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2129 ASSERT(next_agino != NULLAGINO);
2130 ASSERT(next_agino != 0);
2131 }
475ee413 2132
1da177e4 2133 /*
475ee413
CH
2134 * Now last_ibp points to the buffer previous to us on the
2135 * unlinked list. Pull us from the list.
1da177e4 2136 */
475ee413
CH
2137 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2138 0, 0);
1da177e4 2139 if (error) {
475ee413 2140 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2141 __func__, error);
1da177e4
LT
2142 return error;
2143 }
347d1c01 2144 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2145 ASSERT(next_agino != 0);
2146 ASSERT(next_agino != agino);
2147 if (next_agino != NULLAGINO) {
347d1c01 2148 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2149 offset = ip->i_imap.im_boffset +
1da177e4 2150 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2151
2152 /* need to recalc the inode CRC if appropriate */
2153 xfs_dinode_calc_crc(mp, dip);
2154
1da177e4
LT
2155 xfs_trans_inode_buf(tp, ibp);
2156 xfs_trans_log_buf(tp, ibp, offset,
2157 (offset + sizeof(xfs_agino_t) - 1));
2158 xfs_inobp_check(mp, ibp);
2159 } else {
2160 xfs_trans_brelse(tp, ibp);
2161 }
2162 /*
2163 * Point the previous inode on the list to the next inode.
2164 */
347d1c01 2165 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2166 ASSERT(next_agino != 0);
2167 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2168
2169 /* need to recalc the inode CRC if appropriate */
2170 xfs_dinode_calc_crc(mp, last_dip);
2171
1da177e4
LT
2172 xfs_trans_inode_buf(tp, last_ibp);
2173 xfs_trans_log_buf(tp, last_ibp, offset,
2174 (offset + sizeof(xfs_agino_t) - 1));
2175 xfs_inobp_check(mp, last_ibp);
2176 }
2177 return 0;
2178}
2179
5b3eed75 2180/*
0b8182db 2181 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2182 * inodes that are in memory - they all must be marked stale and attached to
2183 * the cluster buffer.
2184 */
2a30f36d 2185STATIC int
1da177e4
LT
2186xfs_ifree_cluster(
2187 xfs_inode_t *free_ip,
2188 xfs_trans_t *tp,
2189 xfs_ino_t inum)
2190{
2191 xfs_mount_t *mp = free_ip->i_mount;
2192 int blks_per_cluster;
982e939e 2193 int inodes_per_cluster;
1da177e4 2194 int nbufs;
5b257b4a 2195 int i, j;
1da177e4
LT
2196 xfs_daddr_t blkno;
2197 xfs_buf_t *bp;
5b257b4a 2198 xfs_inode_t *ip;
1da177e4
LT
2199 xfs_inode_log_item_t *iip;
2200 xfs_log_item_t *lip;
5017e97d 2201 struct xfs_perag *pag;
1da177e4 2202
5017e97d 2203 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2204 blks_per_cluster = xfs_icluster_size_fsb(mp);
2205 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2206 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2207
982e939e 2208 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
1da177e4
LT
2209 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2210 XFS_INO_TO_AGBNO(mp, inum));
2211
5b257b4a
DC
2212 /*
2213 * We obtain and lock the backing buffer first in the process
2214 * here, as we have to ensure that any dirty inode that we
2215 * can't get the flush lock on is attached to the buffer.
2216 * If we scan the in-memory inodes first, then buffer IO can
2217 * complete before we get a lock on it, and hence we may fail
2218 * to mark all the active inodes on the buffer stale.
2219 */
2220 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2221 mp->m_bsize * blks_per_cluster,
2222 XBF_UNMAPPED);
5b257b4a 2223
2a30f36d 2224 if (!bp)
2451337d 2225 return -ENOMEM;
b0f539de
DC
2226
2227 /*
2228 * This buffer may not have been correctly initialised as we
2229 * didn't read it from disk. That's not important because we are
2230 * only using to mark the buffer as stale in the log, and to
2231 * attach stale cached inodes on it. That means it will never be
2232 * dispatched for IO. If it is, we want to know about it, and we
2233 * want it to fail. We can acheive this by adding a write
2234 * verifier to the buffer.
2235 */
1813dd64 2236 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2237
5b257b4a
DC
2238 /*
2239 * Walk the inodes already attached to the buffer and mark them
2240 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2241 * in-memory inode walk can't lock them. By marking them all
2242 * stale first, we will not attempt to lock them in the loop
2243 * below as the XFS_ISTALE flag will be set.
5b257b4a 2244 */
adadbeef 2245 lip = bp->b_fspriv;
5b257b4a
DC
2246 while (lip) {
2247 if (lip->li_type == XFS_LI_INODE) {
2248 iip = (xfs_inode_log_item_t *)lip;
2249 ASSERT(iip->ili_logged == 1);
ca30b2a7 2250 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2251 xfs_trans_ail_copy_lsn(mp->m_ail,
2252 &iip->ili_flush_lsn,
2253 &iip->ili_item.li_lsn);
2254 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2255 }
2256 lip = lip->li_bio_list;
2257 }
1da177e4 2258
5b3eed75 2259
1da177e4 2260 /*
5b257b4a
DC
2261 * For each inode in memory attempt to add it to the inode
2262 * buffer and set it up for being staled on buffer IO
2263 * completion. This is safe as we've locked out tail pushing
2264 * and flushing by locking the buffer.
1da177e4 2265 *
5b257b4a
DC
2266 * We have already marked every inode that was part of a
2267 * transaction stale above, which means there is no point in
2268 * even trying to lock them.
1da177e4 2269 */
982e939e 2270 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2271retry:
1a3e8f3d 2272 rcu_read_lock();
da353b0d
DC
2273 ip = radix_tree_lookup(&pag->pag_ici_root,
2274 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2275
1a3e8f3d
DC
2276 /* Inode not in memory, nothing to do */
2277 if (!ip) {
2278 rcu_read_unlock();
1da177e4
LT
2279 continue;
2280 }
2281
1a3e8f3d
DC
2282 /*
2283 * because this is an RCU protected lookup, we could
2284 * find a recently freed or even reallocated inode
2285 * during the lookup. We need to check under the
2286 * i_flags_lock for a valid inode here. Skip it if it
2287 * is not valid, the wrong inode or stale.
2288 */
2289 spin_lock(&ip->i_flags_lock);
2290 if (ip->i_ino != inum + i ||
2291 __xfs_iflags_test(ip, XFS_ISTALE)) {
2292 spin_unlock(&ip->i_flags_lock);
2293 rcu_read_unlock();
2294 continue;
2295 }
2296 spin_unlock(&ip->i_flags_lock);
2297
5b3eed75
DC
2298 /*
2299 * Don't try to lock/unlock the current inode, but we
2300 * _cannot_ skip the other inodes that we did not find
2301 * in the list attached to the buffer and are not
2302 * already marked stale. If we can't lock it, back off
2303 * and retry.
2304 */
5b257b4a
DC
2305 if (ip != free_ip &&
2306 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2307 rcu_read_unlock();
5b3eed75
DC
2308 delay(1);
2309 goto retry;
1da177e4 2310 }
1a3e8f3d 2311 rcu_read_unlock();
1da177e4 2312
5b3eed75 2313 xfs_iflock(ip);
5b257b4a 2314 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2315
5b3eed75
DC
2316 /*
2317 * we don't need to attach clean inodes or those only
2318 * with unlogged changes (which we throw away, anyway).
2319 */
1da177e4 2320 iip = ip->i_itemp;
5b3eed75 2321 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2322 ASSERT(ip != free_ip);
1da177e4
LT
2323 xfs_ifunlock(ip);
2324 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2325 continue;
2326 }
2327
f5d8d5c4
CH
2328 iip->ili_last_fields = iip->ili_fields;
2329 iip->ili_fields = 0;
1da177e4 2330 iip->ili_logged = 1;
7b2e2a31
DC
2331 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2332 &iip->ili_item.li_lsn);
1da177e4 2333
ca30b2a7
CH
2334 xfs_buf_attach_iodone(bp, xfs_istale_done,
2335 &iip->ili_item);
5b257b4a
DC
2336
2337 if (ip != free_ip)
1da177e4 2338 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2339 }
2340
5b3eed75 2341 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2342 xfs_trans_binval(tp, bp);
2343 }
2344
5017e97d 2345 xfs_perag_put(pag);
2a30f36d 2346 return 0;
1da177e4
LT
2347}
2348
2349/*
2350 * This is called to return an inode to the inode free list.
2351 * The inode should already be truncated to 0 length and have
2352 * no pages associated with it. This routine also assumes that
2353 * the inode is already a part of the transaction.
2354 *
2355 * The on-disk copy of the inode will have been added to the list
2356 * of unlinked inodes in the AGI. We need to remove the inode from
2357 * that list atomically with respect to freeing it here.
2358 */
2359int
2360xfs_ifree(
2361 xfs_trans_t *tp,
2362 xfs_inode_t *ip,
2363 xfs_bmap_free_t *flist)
2364{
2365 int error;
2366 int delete;
2367 xfs_ino_t first_ino;
2368
579aa9ca 2369 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2370 ASSERT(ip->i_d.di_nlink == 0);
2371 ASSERT(ip->i_d.di_nextents == 0);
2372 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2373 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2374 ASSERT(ip->i_d.di_nblocks == 0);
2375
2376 /*
2377 * Pull the on-disk inode from the AGI unlinked list.
2378 */
2379 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2380 if (error)
1da177e4 2381 return error;
1da177e4
LT
2382
2383 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1baaed8f 2384 if (error)
1da177e4 2385 return error;
1baaed8f 2386
1da177e4
LT
2387 ip->i_d.di_mode = 0; /* mark incore inode as free */
2388 ip->i_d.di_flags = 0;
2389 ip->i_d.di_dmevmask = 0;
2390 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2391 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2392 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2393 /*
2394 * Bump the generation count so no one will be confused
2395 * by reincarnations of this inode.
2396 */
2397 ip->i_d.di_gen++;
2398 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2399
1baaed8f 2400 if (delete)
2a30f36d 2401 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4 2402
2a30f36d 2403 return error;
1da177e4
LT
2404}
2405
1da177e4 2406/*
60ec6783
CH
2407 * This is called to unpin an inode. The caller must have the inode locked
2408 * in at least shared mode so that the buffer cannot be subsequently pinned
2409 * once someone is waiting for it to be unpinned.
1da177e4 2410 */
60ec6783 2411static void
f392e631 2412xfs_iunpin(
60ec6783 2413 struct xfs_inode *ip)
1da177e4 2414{
579aa9ca 2415 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2416
4aaf15d1
DC
2417 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2418
a3f74ffb 2419 /* Give the log a push to start the unpinning I/O */
60ec6783 2420 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2421
a3f74ffb 2422}
1da177e4 2423
f392e631
CH
2424static void
2425__xfs_iunpin_wait(
2426 struct xfs_inode *ip)
2427{
2428 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2429 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2430
2431 xfs_iunpin(ip);
2432
2433 do {
2434 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2435 if (xfs_ipincount(ip))
2436 io_schedule();
2437 } while (xfs_ipincount(ip));
2438 finish_wait(wq, &wait.wait);
2439}
2440
777df5af 2441void
a3f74ffb 2442xfs_iunpin_wait(
60ec6783 2443 struct xfs_inode *ip)
a3f74ffb 2444{
f392e631
CH
2445 if (xfs_ipincount(ip))
2446 __xfs_iunpin_wait(ip);
1da177e4
LT
2447}
2448
27320369
DC
2449/*
2450 * Removing an inode from the namespace involves removing the directory entry
2451 * and dropping the link count on the inode. Removing the directory entry can
2452 * result in locking an AGF (directory blocks were freed) and removing a link
2453 * count can result in placing the inode on an unlinked list which results in
2454 * locking an AGI.
2455 *
2456 * The big problem here is that we have an ordering constraint on AGF and AGI
2457 * locking - inode allocation locks the AGI, then can allocate a new extent for
2458 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2459 * removes the inode from the unlinked list, requiring that we lock the AGI
2460 * first, and then freeing the inode can result in an inode chunk being freed
2461 * and hence freeing disk space requiring that we lock an AGF.
2462 *
2463 * Hence the ordering that is imposed by other parts of the code is AGI before
2464 * AGF. This means we cannot remove the directory entry before we drop the inode
2465 * reference count and put it on the unlinked list as this results in a lock
2466 * order of AGF then AGI, and this can deadlock against inode allocation and
2467 * freeing. Therefore we must drop the link counts before we remove the
2468 * directory entry.
2469 *
2470 * This is still safe from a transactional point of view - it is not until we
2471 * get to xfs_bmap_finish() that we have the possibility of multiple
2472 * transactions in this operation. Hence as long as we remove the directory
2473 * entry and drop the link count in the first transaction of the remove
2474 * operation, there are no transactional constraints on the ordering here.
2475 */
c24b5dfa
DC
2476int
2477xfs_remove(
2478 xfs_inode_t *dp,
2479 struct xfs_name *name,
2480 xfs_inode_t *ip)
2481{
2482 xfs_mount_t *mp = dp->i_mount;
2483 xfs_trans_t *tp = NULL;
2484 int is_dir = S_ISDIR(ip->i_d.di_mode);
2485 int error = 0;
2486 xfs_bmap_free_t free_list;
2487 xfs_fsblock_t first_block;
2488 int cancel_flags;
2489 int committed;
2490 int link_zero;
2491 uint resblks;
2492 uint log_count;
2493
2494 trace_xfs_remove(dp, name);
2495
2496 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2497 return -EIO;
c24b5dfa
DC
2498
2499 error = xfs_qm_dqattach(dp, 0);
2500 if (error)
2501 goto std_return;
2502
2503 error = xfs_qm_dqattach(ip, 0);
2504 if (error)
2505 goto std_return;
2506
2507 if (is_dir) {
2508 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2509 log_count = XFS_DEFAULT_LOG_COUNT;
2510 } else {
2511 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2512 log_count = XFS_REMOVE_LOG_COUNT;
2513 }
2514 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2515
2516 /*
2517 * We try to get the real space reservation first,
2518 * allowing for directory btree deletion(s) implying
2519 * possible bmap insert(s). If we can't get the space
2520 * reservation then we use 0 instead, and avoid the bmap
2521 * btree insert(s) in the directory code by, if the bmap
2522 * insert tries to happen, instead trimming the LAST
2523 * block from the directory.
2524 */
2525 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2526 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2451337d 2527 if (error == -ENOSPC) {
c24b5dfa 2528 resblks = 0;
3d3c8b52 2529 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2530 }
2531 if (error) {
2451337d 2532 ASSERT(error != -ENOSPC);
c24b5dfa
DC
2533 cancel_flags = 0;
2534 goto out_trans_cancel;
2535 }
2536
2537 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2538
2539 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2540 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2541
2542 /*
2543 * If we're removing a directory perform some additional validation.
2544 */
27320369 2545 cancel_flags |= XFS_TRANS_ABORT;
c24b5dfa
DC
2546 if (is_dir) {
2547 ASSERT(ip->i_d.di_nlink >= 2);
2548 if (ip->i_d.di_nlink != 2) {
2451337d 2549 error = -ENOTEMPTY;
c24b5dfa
DC
2550 goto out_trans_cancel;
2551 }
2552 if (!xfs_dir_isempty(ip)) {
2451337d 2553 error = -ENOTEMPTY;
c24b5dfa
DC
2554 goto out_trans_cancel;
2555 }
c24b5dfa 2556
27320369 2557 /* Drop the link from ip's "..". */
c24b5dfa
DC
2558 error = xfs_droplink(tp, dp);
2559 if (error)
27320369 2560 goto out_trans_cancel;
c24b5dfa 2561
27320369 2562 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2563 error = xfs_droplink(tp, ip);
2564 if (error)
27320369 2565 goto out_trans_cancel;
c24b5dfa
DC
2566 } else {
2567 /*
2568 * When removing a non-directory we need to log the parent
2569 * inode here. For a directory this is done implicitly
2570 * by the xfs_droplink call for the ".." entry.
2571 */
2572 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2573 }
27320369 2574 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2575
27320369 2576 /* Drop the link from dp to ip. */
c24b5dfa
DC
2577 error = xfs_droplink(tp, ip);
2578 if (error)
27320369 2579 goto out_trans_cancel;
c24b5dfa 2580
27320369 2581 /* Determine if this is the last link while the inode is locked */
c24b5dfa
DC
2582 link_zero = (ip->i_d.di_nlink == 0);
2583
27320369
DC
2584 xfs_bmap_init(&free_list, &first_block);
2585 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2586 &first_block, &free_list, resblks);
2587 if (error) {
2451337d 2588 ASSERT(error != -ENOENT);
27320369
DC
2589 goto out_bmap_cancel;
2590 }
2591
c24b5dfa
DC
2592 /*
2593 * If this is a synchronous mount, make sure that the
2594 * remove transaction goes to disk before returning to
2595 * the user.
2596 */
2597 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2598 xfs_trans_set_sync(tp);
2599
2600 error = xfs_bmap_finish(&tp, &free_list, &committed);
2601 if (error)
2602 goto out_bmap_cancel;
2603
2604 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2605 if (error)
2606 goto std_return;
2607
2cd2ef6a 2608 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2609 xfs_filestream_deassociate(ip);
2610
2611 return 0;
2612
2613 out_bmap_cancel:
2614 xfs_bmap_cancel(&free_list);
c24b5dfa
DC
2615 out_trans_cancel:
2616 xfs_trans_cancel(tp, cancel_flags);
2617 std_return:
2618 return error;
2619}
2620
f6bba201
DC
2621/*
2622 * Enter all inodes for a rename transaction into a sorted array.
2623 */
2624STATIC void
2625xfs_sort_for_rename(
2626 xfs_inode_t *dp1, /* in: old (source) directory inode */
2627 xfs_inode_t *dp2, /* in: new (target) directory inode */
2628 xfs_inode_t *ip1, /* in: inode of old entry */
2629 xfs_inode_t *ip2, /* in: inode of new entry, if it
2630 already exists, NULL otherwise. */
2631 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2632 int *num_inodes) /* out: number of inodes in array */
2633{
2634 xfs_inode_t *temp;
2635 int i, j;
2636
2637 /*
2638 * i_tab contains a list of pointers to inodes. We initialize
2639 * the table here & we'll sort it. We will then use it to
2640 * order the acquisition of the inode locks.
2641 *
2642 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2643 */
2644 i_tab[0] = dp1;
2645 i_tab[1] = dp2;
2646 i_tab[2] = ip1;
2647 if (ip2) {
2648 *num_inodes = 4;
2649 i_tab[3] = ip2;
2650 } else {
2651 *num_inodes = 3;
2652 i_tab[3] = NULL;
2653 }
2654
2655 /*
2656 * Sort the elements via bubble sort. (Remember, there are at
2657 * most 4 elements to sort, so this is adequate.)
2658 */
2659 for (i = 0; i < *num_inodes; i++) {
2660 for (j = 1; j < *num_inodes; j++) {
2661 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2662 temp = i_tab[j];
2663 i_tab[j] = i_tab[j-1];
2664 i_tab[j-1] = temp;
2665 }
2666 }
2667 }
2668}
2669
2670/*
2671 * xfs_rename
2672 */
2673int
2674xfs_rename(
2675 xfs_inode_t *src_dp,
2676 struct xfs_name *src_name,
2677 xfs_inode_t *src_ip,
2678 xfs_inode_t *target_dp,
2679 struct xfs_name *target_name,
2680 xfs_inode_t *target_ip)
2681{
2682 xfs_trans_t *tp = NULL;
2683 xfs_mount_t *mp = src_dp->i_mount;
2684 int new_parent; /* moving to a new dir */
2685 int src_is_directory; /* src_name is a directory */
2686 int error;
2687 xfs_bmap_free_t free_list;
2688 xfs_fsblock_t first_block;
2689 int cancel_flags;
2690 int committed;
2691 xfs_inode_t *inodes[4];
2692 int spaceres;
2693 int num_inodes;
2694
2695 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2696
2697 new_parent = (src_dp != target_dp);
2698 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2699
2700 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2701 inodes, &num_inodes);
2702
2703 xfs_bmap_init(&free_list, &first_block);
2704 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2705 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2706 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2707 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2451337d 2708 if (error == -ENOSPC) {
f6bba201 2709 spaceres = 0;
3d3c8b52 2710 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201
DC
2711 }
2712 if (error) {
2713 xfs_trans_cancel(tp, 0);
2714 goto std_return;
2715 }
2716
2717 /*
2718 * Attach the dquots to the inodes
2719 */
2720 error = xfs_qm_vop_rename_dqattach(inodes);
2721 if (error) {
2722 xfs_trans_cancel(tp, cancel_flags);
2723 goto std_return;
2724 }
2725
2726 /*
2727 * Lock all the participating inodes. Depending upon whether
2728 * the target_name exists in the target directory, and
2729 * whether the target directory is the same as the source
2730 * directory, we can lock from 2 to 4 inodes.
2731 */
2732 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2733
2734 /*
2735 * Join all the inodes to the transaction. From this point on,
2736 * we can rely on either trans_commit or trans_cancel to unlock
2737 * them.
2738 */
2739 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2740 if (new_parent)
2741 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2742 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2743 if (target_ip)
2744 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2745
2746 /*
2747 * If we are using project inheritance, we only allow renames
2748 * into our tree when the project IDs are the same; else the
2749 * tree quota mechanism would be circumvented.
2750 */
2751 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2752 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2753 error = -EXDEV;
f6bba201
DC
2754 goto error_return;
2755 }
2756
2757 /*
2758 * Set up the target.
2759 */
2760 if (target_ip == NULL) {
2761 /*
2762 * If there's no space reservation, check the entry will
2763 * fit before actually inserting it.
2764 */
94f3cad5
ES
2765 if (!spaceres) {
2766 error = xfs_dir_canenter(tp, target_dp, target_name);
2767 if (error)
2768 goto error_return;
2769 }
f6bba201
DC
2770 /*
2771 * If target does not exist and the rename crosses
2772 * directories, adjust the target directory link count
2773 * to account for the ".." reference from the new entry.
2774 */
2775 error = xfs_dir_createname(tp, target_dp, target_name,
2776 src_ip->i_ino, &first_block,
2777 &free_list, spaceres);
2451337d 2778 if (error == -ENOSPC)
f6bba201
DC
2779 goto error_return;
2780 if (error)
2781 goto abort_return;
2782
2783 xfs_trans_ichgtime(tp, target_dp,
2784 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2785
2786 if (new_parent && src_is_directory) {
2787 error = xfs_bumplink(tp, target_dp);
2788 if (error)
2789 goto abort_return;
2790 }
2791 } else { /* target_ip != NULL */
2792 /*
2793 * If target exists and it's a directory, check that both
2794 * target and source are directories and that target can be
2795 * destroyed, or that neither is a directory.
2796 */
2797 if (S_ISDIR(target_ip->i_d.di_mode)) {
2798 /*
2799 * Make sure target dir is empty.
2800 */
2801 if (!(xfs_dir_isempty(target_ip)) ||
2802 (target_ip->i_d.di_nlink > 2)) {
2451337d 2803 error = -EEXIST;
f6bba201
DC
2804 goto error_return;
2805 }
2806 }
2807
2808 /*
2809 * Link the source inode under the target name.
2810 * If the source inode is a directory and we are moving
2811 * it across directories, its ".." entry will be
2812 * inconsistent until we replace that down below.
2813 *
2814 * In case there is already an entry with the same
2815 * name at the destination directory, remove it first.
2816 */
2817 error = xfs_dir_replace(tp, target_dp, target_name,
2818 src_ip->i_ino,
2819 &first_block, &free_list, spaceres);
2820 if (error)
2821 goto abort_return;
2822
2823 xfs_trans_ichgtime(tp, target_dp,
2824 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2825
2826 /*
2827 * Decrement the link count on the target since the target
2828 * dir no longer points to it.
2829 */
2830 error = xfs_droplink(tp, target_ip);
2831 if (error)
2832 goto abort_return;
2833
2834 if (src_is_directory) {
2835 /*
2836 * Drop the link from the old "." entry.
2837 */
2838 error = xfs_droplink(tp, target_ip);
2839 if (error)
2840 goto abort_return;
2841 }
2842 } /* target_ip != NULL */
2843
2844 /*
2845 * Remove the source.
2846 */
2847 if (new_parent && src_is_directory) {
2848 /*
2849 * Rewrite the ".." entry to point to the new
2850 * directory.
2851 */
2852 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2853 target_dp->i_ino,
2854 &first_block, &free_list, spaceres);
2451337d 2855 ASSERT(error != -EEXIST);
f6bba201
DC
2856 if (error)
2857 goto abort_return;
2858 }
2859
2860 /*
2861 * We always want to hit the ctime on the source inode.
2862 *
2863 * This isn't strictly required by the standards since the source
2864 * inode isn't really being changed, but old unix file systems did
2865 * it and some incremental backup programs won't work without it.
2866 */
2867 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2868 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2869
2870 /*
2871 * Adjust the link count on src_dp. This is necessary when
2872 * renaming a directory, either within one parent when
2873 * the target existed, or across two parent directories.
2874 */
2875 if (src_is_directory && (new_parent || target_ip != NULL)) {
2876
2877 /*
2878 * Decrement link count on src_directory since the
2879 * entry that's moved no longer points to it.
2880 */
2881 error = xfs_droplink(tp, src_dp);
2882 if (error)
2883 goto abort_return;
2884 }
2885
2886 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2887 &first_block, &free_list, spaceres);
2888 if (error)
2889 goto abort_return;
2890
2891 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2892 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2893 if (new_parent)
2894 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2895
2896 /*
2897 * If this is a synchronous mount, make sure that the
2898 * rename transaction goes to disk before returning to
2899 * the user.
2900 */
2901 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2902 xfs_trans_set_sync(tp);
2903 }
2904
2905 error = xfs_bmap_finish(&tp, &free_list, &committed);
2906 if (error) {
2907 xfs_bmap_cancel(&free_list);
2908 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2909 XFS_TRANS_ABORT));
2910 goto std_return;
2911 }
2912
2913 /*
2914 * trans_commit will unlock src_ip, target_ip & decrement
2915 * the vnode references.
2916 */
2917 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2918
2919 abort_return:
2920 cancel_flags |= XFS_TRANS_ABORT;
2921 error_return:
2922 xfs_bmap_cancel(&free_list);
2923 xfs_trans_cancel(tp, cancel_flags);
2924 std_return:
2925 return error;
2926}
2927
5c4d97d0
DC
2928STATIC int
2929xfs_iflush_cluster(
2930 xfs_inode_t *ip,
2931 xfs_buf_t *bp)
1da177e4 2932{
5c4d97d0
DC
2933 xfs_mount_t *mp = ip->i_mount;
2934 struct xfs_perag *pag;
2935 unsigned long first_index, mask;
2936 unsigned long inodes_per_cluster;
2937 int ilist_size;
2938 xfs_inode_t **ilist;
2939 xfs_inode_t *iq;
2940 int nr_found;
2941 int clcount = 0;
2942 int bufwasdelwri;
1da177e4 2943 int i;
1da177e4 2944
5c4d97d0 2945 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 2946
0f49efd8 2947 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
5c4d97d0
DC
2948 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2949 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2950 if (!ilist)
2951 goto out_put;
1da177e4 2952
0f49efd8 2953 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
2954 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2955 rcu_read_lock();
2956 /* really need a gang lookup range call here */
2957 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2958 first_index, inodes_per_cluster);
2959 if (nr_found == 0)
2960 goto out_free;
2961
2962 for (i = 0; i < nr_found; i++) {
2963 iq = ilist[i];
2964 if (iq == ip)
bad55843 2965 continue;
1a3e8f3d
DC
2966
2967 /*
2968 * because this is an RCU protected lookup, we could find a
2969 * recently freed or even reallocated inode during the lookup.
2970 * We need to check under the i_flags_lock for a valid inode
2971 * here. Skip it if it is not valid or the wrong inode.
2972 */
2973 spin_lock(&ip->i_flags_lock);
2974 if (!ip->i_ino ||
2975 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2976 spin_unlock(&ip->i_flags_lock);
2977 continue;
2978 }
2979 spin_unlock(&ip->i_flags_lock);
2980
bad55843
DC
2981 /*
2982 * Do an un-protected check to see if the inode is dirty and
2983 * is a candidate for flushing. These checks will be repeated
2984 * later after the appropriate locks are acquired.
2985 */
33540408 2986 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2987 continue;
bad55843
DC
2988
2989 /*
2990 * Try to get locks. If any are unavailable or it is pinned,
2991 * then this inode cannot be flushed and is skipped.
2992 */
2993
2994 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2995 continue;
2996 if (!xfs_iflock_nowait(iq)) {
2997 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2998 continue;
2999 }
3000 if (xfs_ipincount(iq)) {
3001 xfs_ifunlock(iq);
3002 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3003 continue;
3004 }
3005
3006 /*
3007 * arriving here means that this inode can be flushed. First
3008 * re-check that it's dirty before flushing.
3009 */
33540408
DC
3010 if (!xfs_inode_clean(iq)) {
3011 int error;
bad55843
DC
3012 error = xfs_iflush_int(iq, bp);
3013 if (error) {
3014 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3015 goto cluster_corrupt_out;
3016 }
3017 clcount++;
3018 } else {
3019 xfs_ifunlock(iq);
3020 }
3021 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3022 }
3023
3024 if (clcount) {
3025 XFS_STATS_INC(xs_icluster_flushcnt);
3026 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3027 }
3028
3029out_free:
1a3e8f3d 3030 rcu_read_unlock();
f0e2d93c 3031 kmem_free(ilist);
44b56e0a
DC
3032out_put:
3033 xfs_perag_put(pag);
bad55843
DC
3034 return 0;
3035
3036
3037cluster_corrupt_out:
3038 /*
3039 * Corruption detected in the clustering loop. Invalidate the
3040 * inode buffer and shut down the filesystem.
3041 */
1a3e8f3d 3042 rcu_read_unlock();
bad55843 3043 /*
43ff2122 3044 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3045 * brelse can handle it with no problems. If not, shut down the
3046 * filesystem before releasing the buffer.
3047 */
43ff2122 3048 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3049 if (bufwasdelwri)
3050 xfs_buf_relse(bp);
3051
3052 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3053
3054 if (!bufwasdelwri) {
3055 /*
3056 * Just like incore_relse: if we have b_iodone functions,
3057 * mark the buffer as an error and call them. Otherwise
3058 * mark it as stale and brelse.
3059 */
cb669ca5 3060 if (bp->b_iodone) {
bad55843 3061 XFS_BUF_UNDONE(bp);
c867cb61 3062 xfs_buf_stale(bp);
2451337d 3063 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3064 xfs_buf_ioend(bp);
bad55843 3065 } else {
c867cb61 3066 xfs_buf_stale(bp);
bad55843
DC
3067 xfs_buf_relse(bp);
3068 }
3069 }
3070
3071 /*
3072 * Unlocks the flush lock
3073 */
04913fdd 3074 xfs_iflush_abort(iq, false);
f0e2d93c 3075 kmem_free(ilist);
44b56e0a 3076 xfs_perag_put(pag);
2451337d 3077 return -EFSCORRUPTED;
bad55843
DC
3078}
3079
1da177e4 3080/*
4c46819a
CH
3081 * Flush dirty inode metadata into the backing buffer.
3082 *
3083 * The caller must have the inode lock and the inode flush lock held. The
3084 * inode lock will still be held upon return to the caller, and the inode
3085 * flush lock will be released after the inode has reached the disk.
3086 *
3087 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3088 */
3089int
3090xfs_iflush(
4c46819a
CH
3091 struct xfs_inode *ip,
3092 struct xfs_buf **bpp)
1da177e4 3093{
4c46819a
CH
3094 struct xfs_mount *mp = ip->i_mount;
3095 struct xfs_buf *bp;
3096 struct xfs_dinode *dip;
1da177e4 3097 int error;
1da177e4
LT
3098
3099 XFS_STATS_INC(xs_iflush_count);
3100
579aa9ca 3101 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3102 ASSERT(xfs_isiflocked(ip));
1da177e4 3103 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3104 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3105
4c46819a 3106 *bpp = NULL;
1da177e4 3107
1da177e4
LT
3108 xfs_iunpin_wait(ip);
3109
4b6a4688
DC
3110 /*
3111 * For stale inodes we cannot rely on the backing buffer remaining
3112 * stale in cache for the remaining life of the stale inode and so
475ee413 3113 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3114 * inodes below. We have to check this after ensuring the inode is
3115 * unpinned so that it is safe to reclaim the stale inode after the
3116 * flush call.
3117 */
3118 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3119 xfs_ifunlock(ip);
3120 return 0;
3121 }
3122
1da177e4
LT
3123 /*
3124 * This may have been unpinned because the filesystem is shutting
3125 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3126 * to disk, because the log record didn't make it to disk.
3127 *
3128 * We also have to remove the log item from the AIL in this case,
3129 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3130 */
3131 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3132 error = -EIO;
32ce90a4 3133 goto abort_out;
1da177e4
LT
3134 }
3135
a3f74ffb
DC
3136 /*
3137 * Get the buffer containing the on-disk inode.
3138 */
475ee413
CH
3139 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3140 0);
a3f74ffb
DC
3141 if (error || !bp) {
3142 xfs_ifunlock(ip);
3143 return error;
3144 }
3145
1da177e4
LT
3146 /*
3147 * First flush out the inode that xfs_iflush was called with.
3148 */
3149 error = xfs_iflush_int(ip, bp);
bad55843 3150 if (error)
1da177e4 3151 goto corrupt_out;
1da177e4 3152
a3f74ffb
DC
3153 /*
3154 * If the buffer is pinned then push on the log now so we won't
3155 * get stuck waiting in the write for too long.
3156 */
811e64c7 3157 if (xfs_buf_ispinned(bp))
a14a348b 3158 xfs_log_force(mp, 0);
a3f74ffb 3159
1da177e4
LT
3160 /*
3161 * inode clustering:
3162 * see if other inodes can be gathered into this write
3163 */
bad55843
DC
3164 error = xfs_iflush_cluster(ip, bp);
3165 if (error)
3166 goto cluster_corrupt_out;
1da177e4 3167
4c46819a
CH
3168 *bpp = bp;
3169 return 0;
1da177e4
LT
3170
3171corrupt_out:
3172 xfs_buf_relse(bp);
7d04a335 3173 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3174cluster_corrupt_out:
2451337d 3175 error = -EFSCORRUPTED;
32ce90a4 3176abort_out:
1da177e4
LT
3177 /*
3178 * Unlocks the flush lock
3179 */
04913fdd 3180 xfs_iflush_abort(ip, false);
32ce90a4 3181 return error;
1da177e4
LT
3182}
3183
1da177e4
LT
3184STATIC int
3185xfs_iflush_int(
93848a99
CH
3186 struct xfs_inode *ip,
3187 struct xfs_buf *bp)
1da177e4 3188{
93848a99
CH
3189 struct xfs_inode_log_item *iip = ip->i_itemp;
3190 struct xfs_dinode *dip;
3191 struct xfs_mount *mp = ip->i_mount;
1da177e4 3192
579aa9ca 3193 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3194 ASSERT(xfs_isiflocked(ip));
1da177e4 3195 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3196 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3197 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3198 ASSERT(ip->i_d.di_version > 1);
1da177e4 3199
1da177e4 3200 /* set *dip = inode's place in the buffer */
92bfc6e7 3201 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3202
69ef921b 3203 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3204 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3205 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3206 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3207 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3208 goto corrupt_out;
3209 }
3210 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3211 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3212 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3213 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3214 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3215 goto corrupt_out;
3216 }
abbede1b 3217 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3218 if (XFS_TEST_ERROR(
3219 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3220 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3221 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3222 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3223 "%s: Bad regular inode %Lu, ptr 0x%p",
3224 __func__, ip->i_ino, ip);
1da177e4
LT
3225 goto corrupt_out;
3226 }
abbede1b 3227 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3228 if (XFS_TEST_ERROR(
3229 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3230 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3231 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3232 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3233 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3234 "%s: Bad directory inode %Lu, ptr 0x%p",
3235 __func__, ip->i_ino, ip);
1da177e4
LT
3236 goto corrupt_out;
3237 }
3238 }
3239 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3240 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3241 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3242 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3243 "%s: detected corrupt incore inode %Lu, "
3244 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3245 __func__, ip->i_ino,
1da177e4 3246 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3247 ip->i_d.di_nblocks, ip);
1da177e4
LT
3248 goto corrupt_out;
3249 }
3250 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3251 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3252 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3253 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3254 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3255 goto corrupt_out;
3256 }
e60896d8 3257
1da177e4 3258 /*
263997a6 3259 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3260 * di_flushiter count for correct sequencing. We bump the flush
3261 * iteration count so we can detect flushes which postdate a log record
3262 * during recovery. This is redundant as we now log every change and
3263 * hence this can't happen but we need to still do it to ensure
3264 * backwards compatibility with old kernels that predate logging all
3265 * inode changes.
1da177e4 3266 */
e60896d8
DC
3267 if (ip->i_d.di_version < 3)
3268 ip->i_d.di_flushiter++;
1da177e4
LT
3269
3270 /*
3271 * Copy the dirty parts of the inode into the on-disk
3272 * inode. We always copy out the core of the inode,
3273 * because if the inode is dirty at all the core must
3274 * be.
3275 */
81591fe2 3276 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3277
3278 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3279 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3280 ip->i_d.di_flushiter = 0;
3281
fd9fdba6 3282 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
e4ac967b 3283 if (XFS_IFORK_Q(ip))
fd9fdba6 3284 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3285 xfs_inobp_check(mp, bp);
3286
3287 /*
f5d8d5c4
CH
3288 * We've recorded everything logged in the inode, so we'd like to clear
3289 * the ili_fields bits so we don't log and flush things unnecessarily.
3290 * However, we can't stop logging all this information until the data
3291 * we've copied into the disk buffer is written to disk. If we did we
3292 * might overwrite the copy of the inode in the log with all the data
3293 * after re-logging only part of it, and in the face of a crash we
3294 * wouldn't have all the data we need to recover.
1da177e4 3295 *
f5d8d5c4
CH
3296 * What we do is move the bits to the ili_last_fields field. When
3297 * logging the inode, these bits are moved back to the ili_fields field.
3298 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3299 * know that the information those bits represent is permanently on
3300 * disk. As long as the flush completes before the inode is logged
3301 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3302 *
f5d8d5c4
CH
3303 * We can play with the ili_fields bits here, because the inode lock
3304 * must be held exclusively in order to set bits there and the flush
3305 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3306 * done routine can tell whether or not to look in the AIL. Also, store
3307 * the current LSN of the inode so that we can tell whether the item has
3308 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3309 * need the AIL lock, because it is a 64 bit value that cannot be read
3310 * atomically.
1da177e4 3311 */
93848a99
CH
3312 iip->ili_last_fields = iip->ili_fields;
3313 iip->ili_fields = 0;
3314 iip->ili_logged = 1;
1da177e4 3315
93848a99
CH
3316 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3317 &iip->ili_item.li_lsn);
1da177e4 3318
93848a99
CH
3319 /*
3320 * Attach the function xfs_iflush_done to the inode's
3321 * buffer. This will remove the inode from the AIL
3322 * and unlock the inode's flush lock when the inode is
3323 * completely written to disk.
3324 */
3325 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3326
93848a99
CH
3327 /* update the lsn in the on disk inode if required */
3328 if (ip->i_d.di_version == 3)
3329 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3330
3331 /* generate the checksum. */
3332 xfs_dinode_calc_crc(mp, dip);
1da177e4 3333
93848a99
CH
3334 ASSERT(bp->b_fspriv != NULL);
3335 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3336 return 0;
3337
3338corrupt_out:
2451337d 3339 return -EFSCORRUPTED;
1da177e4 3340}
This page took 0.946179 seconds and 5 git commands to generate.