xfs: use vfs inode nlink field everywhere
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
a4fbe6ab 28#include "xfs_inode.h"
57062787 29#include "xfs_da_format.h"
c24b5dfa 30#include "xfs_da_btree.h"
c24b5dfa 31#include "xfs_dir2.h"
a844f451 32#include "xfs_attr_sf.h"
c24b5dfa 33#include "xfs_attr.h"
239880ef
DC
34#include "xfs_trans_space.h"
35#include "xfs_trans.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451 37#include "xfs_inode_item.h"
a844f451
NS
38#include "xfs_ialloc.h"
39#include "xfs_bmap.h"
68988114 40#include "xfs_bmap_util.h"
1da177e4 41#include "xfs_error.h"
1da177e4 42#include "xfs_quota.h"
2a82b8be 43#include "xfs_filestream.h"
93848a99 44#include "xfs_cksum.h"
0b1b213f 45#include "xfs_trace.h"
33479e05 46#include "xfs_icache.h"
c24b5dfa 47#include "xfs_symlink.h"
239880ef
DC
48#include "xfs_trans_priv.h"
49#include "xfs_log.h"
a4fbe6ab 50#include "xfs_bmap_btree.h"
1da177e4 51
1da177e4 52kmem_zone_t *xfs_inode_zone;
1da177e4
LT
53
54/*
8f04c47a 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
54d7b5c1
DC
60STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
61STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
62STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 63
2a0ec1d9
DC
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
fa96acad 78/*
efa70be1
CH
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
fa96acad 89 *
efa70be1 90 * The functions return a value which should be given to the corresponding
01f4f327 91 * xfs_iunlock() call.
fa96acad
DC
92 */
93uint
309ecac8
CH
94xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
fa96acad 96{
309ecac8 97 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 98
309ecac8
CH
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 101 lock_mode = XFS_ILOCK_EXCL;
fa96acad 102 xfs_ilock(ip, lock_mode);
fa96acad
DC
103 return lock_mode;
104}
105
efa70be1
CH
106uint
107xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
fa96acad 109{
efa70be1
CH
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
fa96acad
DC
117}
118
119/*
653c60b6
DC
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
fa96acad 123 *
653c60b6
DC
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 126 *
653c60b6
DC
127 * Basic locking order:
128 *
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130 *
131 * mmap_sem locking order:
132 *
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
135 *
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
142 *
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
fa96acad
DC
148 */
149void
150xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
153{
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155
156 /*
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 */
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
168
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173
653c60b6
DC
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178
fa96acad
DC
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183}
184
185/*
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
191 *
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
196 */
197int
198xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
201{
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203
204 /*
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 */
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
216
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
223 }
653c60b6
DC
224
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
231 }
232
fa96acad
DC
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
653c60b6 235 goto out_undo_mmaplock;
fa96acad
DC
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
653c60b6 238 goto out_undo_mmaplock;
fa96acad
DC
239 }
240 return 1;
241
653c60b6
DC
242out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247out_undo_iolock:
fa96acad
DC
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
653c60b6 252out:
fa96acad
DC
253 return 0;
254}
255
256/*
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
261 *
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
266 *
267 */
268void
269xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
272{
273 /*
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 */
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
285 ASSERT(lock_flags != 0);
286
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
291
653c60b6
DC
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
296
fa96acad
DC
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
301
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303}
304
305/*
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
308 */
309void
310xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
313{
653c60b6
DC
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
317
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
653c60b6
DC
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
fa96acad
DC
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
324
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326}
327
742ae1e3 328#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
329int
330xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
333{
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
338 }
339
653c60b6
DC
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 }
345
fa96acad
DC
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 }
351
352 ASSERT(0);
353 return 0;
354}
355#endif
356
c24b5dfa
DC
357#ifdef DEBUG
358int xfs_locked_n;
359int xfs_small_retries;
360int xfs_middle_retries;
361int xfs_lots_retries;
362int xfs_lock_delays;
363#endif
364
b6a9947e
DC
365/*
366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369 * errors and warnings.
370 */
371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
372static bool
373xfs_lockdep_subclass_ok(
374 int subclass)
375{
376 return subclass < MAX_LOCKDEP_SUBCLASSES;
377}
378#else
379#define xfs_lockdep_subclass_ok(subclass) (true)
380#endif
381
c24b5dfa 382/*
653c60b6 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
384 * value. This can be called for any type of inode lock combination, including
385 * parent locking. Care must be taken to ensure we don't overrun the subclass
386 * storage fields in the class mask we build.
c24b5dfa
DC
387 */
388static inline int
389xfs_lock_inumorder(int lock_mode, int subclass)
390{
0952c818
DC
391 int class = 0;
392
393 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
394 XFS_ILOCK_RTSUM)));
3403ccc0 395 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 396
653c60b6 397 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 398 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
3403ccc0
DC
399 ASSERT(xfs_lockdep_subclass_ok(subclass +
400 XFS_IOLOCK_PARENT_VAL));
0952c818
DC
401 class += subclass << XFS_IOLOCK_SHIFT;
402 if (lock_mode & XFS_IOLOCK_PARENT)
403 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
653c60b6
DC
404 }
405
406 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
407 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
408 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
409 }
410
0952c818
DC
411 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
412 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
413 class += subclass << XFS_ILOCK_SHIFT;
414 }
c24b5dfa 415
0952c818 416 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
417}
418
419/*
95afcf5c
DC
420 * The following routine will lock n inodes in exclusive mode. We assume the
421 * caller calls us with the inodes in i_ino order.
c24b5dfa 422 *
95afcf5c
DC
423 * We need to detect deadlock where an inode that we lock is in the AIL and we
424 * start waiting for another inode that is locked by a thread in a long running
425 * transaction (such as truncate). This can result in deadlock since the long
426 * running trans might need to wait for the inode we just locked in order to
427 * push the tail and free space in the log.
0952c818
DC
428 *
429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431 * lock more than one at a time, lockdep will report false positives saying we
432 * have violated locking orders.
c24b5dfa
DC
433 */
434void
435xfs_lock_inodes(
436 xfs_inode_t **ips,
437 int inodes,
438 uint lock_mode)
439{
440 int attempts = 0, i, j, try_lock;
441 xfs_log_item_t *lp;
442
0952c818
DC
443 /*
444 * Currently supports between 2 and 5 inodes with exclusive locking. We
445 * support an arbitrary depth of locking here, but absolute limits on
446 * inodes depend on the the type of locking and the limits placed by
447 * lockdep annotations in xfs_lock_inumorder. These are all checked by
448 * the asserts.
449 */
95afcf5c 450 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
451 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
452 XFS_ILOCK_EXCL));
453 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
454 XFS_ILOCK_SHARED)));
455 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
456 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461
462 if (lock_mode & XFS_IOLOCK_EXCL) {
463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
466
467 try_lock = 0;
468 i = 0;
c24b5dfa
DC
469again:
470 for (; i < inodes; i++) {
471 ASSERT(ips[i]);
472
95afcf5c 473 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
474 continue;
475
476 /*
95afcf5c
DC
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 479 */
c24b5dfa
DC
480 if (!try_lock) {
481 for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 483 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 484 try_lock++;
c24b5dfa
DC
485 }
486 }
487
488 /*
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
492 * and try again.
493 */
95afcf5c
DC
494 if (!try_lock) {
495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 continue;
497 }
498
499 /* try_lock means we have an inode locked that is in the AIL. */
500 ASSERT(i != 0);
501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 continue;
c24b5dfa 503
95afcf5c
DC
504 /*
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
507 */
508 attempts++;
509 for (j = i - 1; j >= 0; j--) {
c24b5dfa 510 /*
95afcf5c
DC
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
513 * same.
c24b5dfa 514 */
95afcf5c
DC
515 if (j != (i - 1) && ips[j] == ips[j + 1])
516 continue;
c24b5dfa 517
95afcf5c
DC
518 xfs_iunlock(ips[j], lock_mode);
519 }
c24b5dfa 520
95afcf5c
DC
521 if ((attempts % 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
c24b5dfa 523#ifdef DEBUG
95afcf5c 524 xfs_lock_delays++;
c24b5dfa 525#endif
c24b5dfa 526 }
95afcf5c
DC
527 i = 0;
528 try_lock = 0;
529 goto again;
c24b5dfa
DC
530 }
531
532#ifdef DEBUG
533 if (attempts) {
534 if (attempts < 5) xfs_small_retries++;
535 else if (attempts < 100) xfs_middle_retries++;
536 else xfs_lots_retries++;
537 } else {
538 xfs_locked_n++;
539 }
540#endif
541}
542
543/*
653c60b6
DC
544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546 * lock more than one at a time, lockdep will report false positives saying we
547 * have violated locking orders.
c24b5dfa
DC
548 */
549void
550xfs_lock_two_inodes(
551 xfs_inode_t *ip0,
552 xfs_inode_t *ip1,
553 uint lock_mode)
554{
555 xfs_inode_t *temp;
556 int attempts = 0;
557 xfs_log_item_t *lp;
558
653c60b6
DC
559 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
560 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564
c24b5dfa
DC
565 ASSERT(ip0->i_ino != ip1->i_ino);
566
567 if (ip0->i_ino > ip1->i_ino) {
568 temp = ip0;
569 ip0 = ip1;
570 ip1 = temp;
571 }
572
573 again:
574 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
575
576 /*
577 * If the first lock we have locked is in the AIL, we must TRY to get
578 * the second lock. If we can't get it, we must release the first one
579 * and try again.
580 */
581 lp = (xfs_log_item_t *)ip0->i_itemp;
582 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
584 xfs_iunlock(ip0, lock_mode);
585 if ((++attempts % 5) == 0)
586 delay(1); /* Don't just spin the CPU */
587 goto again;
588 }
589 } else {
590 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
591 }
592}
593
594
fa96acad
DC
595void
596__xfs_iflock(
597 struct xfs_inode *ip)
598{
599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601
602 do {
603 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
604 if (xfs_isiflocked(ip))
605 io_schedule();
606 } while (!xfs_iflock_nowait(ip));
607
608 finish_wait(wq, &wait.wait);
609}
610
1da177e4
LT
611STATIC uint
612_xfs_dic2xflags(
58f88ca2
DC
613 __uint16_t di_flags,
614 uint64_t di_flags2,
615 bool has_attr)
1da177e4
LT
616{
617 uint flags = 0;
618
619 if (di_flags & XFS_DIFLAG_ANY) {
620 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 621 flags |= FS_XFLAG_REALTIME;
1da177e4 622 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 623 flags |= FS_XFLAG_PREALLOC;
1da177e4 624 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 625 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 626 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 627 flags |= FS_XFLAG_APPEND;
1da177e4 628 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 629 flags |= FS_XFLAG_SYNC;
1da177e4 630 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 631 flags |= FS_XFLAG_NOATIME;
1da177e4 632 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 633 flags |= FS_XFLAG_NODUMP;
1da177e4 634 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 635 flags |= FS_XFLAG_RTINHERIT;
1da177e4 636 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 637 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 638 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 639 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 640 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 641 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 643 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 644 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 645 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 646 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 647 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
648 }
649
58f88ca2
DC
650 if (di_flags2 & XFS_DIFLAG2_ANY) {
651 if (di_flags2 & XFS_DIFLAG2_DAX)
652 flags |= FS_XFLAG_DAX;
653 }
654
655 if (has_attr)
656 flags |= FS_XFLAG_HASATTR;
657
1da177e4
LT
658 return flags;
659}
660
661uint
662xfs_ip2xflags(
58f88ca2 663 struct xfs_inode *ip)
1da177e4 664{
58f88ca2 665 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 666
58f88ca2 667 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
668}
669
670uint
671xfs_dic2xflags(
58f88ca2 672 struct xfs_dinode *dip)
1da177e4 673{
58f88ca2
DC
674 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
675 be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
1da177e4
LT
676}
677
c24b5dfa
DC
678/*
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
683 */
684int
685xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
690{
691 xfs_ino_t inum;
692 int error;
c24b5dfa
DC
693
694 trace_xfs_lookup(dp, name);
695
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 697 return -EIO;
c24b5dfa 698
dbad7c99 699 xfs_ilock(dp, XFS_IOLOCK_SHARED);
c24b5dfa 700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 701 if (error)
dbad7c99 702 goto out_unlock;
c24b5dfa
DC
703
704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 if (error)
706 goto out_free_name;
707
dbad7c99 708 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
c24b5dfa
DC
709 return 0;
710
711out_free_name:
712 if (ci_name)
713 kmem_free(ci_name->name);
dbad7c99
DC
714out_unlock:
715 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
c24b5dfa
DC
716 *ipp = NULL;
717 return error;
718}
719
1da177e4
LT
720/*
721 * Allocate an inode on disk and return a copy of its in-core version.
722 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
723 * appropriately within the inode. The uid and gid for the inode are
724 * set according to the contents of the given cred structure.
725 *
726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
727 * has a free inode available, call xfs_iget() to obtain the in-core
728 * version of the allocated inode. Finally, fill in the inode and
729 * log its initial contents. In this case, ialloc_context would be
730 * set to NULL.
1da177e4 731 *
cd856db6
CM
732 * If xfs_dialloc() does not have an available inode, it will replenish
733 * its supply by doing an allocation. Since we can only do one
734 * allocation within a transaction without deadlocks, we must commit
735 * the current transaction before returning the inode itself.
736 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
737 * The caller should then commit the current transaction, start a new
738 * transaction, and call xfs_ialloc() again to actually get the inode.
739 *
740 * To ensure that some other process does not grab the inode that
741 * was allocated during the first call to xfs_ialloc(), this routine
742 * also returns the [locked] bp pointing to the head of the freelist
743 * as ialloc_context. The caller should hold this buffer across
744 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
745 *
746 * If we are allocating quota inodes, we do not have a parent inode
747 * to attach to or associate with (i.e. pip == NULL) because they
748 * are not linked into the directory structure - they are attached
749 * directly to the superblock - and so have no parent.
1da177e4
LT
750 */
751int
752xfs_ialloc(
753 xfs_trans_t *tp,
754 xfs_inode_t *pip,
576b1d67 755 umode_t mode,
31b084ae 756 xfs_nlink_t nlink,
1da177e4 757 xfs_dev_t rdev,
6743099c 758 prid_t prid,
1da177e4
LT
759 int okalloc,
760 xfs_buf_t **ialloc_context,
1da177e4
LT
761 xfs_inode_t **ipp)
762{
93848a99 763 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
764 xfs_ino_t ino;
765 xfs_inode_t *ip;
1da177e4
LT
766 uint flags;
767 int error;
e076b0f3 768 struct timespec tv;
3987848c 769 struct inode *inode;
1da177e4
LT
770
771 /*
772 * Call the space management code to pick
773 * the on-disk inode to be allocated.
774 */
b11f94d5 775 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 776 ialloc_context, &ino);
bf904248 777 if (error)
1da177e4 778 return error;
08358906 779 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
780 *ipp = NULL;
781 return 0;
782 }
783 ASSERT(*ialloc_context == NULL);
784
785 /*
786 * Get the in-core inode with the lock held exclusively.
787 * This is because we're setting fields here we need
788 * to prevent others from looking at until we're done.
789 */
93848a99 790 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 791 XFS_ILOCK_EXCL, &ip);
bf904248 792 if (error)
1da177e4 793 return error;
1da177e4 794 ASSERT(ip != NULL);
3987848c 795 inode = VFS_I(ip);
1da177e4 796
263997a6
DC
797 /*
798 * We always convert v1 inodes to v2 now - we only support filesystems
799 * with >= v2 inode capability, so there is no reason for ever leaving
800 * an inode in v1 format.
801 */
802 if (ip->i_d.di_version == 1)
803 ip->i_d.di_version = 2;
804
576b1d67 805 ip->i_d.di_mode = mode;
54d7b5c1 806 set_nlink(inode, nlink);
7aab1b28
DE
807 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
808 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 809 xfs_set_projid(ip, prid);
1da177e4 810
bd186aa9 811 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 812 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 813 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
814 ip->i_d.di_mode |= S_ISGID;
815 }
816 }
817
818 /*
819 * If the group ID of the new file does not match the effective group
820 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
821 * (and only if the irix_sgid_inherit compatibility variable is set).
822 */
823 if ((irix_sgid_inherit) &&
824 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 825 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
826 ip->i_d.di_mode &= ~S_ISGID;
827 }
828
829 ip->i_d.di_size = 0;
830 ip->i_d.di_nextents = 0;
831 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 832
e076b0f3 833 tv = current_fs_time(mp->m_super);
3987848c
DC
834 inode->i_mtime = tv;
835 inode->i_atime = tv;
836 inode->i_ctime = tv;
dff35fd4 837
1da177e4
LT
838 /*
839 * di_gen will have been taken care of in xfs_iread.
840 */
841 ip->i_d.di_extsize = 0;
842 ip->i_d.di_dmevmask = 0;
843 ip->i_d.di_dmstate = 0;
844 ip->i_d.di_flags = 0;
93848a99
CH
845
846 if (ip->i_d.di_version == 3) {
93848a99 847 ip->i_d.di_changecount = 1;
93848a99 848 ip->i_d.di_flags2 = 0;
3987848c
DC
849 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
850 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
93848a99
CH
851 }
852
853
1da177e4
LT
854 flags = XFS_ILOG_CORE;
855 switch (mode & S_IFMT) {
856 case S_IFIFO:
857 case S_IFCHR:
858 case S_IFBLK:
859 case S_IFSOCK:
860 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
861 ip->i_df.if_u2.if_rdev = rdev;
862 ip->i_df.if_flags = 0;
863 flags |= XFS_ILOG_DEV;
864 break;
865 case S_IFREG:
866 case S_IFDIR:
b11f94d5 867 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2
DC
868 uint64_t di_flags2 = 0;
869 uint di_flags = 0;
365ca83d 870
abbede1b 871 if (S_ISDIR(mode)) {
365ca83d
NS
872 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
873 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
874 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
875 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
876 ip->i_d.di_extsize = pip->i_d.di_extsize;
877 }
9336e3a7
DC
878 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
879 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 880 } else if (S_ISREG(mode)) {
613d7043 881 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 882 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
883 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
884 di_flags |= XFS_DIFLAG_EXTSIZE;
885 ip->i_d.di_extsize = pip->i_d.di_extsize;
886 }
1da177e4
LT
887 }
888 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
889 xfs_inherit_noatime)
365ca83d 890 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
892 xfs_inherit_nodump)
365ca83d 893 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
894 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
895 xfs_inherit_sync)
365ca83d 896 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
897 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
898 xfs_inherit_nosymlinks)
365ca83d 899 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
901 xfs_inherit_nodefrag)
902 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
903 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
904 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2
DC
905 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
906 di_flags2 |= XFS_DIFLAG2_DAX;
907
365ca83d 908 ip->i_d.di_flags |= di_flags;
58f88ca2 909 ip->i_d.di_flags2 |= di_flags2;
1da177e4
LT
910 }
911 /* FALLTHROUGH */
912 case S_IFLNK:
913 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
914 ip->i_df.if_flags = XFS_IFEXTENTS;
915 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
916 ip->i_df.if_u1.if_extents = NULL;
917 break;
918 default:
919 ASSERT(0);
920 }
921 /*
922 * Attribute fork settings for new inode.
923 */
924 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
925 ip->i_d.di_anextents = 0;
926
927 /*
928 * Log the new values stuffed into the inode.
929 */
ddc3415a 930 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
931 xfs_trans_log_inode(tp, ip, flags);
932
58c90473 933 /* now that we have an i_mode we can setup the inode structure */
41be8bed 934 xfs_setup_inode(ip);
1da177e4
LT
935
936 *ipp = ip;
937 return 0;
938}
939
e546cb79
DC
940/*
941 * Allocates a new inode from disk and return a pointer to the
942 * incore copy. This routine will internally commit the current
943 * transaction and allocate a new one if the Space Manager needed
944 * to do an allocation to replenish the inode free-list.
945 *
946 * This routine is designed to be called from xfs_create and
947 * xfs_create_dir.
948 *
949 */
950int
951xfs_dir_ialloc(
952 xfs_trans_t **tpp, /* input: current transaction;
953 output: may be a new transaction. */
954 xfs_inode_t *dp, /* directory within whose allocate
955 the inode. */
956 umode_t mode,
957 xfs_nlink_t nlink,
958 xfs_dev_t rdev,
959 prid_t prid, /* project id */
960 int okalloc, /* ok to allocate new space */
961 xfs_inode_t **ipp, /* pointer to inode; it will be
962 locked. */
963 int *committed)
964
965{
966 xfs_trans_t *tp;
e546cb79
DC
967 xfs_inode_t *ip;
968 xfs_buf_t *ialloc_context = NULL;
969 int code;
e546cb79
DC
970 void *dqinfo;
971 uint tflags;
972
973 tp = *tpp;
974 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
975
976 /*
977 * xfs_ialloc will return a pointer to an incore inode if
978 * the Space Manager has an available inode on the free
979 * list. Otherwise, it will do an allocation and replenish
980 * the freelist. Since we can only do one allocation per
981 * transaction without deadlocks, we will need to commit the
982 * current transaction and start a new one. We will then
983 * need to call xfs_ialloc again to get the inode.
984 *
985 * If xfs_ialloc did an allocation to replenish the freelist,
986 * it returns the bp containing the head of the freelist as
987 * ialloc_context. We will hold a lock on it across the
988 * transaction commit so that no other process can steal
989 * the inode(s) that we've just allocated.
990 */
991 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
992 &ialloc_context, &ip);
993
994 /*
995 * Return an error if we were unable to allocate a new inode.
996 * This should only happen if we run out of space on disk or
997 * encounter a disk error.
998 */
999 if (code) {
1000 *ipp = NULL;
1001 return code;
1002 }
1003 if (!ialloc_context && !ip) {
1004 *ipp = NULL;
2451337d 1005 return -ENOSPC;
e546cb79
DC
1006 }
1007
1008 /*
1009 * If the AGI buffer is non-NULL, then we were unable to get an
1010 * inode in one operation. We need to commit the current
1011 * transaction and call xfs_ialloc() again. It is guaranteed
1012 * to succeed the second time.
1013 */
1014 if (ialloc_context) {
1015 /*
1016 * Normally, xfs_trans_commit releases all the locks.
1017 * We call bhold to hang on to the ialloc_context across
1018 * the commit. Holding this buffer prevents any other
1019 * processes from doing any allocations in this
1020 * allocation group.
1021 */
1022 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1023
1024 /*
1025 * We want the quota changes to be associated with the next
1026 * transaction, NOT this one. So, detach the dqinfo from this
1027 * and attach it to the next transaction.
1028 */
1029 dqinfo = NULL;
1030 tflags = 0;
1031 if (tp->t_dqinfo) {
1032 dqinfo = (void *)tp->t_dqinfo;
1033 tp->t_dqinfo = NULL;
1034 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1035 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1036 }
1037
2e6db6c4
CH
1038 code = xfs_trans_roll(&tp, 0);
1039 if (committed != NULL)
e546cb79 1040 *committed = 1;
3d3c8b52 1041
e546cb79
DC
1042 /*
1043 * Re-attach the quota info that we detached from prev trx.
1044 */
1045 if (dqinfo) {
1046 tp->t_dqinfo = dqinfo;
1047 tp->t_flags |= tflags;
1048 }
1049
1050 if (code) {
1051 xfs_buf_relse(ialloc_context);
2e6db6c4 1052 *tpp = tp;
e546cb79
DC
1053 *ipp = NULL;
1054 return code;
1055 }
1056 xfs_trans_bjoin(tp, ialloc_context);
1057
1058 /*
1059 * Call ialloc again. Since we've locked out all
1060 * other allocations in this allocation group,
1061 * this call should always succeed.
1062 */
1063 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1064 okalloc, &ialloc_context, &ip);
1065
1066 /*
1067 * If we get an error at this point, return to the caller
1068 * so that the current transaction can be aborted.
1069 */
1070 if (code) {
1071 *tpp = tp;
1072 *ipp = NULL;
1073 return code;
1074 }
1075 ASSERT(!ialloc_context && ip);
1076
1077 } else {
1078 if (committed != NULL)
1079 *committed = 0;
1080 }
1081
1082 *ipp = ip;
1083 *tpp = tp;
1084
1085 return 0;
1086}
1087
1088/*
54d7b5c1
DC
1089 * Decrement the link count on an inode & log the change. If this causes the
1090 * link count to go to zero, move the inode to AGI unlinked list so that it can
1091 * be freed when the last active reference goes away via xfs_inactive().
e546cb79
DC
1092 */
1093int /* error */
1094xfs_droplink(
1095 xfs_trans_t *tp,
1096 xfs_inode_t *ip)
1097{
e546cb79
DC
1098 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1099
e546cb79
DC
1100 drop_nlink(VFS_I(ip));
1101 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1102
54d7b5c1
DC
1103 if (VFS_I(ip)->i_nlink)
1104 return 0;
1105
1106 return xfs_iunlink(tp, ip);
e546cb79
DC
1107}
1108
e546cb79
DC
1109/*
1110 * Increment the link count on an inode & log the change.
1111 */
1112int
1113xfs_bumplink(
1114 xfs_trans_t *tp,
1115 xfs_inode_t *ip)
1116{
1117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1118
263997a6 1119 ASSERT(ip->i_d.di_version > 1);
e546cb79 1120 inc_nlink(VFS_I(ip));
e546cb79
DC
1121 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1122 return 0;
1123}
1124
c24b5dfa
DC
1125int
1126xfs_create(
1127 xfs_inode_t *dp,
1128 struct xfs_name *name,
1129 umode_t mode,
1130 xfs_dev_t rdev,
1131 xfs_inode_t **ipp)
1132{
1133 int is_dir = S_ISDIR(mode);
1134 struct xfs_mount *mp = dp->i_mount;
1135 struct xfs_inode *ip = NULL;
1136 struct xfs_trans *tp = NULL;
1137 int error;
1138 xfs_bmap_free_t free_list;
1139 xfs_fsblock_t first_block;
1140 bool unlock_dp_on_error = false;
c24b5dfa
DC
1141 prid_t prid;
1142 struct xfs_dquot *udqp = NULL;
1143 struct xfs_dquot *gdqp = NULL;
1144 struct xfs_dquot *pdqp = NULL;
062647a8 1145 struct xfs_trans_res *tres;
c24b5dfa 1146 uint resblks;
c24b5dfa
DC
1147
1148 trace_xfs_create(dp, name);
1149
1150 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1151 return -EIO;
c24b5dfa 1152
163467d3 1153 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1154
1155 /*
1156 * Make sure that we have allocated dquot(s) on disk.
1157 */
7aab1b28
DE
1158 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1159 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1160 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1161 &udqp, &gdqp, &pdqp);
1162 if (error)
1163 return error;
1164
1165 if (is_dir) {
1166 rdev = 0;
1167 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1168 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1169 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1170 } else {
1171 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1172 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1173 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1174 }
1175
c24b5dfa
DC
1176 /*
1177 * Initially assume that the file does not exist and
1178 * reserve the resources for that case. If that is not
1179 * the case we'll drop the one we have and get a more
1180 * appropriate transaction later.
1181 */
062647a8 1182 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1183 if (error == -ENOSPC) {
c24b5dfa
DC
1184 /* flush outstanding delalloc blocks and retry */
1185 xfs_flush_inodes(mp);
062647a8 1186 error = xfs_trans_reserve(tp, tres, resblks, 0);
c24b5dfa 1187 }
2451337d 1188 if (error == -ENOSPC) {
c24b5dfa
DC
1189 /* No space at all so try a "no-allocation" reservation */
1190 resblks = 0;
062647a8 1191 error = xfs_trans_reserve(tp, tres, 0, 0);
c24b5dfa 1192 }
4906e215 1193 if (error)
c24b5dfa 1194 goto out_trans_cancel;
4906e215 1195
c24b5dfa 1196
dbad7c99
DC
1197 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1198 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
c24b5dfa
DC
1199 unlock_dp_on_error = true;
1200
1201 xfs_bmap_init(&free_list, &first_block);
1202
1203 /*
1204 * Reserve disk quota and the inode.
1205 */
1206 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1207 pdqp, resblks, 1, 0);
1208 if (error)
1209 goto out_trans_cancel;
1210
94f3cad5
ES
1211 if (!resblks) {
1212 error = xfs_dir_canenter(tp, dp, name);
1213 if (error)
1214 goto out_trans_cancel;
1215 }
c24b5dfa
DC
1216
1217 /*
1218 * A newly created regular or special file just has one directory
1219 * entry pointing to them, but a directory also the "." entry
1220 * pointing to itself.
1221 */
1222 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
f6106efa 1223 prid, resblks > 0, &ip, NULL);
d6077aa3 1224 if (error)
4906e215 1225 goto out_trans_cancel;
c24b5dfa
DC
1226
1227 /*
1228 * Now we join the directory inode to the transaction. We do not do it
1229 * earlier because xfs_dir_ialloc might commit the previous transaction
1230 * (and release all the locks). An error from here on will result in
1231 * the transaction cancel unlocking dp so don't do it explicitly in the
1232 * error path.
1233 */
dbad7c99 1234 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1235 unlock_dp_on_error = false;
1236
1237 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1238 &first_block, &free_list, resblks ?
1239 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1240 if (error) {
2451337d 1241 ASSERT(error != -ENOSPC);
4906e215 1242 goto out_trans_cancel;
c24b5dfa
DC
1243 }
1244 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1245 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1246
1247 if (is_dir) {
1248 error = xfs_dir_init(tp, ip, dp);
1249 if (error)
1250 goto out_bmap_cancel;
1251
1252 error = xfs_bumplink(tp, dp);
1253 if (error)
1254 goto out_bmap_cancel;
1255 }
1256
1257 /*
1258 * If this is a synchronous mount, make sure that the
1259 * create transaction goes to disk before returning to
1260 * the user.
1261 */
1262 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1263 xfs_trans_set_sync(tp);
1264
1265 /*
1266 * Attach the dquot(s) to the inodes and modify them incore.
1267 * These ids of the inode couldn't have changed since the new
1268 * inode has been locked ever since it was created.
1269 */
1270 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1271
f6106efa 1272 error = xfs_bmap_finish(&tp, &free_list, NULL);
c24b5dfa
DC
1273 if (error)
1274 goto out_bmap_cancel;
1275
70393313 1276 error = xfs_trans_commit(tp);
c24b5dfa
DC
1277 if (error)
1278 goto out_release_inode;
1279
1280 xfs_qm_dqrele(udqp);
1281 xfs_qm_dqrele(gdqp);
1282 xfs_qm_dqrele(pdqp);
1283
1284 *ipp = ip;
1285 return 0;
1286
1287 out_bmap_cancel:
1288 xfs_bmap_cancel(&free_list);
c24b5dfa 1289 out_trans_cancel:
4906e215 1290 xfs_trans_cancel(tp);
c24b5dfa
DC
1291 out_release_inode:
1292 /*
58c90473
DC
1293 * Wait until after the current transaction is aborted to finish the
1294 * setup of the inode and release the inode. This prevents recursive
1295 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1296 */
58c90473
DC
1297 if (ip) {
1298 xfs_finish_inode_setup(ip);
c24b5dfa 1299 IRELE(ip);
58c90473 1300 }
c24b5dfa
DC
1301
1302 xfs_qm_dqrele(udqp);
1303 xfs_qm_dqrele(gdqp);
1304 xfs_qm_dqrele(pdqp);
1305
1306 if (unlock_dp_on_error)
dbad7c99 1307 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1308 return error;
1309}
1310
99b6436b
ZYW
1311int
1312xfs_create_tmpfile(
1313 struct xfs_inode *dp,
1314 struct dentry *dentry,
330033d6
BF
1315 umode_t mode,
1316 struct xfs_inode **ipp)
99b6436b
ZYW
1317{
1318 struct xfs_mount *mp = dp->i_mount;
1319 struct xfs_inode *ip = NULL;
1320 struct xfs_trans *tp = NULL;
1321 int error;
99b6436b
ZYW
1322 prid_t prid;
1323 struct xfs_dquot *udqp = NULL;
1324 struct xfs_dquot *gdqp = NULL;
1325 struct xfs_dquot *pdqp = NULL;
1326 struct xfs_trans_res *tres;
1327 uint resblks;
1328
1329 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1330 return -EIO;
99b6436b
ZYW
1331
1332 prid = xfs_get_initial_prid(dp);
1333
1334 /*
1335 * Make sure that we have allocated dquot(s) on disk.
1336 */
1337 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1338 xfs_kgid_to_gid(current_fsgid()), prid,
1339 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1340 &udqp, &gdqp, &pdqp);
1341 if (error)
1342 return error;
1343
1344 resblks = XFS_IALLOC_SPACE_RES(mp);
1345 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1346
1347 tres = &M_RES(mp)->tr_create_tmpfile;
1348 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1349 if (error == -ENOSPC) {
99b6436b
ZYW
1350 /* No space at all so try a "no-allocation" reservation */
1351 resblks = 0;
1352 error = xfs_trans_reserve(tp, tres, 0, 0);
1353 }
4906e215 1354 if (error)
99b6436b 1355 goto out_trans_cancel;
99b6436b
ZYW
1356
1357 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1358 pdqp, resblks, 1, 0);
1359 if (error)
1360 goto out_trans_cancel;
1361
1362 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1363 prid, resblks > 0, &ip, NULL);
d6077aa3 1364 if (error)
4906e215 1365 goto out_trans_cancel;
99b6436b
ZYW
1366
1367 if (mp->m_flags & XFS_MOUNT_WSYNC)
1368 xfs_trans_set_sync(tp);
1369
1370 /*
1371 * Attach the dquot(s) to the inodes and modify them incore.
1372 * These ids of the inode couldn't have changed since the new
1373 * inode has been locked ever since it was created.
1374 */
1375 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1376
99b6436b
ZYW
1377 error = xfs_iunlink(tp, ip);
1378 if (error)
4906e215 1379 goto out_trans_cancel;
99b6436b 1380
70393313 1381 error = xfs_trans_commit(tp);
99b6436b
ZYW
1382 if (error)
1383 goto out_release_inode;
1384
1385 xfs_qm_dqrele(udqp);
1386 xfs_qm_dqrele(gdqp);
1387 xfs_qm_dqrele(pdqp);
1388
330033d6 1389 *ipp = ip;
99b6436b
ZYW
1390 return 0;
1391
99b6436b 1392 out_trans_cancel:
4906e215 1393 xfs_trans_cancel(tp);
99b6436b
ZYW
1394 out_release_inode:
1395 /*
58c90473
DC
1396 * Wait until after the current transaction is aborted to finish the
1397 * setup of the inode and release the inode. This prevents recursive
1398 * transactions and deadlocks from xfs_inactive.
99b6436b 1399 */
58c90473
DC
1400 if (ip) {
1401 xfs_finish_inode_setup(ip);
99b6436b 1402 IRELE(ip);
58c90473 1403 }
99b6436b
ZYW
1404
1405 xfs_qm_dqrele(udqp);
1406 xfs_qm_dqrele(gdqp);
1407 xfs_qm_dqrele(pdqp);
1408
1409 return error;
1410}
1411
c24b5dfa
DC
1412int
1413xfs_link(
1414 xfs_inode_t *tdp,
1415 xfs_inode_t *sip,
1416 struct xfs_name *target_name)
1417{
1418 xfs_mount_t *mp = tdp->i_mount;
1419 xfs_trans_t *tp;
1420 int error;
1421 xfs_bmap_free_t free_list;
1422 xfs_fsblock_t first_block;
c24b5dfa
DC
1423 int resblks;
1424
1425 trace_xfs_link(tdp, target_name);
1426
1427 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1428
1429 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1430 return -EIO;
c24b5dfa
DC
1431
1432 error = xfs_qm_dqattach(sip, 0);
1433 if (error)
1434 goto std_return;
1435
1436 error = xfs_qm_dqattach(tdp, 0);
1437 if (error)
1438 goto std_return;
1439
1440 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
c24b5dfa 1441 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1442 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
2451337d 1443 if (error == -ENOSPC) {
c24b5dfa 1444 resblks = 0;
3d3c8b52 1445 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa 1446 }
4906e215 1447 if (error)
c24b5dfa 1448 goto error_return;
c24b5dfa 1449
dbad7c99 1450 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
c24b5dfa
DC
1451 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1452
1453 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
dbad7c99 1454 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1455
1456 /*
1457 * If we are using project inheritance, we only allow hard link
1458 * creation in our tree when the project IDs are the same; else
1459 * the tree quota mechanism could be circumvented.
1460 */
1461 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1462 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1463 error = -EXDEV;
c24b5dfa
DC
1464 goto error_return;
1465 }
1466
94f3cad5
ES
1467 if (!resblks) {
1468 error = xfs_dir_canenter(tp, tdp, target_name);
1469 if (error)
1470 goto error_return;
1471 }
c24b5dfa
DC
1472
1473 xfs_bmap_init(&free_list, &first_block);
1474
54d7b5c1
DC
1475 /*
1476 * Handle initial link state of O_TMPFILE inode
1477 */
1478 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1479 error = xfs_iunlink_remove(tp, sip);
1480 if (error)
4906e215 1481 goto error_return;
ab297431
ZYW
1482 }
1483
c24b5dfa
DC
1484 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1485 &first_block, &free_list, resblks);
1486 if (error)
4906e215 1487 goto error_return;
c24b5dfa
DC
1488 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1489 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1490
1491 error = xfs_bumplink(tp, sip);
1492 if (error)
4906e215 1493 goto error_return;
c24b5dfa
DC
1494
1495 /*
1496 * If this is a synchronous mount, make sure that the
1497 * link transaction goes to disk before returning to
1498 * the user.
1499 */
f6106efa 1500 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1501 xfs_trans_set_sync(tp);
c24b5dfa 1502
f6106efa 1503 error = xfs_bmap_finish(&tp, &free_list, NULL);
c24b5dfa
DC
1504 if (error) {
1505 xfs_bmap_cancel(&free_list);
4906e215 1506 goto error_return;
c24b5dfa
DC
1507 }
1508
70393313 1509 return xfs_trans_commit(tp);
c24b5dfa 1510
c24b5dfa 1511 error_return:
4906e215 1512 xfs_trans_cancel(tp);
c24b5dfa
DC
1513 std_return:
1514 return error;
1515}
1516
1da177e4 1517/*
8f04c47a
CH
1518 * Free up the underlying blocks past new_size. The new size must be smaller
1519 * than the current size. This routine can be used both for the attribute and
1520 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1521 *
f6485057
DC
1522 * The transaction passed to this routine must have made a permanent log
1523 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1524 * given transaction and start new ones, so make sure everything involved in
1525 * the transaction is tidy before calling here. Some transaction will be
1526 * returned to the caller to be committed. The incoming transaction must
1527 * already include the inode, and both inode locks must be held exclusively.
1528 * The inode must also be "held" within the transaction. On return the inode
1529 * will be "held" within the returned transaction. This routine does NOT
1530 * require any disk space to be reserved for it within the transaction.
1da177e4 1531 *
f6485057
DC
1532 * If we get an error, we must return with the inode locked and linked into the
1533 * current transaction. This keeps things simple for the higher level code,
1534 * because it always knows that the inode is locked and held in the transaction
1535 * that returns to it whether errors occur or not. We don't mark the inode
1536 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1537 */
1538int
8f04c47a
CH
1539xfs_itruncate_extents(
1540 struct xfs_trans **tpp,
1541 struct xfs_inode *ip,
1542 int whichfork,
1543 xfs_fsize_t new_size)
1da177e4 1544{
8f04c47a
CH
1545 struct xfs_mount *mp = ip->i_mount;
1546 struct xfs_trans *tp = *tpp;
8f04c47a
CH
1547 xfs_bmap_free_t free_list;
1548 xfs_fsblock_t first_block;
1549 xfs_fileoff_t first_unmap_block;
1550 xfs_fileoff_t last_block;
1551 xfs_filblks_t unmap_len;
8f04c47a
CH
1552 int error = 0;
1553 int done = 0;
1da177e4 1554
0b56185b
CH
1555 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1556 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1557 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1558 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1559 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1560 ASSERT(ip->i_itemp != NULL);
898621d5 1561 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1562 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1563
673e8e59
CH
1564 trace_xfs_itruncate_extents_start(ip, new_size);
1565
1da177e4
LT
1566 /*
1567 * Since it is possible for space to become allocated beyond
1568 * the end of the file (in a crash where the space is allocated
1569 * but the inode size is not yet updated), simply remove any
1570 * blocks which show up between the new EOF and the maximum
1571 * possible file size. If the first block to be removed is
1572 * beyond the maximum file size (ie it is the same as last_block),
1573 * then there is nothing to do.
1574 */
8f04c47a 1575 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1576 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1577 if (first_unmap_block == last_block)
1578 return 0;
1579
1580 ASSERT(first_unmap_block < last_block);
1581 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1582 while (!done) {
9d87c319 1583 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1584 error = xfs_bunmapi(tp, ip,
3e57ecf6 1585 first_unmap_block, unmap_len,
8f04c47a 1586 xfs_bmapi_aflag(whichfork),
1da177e4 1587 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1588 &first_block, &free_list,
b4e9181e 1589 &done);
8f04c47a
CH
1590 if (error)
1591 goto out_bmap_cancel;
1da177e4
LT
1592
1593 /*
1594 * Duplicate the transaction that has the permanent
1595 * reservation and commit the old transaction.
1596 */
f6106efa 1597 error = xfs_bmap_finish(&tp, &free_list, ip);
8f04c47a
CH
1598 if (error)
1599 goto out_bmap_cancel;
1da177e4 1600
2e6db6c4 1601 error = xfs_trans_roll(&tp, ip);
f6485057 1602 if (error)
8f04c47a 1603 goto out;
1da177e4 1604 }
8f04c47a 1605
673e8e59
CH
1606 /*
1607 * Always re-log the inode so that our permanent transaction can keep
1608 * on rolling it forward in the log.
1609 */
1610 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1611
1612 trace_xfs_itruncate_extents_end(ip, new_size);
1613
8f04c47a
CH
1614out:
1615 *tpp = tp;
1616 return error;
1617out_bmap_cancel:
1da177e4 1618 /*
8f04c47a
CH
1619 * If the bunmapi call encounters an error, return to the caller where
1620 * the transaction can be properly aborted. We just need to make sure
1621 * we're not holding any resources that we were not when we came in.
1da177e4 1622 */
8f04c47a
CH
1623 xfs_bmap_cancel(&free_list);
1624 goto out;
1625}
1626
c24b5dfa
DC
1627int
1628xfs_release(
1629 xfs_inode_t *ip)
1630{
1631 xfs_mount_t *mp = ip->i_mount;
1632 int error;
1633
1634 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1635 return 0;
1636
1637 /* If this is a read-only mount, don't do this (would generate I/O) */
1638 if (mp->m_flags & XFS_MOUNT_RDONLY)
1639 return 0;
1640
1641 if (!XFS_FORCED_SHUTDOWN(mp)) {
1642 int truncated;
1643
c24b5dfa
DC
1644 /*
1645 * If we previously truncated this file and removed old data
1646 * in the process, we want to initiate "early" writeout on
1647 * the last close. This is an attempt to combat the notorious
1648 * NULL files problem which is particularly noticeable from a
1649 * truncate down, buffered (re-)write (delalloc), followed by
1650 * a crash. What we are effectively doing here is
1651 * significantly reducing the time window where we'd otherwise
1652 * be exposed to that problem.
1653 */
1654 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1655 if (truncated) {
1656 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1657 if (ip->i_delayed_blks > 0) {
2451337d 1658 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1659 if (error)
1660 return error;
1661 }
1662 }
1663 }
1664
54d7b5c1 1665 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1666 return 0;
1667
1668 if (xfs_can_free_eofblocks(ip, false)) {
1669
1670 /*
1671 * If we can't get the iolock just skip truncating the blocks
1672 * past EOF because we could deadlock with the mmap_sem
1673 * otherwise. We'll get another chance to drop them once the
1674 * last reference to the inode is dropped, so we'll never leak
1675 * blocks permanently.
1676 *
1677 * Further, check if the inode is being opened, written and
1678 * closed frequently and we have delayed allocation blocks
1679 * outstanding (e.g. streaming writes from the NFS server),
1680 * truncating the blocks past EOF will cause fragmentation to
1681 * occur.
1682 *
1683 * In this case don't do the truncation, either, but we have to
1684 * be careful how we detect this case. Blocks beyond EOF show
1685 * up as i_delayed_blks even when the inode is clean, so we
1686 * need to truncate them away first before checking for a dirty
1687 * release. Hence on the first dirty close we will still remove
1688 * the speculative allocation, but after that we will leave it
1689 * in place.
1690 */
1691 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1692 return 0;
1693
1694 error = xfs_free_eofblocks(mp, ip, true);
2451337d 1695 if (error && error != -EAGAIN)
c24b5dfa
DC
1696 return error;
1697
1698 /* delalloc blocks after truncation means it really is dirty */
1699 if (ip->i_delayed_blks)
1700 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1701 }
1702 return 0;
1703}
1704
f7be2d7f
BF
1705/*
1706 * xfs_inactive_truncate
1707 *
1708 * Called to perform a truncate when an inode becomes unlinked.
1709 */
1710STATIC int
1711xfs_inactive_truncate(
1712 struct xfs_inode *ip)
1713{
1714 struct xfs_mount *mp = ip->i_mount;
1715 struct xfs_trans *tp;
1716 int error;
1717
1718 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1719 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1720 if (error) {
1721 ASSERT(XFS_FORCED_SHUTDOWN(mp));
4906e215 1722 xfs_trans_cancel(tp);
f7be2d7f
BF
1723 return error;
1724 }
1725
1726 xfs_ilock(ip, XFS_ILOCK_EXCL);
1727 xfs_trans_ijoin(tp, ip, 0);
1728
1729 /*
1730 * Log the inode size first to prevent stale data exposure in the event
1731 * of a system crash before the truncate completes. See the related
1732 * comment in xfs_setattr_size() for details.
1733 */
1734 ip->i_d.di_size = 0;
1735 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1736
1737 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1738 if (error)
1739 goto error_trans_cancel;
1740
1741 ASSERT(ip->i_d.di_nextents == 0);
1742
70393313 1743 error = xfs_trans_commit(tp);
f7be2d7f
BF
1744 if (error)
1745 goto error_unlock;
1746
1747 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1748 return 0;
1749
1750error_trans_cancel:
4906e215 1751 xfs_trans_cancel(tp);
f7be2d7f
BF
1752error_unlock:
1753 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1754 return error;
1755}
1756
88877d2b
BF
1757/*
1758 * xfs_inactive_ifree()
1759 *
1760 * Perform the inode free when an inode is unlinked.
1761 */
1762STATIC int
1763xfs_inactive_ifree(
1764 struct xfs_inode *ip)
1765{
1766 xfs_bmap_free_t free_list;
1767 xfs_fsblock_t first_block;
88877d2b
BF
1768 struct xfs_mount *mp = ip->i_mount;
1769 struct xfs_trans *tp;
1770 int error;
1771
1772 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
9d43b180
BF
1773
1774 /*
1775 * The ifree transaction might need to allocate blocks for record
1776 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1777 * allow ifree to dip into the reserved block pool if necessary.
1778 *
1779 * Freeing large sets of inodes generally means freeing inode chunks,
1780 * directory and file data blocks, so this should be relatively safe.
1781 * Only under severe circumstances should it be possible to free enough
1782 * inodes to exhaust the reserve block pool via finobt expansion while
1783 * at the same time not creating free space in the filesystem.
1784 *
1785 * Send a warning if the reservation does happen to fail, as the inode
1786 * now remains allocated and sits on the unlinked list until the fs is
1787 * repaired.
1788 */
1789 tp->t_flags |= XFS_TRANS_RESERVE;
1790 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1791 XFS_IFREE_SPACE_RES(mp), 0);
88877d2b 1792 if (error) {
2451337d 1793 if (error == -ENOSPC) {
9d43b180
BF
1794 xfs_warn_ratelimited(mp,
1795 "Failed to remove inode(s) from unlinked list. "
1796 "Please free space, unmount and run xfs_repair.");
1797 } else {
1798 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1799 }
4906e215 1800 xfs_trans_cancel(tp);
88877d2b
BF
1801 return error;
1802 }
1803
1804 xfs_ilock(ip, XFS_ILOCK_EXCL);
1805 xfs_trans_ijoin(tp, ip, 0);
1806
1807 xfs_bmap_init(&free_list, &first_block);
1808 error = xfs_ifree(tp, ip, &free_list);
1809 if (error) {
1810 /*
1811 * If we fail to free the inode, shut down. The cancel
1812 * might do that, we need to make sure. Otherwise the
1813 * inode might be lost for a long time or forever.
1814 */
1815 if (!XFS_FORCED_SHUTDOWN(mp)) {
1816 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1817 __func__, error);
1818 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1819 }
4906e215 1820 xfs_trans_cancel(tp);
88877d2b
BF
1821 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1822 return error;
1823 }
1824
1825 /*
1826 * Credit the quota account(s). The inode is gone.
1827 */
1828 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1829
1830 /*
d4a97a04
BF
1831 * Just ignore errors at this point. There is nothing we can do except
1832 * to try to keep going. Make sure it's not a silent error.
88877d2b 1833 */
f6106efa 1834 error = xfs_bmap_finish(&tp, &free_list, NULL);
d4a97a04 1835 if (error) {
88877d2b
BF
1836 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1837 __func__, error);
d4a97a04
BF
1838 xfs_bmap_cancel(&free_list);
1839 }
70393313 1840 error = xfs_trans_commit(tp);
88877d2b
BF
1841 if (error)
1842 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1843 __func__, error);
1844
1845 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1846 return 0;
1847}
1848
c24b5dfa
DC
1849/*
1850 * xfs_inactive
1851 *
1852 * This is called when the vnode reference count for the vnode
1853 * goes to zero. If the file has been unlinked, then it must
1854 * now be truncated. Also, we clear all of the read-ahead state
1855 * kept for the inode here since the file is now closed.
1856 */
74564fb4 1857void
c24b5dfa
DC
1858xfs_inactive(
1859 xfs_inode_t *ip)
1860{
3d3c8b52 1861 struct xfs_mount *mp;
3d3c8b52
JL
1862 int error;
1863 int truncate = 0;
c24b5dfa
DC
1864
1865 /*
1866 * If the inode is already free, then there can be nothing
1867 * to clean up here.
1868 */
d948709b 1869 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1870 ASSERT(ip->i_df.if_real_bytes == 0);
1871 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1872 return;
c24b5dfa
DC
1873 }
1874
1875 mp = ip->i_mount;
1876
c24b5dfa
DC
1877 /* If this is a read-only mount, don't do this (would generate I/O) */
1878 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1879 return;
c24b5dfa 1880
54d7b5c1 1881 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1882 /*
1883 * force is true because we are evicting an inode from the
1884 * cache. Post-eof blocks must be freed, lest we end up with
1885 * broken free space accounting.
1886 */
74564fb4
BF
1887 if (xfs_can_free_eofblocks(ip, true))
1888 xfs_free_eofblocks(mp, ip, false);
1889
1890 return;
c24b5dfa
DC
1891 }
1892
1893 if (S_ISREG(ip->i_d.di_mode) &&
1894 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1895 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1896 truncate = 1;
1897
1898 error = xfs_qm_dqattach(ip, 0);
1899 if (error)
74564fb4 1900 return;
c24b5dfa 1901
f7be2d7f 1902 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1903 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1904 else if (truncate)
1905 error = xfs_inactive_truncate(ip);
1906 if (error)
74564fb4 1907 return;
c24b5dfa
DC
1908
1909 /*
1910 * If there are attributes associated with the file then blow them away
1911 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1912 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1913 */
6dfe5a04 1914 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1915 error = xfs_attr_inactive(ip);
1916 if (error)
74564fb4 1917 return;
c24b5dfa
DC
1918 }
1919
6dfe5a04 1920 ASSERT(!ip->i_afp);
c24b5dfa 1921 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1922 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1923
1924 /*
1925 * Free the inode.
1926 */
88877d2b
BF
1927 error = xfs_inactive_ifree(ip);
1928 if (error)
74564fb4 1929 return;
c24b5dfa
DC
1930
1931 /*
1932 * Release the dquots held by inode, if any.
1933 */
1934 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1935}
1936
1da177e4 1937/*
54d7b5c1
DC
1938 * This is called when the inode's link count goes to 0 or we are creating a
1939 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1940 * set to true as the link count is dropped to zero by the VFS after we've
1941 * created the file successfully, so we have to add it to the unlinked list
1942 * while the link count is non-zero.
1943 *
1944 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1945 * list when the inode is freed.
1da177e4 1946 */
54d7b5c1 1947STATIC int
1da177e4 1948xfs_iunlink(
54d7b5c1
DC
1949 struct xfs_trans *tp,
1950 struct xfs_inode *ip)
1da177e4 1951{
54d7b5c1 1952 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1953 xfs_agi_t *agi;
1954 xfs_dinode_t *dip;
1955 xfs_buf_t *agibp;
1956 xfs_buf_t *ibp;
1da177e4
LT
1957 xfs_agino_t agino;
1958 short bucket_index;
1959 int offset;
1960 int error;
1da177e4 1961
1da177e4 1962 ASSERT(ip->i_d.di_mode != 0);
1da177e4 1963
1da177e4
LT
1964 /*
1965 * Get the agi buffer first. It ensures lock ordering
1966 * on the list.
1967 */
5e1be0fb 1968 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1969 if (error)
1da177e4 1970 return error;
1da177e4 1971 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1972
1da177e4
LT
1973 /*
1974 * Get the index into the agi hash table for the
1975 * list this inode will go on.
1976 */
1977 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1978 ASSERT(agino != 0);
1979 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1980 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1981 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1982
69ef921b 1983 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1984 /*
1985 * There is already another inode in the bucket we need
1986 * to add ourselves to. Add us at the front of the list.
1987 * Here we put the head pointer into our next pointer,
1988 * and then we fall through to point the head at us.
1989 */
475ee413
CH
1990 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1991 0, 0);
c319b58b
VA
1992 if (error)
1993 return error;
1994
69ef921b 1995 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1996 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1997 offset = ip->i_imap.im_boffset +
1da177e4 1998 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
1999
2000 /* need to recalc the inode CRC if appropriate */
2001 xfs_dinode_calc_crc(mp, dip);
2002
1da177e4
LT
2003 xfs_trans_inode_buf(tp, ibp);
2004 xfs_trans_log_buf(tp, ibp, offset,
2005 (offset + sizeof(xfs_agino_t) - 1));
2006 xfs_inobp_check(mp, ibp);
2007 }
2008
2009 /*
2010 * Point the bucket head pointer at the inode being inserted.
2011 */
2012 ASSERT(agino != 0);
16259e7d 2013 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2014 offset = offsetof(xfs_agi_t, agi_unlinked) +
2015 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2016 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2017 xfs_trans_log_buf(tp, agibp, offset,
2018 (offset + sizeof(xfs_agino_t) - 1));
2019 return 0;
2020}
2021
2022/*
2023 * Pull the on-disk inode from the AGI unlinked list.
2024 */
2025STATIC int
2026xfs_iunlink_remove(
2027 xfs_trans_t *tp,
2028 xfs_inode_t *ip)
2029{
2030 xfs_ino_t next_ino;
2031 xfs_mount_t *mp;
2032 xfs_agi_t *agi;
2033 xfs_dinode_t *dip;
2034 xfs_buf_t *agibp;
2035 xfs_buf_t *ibp;
2036 xfs_agnumber_t agno;
1da177e4
LT
2037 xfs_agino_t agino;
2038 xfs_agino_t next_agino;
2039 xfs_buf_t *last_ibp;
6fdf8ccc 2040 xfs_dinode_t *last_dip = NULL;
1da177e4 2041 short bucket_index;
6fdf8ccc 2042 int offset, last_offset = 0;
1da177e4 2043 int error;
1da177e4 2044
1da177e4 2045 mp = tp->t_mountp;
1da177e4 2046 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2047
2048 /*
2049 * Get the agi buffer first. It ensures lock ordering
2050 * on the list.
2051 */
5e1be0fb
CH
2052 error = xfs_read_agi(mp, tp, agno, &agibp);
2053 if (error)
1da177e4 2054 return error;
5e1be0fb 2055
1da177e4 2056 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2057
1da177e4
LT
2058 /*
2059 * Get the index into the agi hash table for the
2060 * list this inode will go on.
2061 */
2062 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2063 ASSERT(agino != 0);
2064 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2065 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2066 ASSERT(agi->agi_unlinked[bucket_index]);
2067
16259e7d 2068 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2069 /*
475ee413
CH
2070 * We're at the head of the list. Get the inode's on-disk
2071 * buffer to see if there is anyone after us on the list.
2072 * Only modify our next pointer if it is not already NULLAGINO.
2073 * This saves us the overhead of dealing with the buffer when
2074 * there is no need to change it.
1da177e4 2075 */
475ee413
CH
2076 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2077 0, 0);
1da177e4 2078 if (error) {
475ee413 2079 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2080 __func__, error);
1da177e4
LT
2081 return error;
2082 }
347d1c01 2083 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2084 ASSERT(next_agino != 0);
2085 if (next_agino != NULLAGINO) {
347d1c01 2086 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2087 offset = ip->i_imap.im_boffset +
1da177e4 2088 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2089
2090 /* need to recalc the inode CRC if appropriate */
2091 xfs_dinode_calc_crc(mp, dip);
2092
1da177e4
LT
2093 xfs_trans_inode_buf(tp, ibp);
2094 xfs_trans_log_buf(tp, ibp, offset,
2095 (offset + sizeof(xfs_agino_t) - 1));
2096 xfs_inobp_check(mp, ibp);
2097 } else {
2098 xfs_trans_brelse(tp, ibp);
2099 }
2100 /*
2101 * Point the bucket head pointer at the next inode.
2102 */
2103 ASSERT(next_agino != 0);
2104 ASSERT(next_agino != agino);
16259e7d 2105 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2106 offset = offsetof(xfs_agi_t, agi_unlinked) +
2107 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2108 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2109 xfs_trans_log_buf(tp, agibp, offset,
2110 (offset + sizeof(xfs_agino_t) - 1));
2111 } else {
2112 /*
2113 * We need to search the list for the inode being freed.
2114 */
16259e7d 2115 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2116 last_ibp = NULL;
2117 while (next_agino != agino) {
129dbc9a
CH
2118 struct xfs_imap imap;
2119
2120 if (last_ibp)
1da177e4 2121 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2122
2123 imap.im_blkno = 0;
1da177e4 2124 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2125
2126 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2127 if (error) {
2128 xfs_warn(mp,
2129 "%s: xfs_imap returned error %d.",
2130 __func__, error);
2131 return error;
2132 }
2133
2134 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2135 &last_ibp, 0, 0);
1da177e4 2136 if (error) {
0b932ccc 2137 xfs_warn(mp,
129dbc9a 2138 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2139 __func__, error);
1da177e4
LT
2140 return error;
2141 }
129dbc9a
CH
2142
2143 last_offset = imap.im_boffset;
347d1c01 2144 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2145 ASSERT(next_agino != NULLAGINO);
2146 ASSERT(next_agino != 0);
2147 }
475ee413 2148
1da177e4 2149 /*
475ee413
CH
2150 * Now last_ibp points to the buffer previous to us on the
2151 * unlinked list. Pull us from the list.
1da177e4 2152 */
475ee413
CH
2153 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2154 0, 0);
1da177e4 2155 if (error) {
475ee413 2156 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2157 __func__, error);
1da177e4
LT
2158 return error;
2159 }
347d1c01 2160 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2161 ASSERT(next_agino != 0);
2162 ASSERT(next_agino != agino);
2163 if (next_agino != NULLAGINO) {
347d1c01 2164 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2165 offset = ip->i_imap.im_boffset +
1da177e4 2166 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2167
2168 /* need to recalc the inode CRC if appropriate */
2169 xfs_dinode_calc_crc(mp, dip);
2170
1da177e4
LT
2171 xfs_trans_inode_buf(tp, ibp);
2172 xfs_trans_log_buf(tp, ibp, offset,
2173 (offset + sizeof(xfs_agino_t) - 1));
2174 xfs_inobp_check(mp, ibp);
2175 } else {
2176 xfs_trans_brelse(tp, ibp);
2177 }
2178 /*
2179 * Point the previous inode on the list to the next inode.
2180 */
347d1c01 2181 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2182 ASSERT(next_agino != 0);
2183 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2184
2185 /* need to recalc the inode CRC if appropriate */
2186 xfs_dinode_calc_crc(mp, last_dip);
2187
1da177e4
LT
2188 xfs_trans_inode_buf(tp, last_ibp);
2189 xfs_trans_log_buf(tp, last_ibp, offset,
2190 (offset + sizeof(xfs_agino_t) - 1));
2191 xfs_inobp_check(mp, last_ibp);
2192 }
2193 return 0;
2194}
2195
5b3eed75 2196/*
0b8182db 2197 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2198 * inodes that are in memory - they all must be marked stale and attached to
2199 * the cluster buffer.
2200 */
2a30f36d 2201STATIC int
1da177e4 2202xfs_ifree_cluster(
09b56604
BF
2203 xfs_inode_t *free_ip,
2204 xfs_trans_t *tp,
2205 struct xfs_icluster *xic)
1da177e4
LT
2206{
2207 xfs_mount_t *mp = free_ip->i_mount;
2208 int blks_per_cluster;
982e939e 2209 int inodes_per_cluster;
1da177e4 2210 int nbufs;
5b257b4a 2211 int i, j;
3cdaa189 2212 int ioffset;
1da177e4
LT
2213 xfs_daddr_t blkno;
2214 xfs_buf_t *bp;
5b257b4a 2215 xfs_inode_t *ip;
1da177e4
LT
2216 xfs_inode_log_item_t *iip;
2217 xfs_log_item_t *lip;
5017e97d 2218 struct xfs_perag *pag;
09b56604 2219 xfs_ino_t inum;
1da177e4 2220
09b56604 2221 inum = xic->first_ino;
5017e97d 2222 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2223 blks_per_cluster = xfs_icluster_size_fsb(mp);
2224 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2225 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2226
982e939e 2227 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2228 /*
2229 * The allocation bitmap tells us which inodes of the chunk were
2230 * physically allocated. Skip the cluster if an inode falls into
2231 * a sparse region.
2232 */
3cdaa189
BF
2233 ioffset = inum - xic->first_ino;
2234 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2235 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2236 continue;
2237 }
2238
1da177e4
LT
2239 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2240 XFS_INO_TO_AGBNO(mp, inum));
2241
5b257b4a
DC
2242 /*
2243 * We obtain and lock the backing buffer first in the process
2244 * here, as we have to ensure that any dirty inode that we
2245 * can't get the flush lock on is attached to the buffer.
2246 * If we scan the in-memory inodes first, then buffer IO can
2247 * complete before we get a lock on it, and hence we may fail
2248 * to mark all the active inodes on the buffer stale.
2249 */
2250 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2251 mp->m_bsize * blks_per_cluster,
2252 XBF_UNMAPPED);
5b257b4a 2253
2a30f36d 2254 if (!bp)
2451337d 2255 return -ENOMEM;
b0f539de
DC
2256
2257 /*
2258 * This buffer may not have been correctly initialised as we
2259 * didn't read it from disk. That's not important because we are
2260 * only using to mark the buffer as stale in the log, and to
2261 * attach stale cached inodes on it. That means it will never be
2262 * dispatched for IO. If it is, we want to know about it, and we
2263 * want it to fail. We can acheive this by adding a write
2264 * verifier to the buffer.
2265 */
1813dd64 2266 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2267
5b257b4a
DC
2268 /*
2269 * Walk the inodes already attached to the buffer and mark them
2270 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2271 * in-memory inode walk can't lock them. By marking them all
2272 * stale first, we will not attempt to lock them in the loop
2273 * below as the XFS_ISTALE flag will be set.
5b257b4a 2274 */
adadbeef 2275 lip = bp->b_fspriv;
5b257b4a
DC
2276 while (lip) {
2277 if (lip->li_type == XFS_LI_INODE) {
2278 iip = (xfs_inode_log_item_t *)lip;
2279 ASSERT(iip->ili_logged == 1);
ca30b2a7 2280 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2281 xfs_trans_ail_copy_lsn(mp->m_ail,
2282 &iip->ili_flush_lsn,
2283 &iip->ili_item.li_lsn);
2284 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2285 }
2286 lip = lip->li_bio_list;
2287 }
1da177e4 2288
5b3eed75 2289
1da177e4 2290 /*
5b257b4a
DC
2291 * For each inode in memory attempt to add it to the inode
2292 * buffer and set it up for being staled on buffer IO
2293 * completion. This is safe as we've locked out tail pushing
2294 * and flushing by locking the buffer.
1da177e4 2295 *
5b257b4a
DC
2296 * We have already marked every inode that was part of a
2297 * transaction stale above, which means there is no point in
2298 * even trying to lock them.
1da177e4 2299 */
982e939e 2300 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2301retry:
1a3e8f3d 2302 rcu_read_lock();
da353b0d
DC
2303 ip = radix_tree_lookup(&pag->pag_ici_root,
2304 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2305
1a3e8f3d
DC
2306 /* Inode not in memory, nothing to do */
2307 if (!ip) {
2308 rcu_read_unlock();
1da177e4
LT
2309 continue;
2310 }
2311
1a3e8f3d
DC
2312 /*
2313 * because this is an RCU protected lookup, we could
2314 * find a recently freed or even reallocated inode
2315 * during the lookup. We need to check under the
2316 * i_flags_lock for a valid inode here. Skip it if it
2317 * is not valid, the wrong inode or stale.
2318 */
2319 spin_lock(&ip->i_flags_lock);
2320 if (ip->i_ino != inum + i ||
2321 __xfs_iflags_test(ip, XFS_ISTALE)) {
2322 spin_unlock(&ip->i_flags_lock);
2323 rcu_read_unlock();
2324 continue;
2325 }
2326 spin_unlock(&ip->i_flags_lock);
2327
5b3eed75
DC
2328 /*
2329 * Don't try to lock/unlock the current inode, but we
2330 * _cannot_ skip the other inodes that we did not find
2331 * in the list attached to the buffer and are not
2332 * already marked stale. If we can't lock it, back off
2333 * and retry.
2334 */
5b257b4a
DC
2335 if (ip != free_ip &&
2336 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2337 rcu_read_unlock();
5b3eed75
DC
2338 delay(1);
2339 goto retry;
1da177e4 2340 }
1a3e8f3d 2341 rcu_read_unlock();
1da177e4 2342
5b3eed75 2343 xfs_iflock(ip);
5b257b4a 2344 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2345
5b3eed75
DC
2346 /*
2347 * we don't need to attach clean inodes or those only
2348 * with unlogged changes (which we throw away, anyway).
2349 */
1da177e4 2350 iip = ip->i_itemp;
5b3eed75 2351 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2352 ASSERT(ip != free_ip);
1da177e4
LT
2353 xfs_ifunlock(ip);
2354 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2355 continue;
2356 }
2357
f5d8d5c4
CH
2358 iip->ili_last_fields = iip->ili_fields;
2359 iip->ili_fields = 0;
fc0561ce 2360 iip->ili_fsync_fields = 0;
1da177e4 2361 iip->ili_logged = 1;
7b2e2a31
DC
2362 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2363 &iip->ili_item.li_lsn);
1da177e4 2364
ca30b2a7
CH
2365 xfs_buf_attach_iodone(bp, xfs_istale_done,
2366 &iip->ili_item);
5b257b4a
DC
2367
2368 if (ip != free_ip)
1da177e4 2369 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2370 }
2371
5b3eed75 2372 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2373 xfs_trans_binval(tp, bp);
2374 }
2375
5017e97d 2376 xfs_perag_put(pag);
2a30f36d 2377 return 0;
1da177e4
LT
2378}
2379
2380/*
2381 * This is called to return an inode to the inode free list.
2382 * The inode should already be truncated to 0 length and have
2383 * no pages associated with it. This routine also assumes that
2384 * the inode is already a part of the transaction.
2385 *
2386 * The on-disk copy of the inode will have been added to the list
2387 * of unlinked inodes in the AGI. We need to remove the inode from
2388 * that list atomically with respect to freeing it here.
2389 */
2390int
2391xfs_ifree(
2392 xfs_trans_t *tp,
2393 xfs_inode_t *ip,
2394 xfs_bmap_free_t *flist)
2395{
2396 int error;
09b56604 2397 struct xfs_icluster xic = { 0 };
1da177e4 2398
579aa9ca 2399 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2400 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2401 ASSERT(ip->i_d.di_nextents == 0);
2402 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2403 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2404 ASSERT(ip->i_d.di_nblocks == 0);
2405
2406 /*
2407 * Pull the on-disk inode from the AGI unlinked list.
2408 */
2409 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2410 if (error)
1da177e4 2411 return error;
1da177e4 2412
09b56604 2413 error = xfs_difree(tp, ip->i_ino, flist, &xic);
1baaed8f 2414 if (error)
1da177e4 2415 return error;
1baaed8f 2416
1da177e4
LT
2417 ip->i_d.di_mode = 0; /* mark incore inode as free */
2418 ip->i_d.di_flags = 0;
2419 ip->i_d.di_dmevmask = 0;
2420 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2421 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2422 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2423 /*
2424 * Bump the generation count so no one will be confused
2425 * by reincarnations of this inode.
2426 */
2427 ip->i_d.di_gen++;
2428 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2429
09b56604
BF
2430 if (xic.deleted)
2431 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2432
2a30f36d 2433 return error;
1da177e4
LT
2434}
2435
1da177e4 2436/*
60ec6783
CH
2437 * This is called to unpin an inode. The caller must have the inode locked
2438 * in at least shared mode so that the buffer cannot be subsequently pinned
2439 * once someone is waiting for it to be unpinned.
1da177e4 2440 */
60ec6783 2441static void
f392e631 2442xfs_iunpin(
60ec6783 2443 struct xfs_inode *ip)
1da177e4 2444{
579aa9ca 2445 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2446
4aaf15d1
DC
2447 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2448
a3f74ffb 2449 /* Give the log a push to start the unpinning I/O */
60ec6783 2450 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2451
a3f74ffb 2452}
1da177e4 2453
f392e631
CH
2454static void
2455__xfs_iunpin_wait(
2456 struct xfs_inode *ip)
2457{
2458 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2459 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2460
2461 xfs_iunpin(ip);
2462
2463 do {
2464 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2465 if (xfs_ipincount(ip))
2466 io_schedule();
2467 } while (xfs_ipincount(ip));
2468 finish_wait(wq, &wait.wait);
2469}
2470
777df5af 2471void
a3f74ffb 2472xfs_iunpin_wait(
60ec6783 2473 struct xfs_inode *ip)
a3f74ffb 2474{
f392e631
CH
2475 if (xfs_ipincount(ip))
2476 __xfs_iunpin_wait(ip);
1da177e4
LT
2477}
2478
27320369
DC
2479/*
2480 * Removing an inode from the namespace involves removing the directory entry
2481 * and dropping the link count on the inode. Removing the directory entry can
2482 * result in locking an AGF (directory blocks were freed) and removing a link
2483 * count can result in placing the inode on an unlinked list which results in
2484 * locking an AGI.
2485 *
2486 * The big problem here is that we have an ordering constraint on AGF and AGI
2487 * locking - inode allocation locks the AGI, then can allocate a new extent for
2488 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2489 * removes the inode from the unlinked list, requiring that we lock the AGI
2490 * first, and then freeing the inode can result in an inode chunk being freed
2491 * and hence freeing disk space requiring that we lock an AGF.
2492 *
2493 * Hence the ordering that is imposed by other parts of the code is AGI before
2494 * AGF. This means we cannot remove the directory entry before we drop the inode
2495 * reference count and put it on the unlinked list as this results in a lock
2496 * order of AGF then AGI, and this can deadlock against inode allocation and
2497 * freeing. Therefore we must drop the link counts before we remove the
2498 * directory entry.
2499 *
2500 * This is still safe from a transactional point of view - it is not until we
2501 * get to xfs_bmap_finish() that we have the possibility of multiple
2502 * transactions in this operation. Hence as long as we remove the directory
2503 * entry and drop the link count in the first transaction of the remove
2504 * operation, there are no transactional constraints on the ordering here.
2505 */
c24b5dfa
DC
2506int
2507xfs_remove(
2508 xfs_inode_t *dp,
2509 struct xfs_name *name,
2510 xfs_inode_t *ip)
2511{
2512 xfs_mount_t *mp = dp->i_mount;
2513 xfs_trans_t *tp = NULL;
2514 int is_dir = S_ISDIR(ip->i_d.di_mode);
2515 int error = 0;
2516 xfs_bmap_free_t free_list;
2517 xfs_fsblock_t first_block;
c24b5dfa 2518 uint resblks;
c24b5dfa
DC
2519
2520 trace_xfs_remove(dp, name);
2521
2522 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2523 return -EIO;
c24b5dfa
DC
2524
2525 error = xfs_qm_dqattach(dp, 0);
2526 if (error)
2527 goto std_return;
2528
2529 error = xfs_qm_dqattach(ip, 0);
2530 if (error)
2531 goto std_return;
2532
32296f86 2533 if (is_dir)
c24b5dfa 2534 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
32296f86 2535 else
c24b5dfa 2536 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
c24b5dfa
DC
2537
2538 /*
2539 * We try to get the real space reservation first,
2540 * allowing for directory btree deletion(s) implying
2541 * possible bmap insert(s). If we can't get the space
2542 * reservation then we use 0 instead, and avoid the bmap
2543 * btree insert(s) in the directory code by, if the bmap
2544 * insert tries to happen, instead trimming the LAST
2545 * block from the directory.
2546 */
2547 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2548 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2451337d 2549 if (error == -ENOSPC) {
c24b5dfa 2550 resblks = 0;
3d3c8b52 2551 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2552 }
2553 if (error) {
2451337d 2554 ASSERT(error != -ENOSPC);
c24b5dfa
DC
2555 goto out_trans_cancel;
2556 }
2557
dbad7c99 2558 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
c24b5dfa
DC
2559 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2560
dbad7c99 2561 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
2562 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2563
2564 /*
2565 * If we're removing a directory perform some additional validation.
2566 */
2567 if (is_dir) {
54d7b5c1
DC
2568 ASSERT(VFS_I(ip)->i_nlink >= 2);
2569 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2570 error = -ENOTEMPTY;
c24b5dfa
DC
2571 goto out_trans_cancel;
2572 }
2573 if (!xfs_dir_isempty(ip)) {
2451337d 2574 error = -ENOTEMPTY;
c24b5dfa
DC
2575 goto out_trans_cancel;
2576 }
c24b5dfa 2577
27320369 2578 /* Drop the link from ip's "..". */
c24b5dfa
DC
2579 error = xfs_droplink(tp, dp);
2580 if (error)
27320369 2581 goto out_trans_cancel;
c24b5dfa 2582
27320369 2583 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2584 error = xfs_droplink(tp, ip);
2585 if (error)
27320369 2586 goto out_trans_cancel;
c24b5dfa
DC
2587 } else {
2588 /*
2589 * When removing a non-directory we need to log the parent
2590 * inode here. For a directory this is done implicitly
2591 * by the xfs_droplink call for the ".." entry.
2592 */
2593 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2594 }
27320369 2595 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2596
27320369 2597 /* Drop the link from dp to ip. */
c24b5dfa
DC
2598 error = xfs_droplink(tp, ip);
2599 if (error)
27320369 2600 goto out_trans_cancel;
c24b5dfa 2601
27320369
DC
2602 xfs_bmap_init(&free_list, &first_block);
2603 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2604 &first_block, &free_list, resblks);
2605 if (error) {
2451337d 2606 ASSERT(error != -ENOENT);
27320369
DC
2607 goto out_bmap_cancel;
2608 }
2609
c24b5dfa
DC
2610 /*
2611 * If this is a synchronous mount, make sure that the
2612 * remove transaction goes to disk before returning to
2613 * the user.
2614 */
2615 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2616 xfs_trans_set_sync(tp);
2617
f6106efa 2618 error = xfs_bmap_finish(&tp, &free_list, NULL);
c24b5dfa
DC
2619 if (error)
2620 goto out_bmap_cancel;
2621
70393313 2622 error = xfs_trans_commit(tp);
c24b5dfa
DC
2623 if (error)
2624 goto std_return;
2625
2cd2ef6a 2626 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2627 xfs_filestream_deassociate(ip);
2628
2629 return 0;
2630
2631 out_bmap_cancel:
2632 xfs_bmap_cancel(&free_list);
c24b5dfa 2633 out_trans_cancel:
4906e215 2634 xfs_trans_cancel(tp);
c24b5dfa
DC
2635 std_return:
2636 return error;
2637}
2638
f6bba201
DC
2639/*
2640 * Enter all inodes for a rename transaction into a sorted array.
2641 */
95afcf5c 2642#define __XFS_SORT_INODES 5
f6bba201
DC
2643STATIC void
2644xfs_sort_for_rename(
95afcf5c
DC
2645 struct xfs_inode *dp1, /* in: old (source) directory inode */
2646 struct xfs_inode *dp2, /* in: new (target) directory inode */
2647 struct xfs_inode *ip1, /* in: inode of old entry */
2648 struct xfs_inode *ip2, /* in: inode of new entry */
2649 struct xfs_inode *wip, /* in: whiteout inode */
2650 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2651 int *num_inodes) /* in/out: inodes in array */
f6bba201 2652{
f6bba201
DC
2653 int i, j;
2654
95afcf5c
DC
2655 ASSERT(*num_inodes == __XFS_SORT_INODES);
2656 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2657
f6bba201
DC
2658 /*
2659 * i_tab contains a list of pointers to inodes. We initialize
2660 * the table here & we'll sort it. We will then use it to
2661 * order the acquisition of the inode locks.
2662 *
2663 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2664 */
95afcf5c
DC
2665 i = 0;
2666 i_tab[i++] = dp1;
2667 i_tab[i++] = dp2;
2668 i_tab[i++] = ip1;
2669 if (ip2)
2670 i_tab[i++] = ip2;
2671 if (wip)
2672 i_tab[i++] = wip;
2673 *num_inodes = i;
f6bba201
DC
2674
2675 /*
2676 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2677 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2678 */
2679 for (i = 0; i < *num_inodes; i++) {
2680 for (j = 1; j < *num_inodes; j++) {
2681 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2682 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2683 i_tab[j] = i_tab[j-1];
2684 i_tab[j-1] = temp;
2685 }
2686 }
2687 }
2688}
2689
310606b0
DC
2690static int
2691xfs_finish_rename(
2692 struct xfs_trans *tp,
2693 struct xfs_bmap_free *free_list)
2694{
310606b0
DC
2695 int error;
2696
2697 /*
2698 * If this is a synchronous mount, make sure that the rename transaction
2699 * goes to disk before returning to the user.
2700 */
2701 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2702 xfs_trans_set_sync(tp);
2703
f6106efa 2704 error = xfs_bmap_finish(&tp, free_list, NULL);
310606b0
DC
2705 if (error) {
2706 xfs_bmap_cancel(free_list);
4906e215 2707 xfs_trans_cancel(tp);
310606b0
DC
2708 return error;
2709 }
2710
70393313 2711 return xfs_trans_commit(tp);
310606b0
DC
2712}
2713
d31a1825
CM
2714/*
2715 * xfs_cross_rename()
2716 *
2717 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2718 */
2719STATIC int
2720xfs_cross_rename(
2721 struct xfs_trans *tp,
2722 struct xfs_inode *dp1,
2723 struct xfs_name *name1,
2724 struct xfs_inode *ip1,
2725 struct xfs_inode *dp2,
2726 struct xfs_name *name2,
2727 struct xfs_inode *ip2,
2728 struct xfs_bmap_free *free_list,
2729 xfs_fsblock_t *first_block,
2730 int spaceres)
2731{
2732 int error = 0;
2733 int ip1_flags = 0;
2734 int ip2_flags = 0;
2735 int dp2_flags = 0;
2736
2737 /* Swap inode number for dirent in first parent */
2738 error = xfs_dir_replace(tp, dp1, name1,
2739 ip2->i_ino,
2740 first_block, free_list, spaceres);
2741 if (error)
eeacd321 2742 goto out_trans_abort;
d31a1825
CM
2743
2744 /* Swap inode number for dirent in second parent */
2745 error = xfs_dir_replace(tp, dp2, name2,
2746 ip1->i_ino,
2747 first_block, free_list, spaceres);
2748 if (error)
eeacd321 2749 goto out_trans_abort;
d31a1825
CM
2750
2751 /*
2752 * If we're renaming one or more directories across different parents,
2753 * update the respective ".." entries (and link counts) to match the new
2754 * parents.
2755 */
2756 if (dp1 != dp2) {
2757 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2758
2759 if (S_ISDIR(ip2->i_d.di_mode)) {
2760 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2761 dp1->i_ino, first_block,
2762 free_list, spaceres);
2763 if (error)
eeacd321 2764 goto out_trans_abort;
d31a1825
CM
2765
2766 /* transfer ip2 ".." reference to dp1 */
2767 if (!S_ISDIR(ip1->i_d.di_mode)) {
2768 error = xfs_droplink(tp, dp2);
2769 if (error)
eeacd321 2770 goto out_trans_abort;
d31a1825
CM
2771 error = xfs_bumplink(tp, dp1);
2772 if (error)
eeacd321 2773 goto out_trans_abort;
d31a1825
CM
2774 }
2775
2776 /*
2777 * Although ip1 isn't changed here, userspace needs
2778 * to be warned about the change, so that applications
2779 * relying on it (like backup ones), will properly
2780 * notify the change
2781 */
2782 ip1_flags |= XFS_ICHGTIME_CHG;
2783 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2784 }
2785
2786 if (S_ISDIR(ip1->i_d.di_mode)) {
2787 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2788 dp2->i_ino, first_block,
2789 free_list, spaceres);
2790 if (error)
eeacd321 2791 goto out_trans_abort;
d31a1825
CM
2792
2793 /* transfer ip1 ".." reference to dp2 */
2794 if (!S_ISDIR(ip2->i_d.di_mode)) {
2795 error = xfs_droplink(tp, dp1);
2796 if (error)
eeacd321 2797 goto out_trans_abort;
d31a1825
CM
2798 error = xfs_bumplink(tp, dp2);
2799 if (error)
eeacd321 2800 goto out_trans_abort;
d31a1825
CM
2801 }
2802
2803 /*
2804 * Although ip2 isn't changed here, userspace needs
2805 * to be warned about the change, so that applications
2806 * relying on it (like backup ones), will properly
2807 * notify the change
2808 */
2809 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2810 ip2_flags |= XFS_ICHGTIME_CHG;
2811 }
2812 }
2813
2814 if (ip1_flags) {
2815 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2816 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2817 }
2818 if (ip2_flags) {
2819 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2820 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2821 }
2822 if (dp2_flags) {
2823 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2824 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2825 }
2826 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2827 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
eeacd321
DC
2828 return xfs_finish_rename(tp, free_list);
2829
2830out_trans_abort:
2831 xfs_bmap_cancel(free_list);
4906e215 2832 xfs_trans_cancel(tp);
d31a1825
CM
2833 return error;
2834}
2835
7dcf5c3e
DC
2836/*
2837 * xfs_rename_alloc_whiteout()
2838 *
2839 * Return a referenced, unlinked, unlocked inode that that can be used as a
2840 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2841 * crash between allocating the inode and linking it into the rename transaction
2842 * recovery will free the inode and we won't leak it.
2843 */
2844static int
2845xfs_rename_alloc_whiteout(
2846 struct xfs_inode *dp,
2847 struct xfs_inode **wip)
2848{
2849 struct xfs_inode *tmpfile;
2850 int error;
2851
2852 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2853 if (error)
2854 return error;
2855
22419ac9
BF
2856 /*
2857 * Prepare the tmpfile inode as if it were created through the VFS.
2858 * Otherwise, the link increment paths will complain about nlink 0->1.
2859 * Drop the link count as done by d_tmpfile(), complete the inode setup
2860 * and flag it as linkable.
2861 */
2862 drop_nlink(VFS_I(tmpfile));
7dcf5c3e
DC
2863 xfs_finish_inode_setup(tmpfile);
2864 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2865
2866 *wip = tmpfile;
2867 return 0;
2868}
2869
f6bba201
DC
2870/*
2871 * xfs_rename
2872 */
2873int
2874xfs_rename(
7dcf5c3e
DC
2875 struct xfs_inode *src_dp,
2876 struct xfs_name *src_name,
2877 struct xfs_inode *src_ip,
2878 struct xfs_inode *target_dp,
2879 struct xfs_name *target_name,
2880 struct xfs_inode *target_ip,
2881 unsigned int flags)
f6bba201 2882{
7dcf5c3e
DC
2883 struct xfs_mount *mp = src_dp->i_mount;
2884 struct xfs_trans *tp;
2885 struct xfs_bmap_free free_list;
2886 xfs_fsblock_t first_block;
2887 struct xfs_inode *wip = NULL; /* whiteout inode */
2888 struct xfs_inode *inodes[__XFS_SORT_INODES];
2889 int num_inodes = __XFS_SORT_INODES;
2b93681f
DC
2890 bool new_parent = (src_dp != target_dp);
2891 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
7dcf5c3e
DC
2892 int spaceres;
2893 int error;
f6bba201
DC
2894
2895 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2896
eeacd321
DC
2897 if ((flags & RENAME_EXCHANGE) && !target_ip)
2898 return -EINVAL;
2899
7dcf5c3e
DC
2900 /*
2901 * If we are doing a whiteout operation, allocate the whiteout inode
2902 * we will be placing at the target and ensure the type is set
2903 * appropriately.
2904 */
2905 if (flags & RENAME_WHITEOUT) {
2906 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2907 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2908 if (error)
2909 return error;
2910
2911 /* setup target dirent info as whiteout */
2912 src_name->type = XFS_DIR3_FT_CHRDEV;
2913 }
f6bba201 2914
7dcf5c3e 2915 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2916 inodes, &num_inodes);
2917
f6bba201 2918 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
f6bba201 2919 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2920 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2451337d 2921 if (error == -ENOSPC) {
f6bba201 2922 spaceres = 0;
3d3c8b52 2923 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201 2924 }
445883e8
DC
2925 if (error)
2926 goto out_trans_cancel;
f6bba201
DC
2927
2928 /*
2929 * Attach the dquots to the inodes
2930 */
2931 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2932 if (error)
2933 goto out_trans_cancel;
f6bba201
DC
2934
2935 /*
2936 * Lock all the participating inodes. Depending upon whether
2937 * the target_name exists in the target directory, and
2938 * whether the target directory is the same as the source
2939 * directory, we can lock from 2 to 4 inodes.
2940 */
dbad7c99
DC
2941 if (!new_parent)
2942 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2943 else
2944 xfs_lock_two_inodes(src_dp, target_dp,
2945 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2946
f6bba201
DC
2947 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2948
2949 /*
2950 * Join all the inodes to the transaction. From this point on,
2951 * we can rely on either trans_commit or trans_cancel to unlock
2952 * them.
2953 */
dbad7c99 2954 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
f6bba201 2955 if (new_parent)
dbad7c99 2956 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
f6bba201
DC
2957 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2958 if (target_ip)
2959 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2960 if (wip)
2961 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2962
2963 /*
2964 * If we are using project inheritance, we only allow renames
2965 * into our tree when the project IDs are the same; else the
2966 * tree quota mechanism would be circumvented.
2967 */
2968 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2969 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2970 error = -EXDEV;
445883e8 2971 goto out_trans_cancel;
f6bba201
DC
2972 }
2973
445883e8
DC
2974 xfs_bmap_init(&free_list, &first_block);
2975
eeacd321
DC
2976 /* RENAME_EXCHANGE is unique from here on. */
2977 if (flags & RENAME_EXCHANGE)
2978 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2979 target_dp, target_name, target_ip,
2980 &free_list, &first_block, spaceres);
d31a1825 2981
f6bba201
DC
2982 /*
2983 * Set up the target.
2984 */
2985 if (target_ip == NULL) {
2986 /*
2987 * If there's no space reservation, check the entry will
2988 * fit before actually inserting it.
2989 */
94f3cad5
ES
2990 if (!spaceres) {
2991 error = xfs_dir_canenter(tp, target_dp, target_name);
2992 if (error)
445883e8 2993 goto out_trans_cancel;
94f3cad5 2994 }
f6bba201
DC
2995 /*
2996 * If target does not exist and the rename crosses
2997 * directories, adjust the target directory link count
2998 * to account for the ".." reference from the new entry.
2999 */
3000 error = xfs_dir_createname(tp, target_dp, target_name,
3001 src_ip->i_ino, &first_block,
3002 &free_list, spaceres);
f6bba201 3003 if (error)
4906e215 3004 goto out_bmap_cancel;
f6bba201
DC
3005
3006 xfs_trans_ichgtime(tp, target_dp,
3007 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3008
3009 if (new_parent && src_is_directory) {
3010 error = xfs_bumplink(tp, target_dp);
3011 if (error)
4906e215 3012 goto out_bmap_cancel;
f6bba201
DC
3013 }
3014 } else { /* target_ip != NULL */
3015 /*
3016 * If target exists and it's a directory, check that both
3017 * target and source are directories and that target can be
3018 * destroyed, or that neither is a directory.
3019 */
3020 if (S_ISDIR(target_ip->i_d.di_mode)) {
3021 /*
3022 * Make sure target dir is empty.
3023 */
3024 if (!(xfs_dir_isempty(target_ip)) ||
54d7b5c1 3025 (VFS_I(target_ip)->i_nlink > 2)) {
2451337d 3026 error = -EEXIST;
445883e8 3027 goto out_trans_cancel;
f6bba201
DC
3028 }
3029 }
3030
3031 /*
3032 * Link the source inode under the target name.
3033 * If the source inode is a directory and we are moving
3034 * it across directories, its ".." entry will be
3035 * inconsistent until we replace that down below.
3036 *
3037 * In case there is already an entry with the same
3038 * name at the destination directory, remove it first.
3039 */
3040 error = xfs_dir_replace(tp, target_dp, target_name,
3041 src_ip->i_ino,
3042 &first_block, &free_list, spaceres);
3043 if (error)
4906e215 3044 goto out_bmap_cancel;
f6bba201
DC
3045
3046 xfs_trans_ichgtime(tp, target_dp,
3047 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3048
3049 /*
3050 * Decrement the link count on the target since the target
3051 * dir no longer points to it.
3052 */
3053 error = xfs_droplink(tp, target_ip);
3054 if (error)
4906e215 3055 goto out_bmap_cancel;
f6bba201
DC
3056
3057 if (src_is_directory) {
3058 /*
3059 * Drop the link from the old "." entry.
3060 */
3061 error = xfs_droplink(tp, target_ip);
3062 if (error)
4906e215 3063 goto out_bmap_cancel;
f6bba201
DC
3064 }
3065 } /* target_ip != NULL */
3066
3067 /*
3068 * Remove the source.
3069 */
3070 if (new_parent && src_is_directory) {
3071 /*
3072 * Rewrite the ".." entry to point to the new
3073 * directory.
3074 */
3075 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3076 target_dp->i_ino,
3077 &first_block, &free_list, spaceres);
2451337d 3078 ASSERT(error != -EEXIST);
f6bba201 3079 if (error)
4906e215 3080 goto out_bmap_cancel;
f6bba201
DC
3081 }
3082
3083 /*
3084 * We always want to hit the ctime on the source inode.
3085 *
3086 * This isn't strictly required by the standards since the source
3087 * inode isn't really being changed, but old unix file systems did
3088 * it and some incremental backup programs won't work without it.
3089 */
3090 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3091 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3092
3093 /*
3094 * Adjust the link count on src_dp. This is necessary when
3095 * renaming a directory, either within one parent when
3096 * the target existed, or across two parent directories.
3097 */
3098 if (src_is_directory && (new_parent || target_ip != NULL)) {
3099
3100 /*
3101 * Decrement link count on src_directory since the
3102 * entry that's moved no longer points to it.
3103 */
3104 error = xfs_droplink(tp, src_dp);
3105 if (error)
4906e215 3106 goto out_bmap_cancel;
f6bba201
DC
3107 }
3108
7dcf5c3e
DC
3109 /*
3110 * For whiteouts, we only need to update the source dirent with the
3111 * inode number of the whiteout inode rather than removing it
3112 * altogether.
3113 */
3114 if (wip) {
3115 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
f6bba201 3116 &first_block, &free_list, spaceres);
7dcf5c3e
DC
3117 } else
3118 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3119 &first_block, &free_list, spaceres);
f6bba201 3120 if (error)
4906e215 3121 goto out_bmap_cancel;
f6bba201
DC
3122
3123 /*
7dcf5c3e
DC
3124 * For whiteouts, we need to bump the link count on the whiteout inode.
3125 * This means that failures all the way up to this point leave the inode
3126 * on the unlinked list and so cleanup is a simple matter of dropping
3127 * the remaining reference to it. If we fail here after bumping the link
3128 * count, we're shutting down the filesystem so we'll never see the
3129 * intermediate state on disk.
f6bba201 3130 */
7dcf5c3e 3131 if (wip) {
54d7b5c1 3132 ASSERT(VFS_I(wip)->i_nlink == 0);
7dcf5c3e
DC
3133 error = xfs_bumplink(tp, wip);
3134 if (error)
4906e215 3135 goto out_bmap_cancel;
7dcf5c3e
DC
3136 error = xfs_iunlink_remove(tp, wip);
3137 if (error)
4906e215 3138 goto out_bmap_cancel;
7dcf5c3e 3139 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3140
7dcf5c3e
DC
3141 /*
3142 * Now we have a real link, clear the "I'm a tmpfile" state
3143 * flag from the inode so it doesn't accidentally get misused in
3144 * future.
3145 */
3146 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3147 }
3148
f6bba201
DC
3149 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3150 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3151 if (new_parent)
3152 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3153
7dcf5c3e
DC
3154 error = xfs_finish_rename(tp, &free_list);
3155 if (wip)
3156 IRELE(wip);
3157 return error;
f6bba201 3158
445883e8 3159out_bmap_cancel:
f6bba201 3160 xfs_bmap_cancel(&free_list);
445883e8 3161out_trans_cancel:
4906e215 3162 xfs_trans_cancel(tp);
7dcf5c3e
DC
3163 if (wip)
3164 IRELE(wip);
f6bba201
DC
3165 return error;
3166}
3167
5c4d97d0
DC
3168STATIC int
3169xfs_iflush_cluster(
3170 xfs_inode_t *ip,
3171 xfs_buf_t *bp)
1da177e4 3172{
5c4d97d0
DC
3173 xfs_mount_t *mp = ip->i_mount;
3174 struct xfs_perag *pag;
3175 unsigned long first_index, mask;
3176 unsigned long inodes_per_cluster;
3177 int ilist_size;
3178 xfs_inode_t **ilist;
3179 xfs_inode_t *iq;
3180 int nr_found;
3181 int clcount = 0;
3182 int bufwasdelwri;
1da177e4 3183 int i;
1da177e4 3184
5c4d97d0 3185 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3186
0f49efd8 3187 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
5c4d97d0
DC
3188 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3189 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3190 if (!ilist)
3191 goto out_put;
1da177e4 3192
0f49efd8 3193 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3194 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3195 rcu_read_lock();
3196 /* really need a gang lookup range call here */
3197 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3198 first_index, inodes_per_cluster);
3199 if (nr_found == 0)
3200 goto out_free;
3201
3202 for (i = 0; i < nr_found; i++) {
3203 iq = ilist[i];
3204 if (iq == ip)
bad55843 3205 continue;
1a3e8f3d
DC
3206
3207 /*
3208 * because this is an RCU protected lookup, we could find a
3209 * recently freed or even reallocated inode during the lookup.
3210 * We need to check under the i_flags_lock for a valid inode
3211 * here. Skip it if it is not valid or the wrong inode.
3212 */
3213 spin_lock(&ip->i_flags_lock);
3214 if (!ip->i_ino ||
3215 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3216 spin_unlock(&ip->i_flags_lock);
3217 continue;
3218 }
3219 spin_unlock(&ip->i_flags_lock);
3220
bad55843
DC
3221 /*
3222 * Do an un-protected check to see if the inode is dirty and
3223 * is a candidate for flushing. These checks will be repeated
3224 * later after the appropriate locks are acquired.
3225 */
33540408 3226 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3227 continue;
bad55843
DC
3228
3229 /*
3230 * Try to get locks. If any are unavailable or it is pinned,
3231 * then this inode cannot be flushed and is skipped.
3232 */
3233
3234 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3235 continue;
3236 if (!xfs_iflock_nowait(iq)) {
3237 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3238 continue;
3239 }
3240 if (xfs_ipincount(iq)) {
3241 xfs_ifunlock(iq);
3242 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3243 continue;
3244 }
3245
3246 /*
3247 * arriving here means that this inode can be flushed. First
3248 * re-check that it's dirty before flushing.
3249 */
33540408
DC
3250 if (!xfs_inode_clean(iq)) {
3251 int error;
bad55843
DC
3252 error = xfs_iflush_int(iq, bp);
3253 if (error) {
3254 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3255 goto cluster_corrupt_out;
3256 }
3257 clcount++;
3258 } else {
3259 xfs_ifunlock(iq);
3260 }
3261 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3262 }
3263
3264 if (clcount) {
ff6d6af2
BD
3265 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3266 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3267 }
3268
3269out_free:
1a3e8f3d 3270 rcu_read_unlock();
f0e2d93c 3271 kmem_free(ilist);
44b56e0a
DC
3272out_put:
3273 xfs_perag_put(pag);
bad55843
DC
3274 return 0;
3275
3276
3277cluster_corrupt_out:
3278 /*
3279 * Corruption detected in the clustering loop. Invalidate the
3280 * inode buffer and shut down the filesystem.
3281 */
1a3e8f3d 3282 rcu_read_unlock();
bad55843 3283 /*
43ff2122 3284 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3285 * brelse can handle it with no problems. If not, shut down the
3286 * filesystem before releasing the buffer.
3287 */
43ff2122 3288 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3289 if (bufwasdelwri)
3290 xfs_buf_relse(bp);
3291
3292 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3293
3294 if (!bufwasdelwri) {
3295 /*
3296 * Just like incore_relse: if we have b_iodone functions,
3297 * mark the buffer as an error and call them. Otherwise
3298 * mark it as stale and brelse.
3299 */
cb669ca5 3300 if (bp->b_iodone) {
bad55843 3301 XFS_BUF_UNDONE(bp);
c867cb61 3302 xfs_buf_stale(bp);
2451337d 3303 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3304 xfs_buf_ioend(bp);
bad55843 3305 } else {
c867cb61 3306 xfs_buf_stale(bp);
bad55843
DC
3307 xfs_buf_relse(bp);
3308 }
3309 }
3310
3311 /*
3312 * Unlocks the flush lock
3313 */
04913fdd 3314 xfs_iflush_abort(iq, false);
f0e2d93c 3315 kmem_free(ilist);
44b56e0a 3316 xfs_perag_put(pag);
2451337d 3317 return -EFSCORRUPTED;
bad55843
DC
3318}
3319
1da177e4 3320/*
4c46819a
CH
3321 * Flush dirty inode metadata into the backing buffer.
3322 *
3323 * The caller must have the inode lock and the inode flush lock held. The
3324 * inode lock will still be held upon return to the caller, and the inode
3325 * flush lock will be released after the inode has reached the disk.
3326 *
3327 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3328 */
3329int
3330xfs_iflush(
4c46819a
CH
3331 struct xfs_inode *ip,
3332 struct xfs_buf **bpp)
1da177e4 3333{
4c46819a
CH
3334 struct xfs_mount *mp = ip->i_mount;
3335 struct xfs_buf *bp;
3336 struct xfs_dinode *dip;
1da177e4 3337 int error;
1da177e4 3338
ff6d6af2 3339 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3340
579aa9ca 3341 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3342 ASSERT(xfs_isiflocked(ip));
1da177e4 3343 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3344 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3345
4c46819a 3346 *bpp = NULL;
1da177e4 3347
1da177e4
LT
3348 xfs_iunpin_wait(ip);
3349
4b6a4688
DC
3350 /*
3351 * For stale inodes we cannot rely on the backing buffer remaining
3352 * stale in cache for the remaining life of the stale inode and so
475ee413 3353 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3354 * inodes below. We have to check this after ensuring the inode is
3355 * unpinned so that it is safe to reclaim the stale inode after the
3356 * flush call.
3357 */
3358 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3359 xfs_ifunlock(ip);
3360 return 0;
3361 }
3362
1da177e4
LT
3363 /*
3364 * This may have been unpinned because the filesystem is shutting
3365 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3366 * to disk, because the log record didn't make it to disk.
3367 *
3368 * We also have to remove the log item from the AIL in this case,
3369 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3370 */
3371 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3372 error = -EIO;
32ce90a4 3373 goto abort_out;
1da177e4
LT
3374 }
3375
a3f74ffb
DC
3376 /*
3377 * Get the buffer containing the on-disk inode.
3378 */
475ee413
CH
3379 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3380 0);
a3f74ffb
DC
3381 if (error || !bp) {
3382 xfs_ifunlock(ip);
3383 return error;
3384 }
3385
1da177e4
LT
3386 /*
3387 * First flush out the inode that xfs_iflush was called with.
3388 */
3389 error = xfs_iflush_int(ip, bp);
bad55843 3390 if (error)
1da177e4 3391 goto corrupt_out;
1da177e4 3392
a3f74ffb
DC
3393 /*
3394 * If the buffer is pinned then push on the log now so we won't
3395 * get stuck waiting in the write for too long.
3396 */
811e64c7 3397 if (xfs_buf_ispinned(bp))
a14a348b 3398 xfs_log_force(mp, 0);
a3f74ffb 3399
1da177e4
LT
3400 /*
3401 * inode clustering:
3402 * see if other inodes can be gathered into this write
3403 */
bad55843
DC
3404 error = xfs_iflush_cluster(ip, bp);
3405 if (error)
3406 goto cluster_corrupt_out;
1da177e4 3407
4c46819a
CH
3408 *bpp = bp;
3409 return 0;
1da177e4
LT
3410
3411corrupt_out:
3412 xfs_buf_relse(bp);
7d04a335 3413 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3414cluster_corrupt_out:
2451337d 3415 error = -EFSCORRUPTED;
32ce90a4 3416abort_out:
1da177e4
LT
3417 /*
3418 * Unlocks the flush lock
3419 */
04913fdd 3420 xfs_iflush_abort(ip, false);
32ce90a4 3421 return error;
1da177e4
LT
3422}
3423
1da177e4
LT
3424STATIC int
3425xfs_iflush_int(
93848a99
CH
3426 struct xfs_inode *ip,
3427 struct xfs_buf *bp)
1da177e4 3428{
93848a99
CH
3429 struct xfs_inode_log_item *iip = ip->i_itemp;
3430 struct xfs_dinode *dip;
3431 struct xfs_mount *mp = ip->i_mount;
1da177e4 3432
579aa9ca 3433 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3434 ASSERT(xfs_isiflocked(ip));
1da177e4 3435 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3436 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3437 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3438 ASSERT(ip->i_d.di_version > 1);
1da177e4 3439
1da177e4 3440 /* set *dip = inode's place in the buffer */
88ee2df7 3441 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3442
69ef921b 3443 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3444 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3445 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3446 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3447 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3448 goto corrupt_out;
3449 }
abbede1b 3450 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3451 if (XFS_TEST_ERROR(
3452 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3453 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3454 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3455 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3456 "%s: Bad regular inode %Lu, ptr 0x%p",
3457 __func__, ip->i_ino, ip);
1da177e4
LT
3458 goto corrupt_out;
3459 }
abbede1b 3460 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3461 if (XFS_TEST_ERROR(
3462 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3463 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3464 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3465 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3466 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3467 "%s: Bad directory inode %Lu, ptr 0x%p",
3468 __func__, ip->i_ino, ip);
1da177e4
LT
3469 goto corrupt_out;
3470 }
3471 }
3472 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3473 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3474 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3475 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3476 "%s: detected corrupt incore inode %Lu, "
3477 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3478 __func__, ip->i_ino,
1da177e4 3479 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3480 ip->i_d.di_nblocks, ip);
1da177e4
LT
3481 goto corrupt_out;
3482 }
3483 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3484 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3485 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3486 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3487 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3488 goto corrupt_out;
3489 }
e60896d8 3490
1da177e4 3491 /*
263997a6 3492 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3493 * di_flushiter count for correct sequencing. We bump the flush
3494 * iteration count so we can detect flushes which postdate a log record
3495 * during recovery. This is redundant as we now log every change and
3496 * hence this can't happen but we need to still do it to ensure
3497 * backwards compatibility with old kernels that predate logging all
3498 * inode changes.
1da177e4 3499 */
e60896d8
DC
3500 if (ip->i_d.di_version < 3)
3501 ip->i_d.di_flushiter++;
1da177e4
LT
3502
3503 /*
3987848c
DC
3504 * Copy the dirty parts of the inode into the on-disk inode. We always
3505 * copy out the core of the inode, because if the inode is dirty at all
3506 * the core must be.
1da177e4 3507 */
93f958f9 3508 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3509
3510 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3511 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3512 ip->i_d.di_flushiter = 0;
3513
fd9fdba6 3514 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
e4ac967b 3515 if (XFS_IFORK_Q(ip))
fd9fdba6 3516 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3517 xfs_inobp_check(mp, bp);
3518
3519 /*
f5d8d5c4
CH
3520 * We've recorded everything logged in the inode, so we'd like to clear
3521 * the ili_fields bits so we don't log and flush things unnecessarily.
3522 * However, we can't stop logging all this information until the data
3523 * we've copied into the disk buffer is written to disk. If we did we
3524 * might overwrite the copy of the inode in the log with all the data
3525 * after re-logging only part of it, and in the face of a crash we
3526 * wouldn't have all the data we need to recover.
1da177e4 3527 *
f5d8d5c4
CH
3528 * What we do is move the bits to the ili_last_fields field. When
3529 * logging the inode, these bits are moved back to the ili_fields field.
3530 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3531 * know that the information those bits represent is permanently on
3532 * disk. As long as the flush completes before the inode is logged
3533 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3534 *
f5d8d5c4
CH
3535 * We can play with the ili_fields bits here, because the inode lock
3536 * must be held exclusively in order to set bits there and the flush
3537 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3538 * done routine can tell whether or not to look in the AIL. Also, store
3539 * the current LSN of the inode so that we can tell whether the item has
3540 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3541 * need the AIL lock, because it is a 64 bit value that cannot be read
3542 * atomically.
1da177e4 3543 */
93848a99
CH
3544 iip->ili_last_fields = iip->ili_fields;
3545 iip->ili_fields = 0;
fc0561ce 3546 iip->ili_fsync_fields = 0;
93848a99 3547 iip->ili_logged = 1;
1da177e4 3548
93848a99
CH
3549 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3550 &iip->ili_item.li_lsn);
1da177e4 3551
93848a99
CH
3552 /*
3553 * Attach the function xfs_iflush_done to the inode's
3554 * buffer. This will remove the inode from the AIL
3555 * and unlock the inode's flush lock when the inode is
3556 * completely written to disk.
3557 */
3558 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3559
93848a99
CH
3560 /* generate the checksum. */
3561 xfs_dinode_calc_crc(mp, dip);
1da177e4 3562
93848a99
CH
3563 ASSERT(bp->b_fspriv != NULL);
3564 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3565 return 0;
3566
3567corrupt_out:
2451337d 3568 return -EFSCORRUPTED;
1da177e4 3569}
This page took 1.183106 seconds and 5 git commands to generate.