xfs: remove xfs_cred.h
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451 25#include "xfs_inum.h"
1da177e4
LT
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_sb.h"
29#include "xfs_ag.h"
1da177e4 30#include "xfs_mount.h"
1da177e4 31#include "xfs_bmap_btree.h"
a844f451 32#include "xfs_alloc_btree.h"
1da177e4 33#include "xfs_ialloc_btree.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4 35#include "xfs_dinode.h"
1da177e4 36#include "xfs_inode.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451
NS
38#include "xfs_inode_item.h"
39#include "xfs_btree.h"
8c4ed633 40#include "xfs_btree_trace.h"
a844f451
NS
41#include "xfs_alloc.h"
42#include "xfs_ialloc.h"
43#include "xfs_bmap.h"
1da177e4 44#include "xfs_error.h"
1da177e4 45#include "xfs_utils.h"
1da177e4 46#include "xfs_quota.h"
2a82b8be 47#include "xfs_filestream.h"
739bfb2a 48#include "xfs_vnodeops.h"
0b1b213f 49#include "xfs_trace.h"
1da177e4 50
1da177e4
LT
51kmem_zone_t *xfs_ifork_zone;
52kmem_zone_t *xfs_inode_zone;
1da177e4
LT
53
54/*
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64
1da177e4
LT
65#ifdef DEBUG
66/*
67 * Make sure that the extents in the given memory buffer
68 * are valid.
69 */
70STATIC void
71xfs_validate_extents(
4eea22f0 72 xfs_ifork_t *ifp,
1da177e4 73 int nrecs,
1da177e4
LT
74 xfs_exntfmt_t fmt)
75{
76 xfs_bmbt_irec_t irec;
a6f64d4a 77 xfs_bmbt_rec_host_t rec;
1da177e4
LT
78 int i;
79
80 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
81 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 rec.l0 = get_unaligned(&ep->l0);
83 rec.l1 = get_unaligned(&ep->l1);
84 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
85 if (fmt == XFS_EXTFMT_NOSTATE)
86 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
87 }
88}
89#else /* DEBUG */
a6f64d4a 90#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
91#endif /* DEBUG */
92
93/*
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
96 */
97#if defined(DEBUG)
98void
99xfs_inobp_check(
100 xfs_mount_t *mp,
101 xfs_buf_t *bp)
102{
103 int i;
104 int j;
105 xfs_dinode_t *dip;
106
107 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108
109 for (i = 0; i < j; i++) {
110 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 i * mp->m_sb.sb_inodesize);
112 if (!dip->di_next_unlinked) {
113 xfs_fs_cmn_err(CE_ALERT, mp,
114 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
115 bp);
116 ASSERT(dip->di_next_unlinked);
117 }
118 }
119}
120#endif
121
4ae29b43
DC
122/*
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
126 */
127STATIC int
128xfs_imap_to_bp(
129 xfs_mount_t *mp,
130 xfs_trans_t *tp,
92bfc6e7 131 struct xfs_imap *imap,
4ae29b43
DC
132 xfs_buf_t **bpp,
133 uint buf_flags,
b48d8d64 134 uint iget_flags)
4ae29b43
DC
135{
136 int error;
137 int i;
138 int ni;
139 xfs_buf_t *bp;
140
141 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 142 (int)imap->im_len, buf_flags, &bp);
4ae29b43 143 if (error) {
a3f74ffb
DC
144 if (error != EAGAIN) {
145 cmn_err(CE_WARN,
146 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
4ae29b43
DC
147 "an error %d on %s. Returning error.",
148 error, mp->m_fsname);
a3f74ffb 149 } else {
0cadda1c 150 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb 151 }
4ae29b43
DC
152 return error;
153 }
154
155 /*
156 * Validate the magic number and version of every inode in the buffer
157 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
158 */
159#ifdef DEBUG
160 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
161#else /* usual case */
162 ni = 1;
163#endif
164
165 for (i = 0; i < ni; i++) {
166 int di_ok;
167 xfs_dinode_t *dip;
168
169 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
170 (i << mp->m_sb.sb_inodelog));
81591fe2
CH
171 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
172 XFS_DINODE_GOOD_VERSION(dip->di_version);
4ae29b43
DC
173 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
174 XFS_ERRTAG_ITOBP_INOTOBP,
175 XFS_RANDOM_ITOBP_INOTOBP))) {
1920779e 176 if (iget_flags & XFS_IGET_UNTRUSTED) {
4ae29b43
DC
177 xfs_trans_brelse(tp, bp);
178 return XFS_ERROR(EINVAL);
179 }
180 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 XFS_ERRLEVEL_HIGH, mp, dip);
182#ifdef DEBUG
183 cmn_err(CE_PANIC,
184 "Device %s - bad inode magic/vsn "
185 "daddr %lld #%d (magic=%x)",
186 XFS_BUFTARG_NAME(mp->m_ddev_targp),
187 (unsigned long long)imap->im_blkno, i,
81591fe2 188 be16_to_cpu(dip->di_magic));
4ae29b43
DC
189#endif
190 xfs_trans_brelse(tp, bp);
191 return XFS_ERROR(EFSCORRUPTED);
192 }
193 }
194
195 xfs_inobp_check(mp, bp);
196
197 /*
198 * Mark the buffer as an inode buffer now that it looks good
199 */
200 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
201
202 *bpp = bp;
203 return 0;
204}
205
1da177e4
LT
206/*
207 * This routine is called to map an inode number within a file
208 * system to the buffer containing the on-disk version of the
209 * inode. It returns a pointer to the buffer containing the
210 * on-disk inode in the bpp parameter, and in the dip parameter
211 * it returns a pointer to the on-disk inode within that buffer.
212 *
213 * If a non-zero error is returned, then the contents of bpp and
214 * dipp are undefined.
215 *
216 * Use xfs_imap() to determine the size and location of the
217 * buffer to read from disk.
218 */
c679eef0 219int
1da177e4
LT
220xfs_inotobp(
221 xfs_mount_t *mp,
222 xfs_trans_t *tp,
223 xfs_ino_t ino,
224 xfs_dinode_t **dipp,
225 xfs_buf_t **bpp,
c679eef0
CH
226 int *offset,
227 uint imap_flags)
1da177e4 228{
92bfc6e7 229 struct xfs_imap imap;
1da177e4
LT
230 xfs_buf_t *bp;
231 int error;
1da177e4 232
1da177e4 233 imap.im_blkno = 0;
a1941895 234 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
4ae29b43 235 if (error)
1da177e4 236 return error;
1da177e4 237
0cadda1c 238 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
4ae29b43 239 if (error)
1da177e4 240 return error;
1da177e4 241
1da177e4
LT
242 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
243 *bpp = bp;
244 *offset = imap.im_boffset;
245 return 0;
246}
247
248
249/*
250 * This routine is called to map an inode to the buffer containing
251 * the on-disk version of the inode. It returns a pointer to the
252 * buffer containing the on-disk inode in the bpp parameter, and in
253 * the dip parameter it returns a pointer to the on-disk inode within
254 * that buffer.
255 *
256 * If a non-zero error is returned, then the contents of bpp and
257 * dipp are undefined.
258 *
76d8b277
CH
259 * The inode is expected to already been mapped to its buffer and read
260 * in once, thus we can use the mapping information stored in the inode
261 * rather than calling xfs_imap(). This allows us to avoid the overhead
262 * of looking at the inode btree for small block file systems
94e1b69d 263 * (see xfs_imap()).
1da177e4
LT
264 */
265int
266xfs_itobp(
267 xfs_mount_t *mp,
268 xfs_trans_t *tp,
269 xfs_inode_t *ip,
270 xfs_dinode_t **dipp,
271 xfs_buf_t **bpp,
a3f74ffb 272 uint buf_flags)
1da177e4
LT
273{
274 xfs_buf_t *bp;
275 int error;
1da177e4 276
92bfc6e7 277 ASSERT(ip->i_imap.im_blkno != 0);
1da177e4 278
92bfc6e7 279 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
4ae29b43 280 if (error)
1da177e4 281 return error;
1da177e4 282
a3f74ffb 283 if (!bp) {
0cadda1c 284 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb
DC
285 ASSERT(tp == NULL);
286 *bpp = NULL;
287 return EAGAIN;
288 }
289
92bfc6e7 290 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
291 *bpp = bp;
292 return 0;
293}
294
295/*
296 * Move inode type and inode format specific information from the
297 * on-disk inode to the in-core inode. For fifos, devs, and sockets
298 * this means set if_rdev to the proper value. For files, directories,
299 * and symlinks this means to bring in the in-line data or extent
300 * pointers. For a file in B-tree format, only the root is immediately
301 * brought in-core. The rest will be in-lined in if_extents when it
302 * is first referenced (see xfs_iread_extents()).
303 */
304STATIC int
305xfs_iformat(
306 xfs_inode_t *ip,
307 xfs_dinode_t *dip)
308{
309 xfs_attr_shortform_t *atp;
310 int size;
311 int error;
312 xfs_fsize_t di_size;
313 ip->i_df.if_ext_max =
314 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
315 error = 0;
316
81591fe2
CH
317 if (unlikely(be32_to_cpu(dip->di_nextents) +
318 be16_to_cpu(dip->di_anextents) >
319 be64_to_cpu(dip->di_nblocks))) {
3762ec6b
NS
320 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
321 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 322 (unsigned long long)ip->i_ino,
81591fe2
CH
323 (int)(be32_to_cpu(dip->di_nextents) +
324 be16_to_cpu(dip->di_anextents)),
1da177e4 325 (unsigned long long)
81591fe2 326 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
327 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
328 ip->i_mount, dip);
329 return XFS_ERROR(EFSCORRUPTED);
330 }
331
81591fe2 332 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
333 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
334 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 335 (unsigned long long)ip->i_ino,
81591fe2 336 dip->di_forkoff);
1da177e4
LT
337 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
338 ip->i_mount, dip);
339 return XFS_ERROR(EFSCORRUPTED);
340 }
341
b89d4208
CH
342 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
343 !ip->i_mount->m_rtdev_targp)) {
344 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
345 "corrupt dinode %Lu, has realtime flag set.",
346 ip->i_ino);
347 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
348 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
349 return XFS_ERROR(EFSCORRUPTED);
350 }
351
1da177e4
LT
352 switch (ip->i_d.di_mode & S_IFMT) {
353 case S_IFIFO:
354 case S_IFCHR:
355 case S_IFBLK:
356 case S_IFSOCK:
81591fe2 357 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
358 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
359 ip->i_mount, dip);
360 return XFS_ERROR(EFSCORRUPTED);
361 }
362 ip->i_d.di_size = 0;
ba87ea69 363 ip->i_size = 0;
81591fe2 364 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
365 break;
366
367 case S_IFREG:
368 case S_IFLNK:
369 case S_IFDIR:
81591fe2 370 switch (dip->di_format) {
1da177e4
LT
371 case XFS_DINODE_FMT_LOCAL:
372 /*
373 * no local regular files yet
374 */
81591fe2 375 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
376 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
377 "corrupt inode %Lu "
378 "(local format for regular file).",
1da177e4
LT
379 (unsigned long long) ip->i_ino);
380 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
381 XFS_ERRLEVEL_LOW,
382 ip->i_mount, dip);
383 return XFS_ERROR(EFSCORRUPTED);
384 }
385
81591fe2 386 di_size = be64_to_cpu(dip->di_size);
1da177e4 387 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
388 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
389 "corrupt inode %Lu "
390 "(bad size %Ld for local inode).",
1da177e4
LT
391 (unsigned long long) ip->i_ino,
392 (long long) di_size);
393 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
394 XFS_ERRLEVEL_LOW,
395 ip->i_mount, dip);
396 return XFS_ERROR(EFSCORRUPTED);
397 }
398
399 size = (int)di_size;
400 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
401 break;
402 case XFS_DINODE_FMT_EXTENTS:
403 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
404 break;
405 case XFS_DINODE_FMT_BTREE:
406 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
407 break;
408 default:
409 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
410 ip->i_mount);
411 return XFS_ERROR(EFSCORRUPTED);
412 }
413 break;
414
415 default:
416 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
417 return XFS_ERROR(EFSCORRUPTED);
418 }
419 if (error) {
420 return error;
421 }
422 if (!XFS_DFORK_Q(dip))
423 return 0;
424 ASSERT(ip->i_afp == NULL);
4a7edddc 425 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
1da177e4
LT
426 ip->i_afp->if_ext_max =
427 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
81591fe2 428 switch (dip->di_aformat) {
1da177e4
LT
429 case XFS_DINODE_FMT_LOCAL:
430 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 431 size = be16_to_cpu(atp->hdr.totsize);
2809f76a
CH
432
433 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
434 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
435 "corrupt inode %Lu "
436 "(bad attr fork size %Ld).",
437 (unsigned long long) ip->i_ino,
438 (long long) size);
439 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
440 XFS_ERRLEVEL_LOW,
441 ip->i_mount, dip);
442 return XFS_ERROR(EFSCORRUPTED);
443 }
444
1da177e4
LT
445 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
446 break;
447 case XFS_DINODE_FMT_EXTENTS:
448 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
449 break;
450 case XFS_DINODE_FMT_BTREE:
451 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
452 break;
453 default:
454 error = XFS_ERROR(EFSCORRUPTED);
455 break;
456 }
457 if (error) {
458 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
459 ip->i_afp = NULL;
460 xfs_idestroy_fork(ip, XFS_DATA_FORK);
461 }
462 return error;
463}
464
465/*
466 * The file is in-lined in the on-disk inode.
467 * If it fits into if_inline_data, then copy
468 * it there, otherwise allocate a buffer for it
469 * and copy the data there. Either way, set
470 * if_data to point at the data.
471 * If we allocate a buffer for the data, make
472 * sure that its size is a multiple of 4 and
473 * record the real size in i_real_bytes.
474 */
475STATIC int
476xfs_iformat_local(
477 xfs_inode_t *ip,
478 xfs_dinode_t *dip,
479 int whichfork,
480 int size)
481{
482 xfs_ifork_t *ifp;
483 int real_size;
484
485 /*
486 * If the size is unreasonable, then something
487 * is wrong and we just bail out rather than crash in
488 * kmem_alloc() or memcpy() below.
489 */
490 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
491 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
492 "corrupt inode %Lu "
493 "(bad size %d for local fork, size = %d).",
1da177e4
LT
494 (unsigned long long) ip->i_ino, size,
495 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
496 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
497 ip->i_mount, dip);
498 return XFS_ERROR(EFSCORRUPTED);
499 }
500 ifp = XFS_IFORK_PTR(ip, whichfork);
501 real_size = 0;
502 if (size == 0)
503 ifp->if_u1.if_data = NULL;
504 else if (size <= sizeof(ifp->if_u2.if_inline_data))
505 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
506 else {
507 real_size = roundup(size, 4);
4a7edddc 508 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
509 }
510 ifp->if_bytes = size;
511 ifp->if_real_bytes = real_size;
512 if (size)
513 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
514 ifp->if_flags &= ~XFS_IFEXTENTS;
515 ifp->if_flags |= XFS_IFINLINE;
516 return 0;
517}
518
519/*
520 * The file consists of a set of extents all
521 * of which fit into the on-disk inode.
522 * If there are few enough extents to fit into
523 * the if_inline_ext, then copy them there.
524 * Otherwise allocate a buffer for them and copy
525 * them into it. Either way, set if_extents
526 * to point at the extents.
527 */
528STATIC int
529xfs_iformat_extents(
530 xfs_inode_t *ip,
531 xfs_dinode_t *dip,
532 int whichfork)
533{
a6f64d4a 534 xfs_bmbt_rec_t *dp;
1da177e4
LT
535 xfs_ifork_t *ifp;
536 int nex;
1da177e4
LT
537 int size;
538 int i;
539
540 ifp = XFS_IFORK_PTR(ip, whichfork);
541 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
542 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
543
544 /*
545 * If the number of extents is unreasonable, then something
546 * is wrong and we just bail out rather than crash in
547 * kmem_alloc() or memcpy() below.
548 */
549 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
550 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
551 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
552 (unsigned long long) ip->i_ino, nex);
553 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
554 ip->i_mount, dip);
555 return XFS_ERROR(EFSCORRUPTED);
556 }
557
4eea22f0 558 ifp->if_real_bytes = 0;
1da177e4
LT
559 if (nex == 0)
560 ifp->if_u1.if_extents = NULL;
561 else if (nex <= XFS_INLINE_EXTS)
562 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
563 else
564 xfs_iext_add(ifp, 0, nex);
565
1da177e4 566 ifp->if_bytes = size;
1da177e4
LT
567 if (size) {
568 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 569 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 570 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 571 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
572 ep->l0 = get_unaligned_be64(&dp->l0);
573 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 574 }
3a59c94c 575 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
576 if (whichfork != XFS_DATA_FORK ||
577 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
578 if (unlikely(xfs_check_nostate_extents(
4eea22f0 579 ifp, 0, nex))) {
1da177e4
LT
580 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
581 XFS_ERRLEVEL_LOW,
582 ip->i_mount);
583 return XFS_ERROR(EFSCORRUPTED);
584 }
585 }
586 ifp->if_flags |= XFS_IFEXTENTS;
587 return 0;
588}
589
590/*
591 * The file has too many extents to fit into
592 * the inode, so they are in B-tree format.
593 * Allocate a buffer for the root of the B-tree
594 * and copy the root into it. The i_extents
595 * field will remain NULL until all of the
596 * extents are read in (when they are needed).
597 */
598STATIC int
599xfs_iformat_btree(
600 xfs_inode_t *ip,
601 xfs_dinode_t *dip,
602 int whichfork)
603{
604 xfs_bmdr_block_t *dfp;
605 xfs_ifork_t *ifp;
606 /* REFERENCED */
607 int nrecs;
608 int size;
609
610 ifp = XFS_IFORK_PTR(ip, whichfork);
611 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
612 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 613 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
614
615 /*
616 * blow out if -- fork has less extents than can fit in
617 * fork (fork shouldn't be a btree format), root btree
618 * block has more records than can fit into the fork,
619 * or the number of extents is greater than the number of
620 * blocks.
621 */
622 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
623 || XFS_BMDR_SPACE_CALC(nrecs) >
624 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
625 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
626 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
627 "corrupt inode %Lu (btree).",
1da177e4
LT
628 (unsigned long long) ip->i_ino);
629 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
630 ip->i_mount);
631 return XFS_ERROR(EFSCORRUPTED);
632 }
633
634 ifp->if_broot_bytes = size;
4a7edddc 635 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
1da177e4
LT
636 ASSERT(ifp->if_broot != NULL);
637 /*
638 * Copy and convert from the on-disk structure
639 * to the in-memory structure.
640 */
60197e8d
CH
641 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
642 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
643 ifp->if_broot, size);
1da177e4
LT
644 ifp->if_flags &= ~XFS_IFEXTENTS;
645 ifp->if_flags |= XFS_IFBROOT;
646
647 return 0;
648}
649
d96f8f89 650STATIC void
347d1c01
CH
651xfs_dinode_from_disk(
652 xfs_icdinode_t *to,
81591fe2 653 xfs_dinode_t *from)
1da177e4 654{
347d1c01
CH
655 to->di_magic = be16_to_cpu(from->di_magic);
656 to->di_mode = be16_to_cpu(from->di_mode);
657 to->di_version = from ->di_version;
658 to->di_format = from->di_format;
659 to->di_onlink = be16_to_cpu(from->di_onlink);
660 to->di_uid = be32_to_cpu(from->di_uid);
661 to->di_gid = be32_to_cpu(from->di_gid);
662 to->di_nlink = be32_to_cpu(from->di_nlink);
663 to->di_projid = be16_to_cpu(from->di_projid);
664 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
665 to->di_flushiter = be16_to_cpu(from->di_flushiter);
666 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
667 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
668 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
669 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
670 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
671 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
672 to->di_size = be64_to_cpu(from->di_size);
673 to->di_nblocks = be64_to_cpu(from->di_nblocks);
674 to->di_extsize = be32_to_cpu(from->di_extsize);
675 to->di_nextents = be32_to_cpu(from->di_nextents);
676 to->di_anextents = be16_to_cpu(from->di_anextents);
677 to->di_forkoff = from->di_forkoff;
678 to->di_aformat = from->di_aformat;
679 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
680 to->di_dmstate = be16_to_cpu(from->di_dmstate);
681 to->di_flags = be16_to_cpu(from->di_flags);
682 to->di_gen = be32_to_cpu(from->di_gen);
683}
684
685void
686xfs_dinode_to_disk(
81591fe2 687 xfs_dinode_t *to,
347d1c01
CH
688 xfs_icdinode_t *from)
689{
690 to->di_magic = cpu_to_be16(from->di_magic);
691 to->di_mode = cpu_to_be16(from->di_mode);
692 to->di_version = from ->di_version;
693 to->di_format = from->di_format;
694 to->di_onlink = cpu_to_be16(from->di_onlink);
695 to->di_uid = cpu_to_be32(from->di_uid);
696 to->di_gid = cpu_to_be32(from->di_gid);
697 to->di_nlink = cpu_to_be32(from->di_nlink);
698 to->di_projid = cpu_to_be16(from->di_projid);
699 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
700 to->di_flushiter = cpu_to_be16(from->di_flushiter);
701 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
702 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
703 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
704 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
705 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
706 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
707 to->di_size = cpu_to_be64(from->di_size);
708 to->di_nblocks = cpu_to_be64(from->di_nblocks);
709 to->di_extsize = cpu_to_be32(from->di_extsize);
710 to->di_nextents = cpu_to_be32(from->di_nextents);
711 to->di_anextents = cpu_to_be16(from->di_anextents);
712 to->di_forkoff = from->di_forkoff;
713 to->di_aformat = from->di_aformat;
714 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
715 to->di_dmstate = cpu_to_be16(from->di_dmstate);
716 to->di_flags = cpu_to_be16(from->di_flags);
717 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
718}
719
720STATIC uint
721_xfs_dic2xflags(
1da177e4
LT
722 __uint16_t di_flags)
723{
724 uint flags = 0;
725
726 if (di_flags & XFS_DIFLAG_ANY) {
727 if (di_flags & XFS_DIFLAG_REALTIME)
728 flags |= XFS_XFLAG_REALTIME;
729 if (di_flags & XFS_DIFLAG_PREALLOC)
730 flags |= XFS_XFLAG_PREALLOC;
731 if (di_flags & XFS_DIFLAG_IMMUTABLE)
732 flags |= XFS_XFLAG_IMMUTABLE;
733 if (di_flags & XFS_DIFLAG_APPEND)
734 flags |= XFS_XFLAG_APPEND;
735 if (di_flags & XFS_DIFLAG_SYNC)
736 flags |= XFS_XFLAG_SYNC;
737 if (di_flags & XFS_DIFLAG_NOATIME)
738 flags |= XFS_XFLAG_NOATIME;
739 if (di_flags & XFS_DIFLAG_NODUMP)
740 flags |= XFS_XFLAG_NODUMP;
741 if (di_flags & XFS_DIFLAG_RTINHERIT)
742 flags |= XFS_XFLAG_RTINHERIT;
743 if (di_flags & XFS_DIFLAG_PROJINHERIT)
744 flags |= XFS_XFLAG_PROJINHERIT;
745 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
746 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
747 if (di_flags & XFS_DIFLAG_EXTSIZE)
748 flags |= XFS_XFLAG_EXTSIZE;
749 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
750 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
751 if (di_flags & XFS_DIFLAG_NODEFRAG)
752 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
753 if (di_flags & XFS_DIFLAG_FILESTREAM)
754 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
755 }
756
757 return flags;
758}
759
760uint
761xfs_ip2xflags(
762 xfs_inode_t *ip)
763{
347d1c01 764 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 765
a916e2bd 766 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 767 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
768}
769
770uint
771xfs_dic2xflags(
45ba598e 772 xfs_dinode_t *dip)
1da177e4 773{
81591fe2 774 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 775 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
776}
777
07c8f675 778/*
24f211ba 779 * Read the disk inode attributes into the in-core inode structure.
1da177e4
LT
780 */
781int
782xfs_iread(
783 xfs_mount_t *mp,
784 xfs_trans_t *tp,
24f211ba 785 xfs_inode_t *ip,
24f211ba 786 uint iget_flags)
1da177e4
LT
787{
788 xfs_buf_t *bp;
789 xfs_dinode_t *dip;
1da177e4
LT
790 int error;
791
1da177e4 792 /*
92bfc6e7 793 * Fill in the location information in the in-core inode.
1da177e4 794 */
24f211ba 795 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
76d8b277 796 if (error)
24f211ba 797 return error;
76d8b277
CH
798
799 /*
92bfc6e7 800 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 801 */
92bfc6e7 802 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
0cadda1c 803 XBF_LOCK, iget_flags);
9ed0451e 804 if (error)
24f211ba 805 return error;
92bfc6e7 806 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 807
1da177e4
LT
808 /*
809 * If we got something that isn't an inode it means someone
810 * (nfs or dmi) has a stale handle.
811 */
81591fe2 812 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
1da177e4
LT
813#ifdef DEBUG
814 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
81591fe2 815 "dip->di_magic (0x%x) != "
1da177e4 816 "XFS_DINODE_MAGIC (0x%x)",
81591fe2 817 be16_to_cpu(dip->di_magic),
1da177e4
LT
818 XFS_DINODE_MAGIC);
819#endif /* DEBUG */
9ed0451e
CH
820 error = XFS_ERROR(EINVAL);
821 goto out_brelse;
1da177e4
LT
822 }
823
824 /*
825 * If the on-disk inode is already linked to a directory
826 * entry, copy all of the inode into the in-core inode.
827 * xfs_iformat() handles copying in the inode format
828 * specific information.
829 * Otherwise, just get the truly permanent information.
830 */
81591fe2
CH
831 if (dip->di_mode) {
832 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
833 error = xfs_iformat(ip, dip);
834 if (error) {
1da177e4
LT
835#ifdef DEBUG
836 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
837 "xfs_iformat() returned error %d",
838 error);
839#endif /* DEBUG */
9ed0451e 840 goto out_brelse;
1da177e4
LT
841 }
842 } else {
81591fe2
CH
843 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
844 ip->i_d.di_version = dip->di_version;
845 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
846 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
847 /*
848 * Make sure to pull in the mode here as well in
849 * case the inode is released without being used.
850 * This ensures that xfs_inactive() will see that
851 * the inode is already free and not try to mess
852 * with the uninitialized part of it.
853 */
854 ip->i_d.di_mode = 0;
855 /*
856 * Initialize the per-fork minima and maxima for a new
857 * inode here. xfs_iformat will do it for old inodes.
858 */
859 ip->i_df.if_ext_max =
860 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
861 }
862
1da177e4
LT
863 /*
864 * The inode format changed when we moved the link count and
865 * made it 32 bits long. If this is an old format inode,
866 * convert it in memory to look like a new one. If it gets
867 * flushed to disk we will convert back before flushing or
868 * logging it. We zero out the new projid field and the old link
869 * count field. We'll handle clearing the pad field (the remains
870 * of the old uuid field) when we actually convert the inode to
871 * the new format. We don't change the version number so that we
872 * can distinguish this from a real new format inode.
873 */
51ce16d5 874 if (ip->i_d.di_version == 1) {
1da177e4
LT
875 ip->i_d.di_nlink = ip->i_d.di_onlink;
876 ip->i_d.di_onlink = 0;
877 ip->i_d.di_projid = 0;
878 }
879
880 ip->i_delayed_blks = 0;
ba87ea69 881 ip->i_size = ip->i_d.di_size;
1da177e4
LT
882
883 /*
884 * Mark the buffer containing the inode as something to keep
885 * around for a while. This helps to keep recently accessed
886 * meta-data in-core longer.
887 */
6d73cf13 888 XFS_BUF_SET_REF(bp, XFS_INO_REF);
1da177e4
LT
889
890 /*
891 * Use xfs_trans_brelse() to release the buffer containing the
892 * on-disk inode, because it was acquired with xfs_trans_read_buf()
893 * in xfs_itobp() above. If tp is NULL, this is just a normal
894 * brelse(). If we're within a transaction, then xfs_trans_brelse()
895 * will only release the buffer if it is not dirty within the
896 * transaction. It will be OK to release the buffer in this case,
897 * because inodes on disk are never destroyed and we will be
898 * locking the new in-core inode before putting it in the hash
899 * table where other processes can find it. Thus we don't have
900 * to worry about the inode being changed just because we released
901 * the buffer.
902 */
9ed0451e
CH
903 out_brelse:
904 xfs_trans_brelse(tp, bp);
9ed0451e 905 return error;
1da177e4
LT
906}
907
908/*
909 * Read in extents from a btree-format inode.
910 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
911 */
912int
913xfs_iread_extents(
914 xfs_trans_t *tp,
915 xfs_inode_t *ip,
916 int whichfork)
917{
918 int error;
919 xfs_ifork_t *ifp;
4eea22f0 920 xfs_extnum_t nextents;
1da177e4
LT
921
922 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
923 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
924 ip->i_mount);
925 return XFS_ERROR(EFSCORRUPTED);
926 }
4eea22f0 927 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1da177e4 928 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 929
1da177e4
LT
930 /*
931 * We know that the size is valid (it's checked in iformat_btree)
932 */
1da177e4 933 ifp->if_lastex = NULLEXTNUM;
4eea22f0 934 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 935 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 936 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
937 error = xfs_bmap_read_extents(tp, ip, whichfork);
938 if (error) {
4eea22f0 939 xfs_iext_destroy(ifp);
1da177e4
LT
940 ifp->if_flags &= ~XFS_IFEXTENTS;
941 return error;
942 }
a6f64d4a 943 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
944 return 0;
945}
946
947/*
948 * Allocate an inode on disk and return a copy of its in-core version.
949 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
950 * appropriately within the inode. The uid and gid for the inode are
951 * set according to the contents of the given cred structure.
952 *
953 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
954 * has a free inode available, call xfs_iget()
955 * to obtain the in-core version of the allocated inode. Finally,
956 * fill in the inode and log its initial contents. In this case,
957 * ialloc_context would be set to NULL and call_again set to false.
958 *
959 * If xfs_dialloc() does not have an available inode,
960 * it will replenish its supply by doing an allocation. Since we can
961 * only do one allocation within a transaction without deadlocks, we
962 * must commit the current transaction before returning the inode itself.
963 * In this case, therefore, we will set call_again to true and return.
964 * The caller should then commit the current transaction, start a new
965 * transaction, and call xfs_ialloc() again to actually get the inode.
966 *
967 * To ensure that some other process does not grab the inode that
968 * was allocated during the first call to xfs_ialloc(), this routine
969 * also returns the [locked] bp pointing to the head of the freelist
970 * as ialloc_context. The caller should hold this buffer across
971 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
972 *
973 * If we are allocating quota inodes, we do not have a parent inode
974 * to attach to or associate with (i.e. pip == NULL) because they
975 * are not linked into the directory structure - they are attached
976 * directly to the superblock - and so have no parent.
1da177e4
LT
977 */
978int
979xfs_ialloc(
980 xfs_trans_t *tp,
981 xfs_inode_t *pip,
982 mode_t mode,
31b084ae 983 xfs_nlink_t nlink,
1da177e4 984 xfs_dev_t rdev,
1da177e4
LT
985 xfs_prid_t prid,
986 int okalloc,
987 xfs_buf_t **ialloc_context,
988 boolean_t *call_again,
989 xfs_inode_t **ipp)
990{
991 xfs_ino_t ino;
992 xfs_inode_t *ip;
1da177e4
LT
993 uint flags;
994 int error;
dff35fd4 995 timespec_t tv;
bf904248 996 int filestreams = 0;
1da177e4
LT
997
998 /*
999 * Call the space management code to pick
1000 * the on-disk inode to be allocated.
1001 */
b11f94d5 1002 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 1003 ialloc_context, call_again, &ino);
bf904248 1004 if (error)
1da177e4 1005 return error;
1da177e4
LT
1006 if (*call_again || ino == NULLFSINO) {
1007 *ipp = NULL;
1008 return 0;
1009 }
1010 ASSERT(*ialloc_context == NULL);
1011
1012 /*
1013 * Get the in-core inode with the lock held exclusively.
1014 * This is because we're setting fields here we need
1015 * to prevent others from looking at until we're done.
1016 */
1017 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1018 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
bf904248 1019 if (error)
1da177e4 1020 return error;
1da177e4
LT
1021 ASSERT(ip != NULL);
1022
1da177e4
LT
1023 ip->i_d.di_mode = (__uint16_t)mode;
1024 ip->i_d.di_onlink = 0;
1025 ip->i_d.di_nlink = nlink;
1026 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1027 ip->i_d.di_uid = current_fsuid();
1028 ip->i_d.di_gid = current_fsgid();
1da177e4
LT
1029 ip->i_d.di_projid = prid;
1030 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1031
1032 /*
1033 * If the superblock version is up to where we support new format
1034 * inodes and this is currently an old format inode, then change
1035 * the inode version number now. This way we only do the conversion
1036 * here rather than here and in the flush/logging code.
1037 */
62118709 1038 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1039 ip->i_d.di_version == 1) {
1040 ip->i_d.di_version = 2;
1da177e4
LT
1041 /*
1042 * We've already zeroed the old link count, the projid field,
1043 * and the pad field.
1044 */
1045 }
1046
1047 /*
1048 * Project ids won't be stored on disk if we are using a version 1 inode.
1049 */
51ce16d5 1050 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1051 xfs_bump_ino_vers2(tp, ip);
1052
bd186aa9 1053 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1054 ip->i_d.di_gid = pip->i_d.di_gid;
1055 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1056 ip->i_d.di_mode |= S_ISGID;
1057 }
1058 }
1059
1060 /*
1061 * If the group ID of the new file does not match the effective group
1062 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1063 * (and only if the irix_sgid_inherit compatibility variable is set).
1064 */
1065 if ((irix_sgid_inherit) &&
1066 (ip->i_d.di_mode & S_ISGID) &&
1067 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1068 ip->i_d.di_mode &= ~S_ISGID;
1069 }
1070
1071 ip->i_d.di_size = 0;
ba87ea69 1072 ip->i_size = 0;
1da177e4
LT
1073 ip->i_d.di_nextents = 0;
1074 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1075
1076 nanotime(&tv);
1077 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1078 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1079 ip->i_d.di_atime = ip->i_d.di_mtime;
1080 ip->i_d.di_ctime = ip->i_d.di_mtime;
1081
1da177e4
LT
1082 /*
1083 * di_gen will have been taken care of in xfs_iread.
1084 */
1085 ip->i_d.di_extsize = 0;
1086 ip->i_d.di_dmevmask = 0;
1087 ip->i_d.di_dmstate = 0;
1088 ip->i_d.di_flags = 0;
1089 flags = XFS_ILOG_CORE;
1090 switch (mode & S_IFMT) {
1091 case S_IFIFO:
1092 case S_IFCHR:
1093 case S_IFBLK:
1094 case S_IFSOCK:
1095 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1096 ip->i_df.if_u2.if_rdev = rdev;
1097 ip->i_df.if_flags = 0;
1098 flags |= XFS_ILOG_DEV;
1099 break;
1100 case S_IFREG:
bf904248
DC
1101 /*
1102 * we can't set up filestreams until after the VFS inode
1103 * is set up properly.
1104 */
1105 if (pip && xfs_inode_is_filestream(pip))
1106 filestreams = 1;
2a82b8be 1107 /* fall through */
1da177e4 1108 case S_IFDIR:
b11f94d5 1109 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1110 uint di_flags = 0;
1111
1112 if ((mode & S_IFMT) == S_IFDIR) {
1113 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1114 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1115 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1116 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1117 ip->i_d.di_extsize = pip->i_d.di_extsize;
1118 }
1119 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1120 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1121 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1122 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1123 di_flags |= XFS_DIFLAG_EXTSIZE;
1124 ip->i_d.di_extsize = pip->i_d.di_extsize;
1125 }
1da177e4
LT
1126 }
1127 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1128 xfs_inherit_noatime)
365ca83d 1129 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1130 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1131 xfs_inherit_nodump)
365ca83d 1132 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1133 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1134 xfs_inherit_sync)
365ca83d 1135 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1136 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1137 xfs_inherit_nosymlinks)
365ca83d
NS
1138 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1139 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1140 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1141 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1142 xfs_inherit_nodefrag)
1143 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1144 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1145 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1146 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1147 }
1148 /* FALLTHROUGH */
1149 case S_IFLNK:
1150 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1151 ip->i_df.if_flags = XFS_IFEXTENTS;
1152 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1153 ip->i_df.if_u1.if_extents = NULL;
1154 break;
1155 default:
1156 ASSERT(0);
1157 }
1158 /*
1159 * Attribute fork settings for new inode.
1160 */
1161 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1162 ip->i_d.di_anextents = 0;
1163
1164 /*
1165 * Log the new values stuffed into the inode.
1166 */
1167 xfs_trans_log_inode(tp, ip, flags);
1168
b83bd138 1169 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1170 xfs_setup_inode(ip);
1da177e4 1171
bf904248
DC
1172 /* now we have set up the vfs inode we can associate the filestream */
1173 if (filestreams) {
1174 error = xfs_filestream_associate(pip, ip);
1175 if (error < 0)
1176 return -error;
1177 if (!error)
1178 xfs_iflags_set(ip, XFS_IFILESTREAM);
1179 }
1180
1da177e4
LT
1181 *ipp = ip;
1182 return 0;
1183}
1184
1185/*
1186 * Check to make sure that there are no blocks allocated to the
1187 * file beyond the size of the file. We don't check this for
1188 * files with fixed size extents or real time extents, but we
1189 * at least do it for regular files.
1190 */
1191#ifdef DEBUG
1192void
1193xfs_isize_check(
1194 xfs_mount_t *mp,
1195 xfs_inode_t *ip,
1196 xfs_fsize_t isize)
1197{
1198 xfs_fileoff_t map_first;
1199 int nimaps;
1200 xfs_bmbt_irec_t imaps[2];
1201
1202 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1203 return;
1204
71ddabb9
ES
1205 if (XFS_IS_REALTIME_INODE(ip))
1206 return;
1207
1208 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1209 return;
1210
1211 nimaps = 2;
1212 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1213 /*
1214 * The filesystem could be shutting down, so bmapi may return
1215 * an error.
1216 */
1217 if (xfs_bmapi(NULL, ip, map_first,
1218 (XFS_B_TO_FSB(mp,
1219 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1220 map_first),
1221 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
b4e9181e 1222 NULL))
1da177e4
LT
1223 return;
1224 ASSERT(nimaps == 1);
1225 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1226}
1227#endif /* DEBUG */
1228
1229/*
1230 * Calculate the last possible buffered byte in a file. This must
1231 * include data that was buffered beyond the EOF by the write code.
1232 * This also needs to deal with overflowing the xfs_fsize_t type
1233 * which can happen for sizes near the limit.
1234 *
1235 * We also need to take into account any blocks beyond the EOF. It
1236 * may be the case that they were buffered by a write which failed.
1237 * In that case the pages will still be in memory, but the inode size
1238 * will never have been updated.
1239 */
d96f8f89 1240STATIC xfs_fsize_t
1da177e4
LT
1241xfs_file_last_byte(
1242 xfs_inode_t *ip)
1243{
1244 xfs_mount_t *mp;
1245 xfs_fsize_t last_byte;
1246 xfs_fileoff_t last_block;
1247 xfs_fileoff_t size_last_block;
1248 int error;
1249
579aa9ca 1250 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1da177e4
LT
1251
1252 mp = ip->i_mount;
1253 /*
1254 * Only check for blocks beyond the EOF if the extents have
1255 * been read in. This eliminates the need for the inode lock,
1256 * and it also saves us from looking when it really isn't
1257 * necessary.
1258 */
1259 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
f25181f5 1260 xfs_ilock(ip, XFS_ILOCK_SHARED);
1da177e4
LT
1261 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1262 XFS_DATA_FORK);
f25181f5 1263 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1da177e4
LT
1264 if (error) {
1265 last_block = 0;
1266 }
1267 } else {
1268 last_block = 0;
1269 }
ba87ea69 1270 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1271 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1272
1273 last_byte = XFS_FSB_TO_B(mp, last_block);
1274 if (last_byte < 0) {
1275 return XFS_MAXIOFFSET(mp);
1276 }
1277 last_byte += (1 << mp->m_writeio_log);
1278 if (last_byte < 0) {
1279 return XFS_MAXIOFFSET(mp);
1280 }
1281 return last_byte;
1282}
1283
1da177e4
LT
1284/*
1285 * Start the truncation of the file to new_size. The new size
1286 * must be smaller than the current size. This routine will
1287 * clear the buffer and page caches of file data in the removed
1288 * range, and xfs_itruncate_finish() will remove the underlying
1289 * disk blocks.
1290 *
1291 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1292 * must NOT have the inode lock held at all. This is because we're
1293 * calling into the buffer/page cache code and we can't hold the
1294 * inode lock when we do so.
1295 *
38e2299a
DC
1296 * We need to wait for any direct I/Os in flight to complete before we
1297 * proceed with the truncate. This is needed to prevent the extents
1298 * being read or written by the direct I/Os from being removed while the
1299 * I/O is in flight as there is no other method of synchronising
1300 * direct I/O with the truncate operation. Also, because we hold
1301 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1302 * started until the truncate completes and drops the lock. Essentially,
25e41b3d
CH
1303 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1304 * ordering between direct I/Os and the truncate operation.
38e2299a 1305 *
1da177e4
LT
1306 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1307 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1308 * in the case that the caller is locking things out of order and
1309 * may not be able to call xfs_itruncate_finish() with the inode lock
1310 * held without dropping the I/O lock. If the caller must drop the
1311 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1312 * must be called again with all the same restrictions as the initial
1313 * call.
1314 */
d3cf2094 1315int
1da177e4
LT
1316xfs_itruncate_start(
1317 xfs_inode_t *ip,
1318 uint flags,
1319 xfs_fsize_t new_size)
1320{
1321 xfs_fsize_t last_byte;
1322 xfs_off_t toss_start;
1323 xfs_mount_t *mp;
d3cf2094 1324 int error = 0;
1da177e4 1325
579aa9ca 1326 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ba87ea69 1327 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1328 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1329 (flags == XFS_ITRUNC_MAYBE));
1330
1331 mp = ip->i_mount;
9fa8046f 1332
c734c79b 1333 /* wait for the completion of any pending DIOs */
d112f298 1334 if (new_size == 0 || new_size < ip->i_size)
25e41b3d 1335 xfs_ioend_wait(ip);
c734c79b 1336
1da177e4 1337 /*
67fcaa73 1338 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1339 * overlapping the region being removed. We have to use
67fcaa73 1340 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1341 * caller may not be able to finish the truncate without
1342 * dropping the inode's I/O lock. Make sure
1343 * to catch any pages brought in by buffers overlapping
1344 * the EOF by searching out beyond the isize by our
1345 * block size. We round new_size up to a block boundary
1346 * so that we don't toss things on the same block as
1347 * new_size but before it.
1348 *
67fcaa73 1349 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1350 * call remapf() over the same region if the file is mapped.
1351 * This frees up mapped file references to the pages in the
67fcaa73 1352 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1353 * that we get the latest mapped changes flushed out.
1354 */
1355 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1356 toss_start = XFS_FSB_TO_B(mp, toss_start);
1357 if (toss_start < 0) {
1358 /*
1359 * The place to start tossing is beyond our maximum
1360 * file size, so there is no way that the data extended
1361 * out there.
1362 */
d3cf2094 1363 return 0;
1da177e4
LT
1364 }
1365 last_byte = xfs_file_last_byte(ip);
0b1b213f 1366 trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1da177e4
LT
1367 if (last_byte > toss_start) {
1368 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1369 xfs_tosspages(ip, toss_start,
1370 -1, FI_REMAPF_LOCKED);
1da177e4 1371 } else {
739bfb2a
CH
1372 error = xfs_flushinval_pages(ip, toss_start,
1373 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1374 }
1375 }
1376
1377#ifdef DEBUG
1378 if (new_size == 0) {
df80c933 1379 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1da177e4
LT
1380 }
1381#endif
d3cf2094 1382 return error;
1da177e4
LT
1383}
1384
1385/*
f6485057
DC
1386 * Shrink the file to the given new_size. The new size must be smaller than
1387 * the current size. This will free up the underlying blocks in the removed
1388 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1da177e4 1389 *
f6485057
DC
1390 * The transaction passed to this routine must have made a permanent log
1391 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1392 * given transaction and start new ones, so make sure everything involved in
1393 * the transaction is tidy before calling here. Some transaction will be
1394 * returned to the caller to be committed. The incoming transaction must
1395 * already include the inode, and both inode locks must be held exclusively.
1396 * The inode must also be "held" within the transaction. On return the inode
1397 * will be "held" within the returned transaction. This routine does NOT
1398 * require any disk space to be reserved for it within the transaction.
1da177e4 1399 *
f6485057
DC
1400 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1401 * indicates the fork which is to be truncated. For the attribute fork we only
1402 * support truncation to size 0.
1da177e4 1403 *
f6485057
DC
1404 * We use the sync parameter to indicate whether or not the first transaction
1405 * we perform might have to be synchronous. For the attr fork, it needs to be
1406 * so if the unlink of the inode is not yet known to be permanent in the log.
1407 * This keeps us from freeing and reusing the blocks of the attribute fork
1408 * before the unlink of the inode becomes permanent.
1da177e4 1409 *
f6485057
DC
1410 * For the data fork, we normally have to run synchronously if we're being
1411 * called out of the inactive path or we're being called out of the create path
1412 * where we're truncating an existing file. Either way, the truncate needs to
1413 * be sync so blocks don't reappear in the file with altered data in case of a
1414 * crash. wsync filesystems can run the first case async because anything that
1415 * shrinks the inode has to run sync so by the time we're called here from
1416 * inactive, the inode size is permanently set to 0.
1da177e4 1417 *
f6485057
DC
1418 * Calls from the truncate path always need to be sync unless we're in a wsync
1419 * filesystem and the file has already been unlinked.
1da177e4 1420 *
f6485057
DC
1421 * The caller is responsible for correctly setting the sync parameter. It gets
1422 * too hard for us to guess here which path we're being called out of just
1423 * based on inode state.
1424 *
1425 * If we get an error, we must return with the inode locked and linked into the
1426 * current transaction. This keeps things simple for the higher level code,
1427 * because it always knows that the inode is locked and held in the transaction
1428 * that returns to it whether errors occur or not. We don't mark the inode
1429 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1430 */
1431int
1432xfs_itruncate_finish(
1433 xfs_trans_t **tp,
1434 xfs_inode_t *ip,
1435 xfs_fsize_t new_size,
1436 int fork,
1437 int sync)
1438{
1439 xfs_fsblock_t first_block;
1440 xfs_fileoff_t first_unmap_block;
1441 xfs_fileoff_t last_block;
1442 xfs_filblks_t unmap_len=0;
1443 xfs_mount_t *mp;
1444 xfs_trans_t *ntp;
1445 int done;
1446 int committed;
1447 xfs_bmap_free_t free_list;
1448 int error;
1449
579aa9ca 1450 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ba87ea69 1451 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1452 ASSERT(*tp != NULL);
1453 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1454 ASSERT(ip->i_transp == *tp);
1455 ASSERT(ip->i_itemp != NULL);
898621d5 1456 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1da177e4
LT
1457
1458
1459 ntp = *tp;
1460 mp = (ntp)->t_mountp;
1461 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1462
1463 /*
1464 * We only support truncating the entire attribute fork.
1465 */
1466 if (fork == XFS_ATTR_FORK) {
1467 new_size = 0LL;
1468 }
1469 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
0b1b213f
CH
1470 trace_xfs_itruncate_finish_start(ip, new_size);
1471
1da177e4
LT
1472 /*
1473 * The first thing we do is set the size to new_size permanently
1474 * on disk. This way we don't have to worry about anyone ever
1475 * being able to look at the data being freed even in the face
1476 * of a crash. What we're getting around here is the case where
1477 * we free a block, it is allocated to another file, it is written
1478 * to, and then we crash. If the new data gets written to the
1479 * file but the log buffers containing the free and reallocation
1480 * don't, then we'd end up with garbage in the blocks being freed.
1481 * As long as we make the new_size permanent before actually
1482 * freeing any blocks it doesn't matter if they get writtten to.
1483 *
1484 * The callers must signal into us whether or not the size
1485 * setting here must be synchronous. There are a few cases
1486 * where it doesn't have to be synchronous. Those cases
1487 * occur if the file is unlinked and we know the unlink is
1488 * permanent or if the blocks being truncated are guaranteed
1489 * to be beyond the inode eof (regardless of the link count)
1490 * and the eof value is permanent. Both of these cases occur
1491 * only on wsync-mounted filesystems. In those cases, we're
1492 * guaranteed that no user will ever see the data in the blocks
1493 * that are being truncated so the truncate can run async.
1494 * In the free beyond eof case, the file may wind up with
1495 * more blocks allocated to it than it needs if we crash
1496 * and that won't get fixed until the next time the file
1497 * is re-opened and closed but that's ok as that shouldn't
1498 * be too many blocks.
1499 *
1500 * However, we can't just make all wsync xactions run async
1501 * because there's one call out of the create path that needs
1502 * to run sync where it's truncating an existing file to size
1503 * 0 whose size is > 0.
1504 *
1505 * It's probably possible to come up with a test in this
1506 * routine that would correctly distinguish all the above
1507 * cases from the values of the function parameters and the
1508 * inode state but for sanity's sake, I've decided to let the
1509 * layers above just tell us. It's simpler to correctly figure
1510 * out in the layer above exactly under what conditions we
1511 * can run async and I think it's easier for others read and
1512 * follow the logic in case something has to be changed.
1513 * cscope is your friend -- rcc.
1514 *
1515 * The attribute fork is much simpler.
1516 *
1517 * For the attribute fork we allow the caller to tell us whether
1518 * the unlink of the inode that led to this call is yet permanent
1519 * in the on disk log. If it is not and we will be freeing extents
1520 * in this inode then we make the first transaction synchronous
1521 * to make sure that the unlink is permanent by the time we free
1522 * the blocks.
1523 */
1524 if (fork == XFS_DATA_FORK) {
1525 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1526 /*
1527 * If we are not changing the file size then do
1528 * not update the on-disk file size - we may be
1529 * called from xfs_inactive_free_eofblocks(). If we
1530 * update the on-disk file size and then the system
1531 * crashes before the contents of the file are
1532 * flushed to disk then the files may be full of
1533 * holes (ie NULL files bug).
1534 */
1535 if (ip->i_size != new_size) {
1536 ip->i_d.di_size = new_size;
1537 ip->i_size = new_size;
1538 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1539 }
1da177e4
LT
1540 }
1541 } else if (sync) {
1542 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1543 if (ip->i_d.di_anextents > 0)
1544 xfs_trans_set_sync(ntp);
1545 }
1546 ASSERT(fork == XFS_DATA_FORK ||
1547 (fork == XFS_ATTR_FORK &&
1548 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1549 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1550
1551 /*
1552 * Since it is possible for space to become allocated beyond
1553 * the end of the file (in a crash where the space is allocated
1554 * but the inode size is not yet updated), simply remove any
1555 * blocks which show up between the new EOF and the maximum
1556 * possible file size. If the first block to be removed is
1557 * beyond the maximum file size (ie it is the same as last_block),
1558 * then there is nothing to do.
1559 */
1560 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1561 ASSERT(first_unmap_block <= last_block);
1562 done = 0;
1563 if (last_block == first_unmap_block) {
1564 done = 1;
1565 } else {
1566 unmap_len = last_block - first_unmap_block + 1;
1567 }
1568 while (!done) {
1569 /*
1570 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1571 * will tell us whether it freed the entire range or
1572 * not. If this is a synchronous mount (wsync),
1573 * then we can tell bunmapi to keep all the
1574 * transactions asynchronous since the unlink
1575 * transaction that made this inode inactive has
1576 * already hit the disk. There's no danger of
1577 * the freed blocks being reused, there being a
1578 * crash, and the reused blocks suddenly reappearing
1579 * in this file with garbage in them once recovery
1580 * runs.
1581 */
9d87c319 1582 xfs_bmap_init(&free_list, &first_block);
541d7d3c 1583 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1584 first_unmap_block, unmap_len,
cd8b0bb3 1585 xfs_bmapi_aflag(fork),
1da177e4 1586 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1587 &first_block, &free_list,
b4e9181e 1588 &done);
1da177e4
LT
1589 if (error) {
1590 /*
1591 * If the bunmapi call encounters an error,
1592 * return to the caller where the transaction
1593 * can be properly aborted. We just need to
1594 * make sure we're not holding any resources
1595 * that we were not when we came in.
1596 */
1597 xfs_bmap_cancel(&free_list);
1598 return error;
1599 }
1600
1601 /*
1602 * Duplicate the transaction that has the permanent
1603 * reservation and commit the old transaction.
1604 */
f7c99b6f 1605 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4 1606 ntp = *tp;
898621d5
CH
1607 if (committed)
1608 xfs_trans_ijoin(ntp, ip);
f6485057 1609
1da177e4
LT
1610 if (error) {
1611 /*
f6485057
DC
1612 * If the bmap finish call encounters an error, return
1613 * to the caller where the transaction can be properly
1614 * aborted. We just need to make sure we're not
1615 * holding any resources that we were not when we came
1616 * in.
1da177e4 1617 *
f6485057
DC
1618 * Aborting from this point might lose some blocks in
1619 * the file system, but oh well.
1da177e4
LT
1620 */
1621 xfs_bmap_cancel(&free_list);
1da177e4
LT
1622 return error;
1623 }
1624
1625 if (committed) {
1626 /*
f6485057 1627 * Mark the inode dirty so it will be logged and
e5720eec 1628 * moved forward in the log as part of every commit.
1da177e4 1629 */
1da177e4
LT
1630 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1631 }
f6485057 1632
1da177e4 1633 ntp = xfs_trans_dup(ntp);
e5720eec 1634 error = xfs_trans_commit(*tp, 0);
1da177e4 1635 *tp = ntp;
e5720eec 1636
898621d5 1637 xfs_trans_ijoin(ntp, ip);
f6485057 1638
cc09c0dc
DC
1639 if (error)
1640 return error;
1641 /*
1642 * transaction commit worked ok so we can drop the extra ticket
1643 * reference that we gained in xfs_trans_dup()
1644 */
1645 xfs_log_ticket_put(ntp->t_ticket);
1646 error = xfs_trans_reserve(ntp, 0,
f6485057
DC
1647 XFS_ITRUNCATE_LOG_RES(mp), 0,
1648 XFS_TRANS_PERM_LOG_RES,
1649 XFS_ITRUNCATE_LOG_COUNT);
1650 if (error)
1651 return error;
1da177e4
LT
1652 }
1653 /*
1654 * Only update the size in the case of the data fork, but
1655 * always re-log the inode so that our permanent transaction
1656 * can keep on rolling it forward in the log.
1657 */
1658 if (fork == XFS_DATA_FORK) {
1659 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1660 /*
1661 * If we are not changing the file size then do
1662 * not update the on-disk file size - we may be
1663 * called from xfs_inactive_free_eofblocks(). If we
1664 * update the on-disk file size and then the system
1665 * crashes before the contents of the file are
1666 * flushed to disk then the files may be full of
1667 * holes (ie NULL files bug).
1668 */
1669 if (ip->i_size != new_size) {
1670 ip->i_d.di_size = new_size;
1671 ip->i_size = new_size;
1672 }
1da177e4
LT
1673 }
1674 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1675 ASSERT((new_size != 0) ||
1676 (fork == XFS_ATTR_FORK) ||
1677 (ip->i_delayed_blks == 0));
1678 ASSERT((new_size != 0) ||
1679 (fork == XFS_ATTR_FORK) ||
1680 (ip->i_d.di_nextents == 0));
0b1b213f 1681 trace_xfs_itruncate_finish_end(ip, new_size);
1da177e4
LT
1682 return 0;
1683}
1684
1da177e4
LT
1685/*
1686 * This is called when the inode's link count goes to 0.
1687 * We place the on-disk inode on a list in the AGI. It
1688 * will be pulled from this list when the inode is freed.
1689 */
1690int
1691xfs_iunlink(
1692 xfs_trans_t *tp,
1693 xfs_inode_t *ip)
1694{
1695 xfs_mount_t *mp;
1696 xfs_agi_t *agi;
1697 xfs_dinode_t *dip;
1698 xfs_buf_t *agibp;
1699 xfs_buf_t *ibp;
1da177e4
LT
1700 xfs_agino_t agino;
1701 short bucket_index;
1702 int offset;
1703 int error;
1da177e4
LT
1704
1705 ASSERT(ip->i_d.di_nlink == 0);
1706 ASSERT(ip->i_d.di_mode != 0);
1707 ASSERT(ip->i_transp == tp);
1708
1709 mp = tp->t_mountp;
1710
1da177e4
LT
1711 /*
1712 * Get the agi buffer first. It ensures lock ordering
1713 * on the list.
1714 */
5e1be0fb 1715 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1716 if (error)
1da177e4 1717 return error;
1da177e4 1718 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1719
1da177e4
LT
1720 /*
1721 * Get the index into the agi hash table for the
1722 * list this inode will go on.
1723 */
1724 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1725 ASSERT(agino != 0);
1726 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1727 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1728 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1729
16259e7d 1730 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1731 /*
1732 * There is already another inode in the bucket we need
1733 * to add ourselves to. Add us at the front of the list.
1734 * Here we put the head pointer into our next pointer,
1735 * and then we fall through to point the head at us.
1736 */
0cadda1c 1737 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
c319b58b
VA
1738 if (error)
1739 return error;
1740
347d1c01 1741 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1742 /* both on-disk, don't endian flip twice */
1743 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1744 offset = ip->i_imap.im_boffset +
1da177e4
LT
1745 offsetof(xfs_dinode_t, di_next_unlinked);
1746 xfs_trans_inode_buf(tp, ibp);
1747 xfs_trans_log_buf(tp, ibp, offset,
1748 (offset + sizeof(xfs_agino_t) - 1));
1749 xfs_inobp_check(mp, ibp);
1750 }
1751
1752 /*
1753 * Point the bucket head pointer at the inode being inserted.
1754 */
1755 ASSERT(agino != 0);
16259e7d 1756 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1757 offset = offsetof(xfs_agi_t, agi_unlinked) +
1758 (sizeof(xfs_agino_t) * bucket_index);
1759 xfs_trans_log_buf(tp, agibp, offset,
1760 (offset + sizeof(xfs_agino_t) - 1));
1761 return 0;
1762}
1763
1764/*
1765 * Pull the on-disk inode from the AGI unlinked list.
1766 */
1767STATIC int
1768xfs_iunlink_remove(
1769 xfs_trans_t *tp,
1770 xfs_inode_t *ip)
1771{
1772 xfs_ino_t next_ino;
1773 xfs_mount_t *mp;
1774 xfs_agi_t *agi;
1775 xfs_dinode_t *dip;
1776 xfs_buf_t *agibp;
1777 xfs_buf_t *ibp;
1778 xfs_agnumber_t agno;
1da177e4
LT
1779 xfs_agino_t agino;
1780 xfs_agino_t next_agino;
1781 xfs_buf_t *last_ibp;
6fdf8ccc 1782 xfs_dinode_t *last_dip = NULL;
1da177e4 1783 short bucket_index;
6fdf8ccc 1784 int offset, last_offset = 0;
1da177e4 1785 int error;
1da177e4 1786
1da177e4 1787 mp = tp->t_mountp;
1da177e4 1788 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1789
1790 /*
1791 * Get the agi buffer first. It ensures lock ordering
1792 * on the list.
1793 */
5e1be0fb
CH
1794 error = xfs_read_agi(mp, tp, agno, &agibp);
1795 if (error)
1da177e4 1796 return error;
5e1be0fb 1797
1da177e4 1798 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1799
1da177e4
LT
1800 /*
1801 * Get the index into the agi hash table for the
1802 * list this inode will go on.
1803 */
1804 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1805 ASSERT(agino != 0);
1806 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 1807 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
1808 ASSERT(agi->agi_unlinked[bucket_index]);
1809
16259e7d 1810 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1811 /*
1812 * We're at the head of the list. Get the inode's
1813 * on-disk buffer to see if there is anyone after us
1814 * on the list. Only modify our next pointer if it
1815 * is not already NULLAGINO. This saves us the overhead
1816 * of dealing with the buffer when there is no need to
1817 * change it.
1818 */
0cadda1c 1819 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1da177e4
LT
1820 if (error) {
1821 cmn_err(CE_WARN,
1822 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1823 error, mp->m_fsname);
1824 return error;
1825 }
347d1c01 1826 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1827 ASSERT(next_agino != 0);
1828 if (next_agino != NULLAGINO) {
347d1c01 1829 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1830 offset = ip->i_imap.im_boffset +
1da177e4
LT
1831 offsetof(xfs_dinode_t, di_next_unlinked);
1832 xfs_trans_inode_buf(tp, ibp);
1833 xfs_trans_log_buf(tp, ibp, offset,
1834 (offset + sizeof(xfs_agino_t) - 1));
1835 xfs_inobp_check(mp, ibp);
1836 } else {
1837 xfs_trans_brelse(tp, ibp);
1838 }
1839 /*
1840 * Point the bucket head pointer at the next inode.
1841 */
1842 ASSERT(next_agino != 0);
1843 ASSERT(next_agino != agino);
16259e7d 1844 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1845 offset = offsetof(xfs_agi_t, agi_unlinked) +
1846 (sizeof(xfs_agino_t) * bucket_index);
1847 xfs_trans_log_buf(tp, agibp, offset,
1848 (offset + sizeof(xfs_agino_t) - 1));
1849 } else {
1850 /*
1851 * We need to search the list for the inode being freed.
1852 */
16259e7d 1853 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1854 last_ibp = NULL;
1855 while (next_agino != agino) {
1856 /*
1857 * If the last inode wasn't the one pointing to
1858 * us, then release its buffer since we're not
1859 * going to do anything with it.
1860 */
1861 if (last_ibp != NULL) {
1862 xfs_trans_brelse(tp, last_ibp);
1863 }
1864 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1865 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
c679eef0 1866 &last_ibp, &last_offset, 0);
1da177e4
LT
1867 if (error) {
1868 cmn_err(CE_WARN,
1869 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1870 error, mp->m_fsname);
1871 return error;
1872 }
347d1c01 1873 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1874 ASSERT(next_agino != NULLAGINO);
1875 ASSERT(next_agino != 0);
1876 }
1877 /*
1878 * Now last_ibp points to the buffer previous to us on
1879 * the unlinked list. Pull us from the list.
1880 */
0cadda1c 1881 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1da177e4
LT
1882 if (error) {
1883 cmn_err(CE_WARN,
1884 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1885 error, mp->m_fsname);
1886 return error;
1887 }
347d1c01 1888 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1889 ASSERT(next_agino != 0);
1890 ASSERT(next_agino != agino);
1891 if (next_agino != NULLAGINO) {
347d1c01 1892 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1893 offset = ip->i_imap.im_boffset +
1da177e4
LT
1894 offsetof(xfs_dinode_t, di_next_unlinked);
1895 xfs_trans_inode_buf(tp, ibp);
1896 xfs_trans_log_buf(tp, ibp, offset,
1897 (offset + sizeof(xfs_agino_t) - 1));
1898 xfs_inobp_check(mp, ibp);
1899 } else {
1900 xfs_trans_brelse(tp, ibp);
1901 }
1902 /*
1903 * Point the previous inode on the list to the next inode.
1904 */
347d1c01 1905 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
1906 ASSERT(next_agino != 0);
1907 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1908 xfs_trans_inode_buf(tp, last_ibp);
1909 xfs_trans_log_buf(tp, last_ibp, offset,
1910 (offset + sizeof(xfs_agino_t) - 1));
1911 xfs_inobp_check(mp, last_ibp);
1912 }
1913 return 0;
1914}
1915
5b3eed75
DC
1916/*
1917 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1918 * inodes that are in memory - they all must be marked stale and attached to
1919 * the cluster buffer.
1920 */
ba0f32d4 1921STATIC void
1da177e4
LT
1922xfs_ifree_cluster(
1923 xfs_inode_t *free_ip,
1924 xfs_trans_t *tp,
1925 xfs_ino_t inum)
1926{
1927 xfs_mount_t *mp = free_ip->i_mount;
1928 int blks_per_cluster;
1929 int nbufs;
1930 int ninodes;
5b257b4a 1931 int i, j;
1da177e4
LT
1932 xfs_daddr_t blkno;
1933 xfs_buf_t *bp;
5b257b4a 1934 xfs_inode_t *ip;
1da177e4
LT
1935 xfs_inode_log_item_t *iip;
1936 xfs_log_item_t *lip;
5017e97d 1937 struct xfs_perag *pag;
1da177e4 1938
5017e97d 1939 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
1940 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1941 blks_per_cluster = 1;
1942 ninodes = mp->m_sb.sb_inopblock;
1943 nbufs = XFS_IALLOC_BLOCKS(mp);
1944 } else {
1945 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1946 mp->m_sb.sb_blocksize;
1947 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1948 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1949 }
1950
1da177e4
LT
1951 for (j = 0; j < nbufs; j++, inum += ninodes) {
1952 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1953 XFS_INO_TO_AGBNO(mp, inum));
1954
5b257b4a
DC
1955 /*
1956 * We obtain and lock the backing buffer first in the process
1957 * here, as we have to ensure that any dirty inode that we
1958 * can't get the flush lock on is attached to the buffer.
1959 * If we scan the in-memory inodes first, then buffer IO can
1960 * complete before we get a lock on it, and hence we may fail
1961 * to mark all the active inodes on the buffer stale.
1962 */
1963 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1964 mp->m_bsize * blks_per_cluster,
1965 XBF_LOCK);
1966
1967 /*
1968 * Walk the inodes already attached to the buffer and mark them
1969 * stale. These will all have the flush locks held, so an
5b3eed75
DC
1970 * in-memory inode walk can't lock them. By marking them all
1971 * stale first, we will not attempt to lock them in the loop
1972 * below as the XFS_ISTALE flag will be set.
5b257b4a
DC
1973 */
1974 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1975 while (lip) {
1976 if (lip->li_type == XFS_LI_INODE) {
1977 iip = (xfs_inode_log_item_t *)lip;
1978 ASSERT(iip->ili_logged == 1);
ca30b2a7 1979 lip->li_cb = xfs_istale_done;
5b257b4a
DC
1980 xfs_trans_ail_copy_lsn(mp->m_ail,
1981 &iip->ili_flush_lsn,
1982 &iip->ili_item.li_lsn);
1983 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
1984 }
1985 lip = lip->li_bio_list;
1986 }
1da177e4 1987
5b3eed75 1988
1da177e4 1989 /*
5b257b4a
DC
1990 * For each inode in memory attempt to add it to the inode
1991 * buffer and set it up for being staled on buffer IO
1992 * completion. This is safe as we've locked out tail pushing
1993 * and flushing by locking the buffer.
1da177e4 1994 *
5b257b4a
DC
1995 * We have already marked every inode that was part of a
1996 * transaction stale above, which means there is no point in
1997 * even trying to lock them.
1da177e4 1998 */
1da177e4 1999 for (i = 0; i < ninodes; i++) {
5b3eed75 2000retry:
da353b0d
DC
2001 read_lock(&pag->pag_ici_lock);
2002 ip = radix_tree_lookup(&pag->pag_ici_root,
2003 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2004
5b257b4a 2005 /* Inode not in memory or stale, nothing to do */
7a18c386 2006 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2007 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2008 continue;
2009 }
2010
5b3eed75
DC
2011 /*
2012 * Don't try to lock/unlock the current inode, but we
2013 * _cannot_ skip the other inodes that we did not find
2014 * in the list attached to the buffer and are not
2015 * already marked stale. If we can't lock it, back off
2016 * and retry.
2017 */
5b257b4a
DC
2018 if (ip != free_ip &&
2019 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
da353b0d 2020 read_unlock(&pag->pag_ici_lock);
5b3eed75
DC
2021 delay(1);
2022 goto retry;
1da177e4 2023 }
5b257b4a 2024 read_unlock(&pag->pag_ici_lock);
1da177e4 2025
5b3eed75 2026 xfs_iflock(ip);
5b257b4a 2027 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2028
5b3eed75
DC
2029 /*
2030 * we don't need to attach clean inodes or those only
2031 * with unlogged changes (which we throw away, anyway).
2032 */
1da177e4 2033 iip = ip->i_itemp;
5b3eed75 2034 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2035 ASSERT(ip != free_ip);
1da177e4
LT
2036 ip->i_update_core = 0;
2037 xfs_ifunlock(ip);
2038 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2039 continue;
2040 }
2041
2042 iip->ili_last_fields = iip->ili_format.ilf_fields;
2043 iip->ili_format.ilf_fields = 0;
2044 iip->ili_logged = 1;
7b2e2a31
DC
2045 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2046 &iip->ili_item.li_lsn);
1da177e4 2047
ca30b2a7
CH
2048 xfs_buf_attach_iodone(bp, xfs_istale_done,
2049 &iip->ili_item);
5b257b4a
DC
2050
2051 if (ip != free_ip)
1da177e4 2052 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2053 }
2054
5b3eed75 2055 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2056 xfs_trans_binval(tp, bp);
2057 }
2058
5017e97d 2059 xfs_perag_put(pag);
1da177e4
LT
2060}
2061
2062/*
2063 * This is called to return an inode to the inode free list.
2064 * The inode should already be truncated to 0 length and have
2065 * no pages associated with it. This routine also assumes that
2066 * the inode is already a part of the transaction.
2067 *
2068 * The on-disk copy of the inode will have been added to the list
2069 * of unlinked inodes in the AGI. We need to remove the inode from
2070 * that list atomically with respect to freeing it here.
2071 */
2072int
2073xfs_ifree(
2074 xfs_trans_t *tp,
2075 xfs_inode_t *ip,
2076 xfs_bmap_free_t *flist)
2077{
2078 int error;
2079 int delete;
2080 xfs_ino_t first_ino;
c319b58b
VA
2081 xfs_dinode_t *dip;
2082 xfs_buf_t *ibp;
1da177e4 2083
579aa9ca 2084 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2085 ASSERT(ip->i_transp == tp);
2086 ASSERT(ip->i_d.di_nlink == 0);
2087 ASSERT(ip->i_d.di_nextents == 0);
2088 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2089 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2090 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2091 ASSERT(ip->i_d.di_nblocks == 0);
2092
2093 /*
2094 * Pull the on-disk inode from the AGI unlinked list.
2095 */
2096 error = xfs_iunlink_remove(tp, ip);
2097 if (error != 0) {
2098 return error;
2099 }
2100
2101 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2102 if (error != 0) {
2103 return error;
2104 }
2105 ip->i_d.di_mode = 0; /* mark incore inode as free */
2106 ip->i_d.di_flags = 0;
2107 ip->i_d.di_dmevmask = 0;
2108 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2109 ip->i_df.if_ext_max =
2110 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2111 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2112 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2113 /*
2114 * Bump the generation count so no one will be confused
2115 * by reincarnations of this inode.
2116 */
2117 ip->i_d.di_gen++;
c319b58b 2118
1da177e4
LT
2119 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2120
0cadda1c 2121 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
c319b58b
VA
2122 if (error)
2123 return error;
2124
2125 /*
2126 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2127 * from picking up this inode when it is reclaimed (its incore state
2128 * initialzed but not flushed to disk yet). The in-core di_mode is
2129 * already cleared and a corresponding transaction logged.
2130 * The hack here just synchronizes the in-core to on-disk
2131 * di_mode value in advance before the actual inode sync to disk.
2132 * This is OK because the inode is already unlinked and would never
2133 * change its di_mode again for this inode generation.
2134 * This is a temporary hack that would require a proper fix
2135 * in the future.
2136 */
81591fe2 2137 dip->di_mode = 0;
c319b58b 2138
1da177e4
LT
2139 if (delete) {
2140 xfs_ifree_cluster(ip, tp, first_ino);
2141 }
2142
2143 return 0;
2144}
2145
2146/*
2147 * Reallocate the space for if_broot based on the number of records
2148 * being added or deleted as indicated in rec_diff. Move the records
2149 * and pointers in if_broot to fit the new size. When shrinking this
2150 * will eliminate holes between the records and pointers created by
2151 * the caller. When growing this will create holes to be filled in
2152 * by the caller.
2153 *
2154 * The caller must not request to add more records than would fit in
2155 * the on-disk inode root. If the if_broot is currently NULL, then
2156 * if we adding records one will be allocated. The caller must also
2157 * not request that the number of records go below zero, although
2158 * it can go to zero.
2159 *
2160 * ip -- the inode whose if_broot area is changing
2161 * ext_diff -- the change in the number of records, positive or negative,
2162 * requested for the if_broot array.
2163 */
2164void
2165xfs_iroot_realloc(
2166 xfs_inode_t *ip,
2167 int rec_diff,
2168 int whichfork)
2169{
60197e8d 2170 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
2171 int cur_max;
2172 xfs_ifork_t *ifp;
7cc95a82 2173 struct xfs_btree_block *new_broot;
1da177e4
LT
2174 int new_max;
2175 size_t new_size;
2176 char *np;
2177 char *op;
2178
2179 /*
2180 * Handle the degenerate case quietly.
2181 */
2182 if (rec_diff == 0) {
2183 return;
2184 }
2185
2186 ifp = XFS_IFORK_PTR(ip, whichfork);
2187 if (rec_diff > 0) {
2188 /*
2189 * If there wasn't any memory allocated before, just
2190 * allocate it now and get out.
2191 */
2192 if (ifp->if_broot_bytes == 0) {
2193 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
4a7edddc 2194 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2195 ifp->if_broot_bytes = (int)new_size;
2196 return;
2197 }
2198
2199 /*
2200 * If there is already an existing if_broot, then we need
2201 * to realloc() it and shift the pointers to their new
2202 * location. The records don't change location because
2203 * they are kept butted up against the btree block header.
2204 */
60197e8d 2205 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2206 new_max = cur_max + rec_diff;
2207 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 2208 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4 2209 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
4a7edddc 2210 KM_SLEEP | KM_NOFS);
60197e8d
CH
2211 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2212 ifp->if_broot_bytes);
2213 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2214 (int)new_size);
1da177e4
LT
2215 ifp->if_broot_bytes = (int)new_size;
2216 ASSERT(ifp->if_broot_bytes <=
2217 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2218 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2219 return;
2220 }
2221
2222 /*
2223 * rec_diff is less than 0. In this case, we are shrinking the
2224 * if_broot buffer. It must already exist. If we go to zero
2225 * records, just get rid of the root and clear the status bit.
2226 */
2227 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2228 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2229 new_max = cur_max + rec_diff;
2230 ASSERT(new_max >= 0);
2231 if (new_max > 0)
2232 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2233 else
2234 new_size = 0;
2235 if (new_size > 0) {
4a7edddc 2236 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2237 /*
2238 * First copy over the btree block header.
2239 */
7cc95a82 2240 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
2241 } else {
2242 new_broot = NULL;
2243 ifp->if_flags &= ~XFS_IFBROOT;
2244 }
2245
2246 /*
2247 * Only copy the records and pointers if there are any.
2248 */
2249 if (new_max > 0) {
2250 /*
2251 * First copy the records.
2252 */
136341b4
CH
2253 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2254 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2255 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2256
2257 /*
2258 * Then copy the pointers.
2259 */
60197e8d 2260 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2261 ifp->if_broot_bytes);
60197e8d 2262 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2263 (int)new_size);
2264 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2265 }
f0e2d93c 2266 kmem_free(ifp->if_broot);
1da177e4
LT
2267 ifp->if_broot = new_broot;
2268 ifp->if_broot_bytes = (int)new_size;
2269 ASSERT(ifp->if_broot_bytes <=
2270 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2271 return;
2272}
2273
2274
1da177e4
LT
2275/*
2276 * This is called when the amount of space needed for if_data
2277 * is increased or decreased. The change in size is indicated by
2278 * the number of bytes that need to be added or deleted in the
2279 * byte_diff parameter.
2280 *
2281 * If the amount of space needed has decreased below the size of the
2282 * inline buffer, then switch to using the inline buffer. Otherwise,
2283 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2284 * to what is needed.
2285 *
2286 * ip -- the inode whose if_data area is changing
2287 * byte_diff -- the change in the number of bytes, positive or negative,
2288 * requested for the if_data array.
2289 */
2290void
2291xfs_idata_realloc(
2292 xfs_inode_t *ip,
2293 int byte_diff,
2294 int whichfork)
2295{
2296 xfs_ifork_t *ifp;
2297 int new_size;
2298 int real_size;
2299
2300 if (byte_diff == 0) {
2301 return;
2302 }
2303
2304 ifp = XFS_IFORK_PTR(ip, whichfork);
2305 new_size = (int)ifp->if_bytes + byte_diff;
2306 ASSERT(new_size >= 0);
2307
2308 if (new_size == 0) {
2309 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2310 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2311 }
2312 ifp->if_u1.if_data = NULL;
2313 real_size = 0;
2314 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2315 /*
2316 * If the valid extents/data can fit in if_inline_ext/data,
2317 * copy them from the malloc'd vector and free it.
2318 */
2319 if (ifp->if_u1.if_data == NULL) {
2320 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2321 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2322 ASSERT(ifp->if_real_bytes != 0);
2323 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2324 new_size);
f0e2d93c 2325 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2326 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2327 }
2328 real_size = 0;
2329 } else {
2330 /*
2331 * Stuck with malloc/realloc.
2332 * For inline data, the underlying buffer must be
2333 * a multiple of 4 bytes in size so that it can be
2334 * logged and stay on word boundaries. We enforce
2335 * that here.
2336 */
2337 real_size = roundup(new_size, 4);
2338 if (ifp->if_u1.if_data == NULL) {
2339 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2340 ifp->if_u1.if_data = kmem_alloc(real_size,
2341 KM_SLEEP | KM_NOFS);
1da177e4
LT
2342 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2343 /*
2344 * Only do the realloc if the underlying size
2345 * is really changing.
2346 */
2347 if (ifp->if_real_bytes != real_size) {
2348 ifp->if_u1.if_data =
2349 kmem_realloc(ifp->if_u1.if_data,
2350 real_size,
2351 ifp->if_real_bytes,
4a7edddc 2352 KM_SLEEP | KM_NOFS);
1da177e4
LT
2353 }
2354 } else {
2355 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2356 ifp->if_u1.if_data = kmem_alloc(real_size,
2357 KM_SLEEP | KM_NOFS);
1da177e4
LT
2358 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2359 ifp->if_bytes);
2360 }
2361 }
2362 ifp->if_real_bytes = real_size;
2363 ifp->if_bytes = new_size;
2364 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2365}
2366
1da177e4
LT
2367void
2368xfs_idestroy_fork(
2369 xfs_inode_t *ip,
2370 int whichfork)
2371{
2372 xfs_ifork_t *ifp;
2373
2374 ifp = XFS_IFORK_PTR(ip, whichfork);
2375 if (ifp->if_broot != NULL) {
f0e2d93c 2376 kmem_free(ifp->if_broot);
1da177e4
LT
2377 ifp->if_broot = NULL;
2378 }
2379
2380 /*
2381 * If the format is local, then we can't have an extents
2382 * array so just look for an inline data array. If we're
2383 * not local then we may or may not have an extents list,
2384 * so check and free it up if we do.
2385 */
2386 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2387 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2388 (ifp->if_u1.if_data != NULL)) {
2389 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2390 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2391 ifp->if_u1.if_data = NULL;
2392 ifp->if_real_bytes = 0;
2393 }
2394 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2395 ((ifp->if_flags & XFS_IFEXTIREC) ||
2396 ((ifp->if_u1.if_extents != NULL) &&
2397 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2398 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2399 xfs_iext_destroy(ifp);
1da177e4
LT
2400 }
2401 ASSERT(ifp->if_u1.if_extents == NULL ||
2402 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2403 ASSERT(ifp->if_real_bytes == 0);
2404 if (whichfork == XFS_ATTR_FORK) {
2405 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2406 ip->i_afp = NULL;
2407 }
2408}
2409
1da177e4 2410/*
60ec6783
CH
2411 * This is called to unpin an inode. The caller must have the inode locked
2412 * in at least shared mode so that the buffer cannot be subsequently pinned
2413 * once someone is waiting for it to be unpinned.
1da177e4 2414 */
60ec6783
CH
2415static void
2416xfs_iunpin_nowait(
2417 struct xfs_inode *ip)
1da177e4 2418{
579aa9ca 2419 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2420
4aaf15d1
DC
2421 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2422
a3f74ffb 2423 /* Give the log a push to start the unpinning I/O */
60ec6783 2424 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2425
a3f74ffb 2426}
1da177e4 2427
777df5af 2428void
a3f74ffb 2429xfs_iunpin_wait(
60ec6783 2430 struct xfs_inode *ip)
a3f74ffb 2431{
60ec6783
CH
2432 if (xfs_ipincount(ip)) {
2433 xfs_iunpin_nowait(ip);
2434 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2435 }
1da177e4
LT
2436}
2437
1da177e4
LT
2438/*
2439 * xfs_iextents_copy()
2440 *
2441 * This is called to copy the REAL extents (as opposed to the delayed
2442 * allocation extents) from the inode into the given buffer. It
2443 * returns the number of bytes copied into the buffer.
2444 *
2445 * If there are no delayed allocation extents, then we can just
2446 * memcpy() the extents into the buffer. Otherwise, we need to
2447 * examine each extent in turn and skip those which are delayed.
2448 */
2449int
2450xfs_iextents_copy(
2451 xfs_inode_t *ip,
a6f64d4a 2452 xfs_bmbt_rec_t *dp,
1da177e4
LT
2453 int whichfork)
2454{
2455 int copied;
1da177e4
LT
2456 int i;
2457 xfs_ifork_t *ifp;
2458 int nrecs;
2459 xfs_fsblock_t start_block;
2460
2461 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2462 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2463 ASSERT(ifp->if_bytes > 0);
2464
2465 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2466 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2467 ASSERT(nrecs > 0);
2468
2469 /*
2470 * There are some delayed allocation extents in the
2471 * inode, so copy the extents one at a time and skip
2472 * the delayed ones. There must be at least one
2473 * non-delayed extent.
2474 */
1da177e4
LT
2475 copied = 0;
2476 for (i = 0; i < nrecs; i++) {
a6f64d4a 2477 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4 2478 start_block = xfs_bmbt_get_startblock(ep);
9d87c319 2479 if (isnullstartblock(start_block)) {
1da177e4
LT
2480 /*
2481 * It's a delayed allocation extent, so skip it.
2482 */
1da177e4
LT
2483 continue;
2484 }
2485
2486 /* Translate to on disk format */
cd8b0a97
CH
2487 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2488 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2489 dp++;
1da177e4
LT
2490 copied++;
2491 }
2492 ASSERT(copied != 0);
a6f64d4a 2493 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2494
2495 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2496}
2497
2498/*
2499 * Each of the following cases stores data into the same region
2500 * of the on-disk inode, so only one of them can be valid at
2501 * any given time. While it is possible to have conflicting formats
2502 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2503 * in EXTENTS format, this can only happen when the fork has
2504 * changed formats after being modified but before being flushed.
2505 * In these cases, the format always takes precedence, because the
2506 * format indicates the current state of the fork.
2507 */
2508/*ARGSUSED*/
e4ac967b 2509STATIC void
1da177e4
LT
2510xfs_iflush_fork(
2511 xfs_inode_t *ip,
2512 xfs_dinode_t *dip,
2513 xfs_inode_log_item_t *iip,
2514 int whichfork,
2515 xfs_buf_t *bp)
2516{
2517 char *cp;
2518 xfs_ifork_t *ifp;
2519 xfs_mount_t *mp;
2520#ifdef XFS_TRANS_DEBUG
2521 int first;
2522#endif
2523 static const short brootflag[2] =
2524 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2525 static const short dataflag[2] =
2526 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2527 static const short extflag[2] =
2528 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2529
e4ac967b
DC
2530 if (!iip)
2531 return;
1da177e4
LT
2532 ifp = XFS_IFORK_PTR(ip, whichfork);
2533 /*
2534 * This can happen if we gave up in iformat in an error path,
2535 * for the attribute fork.
2536 */
e4ac967b 2537 if (!ifp) {
1da177e4 2538 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2539 return;
1da177e4
LT
2540 }
2541 cp = XFS_DFORK_PTR(dip, whichfork);
2542 mp = ip->i_mount;
2543 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2544 case XFS_DINODE_FMT_LOCAL:
2545 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2546 (ifp->if_bytes > 0)) {
2547 ASSERT(ifp->if_u1.if_data != NULL);
2548 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2549 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2550 }
1da177e4
LT
2551 break;
2552
2553 case XFS_DINODE_FMT_EXTENTS:
2554 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2555 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2556 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2557 (ifp->if_bytes == 0));
2558 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2559 (ifp->if_bytes > 0));
1da177e4
LT
2560 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2561 (ifp->if_bytes > 0)) {
2562 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2563 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2564 whichfork);
2565 }
2566 break;
2567
2568 case XFS_DINODE_FMT_BTREE:
2569 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2570 (ifp->if_broot_bytes > 0)) {
2571 ASSERT(ifp->if_broot != NULL);
2572 ASSERT(ifp->if_broot_bytes <=
2573 (XFS_IFORK_SIZE(ip, whichfork) +
2574 XFS_BROOT_SIZE_ADJ));
60197e8d 2575 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2576 (xfs_bmdr_block_t *)cp,
2577 XFS_DFORK_SIZE(dip, mp, whichfork));
2578 }
2579 break;
2580
2581 case XFS_DINODE_FMT_DEV:
2582 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2583 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2584 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2585 }
2586 break;
2587
2588 case XFS_DINODE_FMT_UUID:
2589 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2590 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2591 memcpy(XFS_DFORK_DPTR(dip),
2592 &ip->i_df.if_u2.if_uuid,
2593 sizeof(uuid_t));
1da177e4
LT
2594 }
2595 break;
2596
2597 default:
2598 ASSERT(0);
2599 break;
2600 }
1da177e4
LT
2601}
2602
bad55843
DC
2603STATIC int
2604xfs_iflush_cluster(
2605 xfs_inode_t *ip,
2606 xfs_buf_t *bp)
2607{
2608 xfs_mount_t *mp = ip->i_mount;
5017e97d 2609 struct xfs_perag *pag;
bad55843 2610 unsigned long first_index, mask;
c8f5f12e 2611 unsigned long inodes_per_cluster;
bad55843
DC
2612 int ilist_size;
2613 xfs_inode_t **ilist;
2614 xfs_inode_t *iq;
bad55843
DC
2615 int nr_found;
2616 int clcount = 0;
2617 int bufwasdelwri;
2618 int i;
2619
5017e97d 2620 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
bad55843 2621
c8f5f12e
DC
2622 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2623 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2624 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843 2625 if (!ilist)
44b56e0a 2626 goto out_put;
bad55843
DC
2627
2628 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2629 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2630 read_lock(&pag->pag_ici_lock);
2631 /* really need a gang lookup range call here */
2632 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2633 first_index, inodes_per_cluster);
bad55843
DC
2634 if (nr_found == 0)
2635 goto out_free;
2636
2637 for (i = 0; i < nr_found; i++) {
2638 iq = ilist[i];
2639 if (iq == ip)
2640 continue;
2641 /* if the inode lies outside this cluster, we're done. */
2642 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2643 break;
2644 /*
2645 * Do an un-protected check to see if the inode is dirty and
2646 * is a candidate for flushing. These checks will be repeated
2647 * later after the appropriate locks are acquired.
2648 */
33540408 2649 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2650 continue;
bad55843
DC
2651
2652 /*
2653 * Try to get locks. If any are unavailable or it is pinned,
2654 * then this inode cannot be flushed and is skipped.
2655 */
2656
2657 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2658 continue;
2659 if (!xfs_iflock_nowait(iq)) {
2660 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2661 continue;
2662 }
2663 if (xfs_ipincount(iq)) {
2664 xfs_ifunlock(iq);
2665 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2666 continue;
2667 }
2668
2669 /*
2670 * arriving here means that this inode can be flushed. First
2671 * re-check that it's dirty before flushing.
2672 */
33540408
DC
2673 if (!xfs_inode_clean(iq)) {
2674 int error;
bad55843
DC
2675 error = xfs_iflush_int(iq, bp);
2676 if (error) {
2677 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2678 goto cluster_corrupt_out;
2679 }
2680 clcount++;
2681 } else {
2682 xfs_ifunlock(iq);
2683 }
2684 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2685 }
2686
2687 if (clcount) {
2688 XFS_STATS_INC(xs_icluster_flushcnt);
2689 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2690 }
2691
2692out_free:
2693 read_unlock(&pag->pag_ici_lock);
f0e2d93c 2694 kmem_free(ilist);
44b56e0a
DC
2695out_put:
2696 xfs_perag_put(pag);
bad55843
DC
2697 return 0;
2698
2699
2700cluster_corrupt_out:
2701 /*
2702 * Corruption detected in the clustering loop. Invalidate the
2703 * inode buffer and shut down the filesystem.
2704 */
2705 read_unlock(&pag->pag_ici_lock);
2706 /*
2707 * Clean up the buffer. If it was B_DELWRI, just release it --
2708 * brelse can handle it with no problems. If not, shut down the
2709 * filesystem before releasing the buffer.
2710 */
2711 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2712 if (bufwasdelwri)
2713 xfs_buf_relse(bp);
2714
2715 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2716
2717 if (!bufwasdelwri) {
2718 /*
2719 * Just like incore_relse: if we have b_iodone functions,
2720 * mark the buffer as an error and call them. Otherwise
2721 * mark it as stale and brelse.
2722 */
2723 if (XFS_BUF_IODONE_FUNC(bp)) {
bad55843
DC
2724 XFS_BUF_UNDONE(bp);
2725 XFS_BUF_STALE(bp);
bad55843
DC
2726 XFS_BUF_ERROR(bp,EIO);
2727 xfs_biodone(bp);
2728 } else {
2729 XFS_BUF_STALE(bp);
2730 xfs_buf_relse(bp);
2731 }
2732 }
2733
2734 /*
2735 * Unlocks the flush lock
2736 */
2737 xfs_iflush_abort(iq);
f0e2d93c 2738 kmem_free(ilist);
44b56e0a 2739 xfs_perag_put(pag);
bad55843
DC
2740 return XFS_ERROR(EFSCORRUPTED);
2741}
2742
1da177e4
LT
2743/*
2744 * xfs_iflush() will write a modified inode's changes out to the
2745 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
2746 * in at least shared mode and the inode flush completion must be
2747 * active as well. The inode lock will still be held upon return from
1da177e4 2748 * the call and the caller is free to unlock it.
c63942d3 2749 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
2750 * The flags indicate how the inode's buffer should be written out.
2751 */
2752int
2753xfs_iflush(
2754 xfs_inode_t *ip,
2755 uint flags)
2756{
2757 xfs_inode_log_item_t *iip;
2758 xfs_buf_t *bp;
2759 xfs_dinode_t *dip;
2760 xfs_mount_t *mp;
2761 int error;
1da177e4
LT
2762
2763 XFS_STATS_INC(xs_iflush_count);
2764
579aa9ca 2765 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 2766 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
2767 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2768 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2769
2770 iip = ip->i_itemp;
2771 mp = ip->i_mount;
2772
1da177e4 2773 /*
a3f74ffb
DC
2774 * We can't flush the inode until it is unpinned, so wait for it if we
2775 * are allowed to block. We know noone new can pin it, because we are
2776 * holding the inode lock shared and you need to hold it exclusively to
2777 * pin the inode.
2778 *
2779 * If we are not allowed to block, force the log out asynchronously so
2780 * that when we come back the inode will be unpinned. If other inodes
2781 * in the same cluster are dirty, they will probably write the inode
2782 * out for us if they occur after the log force completes.
1da177e4 2783 */
c854363e 2784 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
a3f74ffb
DC
2785 xfs_iunpin_nowait(ip);
2786 xfs_ifunlock(ip);
2787 return EAGAIN;
2788 }
1da177e4
LT
2789 xfs_iunpin_wait(ip);
2790
4b6a4688
DC
2791 /*
2792 * For stale inodes we cannot rely on the backing buffer remaining
2793 * stale in cache for the remaining life of the stale inode and so
2794 * xfs_itobp() below may give us a buffer that no longer contains
2795 * inodes below. We have to check this after ensuring the inode is
2796 * unpinned so that it is safe to reclaim the stale inode after the
2797 * flush call.
2798 */
2799 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2800 xfs_ifunlock(ip);
2801 return 0;
2802 }
2803
1da177e4
LT
2804 /*
2805 * This may have been unpinned because the filesystem is shutting
2806 * down forcibly. If that's the case we must not write this inode
2807 * to disk, because the log record didn't make it to disk!
2808 */
2809 if (XFS_FORCED_SHUTDOWN(mp)) {
2810 ip->i_update_core = 0;
2811 if (iip)
2812 iip->ili_format.ilf_fields = 0;
2813 xfs_ifunlock(ip);
2814 return XFS_ERROR(EIO);
2815 }
2816
a3f74ffb
DC
2817 /*
2818 * Get the buffer containing the on-disk inode.
2819 */
76d8b277 2820 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
c854363e 2821 (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
a3f74ffb
DC
2822 if (error || !bp) {
2823 xfs_ifunlock(ip);
2824 return error;
2825 }
2826
1da177e4
LT
2827 /*
2828 * First flush out the inode that xfs_iflush was called with.
2829 */
2830 error = xfs_iflush_int(ip, bp);
bad55843 2831 if (error)
1da177e4 2832 goto corrupt_out;
1da177e4 2833
a3f74ffb
DC
2834 /*
2835 * If the buffer is pinned then push on the log now so we won't
2836 * get stuck waiting in the write for too long.
2837 */
2838 if (XFS_BUF_ISPINNED(bp))
a14a348b 2839 xfs_log_force(mp, 0);
a3f74ffb 2840
1da177e4
LT
2841 /*
2842 * inode clustering:
2843 * see if other inodes can be gathered into this write
2844 */
bad55843
DC
2845 error = xfs_iflush_cluster(ip, bp);
2846 if (error)
2847 goto cluster_corrupt_out;
1da177e4 2848
c854363e 2849 if (flags & SYNC_WAIT)
1da177e4 2850 error = xfs_bwrite(mp, bp);
c854363e
DC
2851 else
2852 xfs_bdwrite(mp, bp);
1da177e4
LT
2853 return error;
2854
2855corrupt_out:
2856 xfs_buf_relse(bp);
7d04a335 2857 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 2858cluster_corrupt_out:
1da177e4
LT
2859 /*
2860 * Unlocks the flush lock
2861 */
bad55843 2862 xfs_iflush_abort(ip);
1da177e4
LT
2863 return XFS_ERROR(EFSCORRUPTED);
2864}
2865
2866
2867STATIC int
2868xfs_iflush_int(
2869 xfs_inode_t *ip,
2870 xfs_buf_t *bp)
2871{
2872 xfs_inode_log_item_t *iip;
2873 xfs_dinode_t *dip;
2874 xfs_mount_t *mp;
2875#ifdef XFS_TRANS_DEBUG
2876 int first;
2877#endif
1da177e4 2878
579aa9ca 2879 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 2880 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
2881 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2882 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2883
2884 iip = ip->i_itemp;
2885 mp = ip->i_mount;
2886
1da177e4 2887 /* set *dip = inode's place in the buffer */
92bfc6e7 2888 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
2889
2890 /*
2891 * Clear i_update_core before copying out the data.
2892 * This is for coordination with our timestamp updates
2893 * that don't hold the inode lock. They will always
2894 * update the timestamps BEFORE setting i_update_core,
2895 * so if we clear i_update_core after they set it we
2896 * are guaranteed to see their updates to the timestamps.
2897 * I believe that this depends on strongly ordered memory
2898 * semantics, but we have that. We use the SYNCHRONIZE
2899 * macro to make sure that the compiler does not reorder
2900 * the i_update_core access below the data copy below.
2901 */
2902 ip->i_update_core = 0;
2903 SYNCHRONIZE();
2904
42fe2b1f 2905 /*
f9581b14 2906 * Make sure to get the latest timestamps from the Linux inode.
42fe2b1f 2907 */
f9581b14 2908 xfs_synchronize_times(ip);
42fe2b1f 2909
81591fe2 2910 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
2911 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2912 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2913 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
81591fe2 2914 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
2915 goto corrupt_out;
2916 }
2917 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2918 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2919 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2920 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2921 ip->i_ino, ip, ip->i_d.di_magic);
2922 goto corrupt_out;
2923 }
2924 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2925 if (XFS_TEST_ERROR(
2926 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2927 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2928 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2929 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2930 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2931 ip->i_ino, ip);
2932 goto corrupt_out;
2933 }
2934 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2935 if (XFS_TEST_ERROR(
2936 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2937 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2938 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2939 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2940 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2941 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2942 ip->i_ino, ip);
2943 goto corrupt_out;
2944 }
2945 }
2946 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2947 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2948 XFS_RANDOM_IFLUSH_5)) {
2949 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2950 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2951 ip->i_ino,
2952 ip->i_d.di_nextents + ip->i_d.di_anextents,
2953 ip->i_d.di_nblocks,
2954 ip);
2955 goto corrupt_out;
2956 }
2957 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2958 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2959 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2960 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2961 ip->i_ino, ip->i_d.di_forkoff, ip);
2962 goto corrupt_out;
2963 }
2964 /*
2965 * bump the flush iteration count, used to detect flushes which
2966 * postdate a log record during recovery.
2967 */
2968
2969 ip->i_d.di_flushiter++;
2970
2971 /*
2972 * Copy the dirty parts of the inode into the on-disk
2973 * inode. We always copy out the core of the inode,
2974 * because if the inode is dirty at all the core must
2975 * be.
2976 */
81591fe2 2977 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
2978
2979 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2980 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2981 ip->i_d.di_flushiter = 0;
2982
2983 /*
2984 * If this is really an old format inode and the superblock version
2985 * has not been updated to support only new format inodes, then
2986 * convert back to the old inode format. If the superblock version
2987 * has been updated, then make the conversion permanent.
2988 */
51ce16d5
CH
2989 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2990 if (ip->i_d.di_version == 1) {
62118709 2991 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
2992 /*
2993 * Convert it back.
2994 */
2995 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 2996 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
2997 } else {
2998 /*
2999 * The superblock version has already been bumped,
3000 * so just make the conversion to the new inode
3001 * format permanent.
3002 */
51ce16d5
CH
3003 ip->i_d.di_version = 2;
3004 dip->di_version = 2;
1da177e4 3005 ip->i_d.di_onlink = 0;
81591fe2 3006 dip->di_onlink = 0;
1da177e4 3007 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
3008 memset(&(dip->di_pad[0]), 0,
3009 sizeof(dip->di_pad));
1da177e4
LT
3010 ASSERT(ip->i_d.di_projid == 0);
3011 }
3012 }
3013
e4ac967b
DC
3014 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3015 if (XFS_IFORK_Q(ip))
3016 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3017 xfs_inobp_check(mp, bp);
3018
3019 /*
3020 * We've recorded everything logged in the inode, so we'd
3021 * like to clear the ilf_fields bits so we don't log and
3022 * flush things unnecessarily. However, we can't stop
3023 * logging all this information until the data we've copied
3024 * into the disk buffer is written to disk. If we did we might
3025 * overwrite the copy of the inode in the log with all the
3026 * data after re-logging only part of it, and in the face of
3027 * a crash we wouldn't have all the data we need to recover.
3028 *
3029 * What we do is move the bits to the ili_last_fields field.
3030 * When logging the inode, these bits are moved back to the
3031 * ilf_fields field. In the xfs_iflush_done() routine we
3032 * clear ili_last_fields, since we know that the information
3033 * those bits represent is permanently on disk. As long as
3034 * the flush completes before the inode is logged again, then
3035 * both ilf_fields and ili_last_fields will be cleared.
3036 *
3037 * We can play with the ilf_fields bits here, because the inode
3038 * lock must be held exclusively in order to set bits there
3039 * and the flush lock protects the ili_last_fields bits.
3040 * Set ili_logged so the flush done
3041 * routine can tell whether or not to look in the AIL.
3042 * Also, store the current LSN of the inode so that we can tell
3043 * whether the item has moved in the AIL from xfs_iflush_done().
3044 * In order to read the lsn we need the AIL lock, because
3045 * it is a 64 bit value that cannot be read atomically.
3046 */
3047 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3048 iip->ili_last_fields = iip->ili_format.ilf_fields;
3049 iip->ili_format.ilf_fields = 0;
3050 iip->ili_logged = 1;
3051
7b2e2a31
DC
3052 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3053 &iip->ili_item.li_lsn);
1da177e4
LT
3054
3055 /*
3056 * Attach the function xfs_iflush_done to the inode's
3057 * buffer. This will remove the inode from the AIL
3058 * and unlock the inode's flush lock when the inode is
3059 * completely written to disk.
3060 */
ca30b2a7 3061 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4
LT
3062
3063 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3064 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3065 } else {
3066 /*
3067 * We're flushing an inode which is not in the AIL and has
3068 * not been logged but has i_update_core set. For this
3069 * case we can use a B_DELWRI flush and immediately drop
3070 * the inode flush lock because we can avoid the whole
3071 * AIL state thing. It's OK to drop the flush lock now,
3072 * because we've already locked the buffer and to do anything
3073 * you really need both.
3074 */
3075 if (iip != NULL) {
3076 ASSERT(iip->ili_logged == 0);
3077 ASSERT(iip->ili_last_fields == 0);
3078 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3079 }
3080 xfs_ifunlock(ip);
3081 }
3082
3083 return 0;
3084
3085corrupt_out:
3086 return XFS_ERROR(EFSCORRUPTED);
3087}
3088
4eea22f0
MK
3089/*
3090 * Return a pointer to the extent record at file index idx.
3091 */
a6f64d4a 3092xfs_bmbt_rec_host_t *
4eea22f0
MK
3093xfs_iext_get_ext(
3094 xfs_ifork_t *ifp, /* inode fork pointer */
3095 xfs_extnum_t idx) /* index of target extent */
3096{
3097 ASSERT(idx >= 0);
0293ce3a
MK
3098 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3099 return ifp->if_u1.if_ext_irec->er_extbuf;
3100 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3101 xfs_ext_irec_t *erp; /* irec pointer */
3102 int erp_idx = 0; /* irec index */
3103 xfs_extnum_t page_idx = idx; /* ext index in target list */
3104
3105 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3106 return &erp->er_extbuf[page_idx];
3107 } else if (ifp->if_bytes) {
4eea22f0
MK
3108 return &ifp->if_u1.if_extents[idx];
3109 } else {
3110 return NULL;
3111 }
3112}
3113
3114/*
3115 * Insert new item(s) into the extent records for incore inode
3116 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3117 */
3118void
3119xfs_iext_insert(
6ef35544 3120 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0
MK
3121 xfs_extnum_t idx, /* starting index of new items */
3122 xfs_extnum_t count, /* number of inserted items */
6ef35544
CH
3123 xfs_bmbt_irec_t *new, /* items to insert */
3124 int state) /* type of extent conversion */
4eea22f0 3125{
6ef35544 3126 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3127 xfs_extnum_t i; /* extent record index */
3128
0b1b213f
CH
3129 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3130
4eea22f0
MK
3131 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3132 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3133 for (i = idx; i < idx + count; i++, new++)
3134 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3135}
3136
3137/*
3138 * This is called when the amount of space required for incore file
3139 * extents needs to be increased. The ext_diff parameter stores the
3140 * number of new extents being added and the idx parameter contains
3141 * the extent index where the new extents will be added. If the new
3142 * extents are being appended, then we just need to (re)allocate and
3143 * initialize the space. Otherwise, if the new extents are being
3144 * inserted into the middle of the existing entries, a bit more work
3145 * is required to make room for the new extents to be inserted. The
3146 * caller is responsible for filling in the new extent entries upon
3147 * return.
3148 */
3149void
3150xfs_iext_add(
3151 xfs_ifork_t *ifp, /* inode fork pointer */
3152 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3153 int ext_diff) /* number of extents to add */
4eea22f0
MK
3154{
3155 int byte_diff; /* new bytes being added */
3156 int new_size; /* size of extents after adding */
3157 xfs_extnum_t nextents; /* number of extents in file */
3158
3159 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3160 ASSERT((idx >= 0) && (idx <= nextents));
3161 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3162 new_size = ifp->if_bytes + byte_diff;
3163 /*
3164 * If the new number of extents (nextents + ext_diff)
3165 * fits inside the inode, then continue to use the inline
3166 * extent buffer.
3167 */
3168 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3169 if (idx < nextents) {
3170 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3171 &ifp->if_u2.if_inline_ext[idx],
3172 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3173 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3174 }
3175 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3176 ifp->if_real_bytes = 0;
0293ce3a 3177 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3178 }
3179 /*
3180 * Otherwise use a linear (direct) extent list.
3181 * If the extents are currently inside the inode,
3182 * xfs_iext_realloc_direct will switch us from
3183 * inline to direct extent allocation mode.
3184 */
0293ce3a 3185 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3186 xfs_iext_realloc_direct(ifp, new_size);
3187 if (idx < nextents) {
3188 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3189 &ifp->if_u1.if_extents[idx],
3190 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3191 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3192 }
3193 }
0293ce3a
MK
3194 /* Indirection array */
3195 else {
3196 xfs_ext_irec_t *erp;
3197 int erp_idx = 0;
3198 int page_idx = idx;
3199
3200 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3201 if (ifp->if_flags & XFS_IFEXTIREC) {
3202 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3203 } else {
3204 xfs_iext_irec_init(ifp);
3205 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3206 erp = ifp->if_u1.if_ext_irec;
3207 }
3208 /* Extents fit in target extent page */
3209 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3210 if (page_idx < erp->er_extcount) {
3211 memmove(&erp->er_extbuf[page_idx + ext_diff],
3212 &erp->er_extbuf[page_idx],
3213 (erp->er_extcount - page_idx) *
3214 sizeof(xfs_bmbt_rec_t));
3215 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3216 }
3217 erp->er_extcount += ext_diff;
3218 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3219 }
3220 /* Insert a new extent page */
3221 else if (erp) {
3222 xfs_iext_add_indirect_multi(ifp,
3223 erp_idx, page_idx, ext_diff);
3224 }
3225 /*
3226 * If extent(s) are being appended to the last page in
3227 * the indirection array and the new extent(s) don't fit
3228 * in the page, then erp is NULL and erp_idx is set to
3229 * the next index needed in the indirection array.
3230 */
3231 else {
3232 int count = ext_diff;
3233
3234 while (count) {
3235 erp = xfs_iext_irec_new(ifp, erp_idx);
3236 erp->er_extcount = count;
3237 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3238 if (count) {
3239 erp_idx++;
3240 }
3241 }
3242 }
3243 }
4eea22f0
MK
3244 ifp->if_bytes = new_size;
3245}
3246
0293ce3a
MK
3247/*
3248 * This is called when incore extents are being added to the indirection
3249 * array and the new extents do not fit in the target extent list. The
3250 * erp_idx parameter contains the irec index for the target extent list
3251 * in the indirection array, and the idx parameter contains the extent
3252 * index within the list. The number of extents being added is stored
3253 * in the count parameter.
3254 *
3255 * |-------| |-------|
3256 * | | | | idx - number of extents before idx
3257 * | idx | | count |
3258 * | | | | count - number of extents being inserted at idx
3259 * |-------| |-------|
3260 * | count | | nex2 | nex2 - number of extents after idx + count
3261 * |-------| |-------|
3262 */
3263void
3264xfs_iext_add_indirect_multi(
3265 xfs_ifork_t *ifp, /* inode fork pointer */
3266 int erp_idx, /* target extent irec index */
3267 xfs_extnum_t idx, /* index within target list */
3268 int count) /* new extents being added */
3269{
3270 int byte_diff; /* new bytes being added */
3271 xfs_ext_irec_t *erp; /* pointer to irec entry */
3272 xfs_extnum_t ext_diff; /* number of extents to add */
3273 xfs_extnum_t ext_cnt; /* new extents still needed */
3274 xfs_extnum_t nex2; /* extents after idx + count */
3275 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3276 int nlists; /* number of irec's (lists) */
3277
3278 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3279 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3280 nex2 = erp->er_extcount - idx;
3281 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3282
3283 /*
3284 * Save second part of target extent list
3285 * (all extents past */
3286 if (nex2) {
3287 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3288 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3289 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3290 erp->er_extcount -= nex2;
3291 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3292 memset(&erp->er_extbuf[idx], 0, byte_diff);
3293 }
3294
3295 /*
3296 * Add the new extents to the end of the target
3297 * list, then allocate new irec record(s) and
3298 * extent buffer(s) as needed to store the rest
3299 * of the new extents.
3300 */
3301 ext_cnt = count;
3302 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3303 if (ext_diff) {
3304 erp->er_extcount += ext_diff;
3305 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3306 ext_cnt -= ext_diff;
3307 }
3308 while (ext_cnt) {
3309 erp_idx++;
3310 erp = xfs_iext_irec_new(ifp, erp_idx);
3311 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3312 erp->er_extcount = ext_diff;
3313 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3314 ext_cnt -= ext_diff;
3315 }
3316
3317 /* Add nex2 extents back to indirection array */
3318 if (nex2) {
3319 xfs_extnum_t ext_avail;
3320 int i;
3321
3322 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3323 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3324 i = 0;
3325 /*
3326 * If nex2 extents fit in the current page, append
3327 * nex2_ep after the new extents.
3328 */
3329 if (nex2 <= ext_avail) {
3330 i = erp->er_extcount;
3331 }
3332 /*
3333 * Otherwise, check if space is available in the
3334 * next page.
3335 */
3336 else if ((erp_idx < nlists - 1) &&
3337 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3338 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3339 erp_idx++;
3340 erp++;
3341 /* Create a hole for nex2 extents */
3342 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3343 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3344 }
3345 /*
3346 * Final choice, create a new extent page for
3347 * nex2 extents.
3348 */
3349 else {
3350 erp_idx++;
3351 erp = xfs_iext_irec_new(ifp, erp_idx);
3352 }
3353 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3354 kmem_free(nex2_ep);
0293ce3a
MK
3355 erp->er_extcount += nex2;
3356 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3357 }
3358}
3359
4eea22f0
MK
3360/*
3361 * This is called when the amount of space required for incore file
3362 * extents needs to be decreased. The ext_diff parameter stores the
3363 * number of extents to be removed and the idx parameter contains
3364 * the extent index where the extents will be removed from.
0293ce3a
MK
3365 *
3366 * If the amount of space needed has decreased below the linear
3367 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3368 * extent array. Otherwise, use kmem_realloc() to adjust the
3369 * size to what is needed.
4eea22f0
MK
3370 */
3371void
3372xfs_iext_remove(
6ef35544 3373 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0 3374 xfs_extnum_t idx, /* index to begin removing exts */
6ef35544
CH
3375 int ext_diff, /* number of extents to remove */
3376 int state) /* type of extent conversion */
4eea22f0 3377{
6ef35544 3378 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3379 xfs_extnum_t nextents; /* number of extents in file */
3380 int new_size; /* size of extents after removal */
3381
0b1b213f
CH
3382 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3383
4eea22f0
MK
3384 ASSERT(ext_diff > 0);
3385 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3386 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3387
3388 if (new_size == 0) {
3389 xfs_iext_destroy(ifp);
0293ce3a
MK
3390 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3391 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3392 } else if (ifp->if_real_bytes) {
3393 xfs_iext_remove_direct(ifp, idx, ext_diff);
3394 } else {
3395 xfs_iext_remove_inline(ifp, idx, ext_diff);
3396 }
3397 ifp->if_bytes = new_size;
3398}
3399
3400/*
3401 * This removes ext_diff extents from the inline buffer, beginning
3402 * at extent index idx.
3403 */
3404void
3405xfs_iext_remove_inline(
3406 xfs_ifork_t *ifp, /* inode fork pointer */
3407 xfs_extnum_t idx, /* index to begin removing exts */
3408 int ext_diff) /* number of extents to remove */
3409{
3410 int nextents; /* number of extents in file */
3411
0293ce3a 3412 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3413 ASSERT(idx < XFS_INLINE_EXTS);
3414 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3415 ASSERT(((nextents - ext_diff) > 0) &&
3416 (nextents - ext_diff) < XFS_INLINE_EXTS);
3417
3418 if (idx + ext_diff < nextents) {
3419 memmove(&ifp->if_u2.if_inline_ext[idx],
3420 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3421 (nextents - (idx + ext_diff)) *
3422 sizeof(xfs_bmbt_rec_t));
3423 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3424 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3425 } else {
3426 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3427 ext_diff * sizeof(xfs_bmbt_rec_t));
3428 }
3429}
3430
3431/*
3432 * This removes ext_diff extents from a linear (direct) extent list,
3433 * beginning at extent index idx. If the extents are being removed
3434 * from the end of the list (ie. truncate) then we just need to re-
3435 * allocate the list to remove the extra space. Otherwise, if the
3436 * extents are being removed from the middle of the existing extent
3437 * entries, then we first need to move the extent records beginning
3438 * at idx + ext_diff up in the list to overwrite the records being
3439 * removed, then remove the extra space via kmem_realloc.
3440 */
3441void
3442xfs_iext_remove_direct(
3443 xfs_ifork_t *ifp, /* inode fork pointer */
3444 xfs_extnum_t idx, /* index to begin removing exts */
3445 int ext_diff) /* number of extents to remove */
3446{
3447 xfs_extnum_t nextents; /* number of extents in file */
3448 int new_size; /* size of extents after removal */
3449
0293ce3a 3450 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3451 new_size = ifp->if_bytes -
3452 (ext_diff * sizeof(xfs_bmbt_rec_t));
3453 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3454
3455 if (new_size == 0) {
3456 xfs_iext_destroy(ifp);
3457 return;
3458 }
3459 /* Move extents up in the list (if needed) */
3460 if (idx + ext_diff < nextents) {
3461 memmove(&ifp->if_u1.if_extents[idx],
3462 &ifp->if_u1.if_extents[idx + ext_diff],
3463 (nextents - (idx + ext_diff)) *
3464 sizeof(xfs_bmbt_rec_t));
3465 }
3466 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3467 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3468 /*
3469 * Reallocate the direct extent list. If the extents
3470 * will fit inside the inode then xfs_iext_realloc_direct
3471 * will switch from direct to inline extent allocation
3472 * mode for us.
3473 */
3474 xfs_iext_realloc_direct(ifp, new_size);
3475 ifp->if_bytes = new_size;
3476}
3477
0293ce3a
MK
3478/*
3479 * This is called when incore extents are being removed from the
3480 * indirection array and the extents being removed span multiple extent
3481 * buffers. The idx parameter contains the file extent index where we
3482 * want to begin removing extents, and the count parameter contains
3483 * how many extents need to be removed.
3484 *
3485 * |-------| |-------|
3486 * | nex1 | | | nex1 - number of extents before idx
3487 * |-------| | count |
3488 * | | | | count - number of extents being removed at idx
3489 * | count | |-------|
3490 * | | | nex2 | nex2 - number of extents after idx + count
3491 * |-------| |-------|
3492 */
3493void
3494xfs_iext_remove_indirect(
3495 xfs_ifork_t *ifp, /* inode fork pointer */
3496 xfs_extnum_t idx, /* index to begin removing extents */
3497 int count) /* number of extents to remove */
3498{
3499 xfs_ext_irec_t *erp; /* indirection array pointer */
3500 int erp_idx = 0; /* indirection array index */
3501 xfs_extnum_t ext_cnt; /* extents left to remove */
3502 xfs_extnum_t ext_diff; /* extents to remove in current list */
3503 xfs_extnum_t nex1; /* number of extents before idx */
3504 xfs_extnum_t nex2; /* extents after idx + count */
0293ce3a
MK
3505 int page_idx = idx; /* index in target extent list */
3506
3507 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3508 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3509 ASSERT(erp != NULL);
0293ce3a
MK
3510 nex1 = page_idx;
3511 ext_cnt = count;
3512 while (ext_cnt) {
3513 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3514 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3515 /*
3516 * Check for deletion of entire list;
3517 * xfs_iext_irec_remove() updates extent offsets.
3518 */
3519 if (ext_diff == erp->er_extcount) {
3520 xfs_iext_irec_remove(ifp, erp_idx);
3521 ext_cnt -= ext_diff;
3522 nex1 = 0;
3523 if (ext_cnt) {
3524 ASSERT(erp_idx < ifp->if_real_bytes /
3525 XFS_IEXT_BUFSZ);
3526 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3527 nex1 = 0;
3528 continue;
3529 } else {
3530 break;
3531 }
3532 }
3533 /* Move extents up (if needed) */
3534 if (nex2) {
3535 memmove(&erp->er_extbuf[nex1],
3536 &erp->er_extbuf[nex1 + ext_diff],
3537 nex2 * sizeof(xfs_bmbt_rec_t));
3538 }
3539 /* Zero out rest of page */
3540 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3541 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3542 /* Update remaining counters */
3543 erp->er_extcount -= ext_diff;
3544 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3545 ext_cnt -= ext_diff;
3546 nex1 = 0;
3547 erp_idx++;
3548 erp++;
3549 }
3550 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3551 xfs_iext_irec_compact(ifp);
3552}
3553
4eea22f0
MK
3554/*
3555 * Create, destroy, or resize a linear (direct) block of extents.
3556 */
3557void
3558xfs_iext_realloc_direct(
3559 xfs_ifork_t *ifp, /* inode fork pointer */
3560 int new_size) /* new size of extents */
3561{
3562 int rnew_size; /* real new size of extents */
3563
3564 rnew_size = new_size;
3565
0293ce3a
MK
3566 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3567 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3568 (new_size != ifp->if_real_bytes)));
3569
4eea22f0
MK
3570 /* Free extent records */
3571 if (new_size == 0) {
3572 xfs_iext_destroy(ifp);
3573 }
3574 /* Resize direct extent list and zero any new bytes */
3575 else if (ifp->if_real_bytes) {
3576 /* Check if extents will fit inside the inode */
3577 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3578 xfs_iext_direct_to_inline(ifp, new_size /
3579 (uint)sizeof(xfs_bmbt_rec_t));
3580 ifp->if_bytes = new_size;
3581 return;
3582 }
16a087d8 3583 if (!is_power_of_2(new_size)){
40ebd81d 3584 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3585 }
3586 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3587 ifp->if_u1.if_extents =
4eea22f0
MK
3588 kmem_realloc(ifp->if_u1.if_extents,
3589 rnew_size,
6785073b 3590 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3591 }
3592 if (rnew_size > ifp->if_real_bytes) {
3593 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3594 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3595 rnew_size - ifp->if_real_bytes);
3596 }
3597 }
3598 /*
3599 * Switch from the inline extent buffer to a direct
3600 * extent list. Be sure to include the inline extent
3601 * bytes in new_size.
3602 */
3603 else {
3604 new_size += ifp->if_bytes;
16a087d8 3605 if (!is_power_of_2(new_size)) {
40ebd81d 3606 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3607 }
3608 xfs_iext_inline_to_direct(ifp, rnew_size);
3609 }
3610 ifp->if_real_bytes = rnew_size;
3611 ifp->if_bytes = new_size;
3612}
3613
3614/*
3615 * Switch from linear (direct) extent records to inline buffer.
3616 */
3617void
3618xfs_iext_direct_to_inline(
3619 xfs_ifork_t *ifp, /* inode fork pointer */
3620 xfs_extnum_t nextents) /* number of extents in file */
3621{
3622 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3623 ASSERT(nextents <= XFS_INLINE_EXTS);
3624 /*
3625 * The inline buffer was zeroed when we switched
3626 * from inline to direct extent allocation mode,
3627 * so we don't need to clear it here.
3628 */
3629 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3630 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3631 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3632 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3633 ifp->if_real_bytes = 0;
3634}
3635
3636/*
3637 * Switch from inline buffer to linear (direct) extent records.
3638 * new_size should already be rounded up to the next power of 2
3639 * by the caller (when appropriate), so use new_size as it is.
3640 * However, since new_size may be rounded up, we can't update
3641 * if_bytes here. It is the caller's responsibility to update
3642 * if_bytes upon return.
3643 */
3644void
3645xfs_iext_inline_to_direct(
3646 xfs_ifork_t *ifp, /* inode fork pointer */
3647 int new_size) /* number of extents in file */
3648{
6785073b 3649 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3650 memset(ifp->if_u1.if_extents, 0, new_size);
3651 if (ifp->if_bytes) {
3652 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3653 ifp->if_bytes);
3654 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3655 sizeof(xfs_bmbt_rec_t));
3656 }
3657 ifp->if_real_bytes = new_size;
3658}
3659
0293ce3a
MK
3660/*
3661 * Resize an extent indirection array to new_size bytes.
3662 */
d96f8f89 3663STATIC void
0293ce3a
MK
3664xfs_iext_realloc_indirect(
3665 xfs_ifork_t *ifp, /* inode fork pointer */
3666 int new_size) /* new indirection array size */
3667{
3668 int nlists; /* number of irec's (ex lists) */
3669 int size; /* current indirection array size */
3670
3671 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3672 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3673 size = nlists * sizeof(xfs_ext_irec_t);
3674 ASSERT(ifp->if_real_bytes);
3675 ASSERT((new_size >= 0) && (new_size != size));
3676 if (new_size == 0) {
3677 xfs_iext_destroy(ifp);
3678 } else {
3679 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3680 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3681 new_size, size, KM_NOFS);
0293ce3a
MK
3682 }
3683}
3684
3685/*
3686 * Switch from indirection array to linear (direct) extent allocations.
3687 */
d96f8f89 3688STATIC void
0293ce3a
MK
3689xfs_iext_indirect_to_direct(
3690 xfs_ifork_t *ifp) /* inode fork pointer */
3691{
a6f64d4a 3692 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
3693 xfs_extnum_t nextents; /* number of extents in file */
3694 int size; /* size of file extents */
3695
3696 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3697 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3698 ASSERT(nextents <= XFS_LINEAR_EXTS);
3699 size = nextents * sizeof(xfs_bmbt_rec_t);
3700
71a8c87f 3701 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
3702 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3703
3704 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 3705 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3706 ifp->if_flags &= ~XFS_IFEXTIREC;
3707 ifp->if_u1.if_extents = ep;
3708 ifp->if_bytes = size;
3709 if (nextents < XFS_LINEAR_EXTS) {
3710 xfs_iext_realloc_direct(ifp, size);
3711 }
3712}
3713
4eea22f0
MK
3714/*
3715 * Free incore file extents.
3716 */
3717void
3718xfs_iext_destroy(
3719 xfs_ifork_t *ifp) /* inode fork pointer */
3720{
0293ce3a
MK
3721 if (ifp->if_flags & XFS_IFEXTIREC) {
3722 int erp_idx;
3723 int nlists;
3724
3725 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3726 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3727 xfs_iext_irec_remove(ifp, erp_idx);
3728 }
3729 ifp->if_flags &= ~XFS_IFEXTIREC;
3730 } else if (ifp->if_real_bytes) {
f0e2d93c 3731 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3732 } else if (ifp->if_bytes) {
3733 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3734 sizeof(xfs_bmbt_rec_t));
3735 }
3736 ifp->if_u1.if_extents = NULL;
3737 ifp->if_real_bytes = 0;
3738 ifp->if_bytes = 0;
3739}
0293ce3a 3740
8867bc9b
MK
3741/*
3742 * Return a pointer to the extent record for file system block bno.
3743 */
a6f64d4a 3744xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
3745xfs_iext_bno_to_ext(
3746 xfs_ifork_t *ifp, /* inode fork pointer */
3747 xfs_fileoff_t bno, /* block number to search for */
3748 xfs_extnum_t *idxp) /* index of target extent */
3749{
a6f64d4a 3750 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 3751 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 3752 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 3753 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 3754 int high; /* upper boundary in search */
8867bc9b 3755 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 3756 int low; /* lower boundary in search */
8867bc9b
MK
3757 xfs_extnum_t nextents; /* number of file extents */
3758 xfs_fileoff_t startoff = 0; /* start offset of extent */
3759
3760 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3761 if (nextents == 0) {
3762 *idxp = 0;
3763 return NULL;
3764 }
3765 low = 0;
3766 if (ifp->if_flags & XFS_IFEXTIREC) {
3767 /* Find target extent list */
3768 int erp_idx = 0;
3769 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3770 base = erp->er_extbuf;
3771 high = erp->er_extcount - 1;
3772 } else {
3773 base = ifp->if_u1.if_extents;
3774 high = nextents - 1;
3775 }
3776 /* Binary search extent records */
3777 while (low <= high) {
3778 idx = (low + high) >> 1;
3779 ep = base + idx;
3780 startoff = xfs_bmbt_get_startoff(ep);
3781 blockcount = xfs_bmbt_get_blockcount(ep);
3782 if (bno < startoff) {
3783 high = idx - 1;
3784 } else if (bno >= startoff + blockcount) {
3785 low = idx + 1;
3786 } else {
3787 /* Convert back to file-based extent index */
3788 if (ifp->if_flags & XFS_IFEXTIREC) {
3789 idx += erp->er_extoff;
3790 }
3791 *idxp = idx;
3792 return ep;
3793 }
3794 }
3795 /* Convert back to file-based extent index */
3796 if (ifp->if_flags & XFS_IFEXTIREC) {
3797 idx += erp->er_extoff;
3798 }
3799 if (bno >= startoff + blockcount) {
3800 if (++idx == nextents) {
3801 ep = NULL;
3802 } else {
3803 ep = xfs_iext_get_ext(ifp, idx);
3804 }
3805 }
3806 *idxp = idx;
3807 return ep;
3808}
3809
0293ce3a
MK
3810/*
3811 * Return a pointer to the indirection array entry containing the
3812 * extent record for filesystem block bno. Store the index of the
3813 * target irec in *erp_idxp.
3814 */
8867bc9b 3815xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
3816xfs_iext_bno_to_irec(
3817 xfs_ifork_t *ifp, /* inode fork pointer */
3818 xfs_fileoff_t bno, /* block number to search for */
3819 int *erp_idxp) /* irec index of target ext list */
3820{
3821 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3822 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 3823 int erp_idx; /* indirection array index */
0293ce3a
MK
3824 int nlists; /* number of extent irec's (lists) */
3825 int high; /* binary search upper limit */
3826 int low; /* binary search lower limit */
3827
3828 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3829 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3830 erp_idx = 0;
3831 low = 0;
3832 high = nlists - 1;
3833 while (low <= high) {
3834 erp_idx = (low + high) >> 1;
3835 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3836 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3837 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3838 high = erp_idx - 1;
3839 } else if (erp_next && bno >=
3840 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3841 low = erp_idx + 1;
3842 } else {
3843 break;
3844 }
3845 }
3846 *erp_idxp = erp_idx;
3847 return erp;
3848}
3849
3850/*
3851 * Return a pointer to the indirection array entry containing the
3852 * extent record at file extent index *idxp. Store the index of the
3853 * target irec in *erp_idxp and store the page index of the target
3854 * extent record in *idxp.
3855 */
3856xfs_ext_irec_t *
3857xfs_iext_idx_to_irec(
3858 xfs_ifork_t *ifp, /* inode fork pointer */
3859 xfs_extnum_t *idxp, /* extent index (file -> page) */
3860 int *erp_idxp, /* pointer to target irec */
3861 int realloc) /* new bytes were just added */
3862{
3863 xfs_ext_irec_t *prev; /* pointer to previous irec */
3864 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3865 int erp_idx; /* indirection array index */
3866 int nlists; /* number of irec's (ex lists) */
3867 int high; /* binary search upper limit */
3868 int low; /* binary search lower limit */
3869 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3870
3871 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3872 ASSERT(page_idx >= 0 && page_idx <=
3873 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3874 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3875 erp_idx = 0;
3876 low = 0;
3877 high = nlists - 1;
3878
3879 /* Binary search extent irec's */
3880 while (low <= high) {
3881 erp_idx = (low + high) >> 1;
3882 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3883 prev = erp_idx > 0 ? erp - 1 : NULL;
3884 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3885 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3886 high = erp_idx - 1;
3887 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3888 (page_idx == erp->er_extoff + erp->er_extcount &&
3889 !realloc)) {
3890 low = erp_idx + 1;
3891 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3892 erp->er_extcount == XFS_LINEAR_EXTS) {
3893 ASSERT(realloc);
3894 page_idx = 0;
3895 erp_idx++;
3896 erp = erp_idx < nlists ? erp + 1 : NULL;
3897 break;
3898 } else {
3899 page_idx -= erp->er_extoff;
3900 break;
3901 }
3902 }
3903 *idxp = page_idx;
3904 *erp_idxp = erp_idx;
3905 return(erp);
3906}
3907
3908/*
3909 * Allocate and initialize an indirection array once the space needed
3910 * for incore extents increases above XFS_IEXT_BUFSZ.
3911 */
3912void
3913xfs_iext_irec_init(
3914 xfs_ifork_t *ifp) /* inode fork pointer */
3915{
3916 xfs_ext_irec_t *erp; /* indirection array pointer */
3917 xfs_extnum_t nextents; /* number of extents in file */
3918
3919 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3920 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3921 ASSERT(nextents <= XFS_LINEAR_EXTS);
3922
6785073b 3923 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
3924
3925 if (nextents == 0) {
6785073b 3926 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3927 } else if (!ifp->if_real_bytes) {
3928 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3929 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3930 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3931 }
3932 erp->er_extbuf = ifp->if_u1.if_extents;
3933 erp->er_extcount = nextents;
3934 erp->er_extoff = 0;
3935
3936 ifp->if_flags |= XFS_IFEXTIREC;
3937 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3938 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3939 ifp->if_u1.if_ext_irec = erp;
3940
3941 return;
3942}
3943
3944/*
3945 * Allocate and initialize a new entry in the indirection array.
3946 */
3947xfs_ext_irec_t *
3948xfs_iext_irec_new(
3949 xfs_ifork_t *ifp, /* inode fork pointer */
3950 int erp_idx) /* index for new irec */
3951{
3952 xfs_ext_irec_t *erp; /* indirection array pointer */
3953 int i; /* loop counter */
3954 int nlists; /* number of irec's (ex lists) */
3955
3956 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3957 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3958
3959 /* Resize indirection array */
3960 xfs_iext_realloc_indirect(ifp, ++nlists *
3961 sizeof(xfs_ext_irec_t));
3962 /*
3963 * Move records down in the array so the
3964 * new page can use erp_idx.
3965 */
3966 erp = ifp->if_u1.if_ext_irec;
3967 for (i = nlists - 1; i > erp_idx; i--) {
3968 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3969 }
3970 ASSERT(i == erp_idx);
3971
3972 /* Initialize new extent record */
3973 erp = ifp->if_u1.if_ext_irec;
6785073b 3974 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3975 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3976 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3977 erp[erp_idx].er_extcount = 0;
3978 erp[erp_idx].er_extoff = erp_idx > 0 ?
3979 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3980 return (&erp[erp_idx]);
3981}
3982
3983/*
3984 * Remove a record from the indirection array.
3985 */
3986void
3987xfs_iext_irec_remove(
3988 xfs_ifork_t *ifp, /* inode fork pointer */
3989 int erp_idx) /* irec index to remove */
3990{
3991 xfs_ext_irec_t *erp; /* indirection array pointer */
3992 int i; /* loop counter */
3993 int nlists; /* number of irec's (ex lists) */
3994
3995 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3996 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3997 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3998 if (erp->er_extbuf) {
3999 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4000 -erp->er_extcount);
f0e2d93c 4001 kmem_free(erp->er_extbuf);
0293ce3a
MK
4002 }
4003 /* Compact extent records */
4004 erp = ifp->if_u1.if_ext_irec;
4005 for (i = erp_idx; i < nlists - 1; i++) {
4006 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4007 }
4008 /*
4009 * Manually free the last extent record from the indirection
4010 * array. A call to xfs_iext_realloc_indirect() with a size
4011 * of zero would result in a call to xfs_iext_destroy() which
4012 * would in turn call this function again, creating a nasty
4013 * infinite loop.
4014 */
4015 if (--nlists) {
4016 xfs_iext_realloc_indirect(ifp,
4017 nlists * sizeof(xfs_ext_irec_t));
4018 } else {
f0e2d93c 4019 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4020 }
4021 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4022}
4023
4024/*
4025 * This is called to clean up large amounts of unused memory allocated
4026 * by the indirection array. Before compacting anything though, verify
4027 * that the indirection array is still needed and switch back to the
4028 * linear extent list (or even the inline buffer) if possible. The
4029 * compaction policy is as follows:
4030 *
4031 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 4032 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
4033 * No Compaction: Extents occupy at least 50% of allocated space
4034 */
4035void
4036xfs_iext_irec_compact(
4037 xfs_ifork_t *ifp) /* inode fork pointer */
4038{
4039 xfs_extnum_t nextents; /* number of extents in file */
4040 int nlists; /* number of irec's (ex lists) */
4041
4042 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4043 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4044 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4045
4046 if (nextents == 0) {
4047 xfs_iext_destroy(ifp);
4048 } else if (nextents <= XFS_INLINE_EXTS) {
4049 xfs_iext_indirect_to_direct(ifp);
4050 xfs_iext_direct_to_inline(ifp, nextents);
4051 } else if (nextents <= XFS_LINEAR_EXTS) {
4052 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
4053 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4054 xfs_iext_irec_compact_pages(ifp);
4055 }
4056}
4057
4058/*
4059 * Combine extents from neighboring extent pages.
4060 */
4061void
4062xfs_iext_irec_compact_pages(
4063 xfs_ifork_t *ifp) /* inode fork pointer */
4064{
4065 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4066 int erp_idx = 0; /* indirection array index */
4067 int nlists; /* number of irec's (ex lists) */
4068
4069 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4070 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4071 while (erp_idx < nlists - 1) {
4072 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4073 erp_next = erp + 1;
4074 if (erp_next->er_extcount <=
4075 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 4076 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
4077 erp_next->er_extbuf, erp_next->er_extcount *
4078 sizeof(xfs_bmbt_rec_t));
4079 erp->er_extcount += erp_next->er_extcount;
4080 /*
4081 * Free page before removing extent record
4082 * so er_extoffs don't get modified in
4083 * xfs_iext_irec_remove.
4084 */
f0e2d93c 4085 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
4086 erp_next->er_extbuf = NULL;
4087 xfs_iext_irec_remove(ifp, erp_idx + 1);
4088 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4089 } else {
4090 erp_idx++;
4091 }
4092 }
4093}
4094
0293ce3a
MK
4095/*
4096 * This is called to update the er_extoff field in the indirection
4097 * array when extents have been added or removed from one of the
4098 * extent lists. erp_idx contains the irec index to begin updating
4099 * at and ext_diff contains the number of extents that were added
4100 * or removed.
4101 */
4102void
4103xfs_iext_irec_update_extoffs(
4104 xfs_ifork_t *ifp, /* inode fork pointer */
4105 int erp_idx, /* irec index to update */
4106 int ext_diff) /* number of new extents */
4107{
4108 int i; /* loop counter */
4109 int nlists; /* number of irec's (ex lists */
4110
4111 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4112 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4113 for (i = erp_idx; i < nlists; i++) {
4114 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4115 }
4116}
This page took 0.667386 seconds and 5 git commands to generate.