xfs: extent size hints can round up extents past MAXEXTLEN
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
a4fbe6ab 28#include "xfs_inode.h"
57062787 29#include "xfs_da_format.h"
c24b5dfa 30#include "xfs_da_btree.h"
c24b5dfa 31#include "xfs_dir2.h"
a844f451 32#include "xfs_attr_sf.h"
c24b5dfa 33#include "xfs_attr.h"
239880ef
DC
34#include "xfs_trans_space.h"
35#include "xfs_trans.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451 37#include "xfs_inode_item.h"
a844f451
NS
38#include "xfs_ialloc.h"
39#include "xfs_bmap.h"
68988114 40#include "xfs_bmap_util.h"
1da177e4 41#include "xfs_error.h"
1da177e4 42#include "xfs_quota.h"
2a82b8be 43#include "xfs_filestream.h"
93848a99 44#include "xfs_cksum.h"
0b1b213f 45#include "xfs_trace.h"
33479e05 46#include "xfs_icache.h"
c24b5dfa 47#include "xfs_symlink.h"
239880ef
DC
48#include "xfs_trans_priv.h"
49#include "xfs_log.h"
a4fbe6ab 50#include "xfs_bmap_btree.h"
1da177e4 51
1da177e4 52kmem_zone_t *xfs_inode_zone;
1da177e4
LT
53
54/*
8f04c47a 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 61
ab297431
ZYW
62STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63
2a0ec1d9
DC
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
fa96acad 78/*
efa70be1
CH
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
fa96acad 89 *
efa70be1 90 * The functions return a value which should be given to the corresponding
01f4f327 91 * xfs_iunlock() call.
fa96acad
DC
92 */
93uint
309ecac8
CH
94xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
fa96acad 96{
309ecac8 97 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 98
309ecac8
CH
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 101 lock_mode = XFS_ILOCK_EXCL;
fa96acad 102 xfs_ilock(ip, lock_mode);
fa96acad
DC
103 return lock_mode;
104}
105
efa70be1
CH
106uint
107xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
fa96acad 109{
efa70be1
CH
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
fa96acad
DC
117}
118
119/*
653c60b6
DC
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
fa96acad 123 *
653c60b6
DC
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 126 *
653c60b6
DC
127 * Basic locking order:
128 *
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130 *
131 * mmap_sem locking order:
132 *
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
135 *
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
142 *
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
fa96acad
DC
148 */
149void
150xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
153{
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155
156 /*
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 */
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
168
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173
653c60b6
DC
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178
fa96acad
DC
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183}
184
185/*
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
191 *
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
196 */
197int
198xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
201{
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203
204 /*
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 */
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
216
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
223 }
653c60b6
DC
224
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
231 }
232
fa96acad
DC
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
653c60b6 235 goto out_undo_mmaplock;
fa96acad
DC
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
653c60b6 238 goto out_undo_mmaplock;
fa96acad
DC
239 }
240 return 1;
241
653c60b6
DC
242out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247out_undo_iolock:
fa96acad
DC
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
653c60b6 252out:
fa96acad
DC
253 return 0;
254}
255
256/*
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
261 *
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
266 *
267 */
268void
269xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
272{
273 /*
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 */
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
285 ASSERT(lock_flags != 0);
286
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
291
653c60b6
DC
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
296
fa96acad
DC
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
301
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303}
304
305/*
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
308 */
309void
310xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
313{
653c60b6
DC
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
317
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
653c60b6
DC
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
fa96acad
DC
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
324
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326}
327
742ae1e3 328#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
329int
330xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
333{
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
338 }
339
653c60b6
DC
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 }
345
fa96acad
DC
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 }
351
352 ASSERT(0);
353 return 0;
354}
355#endif
356
c24b5dfa
DC
357#ifdef DEBUG
358int xfs_locked_n;
359int xfs_small_retries;
360int xfs_middle_retries;
361int xfs_lots_retries;
362int xfs_lock_delays;
363#endif
364
365/*
653c60b6
DC
366 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
367 * value. This shouldn't be called for page fault locking, but we also need to
368 * ensure we don't overrun the number of lockdep subclasses for the iolock or
369 * mmaplock as that is limited to 12 by the mmap lock lockdep annotations.
c24b5dfa
DC
370 */
371static inline int
372xfs_lock_inumorder(int lock_mode, int subclass)
373{
653c60b6
DC
374 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
375 ASSERT(subclass + XFS_LOCK_INUMORDER <
376 (1 << (XFS_MMAPLOCK_SHIFT - XFS_IOLOCK_SHIFT)));
c24b5dfa 377 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
653c60b6
DC
378 }
379
380 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
381 ASSERT(subclass + XFS_LOCK_INUMORDER <
382 (1 << (XFS_ILOCK_SHIFT - XFS_MMAPLOCK_SHIFT)));
383 lock_mode |= (subclass + XFS_LOCK_INUMORDER) <<
384 XFS_MMAPLOCK_SHIFT;
385 }
386
c24b5dfa
DC
387 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
388 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
389
390 return lock_mode;
391}
392
393/*
95afcf5c
DC
394 * The following routine will lock n inodes in exclusive mode. We assume the
395 * caller calls us with the inodes in i_ino order.
c24b5dfa 396 *
95afcf5c
DC
397 * We need to detect deadlock where an inode that we lock is in the AIL and we
398 * start waiting for another inode that is locked by a thread in a long running
399 * transaction (such as truncate). This can result in deadlock since the long
400 * running trans might need to wait for the inode we just locked in order to
401 * push the tail and free space in the log.
c24b5dfa
DC
402 */
403void
404xfs_lock_inodes(
405 xfs_inode_t **ips,
406 int inodes,
407 uint lock_mode)
408{
409 int attempts = 0, i, j, try_lock;
410 xfs_log_item_t *lp;
411
95afcf5c
DC
412 /* currently supports between 2 and 5 inodes */
413 ASSERT(ips && inodes >= 2 && inodes <= 5);
c24b5dfa
DC
414
415 try_lock = 0;
416 i = 0;
c24b5dfa
DC
417again:
418 for (; i < inodes; i++) {
419 ASSERT(ips[i]);
420
95afcf5c 421 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
422 continue;
423
424 /*
95afcf5c
DC
425 * If try_lock is not set yet, make sure all locked inodes are
426 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 427 */
c24b5dfa
DC
428 if (!try_lock) {
429 for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 431 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 432 try_lock++;
c24b5dfa
DC
433 }
434 }
435
436 /*
437 * If any of the previous locks we have locked is in the AIL,
438 * we must TRY to get the second and subsequent locks. If
439 * we can't get any, we must release all we have
440 * and try again.
441 */
95afcf5c
DC
442 if (!try_lock) {
443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 continue;
445 }
446
447 /* try_lock means we have an inode locked that is in the AIL. */
448 ASSERT(i != 0);
449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 continue;
c24b5dfa 451
95afcf5c
DC
452 /*
453 * Unlock all previous guys and try again. xfs_iunlock will try
454 * to push the tail if the inode is in the AIL.
455 */
456 attempts++;
457 for (j = i - 1; j >= 0; j--) {
c24b5dfa 458 /*
95afcf5c
DC
459 * Check to see if we've already unlocked this one. Not
460 * the first one going back, and the inode ptr is the
461 * same.
c24b5dfa 462 */
95afcf5c
DC
463 if (j != (i - 1) && ips[j] == ips[j + 1])
464 continue;
c24b5dfa 465
95afcf5c
DC
466 xfs_iunlock(ips[j], lock_mode);
467 }
c24b5dfa 468
95afcf5c
DC
469 if ((attempts % 5) == 0) {
470 delay(1); /* Don't just spin the CPU */
c24b5dfa 471#ifdef DEBUG
95afcf5c 472 xfs_lock_delays++;
c24b5dfa 473#endif
c24b5dfa 474 }
95afcf5c
DC
475 i = 0;
476 try_lock = 0;
477 goto again;
c24b5dfa
DC
478 }
479
480#ifdef DEBUG
481 if (attempts) {
482 if (attempts < 5) xfs_small_retries++;
483 else if (attempts < 100) xfs_middle_retries++;
484 else xfs_lots_retries++;
485 } else {
486 xfs_locked_n++;
487 }
488#endif
489}
490
491/*
653c60b6
DC
492 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
493 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
494 * lock more than one at a time, lockdep will report false positives saying we
495 * have violated locking orders.
c24b5dfa
DC
496 */
497void
498xfs_lock_two_inodes(
499 xfs_inode_t *ip0,
500 xfs_inode_t *ip1,
501 uint lock_mode)
502{
503 xfs_inode_t *temp;
504 int attempts = 0;
505 xfs_log_item_t *lp;
506
653c60b6
DC
507 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
508 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
509 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
510 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
511 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
512
c24b5dfa
DC
513 ASSERT(ip0->i_ino != ip1->i_ino);
514
515 if (ip0->i_ino > ip1->i_ino) {
516 temp = ip0;
517 ip0 = ip1;
518 ip1 = temp;
519 }
520
521 again:
522 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
523
524 /*
525 * If the first lock we have locked is in the AIL, we must TRY to get
526 * the second lock. If we can't get it, we must release the first one
527 * and try again.
528 */
529 lp = (xfs_log_item_t *)ip0->i_itemp;
530 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
531 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
532 xfs_iunlock(ip0, lock_mode);
533 if ((++attempts % 5) == 0)
534 delay(1); /* Don't just spin the CPU */
535 goto again;
536 }
537 } else {
538 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
539 }
540}
541
542
fa96acad
DC
543void
544__xfs_iflock(
545 struct xfs_inode *ip)
546{
547 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
548 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
549
550 do {
551 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
552 if (xfs_isiflocked(ip))
553 io_schedule();
554 } while (!xfs_iflock_nowait(ip));
555
556 finish_wait(wq, &wait.wait);
557}
558
1da177e4
LT
559STATIC uint
560_xfs_dic2xflags(
1da177e4
LT
561 __uint16_t di_flags)
562{
563 uint flags = 0;
564
565 if (di_flags & XFS_DIFLAG_ANY) {
566 if (di_flags & XFS_DIFLAG_REALTIME)
567 flags |= XFS_XFLAG_REALTIME;
568 if (di_flags & XFS_DIFLAG_PREALLOC)
569 flags |= XFS_XFLAG_PREALLOC;
570 if (di_flags & XFS_DIFLAG_IMMUTABLE)
571 flags |= XFS_XFLAG_IMMUTABLE;
572 if (di_flags & XFS_DIFLAG_APPEND)
573 flags |= XFS_XFLAG_APPEND;
574 if (di_flags & XFS_DIFLAG_SYNC)
575 flags |= XFS_XFLAG_SYNC;
576 if (di_flags & XFS_DIFLAG_NOATIME)
577 flags |= XFS_XFLAG_NOATIME;
578 if (di_flags & XFS_DIFLAG_NODUMP)
579 flags |= XFS_XFLAG_NODUMP;
580 if (di_flags & XFS_DIFLAG_RTINHERIT)
581 flags |= XFS_XFLAG_RTINHERIT;
582 if (di_flags & XFS_DIFLAG_PROJINHERIT)
583 flags |= XFS_XFLAG_PROJINHERIT;
584 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
585 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
586 if (di_flags & XFS_DIFLAG_EXTSIZE)
587 flags |= XFS_XFLAG_EXTSIZE;
588 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
589 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
590 if (di_flags & XFS_DIFLAG_NODEFRAG)
591 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
592 if (di_flags & XFS_DIFLAG_FILESTREAM)
593 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
594 }
595
596 return flags;
597}
598
599uint
600xfs_ip2xflags(
601 xfs_inode_t *ip)
602{
347d1c01 603 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 604
a916e2bd 605 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 606 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
607}
608
609uint
610xfs_dic2xflags(
45ba598e 611 xfs_dinode_t *dip)
1da177e4 612{
81591fe2 613 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 614 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
615}
616
c24b5dfa
DC
617/*
618 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
619 * is allowed, otherwise it has to be an exact match. If a CI match is found,
620 * ci_name->name will point to a the actual name (caller must free) or
621 * will be set to NULL if an exact match is found.
622 */
623int
624xfs_lookup(
625 xfs_inode_t *dp,
626 struct xfs_name *name,
627 xfs_inode_t **ipp,
628 struct xfs_name *ci_name)
629{
630 xfs_ino_t inum;
631 int error;
632 uint lock_mode;
633
634 trace_xfs_lookup(dp, name);
635
636 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 637 return -EIO;
c24b5dfa 638
309ecac8 639 lock_mode = xfs_ilock_data_map_shared(dp);
c24b5dfa 640 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
01f4f327 641 xfs_iunlock(dp, lock_mode);
c24b5dfa
DC
642
643 if (error)
644 goto out;
645
646 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
647 if (error)
648 goto out_free_name;
649
650 return 0;
651
652out_free_name:
653 if (ci_name)
654 kmem_free(ci_name->name);
655out:
656 *ipp = NULL;
657 return error;
658}
659
1da177e4
LT
660/*
661 * Allocate an inode on disk and return a copy of its in-core version.
662 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
663 * appropriately within the inode. The uid and gid for the inode are
664 * set according to the contents of the given cred structure.
665 *
666 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
667 * has a free inode available, call xfs_iget() to obtain the in-core
668 * version of the allocated inode. Finally, fill in the inode and
669 * log its initial contents. In this case, ialloc_context would be
670 * set to NULL.
1da177e4 671 *
cd856db6
CM
672 * If xfs_dialloc() does not have an available inode, it will replenish
673 * its supply by doing an allocation. Since we can only do one
674 * allocation within a transaction without deadlocks, we must commit
675 * the current transaction before returning the inode itself.
676 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
677 * The caller should then commit the current transaction, start a new
678 * transaction, and call xfs_ialloc() again to actually get the inode.
679 *
680 * To ensure that some other process does not grab the inode that
681 * was allocated during the first call to xfs_ialloc(), this routine
682 * also returns the [locked] bp pointing to the head of the freelist
683 * as ialloc_context. The caller should hold this buffer across
684 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
685 *
686 * If we are allocating quota inodes, we do not have a parent inode
687 * to attach to or associate with (i.e. pip == NULL) because they
688 * are not linked into the directory structure - they are attached
689 * directly to the superblock - and so have no parent.
1da177e4
LT
690 */
691int
692xfs_ialloc(
693 xfs_trans_t *tp,
694 xfs_inode_t *pip,
576b1d67 695 umode_t mode,
31b084ae 696 xfs_nlink_t nlink,
1da177e4 697 xfs_dev_t rdev,
6743099c 698 prid_t prid,
1da177e4
LT
699 int okalloc,
700 xfs_buf_t **ialloc_context,
1da177e4
LT
701 xfs_inode_t **ipp)
702{
93848a99 703 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
704 xfs_ino_t ino;
705 xfs_inode_t *ip;
1da177e4
LT
706 uint flags;
707 int error;
e076b0f3 708 struct timespec tv;
1da177e4
LT
709
710 /*
711 * Call the space management code to pick
712 * the on-disk inode to be allocated.
713 */
b11f94d5 714 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 715 ialloc_context, &ino);
bf904248 716 if (error)
1da177e4 717 return error;
08358906 718 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
719 *ipp = NULL;
720 return 0;
721 }
722 ASSERT(*ialloc_context == NULL);
723
724 /*
725 * Get the in-core inode with the lock held exclusively.
726 * This is because we're setting fields here we need
727 * to prevent others from looking at until we're done.
728 */
93848a99 729 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 730 XFS_ILOCK_EXCL, &ip);
bf904248 731 if (error)
1da177e4 732 return error;
1da177e4
LT
733 ASSERT(ip != NULL);
734
263997a6
DC
735 /*
736 * We always convert v1 inodes to v2 now - we only support filesystems
737 * with >= v2 inode capability, so there is no reason for ever leaving
738 * an inode in v1 format.
739 */
740 if (ip->i_d.di_version == 1)
741 ip->i_d.di_version = 2;
742
576b1d67 743 ip->i_d.di_mode = mode;
1da177e4
LT
744 ip->i_d.di_onlink = 0;
745 ip->i_d.di_nlink = nlink;
746 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
747 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
748 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 749 xfs_set_projid(ip, prid);
1da177e4
LT
750 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
751
bd186aa9 752 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 753 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 754 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
755 ip->i_d.di_mode |= S_ISGID;
756 }
757 }
758
759 /*
760 * If the group ID of the new file does not match the effective group
761 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
762 * (and only if the irix_sgid_inherit compatibility variable is set).
763 */
764 if ((irix_sgid_inherit) &&
765 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 766 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
767 ip->i_d.di_mode &= ~S_ISGID;
768 }
769
770 ip->i_d.di_size = 0;
771 ip->i_d.di_nextents = 0;
772 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 773
e076b0f3 774 tv = current_fs_time(mp->m_super);
dff35fd4
CH
775 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
776 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
777 ip->i_d.di_atime = ip->i_d.di_mtime;
778 ip->i_d.di_ctime = ip->i_d.di_mtime;
779
1da177e4
LT
780 /*
781 * di_gen will have been taken care of in xfs_iread.
782 */
783 ip->i_d.di_extsize = 0;
784 ip->i_d.di_dmevmask = 0;
785 ip->i_d.di_dmstate = 0;
786 ip->i_d.di_flags = 0;
93848a99
CH
787
788 if (ip->i_d.di_version == 3) {
789 ASSERT(ip->i_d.di_ino == ino);
790 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
791 ip->i_d.di_crc = 0;
792 ip->i_d.di_changecount = 1;
793 ip->i_d.di_lsn = 0;
794 ip->i_d.di_flags2 = 0;
795 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
796 ip->i_d.di_crtime = ip->i_d.di_mtime;
797 }
798
799
1da177e4
LT
800 flags = XFS_ILOG_CORE;
801 switch (mode & S_IFMT) {
802 case S_IFIFO:
803 case S_IFCHR:
804 case S_IFBLK:
805 case S_IFSOCK:
806 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
807 ip->i_df.if_u2.if_rdev = rdev;
808 ip->i_df.if_flags = 0;
809 flags |= XFS_ILOG_DEV;
810 break;
811 case S_IFREG:
812 case S_IFDIR:
b11f94d5 813 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
814 uint di_flags = 0;
815
abbede1b 816 if (S_ISDIR(mode)) {
365ca83d
NS
817 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
818 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
819 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
820 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
821 ip->i_d.di_extsize = pip->i_d.di_extsize;
822 }
9336e3a7
DC
823 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
824 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 825 } else if (S_ISREG(mode)) {
613d7043 826 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 827 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
828 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
829 di_flags |= XFS_DIFLAG_EXTSIZE;
830 ip->i_d.di_extsize = pip->i_d.di_extsize;
831 }
1da177e4
LT
832 }
833 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
834 xfs_inherit_noatime)
365ca83d 835 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
836 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
837 xfs_inherit_nodump)
365ca83d 838 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
839 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
840 xfs_inherit_sync)
365ca83d 841 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
842 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
843 xfs_inherit_nosymlinks)
365ca83d 844 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
845 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
846 xfs_inherit_nodefrag)
847 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
848 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
849 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 850 ip->i_d.di_flags |= di_flags;
1da177e4
LT
851 }
852 /* FALLTHROUGH */
853 case S_IFLNK:
854 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
855 ip->i_df.if_flags = XFS_IFEXTENTS;
856 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
857 ip->i_df.if_u1.if_extents = NULL;
858 break;
859 default:
860 ASSERT(0);
861 }
862 /*
863 * Attribute fork settings for new inode.
864 */
865 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
866 ip->i_d.di_anextents = 0;
867
868 /*
869 * Log the new values stuffed into the inode.
870 */
ddc3415a 871 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
872 xfs_trans_log_inode(tp, ip, flags);
873
58c90473 874 /* now that we have an i_mode we can setup the inode structure */
41be8bed 875 xfs_setup_inode(ip);
1da177e4
LT
876
877 *ipp = ip;
878 return 0;
879}
880
e546cb79
DC
881/*
882 * Allocates a new inode from disk and return a pointer to the
883 * incore copy. This routine will internally commit the current
884 * transaction and allocate a new one if the Space Manager needed
885 * to do an allocation to replenish the inode free-list.
886 *
887 * This routine is designed to be called from xfs_create and
888 * xfs_create_dir.
889 *
890 */
891int
892xfs_dir_ialloc(
893 xfs_trans_t **tpp, /* input: current transaction;
894 output: may be a new transaction. */
895 xfs_inode_t *dp, /* directory within whose allocate
896 the inode. */
897 umode_t mode,
898 xfs_nlink_t nlink,
899 xfs_dev_t rdev,
900 prid_t prid, /* project id */
901 int okalloc, /* ok to allocate new space */
902 xfs_inode_t **ipp, /* pointer to inode; it will be
903 locked. */
904 int *committed)
905
906{
907 xfs_trans_t *tp;
908 xfs_trans_t *ntp;
909 xfs_inode_t *ip;
910 xfs_buf_t *ialloc_context = NULL;
911 int code;
e546cb79
DC
912 void *dqinfo;
913 uint tflags;
914
915 tp = *tpp;
916 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
917
918 /*
919 * xfs_ialloc will return a pointer to an incore inode if
920 * the Space Manager has an available inode on the free
921 * list. Otherwise, it will do an allocation and replenish
922 * the freelist. Since we can only do one allocation per
923 * transaction without deadlocks, we will need to commit the
924 * current transaction and start a new one. We will then
925 * need to call xfs_ialloc again to get the inode.
926 *
927 * If xfs_ialloc did an allocation to replenish the freelist,
928 * it returns the bp containing the head of the freelist as
929 * ialloc_context. We will hold a lock on it across the
930 * transaction commit so that no other process can steal
931 * the inode(s) that we've just allocated.
932 */
933 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
934 &ialloc_context, &ip);
935
936 /*
937 * Return an error if we were unable to allocate a new inode.
938 * This should only happen if we run out of space on disk or
939 * encounter a disk error.
940 */
941 if (code) {
942 *ipp = NULL;
943 return code;
944 }
945 if (!ialloc_context && !ip) {
946 *ipp = NULL;
2451337d 947 return -ENOSPC;
e546cb79
DC
948 }
949
950 /*
951 * If the AGI buffer is non-NULL, then we were unable to get an
952 * inode in one operation. We need to commit the current
953 * transaction and call xfs_ialloc() again. It is guaranteed
954 * to succeed the second time.
955 */
956 if (ialloc_context) {
3d3c8b52
JL
957 struct xfs_trans_res tres;
958
e546cb79
DC
959 /*
960 * Normally, xfs_trans_commit releases all the locks.
961 * We call bhold to hang on to the ialloc_context across
962 * the commit. Holding this buffer prevents any other
963 * processes from doing any allocations in this
964 * allocation group.
965 */
966 xfs_trans_bhold(tp, ialloc_context);
967 /*
968 * Save the log reservation so we can use
969 * them in the next transaction.
970 */
3d3c8b52
JL
971 tres.tr_logres = xfs_trans_get_log_res(tp);
972 tres.tr_logcount = xfs_trans_get_log_count(tp);
e546cb79
DC
973
974 /*
975 * We want the quota changes to be associated with the next
976 * transaction, NOT this one. So, detach the dqinfo from this
977 * and attach it to the next transaction.
978 */
979 dqinfo = NULL;
980 tflags = 0;
981 if (tp->t_dqinfo) {
982 dqinfo = (void *)tp->t_dqinfo;
983 tp->t_dqinfo = NULL;
984 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
985 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
986 }
987
988 ntp = xfs_trans_dup(tp);
989 code = xfs_trans_commit(tp, 0);
990 tp = ntp;
991 if (committed != NULL) {
992 *committed = 1;
993 }
994 /*
995 * If we get an error during the commit processing,
996 * release the buffer that is still held and return
997 * to the caller.
998 */
999 if (code) {
1000 xfs_buf_relse(ialloc_context);
1001 if (dqinfo) {
1002 tp->t_dqinfo = dqinfo;
1003 xfs_trans_free_dqinfo(tp);
1004 }
1005 *tpp = ntp;
1006 *ipp = NULL;
1007 return code;
1008 }
1009
1010 /*
1011 * transaction commit worked ok so we can drop the extra ticket
1012 * reference that we gained in xfs_trans_dup()
1013 */
1014 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52
JL
1015 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1016 code = xfs_trans_reserve(tp, &tres, 0, 0);
1017
e546cb79
DC
1018 /*
1019 * Re-attach the quota info that we detached from prev trx.
1020 */
1021 if (dqinfo) {
1022 tp->t_dqinfo = dqinfo;
1023 tp->t_flags |= tflags;
1024 }
1025
1026 if (code) {
1027 xfs_buf_relse(ialloc_context);
1028 *tpp = ntp;
1029 *ipp = NULL;
1030 return code;
1031 }
1032 xfs_trans_bjoin(tp, ialloc_context);
1033
1034 /*
1035 * Call ialloc again. Since we've locked out all
1036 * other allocations in this allocation group,
1037 * this call should always succeed.
1038 */
1039 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1040 okalloc, &ialloc_context, &ip);
1041
1042 /*
1043 * If we get an error at this point, return to the caller
1044 * so that the current transaction can be aborted.
1045 */
1046 if (code) {
1047 *tpp = tp;
1048 *ipp = NULL;
1049 return code;
1050 }
1051 ASSERT(!ialloc_context && ip);
1052
1053 } else {
1054 if (committed != NULL)
1055 *committed = 0;
1056 }
1057
1058 *ipp = ip;
1059 *tpp = tp;
1060
1061 return 0;
1062}
1063
1064/*
1065 * Decrement the link count on an inode & log the change.
1066 * If this causes the link count to go to zero, initiate the
1067 * logging activity required to truncate a file.
1068 */
1069int /* error */
1070xfs_droplink(
1071 xfs_trans_t *tp,
1072 xfs_inode_t *ip)
1073{
1074 int error;
1075
1076 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1077
1078 ASSERT (ip->i_d.di_nlink > 0);
1079 ip->i_d.di_nlink--;
1080 drop_nlink(VFS_I(ip));
1081 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1082
1083 error = 0;
1084 if (ip->i_d.di_nlink == 0) {
1085 /*
1086 * We're dropping the last link to this file.
1087 * Move the on-disk inode to the AGI unlinked list.
1088 * From xfs_inactive() we will pull the inode from
1089 * the list and free it.
1090 */
1091 error = xfs_iunlink(tp, ip);
1092 }
1093 return error;
1094}
1095
e546cb79
DC
1096/*
1097 * Increment the link count on an inode & log the change.
1098 */
1099int
1100xfs_bumplink(
1101 xfs_trans_t *tp,
1102 xfs_inode_t *ip)
1103{
1104 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1105
263997a6 1106 ASSERT(ip->i_d.di_version > 1);
ab297431 1107 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
e546cb79
DC
1108 ip->i_d.di_nlink++;
1109 inc_nlink(VFS_I(ip));
e546cb79
DC
1110 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1111 return 0;
1112}
1113
c24b5dfa
DC
1114int
1115xfs_create(
1116 xfs_inode_t *dp,
1117 struct xfs_name *name,
1118 umode_t mode,
1119 xfs_dev_t rdev,
1120 xfs_inode_t **ipp)
1121{
1122 int is_dir = S_ISDIR(mode);
1123 struct xfs_mount *mp = dp->i_mount;
1124 struct xfs_inode *ip = NULL;
1125 struct xfs_trans *tp = NULL;
1126 int error;
1127 xfs_bmap_free_t free_list;
1128 xfs_fsblock_t first_block;
1129 bool unlock_dp_on_error = false;
1130 uint cancel_flags;
1131 int committed;
1132 prid_t prid;
1133 struct xfs_dquot *udqp = NULL;
1134 struct xfs_dquot *gdqp = NULL;
1135 struct xfs_dquot *pdqp = NULL;
062647a8 1136 struct xfs_trans_res *tres;
c24b5dfa 1137 uint resblks;
c24b5dfa
DC
1138
1139 trace_xfs_create(dp, name);
1140
1141 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1142 return -EIO;
c24b5dfa 1143
163467d3 1144 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1145
1146 /*
1147 * Make sure that we have allocated dquot(s) on disk.
1148 */
7aab1b28
DE
1149 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1150 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1151 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1152 &udqp, &gdqp, &pdqp);
1153 if (error)
1154 return error;
1155
1156 if (is_dir) {
1157 rdev = 0;
1158 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1159 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1160 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1161 } else {
1162 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1163 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1164 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1165 }
1166
1167 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1168
1169 /*
1170 * Initially assume that the file does not exist and
1171 * reserve the resources for that case. If that is not
1172 * the case we'll drop the one we have and get a more
1173 * appropriate transaction later.
1174 */
062647a8 1175 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1176 if (error == -ENOSPC) {
c24b5dfa
DC
1177 /* flush outstanding delalloc blocks and retry */
1178 xfs_flush_inodes(mp);
062647a8 1179 error = xfs_trans_reserve(tp, tres, resblks, 0);
c24b5dfa 1180 }
2451337d 1181 if (error == -ENOSPC) {
c24b5dfa
DC
1182 /* No space at all so try a "no-allocation" reservation */
1183 resblks = 0;
062647a8 1184 error = xfs_trans_reserve(tp, tres, 0, 0);
c24b5dfa
DC
1185 }
1186 if (error) {
1187 cancel_flags = 0;
1188 goto out_trans_cancel;
1189 }
1190
1191 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1192 unlock_dp_on_error = true;
1193
1194 xfs_bmap_init(&free_list, &first_block);
1195
1196 /*
1197 * Reserve disk quota and the inode.
1198 */
1199 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1200 pdqp, resblks, 1, 0);
1201 if (error)
1202 goto out_trans_cancel;
1203
94f3cad5
ES
1204 if (!resblks) {
1205 error = xfs_dir_canenter(tp, dp, name);
1206 if (error)
1207 goto out_trans_cancel;
1208 }
c24b5dfa
DC
1209
1210 /*
1211 * A newly created regular or special file just has one directory
1212 * entry pointing to them, but a directory also the "." entry
1213 * pointing to itself.
1214 */
1215 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1216 prid, resblks > 0, &ip, &committed);
1217 if (error) {
2451337d 1218 if (error == -ENOSPC)
c24b5dfa
DC
1219 goto out_trans_cancel;
1220 goto out_trans_abort;
1221 }
1222
1223 /*
1224 * Now we join the directory inode to the transaction. We do not do it
1225 * earlier because xfs_dir_ialloc might commit the previous transaction
1226 * (and release all the locks). An error from here on will result in
1227 * the transaction cancel unlocking dp so don't do it explicitly in the
1228 * error path.
1229 */
1230 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1231 unlock_dp_on_error = false;
1232
1233 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1234 &first_block, &free_list, resblks ?
1235 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1236 if (error) {
2451337d 1237 ASSERT(error != -ENOSPC);
c24b5dfa
DC
1238 goto out_trans_abort;
1239 }
1240 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1241 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1242
1243 if (is_dir) {
1244 error = xfs_dir_init(tp, ip, dp);
1245 if (error)
1246 goto out_bmap_cancel;
1247
1248 error = xfs_bumplink(tp, dp);
1249 if (error)
1250 goto out_bmap_cancel;
1251 }
1252
1253 /*
1254 * If this is a synchronous mount, make sure that the
1255 * create transaction goes to disk before returning to
1256 * the user.
1257 */
1258 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1259 xfs_trans_set_sync(tp);
1260
1261 /*
1262 * Attach the dquot(s) to the inodes and modify them incore.
1263 * These ids of the inode couldn't have changed since the new
1264 * inode has been locked ever since it was created.
1265 */
1266 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1267
1268 error = xfs_bmap_finish(&tp, &free_list, &committed);
1269 if (error)
1270 goto out_bmap_cancel;
1271
1272 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1273 if (error)
1274 goto out_release_inode;
1275
1276 xfs_qm_dqrele(udqp);
1277 xfs_qm_dqrele(gdqp);
1278 xfs_qm_dqrele(pdqp);
1279
1280 *ipp = ip;
1281 return 0;
1282
1283 out_bmap_cancel:
1284 xfs_bmap_cancel(&free_list);
1285 out_trans_abort:
1286 cancel_flags |= XFS_TRANS_ABORT;
1287 out_trans_cancel:
1288 xfs_trans_cancel(tp, cancel_flags);
1289 out_release_inode:
1290 /*
58c90473
DC
1291 * Wait until after the current transaction is aborted to finish the
1292 * setup of the inode and release the inode. This prevents recursive
1293 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1294 */
58c90473
DC
1295 if (ip) {
1296 xfs_finish_inode_setup(ip);
c24b5dfa 1297 IRELE(ip);
58c90473 1298 }
c24b5dfa
DC
1299
1300 xfs_qm_dqrele(udqp);
1301 xfs_qm_dqrele(gdqp);
1302 xfs_qm_dqrele(pdqp);
1303
1304 if (unlock_dp_on_error)
1305 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1306 return error;
1307}
1308
99b6436b
ZYW
1309int
1310xfs_create_tmpfile(
1311 struct xfs_inode *dp,
1312 struct dentry *dentry,
330033d6
BF
1313 umode_t mode,
1314 struct xfs_inode **ipp)
99b6436b
ZYW
1315{
1316 struct xfs_mount *mp = dp->i_mount;
1317 struct xfs_inode *ip = NULL;
1318 struct xfs_trans *tp = NULL;
1319 int error;
1320 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1321 prid_t prid;
1322 struct xfs_dquot *udqp = NULL;
1323 struct xfs_dquot *gdqp = NULL;
1324 struct xfs_dquot *pdqp = NULL;
1325 struct xfs_trans_res *tres;
1326 uint resblks;
1327
1328 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1329 return -EIO;
99b6436b
ZYW
1330
1331 prid = xfs_get_initial_prid(dp);
1332
1333 /*
1334 * Make sure that we have allocated dquot(s) on disk.
1335 */
1336 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1337 xfs_kgid_to_gid(current_fsgid()), prid,
1338 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1339 &udqp, &gdqp, &pdqp);
1340 if (error)
1341 return error;
1342
1343 resblks = XFS_IALLOC_SPACE_RES(mp);
1344 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1345
1346 tres = &M_RES(mp)->tr_create_tmpfile;
1347 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1348 if (error == -ENOSPC) {
99b6436b
ZYW
1349 /* No space at all so try a "no-allocation" reservation */
1350 resblks = 0;
1351 error = xfs_trans_reserve(tp, tres, 0, 0);
1352 }
1353 if (error) {
1354 cancel_flags = 0;
1355 goto out_trans_cancel;
1356 }
1357
1358 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1359 pdqp, resblks, 1, 0);
1360 if (error)
1361 goto out_trans_cancel;
1362
1363 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1364 prid, resblks > 0, &ip, NULL);
1365 if (error) {
2451337d 1366 if (error == -ENOSPC)
99b6436b
ZYW
1367 goto out_trans_cancel;
1368 goto out_trans_abort;
1369 }
1370
1371 if (mp->m_flags & XFS_MOUNT_WSYNC)
1372 xfs_trans_set_sync(tp);
1373
1374 /*
1375 * Attach the dquot(s) to the inodes and modify them incore.
1376 * These ids of the inode couldn't have changed since the new
1377 * inode has been locked ever since it was created.
1378 */
1379 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1380
1381 ip->i_d.di_nlink--;
99b6436b
ZYW
1382 error = xfs_iunlink(tp, ip);
1383 if (error)
1384 goto out_trans_abort;
1385
1386 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1387 if (error)
1388 goto out_release_inode;
1389
1390 xfs_qm_dqrele(udqp);
1391 xfs_qm_dqrele(gdqp);
1392 xfs_qm_dqrele(pdqp);
1393
330033d6 1394 *ipp = ip;
99b6436b
ZYW
1395 return 0;
1396
1397 out_trans_abort:
1398 cancel_flags |= XFS_TRANS_ABORT;
1399 out_trans_cancel:
1400 xfs_trans_cancel(tp, cancel_flags);
1401 out_release_inode:
1402 /*
58c90473
DC
1403 * Wait until after the current transaction is aborted to finish the
1404 * setup of the inode and release the inode. This prevents recursive
1405 * transactions and deadlocks from xfs_inactive.
99b6436b 1406 */
58c90473
DC
1407 if (ip) {
1408 xfs_finish_inode_setup(ip);
99b6436b 1409 IRELE(ip);
58c90473 1410 }
99b6436b
ZYW
1411
1412 xfs_qm_dqrele(udqp);
1413 xfs_qm_dqrele(gdqp);
1414 xfs_qm_dqrele(pdqp);
1415
1416 return error;
1417}
1418
c24b5dfa
DC
1419int
1420xfs_link(
1421 xfs_inode_t *tdp,
1422 xfs_inode_t *sip,
1423 struct xfs_name *target_name)
1424{
1425 xfs_mount_t *mp = tdp->i_mount;
1426 xfs_trans_t *tp;
1427 int error;
1428 xfs_bmap_free_t free_list;
1429 xfs_fsblock_t first_block;
1430 int cancel_flags;
1431 int committed;
1432 int resblks;
1433
1434 trace_xfs_link(tdp, target_name);
1435
1436 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1437
1438 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1439 return -EIO;
c24b5dfa
DC
1440
1441 error = xfs_qm_dqattach(sip, 0);
1442 if (error)
1443 goto std_return;
1444
1445 error = xfs_qm_dqattach(tdp, 0);
1446 if (error)
1447 goto std_return;
1448
1449 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1450 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1451 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1452 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
2451337d 1453 if (error == -ENOSPC) {
c24b5dfa 1454 resblks = 0;
3d3c8b52 1455 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa
DC
1456 }
1457 if (error) {
1458 cancel_flags = 0;
1459 goto error_return;
1460 }
1461
1462 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1463
1464 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1465 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1466
1467 /*
1468 * If we are using project inheritance, we only allow hard link
1469 * creation in our tree when the project IDs are the same; else
1470 * the tree quota mechanism could be circumvented.
1471 */
1472 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1473 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1474 error = -EXDEV;
c24b5dfa
DC
1475 goto error_return;
1476 }
1477
94f3cad5
ES
1478 if (!resblks) {
1479 error = xfs_dir_canenter(tp, tdp, target_name);
1480 if (error)
1481 goto error_return;
1482 }
c24b5dfa
DC
1483
1484 xfs_bmap_init(&free_list, &first_block);
1485
ab297431
ZYW
1486 if (sip->i_d.di_nlink == 0) {
1487 error = xfs_iunlink_remove(tp, sip);
1488 if (error)
1489 goto abort_return;
1490 }
1491
c24b5dfa
DC
1492 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1493 &first_block, &free_list, resblks);
1494 if (error)
1495 goto abort_return;
1496 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1497 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1498
1499 error = xfs_bumplink(tp, sip);
1500 if (error)
1501 goto abort_return;
1502
1503 /*
1504 * If this is a synchronous mount, make sure that the
1505 * link transaction goes to disk before returning to
1506 * the user.
1507 */
1508 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1509 xfs_trans_set_sync(tp);
1510 }
1511
1512 error = xfs_bmap_finish (&tp, &free_list, &committed);
1513 if (error) {
1514 xfs_bmap_cancel(&free_list);
1515 goto abort_return;
1516 }
1517
1518 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1519
1520 abort_return:
1521 cancel_flags |= XFS_TRANS_ABORT;
1522 error_return:
1523 xfs_trans_cancel(tp, cancel_flags);
1524 std_return:
1525 return error;
1526}
1527
1da177e4 1528/*
8f04c47a
CH
1529 * Free up the underlying blocks past new_size. The new size must be smaller
1530 * than the current size. This routine can be used both for the attribute and
1531 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1532 *
f6485057
DC
1533 * The transaction passed to this routine must have made a permanent log
1534 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1535 * given transaction and start new ones, so make sure everything involved in
1536 * the transaction is tidy before calling here. Some transaction will be
1537 * returned to the caller to be committed. The incoming transaction must
1538 * already include the inode, and both inode locks must be held exclusively.
1539 * The inode must also be "held" within the transaction. On return the inode
1540 * will be "held" within the returned transaction. This routine does NOT
1541 * require any disk space to be reserved for it within the transaction.
1da177e4 1542 *
f6485057
DC
1543 * If we get an error, we must return with the inode locked and linked into the
1544 * current transaction. This keeps things simple for the higher level code,
1545 * because it always knows that the inode is locked and held in the transaction
1546 * that returns to it whether errors occur or not. We don't mark the inode
1547 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1548 */
1549int
8f04c47a
CH
1550xfs_itruncate_extents(
1551 struct xfs_trans **tpp,
1552 struct xfs_inode *ip,
1553 int whichfork,
1554 xfs_fsize_t new_size)
1da177e4 1555{
8f04c47a
CH
1556 struct xfs_mount *mp = ip->i_mount;
1557 struct xfs_trans *tp = *tpp;
1558 struct xfs_trans *ntp;
1559 xfs_bmap_free_t free_list;
1560 xfs_fsblock_t first_block;
1561 xfs_fileoff_t first_unmap_block;
1562 xfs_fileoff_t last_block;
1563 xfs_filblks_t unmap_len;
1564 int committed;
1565 int error = 0;
1566 int done = 0;
1da177e4 1567
0b56185b
CH
1568 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1569 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1570 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1571 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1572 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1573 ASSERT(ip->i_itemp != NULL);
898621d5 1574 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1575 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1576
673e8e59
CH
1577 trace_xfs_itruncate_extents_start(ip, new_size);
1578
1da177e4
LT
1579 /*
1580 * Since it is possible for space to become allocated beyond
1581 * the end of the file (in a crash where the space is allocated
1582 * but the inode size is not yet updated), simply remove any
1583 * blocks which show up between the new EOF and the maximum
1584 * possible file size. If the first block to be removed is
1585 * beyond the maximum file size (ie it is the same as last_block),
1586 * then there is nothing to do.
1587 */
8f04c47a 1588 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1589 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1590 if (first_unmap_block == last_block)
1591 return 0;
1592
1593 ASSERT(first_unmap_block < last_block);
1594 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1595 while (!done) {
9d87c319 1596 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1597 error = xfs_bunmapi(tp, ip,
3e57ecf6 1598 first_unmap_block, unmap_len,
8f04c47a 1599 xfs_bmapi_aflag(whichfork),
1da177e4 1600 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1601 &first_block, &free_list,
b4e9181e 1602 &done);
8f04c47a
CH
1603 if (error)
1604 goto out_bmap_cancel;
1da177e4
LT
1605
1606 /*
1607 * Duplicate the transaction that has the permanent
1608 * reservation and commit the old transaction.
1609 */
8f04c47a 1610 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1611 if (committed)
ddc3415a 1612 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1613 if (error)
1614 goto out_bmap_cancel;
1da177e4
LT
1615
1616 if (committed) {
1617 /*
f6485057 1618 * Mark the inode dirty so it will be logged and
e5720eec 1619 * moved forward in the log as part of every commit.
1da177e4 1620 */
8f04c47a 1621 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1622 }
f6485057 1623
8f04c47a
CH
1624 ntp = xfs_trans_dup(tp);
1625 error = xfs_trans_commit(tp, 0);
1626 tp = ntp;
e5720eec 1627
ddc3415a 1628 xfs_trans_ijoin(tp, ip, 0);
f6485057 1629
cc09c0dc 1630 if (error)
8f04c47a
CH
1631 goto out;
1632
cc09c0dc 1633 /*
8f04c47a 1634 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1635 * reference that we gained in xfs_trans_dup()
1636 */
8f04c47a 1637 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52 1638 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
f6485057 1639 if (error)
8f04c47a 1640 goto out;
1da177e4 1641 }
8f04c47a 1642
673e8e59
CH
1643 /*
1644 * Always re-log the inode so that our permanent transaction can keep
1645 * on rolling it forward in the log.
1646 */
1647 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1648
1649 trace_xfs_itruncate_extents_end(ip, new_size);
1650
8f04c47a
CH
1651out:
1652 *tpp = tp;
1653 return error;
1654out_bmap_cancel:
1da177e4 1655 /*
8f04c47a
CH
1656 * If the bunmapi call encounters an error, return to the caller where
1657 * the transaction can be properly aborted. We just need to make sure
1658 * we're not holding any resources that we were not when we came in.
1da177e4 1659 */
8f04c47a
CH
1660 xfs_bmap_cancel(&free_list);
1661 goto out;
1662}
1663
c24b5dfa
DC
1664int
1665xfs_release(
1666 xfs_inode_t *ip)
1667{
1668 xfs_mount_t *mp = ip->i_mount;
1669 int error;
1670
1671 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1672 return 0;
1673
1674 /* If this is a read-only mount, don't do this (would generate I/O) */
1675 if (mp->m_flags & XFS_MOUNT_RDONLY)
1676 return 0;
1677
1678 if (!XFS_FORCED_SHUTDOWN(mp)) {
1679 int truncated;
1680
c24b5dfa
DC
1681 /*
1682 * If we previously truncated this file and removed old data
1683 * in the process, we want to initiate "early" writeout on
1684 * the last close. This is an attempt to combat the notorious
1685 * NULL files problem which is particularly noticeable from a
1686 * truncate down, buffered (re-)write (delalloc), followed by
1687 * a crash. What we are effectively doing here is
1688 * significantly reducing the time window where we'd otherwise
1689 * be exposed to that problem.
1690 */
1691 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1692 if (truncated) {
1693 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1694 if (ip->i_delayed_blks > 0) {
2451337d 1695 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1696 if (error)
1697 return error;
1698 }
1699 }
1700 }
1701
1702 if (ip->i_d.di_nlink == 0)
1703 return 0;
1704
1705 if (xfs_can_free_eofblocks(ip, false)) {
1706
1707 /*
1708 * If we can't get the iolock just skip truncating the blocks
1709 * past EOF because we could deadlock with the mmap_sem
1710 * otherwise. We'll get another chance to drop them once the
1711 * last reference to the inode is dropped, so we'll never leak
1712 * blocks permanently.
1713 *
1714 * Further, check if the inode is being opened, written and
1715 * closed frequently and we have delayed allocation blocks
1716 * outstanding (e.g. streaming writes from the NFS server),
1717 * truncating the blocks past EOF will cause fragmentation to
1718 * occur.
1719 *
1720 * In this case don't do the truncation, either, but we have to
1721 * be careful how we detect this case. Blocks beyond EOF show
1722 * up as i_delayed_blks even when the inode is clean, so we
1723 * need to truncate them away first before checking for a dirty
1724 * release. Hence on the first dirty close we will still remove
1725 * the speculative allocation, but after that we will leave it
1726 * in place.
1727 */
1728 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1729 return 0;
1730
1731 error = xfs_free_eofblocks(mp, ip, true);
2451337d 1732 if (error && error != -EAGAIN)
c24b5dfa
DC
1733 return error;
1734
1735 /* delalloc blocks after truncation means it really is dirty */
1736 if (ip->i_delayed_blks)
1737 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1738 }
1739 return 0;
1740}
1741
f7be2d7f
BF
1742/*
1743 * xfs_inactive_truncate
1744 *
1745 * Called to perform a truncate when an inode becomes unlinked.
1746 */
1747STATIC int
1748xfs_inactive_truncate(
1749 struct xfs_inode *ip)
1750{
1751 struct xfs_mount *mp = ip->i_mount;
1752 struct xfs_trans *tp;
1753 int error;
1754
1755 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1756 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1757 if (error) {
1758 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1759 xfs_trans_cancel(tp, 0);
1760 return error;
1761 }
1762
1763 xfs_ilock(ip, XFS_ILOCK_EXCL);
1764 xfs_trans_ijoin(tp, ip, 0);
1765
1766 /*
1767 * Log the inode size first to prevent stale data exposure in the event
1768 * of a system crash before the truncate completes. See the related
1769 * comment in xfs_setattr_size() for details.
1770 */
1771 ip->i_d.di_size = 0;
1772 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1773
1774 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1775 if (error)
1776 goto error_trans_cancel;
1777
1778 ASSERT(ip->i_d.di_nextents == 0);
1779
1780 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1781 if (error)
1782 goto error_unlock;
1783
1784 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1785 return 0;
1786
1787error_trans_cancel:
1788 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1789error_unlock:
1790 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1791 return error;
1792}
1793
88877d2b
BF
1794/*
1795 * xfs_inactive_ifree()
1796 *
1797 * Perform the inode free when an inode is unlinked.
1798 */
1799STATIC int
1800xfs_inactive_ifree(
1801 struct xfs_inode *ip)
1802{
1803 xfs_bmap_free_t free_list;
1804 xfs_fsblock_t first_block;
1805 int committed;
1806 struct xfs_mount *mp = ip->i_mount;
1807 struct xfs_trans *tp;
1808 int error;
1809
1810 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
9d43b180
BF
1811
1812 /*
1813 * The ifree transaction might need to allocate blocks for record
1814 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1815 * allow ifree to dip into the reserved block pool if necessary.
1816 *
1817 * Freeing large sets of inodes generally means freeing inode chunks,
1818 * directory and file data blocks, so this should be relatively safe.
1819 * Only under severe circumstances should it be possible to free enough
1820 * inodes to exhaust the reserve block pool via finobt expansion while
1821 * at the same time not creating free space in the filesystem.
1822 *
1823 * Send a warning if the reservation does happen to fail, as the inode
1824 * now remains allocated and sits on the unlinked list until the fs is
1825 * repaired.
1826 */
1827 tp->t_flags |= XFS_TRANS_RESERVE;
1828 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1829 XFS_IFREE_SPACE_RES(mp), 0);
88877d2b 1830 if (error) {
2451337d 1831 if (error == -ENOSPC) {
9d43b180
BF
1832 xfs_warn_ratelimited(mp,
1833 "Failed to remove inode(s) from unlinked list. "
1834 "Please free space, unmount and run xfs_repair.");
1835 } else {
1836 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1837 }
88877d2b
BF
1838 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1839 return error;
1840 }
1841
1842 xfs_ilock(ip, XFS_ILOCK_EXCL);
1843 xfs_trans_ijoin(tp, ip, 0);
1844
1845 xfs_bmap_init(&free_list, &first_block);
1846 error = xfs_ifree(tp, ip, &free_list);
1847 if (error) {
1848 /*
1849 * If we fail to free the inode, shut down. The cancel
1850 * might do that, we need to make sure. Otherwise the
1851 * inode might be lost for a long time or forever.
1852 */
1853 if (!XFS_FORCED_SHUTDOWN(mp)) {
1854 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1855 __func__, error);
1856 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1857 }
1858 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1859 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1860 return error;
1861 }
1862
1863 /*
1864 * Credit the quota account(s). The inode is gone.
1865 */
1866 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1867
1868 /*
1869 * Just ignore errors at this point. There is nothing we can
1870 * do except to try to keep going. Make sure it's not a silent
1871 * error.
1872 */
1873 error = xfs_bmap_finish(&tp, &free_list, &committed);
1874 if (error)
1875 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1876 __func__, error);
1877 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1878 if (error)
1879 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1880 __func__, error);
1881
1882 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1883 return 0;
1884}
1885
c24b5dfa
DC
1886/*
1887 * xfs_inactive
1888 *
1889 * This is called when the vnode reference count for the vnode
1890 * goes to zero. If the file has been unlinked, then it must
1891 * now be truncated. Also, we clear all of the read-ahead state
1892 * kept for the inode here since the file is now closed.
1893 */
74564fb4 1894void
c24b5dfa
DC
1895xfs_inactive(
1896 xfs_inode_t *ip)
1897{
3d3c8b52 1898 struct xfs_mount *mp;
3d3c8b52
JL
1899 int error;
1900 int truncate = 0;
c24b5dfa
DC
1901
1902 /*
1903 * If the inode is already free, then there can be nothing
1904 * to clean up here.
1905 */
d948709b 1906 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1907 ASSERT(ip->i_df.if_real_bytes == 0);
1908 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1909 return;
c24b5dfa
DC
1910 }
1911
1912 mp = ip->i_mount;
1913
c24b5dfa
DC
1914 /* If this is a read-only mount, don't do this (would generate I/O) */
1915 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1916 return;
c24b5dfa
DC
1917
1918 if (ip->i_d.di_nlink != 0) {
1919 /*
1920 * force is true because we are evicting an inode from the
1921 * cache. Post-eof blocks must be freed, lest we end up with
1922 * broken free space accounting.
1923 */
74564fb4
BF
1924 if (xfs_can_free_eofblocks(ip, true))
1925 xfs_free_eofblocks(mp, ip, false);
1926
1927 return;
c24b5dfa
DC
1928 }
1929
1930 if (S_ISREG(ip->i_d.di_mode) &&
1931 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1932 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1933 truncate = 1;
1934
1935 error = xfs_qm_dqattach(ip, 0);
1936 if (error)
74564fb4 1937 return;
c24b5dfa 1938
f7be2d7f 1939 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1940 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1941 else if (truncate)
1942 error = xfs_inactive_truncate(ip);
1943 if (error)
74564fb4 1944 return;
c24b5dfa
DC
1945
1946 /*
1947 * If there are attributes associated with the file then blow them away
1948 * now. The code calls a routine that recursively deconstructs the
1949 * attribute fork. We need to just commit the current transaction
1950 * because we can't use it for xfs_attr_inactive().
1951 */
1952 if (ip->i_d.di_anextents > 0) {
1953 ASSERT(ip->i_d.di_forkoff != 0);
1954
c24b5dfa
DC
1955 error = xfs_attr_inactive(ip);
1956 if (error)
74564fb4 1957 return;
c24b5dfa
DC
1958 }
1959
1960 if (ip->i_afp)
1961 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1962
1963 ASSERT(ip->i_d.di_anextents == 0);
1964
1965 /*
1966 * Free the inode.
1967 */
88877d2b
BF
1968 error = xfs_inactive_ifree(ip);
1969 if (error)
74564fb4 1970 return;
c24b5dfa
DC
1971
1972 /*
1973 * Release the dquots held by inode, if any.
1974 */
1975 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1976}
1977
1da177e4
LT
1978/*
1979 * This is called when the inode's link count goes to 0.
1980 * We place the on-disk inode on a list in the AGI. It
1981 * will be pulled from this list when the inode is freed.
1982 */
1983int
1984xfs_iunlink(
1985 xfs_trans_t *tp,
1986 xfs_inode_t *ip)
1987{
1988 xfs_mount_t *mp;
1989 xfs_agi_t *agi;
1990 xfs_dinode_t *dip;
1991 xfs_buf_t *agibp;
1992 xfs_buf_t *ibp;
1da177e4
LT
1993 xfs_agino_t agino;
1994 short bucket_index;
1995 int offset;
1996 int error;
1da177e4
LT
1997
1998 ASSERT(ip->i_d.di_nlink == 0);
1999 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
2000
2001 mp = tp->t_mountp;
2002
1da177e4
LT
2003 /*
2004 * Get the agi buffer first. It ensures lock ordering
2005 * on the list.
2006 */
5e1be0fb 2007 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 2008 if (error)
1da177e4 2009 return error;
1da177e4 2010 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2011
1da177e4
LT
2012 /*
2013 * Get the index into the agi hash table for the
2014 * list this inode will go on.
2015 */
2016 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2017 ASSERT(agino != 0);
2018 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2019 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 2020 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 2021
69ef921b 2022 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
2023 /*
2024 * There is already another inode in the bucket we need
2025 * to add ourselves to. Add us at the front of the list.
2026 * Here we put the head pointer into our next pointer,
2027 * and then we fall through to point the head at us.
2028 */
475ee413
CH
2029 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2030 0, 0);
c319b58b
VA
2031 if (error)
2032 return error;
2033
69ef921b 2034 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2035 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2036 offset = ip->i_imap.im_boffset +
1da177e4 2037 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2038
2039 /* need to recalc the inode CRC if appropriate */
2040 xfs_dinode_calc_crc(mp, dip);
2041
1da177e4
LT
2042 xfs_trans_inode_buf(tp, ibp);
2043 xfs_trans_log_buf(tp, ibp, offset,
2044 (offset + sizeof(xfs_agino_t) - 1));
2045 xfs_inobp_check(mp, ibp);
2046 }
2047
2048 /*
2049 * Point the bucket head pointer at the inode being inserted.
2050 */
2051 ASSERT(agino != 0);
16259e7d 2052 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2053 offset = offsetof(xfs_agi_t, agi_unlinked) +
2054 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2055 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2056 xfs_trans_log_buf(tp, agibp, offset,
2057 (offset + sizeof(xfs_agino_t) - 1));
2058 return 0;
2059}
2060
2061/*
2062 * Pull the on-disk inode from the AGI unlinked list.
2063 */
2064STATIC int
2065xfs_iunlink_remove(
2066 xfs_trans_t *tp,
2067 xfs_inode_t *ip)
2068{
2069 xfs_ino_t next_ino;
2070 xfs_mount_t *mp;
2071 xfs_agi_t *agi;
2072 xfs_dinode_t *dip;
2073 xfs_buf_t *agibp;
2074 xfs_buf_t *ibp;
2075 xfs_agnumber_t agno;
1da177e4
LT
2076 xfs_agino_t agino;
2077 xfs_agino_t next_agino;
2078 xfs_buf_t *last_ibp;
6fdf8ccc 2079 xfs_dinode_t *last_dip = NULL;
1da177e4 2080 short bucket_index;
6fdf8ccc 2081 int offset, last_offset = 0;
1da177e4 2082 int error;
1da177e4 2083
1da177e4 2084 mp = tp->t_mountp;
1da177e4 2085 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2086
2087 /*
2088 * Get the agi buffer first. It ensures lock ordering
2089 * on the list.
2090 */
5e1be0fb
CH
2091 error = xfs_read_agi(mp, tp, agno, &agibp);
2092 if (error)
1da177e4 2093 return error;
5e1be0fb 2094
1da177e4 2095 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2096
1da177e4
LT
2097 /*
2098 * Get the index into the agi hash table for the
2099 * list this inode will go on.
2100 */
2101 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2102 ASSERT(agino != 0);
2103 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2104 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2105 ASSERT(agi->agi_unlinked[bucket_index]);
2106
16259e7d 2107 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2108 /*
475ee413
CH
2109 * We're at the head of the list. Get the inode's on-disk
2110 * buffer to see if there is anyone after us on the list.
2111 * Only modify our next pointer if it is not already NULLAGINO.
2112 * This saves us the overhead of dealing with the buffer when
2113 * there is no need to change it.
1da177e4 2114 */
475ee413
CH
2115 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2116 0, 0);
1da177e4 2117 if (error) {
475ee413 2118 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2119 __func__, error);
1da177e4
LT
2120 return error;
2121 }
347d1c01 2122 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2123 ASSERT(next_agino != 0);
2124 if (next_agino != NULLAGINO) {
347d1c01 2125 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2126 offset = ip->i_imap.im_boffset +
1da177e4 2127 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2128
2129 /* need to recalc the inode CRC if appropriate */
2130 xfs_dinode_calc_crc(mp, dip);
2131
1da177e4
LT
2132 xfs_trans_inode_buf(tp, ibp);
2133 xfs_trans_log_buf(tp, ibp, offset,
2134 (offset + sizeof(xfs_agino_t) - 1));
2135 xfs_inobp_check(mp, ibp);
2136 } else {
2137 xfs_trans_brelse(tp, ibp);
2138 }
2139 /*
2140 * Point the bucket head pointer at the next inode.
2141 */
2142 ASSERT(next_agino != 0);
2143 ASSERT(next_agino != agino);
16259e7d 2144 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2145 offset = offsetof(xfs_agi_t, agi_unlinked) +
2146 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2147 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2148 xfs_trans_log_buf(tp, agibp, offset,
2149 (offset + sizeof(xfs_agino_t) - 1));
2150 } else {
2151 /*
2152 * We need to search the list for the inode being freed.
2153 */
16259e7d 2154 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2155 last_ibp = NULL;
2156 while (next_agino != agino) {
129dbc9a
CH
2157 struct xfs_imap imap;
2158
2159 if (last_ibp)
1da177e4 2160 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2161
2162 imap.im_blkno = 0;
1da177e4 2163 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2164
2165 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2166 if (error) {
2167 xfs_warn(mp,
2168 "%s: xfs_imap returned error %d.",
2169 __func__, error);
2170 return error;
2171 }
2172
2173 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2174 &last_ibp, 0, 0);
1da177e4 2175 if (error) {
0b932ccc 2176 xfs_warn(mp,
129dbc9a 2177 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2178 __func__, error);
1da177e4
LT
2179 return error;
2180 }
129dbc9a
CH
2181
2182 last_offset = imap.im_boffset;
347d1c01 2183 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2184 ASSERT(next_agino != NULLAGINO);
2185 ASSERT(next_agino != 0);
2186 }
475ee413 2187
1da177e4 2188 /*
475ee413
CH
2189 * Now last_ibp points to the buffer previous to us on the
2190 * unlinked list. Pull us from the list.
1da177e4 2191 */
475ee413
CH
2192 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2193 0, 0);
1da177e4 2194 if (error) {
475ee413 2195 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2196 __func__, error);
1da177e4
LT
2197 return error;
2198 }
347d1c01 2199 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2200 ASSERT(next_agino != 0);
2201 ASSERT(next_agino != agino);
2202 if (next_agino != NULLAGINO) {
347d1c01 2203 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2204 offset = ip->i_imap.im_boffset +
1da177e4 2205 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2206
2207 /* need to recalc the inode CRC if appropriate */
2208 xfs_dinode_calc_crc(mp, dip);
2209
1da177e4
LT
2210 xfs_trans_inode_buf(tp, ibp);
2211 xfs_trans_log_buf(tp, ibp, offset,
2212 (offset + sizeof(xfs_agino_t) - 1));
2213 xfs_inobp_check(mp, ibp);
2214 } else {
2215 xfs_trans_brelse(tp, ibp);
2216 }
2217 /*
2218 * Point the previous inode on the list to the next inode.
2219 */
347d1c01 2220 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2221 ASSERT(next_agino != 0);
2222 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2223
2224 /* need to recalc the inode CRC if appropriate */
2225 xfs_dinode_calc_crc(mp, last_dip);
2226
1da177e4
LT
2227 xfs_trans_inode_buf(tp, last_ibp);
2228 xfs_trans_log_buf(tp, last_ibp, offset,
2229 (offset + sizeof(xfs_agino_t) - 1));
2230 xfs_inobp_check(mp, last_ibp);
2231 }
2232 return 0;
2233}
2234
5b3eed75 2235/*
0b8182db 2236 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2237 * inodes that are in memory - they all must be marked stale and attached to
2238 * the cluster buffer.
2239 */
2a30f36d 2240STATIC int
1da177e4
LT
2241xfs_ifree_cluster(
2242 xfs_inode_t *free_ip,
2243 xfs_trans_t *tp,
2244 xfs_ino_t inum)
2245{
2246 xfs_mount_t *mp = free_ip->i_mount;
2247 int blks_per_cluster;
982e939e 2248 int inodes_per_cluster;
1da177e4 2249 int nbufs;
5b257b4a 2250 int i, j;
1da177e4
LT
2251 xfs_daddr_t blkno;
2252 xfs_buf_t *bp;
5b257b4a 2253 xfs_inode_t *ip;
1da177e4
LT
2254 xfs_inode_log_item_t *iip;
2255 xfs_log_item_t *lip;
5017e97d 2256 struct xfs_perag *pag;
1da177e4 2257
5017e97d 2258 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2259 blks_per_cluster = xfs_icluster_size_fsb(mp);
2260 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2261 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2262
982e939e 2263 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
1da177e4
LT
2264 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2265 XFS_INO_TO_AGBNO(mp, inum));
2266
5b257b4a
DC
2267 /*
2268 * We obtain and lock the backing buffer first in the process
2269 * here, as we have to ensure that any dirty inode that we
2270 * can't get the flush lock on is attached to the buffer.
2271 * If we scan the in-memory inodes first, then buffer IO can
2272 * complete before we get a lock on it, and hence we may fail
2273 * to mark all the active inodes on the buffer stale.
2274 */
2275 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2276 mp->m_bsize * blks_per_cluster,
2277 XBF_UNMAPPED);
5b257b4a 2278
2a30f36d 2279 if (!bp)
2451337d 2280 return -ENOMEM;
b0f539de
DC
2281
2282 /*
2283 * This buffer may not have been correctly initialised as we
2284 * didn't read it from disk. That's not important because we are
2285 * only using to mark the buffer as stale in the log, and to
2286 * attach stale cached inodes on it. That means it will never be
2287 * dispatched for IO. If it is, we want to know about it, and we
2288 * want it to fail. We can acheive this by adding a write
2289 * verifier to the buffer.
2290 */
1813dd64 2291 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2292
5b257b4a
DC
2293 /*
2294 * Walk the inodes already attached to the buffer and mark them
2295 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2296 * in-memory inode walk can't lock them. By marking them all
2297 * stale first, we will not attempt to lock them in the loop
2298 * below as the XFS_ISTALE flag will be set.
5b257b4a 2299 */
adadbeef 2300 lip = bp->b_fspriv;
5b257b4a
DC
2301 while (lip) {
2302 if (lip->li_type == XFS_LI_INODE) {
2303 iip = (xfs_inode_log_item_t *)lip;
2304 ASSERT(iip->ili_logged == 1);
ca30b2a7 2305 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2306 xfs_trans_ail_copy_lsn(mp->m_ail,
2307 &iip->ili_flush_lsn,
2308 &iip->ili_item.li_lsn);
2309 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2310 }
2311 lip = lip->li_bio_list;
2312 }
1da177e4 2313
5b3eed75 2314
1da177e4 2315 /*
5b257b4a
DC
2316 * For each inode in memory attempt to add it to the inode
2317 * buffer and set it up for being staled on buffer IO
2318 * completion. This is safe as we've locked out tail pushing
2319 * and flushing by locking the buffer.
1da177e4 2320 *
5b257b4a
DC
2321 * We have already marked every inode that was part of a
2322 * transaction stale above, which means there is no point in
2323 * even trying to lock them.
1da177e4 2324 */
982e939e 2325 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2326retry:
1a3e8f3d 2327 rcu_read_lock();
da353b0d
DC
2328 ip = radix_tree_lookup(&pag->pag_ici_root,
2329 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2330
1a3e8f3d
DC
2331 /* Inode not in memory, nothing to do */
2332 if (!ip) {
2333 rcu_read_unlock();
1da177e4
LT
2334 continue;
2335 }
2336
1a3e8f3d
DC
2337 /*
2338 * because this is an RCU protected lookup, we could
2339 * find a recently freed or even reallocated inode
2340 * during the lookup. We need to check under the
2341 * i_flags_lock for a valid inode here. Skip it if it
2342 * is not valid, the wrong inode or stale.
2343 */
2344 spin_lock(&ip->i_flags_lock);
2345 if (ip->i_ino != inum + i ||
2346 __xfs_iflags_test(ip, XFS_ISTALE)) {
2347 spin_unlock(&ip->i_flags_lock);
2348 rcu_read_unlock();
2349 continue;
2350 }
2351 spin_unlock(&ip->i_flags_lock);
2352
5b3eed75
DC
2353 /*
2354 * Don't try to lock/unlock the current inode, but we
2355 * _cannot_ skip the other inodes that we did not find
2356 * in the list attached to the buffer and are not
2357 * already marked stale. If we can't lock it, back off
2358 * and retry.
2359 */
5b257b4a
DC
2360 if (ip != free_ip &&
2361 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2362 rcu_read_unlock();
5b3eed75
DC
2363 delay(1);
2364 goto retry;
1da177e4 2365 }
1a3e8f3d 2366 rcu_read_unlock();
1da177e4 2367
5b3eed75 2368 xfs_iflock(ip);
5b257b4a 2369 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2370
5b3eed75
DC
2371 /*
2372 * we don't need to attach clean inodes or those only
2373 * with unlogged changes (which we throw away, anyway).
2374 */
1da177e4 2375 iip = ip->i_itemp;
5b3eed75 2376 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2377 ASSERT(ip != free_ip);
1da177e4
LT
2378 xfs_ifunlock(ip);
2379 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2380 continue;
2381 }
2382
f5d8d5c4
CH
2383 iip->ili_last_fields = iip->ili_fields;
2384 iip->ili_fields = 0;
1da177e4 2385 iip->ili_logged = 1;
7b2e2a31
DC
2386 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2387 &iip->ili_item.li_lsn);
1da177e4 2388
ca30b2a7
CH
2389 xfs_buf_attach_iodone(bp, xfs_istale_done,
2390 &iip->ili_item);
5b257b4a
DC
2391
2392 if (ip != free_ip)
1da177e4 2393 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2394 }
2395
5b3eed75 2396 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2397 xfs_trans_binval(tp, bp);
2398 }
2399
5017e97d 2400 xfs_perag_put(pag);
2a30f36d 2401 return 0;
1da177e4
LT
2402}
2403
2404/*
2405 * This is called to return an inode to the inode free list.
2406 * The inode should already be truncated to 0 length and have
2407 * no pages associated with it. This routine also assumes that
2408 * the inode is already a part of the transaction.
2409 *
2410 * The on-disk copy of the inode will have been added to the list
2411 * of unlinked inodes in the AGI. We need to remove the inode from
2412 * that list atomically with respect to freeing it here.
2413 */
2414int
2415xfs_ifree(
2416 xfs_trans_t *tp,
2417 xfs_inode_t *ip,
2418 xfs_bmap_free_t *flist)
2419{
2420 int error;
2421 int delete;
2422 xfs_ino_t first_ino;
2423
579aa9ca 2424 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2425 ASSERT(ip->i_d.di_nlink == 0);
2426 ASSERT(ip->i_d.di_nextents == 0);
2427 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2428 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2429 ASSERT(ip->i_d.di_nblocks == 0);
2430
2431 /*
2432 * Pull the on-disk inode from the AGI unlinked list.
2433 */
2434 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2435 if (error)
1da177e4 2436 return error;
1da177e4
LT
2437
2438 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1baaed8f 2439 if (error)
1da177e4 2440 return error;
1baaed8f 2441
1da177e4
LT
2442 ip->i_d.di_mode = 0; /* mark incore inode as free */
2443 ip->i_d.di_flags = 0;
2444 ip->i_d.di_dmevmask = 0;
2445 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2446 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2447 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2448 /*
2449 * Bump the generation count so no one will be confused
2450 * by reincarnations of this inode.
2451 */
2452 ip->i_d.di_gen++;
2453 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2454
1baaed8f 2455 if (delete)
2a30f36d 2456 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4 2457
2a30f36d 2458 return error;
1da177e4
LT
2459}
2460
1da177e4 2461/*
60ec6783
CH
2462 * This is called to unpin an inode. The caller must have the inode locked
2463 * in at least shared mode so that the buffer cannot be subsequently pinned
2464 * once someone is waiting for it to be unpinned.
1da177e4 2465 */
60ec6783 2466static void
f392e631 2467xfs_iunpin(
60ec6783 2468 struct xfs_inode *ip)
1da177e4 2469{
579aa9ca 2470 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2471
4aaf15d1
DC
2472 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2473
a3f74ffb 2474 /* Give the log a push to start the unpinning I/O */
60ec6783 2475 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2476
a3f74ffb 2477}
1da177e4 2478
f392e631
CH
2479static void
2480__xfs_iunpin_wait(
2481 struct xfs_inode *ip)
2482{
2483 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2484 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2485
2486 xfs_iunpin(ip);
2487
2488 do {
2489 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2490 if (xfs_ipincount(ip))
2491 io_schedule();
2492 } while (xfs_ipincount(ip));
2493 finish_wait(wq, &wait.wait);
2494}
2495
777df5af 2496void
a3f74ffb 2497xfs_iunpin_wait(
60ec6783 2498 struct xfs_inode *ip)
a3f74ffb 2499{
f392e631
CH
2500 if (xfs_ipincount(ip))
2501 __xfs_iunpin_wait(ip);
1da177e4
LT
2502}
2503
27320369
DC
2504/*
2505 * Removing an inode from the namespace involves removing the directory entry
2506 * and dropping the link count on the inode. Removing the directory entry can
2507 * result in locking an AGF (directory blocks were freed) and removing a link
2508 * count can result in placing the inode on an unlinked list which results in
2509 * locking an AGI.
2510 *
2511 * The big problem here is that we have an ordering constraint on AGF and AGI
2512 * locking - inode allocation locks the AGI, then can allocate a new extent for
2513 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2514 * removes the inode from the unlinked list, requiring that we lock the AGI
2515 * first, and then freeing the inode can result in an inode chunk being freed
2516 * and hence freeing disk space requiring that we lock an AGF.
2517 *
2518 * Hence the ordering that is imposed by other parts of the code is AGI before
2519 * AGF. This means we cannot remove the directory entry before we drop the inode
2520 * reference count and put it on the unlinked list as this results in a lock
2521 * order of AGF then AGI, and this can deadlock against inode allocation and
2522 * freeing. Therefore we must drop the link counts before we remove the
2523 * directory entry.
2524 *
2525 * This is still safe from a transactional point of view - it is not until we
2526 * get to xfs_bmap_finish() that we have the possibility of multiple
2527 * transactions in this operation. Hence as long as we remove the directory
2528 * entry and drop the link count in the first transaction of the remove
2529 * operation, there are no transactional constraints on the ordering here.
2530 */
c24b5dfa
DC
2531int
2532xfs_remove(
2533 xfs_inode_t *dp,
2534 struct xfs_name *name,
2535 xfs_inode_t *ip)
2536{
2537 xfs_mount_t *mp = dp->i_mount;
2538 xfs_trans_t *tp = NULL;
2539 int is_dir = S_ISDIR(ip->i_d.di_mode);
2540 int error = 0;
2541 xfs_bmap_free_t free_list;
2542 xfs_fsblock_t first_block;
2543 int cancel_flags;
2544 int committed;
c24b5dfa 2545 uint resblks;
c24b5dfa
DC
2546
2547 trace_xfs_remove(dp, name);
2548
2549 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2550 return -EIO;
c24b5dfa
DC
2551
2552 error = xfs_qm_dqattach(dp, 0);
2553 if (error)
2554 goto std_return;
2555
2556 error = xfs_qm_dqattach(ip, 0);
2557 if (error)
2558 goto std_return;
2559
32296f86 2560 if (is_dir)
c24b5dfa 2561 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
32296f86 2562 else
c24b5dfa 2563 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
c24b5dfa
DC
2564 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2565
2566 /*
2567 * We try to get the real space reservation first,
2568 * allowing for directory btree deletion(s) implying
2569 * possible bmap insert(s). If we can't get the space
2570 * reservation then we use 0 instead, and avoid the bmap
2571 * btree insert(s) in the directory code by, if the bmap
2572 * insert tries to happen, instead trimming the LAST
2573 * block from the directory.
2574 */
2575 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2576 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2451337d 2577 if (error == -ENOSPC) {
c24b5dfa 2578 resblks = 0;
3d3c8b52 2579 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2580 }
2581 if (error) {
2451337d 2582 ASSERT(error != -ENOSPC);
c24b5dfa
DC
2583 cancel_flags = 0;
2584 goto out_trans_cancel;
2585 }
2586
2587 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2588
2589 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2590 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2591
2592 /*
2593 * If we're removing a directory perform some additional validation.
2594 */
27320369 2595 cancel_flags |= XFS_TRANS_ABORT;
c24b5dfa
DC
2596 if (is_dir) {
2597 ASSERT(ip->i_d.di_nlink >= 2);
2598 if (ip->i_d.di_nlink != 2) {
2451337d 2599 error = -ENOTEMPTY;
c24b5dfa
DC
2600 goto out_trans_cancel;
2601 }
2602 if (!xfs_dir_isempty(ip)) {
2451337d 2603 error = -ENOTEMPTY;
c24b5dfa
DC
2604 goto out_trans_cancel;
2605 }
c24b5dfa 2606
27320369 2607 /* Drop the link from ip's "..". */
c24b5dfa
DC
2608 error = xfs_droplink(tp, dp);
2609 if (error)
27320369 2610 goto out_trans_cancel;
c24b5dfa 2611
27320369 2612 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2613 error = xfs_droplink(tp, ip);
2614 if (error)
27320369 2615 goto out_trans_cancel;
c24b5dfa
DC
2616 } else {
2617 /*
2618 * When removing a non-directory we need to log the parent
2619 * inode here. For a directory this is done implicitly
2620 * by the xfs_droplink call for the ".." entry.
2621 */
2622 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2623 }
27320369 2624 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2625
27320369 2626 /* Drop the link from dp to ip. */
c24b5dfa
DC
2627 error = xfs_droplink(tp, ip);
2628 if (error)
27320369 2629 goto out_trans_cancel;
c24b5dfa 2630
27320369
DC
2631 xfs_bmap_init(&free_list, &first_block);
2632 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2633 &first_block, &free_list, resblks);
2634 if (error) {
2451337d 2635 ASSERT(error != -ENOENT);
27320369
DC
2636 goto out_bmap_cancel;
2637 }
2638
c24b5dfa
DC
2639 /*
2640 * If this is a synchronous mount, make sure that the
2641 * remove transaction goes to disk before returning to
2642 * the user.
2643 */
2644 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2645 xfs_trans_set_sync(tp);
2646
2647 error = xfs_bmap_finish(&tp, &free_list, &committed);
2648 if (error)
2649 goto out_bmap_cancel;
2650
2651 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2652 if (error)
2653 goto std_return;
2654
2cd2ef6a 2655 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2656 xfs_filestream_deassociate(ip);
2657
2658 return 0;
2659
2660 out_bmap_cancel:
2661 xfs_bmap_cancel(&free_list);
c24b5dfa
DC
2662 out_trans_cancel:
2663 xfs_trans_cancel(tp, cancel_flags);
2664 std_return:
2665 return error;
2666}
2667
f6bba201
DC
2668/*
2669 * Enter all inodes for a rename transaction into a sorted array.
2670 */
95afcf5c 2671#define __XFS_SORT_INODES 5
f6bba201
DC
2672STATIC void
2673xfs_sort_for_rename(
95afcf5c
DC
2674 struct xfs_inode *dp1, /* in: old (source) directory inode */
2675 struct xfs_inode *dp2, /* in: new (target) directory inode */
2676 struct xfs_inode *ip1, /* in: inode of old entry */
2677 struct xfs_inode *ip2, /* in: inode of new entry */
2678 struct xfs_inode *wip, /* in: whiteout inode */
2679 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2680 int *num_inodes) /* in/out: inodes in array */
f6bba201 2681{
f6bba201
DC
2682 int i, j;
2683
95afcf5c
DC
2684 ASSERT(*num_inodes == __XFS_SORT_INODES);
2685 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2686
f6bba201
DC
2687 /*
2688 * i_tab contains a list of pointers to inodes. We initialize
2689 * the table here & we'll sort it. We will then use it to
2690 * order the acquisition of the inode locks.
2691 *
2692 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2693 */
95afcf5c
DC
2694 i = 0;
2695 i_tab[i++] = dp1;
2696 i_tab[i++] = dp2;
2697 i_tab[i++] = ip1;
2698 if (ip2)
2699 i_tab[i++] = ip2;
2700 if (wip)
2701 i_tab[i++] = wip;
2702 *num_inodes = i;
f6bba201
DC
2703
2704 /*
2705 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2706 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2707 */
2708 for (i = 0; i < *num_inodes; i++) {
2709 for (j = 1; j < *num_inodes; j++) {
2710 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2711 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2712 i_tab[j] = i_tab[j-1];
2713 i_tab[j-1] = temp;
2714 }
2715 }
2716 }
2717}
2718
310606b0
DC
2719static int
2720xfs_finish_rename(
2721 struct xfs_trans *tp,
2722 struct xfs_bmap_free *free_list)
2723{
2724 int committed = 0;
2725 int error;
2726
2727 /*
2728 * If this is a synchronous mount, make sure that the rename transaction
2729 * goes to disk before returning to the user.
2730 */
2731 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2732 xfs_trans_set_sync(tp);
2733
2734 error = xfs_bmap_finish(&tp, free_list, &committed);
2735 if (error) {
2736 xfs_bmap_cancel(free_list);
2737 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
2738 return error;
2739 }
2740
2741 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2742}
2743
d31a1825
CM
2744/*
2745 * xfs_cross_rename()
2746 *
2747 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2748 */
2749STATIC int
2750xfs_cross_rename(
2751 struct xfs_trans *tp,
2752 struct xfs_inode *dp1,
2753 struct xfs_name *name1,
2754 struct xfs_inode *ip1,
2755 struct xfs_inode *dp2,
2756 struct xfs_name *name2,
2757 struct xfs_inode *ip2,
2758 struct xfs_bmap_free *free_list,
2759 xfs_fsblock_t *first_block,
2760 int spaceres)
2761{
2762 int error = 0;
2763 int ip1_flags = 0;
2764 int ip2_flags = 0;
2765 int dp2_flags = 0;
2766
2767 /* Swap inode number for dirent in first parent */
2768 error = xfs_dir_replace(tp, dp1, name1,
2769 ip2->i_ino,
2770 first_block, free_list, spaceres);
2771 if (error)
eeacd321 2772 goto out_trans_abort;
d31a1825
CM
2773
2774 /* Swap inode number for dirent in second parent */
2775 error = xfs_dir_replace(tp, dp2, name2,
2776 ip1->i_ino,
2777 first_block, free_list, spaceres);
2778 if (error)
eeacd321 2779 goto out_trans_abort;
d31a1825
CM
2780
2781 /*
2782 * If we're renaming one or more directories across different parents,
2783 * update the respective ".." entries (and link counts) to match the new
2784 * parents.
2785 */
2786 if (dp1 != dp2) {
2787 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2788
2789 if (S_ISDIR(ip2->i_d.di_mode)) {
2790 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2791 dp1->i_ino, first_block,
2792 free_list, spaceres);
2793 if (error)
eeacd321 2794 goto out_trans_abort;
d31a1825
CM
2795
2796 /* transfer ip2 ".." reference to dp1 */
2797 if (!S_ISDIR(ip1->i_d.di_mode)) {
2798 error = xfs_droplink(tp, dp2);
2799 if (error)
eeacd321 2800 goto out_trans_abort;
d31a1825
CM
2801 error = xfs_bumplink(tp, dp1);
2802 if (error)
eeacd321 2803 goto out_trans_abort;
d31a1825
CM
2804 }
2805
2806 /*
2807 * Although ip1 isn't changed here, userspace needs
2808 * to be warned about the change, so that applications
2809 * relying on it (like backup ones), will properly
2810 * notify the change
2811 */
2812 ip1_flags |= XFS_ICHGTIME_CHG;
2813 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2814 }
2815
2816 if (S_ISDIR(ip1->i_d.di_mode)) {
2817 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2818 dp2->i_ino, first_block,
2819 free_list, spaceres);
2820 if (error)
eeacd321 2821 goto out_trans_abort;
d31a1825
CM
2822
2823 /* transfer ip1 ".." reference to dp2 */
2824 if (!S_ISDIR(ip2->i_d.di_mode)) {
2825 error = xfs_droplink(tp, dp1);
2826 if (error)
eeacd321 2827 goto out_trans_abort;
d31a1825
CM
2828 error = xfs_bumplink(tp, dp2);
2829 if (error)
eeacd321 2830 goto out_trans_abort;
d31a1825
CM
2831 }
2832
2833 /*
2834 * Although ip2 isn't changed here, userspace needs
2835 * to be warned about the change, so that applications
2836 * relying on it (like backup ones), will properly
2837 * notify the change
2838 */
2839 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2840 ip2_flags |= XFS_ICHGTIME_CHG;
2841 }
2842 }
2843
2844 if (ip1_flags) {
2845 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2846 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2847 }
2848 if (ip2_flags) {
2849 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2850 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2851 }
2852 if (dp2_flags) {
2853 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2854 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2855 }
2856 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2857 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
eeacd321
DC
2858 return xfs_finish_rename(tp, free_list);
2859
2860out_trans_abort:
2861 xfs_bmap_cancel(free_list);
2862 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
d31a1825
CM
2863 return error;
2864}
2865
7dcf5c3e
DC
2866/*
2867 * xfs_rename_alloc_whiteout()
2868 *
2869 * Return a referenced, unlinked, unlocked inode that that can be used as a
2870 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2871 * crash between allocating the inode and linking it into the rename transaction
2872 * recovery will free the inode and we won't leak it.
2873 */
2874static int
2875xfs_rename_alloc_whiteout(
2876 struct xfs_inode *dp,
2877 struct xfs_inode **wip)
2878{
2879 struct xfs_inode *tmpfile;
2880 int error;
2881
2882 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2883 if (error)
2884 return error;
2885
2886 /* Satisfy xfs_bumplink that this is a real tmpfile */
2887 xfs_finish_inode_setup(tmpfile);
2888 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2889
2890 *wip = tmpfile;
2891 return 0;
2892}
2893
f6bba201
DC
2894/*
2895 * xfs_rename
2896 */
2897int
2898xfs_rename(
7dcf5c3e
DC
2899 struct xfs_inode *src_dp,
2900 struct xfs_name *src_name,
2901 struct xfs_inode *src_ip,
2902 struct xfs_inode *target_dp,
2903 struct xfs_name *target_name,
2904 struct xfs_inode *target_ip,
2905 unsigned int flags)
f6bba201 2906{
7dcf5c3e
DC
2907 struct xfs_mount *mp = src_dp->i_mount;
2908 struct xfs_trans *tp;
2909 struct xfs_bmap_free free_list;
2910 xfs_fsblock_t first_block;
2911 struct xfs_inode *wip = NULL; /* whiteout inode */
2912 struct xfs_inode *inodes[__XFS_SORT_INODES];
2913 int num_inodes = __XFS_SORT_INODES;
2b93681f
DC
2914 bool new_parent = (src_dp != target_dp);
2915 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
7dcf5c3e
DC
2916 int cancel_flags = 0;
2917 int spaceres;
2918 int error;
f6bba201
DC
2919
2920 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2921
eeacd321
DC
2922 if ((flags & RENAME_EXCHANGE) && !target_ip)
2923 return -EINVAL;
2924
7dcf5c3e
DC
2925 /*
2926 * If we are doing a whiteout operation, allocate the whiteout inode
2927 * we will be placing at the target and ensure the type is set
2928 * appropriately.
2929 */
2930 if (flags & RENAME_WHITEOUT) {
2931 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2932 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2933 if (error)
2934 return error;
2935
2936 /* setup target dirent info as whiteout */
2937 src_name->type = XFS_DIR3_FT_CHRDEV;
2938 }
f6bba201 2939
7dcf5c3e 2940 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2941 inodes, &num_inodes);
2942
f6bba201 2943 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
f6bba201 2944 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2945 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2451337d 2946 if (error == -ENOSPC) {
f6bba201 2947 spaceres = 0;
3d3c8b52 2948 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201 2949 }
445883e8
DC
2950 if (error)
2951 goto out_trans_cancel;
2952 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
f6bba201
DC
2953
2954 /*
2955 * Attach the dquots to the inodes
2956 */
2957 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2958 if (error)
2959 goto out_trans_cancel;
f6bba201
DC
2960
2961 /*
2962 * Lock all the participating inodes. Depending upon whether
2963 * the target_name exists in the target directory, and
2964 * whether the target directory is the same as the source
2965 * directory, we can lock from 2 to 4 inodes.
2966 */
2967 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2968
2969 /*
2970 * Join all the inodes to the transaction. From this point on,
2971 * we can rely on either trans_commit or trans_cancel to unlock
2972 * them.
2973 */
2974 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2975 if (new_parent)
2976 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2977 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2978 if (target_ip)
2979 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2980 if (wip)
2981 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2982
2983 /*
2984 * If we are using project inheritance, we only allow renames
2985 * into our tree when the project IDs are the same; else the
2986 * tree quota mechanism would be circumvented.
2987 */
2988 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2989 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2990 error = -EXDEV;
445883e8 2991 goto out_trans_cancel;
f6bba201
DC
2992 }
2993
445883e8
DC
2994 xfs_bmap_init(&free_list, &first_block);
2995
eeacd321
DC
2996 /* RENAME_EXCHANGE is unique from here on. */
2997 if (flags & RENAME_EXCHANGE)
2998 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2999 target_dp, target_name, target_ip,
3000 &free_list, &first_block, spaceres);
d31a1825 3001
f6bba201
DC
3002 /*
3003 * Set up the target.
3004 */
3005 if (target_ip == NULL) {
3006 /*
3007 * If there's no space reservation, check the entry will
3008 * fit before actually inserting it.
3009 */
94f3cad5
ES
3010 if (!spaceres) {
3011 error = xfs_dir_canenter(tp, target_dp, target_name);
3012 if (error)
445883e8 3013 goto out_trans_cancel;
94f3cad5 3014 }
f6bba201
DC
3015 /*
3016 * If target does not exist and the rename crosses
3017 * directories, adjust the target directory link count
3018 * to account for the ".." reference from the new entry.
3019 */
3020 error = xfs_dir_createname(tp, target_dp, target_name,
3021 src_ip->i_ino, &first_block,
3022 &free_list, spaceres);
2451337d 3023 if (error == -ENOSPC)
445883e8 3024 goto out_bmap_cancel;
f6bba201 3025 if (error)
445883e8 3026 goto out_trans_abort;
f6bba201
DC
3027
3028 xfs_trans_ichgtime(tp, target_dp,
3029 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3030
3031 if (new_parent && src_is_directory) {
3032 error = xfs_bumplink(tp, target_dp);
3033 if (error)
445883e8 3034 goto out_trans_abort;
f6bba201
DC
3035 }
3036 } else { /* target_ip != NULL */
3037 /*
3038 * If target exists and it's a directory, check that both
3039 * target and source are directories and that target can be
3040 * destroyed, or that neither is a directory.
3041 */
3042 if (S_ISDIR(target_ip->i_d.di_mode)) {
3043 /*
3044 * Make sure target dir is empty.
3045 */
3046 if (!(xfs_dir_isempty(target_ip)) ||
3047 (target_ip->i_d.di_nlink > 2)) {
2451337d 3048 error = -EEXIST;
445883e8 3049 goto out_trans_cancel;
f6bba201
DC
3050 }
3051 }
3052
3053 /*
3054 * Link the source inode under the target name.
3055 * If the source inode is a directory and we are moving
3056 * it across directories, its ".." entry will be
3057 * inconsistent until we replace that down below.
3058 *
3059 * In case there is already an entry with the same
3060 * name at the destination directory, remove it first.
3061 */
3062 error = xfs_dir_replace(tp, target_dp, target_name,
3063 src_ip->i_ino,
3064 &first_block, &free_list, spaceres);
3065 if (error)
445883e8 3066 goto out_trans_abort;
f6bba201
DC
3067
3068 xfs_trans_ichgtime(tp, target_dp,
3069 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3070
3071 /*
3072 * Decrement the link count on the target since the target
3073 * dir no longer points to it.
3074 */
3075 error = xfs_droplink(tp, target_ip);
3076 if (error)
445883e8 3077 goto out_trans_abort;
f6bba201
DC
3078
3079 if (src_is_directory) {
3080 /*
3081 * Drop the link from the old "." entry.
3082 */
3083 error = xfs_droplink(tp, target_ip);
3084 if (error)
445883e8 3085 goto out_trans_abort;
f6bba201
DC
3086 }
3087 } /* target_ip != NULL */
3088
3089 /*
3090 * Remove the source.
3091 */
3092 if (new_parent && src_is_directory) {
3093 /*
3094 * Rewrite the ".." entry to point to the new
3095 * directory.
3096 */
3097 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3098 target_dp->i_ino,
3099 &first_block, &free_list, spaceres);
2451337d 3100 ASSERT(error != -EEXIST);
f6bba201 3101 if (error)
445883e8 3102 goto out_trans_abort;
f6bba201
DC
3103 }
3104
3105 /*
3106 * We always want to hit the ctime on the source inode.
3107 *
3108 * This isn't strictly required by the standards since the source
3109 * inode isn't really being changed, but old unix file systems did
3110 * it and some incremental backup programs won't work without it.
3111 */
3112 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3113 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3114
3115 /*
3116 * Adjust the link count on src_dp. This is necessary when
3117 * renaming a directory, either within one parent when
3118 * the target existed, or across two parent directories.
3119 */
3120 if (src_is_directory && (new_parent || target_ip != NULL)) {
3121
3122 /*
3123 * Decrement link count on src_directory since the
3124 * entry that's moved no longer points to it.
3125 */
3126 error = xfs_droplink(tp, src_dp);
3127 if (error)
445883e8 3128 goto out_trans_abort;
f6bba201
DC
3129 }
3130
7dcf5c3e
DC
3131 /*
3132 * For whiteouts, we only need to update the source dirent with the
3133 * inode number of the whiteout inode rather than removing it
3134 * altogether.
3135 */
3136 if (wip) {
3137 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
f6bba201 3138 &first_block, &free_list, spaceres);
7dcf5c3e
DC
3139 } else
3140 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3141 &first_block, &free_list, spaceres);
f6bba201 3142 if (error)
445883e8 3143 goto out_trans_abort;
f6bba201
DC
3144
3145 /*
7dcf5c3e
DC
3146 * For whiteouts, we need to bump the link count on the whiteout inode.
3147 * This means that failures all the way up to this point leave the inode
3148 * on the unlinked list and so cleanup is a simple matter of dropping
3149 * the remaining reference to it. If we fail here after bumping the link
3150 * count, we're shutting down the filesystem so we'll never see the
3151 * intermediate state on disk.
f6bba201 3152 */
7dcf5c3e
DC
3153 if (wip) {
3154 ASSERT(wip->i_d.di_nlink == 0);
3155 error = xfs_bumplink(tp, wip);
3156 if (error)
3157 goto out_trans_abort;
3158 error = xfs_iunlink_remove(tp, wip);
3159 if (error)
3160 goto out_trans_abort;
3161 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3162
7dcf5c3e
DC
3163 /*
3164 * Now we have a real link, clear the "I'm a tmpfile" state
3165 * flag from the inode so it doesn't accidentally get misused in
3166 * future.
3167 */
3168 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3169 }
3170
f6bba201
DC
3171 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3172 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3173 if (new_parent)
3174 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3175
7dcf5c3e
DC
3176 error = xfs_finish_rename(tp, &free_list);
3177 if (wip)
3178 IRELE(wip);
3179 return error;
f6bba201 3180
445883e8 3181out_trans_abort:
f6bba201 3182 cancel_flags |= XFS_TRANS_ABORT;
445883e8 3183out_bmap_cancel:
f6bba201 3184 xfs_bmap_cancel(&free_list);
445883e8 3185out_trans_cancel:
f6bba201 3186 xfs_trans_cancel(tp, cancel_flags);
7dcf5c3e
DC
3187 if (wip)
3188 IRELE(wip);
f6bba201
DC
3189 return error;
3190}
3191
5c4d97d0
DC
3192STATIC int
3193xfs_iflush_cluster(
3194 xfs_inode_t *ip,
3195 xfs_buf_t *bp)
1da177e4 3196{
5c4d97d0
DC
3197 xfs_mount_t *mp = ip->i_mount;
3198 struct xfs_perag *pag;
3199 unsigned long first_index, mask;
3200 unsigned long inodes_per_cluster;
3201 int ilist_size;
3202 xfs_inode_t **ilist;
3203 xfs_inode_t *iq;
3204 int nr_found;
3205 int clcount = 0;
3206 int bufwasdelwri;
1da177e4 3207 int i;
1da177e4 3208
5c4d97d0 3209 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3210
0f49efd8 3211 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
5c4d97d0
DC
3212 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3213 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3214 if (!ilist)
3215 goto out_put;
1da177e4 3216
0f49efd8 3217 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3218 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3219 rcu_read_lock();
3220 /* really need a gang lookup range call here */
3221 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3222 first_index, inodes_per_cluster);
3223 if (nr_found == 0)
3224 goto out_free;
3225
3226 for (i = 0; i < nr_found; i++) {
3227 iq = ilist[i];
3228 if (iq == ip)
bad55843 3229 continue;
1a3e8f3d
DC
3230
3231 /*
3232 * because this is an RCU protected lookup, we could find a
3233 * recently freed or even reallocated inode during the lookup.
3234 * We need to check under the i_flags_lock for a valid inode
3235 * here. Skip it if it is not valid or the wrong inode.
3236 */
3237 spin_lock(&ip->i_flags_lock);
3238 if (!ip->i_ino ||
3239 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3240 spin_unlock(&ip->i_flags_lock);
3241 continue;
3242 }
3243 spin_unlock(&ip->i_flags_lock);
3244
bad55843
DC
3245 /*
3246 * Do an un-protected check to see if the inode is dirty and
3247 * is a candidate for flushing. These checks will be repeated
3248 * later after the appropriate locks are acquired.
3249 */
33540408 3250 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3251 continue;
bad55843
DC
3252
3253 /*
3254 * Try to get locks. If any are unavailable or it is pinned,
3255 * then this inode cannot be flushed and is skipped.
3256 */
3257
3258 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3259 continue;
3260 if (!xfs_iflock_nowait(iq)) {
3261 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3262 continue;
3263 }
3264 if (xfs_ipincount(iq)) {
3265 xfs_ifunlock(iq);
3266 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3267 continue;
3268 }
3269
3270 /*
3271 * arriving here means that this inode can be flushed. First
3272 * re-check that it's dirty before flushing.
3273 */
33540408
DC
3274 if (!xfs_inode_clean(iq)) {
3275 int error;
bad55843
DC
3276 error = xfs_iflush_int(iq, bp);
3277 if (error) {
3278 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3279 goto cluster_corrupt_out;
3280 }
3281 clcount++;
3282 } else {
3283 xfs_ifunlock(iq);
3284 }
3285 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3286 }
3287
3288 if (clcount) {
3289 XFS_STATS_INC(xs_icluster_flushcnt);
3290 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3291 }
3292
3293out_free:
1a3e8f3d 3294 rcu_read_unlock();
f0e2d93c 3295 kmem_free(ilist);
44b56e0a
DC
3296out_put:
3297 xfs_perag_put(pag);
bad55843
DC
3298 return 0;
3299
3300
3301cluster_corrupt_out:
3302 /*
3303 * Corruption detected in the clustering loop. Invalidate the
3304 * inode buffer and shut down the filesystem.
3305 */
1a3e8f3d 3306 rcu_read_unlock();
bad55843 3307 /*
43ff2122 3308 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3309 * brelse can handle it with no problems. If not, shut down the
3310 * filesystem before releasing the buffer.
3311 */
43ff2122 3312 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3313 if (bufwasdelwri)
3314 xfs_buf_relse(bp);
3315
3316 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3317
3318 if (!bufwasdelwri) {
3319 /*
3320 * Just like incore_relse: if we have b_iodone functions,
3321 * mark the buffer as an error and call them. Otherwise
3322 * mark it as stale and brelse.
3323 */
cb669ca5 3324 if (bp->b_iodone) {
bad55843 3325 XFS_BUF_UNDONE(bp);
c867cb61 3326 xfs_buf_stale(bp);
2451337d 3327 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3328 xfs_buf_ioend(bp);
bad55843 3329 } else {
c867cb61 3330 xfs_buf_stale(bp);
bad55843
DC
3331 xfs_buf_relse(bp);
3332 }
3333 }
3334
3335 /*
3336 * Unlocks the flush lock
3337 */
04913fdd 3338 xfs_iflush_abort(iq, false);
f0e2d93c 3339 kmem_free(ilist);
44b56e0a 3340 xfs_perag_put(pag);
2451337d 3341 return -EFSCORRUPTED;
bad55843
DC
3342}
3343
1da177e4 3344/*
4c46819a
CH
3345 * Flush dirty inode metadata into the backing buffer.
3346 *
3347 * The caller must have the inode lock and the inode flush lock held. The
3348 * inode lock will still be held upon return to the caller, and the inode
3349 * flush lock will be released after the inode has reached the disk.
3350 *
3351 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3352 */
3353int
3354xfs_iflush(
4c46819a
CH
3355 struct xfs_inode *ip,
3356 struct xfs_buf **bpp)
1da177e4 3357{
4c46819a
CH
3358 struct xfs_mount *mp = ip->i_mount;
3359 struct xfs_buf *bp;
3360 struct xfs_dinode *dip;
1da177e4 3361 int error;
1da177e4
LT
3362
3363 XFS_STATS_INC(xs_iflush_count);
3364
579aa9ca 3365 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3366 ASSERT(xfs_isiflocked(ip));
1da177e4 3367 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3368 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3369
4c46819a 3370 *bpp = NULL;
1da177e4 3371
1da177e4
LT
3372 xfs_iunpin_wait(ip);
3373
4b6a4688
DC
3374 /*
3375 * For stale inodes we cannot rely on the backing buffer remaining
3376 * stale in cache for the remaining life of the stale inode and so
475ee413 3377 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3378 * inodes below. We have to check this after ensuring the inode is
3379 * unpinned so that it is safe to reclaim the stale inode after the
3380 * flush call.
3381 */
3382 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3383 xfs_ifunlock(ip);
3384 return 0;
3385 }
3386
1da177e4
LT
3387 /*
3388 * This may have been unpinned because the filesystem is shutting
3389 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3390 * to disk, because the log record didn't make it to disk.
3391 *
3392 * We also have to remove the log item from the AIL in this case,
3393 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3394 */
3395 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3396 error = -EIO;
32ce90a4 3397 goto abort_out;
1da177e4
LT
3398 }
3399
a3f74ffb
DC
3400 /*
3401 * Get the buffer containing the on-disk inode.
3402 */
475ee413
CH
3403 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3404 0);
a3f74ffb
DC
3405 if (error || !bp) {
3406 xfs_ifunlock(ip);
3407 return error;
3408 }
3409
1da177e4
LT
3410 /*
3411 * First flush out the inode that xfs_iflush was called with.
3412 */
3413 error = xfs_iflush_int(ip, bp);
bad55843 3414 if (error)
1da177e4 3415 goto corrupt_out;
1da177e4 3416
a3f74ffb
DC
3417 /*
3418 * If the buffer is pinned then push on the log now so we won't
3419 * get stuck waiting in the write for too long.
3420 */
811e64c7 3421 if (xfs_buf_ispinned(bp))
a14a348b 3422 xfs_log_force(mp, 0);
a3f74ffb 3423
1da177e4
LT
3424 /*
3425 * inode clustering:
3426 * see if other inodes can be gathered into this write
3427 */
bad55843
DC
3428 error = xfs_iflush_cluster(ip, bp);
3429 if (error)
3430 goto cluster_corrupt_out;
1da177e4 3431
4c46819a
CH
3432 *bpp = bp;
3433 return 0;
1da177e4
LT
3434
3435corrupt_out:
3436 xfs_buf_relse(bp);
7d04a335 3437 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3438cluster_corrupt_out:
2451337d 3439 error = -EFSCORRUPTED;
32ce90a4 3440abort_out:
1da177e4
LT
3441 /*
3442 * Unlocks the flush lock
3443 */
04913fdd 3444 xfs_iflush_abort(ip, false);
32ce90a4 3445 return error;
1da177e4
LT
3446}
3447
1da177e4
LT
3448STATIC int
3449xfs_iflush_int(
93848a99
CH
3450 struct xfs_inode *ip,
3451 struct xfs_buf *bp)
1da177e4 3452{
93848a99
CH
3453 struct xfs_inode_log_item *iip = ip->i_itemp;
3454 struct xfs_dinode *dip;
3455 struct xfs_mount *mp = ip->i_mount;
1da177e4 3456
579aa9ca 3457 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3458 ASSERT(xfs_isiflocked(ip));
1da177e4 3459 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3460 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3461 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3462 ASSERT(ip->i_d.di_version > 1);
1da177e4 3463
1da177e4 3464 /* set *dip = inode's place in the buffer */
92bfc6e7 3465 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3466
69ef921b 3467 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3468 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3469 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3470 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3471 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3472 goto corrupt_out;
3473 }
3474 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3475 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3476 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3477 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3478 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3479 goto corrupt_out;
3480 }
abbede1b 3481 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3482 if (XFS_TEST_ERROR(
3483 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3484 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3485 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3486 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3487 "%s: Bad regular inode %Lu, ptr 0x%p",
3488 __func__, ip->i_ino, ip);
1da177e4
LT
3489 goto corrupt_out;
3490 }
abbede1b 3491 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3492 if (XFS_TEST_ERROR(
3493 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3494 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3495 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3496 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3497 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3498 "%s: Bad directory inode %Lu, ptr 0x%p",
3499 __func__, ip->i_ino, ip);
1da177e4
LT
3500 goto corrupt_out;
3501 }
3502 }
3503 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3504 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3505 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3506 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3507 "%s: detected corrupt incore inode %Lu, "
3508 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3509 __func__, ip->i_ino,
1da177e4 3510 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3511 ip->i_d.di_nblocks, ip);
1da177e4
LT
3512 goto corrupt_out;
3513 }
3514 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3515 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3516 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3517 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3518 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3519 goto corrupt_out;
3520 }
e60896d8 3521
1da177e4 3522 /*
263997a6 3523 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3524 * di_flushiter count for correct sequencing. We bump the flush
3525 * iteration count so we can detect flushes which postdate a log record
3526 * during recovery. This is redundant as we now log every change and
3527 * hence this can't happen but we need to still do it to ensure
3528 * backwards compatibility with old kernels that predate logging all
3529 * inode changes.
1da177e4 3530 */
e60896d8
DC
3531 if (ip->i_d.di_version < 3)
3532 ip->i_d.di_flushiter++;
1da177e4
LT
3533
3534 /*
3535 * Copy the dirty parts of the inode into the on-disk
3536 * inode. We always copy out the core of the inode,
3537 * because if the inode is dirty at all the core must
3538 * be.
3539 */
81591fe2 3540 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3541
3542 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3543 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3544 ip->i_d.di_flushiter = 0;
3545
fd9fdba6 3546 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
e4ac967b 3547 if (XFS_IFORK_Q(ip))
fd9fdba6 3548 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3549 xfs_inobp_check(mp, bp);
3550
3551 /*
f5d8d5c4
CH
3552 * We've recorded everything logged in the inode, so we'd like to clear
3553 * the ili_fields bits so we don't log and flush things unnecessarily.
3554 * However, we can't stop logging all this information until the data
3555 * we've copied into the disk buffer is written to disk. If we did we
3556 * might overwrite the copy of the inode in the log with all the data
3557 * after re-logging only part of it, and in the face of a crash we
3558 * wouldn't have all the data we need to recover.
1da177e4 3559 *
f5d8d5c4
CH
3560 * What we do is move the bits to the ili_last_fields field. When
3561 * logging the inode, these bits are moved back to the ili_fields field.
3562 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3563 * know that the information those bits represent is permanently on
3564 * disk. As long as the flush completes before the inode is logged
3565 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3566 *
f5d8d5c4
CH
3567 * We can play with the ili_fields bits here, because the inode lock
3568 * must be held exclusively in order to set bits there and the flush
3569 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3570 * done routine can tell whether or not to look in the AIL. Also, store
3571 * the current LSN of the inode so that we can tell whether the item has
3572 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3573 * need the AIL lock, because it is a 64 bit value that cannot be read
3574 * atomically.
1da177e4 3575 */
93848a99
CH
3576 iip->ili_last_fields = iip->ili_fields;
3577 iip->ili_fields = 0;
3578 iip->ili_logged = 1;
1da177e4 3579
93848a99
CH
3580 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3581 &iip->ili_item.li_lsn);
1da177e4 3582
93848a99
CH
3583 /*
3584 * Attach the function xfs_iflush_done to the inode's
3585 * buffer. This will remove the inode from the AIL
3586 * and unlock the inode's flush lock when the inode is
3587 * completely written to disk.
3588 */
3589 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3590
93848a99
CH
3591 /* update the lsn in the on disk inode if required */
3592 if (ip->i_d.di_version == 3)
3593 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3594
3595 /* generate the checksum. */
3596 xfs_dinode_calc_crc(mp, dip);
1da177e4 3597
93848a99
CH
3598 ASSERT(bp->b_fspriv != NULL);
3599 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3600 return 0;
3601
3602corrupt_out:
2451337d 3603 return -EFSCORRUPTED;
1da177e4 3604}
This page took 0.844619 seconds and 5 git commands to generate.