xfs: create a shared header file for format-related information
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
6ca1c906 22#include "xfs_format.h"
70a9883c 23#include "xfs_shared.h"
1da177e4 24#include "xfs_log.h"
a844f451 25#include "xfs_inum.h"
1da177e4 26#include "xfs_trans.h"
c24b5dfa 27#include "xfs_trans_space.h"
1da177e4
LT
28#include "xfs_trans_priv.h"
29#include "xfs_sb.h"
30#include "xfs_ag.h"
1da177e4 31#include "xfs_mount.h"
c24b5dfa
DC
32#include "xfs_da_btree.h"
33#include "xfs_dir2_format.h"
34#include "xfs_dir2.h"
1da177e4 35#include "xfs_bmap_btree.h"
a844f451 36#include "xfs_alloc_btree.h"
1da177e4 37#include "xfs_ialloc_btree.h"
a844f451 38#include "xfs_attr_sf.h"
c24b5dfa 39#include "xfs_attr.h"
1da177e4 40#include "xfs_dinode.h"
1da177e4 41#include "xfs_inode.h"
1da177e4 42#include "xfs_buf_item.h"
a844f451
NS
43#include "xfs_inode_item.h"
44#include "xfs_btree.h"
45#include "xfs_alloc.h"
46#include "xfs_ialloc.h"
47#include "xfs_bmap.h"
68988114 48#include "xfs_bmap_util.h"
1da177e4 49#include "xfs_error.h"
1da177e4 50#include "xfs_quota.h"
2a82b8be 51#include "xfs_filestream.h"
93848a99 52#include "xfs_cksum.h"
0b1b213f 53#include "xfs_trace.h"
33479e05 54#include "xfs_icache.h"
c24b5dfa 55#include "xfs_symlink.h"
1da177e4 56
1da177e4 57kmem_zone_t *xfs_inode_zone;
1da177e4
LT
58
59/*
8f04c47a 60 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
61 * freed from a file in a single transaction.
62 */
63#define XFS_ITRUNC_MAX_EXTENTS 2
64
65STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 66
2a0ec1d9
DC
67/*
68 * helper function to extract extent size hint from inode
69 */
70xfs_extlen_t
71xfs_get_extsz_hint(
72 struct xfs_inode *ip)
73{
74 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
75 return ip->i_d.di_extsize;
76 if (XFS_IS_REALTIME_INODE(ip))
77 return ip->i_mount->m_sb.sb_rextsize;
78 return 0;
79}
80
fa96acad
DC
81/*
82 * This is a wrapper routine around the xfs_ilock() routine used to centralize
83 * some grungy code. It is used in places that wish to lock the inode solely
84 * for reading the extents. The reason these places can't just call
85 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
86 * extents from disk for a file in b-tree format. If the inode is in b-tree
87 * format, then we need to lock the inode exclusively until the extents are read
88 * in. Locking it exclusively all the time would limit our parallelism
89 * unnecessarily, though. What we do instead is check to see if the extents
90 * have been read in yet, and only lock the inode exclusively if they have not.
91 *
92 * The function returns a value which should be given to the corresponding
93 * xfs_iunlock_map_shared(). This value is the mode in which the lock was
94 * actually taken.
95 */
96uint
97xfs_ilock_map_shared(
98 xfs_inode_t *ip)
99{
100 uint lock_mode;
101
102 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
103 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
104 lock_mode = XFS_ILOCK_EXCL;
105 } else {
106 lock_mode = XFS_ILOCK_SHARED;
107 }
108
109 xfs_ilock(ip, lock_mode);
110
111 return lock_mode;
112}
113
114/*
115 * This is simply the unlock routine to go with xfs_ilock_map_shared().
116 * All it does is call xfs_iunlock() with the given lock_mode.
117 */
118void
119xfs_iunlock_map_shared(
120 xfs_inode_t *ip,
121 unsigned int lock_mode)
122{
123 xfs_iunlock(ip, lock_mode);
124}
125
126/*
127 * The xfs inode contains 2 locks: a multi-reader lock called the
128 * i_iolock and a multi-reader lock called the i_lock. This routine
129 * allows either or both of the locks to be obtained.
130 *
131 * The 2 locks should always be ordered so that the IO lock is
132 * obtained first in order to prevent deadlock.
133 *
134 * ip -- the inode being locked
135 * lock_flags -- this parameter indicates the inode's locks
136 * to be locked. It can be:
137 * XFS_IOLOCK_SHARED,
138 * XFS_IOLOCK_EXCL,
139 * XFS_ILOCK_SHARED,
140 * XFS_ILOCK_EXCL,
141 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
142 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
143 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
144 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
145 */
146void
147xfs_ilock(
148 xfs_inode_t *ip,
149 uint lock_flags)
150{
151 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
152
153 /*
154 * You can't set both SHARED and EXCL for the same lock,
155 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
156 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
157 */
158 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
159 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
160 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
161 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
162 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
163
164 if (lock_flags & XFS_IOLOCK_EXCL)
165 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_IOLOCK_SHARED)
167 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
168
169 if (lock_flags & XFS_ILOCK_EXCL)
170 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_ILOCK_SHARED)
172 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
173}
174
175/*
176 * This is just like xfs_ilock(), except that the caller
177 * is guaranteed not to sleep. It returns 1 if it gets
178 * the requested locks and 0 otherwise. If the IO lock is
179 * obtained but the inode lock cannot be, then the IO lock
180 * is dropped before returning.
181 *
182 * ip -- the inode being locked
183 * lock_flags -- this parameter indicates the inode's locks to be
184 * to be locked. See the comment for xfs_ilock() for a list
185 * of valid values.
186 */
187int
188xfs_ilock_nowait(
189 xfs_inode_t *ip,
190 uint lock_flags)
191{
192 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
193
194 /*
195 * You can't set both SHARED and EXCL for the same lock,
196 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
197 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
198 */
199 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
200 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
201 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
202 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
203 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
204
205 if (lock_flags & XFS_IOLOCK_EXCL) {
206 if (!mrtryupdate(&ip->i_iolock))
207 goto out;
208 } else if (lock_flags & XFS_IOLOCK_SHARED) {
209 if (!mrtryaccess(&ip->i_iolock))
210 goto out;
211 }
212 if (lock_flags & XFS_ILOCK_EXCL) {
213 if (!mrtryupdate(&ip->i_lock))
214 goto out_undo_iolock;
215 } else if (lock_flags & XFS_ILOCK_SHARED) {
216 if (!mrtryaccess(&ip->i_lock))
217 goto out_undo_iolock;
218 }
219 return 1;
220
221 out_undo_iolock:
222 if (lock_flags & XFS_IOLOCK_EXCL)
223 mrunlock_excl(&ip->i_iolock);
224 else if (lock_flags & XFS_IOLOCK_SHARED)
225 mrunlock_shared(&ip->i_iolock);
226 out:
227 return 0;
228}
229
230/*
231 * xfs_iunlock() is used to drop the inode locks acquired with
232 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
233 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
234 * that we know which locks to drop.
235 *
236 * ip -- the inode being unlocked
237 * lock_flags -- this parameter indicates the inode's locks to be
238 * to be unlocked. See the comment for xfs_ilock() for a list
239 * of valid values for this parameter.
240 *
241 */
242void
243xfs_iunlock(
244 xfs_inode_t *ip,
245 uint lock_flags)
246{
247 /*
248 * You can't set both SHARED and EXCL for the same lock,
249 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
250 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
251 */
252 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
253 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
254 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
255 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
256 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
257 ASSERT(lock_flags != 0);
258
259 if (lock_flags & XFS_IOLOCK_EXCL)
260 mrunlock_excl(&ip->i_iolock);
261 else if (lock_flags & XFS_IOLOCK_SHARED)
262 mrunlock_shared(&ip->i_iolock);
263
264 if (lock_flags & XFS_ILOCK_EXCL)
265 mrunlock_excl(&ip->i_lock);
266 else if (lock_flags & XFS_ILOCK_SHARED)
267 mrunlock_shared(&ip->i_lock);
268
269 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
270}
271
272/*
273 * give up write locks. the i/o lock cannot be held nested
274 * if it is being demoted.
275 */
276void
277xfs_ilock_demote(
278 xfs_inode_t *ip,
279 uint lock_flags)
280{
281 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
282 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
283
284 if (lock_flags & XFS_ILOCK_EXCL)
285 mrdemote(&ip->i_lock);
286 if (lock_flags & XFS_IOLOCK_EXCL)
287 mrdemote(&ip->i_iolock);
288
289 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
290}
291
742ae1e3 292#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
293int
294xfs_isilocked(
295 xfs_inode_t *ip,
296 uint lock_flags)
297{
298 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
299 if (!(lock_flags & XFS_ILOCK_SHARED))
300 return !!ip->i_lock.mr_writer;
301 return rwsem_is_locked(&ip->i_lock.mr_lock);
302 }
303
304 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
305 if (!(lock_flags & XFS_IOLOCK_SHARED))
306 return !!ip->i_iolock.mr_writer;
307 return rwsem_is_locked(&ip->i_iolock.mr_lock);
308 }
309
310 ASSERT(0);
311 return 0;
312}
313#endif
314
c24b5dfa
DC
315#ifdef DEBUG
316int xfs_locked_n;
317int xfs_small_retries;
318int xfs_middle_retries;
319int xfs_lots_retries;
320int xfs_lock_delays;
321#endif
322
323/*
324 * Bump the subclass so xfs_lock_inodes() acquires each lock with
325 * a different value
326 */
327static inline int
328xfs_lock_inumorder(int lock_mode, int subclass)
329{
330 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
331 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
332 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
333 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
334
335 return lock_mode;
336}
337
338/*
339 * The following routine will lock n inodes in exclusive mode.
340 * We assume the caller calls us with the inodes in i_ino order.
341 *
342 * We need to detect deadlock where an inode that we lock
343 * is in the AIL and we start waiting for another inode that is locked
344 * by a thread in a long running transaction (such as truncate). This can
345 * result in deadlock since the long running trans might need to wait
346 * for the inode we just locked in order to push the tail and free space
347 * in the log.
348 */
349void
350xfs_lock_inodes(
351 xfs_inode_t **ips,
352 int inodes,
353 uint lock_mode)
354{
355 int attempts = 0, i, j, try_lock;
356 xfs_log_item_t *lp;
357
358 ASSERT(ips && (inodes >= 2)); /* we need at least two */
359
360 try_lock = 0;
361 i = 0;
362
363again:
364 for (; i < inodes; i++) {
365 ASSERT(ips[i]);
366
367 if (i && (ips[i] == ips[i-1])) /* Already locked */
368 continue;
369
370 /*
371 * If try_lock is not set yet, make sure all locked inodes
372 * are not in the AIL.
373 * If any are, set try_lock to be used later.
374 */
375
376 if (!try_lock) {
377 for (j = (i - 1); j >= 0 && !try_lock; j--) {
378 lp = (xfs_log_item_t *)ips[j]->i_itemp;
379 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
380 try_lock++;
381 }
382 }
383 }
384
385 /*
386 * If any of the previous locks we have locked is in the AIL,
387 * we must TRY to get the second and subsequent locks. If
388 * we can't get any, we must release all we have
389 * and try again.
390 */
391
392 if (try_lock) {
393 /* try_lock must be 0 if i is 0. */
394 /*
395 * try_lock means we have an inode locked
396 * that is in the AIL.
397 */
398 ASSERT(i != 0);
399 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
400 attempts++;
401
402 /*
403 * Unlock all previous guys and try again.
404 * xfs_iunlock will try to push the tail
405 * if the inode is in the AIL.
406 */
407
408 for(j = i - 1; j >= 0; j--) {
409
410 /*
411 * Check to see if we've already
412 * unlocked this one.
413 * Not the first one going back,
414 * and the inode ptr is the same.
415 */
416 if ((j != (i - 1)) && ips[j] ==
417 ips[j+1])
418 continue;
419
420 xfs_iunlock(ips[j], lock_mode);
421 }
422
423 if ((attempts % 5) == 0) {
424 delay(1); /* Don't just spin the CPU */
425#ifdef DEBUG
426 xfs_lock_delays++;
427#endif
428 }
429 i = 0;
430 try_lock = 0;
431 goto again;
432 }
433 } else {
434 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
435 }
436 }
437
438#ifdef DEBUG
439 if (attempts) {
440 if (attempts < 5) xfs_small_retries++;
441 else if (attempts < 100) xfs_middle_retries++;
442 else xfs_lots_retries++;
443 } else {
444 xfs_locked_n++;
445 }
446#endif
447}
448
449/*
450 * xfs_lock_two_inodes() can only be used to lock one type of lock
451 * at a time - the iolock or the ilock, but not both at once. If
452 * we lock both at once, lockdep will report false positives saying
453 * we have violated locking orders.
454 */
455void
456xfs_lock_two_inodes(
457 xfs_inode_t *ip0,
458 xfs_inode_t *ip1,
459 uint lock_mode)
460{
461 xfs_inode_t *temp;
462 int attempts = 0;
463 xfs_log_item_t *lp;
464
465 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
466 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
467 ASSERT(ip0->i_ino != ip1->i_ino);
468
469 if (ip0->i_ino > ip1->i_ino) {
470 temp = ip0;
471 ip0 = ip1;
472 ip1 = temp;
473 }
474
475 again:
476 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
477
478 /*
479 * If the first lock we have locked is in the AIL, we must TRY to get
480 * the second lock. If we can't get it, we must release the first one
481 * and try again.
482 */
483 lp = (xfs_log_item_t *)ip0->i_itemp;
484 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
485 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
486 xfs_iunlock(ip0, lock_mode);
487 if ((++attempts % 5) == 0)
488 delay(1); /* Don't just spin the CPU */
489 goto again;
490 }
491 } else {
492 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
493 }
494}
495
496
fa96acad
DC
497void
498__xfs_iflock(
499 struct xfs_inode *ip)
500{
501 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
502 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
503
504 do {
505 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
506 if (xfs_isiflocked(ip))
507 io_schedule();
508 } while (!xfs_iflock_nowait(ip));
509
510 finish_wait(wq, &wait.wait);
511}
512
1da177e4
LT
513STATIC uint
514_xfs_dic2xflags(
1da177e4
LT
515 __uint16_t di_flags)
516{
517 uint flags = 0;
518
519 if (di_flags & XFS_DIFLAG_ANY) {
520 if (di_flags & XFS_DIFLAG_REALTIME)
521 flags |= XFS_XFLAG_REALTIME;
522 if (di_flags & XFS_DIFLAG_PREALLOC)
523 flags |= XFS_XFLAG_PREALLOC;
524 if (di_flags & XFS_DIFLAG_IMMUTABLE)
525 flags |= XFS_XFLAG_IMMUTABLE;
526 if (di_flags & XFS_DIFLAG_APPEND)
527 flags |= XFS_XFLAG_APPEND;
528 if (di_flags & XFS_DIFLAG_SYNC)
529 flags |= XFS_XFLAG_SYNC;
530 if (di_flags & XFS_DIFLAG_NOATIME)
531 flags |= XFS_XFLAG_NOATIME;
532 if (di_flags & XFS_DIFLAG_NODUMP)
533 flags |= XFS_XFLAG_NODUMP;
534 if (di_flags & XFS_DIFLAG_RTINHERIT)
535 flags |= XFS_XFLAG_RTINHERIT;
536 if (di_flags & XFS_DIFLAG_PROJINHERIT)
537 flags |= XFS_XFLAG_PROJINHERIT;
538 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
539 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
540 if (di_flags & XFS_DIFLAG_EXTSIZE)
541 flags |= XFS_XFLAG_EXTSIZE;
542 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
543 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
544 if (di_flags & XFS_DIFLAG_NODEFRAG)
545 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
546 if (di_flags & XFS_DIFLAG_FILESTREAM)
547 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
548 }
549
550 return flags;
551}
552
553uint
554xfs_ip2xflags(
555 xfs_inode_t *ip)
556{
347d1c01 557 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 558
a916e2bd 559 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 560 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
561}
562
563uint
564xfs_dic2xflags(
45ba598e 565 xfs_dinode_t *dip)
1da177e4 566{
81591fe2 567 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 568 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
569}
570
c24b5dfa
DC
571/*
572 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
573 * is allowed, otherwise it has to be an exact match. If a CI match is found,
574 * ci_name->name will point to a the actual name (caller must free) or
575 * will be set to NULL if an exact match is found.
576 */
577int
578xfs_lookup(
579 xfs_inode_t *dp,
580 struct xfs_name *name,
581 xfs_inode_t **ipp,
582 struct xfs_name *ci_name)
583{
584 xfs_ino_t inum;
585 int error;
586 uint lock_mode;
587
588 trace_xfs_lookup(dp, name);
589
590 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
591 return XFS_ERROR(EIO);
592
593 lock_mode = xfs_ilock_map_shared(dp);
594 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
595 xfs_iunlock_map_shared(dp, lock_mode);
596
597 if (error)
598 goto out;
599
600 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
601 if (error)
602 goto out_free_name;
603
604 return 0;
605
606out_free_name:
607 if (ci_name)
608 kmem_free(ci_name->name);
609out:
610 *ipp = NULL;
611 return error;
612}
613
1da177e4
LT
614/*
615 * Allocate an inode on disk and return a copy of its in-core version.
616 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
617 * appropriately within the inode. The uid and gid for the inode are
618 * set according to the contents of the given cred structure.
619 *
620 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
621 * has a free inode available, call xfs_iget() to obtain the in-core
622 * version of the allocated inode. Finally, fill in the inode and
623 * log its initial contents. In this case, ialloc_context would be
624 * set to NULL.
1da177e4 625 *
cd856db6
CM
626 * If xfs_dialloc() does not have an available inode, it will replenish
627 * its supply by doing an allocation. Since we can only do one
628 * allocation within a transaction without deadlocks, we must commit
629 * the current transaction before returning the inode itself.
630 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
631 * The caller should then commit the current transaction, start a new
632 * transaction, and call xfs_ialloc() again to actually get the inode.
633 *
634 * To ensure that some other process does not grab the inode that
635 * was allocated during the first call to xfs_ialloc(), this routine
636 * also returns the [locked] bp pointing to the head of the freelist
637 * as ialloc_context. The caller should hold this buffer across
638 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
639 *
640 * If we are allocating quota inodes, we do not have a parent inode
641 * to attach to or associate with (i.e. pip == NULL) because they
642 * are not linked into the directory structure - they are attached
643 * directly to the superblock - and so have no parent.
1da177e4
LT
644 */
645int
646xfs_ialloc(
647 xfs_trans_t *tp,
648 xfs_inode_t *pip,
576b1d67 649 umode_t mode,
31b084ae 650 xfs_nlink_t nlink,
1da177e4 651 xfs_dev_t rdev,
6743099c 652 prid_t prid,
1da177e4
LT
653 int okalloc,
654 xfs_buf_t **ialloc_context,
1da177e4
LT
655 xfs_inode_t **ipp)
656{
93848a99 657 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
658 xfs_ino_t ino;
659 xfs_inode_t *ip;
1da177e4
LT
660 uint flags;
661 int error;
dff35fd4 662 timespec_t tv;
bf904248 663 int filestreams = 0;
1da177e4
LT
664
665 /*
666 * Call the space management code to pick
667 * the on-disk inode to be allocated.
668 */
b11f94d5 669 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 670 ialloc_context, &ino);
bf904248 671 if (error)
1da177e4 672 return error;
08358906 673 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
674 *ipp = NULL;
675 return 0;
676 }
677 ASSERT(*ialloc_context == NULL);
678
679 /*
680 * Get the in-core inode with the lock held exclusively.
681 * This is because we're setting fields here we need
682 * to prevent others from looking at until we're done.
683 */
93848a99 684 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 685 XFS_ILOCK_EXCL, &ip);
bf904248 686 if (error)
1da177e4 687 return error;
1da177e4
LT
688 ASSERT(ip != NULL);
689
576b1d67 690 ip->i_d.di_mode = mode;
1da177e4
LT
691 ip->i_d.di_onlink = 0;
692 ip->i_d.di_nlink = nlink;
693 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
694 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
695 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 696 xfs_set_projid(ip, prid);
1da177e4
LT
697 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
698
699 /*
700 * If the superblock version is up to where we support new format
701 * inodes and this is currently an old format inode, then change
702 * the inode version number now. This way we only do the conversion
703 * here rather than here and in the flush/logging code.
704 */
93848a99 705 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
51ce16d5
CH
706 ip->i_d.di_version == 1) {
707 ip->i_d.di_version = 2;
1da177e4
LT
708 /*
709 * We've already zeroed the old link count, the projid field,
710 * and the pad field.
711 */
712 }
713
714 /*
715 * Project ids won't be stored on disk if we are using a version 1 inode.
716 */
51ce16d5 717 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
718 xfs_bump_ino_vers2(tp, ip);
719
bd186aa9 720 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 721 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 722 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
723 ip->i_d.di_mode |= S_ISGID;
724 }
725 }
726
727 /*
728 * If the group ID of the new file does not match the effective group
729 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
730 * (and only if the irix_sgid_inherit compatibility variable is set).
731 */
732 if ((irix_sgid_inherit) &&
733 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 734 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
735 ip->i_d.di_mode &= ~S_ISGID;
736 }
737
738 ip->i_d.di_size = 0;
739 ip->i_d.di_nextents = 0;
740 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
741
742 nanotime(&tv);
743 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
744 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
745 ip->i_d.di_atime = ip->i_d.di_mtime;
746 ip->i_d.di_ctime = ip->i_d.di_mtime;
747
1da177e4
LT
748 /*
749 * di_gen will have been taken care of in xfs_iread.
750 */
751 ip->i_d.di_extsize = 0;
752 ip->i_d.di_dmevmask = 0;
753 ip->i_d.di_dmstate = 0;
754 ip->i_d.di_flags = 0;
93848a99
CH
755
756 if (ip->i_d.di_version == 3) {
757 ASSERT(ip->i_d.di_ino == ino);
758 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
759 ip->i_d.di_crc = 0;
760 ip->i_d.di_changecount = 1;
761 ip->i_d.di_lsn = 0;
762 ip->i_d.di_flags2 = 0;
763 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
764 ip->i_d.di_crtime = ip->i_d.di_mtime;
765 }
766
767
1da177e4
LT
768 flags = XFS_ILOG_CORE;
769 switch (mode & S_IFMT) {
770 case S_IFIFO:
771 case S_IFCHR:
772 case S_IFBLK:
773 case S_IFSOCK:
774 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
775 ip->i_df.if_u2.if_rdev = rdev;
776 ip->i_df.if_flags = 0;
777 flags |= XFS_ILOG_DEV;
778 break;
779 case S_IFREG:
bf904248
DC
780 /*
781 * we can't set up filestreams until after the VFS inode
782 * is set up properly.
783 */
784 if (pip && xfs_inode_is_filestream(pip))
785 filestreams = 1;
2a82b8be 786 /* fall through */
1da177e4 787 case S_IFDIR:
b11f94d5 788 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
789 uint di_flags = 0;
790
abbede1b 791 if (S_ISDIR(mode)) {
365ca83d
NS
792 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
793 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
794 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
795 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
796 ip->i_d.di_extsize = pip->i_d.di_extsize;
797 }
abbede1b 798 } else if (S_ISREG(mode)) {
613d7043 799 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 800 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
801 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
802 di_flags |= XFS_DIFLAG_EXTSIZE;
803 ip->i_d.di_extsize = pip->i_d.di_extsize;
804 }
1da177e4
LT
805 }
806 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
807 xfs_inherit_noatime)
365ca83d 808 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
809 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
810 xfs_inherit_nodump)
365ca83d 811 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
812 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
813 xfs_inherit_sync)
365ca83d 814 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
815 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
816 xfs_inherit_nosymlinks)
365ca83d
NS
817 di_flags |= XFS_DIFLAG_NOSYMLINKS;
818 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
819 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
820 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
821 xfs_inherit_nodefrag)
822 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
823 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
824 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 825 ip->i_d.di_flags |= di_flags;
1da177e4
LT
826 }
827 /* FALLTHROUGH */
828 case S_IFLNK:
829 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
830 ip->i_df.if_flags = XFS_IFEXTENTS;
831 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
832 ip->i_df.if_u1.if_extents = NULL;
833 break;
834 default:
835 ASSERT(0);
836 }
837 /*
838 * Attribute fork settings for new inode.
839 */
840 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
841 ip->i_d.di_anextents = 0;
842
843 /*
844 * Log the new values stuffed into the inode.
845 */
ddc3415a 846 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
847 xfs_trans_log_inode(tp, ip, flags);
848
b83bd138 849 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 850 xfs_setup_inode(ip);
1da177e4 851
bf904248
DC
852 /* now we have set up the vfs inode we can associate the filestream */
853 if (filestreams) {
854 error = xfs_filestream_associate(pip, ip);
855 if (error < 0)
856 return -error;
857 if (!error)
858 xfs_iflags_set(ip, XFS_IFILESTREAM);
859 }
860
1da177e4
LT
861 *ipp = ip;
862 return 0;
863}
864
e546cb79
DC
865/*
866 * Allocates a new inode from disk and return a pointer to the
867 * incore copy. This routine will internally commit the current
868 * transaction and allocate a new one if the Space Manager needed
869 * to do an allocation to replenish the inode free-list.
870 *
871 * This routine is designed to be called from xfs_create and
872 * xfs_create_dir.
873 *
874 */
875int
876xfs_dir_ialloc(
877 xfs_trans_t **tpp, /* input: current transaction;
878 output: may be a new transaction. */
879 xfs_inode_t *dp, /* directory within whose allocate
880 the inode. */
881 umode_t mode,
882 xfs_nlink_t nlink,
883 xfs_dev_t rdev,
884 prid_t prid, /* project id */
885 int okalloc, /* ok to allocate new space */
886 xfs_inode_t **ipp, /* pointer to inode; it will be
887 locked. */
888 int *committed)
889
890{
891 xfs_trans_t *tp;
892 xfs_trans_t *ntp;
893 xfs_inode_t *ip;
894 xfs_buf_t *ialloc_context = NULL;
895 int code;
e546cb79
DC
896 void *dqinfo;
897 uint tflags;
898
899 tp = *tpp;
900 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
901
902 /*
903 * xfs_ialloc will return a pointer to an incore inode if
904 * the Space Manager has an available inode on the free
905 * list. Otherwise, it will do an allocation and replenish
906 * the freelist. Since we can only do one allocation per
907 * transaction without deadlocks, we will need to commit the
908 * current transaction and start a new one. We will then
909 * need to call xfs_ialloc again to get the inode.
910 *
911 * If xfs_ialloc did an allocation to replenish the freelist,
912 * it returns the bp containing the head of the freelist as
913 * ialloc_context. We will hold a lock on it across the
914 * transaction commit so that no other process can steal
915 * the inode(s) that we've just allocated.
916 */
917 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
918 &ialloc_context, &ip);
919
920 /*
921 * Return an error if we were unable to allocate a new inode.
922 * This should only happen if we run out of space on disk or
923 * encounter a disk error.
924 */
925 if (code) {
926 *ipp = NULL;
927 return code;
928 }
929 if (!ialloc_context && !ip) {
930 *ipp = NULL;
931 return XFS_ERROR(ENOSPC);
932 }
933
934 /*
935 * If the AGI buffer is non-NULL, then we were unable to get an
936 * inode in one operation. We need to commit the current
937 * transaction and call xfs_ialloc() again. It is guaranteed
938 * to succeed the second time.
939 */
940 if (ialloc_context) {
3d3c8b52
JL
941 struct xfs_trans_res tres;
942
e546cb79
DC
943 /*
944 * Normally, xfs_trans_commit releases all the locks.
945 * We call bhold to hang on to the ialloc_context across
946 * the commit. Holding this buffer prevents any other
947 * processes from doing any allocations in this
948 * allocation group.
949 */
950 xfs_trans_bhold(tp, ialloc_context);
951 /*
952 * Save the log reservation so we can use
953 * them in the next transaction.
954 */
3d3c8b52
JL
955 tres.tr_logres = xfs_trans_get_log_res(tp);
956 tres.tr_logcount = xfs_trans_get_log_count(tp);
e546cb79
DC
957
958 /*
959 * We want the quota changes to be associated with the next
960 * transaction, NOT this one. So, detach the dqinfo from this
961 * and attach it to the next transaction.
962 */
963 dqinfo = NULL;
964 tflags = 0;
965 if (tp->t_dqinfo) {
966 dqinfo = (void *)tp->t_dqinfo;
967 tp->t_dqinfo = NULL;
968 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
969 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
970 }
971
972 ntp = xfs_trans_dup(tp);
973 code = xfs_trans_commit(tp, 0);
974 tp = ntp;
975 if (committed != NULL) {
976 *committed = 1;
977 }
978 /*
979 * If we get an error during the commit processing,
980 * release the buffer that is still held and return
981 * to the caller.
982 */
983 if (code) {
984 xfs_buf_relse(ialloc_context);
985 if (dqinfo) {
986 tp->t_dqinfo = dqinfo;
987 xfs_trans_free_dqinfo(tp);
988 }
989 *tpp = ntp;
990 *ipp = NULL;
991 return code;
992 }
993
994 /*
995 * transaction commit worked ok so we can drop the extra ticket
996 * reference that we gained in xfs_trans_dup()
997 */
998 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52
JL
999 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1000 code = xfs_trans_reserve(tp, &tres, 0, 0);
1001
e546cb79
DC
1002 /*
1003 * Re-attach the quota info that we detached from prev trx.
1004 */
1005 if (dqinfo) {
1006 tp->t_dqinfo = dqinfo;
1007 tp->t_flags |= tflags;
1008 }
1009
1010 if (code) {
1011 xfs_buf_relse(ialloc_context);
1012 *tpp = ntp;
1013 *ipp = NULL;
1014 return code;
1015 }
1016 xfs_trans_bjoin(tp, ialloc_context);
1017
1018 /*
1019 * Call ialloc again. Since we've locked out all
1020 * other allocations in this allocation group,
1021 * this call should always succeed.
1022 */
1023 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1024 okalloc, &ialloc_context, &ip);
1025
1026 /*
1027 * If we get an error at this point, return to the caller
1028 * so that the current transaction can be aborted.
1029 */
1030 if (code) {
1031 *tpp = tp;
1032 *ipp = NULL;
1033 return code;
1034 }
1035 ASSERT(!ialloc_context && ip);
1036
1037 } else {
1038 if (committed != NULL)
1039 *committed = 0;
1040 }
1041
1042 *ipp = ip;
1043 *tpp = tp;
1044
1045 return 0;
1046}
1047
1048/*
1049 * Decrement the link count on an inode & log the change.
1050 * If this causes the link count to go to zero, initiate the
1051 * logging activity required to truncate a file.
1052 */
1053int /* error */
1054xfs_droplink(
1055 xfs_trans_t *tp,
1056 xfs_inode_t *ip)
1057{
1058 int error;
1059
1060 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1061
1062 ASSERT (ip->i_d.di_nlink > 0);
1063 ip->i_d.di_nlink--;
1064 drop_nlink(VFS_I(ip));
1065 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1066
1067 error = 0;
1068 if (ip->i_d.di_nlink == 0) {
1069 /*
1070 * We're dropping the last link to this file.
1071 * Move the on-disk inode to the AGI unlinked list.
1072 * From xfs_inactive() we will pull the inode from
1073 * the list and free it.
1074 */
1075 error = xfs_iunlink(tp, ip);
1076 }
1077 return error;
1078}
1079
1080/*
1081 * This gets called when the inode's version needs to be changed from 1 to 2.
1082 * Currently this happens when the nlink field overflows the old 16-bit value
1083 * or when chproj is called to change the project for the first time.
1084 * As a side effect the superblock version will also get rev'd
1085 * to contain the NLINK bit.
1086 */
1087void
1088xfs_bump_ino_vers2(
1089 xfs_trans_t *tp,
1090 xfs_inode_t *ip)
1091{
1092 xfs_mount_t *mp;
1093
1094 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1095 ASSERT(ip->i_d.di_version == 1);
1096
1097 ip->i_d.di_version = 2;
1098 ip->i_d.di_onlink = 0;
1099 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1100 mp = tp->t_mountp;
1101 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1102 spin_lock(&mp->m_sb_lock);
1103 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1104 xfs_sb_version_addnlink(&mp->m_sb);
1105 spin_unlock(&mp->m_sb_lock);
1106 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1107 } else {
1108 spin_unlock(&mp->m_sb_lock);
1109 }
1110 }
1111 /* Caller must log the inode */
1112}
1113
1114/*
1115 * Increment the link count on an inode & log the change.
1116 */
1117int
1118xfs_bumplink(
1119 xfs_trans_t *tp,
1120 xfs_inode_t *ip)
1121{
1122 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1123
1124 ASSERT(ip->i_d.di_nlink > 0);
1125 ip->i_d.di_nlink++;
1126 inc_nlink(VFS_I(ip));
1127 if ((ip->i_d.di_version == 1) &&
1128 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1129 /*
1130 * The inode has increased its number of links beyond
1131 * what can fit in an old format inode. It now needs
1132 * to be converted to a version 2 inode with a 32 bit
1133 * link count. If this is the first inode in the file
1134 * system to do this, then we need to bump the superblock
1135 * version number as well.
1136 */
1137 xfs_bump_ino_vers2(tp, ip);
1138 }
1139
1140 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1141 return 0;
1142}
1143
c24b5dfa
DC
1144int
1145xfs_create(
1146 xfs_inode_t *dp,
1147 struct xfs_name *name,
1148 umode_t mode,
1149 xfs_dev_t rdev,
1150 xfs_inode_t **ipp)
1151{
1152 int is_dir = S_ISDIR(mode);
1153 struct xfs_mount *mp = dp->i_mount;
1154 struct xfs_inode *ip = NULL;
1155 struct xfs_trans *tp = NULL;
1156 int error;
1157 xfs_bmap_free_t free_list;
1158 xfs_fsblock_t first_block;
1159 bool unlock_dp_on_error = false;
1160 uint cancel_flags;
1161 int committed;
1162 prid_t prid;
1163 struct xfs_dquot *udqp = NULL;
1164 struct xfs_dquot *gdqp = NULL;
1165 struct xfs_dquot *pdqp = NULL;
3d3c8b52 1166 struct xfs_trans_res tres;
c24b5dfa 1167 uint resblks;
c24b5dfa
DC
1168
1169 trace_xfs_create(dp, name);
1170
1171 if (XFS_FORCED_SHUTDOWN(mp))
1172 return XFS_ERROR(EIO);
1173
1174 if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1175 prid = xfs_get_projid(dp);
1176 else
1177 prid = XFS_PROJID_DEFAULT;
1178
1179 /*
1180 * Make sure that we have allocated dquot(s) on disk.
1181 */
7aab1b28
DE
1182 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1183 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1184 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1185 &udqp, &gdqp, &pdqp);
1186 if (error)
1187 return error;
1188
1189 if (is_dir) {
1190 rdev = 0;
1191 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
3d3c8b52
JL
1192 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1193 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
c24b5dfa
DC
1194 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1195 } else {
1196 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
3d3c8b52
JL
1197 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1198 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
c24b5dfa
DC
1199 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1200 }
1201
1202 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1203
1204 /*
1205 * Initially assume that the file does not exist and
1206 * reserve the resources for that case. If that is not
1207 * the case we'll drop the one we have and get a more
1208 * appropriate transaction later.
1209 */
3d3c8b52
JL
1210 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1211 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1212 if (error == ENOSPC) {
1213 /* flush outstanding delalloc blocks and retry */
1214 xfs_flush_inodes(mp);
3d3c8b52 1215 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1216 }
1217 if (error == ENOSPC) {
1218 /* No space at all so try a "no-allocation" reservation */
1219 resblks = 0;
3d3c8b52 1220 error = xfs_trans_reserve(tp, &tres, 0, 0);
c24b5dfa
DC
1221 }
1222 if (error) {
1223 cancel_flags = 0;
1224 goto out_trans_cancel;
1225 }
1226
1227 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1228 unlock_dp_on_error = true;
1229
1230 xfs_bmap_init(&free_list, &first_block);
1231
1232 /*
1233 * Reserve disk quota and the inode.
1234 */
1235 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1236 pdqp, resblks, 1, 0);
1237 if (error)
1238 goto out_trans_cancel;
1239
1240 error = xfs_dir_canenter(tp, dp, name, resblks);
1241 if (error)
1242 goto out_trans_cancel;
1243
1244 /*
1245 * A newly created regular or special file just has one directory
1246 * entry pointing to them, but a directory also the "." entry
1247 * pointing to itself.
1248 */
1249 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1250 prid, resblks > 0, &ip, &committed);
1251 if (error) {
1252 if (error == ENOSPC)
1253 goto out_trans_cancel;
1254 goto out_trans_abort;
1255 }
1256
1257 /*
1258 * Now we join the directory inode to the transaction. We do not do it
1259 * earlier because xfs_dir_ialloc might commit the previous transaction
1260 * (and release all the locks). An error from here on will result in
1261 * the transaction cancel unlocking dp so don't do it explicitly in the
1262 * error path.
1263 */
1264 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1265 unlock_dp_on_error = false;
1266
1267 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1268 &first_block, &free_list, resblks ?
1269 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1270 if (error) {
1271 ASSERT(error != ENOSPC);
1272 goto out_trans_abort;
1273 }
1274 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1275 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1276
1277 if (is_dir) {
1278 error = xfs_dir_init(tp, ip, dp);
1279 if (error)
1280 goto out_bmap_cancel;
1281
1282 error = xfs_bumplink(tp, dp);
1283 if (error)
1284 goto out_bmap_cancel;
1285 }
1286
1287 /*
1288 * If this is a synchronous mount, make sure that the
1289 * create transaction goes to disk before returning to
1290 * the user.
1291 */
1292 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1293 xfs_trans_set_sync(tp);
1294
1295 /*
1296 * Attach the dquot(s) to the inodes and modify them incore.
1297 * These ids of the inode couldn't have changed since the new
1298 * inode has been locked ever since it was created.
1299 */
1300 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1301
1302 error = xfs_bmap_finish(&tp, &free_list, &committed);
1303 if (error)
1304 goto out_bmap_cancel;
1305
1306 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1307 if (error)
1308 goto out_release_inode;
1309
1310 xfs_qm_dqrele(udqp);
1311 xfs_qm_dqrele(gdqp);
1312 xfs_qm_dqrele(pdqp);
1313
1314 *ipp = ip;
1315 return 0;
1316
1317 out_bmap_cancel:
1318 xfs_bmap_cancel(&free_list);
1319 out_trans_abort:
1320 cancel_flags |= XFS_TRANS_ABORT;
1321 out_trans_cancel:
1322 xfs_trans_cancel(tp, cancel_flags);
1323 out_release_inode:
1324 /*
1325 * Wait until after the current transaction is aborted to
1326 * release the inode. This prevents recursive transactions
1327 * and deadlocks from xfs_inactive.
1328 */
1329 if (ip)
1330 IRELE(ip);
1331
1332 xfs_qm_dqrele(udqp);
1333 xfs_qm_dqrele(gdqp);
1334 xfs_qm_dqrele(pdqp);
1335
1336 if (unlock_dp_on_error)
1337 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1338 return error;
1339}
1340
1341int
1342xfs_link(
1343 xfs_inode_t *tdp,
1344 xfs_inode_t *sip,
1345 struct xfs_name *target_name)
1346{
1347 xfs_mount_t *mp = tdp->i_mount;
1348 xfs_trans_t *tp;
1349 int error;
1350 xfs_bmap_free_t free_list;
1351 xfs_fsblock_t first_block;
1352 int cancel_flags;
1353 int committed;
1354 int resblks;
1355
1356 trace_xfs_link(tdp, target_name);
1357
1358 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1359
1360 if (XFS_FORCED_SHUTDOWN(mp))
1361 return XFS_ERROR(EIO);
1362
1363 error = xfs_qm_dqattach(sip, 0);
1364 if (error)
1365 goto std_return;
1366
1367 error = xfs_qm_dqattach(tdp, 0);
1368 if (error)
1369 goto std_return;
1370
1371 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1372 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1373 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1374 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
c24b5dfa
DC
1375 if (error == ENOSPC) {
1376 resblks = 0;
3d3c8b52 1377 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa
DC
1378 }
1379 if (error) {
1380 cancel_flags = 0;
1381 goto error_return;
1382 }
1383
1384 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1385
1386 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1387 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1388
1389 /*
1390 * If we are using project inheritance, we only allow hard link
1391 * creation in our tree when the project IDs are the same; else
1392 * the tree quota mechanism could be circumvented.
1393 */
1394 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1395 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1396 error = XFS_ERROR(EXDEV);
1397 goto error_return;
1398 }
1399
1400 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1401 if (error)
1402 goto error_return;
1403
1404 xfs_bmap_init(&free_list, &first_block);
1405
1406 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1407 &first_block, &free_list, resblks);
1408 if (error)
1409 goto abort_return;
1410 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1411 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1412
1413 error = xfs_bumplink(tp, sip);
1414 if (error)
1415 goto abort_return;
1416
1417 /*
1418 * If this is a synchronous mount, make sure that the
1419 * link transaction goes to disk before returning to
1420 * the user.
1421 */
1422 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1423 xfs_trans_set_sync(tp);
1424 }
1425
1426 error = xfs_bmap_finish (&tp, &free_list, &committed);
1427 if (error) {
1428 xfs_bmap_cancel(&free_list);
1429 goto abort_return;
1430 }
1431
1432 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1433
1434 abort_return:
1435 cancel_flags |= XFS_TRANS_ABORT;
1436 error_return:
1437 xfs_trans_cancel(tp, cancel_flags);
1438 std_return:
1439 return error;
1440}
1441
1da177e4 1442/*
8f04c47a
CH
1443 * Free up the underlying blocks past new_size. The new size must be smaller
1444 * than the current size. This routine can be used both for the attribute and
1445 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1446 *
f6485057
DC
1447 * The transaction passed to this routine must have made a permanent log
1448 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1449 * given transaction and start new ones, so make sure everything involved in
1450 * the transaction is tidy before calling here. Some transaction will be
1451 * returned to the caller to be committed. The incoming transaction must
1452 * already include the inode, and both inode locks must be held exclusively.
1453 * The inode must also be "held" within the transaction. On return the inode
1454 * will be "held" within the returned transaction. This routine does NOT
1455 * require any disk space to be reserved for it within the transaction.
1da177e4 1456 *
f6485057
DC
1457 * If we get an error, we must return with the inode locked and linked into the
1458 * current transaction. This keeps things simple for the higher level code,
1459 * because it always knows that the inode is locked and held in the transaction
1460 * that returns to it whether errors occur or not. We don't mark the inode
1461 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1462 */
1463int
8f04c47a
CH
1464xfs_itruncate_extents(
1465 struct xfs_trans **tpp,
1466 struct xfs_inode *ip,
1467 int whichfork,
1468 xfs_fsize_t new_size)
1da177e4 1469{
8f04c47a
CH
1470 struct xfs_mount *mp = ip->i_mount;
1471 struct xfs_trans *tp = *tpp;
1472 struct xfs_trans *ntp;
1473 xfs_bmap_free_t free_list;
1474 xfs_fsblock_t first_block;
1475 xfs_fileoff_t first_unmap_block;
1476 xfs_fileoff_t last_block;
1477 xfs_filblks_t unmap_len;
1478 int committed;
1479 int error = 0;
1480 int done = 0;
1da177e4 1481
0b56185b
CH
1482 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1483 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1484 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1485 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1486 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1487 ASSERT(ip->i_itemp != NULL);
898621d5 1488 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1489 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1490
673e8e59
CH
1491 trace_xfs_itruncate_extents_start(ip, new_size);
1492
1da177e4
LT
1493 /*
1494 * Since it is possible for space to become allocated beyond
1495 * the end of the file (in a crash where the space is allocated
1496 * but the inode size is not yet updated), simply remove any
1497 * blocks which show up between the new EOF and the maximum
1498 * possible file size. If the first block to be removed is
1499 * beyond the maximum file size (ie it is the same as last_block),
1500 * then there is nothing to do.
1501 */
8f04c47a 1502 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1503 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1504 if (first_unmap_block == last_block)
1505 return 0;
1506
1507 ASSERT(first_unmap_block < last_block);
1508 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1509 while (!done) {
9d87c319 1510 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1511 error = xfs_bunmapi(tp, ip,
3e57ecf6 1512 first_unmap_block, unmap_len,
8f04c47a 1513 xfs_bmapi_aflag(whichfork),
1da177e4 1514 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1515 &first_block, &free_list,
b4e9181e 1516 &done);
8f04c47a
CH
1517 if (error)
1518 goto out_bmap_cancel;
1da177e4
LT
1519
1520 /*
1521 * Duplicate the transaction that has the permanent
1522 * reservation and commit the old transaction.
1523 */
8f04c47a 1524 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1525 if (committed)
ddc3415a 1526 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1527 if (error)
1528 goto out_bmap_cancel;
1da177e4
LT
1529
1530 if (committed) {
1531 /*
f6485057 1532 * Mark the inode dirty so it will be logged and
e5720eec 1533 * moved forward in the log as part of every commit.
1da177e4 1534 */
8f04c47a 1535 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1536 }
f6485057 1537
8f04c47a
CH
1538 ntp = xfs_trans_dup(tp);
1539 error = xfs_trans_commit(tp, 0);
1540 tp = ntp;
e5720eec 1541
ddc3415a 1542 xfs_trans_ijoin(tp, ip, 0);
f6485057 1543
cc09c0dc 1544 if (error)
8f04c47a
CH
1545 goto out;
1546
cc09c0dc 1547 /*
8f04c47a 1548 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1549 * reference that we gained in xfs_trans_dup()
1550 */
8f04c47a 1551 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52 1552 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
f6485057 1553 if (error)
8f04c47a 1554 goto out;
1da177e4 1555 }
8f04c47a 1556
673e8e59
CH
1557 /*
1558 * Always re-log the inode so that our permanent transaction can keep
1559 * on rolling it forward in the log.
1560 */
1561 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1562
1563 trace_xfs_itruncate_extents_end(ip, new_size);
1564
8f04c47a
CH
1565out:
1566 *tpp = tp;
1567 return error;
1568out_bmap_cancel:
1da177e4 1569 /*
8f04c47a
CH
1570 * If the bunmapi call encounters an error, return to the caller where
1571 * the transaction can be properly aborted. We just need to make sure
1572 * we're not holding any resources that we were not when we came in.
1da177e4 1573 */
8f04c47a
CH
1574 xfs_bmap_cancel(&free_list);
1575 goto out;
1576}
1577
c24b5dfa
DC
1578int
1579xfs_release(
1580 xfs_inode_t *ip)
1581{
1582 xfs_mount_t *mp = ip->i_mount;
1583 int error;
1584
1585 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1586 return 0;
1587
1588 /* If this is a read-only mount, don't do this (would generate I/O) */
1589 if (mp->m_flags & XFS_MOUNT_RDONLY)
1590 return 0;
1591
1592 if (!XFS_FORCED_SHUTDOWN(mp)) {
1593 int truncated;
1594
1595 /*
1596 * If we are using filestreams, and we have an unlinked
1597 * file that we are processing the last close on, then nothing
1598 * will be able to reopen and write to this file. Purge this
1599 * inode from the filestreams cache so that it doesn't delay
1600 * teardown of the inode.
1601 */
1602 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1603 xfs_filestream_deassociate(ip);
1604
1605 /*
1606 * If we previously truncated this file and removed old data
1607 * in the process, we want to initiate "early" writeout on
1608 * the last close. This is an attempt to combat the notorious
1609 * NULL files problem which is particularly noticeable from a
1610 * truncate down, buffered (re-)write (delalloc), followed by
1611 * a crash. What we are effectively doing here is
1612 * significantly reducing the time window where we'd otherwise
1613 * be exposed to that problem.
1614 */
1615 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1616 if (truncated) {
1617 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1618 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1619 error = -filemap_flush(VFS_I(ip)->i_mapping);
1620 if (error)
1621 return error;
1622 }
1623 }
1624 }
1625
1626 if (ip->i_d.di_nlink == 0)
1627 return 0;
1628
1629 if (xfs_can_free_eofblocks(ip, false)) {
1630
1631 /*
1632 * If we can't get the iolock just skip truncating the blocks
1633 * past EOF because we could deadlock with the mmap_sem
1634 * otherwise. We'll get another chance to drop them once the
1635 * last reference to the inode is dropped, so we'll never leak
1636 * blocks permanently.
1637 *
1638 * Further, check if the inode is being opened, written and
1639 * closed frequently and we have delayed allocation blocks
1640 * outstanding (e.g. streaming writes from the NFS server),
1641 * truncating the blocks past EOF will cause fragmentation to
1642 * occur.
1643 *
1644 * In this case don't do the truncation, either, but we have to
1645 * be careful how we detect this case. Blocks beyond EOF show
1646 * up as i_delayed_blks even when the inode is clean, so we
1647 * need to truncate them away first before checking for a dirty
1648 * release. Hence on the first dirty close we will still remove
1649 * the speculative allocation, but after that we will leave it
1650 * in place.
1651 */
1652 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1653 return 0;
1654
1655 error = xfs_free_eofblocks(mp, ip, true);
1656 if (error && error != EAGAIN)
1657 return error;
1658
1659 /* delalloc blocks after truncation means it really is dirty */
1660 if (ip->i_delayed_blks)
1661 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1662 }
1663 return 0;
1664}
1665
f7be2d7f
BF
1666/*
1667 * xfs_inactive_truncate
1668 *
1669 * Called to perform a truncate when an inode becomes unlinked.
1670 */
1671STATIC int
1672xfs_inactive_truncate(
1673 struct xfs_inode *ip)
1674{
1675 struct xfs_mount *mp = ip->i_mount;
1676 struct xfs_trans *tp;
1677 int error;
1678
1679 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1680 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1681 if (error) {
1682 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1683 xfs_trans_cancel(tp, 0);
1684 return error;
1685 }
1686
1687 xfs_ilock(ip, XFS_ILOCK_EXCL);
1688 xfs_trans_ijoin(tp, ip, 0);
1689
1690 /*
1691 * Log the inode size first to prevent stale data exposure in the event
1692 * of a system crash before the truncate completes. See the related
1693 * comment in xfs_setattr_size() for details.
1694 */
1695 ip->i_d.di_size = 0;
1696 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1697
1698 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1699 if (error)
1700 goto error_trans_cancel;
1701
1702 ASSERT(ip->i_d.di_nextents == 0);
1703
1704 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1705 if (error)
1706 goto error_unlock;
1707
1708 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1709 return 0;
1710
1711error_trans_cancel:
1712 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1713error_unlock:
1714 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1715 return error;
1716}
1717
88877d2b
BF
1718/*
1719 * xfs_inactive_ifree()
1720 *
1721 * Perform the inode free when an inode is unlinked.
1722 */
1723STATIC int
1724xfs_inactive_ifree(
1725 struct xfs_inode *ip)
1726{
1727 xfs_bmap_free_t free_list;
1728 xfs_fsblock_t first_block;
1729 int committed;
1730 struct xfs_mount *mp = ip->i_mount;
1731 struct xfs_trans *tp;
1732 int error;
1733
1734 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1735 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1736 if (error) {
1737 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1738 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1739 return error;
1740 }
1741
1742 xfs_ilock(ip, XFS_ILOCK_EXCL);
1743 xfs_trans_ijoin(tp, ip, 0);
1744
1745 xfs_bmap_init(&free_list, &first_block);
1746 error = xfs_ifree(tp, ip, &free_list);
1747 if (error) {
1748 /*
1749 * If we fail to free the inode, shut down. The cancel
1750 * might do that, we need to make sure. Otherwise the
1751 * inode might be lost for a long time or forever.
1752 */
1753 if (!XFS_FORCED_SHUTDOWN(mp)) {
1754 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1755 __func__, error);
1756 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1757 }
1758 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1759 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1760 return error;
1761 }
1762
1763 /*
1764 * Credit the quota account(s). The inode is gone.
1765 */
1766 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1767
1768 /*
1769 * Just ignore errors at this point. There is nothing we can
1770 * do except to try to keep going. Make sure it's not a silent
1771 * error.
1772 */
1773 error = xfs_bmap_finish(&tp, &free_list, &committed);
1774 if (error)
1775 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1776 __func__, error);
1777 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1778 if (error)
1779 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1780 __func__, error);
1781
1782 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1783 return 0;
1784}
1785
c24b5dfa
DC
1786/*
1787 * xfs_inactive
1788 *
1789 * This is called when the vnode reference count for the vnode
1790 * goes to zero. If the file has been unlinked, then it must
1791 * now be truncated. Also, we clear all of the read-ahead state
1792 * kept for the inode here since the file is now closed.
1793 */
74564fb4 1794void
c24b5dfa
DC
1795xfs_inactive(
1796 xfs_inode_t *ip)
1797{
3d3c8b52 1798 struct xfs_mount *mp;
3d3c8b52
JL
1799 int error;
1800 int truncate = 0;
c24b5dfa
DC
1801
1802 /*
1803 * If the inode is already free, then there can be nothing
1804 * to clean up here.
1805 */
d948709b 1806 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1807 ASSERT(ip->i_df.if_real_bytes == 0);
1808 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1809 return;
c24b5dfa
DC
1810 }
1811
1812 mp = ip->i_mount;
1813
c24b5dfa
DC
1814 /* If this is a read-only mount, don't do this (would generate I/O) */
1815 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1816 return;
c24b5dfa
DC
1817
1818 if (ip->i_d.di_nlink != 0) {
1819 /*
1820 * force is true because we are evicting an inode from the
1821 * cache. Post-eof blocks must be freed, lest we end up with
1822 * broken free space accounting.
1823 */
74564fb4
BF
1824 if (xfs_can_free_eofblocks(ip, true))
1825 xfs_free_eofblocks(mp, ip, false);
1826
1827 return;
c24b5dfa
DC
1828 }
1829
1830 if (S_ISREG(ip->i_d.di_mode) &&
1831 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1832 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1833 truncate = 1;
1834
1835 error = xfs_qm_dqattach(ip, 0);
1836 if (error)
74564fb4 1837 return;
c24b5dfa 1838
f7be2d7f 1839 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1840 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1841 else if (truncate)
1842 error = xfs_inactive_truncate(ip);
1843 if (error)
74564fb4 1844 return;
c24b5dfa
DC
1845
1846 /*
1847 * If there are attributes associated with the file then blow them away
1848 * now. The code calls a routine that recursively deconstructs the
1849 * attribute fork. We need to just commit the current transaction
1850 * because we can't use it for xfs_attr_inactive().
1851 */
1852 if (ip->i_d.di_anextents > 0) {
1853 ASSERT(ip->i_d.di_forkoff != 0);
1854
c24b5dfa
DC
1855 error = xfs_attr_inactive(ip);
1856 if (error)
74564fb4 1857 return;
c24b5dfa
DC
1858 }
1859
1860 if (ip->i_afp)
1861 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1862
1863 ASSERT(ip->i_d.di_anextents == 0);
1864
1865 /*
1866 * Free the inode.
1867 */
88877d2b
BF
1868 error = xfs_inactive_ifree(ip);
1869 if (error)
74564fb4 1870 return;
c24b5dfa
DC
1871
1872 /*
1873 * Release the dquots held by inode, if any.
1874 */
1875 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1876}
1877
1da177e4
LT
1878/*
1879 * This is called when the inode's link count goes to 0.
1880 * We place the on-disk inode on a list in the AGI. It
1881 * will be pulled from this list when the inode is freed.
1882 */
1883int
1884xfs_iunlink(
1885 xfs_trans_t *tp,
1886 xfs_inode_t *ip)
1887{
1888 xfs_mount_t *mp;
1889 xfs_agi_t *agi;
1890 xfs_dinode_t *dip;
1891 xfs_buf_t *agibp;
1892 xfs_buf_t *ibp;
1da177e4
LT
1893 xfs_agino_t agino;
1894 short bucket_index;
1895 int offset;
1896 int error;
1da177e4
LT
1897
1898 ASSERT(ip->i_d.di_nlink == 0);
1899 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1900
1901 mp = tp->t_mountp;
1902
1da177e4
LT
1903 /*
1904 * Get the agi buffer first. It ensures lock ordering
1905 * on the list.
1906 */
5e1be0fb 1907 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1908 if (error)
1da177e4 1909 return error;
1da177e4 1910 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1911
1da177e4
LT
1912 /*
1913 * Get the index into the agi hash table for the
1914 * list this inode will go on.
1915 */
1916 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1917 ASSERT(agino != 0);
1918 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1919 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1920 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1921
69ef921b 1922 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1923 /*
1924 * There is already another inode in the bucket we need
1925 * to add ourselves to. Add us at the front of the list.
1926 * Here we put the head pointer into our next pointer,
1927 * and then we fall through to point the head at us.
1928 */
475ee413
CH
1929 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1930 0, 0);
c319b58b
VA
1931 if (error)
1932 return error;
1933
69ef921b 1934 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1935 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1936 offset = ip->i_imap.im_boffset +
1da177e4 1937 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
1938
1939 /* need to recalc the inode CRC if appropriate */
1940 xfs_dinode_calc_crc(mp, dip);
1941
1da177e4
LT
1942 xfs_trans_inode_buf(tp, ibp);
1943 xfs_trans_log_buf(tp, ibp, offset,
1944 (offset + sizeof(xfs_agino_t) - 1));
1945 xfs_inobp_check(mp, ibp);
1946 }
1947
1948 /*
1949 * Point the bucket head pointer at the inode being inserted.
1950 */
1951 ASSERT(agino != 0);
16259e7d 1952 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1953 offset = offsetof(xfs_agi_t, agi_unlinked) +
1954 (sizeof(xfs_agino_t) * bucket_index);
1955 xfs_trans_log_buf(tp, agibp, offset,
1956 (offset + sizeof(xfs_agino_t) - 1));
1957 return 0;
1958}
1959
1960/*
1961 * Pull the on-disk inode from the AGI unlinked list.
1962 */
1963STATIC int
1964xfs_iunlink_remove(
1965 xfs_trans_t *tp,
1966 xfs_inode_t *ip)
1967{
1968 xfs_ino_t next_ino;
1969 xfs_mount_t *mp;
1970 xfs_agi_t *agi;
1971 xfs_dinode_t *dip;
1972 xfs_buf_t *agibp;
1973 xfs_buf_t *ibp;
1974 xfs_agnumber_t agno;
1da177e4
LT
1975 xfs_agino_t agino;
1976 xfs_agino_t next_agino;
1977 xfs_buf_t *last_ibp;
6fdf8ccc 1978 xfs_dinode_t *last_dip = NULL;
1da177e4 1979 short bucket_index;
6fdf8ccc 1980 int offset, last_offset = 0;
1da177e4 1981 int error;
1da177e4 1982
1da177e4 1983 mp = tp->t_mountp;
1da177e4 1984 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1985
1986 /*
1987 * Get the agi buffer first. It ensures lock ordering
1988 * on the list.
1989 */
5e1be0fb
CH
1990 error = xfs_read_agi(mp, tp, agno, &agibp);
1991 if (error)
1da177e4 1992 return error;
5e1be0fb 1993
1da177e4 1994 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1995
1da177e4
LT
1996 /*
1997 * Get the index into the agi hash table for the
1998 * list this inode will go on.
1999 */
2000 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2001 ASSERT(agino != 0);
2002 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2003 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2004 ASSERT(agi->agi_unlinked[bucket_index]);
2005
16259e7d 2006 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2007 /*
475ee413
CH
2008 * We're at the head of the list. Get the inode's on-disk
2009 * buffer to see if there is anyone after us on the list.
2010 * Only modify our next pointer if it is not already NULLAGINO.
2011 * This saves us the overhead of dealing with the buffer when
2012 * there is no need to change it.
1da177e4 2013 */
475ee413
CH
2014 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2015 0, 0);
1da177e4 2016 if (error) {
475ee413 2017 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2018 __func__, error);
1da177e4
LT
2019 return error;
2020 }
347d1c01 2021 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2022 ASSERT(next_agino != 0);
2023 if (next_agino != NULLAGINO) {
347d1c01 2024 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2025 offset = ip->i_imap.im_boffset +
1da177e4 2026 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2027
2028 /* need to recalc the inode CRC if appropriate */
2029 xfs_dinode_calc_crc(mp, dip);
2030
1da177e4
LT
2031 xfs_trans_inode_buf(tp, ibp);
2032 xfs_trans_log_buf(tp, ibp, offset,
2033 (offset + sizeof(xfs_agino_t) - 1));
2034 xfs_inobp_check(mp, ibp);
2035 } else {
2036 xfs_trans_brelse(tp, ibp);
2037 }
2038 /*
2039 * Point the bucket head pointer at the next inode.
2040 */
2041 ASSERT(next_agino != 0);
2042 ASSERT(next_agino != agino);
16259e7d 2043 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2044 offset = offsetof(xfs_agi_t, agi_unlinked) +
2045 (sizeof(xfs_agino_t) * bucket_index);
2046 xfs_trans_log_buf(tp, agibp, offset,
2047 (offset + sizeof(xfs_agino_t) - 1));
2048 } else {
2049 /*
2050 * We need to search the list for the inode being freed.
2051 */
16259e7d 2052 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2053 last_ibp = NULL;
2054 while (next_agino != agino) {
129dbc9a
CH
2055 struct xfs_imap imap;
2056
2057 if (last_ibp)
1da177e4 2058 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2059
2060 imap.im_blkno = 0;
1da177e4 2061 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2062
2063 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2064 if (error) {
2065 xfs_warn(mp,
2066 "%s: xfs_imap returned error %d.",
2067 __func__, error);
2068 return error;
2069 }
2070
2071 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2072 &last_ibp, 0, 0);
1da177e4 2073 if (error) {
0b932ccc 2074 xfs_warn(mp,
129dbc9a 2075 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2076 __func__, error);
1da177e4
LT
2077 return error;
2078 }
129dbc9a
CH
2079
2080 last_offset = imap.im_boffset;
347d1c01 2081 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2082 ASSERT(next_agino != NULLAGINO);
2083 ASSERT(next_agino != 0);
2084 }
475ee413 2085
1da177e4 2086 /*
475ee413
CH
2087 * Now last_ibp points to the buffer previous to us on the
2088 * unlinked list. Pull us from the list.
1da177e4 2089 */
475ee413
CH
2090 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2091 0, 0);
1da177e4 2092 if (error) {
475ee413 2093 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2094 __func__, error);
1da177e4
LT
2095 return error;
2096 }
347d1c01 2097 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2098 ASSERT(next_agino != 0);
2099 ASSERT(next_agino != agino);
2100 if (next_agino != NULLAGINO) {
347d1c01 2101 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2102 offset = ip->i_imap.im_boffset +
1da177e4 2103 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2104
2105 /* need to recalc the inode CRC if appropriate */
2106 xfs_dinode_calc_crc(mp, dip);
2107
1da177e4
LT
2108 xfs_trans_inode_buf(tp, ibp);
2109 xfs_trans_log_buf(tp, ibp, offset,
2110 (offset + sizeof(xfs_agino_t) - 1));
2111 xfs_inobp_check(mp, ibp);
2112 } else {
2113 xfs_trans_brelse(tp, ibp);
2114 }
2115 /*
2116 * Point the previous inode on the list to the next inode.
2117 */
347d1c01 2118 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2119 ASSERT(next_agino != 0);
2120 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2121
2122 /* need to recalc the inode CRC if appropriate */
2123 xfs_dinode_calc_crc(mp, last_dip);
2124
1da177e4
LT
2125 xfs_trans_inode_buf(tp, last_ibp);
2126 xfs_trans_log_buf(tp, last_ibp, offset,
2127 (offset + sizeof(xfs_agino_t) - 1));
2128 xfs_inobp_check(mp, last_ibp);
2129 }
2130 return 0;
2131}
2132
5b3eed75 2133/*
0b8182db 2134 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2135 * inodes that are in memory - they all must be marked stale and attached to
2136 * the cluster buffer.
2137 */
2a30f36d 2138STATIC int
1da177e4
LT
2139xfs_ifree_cluster(
2140 xfs_inode_t *free_ip,
2141 xfs_trans_t *tp,
2142 xfs_ino_t inum)
2143{
2144 xfs_mount_t *mp = free_ip->i_mount;
2145 int blks_per_cluster;
2146 int nbufs;
2147 int ninodes;
5b257b4a 2148 int i, j;
1da177e4
LT
2149 xfs_daddr_t blkno;
2150 xfs_buf_t *bp;
5b257b4a 2151 xfs_inode_t *ip;
1da177e4
LT
2152 xfs_inode_log_item_t *iip;
2153 xfs_log_item_t *lip;
5017e97d 2154 struct xfs_perag *pag;
1da177e4 2155
5017e97d 2156 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
2157 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2158 blks_per_cluster = 1;
2159 ninodes = mp->m_sb.sb_inopblock;
2160 nbufs = XFS_IALLOC_BLOCKS(mp);
2161 } else {
2162 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2163 mp->m_sb.sb_blocksize;
2164 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2165 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2166 }
2167
1da177e4
LT
2168 for (j = 0; j < nbufs; j++, inum += ninodes) {
2169 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2170 XFS_INO_TO_AGBNO(mp, inum));
2171
5b257b4a
DC
2172 /*
2173 * We obtain and lock the backing buffer first in the process
2174 * here, as we have to ensure that any dirty inode that we
2175 * can't get the flush lock on is attached to the buffer.
2176 * If we scan the in-memory inodes first, then buffer IO can
2177 * complete before we get a lock on it, and hence we may fail
2178 * to mark all the active inodes on the buffer stale.
2179 */
2180 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2181 mp->m_bsize * blks_per_cluster,
2182 XBF_UNMAPPED);
5b257b4a 2183
2a30f36d
CS
2184 if (!bp)
2185 return ENOMEM;
b0f539de
DC
2186
2187 /*
2188 * This buffer may not have been correctly initialised as we
2189 * didn't read it from disk. That's not important because we are
2190 * only using to mark the buffer as stale in the log, and to
2191 * attach stale cached inodes on it. That means it will never be
2192 * dispatched for IO. If it is, we want to know about it, and we
2193 * want it to fail. We can acheive this by adding a write
2194 * verifier to the buffer.
2195 */
1813dd64 2196 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2197
5b257b4a
DC
2198 /*
2199 * Walk the inodes already attached to the buffer and mark them
2200 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2201 * in-memory inode walk can't lock them. By marking them all
2202 * stale first, we will not attempt to lock them in the loop
2203 * below as the XFS_ISTALE flag will be set.
5b257b4a 2204 */
adadbeef 2205 lip = bp->b_fspriv;
5b257b4a
DC
2206 while (lip) {
2207 if (lip->li_type == XFS_LI_INODE) {
2208 iip = (xfs_inode_log_item_t *)lip;
2209 ASSERT(iip->ili_logged == 1);
ca30b2a7 2210 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2211 xfs_trans_ail_copy_lsn(mp->m_ail,
2212 &iip->ili_flush_lsn,
2213 &iip->ili_item.li_lsn);
2214 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2215 }
2216 lip = lip->li_bio_list;
2217 }
1da177e4 2218
5b3eed75 2219
1da177e4 2220 /*
5b257b4a
DC
2221 * For each inode in memory attempt to add it to the inode
2222 * buffer and set it up for being staled on buffer IO
2223 * completion. This is safe as we've locked out tail pushing
2224 * and flushing by locking the buffer.
1da177e4 2225 *
5b257b4a
DC
2226 * We have already marked every inode that was part of a
2227 * transaction stale above, which means there is no point in
2228 * even trying to lock them.
1da177e4 2229 */
1da177e4 2230 for (i = 0; i < ninodes; i++) {
5b3eed75 2231retry:
1a3e8f3d 2232 rcu_read_lock();
da353b0d
DC
2233 ip = radix_tree_lookup(&pag->pag_ici_root,
2234 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2235
1a3e8f3d
DC
2236 /* Inode not in memory, nothing to do */
2237 if (!ip) {
2238 rcu_read_unlock();
1da177e4
LT
2239 continue;
2240 }
2241
1a3e8f3d
DC
2242 /*
2243 * because this is an RCU protected lookup, we could
2244 * find a recently freed or even reallocated inode
2245 * during the lookup. We need to check under the
2246 * i_flags_lock for a valid inode here. Skip it if it
2247 * is not valid, the wrong inode or stale.
2248 */
2249 spin_lock(&ip->i_flags_lock);
2250 if (ip->i_ino != inum + i ||
2251 __xfs_iflags_test(ip, XFS_ISTALE)) {
2252 spin_unlock(&ip->i_flags_lock);
2253 rcu_read_unlock();
2254 continue;
2255 }
2256 spin_unlock(&ip->i_flags_lock);
2257
5b3eed75
DC
2258 /*
2259 * Don't try to lock/unlock the current inode, but we
2260 * _cannot_ skip the other inodes that we did not find
2261 * in the list attached to the buffer and are not
2262 * already marked stale. If we can't lock it, back off
2263 * and retry.
2264 */
5b257b4a
DC
2265 if (ip != free_ip &&
2266 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2267 rcu_read_unlock();
5b3eed75
DC
2268 delay(1);
2269 goto retry;
1da177e4 2270 }
1a3e8f3d 2271 rcu_read_unlock();
1da177e4 2272
5b3eed75 2273 xfs_iflock(ip);
5b257b4a 2274 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2275
5b3eed75
DC
2276 /*
2277 * we don't need to attach clean inodes or those only
2278 * with unlogged changes (which we throw away, anyway).
2279 */
1da177e4 2280 iip = ip->i_itemp;
5b3eed75 2281 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2282 ASSERT(ip != free_ip);
1da177e4
LT
2283 xfs_ifunlock(ip);
2284 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2285 continue;
2286 }
2287
f5d8d5c4
CH
2288 iip->ili_last_fields = iip->ili_fields;
2289 iip->ili_fields = 0;
1da177e4 2290 iip->ili_logged = 1;
7b2e2a31
DC
2291 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2292 &iip->ili_item.li_lsn);
1da177e4 2293
ca30b2a7
CH
2294 xfs_buf_attach_iodone(bp, xfs_istale_done,
2295 &iip->ili_item);
5b257b4a
DC
2296
2297 if (ip != free_ip)
1da177e4 2298 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2299 }
2300
5b3eed75 2301 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2302 xfs_trans_binval(tp, bp);
2303 }
2304
5017e97d 2305 xfs_perag_put(pag);
2a30f36d 2306 return 0;
1da177e4
LT
2307}
2308
2309/*
2310 * This is called to return an inode to the inode free list.
2311 * The inode should already be truncated to 0 length and have
2312 * no pages associated with it. This routine also assumes that
2313 * the inode is already a part of the transaction.
2314 *
2315 * The on-disk copy of the inode will have been added to the list
2316 * of unlinked inodes in the AGI. We need to remove the inode from
2317 * that list atomically with respect to freeing it here.
2318 */
2319int
2320xfs_ifree(
2321 xfs_trans_t *tp,
2322 xfs_inode_t *ip,
2323 xfs_bmap_free_t *flist)
2324{
2325 int error;
2326 int delete;
2327 xfs_ino_t first_ino;
2328
579aa9ca 2329 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2330 ASSERT(ip->i_d.di_nlink == 0);
2331 ASSERT(ip->i_d.di_nextents == 0);
2332 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2333 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2334 ASSERT(ip->i_d.di_nblocks == 0);
2335
2336 /*
2337 * Pull the on-disk inode from the AGI unlinked list.
2338 */
2339 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2340 if (error)
1da177e4 2341 return error;
1da177e4
LT
2342
2343 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1baaed8f 2344 if (error)
1da177e4 2345 return error;
1baaed8f 2346
1da177e4
LT
2347 ip->i_d.di_mode = 0; /* mark incore inode as free */
2348 ip->i_d.di_flags = 0;
2349 ip->i_d.di_dmevmask = 0;
2350 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2351 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2352 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2353 /*
2354 * Bump the generation count so no one will be confused
2355 * by reincarnations of this inode.
2356 */
2357 ip->i_d.di_gen++;
2358 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2359
1baaed8f 2360 if (delete)
2a30f36d 2361 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4 2362
2a30f36d 2363 return error;
1da177e4
LT
2364}
2365
1da177e4 2366/*
60ec6783
CH
2367 * This is called to unpin an inode. The caller must have the inode locked
2368 * in at least shared mode so that the buffer cannot be subsequently pinned
2369 * once someone is waiting for it to be unpinned.
1da177e4 2370 */
60ec6783 2371static void
f392e631 2372xfs_iunpin(
60ec6783 2373 struct xfs_inode *ip)
1da177e4 2374{
579aa9ca 2375 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2376
4aaf15d1
DC
2377 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2378
a3f74ffb 2379 /* Give the log a push to start the unpinning I/O */
60ec6783 2380 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2381
a3f74ffb 2382}
1da177e4 2383
f392e631
CH
2384static void
2385__xfs_iunpin_wait(
2386 struct xfs_inode *ip)
2387{
2388 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2389 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2390
2391 xfs_iunpin(ip);
2392
2393 do {
2394 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2395 if (xfs_ipincount(ip))
2396 io_schedule();
2397 } while (xfs_ipincount(ip));
2398 finish_wait(wq, &wait.wait);
2399}
2400
777df5af 2401void
a3f74ffb 2402xfs_iunpin_wait(
60ec6783 2403 struct xfs_inode *ip)
a3f74ffb 2404{
f392e631
CH
2405 if (xfs_ipincount(ip))
2406 __xfs_iunpin_wait(ip);
1da177e4
LT
2407}
2408
c24b5dfa
DC
2409int
2410xfs_remove(
2411 xfs_inode_t *dp,
2412 struct xfs_name *name,
2413 xfs_inode_t *ip)
2414{
2415 xfs_mount_t *mp = dp->i_mount;
2416 xfs_trans_t *tp = NULL;
2417 int is_dir = S_ISDIR(ip->i_d.di_mode);
2418 int error = 0;
2419 xfs_bmap_free_t free_list;
2420 xfs_fsblock_t first_block;
2421 int cancel_flags;
2422 int committed;
2423 int link_zero;
2424 uint resblks;
2425 uint log_count;
2426
2427 trace_xfs_remove(dp, name);
2428
2429 if (XFS_FORCED_SHUTDOWN(mp))
2430 return XFS_ERROR(EIO);
2431
2432 error = xfs_qm_dqattach(dp, 0);
2433 if (error)
2434 goto std_return;
2435
2436 error = xfs_qm_dqattach(ip, 0);
2437 if (error)
2438 goto std_return;
2439
2440 if (is_dir) {
2441 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2442 log_count = XFS_DEFAULT_LOG_COUNT;
2443 } else {
2444 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2445 log_count = XFS_REMOVE_LOG_COUNT;
2446 }
2447 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2448
2449 /*
2450 * We try to get the real space reservation first,
2451 * allowing for directory btree deletion(s) implying
2452 * possible bmap insert(s). If we can't get the space
2453 * reservation then we use 0 instead, and avoid the bmap
2454 * btree insert(s) in the directory code by, if the bmap
2455 * insert tries to happen, instead trimming the LAST
2456 * block from the directory.
2457 */
2458 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2459 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
c24b5dfa
DC
2460 if (error == ENOSPC) {
2461 resblks = 0;
3d3c8b52 2462 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2463 }
2464 if (error) {
2465 ASSERT(error != ENOSPC);
2466 cancel_flags = 0;
2467 goto out_trans_cancel;
2468 }
2469
2470 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2471
2472 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2473 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2474
2475 /*
2476 * If we're removing a directory perform some additional validation.
2477 */
2478 if (is_dir) {
2479 ASSERT(ip->i_d.di_nlink >= 2);
2480 if (ip->i_d.di_nlink != 2) {
2481 error = XFS_ERROR(ENOTEMPTY);
2482 goto out_trans_cancel;
2483 }
2484 if (!xfs_dir_isempty(ip)) {
2485 error = XFS_ERROR(ENOTEMPTY);
2486 goto out_trans_cancel;
2487 }
2488 }
2489
2490 xfs_bmap_init(&free_list, &first_block);
2491 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2492 &first_block, &free_list, resblks);
2493 if (error) {
2494 ASSERT(error != ENOENT);
2495 goto out_bmap_cancel;
2496 }
2497 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2498
2499 if (is_dir) {
2500 /*
2501 * Drop the link from ip's "..".
2502 */
2503 error = xfs_droplink(tp, dp);
2504 if (error)
2505 goto out_bmap_cancel;
2506
2507 /*
2508 * Drop the "." link from ip to self.
2509 */
2510 error = xfs_droplink(tp, ip);
2511 if (error)
2512 goto out_bmap_cancel;
2513 } else {
2514 /*
2515 * When removing a non-directory we need to log the parent
2516 * inode here. For a directory this is done implicitly
2517 * by the xfs_droplink call for the ".." entry.
2518 */
2519 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2520 }
2521
2522 /*
2523 * Drop the link from dp to ip.
2524 */
2525 error = xfs_droplink(tp, ip);
2526 if (error)
2527 goto out_bmap_cancel;
2528
2529 /*
2530 * Determine if this is the last link while
2531 * we are in the transaction.
2532 */
2533 link_zero = (ip->i_d.di_nlink == 0);
2534
2535 /*
2536 * If this is a synchronous mount, make sure that the
2537 * remove transaction goes to disk before returning to
2538 * the user.
2539 */
2540 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2541 xfs_trans_set_sync(tp);
2542
2543 error = xfs_bmap_finish(&tp, &free_list, &committed);
2544 if (error)
2545 goto out_bmap_cancel;
2546
2547 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2548 if (error)
2549 goto std_return;
2550
2551 /*
2552 * If we are using filestreams, kill the stream association.
2553 * If the file is still open it may get a new one but that
2554 * will get killed on last close in xfs_close() so we don't
2555 * have to worry about that.
2556 */
2557 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2558 xfs_filestream_deassociate(ip);
2559
2560 return 0;
2561
2562 out_bmap_cancel:
2563 xfs_bmap_cancel(&free_list);
2564 cancel_flags |= XFS_TRANS_ABORT;
2565 out_trans_cancel:
2566 xfs_trans_cancel(tp, cancel_flags);
2567 std_return:
2568 return error;
2569}
2570
f6bba201
DC
2571/*
2572 * Enter all inodes for a rename transaction into a sorted array.
2573 */
2574STATIC void
2575xfs_sort_for_rename(
2576 xfs_inode_t *dp1, /* in: old (source) directory inode */
2577 xfs_inode_t *dp2, /* in: new (target) directory inode */
2578 xfs_inode_t *ip1, /* in: inode of old entry */
2579 xfs_inode_t *ip2, /* in: inode of new entry, if it
2580 already exists, NULL otherwise. */
2581 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2582 int *num_inodes) /* out: number of inodes in array */
2583{
2584 xfs_inode_t *temp;
2585 int i, j;
2586
2587 /*
2588 * i_tab contains a list of pointers to inodes. We initialize
2589 * the table here & we'll sort it. We will then use it to
2590 * order the acquisition of the inode locks.
2591 *
2592 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2593 */
2594 i_tab[0] = dp1;
2595 i_tab[1] = dp2;
2596 i_tab[2] = ip1;
2597 if (ip2) {
2598 *num_inodes = 4;
2599 i_tab[3] = ip2;
2600 } else {
2601 *num_inodes = 3;
2602 i_tab[3] = NULL;
2603 }
2604
2605 /*
2606 * Sort the elements via bubble sort. (Remember, there are at
2607 * most 4 elements to sort, so this is adequate.)
2608 */
2609 for (i = 0; i < *num_inodes; i++) {
2610 for (j = 1; j < *num_inodes; j++) {
2611 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2612 temp = i_tab[j];
2613 i_tab[j] = i_tab[j-1];
2614 i_tab[j-1] = temp;
2615 }
2616 }
2617 }
2618}
2619
2620/*
2621 * xfs_rename
2622 */
2623int
2624xfs_rename(
2625 xfs_inode_t *src_dp,
2626 struct xfs_name *src_name,
2627 xfs_inode_t *src_ip,
2628 xfs_inode_t *target_dp,
2629 struct xfs_name *target_name,
2630 xfs_inode_t *target_ip)
2631{
2632 xfs_trans_t *tp = NULL;
2633 xfs_mount_t *mp = src_dp->i_mount;
2634 int new_parent; /* moving to a new dir */
2635 int src_is_directory; /* src_name is a directory */
2636 int error;
2637 xfs_bmap_free_t free_list;
2638 xfs_fsblock_t first_block;
2639 int cancel_flags;
2640 int committed;
2641 xfs_inode_t *inodes[4];
2642 int spaceres;
2643 int num_inodes;
2644
2645 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2646
2647 new_parent = (src_dp != target_dp);
2648 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2649
2650 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2651 inodes, &num_inodes);
2652
2653 xfs_bmap_init(&free_list, &first_block);
2654 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2655 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2656 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2657 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
f6bba201
DC
2658 if (error == ENOSPC) {
2659 spaceres = 0;
3d3c8b52 2660 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201
DC
2661 }
2662 if (error) {
2663 xfs_trans_cancel(tp, 0);
2664 goto std_return;
2665 }
2666
2667 /*
2668 * Attach the dquots to the inodes
2669 */
2670 error = xfs_qm_vop_rename_dqattach(inodes);
2671 if (error) {
2672 xfs_trans_cancel(tp, cancel_flags);
2673 goto std_return;
2674 }
2675
2676 /*
2677 * Lock all the participating inodes. Depending upon whether
2678 * the target_name exists in the target directory, and
2679 * whether the target directory is the same as the source
2680 * directory, we can lock from 2 to 4 inodes.
2681 */
2682 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2683
2684 /*
2685 * Join all the inodes to the transaction. From this point on,
2686 * we can rely on either trans_commit or trans_cancel to unlock
2687 * them.
2688 */
2689 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2690 if (new_parent)
2691 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2692 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2693 if (target_ip)
2694 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2695
2696 /*
2697 * If we are using project inheritance, we only allow renames
2698 * into our tree when the project IDs are the same; else the
2699 * tree quota mechanism would be circumvented.
2700 */
2701 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2702 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2703 error = XFS_ERROR(EXDEV);
2704 goto error_return;
2705 }
2706
2707 /*
2708 * Set up the target.
2709 */
2710 if (target_ip == NULL) {
2711 /*
2712 * If there's no space reservation, check the entry will
2713 * fit before actually inserting it.
2714 */
2715 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2716 if (error)
2717 goto error_return;
2718 /*
2719 * If target does not exist and the rename crosses
2720 * directories, adjust the target directory link count
2721 * to account for the ".." reference from the new entry.
2722 */
2723 error = xfs_dir_createname(tp, target_dp, target_name,
2724 src_ip->i_ino, &first_block,
2725 &free_list, spaceres);
2726 if (error == ENOSPC)
2727 goto error_return;
2728 if (error)
2729 goto abort_return;
2730
2731 xfs_trans_ichgtime(tp, target_dp,
2732 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2733
2734 if (new_parent && src_is_directory) {
2735 error = xfs_bumplink(tp, target_dp);
2736 if (error)
2737 goto abort_return;
2738 }
2739 } else { /* target_ip != NULL */
2740 /*
2741 * If target exists and it's a directory, check that both
2742 * target and source are directories and that target can be
2743 * destroyed, or that neither is a directory.
2744 */
2745 if (S_ISDIR(target_ip->i_d.di_mode)) {
2746 /*
2747 * Make sure target dir is empty.
2748 */
2749 if (!(xfs_dir_isempty(target_ip)) ||
2750 (target_ip->i_d.di_nlink > 2)) {
2751 error = XFS_ERROR(EEXIST);
2752 goto error_return;
2753 }
2754 }
2755
2756 /*
2757 * Link the source inode under the target name.
2758 * If the source inode is a directory and we are moving
2759 * it across directories, its ".." entry will be
2760 * inconsistent until we replace that down below.
2761 *
2762 * In case there is already an entry with the same
2763 * name at the destination directory, remove it first.
2764 */
2765 error = xfs_dir_replace(tp, target_dp, target_name,
2766 src_ip->i_ino,
2767 &first_block, &free_list, spaceres);
2768 if (error)
2769 goto abort_return;
2770
2771 xfs_trans_ichgtime(tp, target_dp,
2772 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2773
2774 /*
2775 * Decrement the link count on the target since the target
2776 * dir no longer points to it.
2777 */
2778 error = xfs_droplink(tp, target_ip);
2779 if (error)
2780 goto abort_return;
2781
2782 if (src_is_directory) {
2783 /*
2784 * Drop the link from the old "." entry.
2785 */
2786 error = xfs_droplink(tp, target_ip);
2787 if (error)
2788 goto abort_return;
2789 }
2790 } /* target_ip != NULL */
2791
2792 /*
2793 * Remove the source.
2794 */
2795 if (new_parent && src_is_directory) {
2796 /*
2797 * Rewrite the ".." entry to point to the new
2798 * directory.
2799 */
2800 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2801 target_dp->i_ino,
2802 &first_block, &free_list, spaceres);
2803 ASSERT(error != EEXIST);
2804 if (error)
2805 goto abort_return;
2806 }
2807
2808 /*
2809 * We always want to hit the ctime on the source inode.
2810 *
2811 * This isn't strictly required by the standards since the source
2812 * inode isn't really being changed, but old unix file systems did
2813 * it and some incremental backup programs won't work without it.
2814 */
2815 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2816 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2817
2818 /*
2819 * Adjust the link count on src_dp. This is necessary when
2820 * renaming a directory, either within one parent when
2821 * the target existed, or across two parent directories.
2822 */
2823 if (src_is_directory && (new_parent || target_ip != NULL)) {
2824
2825 /*
2826 * Decrement link count on src_directory since the
2827 * entry that's moved no longer points to it.
2828 */
2829 error = xfs_droplink(tp, src_dp);
2830 if (error)
2831 goto abort_return;
2832 }
2833
2834 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2835 &first_block, &free_list, spaceres);
2836 if (error)
2837 goto abort_return;
2838
2839 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2840 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2841 if (new_parent)
2842 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2843
2844 /*
2845 * If this is a synchronous mount, make sure that the
2846 * rename transaction goes to disk before returning to
2847 * the user.
2848 */
2849 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2850 xfs_trans_set_sync(tp);
2851 }
2852
2853 error = xfs_bmap_finish(&tp, &free_list, &committed);
2854 if (error) {
2855 xfs_bmap_cancel(&free_list);
2856 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2857 XFS_TRANS_ABORT));
2858 goto std_return;
2859 }
2860
2861 /*
2862 * trans_commit will unlock src_ip, target_ip & decrement
2863 * the vnode references.
2864 */
2865 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2866
2867 abort_return:
2868 cancel_flags |= XFS_TRANS_ABORT;
2869 error_return:
2870 xfs_bmap_cancel(&free_list);
2871 xfs_trans_cancel(tp, cancel_flags);
2872 std_return:
2873 return error;
2874}
2875
5c4d97d0
DC
2876STATIC int
2877xfs_iflush_cluster(
2878 xfs_inode_t *ip,
2879 xfs_buf_t *bp)
1da177e4 2880{
5c4d97d0
DC
2881 xfs_mount_t *mp = ip->i_mount;
2882 struct xfs_perag *pag;
2883 unsigned long first_index, mask;
2884 unsigned long inodes_per_cluster;
2885 int ilist_size;
2886 xfs_inode_t **ilist;
2887 xfs_inode_t *iq;
2888 int nr_found;
2889 int clcount = 0;
2890 int bufwasdelwri;
1da177e4 2891 int i;
1da177e4 2892
5c4d97d0 2893 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 2894
5c4d97d0
DC
2895 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2896 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2897 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2898 if (!ilist)
2899 goto out_put;
1da177e4 2900
5c4d97d0
DC
2901 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2902 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2903 rcu_read_lock();
2904 /* really need a gang lookup range call here */
2905 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2906 first_index, inodes_per_cluster);
2907 if (nr_found == 0)
2908 goto out_free;
2909
2910 for (i = 0; i < nr_found; i++) {
2911 iq = ilist[i];
2912 if (iq == ip)
bad55843 2913 continue;
1a3e8f3d
DC
2914
2915 /*
2916 * because this is an RCU protected lookup, we could find a
2917 * recently freed or even reallocated inode during the lookup.
2918 * We need to check under the i_flags_lock for a valid inode
2919 * here. Skip it if it is not valid or the wrong inode.
2920 */
2921 spin_lock(&ip->i_flags_lock);
2922 if (!ip->i_ino ||
2923 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2924 spin_unlock(&ip->i_flags_lock);
2925 continue;
2926 }
2927 spin_unlock(&ip->i_flags_lock);
2928
bad55843
DC
2929 /*
2930 * Do an un-protected check to see if the inode is dirty and
2931 * is a candidate for flushing. These checks will be repeated
2932 * later after the appropriate locks are acquired.
2933 */
33540408 2934 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2935 continue;
bad55843
DC
2936
2937 /*
2938 * Try to get locks. If any are unavailable or it is pinned,
2939 * then this inode cannot be flushed and is skipped.
2940 */
2941
2942 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2943 continue;
2944 if (!xfs_iflock_nowait(iq)) {
2945 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2946 continue;
2947 }
2948 if (xfs_ipincount(iq)) {
2949 xfs_ifunlock(iq);
2950 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2951 continue;
2952 }
2953
2954 /*
2955 * arriving here means that this inode can be flushed. First
2956 * re-check that it's dirty before flushing.
2957 */
33540408
DC
2958 if (!xfs_inode_clean(iq)) {
2959 int error;
bad55843
DC
2960 error = xfs_iflush_int(iq, bp);
2961 if (error) {
2962 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2963 goto cluster_corrupt_out;
2964 }
2965 clcount++;
2966 } else {
2967 xfs_ifunlock(iq);
2968 }
2969 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2970 }
2971
2972 if (clcount) {
2973 XFS_STATS_INC(xs_icluster_flushcnt);
2974 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2975 }
2976
2977out_free:
1a3e8f3d 2978 rcu_read_unlock();
f0e2d93c 2979 kmem_free(ilist);
44b56e0a
DC
2980out_put:
2981 xfs_perag_put(pag);
bad55843
DC
2982 return 0;
2983
2984
2985cluster_corrupt_out:
2986 /*
2987 * Corruption detected in the clustering loop. Invalidate the
2988 * inode buffer and shut down the filesystem.
2989 */
1a3e8f3d 2990 rcu_read_unlock();
bad55843 2991 /*
43ff2122 2992 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
2993 * brelse can handle it with no problems. If not, shut down the
2994 * filesystem before releasing the buffer.
2995 */
43ff2122 2996 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
2997 if (bufwasdelwri)
2998 xfs_buf_relse(bp);
2999
3000 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3001
3002 if (!bufwasdelwri) {
3003 /*
3004 * Just like incore_relse: if we have b_iodone functions,
3005 * mark the buffer as an error and call them. Otherwise
3006 * mark it as stale and brelse.
3007 */
cb669ca5 3008 if (bp->b_iodone) {
bad55843 3009 XFS_BUF_UNDONE(bp);
c867cb61 3010 xfs_buf_stale(bp);
5a52c2a5 3011 xfs_buf_ioerror(bp, EIO);
1a1a3e97 3012 xfs_buf_ioend(bp, 0);
bad55843 3013 } else {
c867cb61 3014 xfs_buf_stale(bp);
bad55843
DC
3015 xfs_buf_relse(bp);
3016 }
3017 }
3018
3019 /*
3020 * Unlocks the flush lock
3021 */
04913fdd 3022 xfs_iflush_abort(iq, false);
f0e2d93c 3023 kmem_free(ilist);
44b56e0a 3024 xfs_perag_put(pag);
bad55843
DC
3025 return XFS_ERROR(EFSCORRUPTED);
3026}
3027
1da177e4 3028/*
4c46819a
CH
3029 * Flush dirty inode metadata into the backing buffer.
3030 *
3031 * The caller must have the inode lock and the inode flush lock held. The
3032 * inode lock will still be held upon return to the caller, and the inode
3033 * flush lock will be released after the inode has reached the disk.
3034 *
3035 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3036 */
3037int
3038xfs_iflush(
4c46819a
CH
3039 struct xfs_inode *ip,
3040 struct xfs_buf **bpp)
1da177e4 3041{
4c46819a
CH
3042 struct xfs_mount *mp = ip->i_mount;
3043 struct xfs_buf *bp;
3044 struct xfs_dinode *dip;
1da177e4 3045 int error;
1da177e4
LT
3046
3047 XFS_STATS_INC(xs_iflush_count);
3048
579aa9ca 3049 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3050 ASSERT(xfs_isiflocked(ip));
1da177e4 3051 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3052 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3053
4c46819a 3054 *bpp = NULL;
1da177e4 3055
1da177e4
LT
3056 xfs_iunpin_wait(ip);
3057
4b6a4688
DC
3058 /*
3059 * For stale inodes we cannot rely on the backing buffer remaining
3060 * stale in cache for the remaining life of the stale inode and so
475ee413 3061 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3062 * inodes below. We have to check this after ensuring the inode is
3063 * unpinned so that it is safe to reclaim the stale inode after the
3064 * flush call.
3065 */
3066 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3067 xfs_ifunlock(ip);
3068 return 0;
3069 }
3070
1da177e4
LT
3071 /*
3072 * This may have been unpinned because the filesystem is shutting
3073 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3074 * to disk, because the log record didn't make it to disk.
3075 *
3076 * We also have to remove the log item from the AIL in this case,
3077 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3078 */
3079 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
3080 error = XFS_ERROR(EIO);
3081 goto abort_out;
1da177e4
LT
3082 }
3083
a3f74ffb
DC
3084 /*
3085 * Get the buffer containing the on-disk inode.
3086 */
475ee413
CH
3087 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3088 0);
a3f74ffb
DC
3089 if (error || !bp) {
3090 xfs_ifunlock(ip);
3091 return error;
3092 }
3093
1da177e4
LT
3094 /*
3095 * First flush out the inode that xfs_iflush was called with.
3096 */
3097 error = xfs_iflush_int(ip, bp);
bad55843 3098 if (error)
1da177e4 3099 goto corrupt_out;
1da177e4 3100
a3f74ffb
DC
3101 /*
3102 * If the buffer is pinned then push on the log now so we won't
3103 * get stuck waiting in the write for too long.
3104 */
811e64c7 3105 if (xfs_buf_ispinned(bp))
a14a348b 3106 xfs_log_force(mp, 0);
a3f74ffb 3107
1da177e4
LT
3108 /*
3109 * inode clustering:
3110 * see if other inodes can be gathered into this write
3111 */
bad55843
DC
3112 error = xfs_iflush_cluster(ip, bp);
3113 if (error)
3114 goto cluster_corrupt_out;
1da177e4 3115
4c46819a
CH
3116 *bpp = bp;
3117 return 0;
1da177e4
LT
3118
3119corrupt_out:
3120 xfs_buf_relse(bp);
7d04a335 3121 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3122cluster_corrupt_out:
32ce90a4
CH
3123 error = XFS_ERROR(EFSCORRUPTED);
3124abort_out:
1da177e4
LT
3125 /*
3126 * Unlocks the flush lock
3127 */
04913fdd 3128 xfs_iflush_abort(ip, false);
32ce90a4 3129 return error;
1da177e4
LT
3130}
3131
1da177e4
LT
3132STATIC int
3133xfs_iflush_int(
93848a99
CH
3134 struct xfs_inode *ip,
3135 struct xfs_buf *bp)
1da177e4 3136{
93848a99
CH
3137 struct xfs_inode_log_item *iip = ip->i_itemp;
3138 struct xfs_dinode *dip;
3139 struct xfs_mount *mp = ip->i_mount;
1da177e4 3140
579aa9ca 3141 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3142 ASSERT(xfs_isiflocked(ip));
1da177e4 3143 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3144 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3145 ASSERT(iip != NULL && iip->ili_fields != 0);
1da177e4 3146
1da177e4 3147 /* set *dip = inode's place in the buffer */
92bfc6e7 3148 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3149
69ef921b 3150 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3151 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3152 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3153 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3154 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3155 goto corrupt_out;
3156 }
3157 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3158 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3159 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3160 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3161 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3162 goto corrupt_out;
3163 }
abbede1b 3164 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3165 if (XFS_TEST_ERROR(
3166 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3167 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3168 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3169 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3170 "%s: Bad regular inode %Lu, ptr 0x%p",
3171 __func__, ip->i_ino, ip);
1da177e4
LT
3172 goto corrupt_out;
3173 }
abbede1b 3174 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3175 if (XFS_TEST_ERROR(
3176 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3177 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3178 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3179 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3180 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3181 "%s: Bad directory inode %Lu, ptr 0x%p",
3182 __func__, ip->i_ino, ip);
1da177e4
LT
3183 goto corrupt_out;
3184 }
3185 }
3186 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3187 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3188 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3189 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3190 "%s: detected corrupt incore inode %Lu, "
3191 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3192 __func__, ip->i_ino,
1da177e4 3193 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3194 ip->i_d.di_nblocks, ip);
1da177e4
LT
3195 goto corrupt_out;
3196 }
3197 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3198 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3199 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3200 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3201 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3202 goto corrupt_out;
3203 }
e60896d8 3204
1da177e4 3205 /*
e60896d8
DC
3206 * Inode item log recovery for v1/v2 inodes are dependent on the
3207 * di_flushiter count for correct sequencing. We bump the flush
3208 * iteration count so we can detect flushes which postdate a log record
3209 * during recovery. This is redundant as we now log every change and
3210 * hence this can't happen but we need to still do it to ensure
3211 * backwards compatibility with old kernels that predate logging all
3212 * inode changes.
1da177e4 3213 */
e60896d8
DC
3214 if (ip->i_d.di_version < 3)
3215 ip->i_d.di_flushiter++;
1da177e4
LT
3216
3217 /*
3218 * Copy the dirty parts of the inode into the on-disk
3219 * inode. We always copy out the core of the inode,
3220 * because if the inode is dirty at all the core must
3221 * be.
3222 */
81591fe2 3223 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3224
3225 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3226 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3227 ip->i_d.di_flushiter = 0;
3228
3229 /*
3230 * If this is really an old format inode and the superblock version
3231 * has not been updated to support only new format inodes, then
3232 * convert back to the old inode format. If the superblock version
3233 * has been updated, then make the conversion permanent.
3234 */
51ce16d5
CH
3235 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3236 if (ip->i_d.di_version == 1) {
62118709 3237 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3238 /*
3239 * Convert it back.
3240 */
3241 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 3242 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3243 } else {
3244 /*
3245 * The superblock version has already been bumped,
3246 * so just make the conversion to the new inode
3247 * format permanent.
3248 */
51ce16d5
CH
3249 ip->i_d.di_version = 2;
3250 dip->di_version = 2;
1da177e4 3251 ip->i_d.di_onlink = 0;
81591fe2 3252 dip->di_onlink = 0;
1da177e4 3253 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
3254 memset(&(dip->di_pad[0]), 0,
3255 sizeof(dip->di_pad));
6743099c 3256 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
3257 }
3258 }
3259
e4ac967b
DC
3260 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3261 if (XFS_IFORK_Q(ip))
3262 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3263 xfs_inobp_check(mp, bp);
3264
3265 /*
f5d8d5c4
CH
3266 * We've recorded everything logged in the inode, so we'd like to clear
3267 * the ili_fields bits so we don't log and flush things unnecessarily.
3268 * However, we can't stop logging all this information until the data
3269 * we've copied into the disk buffer is written to disk. If we did we
3270 * might overwrite the copy of the inode in the log with all the data
3271 * after re-logging only part of it, and in the face of a crash we
3272 * wouldn't have all the data we need to recover.
1da177e4 3273 *
f5d8d5c4
CH
3274 * What we do is move the bits to the ili_last_fields field. When
3275 * logging the inode, these bits are moved back to the ili_fields field.
3276 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3277 * know that the information those bits represent is permanently on
3278 * disk. As long as the flush completes before the inode is logged
3279 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3280 *
f5d8d5c4
CH
3281 * We can play with the ili_fields bits here, because the inode lock
3282 * must be held exclusively in order to set bits there and the flush
3283 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3284 * done routine can tell whether or not to look in the AIL. Also, store
3285 * the current LSN of the inode so that we can tell whether the item has
3286 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3287 * need the AIL lock, because it is a 64 bit value that cannot be read
3288 * atomically.
1da177e4 3289 */
93848a99
CH
3290 iip->ili_last_fields = iip->ili_fields;
3291 iip->ili_fields = 0;
3292 iip->ili_logged = 1;
1da177e4 3293
93848a99
CH
3294 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3295 &iip->ili_item.li_lsn);
1da177e4 3296
93848a99
CH
3297 /*
3298 * Attach the function xfs_iflush_done to the inode's
3299 * buffer. This will remove the inode from the AIL
3300 * and unlock the inode's flush lock when the inode is
3301 * completely written to disk.
3302 */
3303 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3304
93848a99
CH
3305 /* update the lsn in the on disk inode if required */
3306 if (ip->i_d.di_version == 3)
3307 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3308
3309 /* generate the checksum. */
3310 xfs_dinode_calc_crc(mp, dip);
1da177e4 3311
93848a99
CH
3312 ASSERT(bp->b_fspriv != NULL);
3313 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3314 return 0;
3315
3316corrupt_out:
3317 return XFS_ERROR(EFSCORRUPTED);
3318}
This page took 0.760538 seconds and 5 git commands to generate.