[XFS] call common xfs vnode-level helpers directly and remove vnode operations
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451
NS
23#include "xfs_inum.h"
24#include "xfs_imap.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4
LT
29#include "xfs_dir2.h"
30#include "xfs_dmapi.h"
31#include "xfs_mount.h"
1da177e4 32#include "xfs_bmap_btree.h"
a844f451 33#include "xfs_alloc_btree.h"
1da177e4 34#include "xfs_ialloc_btree.h"
1da177e4 35#include "xfs_dir2_sf.h"
a844f451 36#include "xfs_attr_sf.h"
1da177e4 37#include "xfs_dinode.h"
1da177e4 38#include "xfs_inode.h"
1da177e4 39#include "xfs_buf_item.h"
a844f451
NS
40#include "xfs_inode_item.h"
41#include "xfs_btree.h"
42#include "xfs_alloc.h"
43#include "xfs_ialloc.h"
44#include "xfs_bmap.h"
1da177e4
LT
45#include "xfs_rw.h"
46#include "xfs_error.h"
1da177e4
LT
47#include "xfs_utils.h"
48#include "xfs_dir2_trace.h"
49#include "xfs_quota.h"
1da177e4 50#include "xfs_acl.h"
2a82b8be 51#include "xfs_filestream.h"
739bfb2a 52#include "xfs_vnodeops.h"
1da177e4 53
1da177e4
LT
54kmem_zone_t *xfs_ifork_zone;
55kmem_zone_t *xfs_inode_zone;
da353b0d 56kmem_zone_t *xfs_icluster_zone;
1da177e4
LT
57
58/*
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
61 */
62#define XFS_ITRUNC_MAX_EXTENTS 2
63
64STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68
1da177e4
LT
69#ifdef DEBUG
70/*
71 * Make sure that the extents in the given memory buffer
72 * are valid.
73 */
74STATIC void
75xfs_validate_extents(
4eea22f0 76 xfs_ifork_t *ifp,
1da177e4 77 int nrecs,
1da177e4
LT
78 xfs_exntfmt_t fmt)
79{
80 xfs_bmbt_irec_t irec;
a6f64d4a 81 xfs_bmbt_rec_host_t rec;
1da177e4
LT
82 int i;
83
84 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
91 }
92}
93#else /* DEBUG */
a6f64d4a 94#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
95#endif /* DEBUG */
96
97/*
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
100 */
101#if defined(DEBUG)
102void
103xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
106{
107 int i;
108 int j;
109 xfs_dinode_t *dip;
110
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
121 }
122 }
123}
124#endif
125
1da177e4
LT
126/*
127 * This routine is called to map an inode number within a file
128 * system to the buffer containing the on-disk version of the
129 * inode. It returns a pointer to the buffer containing the
130 * on-disk inode in the bpp parameter, and in the dip parameter
131 * it returns a pointer to the on-disk inode within that buffer.
132 *
133 * If a non-zero error is returned, then the contents of bpp and
134 * dipp are undefined.
135 *
136 * Use xfs_imap() to determine the size and location of the
137 * buffer to read from disk.
138 */
ba0f32d4 139STATIC int
1da177e4
LT
140xfs_inotobp(
141 xfs_mount_t *mp,
142 xfs_trans_t *tp,
143 xfs_ino_t ino,
144 xfs_dinode_t **dipp,
145 xfs_buf_t **bpp,
146 int *offset)
147{
148 int di_ok;
149 xfs_imap_t imap;
150 xfs_buf_t *bp;
151 int error;
152 xfs_dinode_t *dip;
153
154 /*
c41564b5 155 * Call the space management code to find the location of the
1da177e4
LT
156 * inode on disk.
157 */
158 imap.im_blkno = 0;
159 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
160 if (error != 0) {
161 cmn_err(CE_WARN,
162 "xfs_inotobp: xfs_imap() returned an "
163 "error %d on %s. Returning error.", error, mp->m_fsname);
164 return error;
165 }
166
167 /*
168 * If the inode number maps to a block outside the bounds of the
169 * file system then return NULL rather than calling read_buf
170 * and panicing when we get an error from the driver.
171 */
172 if ((imap.im_blkno + imap.im_len) >
173 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
174 cmn_err(CE_WARN,
da1650a5 175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
1da177e4 176 "of the file system %s. Returning EINVAL.",
da1650a5
CH
177 (unsigned long long)imap.im_blkno,
178 imap.im_len, mp->m_fsname);
1da177e4
LT
179 return XFS_ERROR(EINVAL);
180 }
181
182 /*
183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
184 * default to just a read_buf() call.
185 */
186 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 (int)imap.im_len, XFS_BUF_LOCK, &bp);
188
189 if (error) {
190 cmn_err(CE_WARN,
191 "xfs_inotobp: xfs_trans_read_buf() returned an "
192 "error %d on %s. Returning error.", error, mp->m_fsname);
193 return error;
194 }
195 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
196 di_ok =
347d1c01
CH
197 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
1da177e4
LT
199 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 XFS_RANDOM_ITOBP_INOTOBP))) {
201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 xfs_trans_brelse(tp, bp);
203 cmn_err(CE_WARN,
204 "xfs_inotobp: XFS_TEST_ERROR() returned an "
205 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
206 return XFS_ERROR(EFSCORRUPTED);
207 }
208
209 xfs_inobp_check(mp, bp);
210
211 /*
212 * Set *dipp to point to the on-disk inode in the buffer.
213 */
214 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
215 *bpp = bp;
216 *offset = imap.im_boffset;
217 return 0;
218}
219
220
221/*
222 * This routine is called to map an inode to the buffer containing
223 * the on-disk version of the inode. It returns a pointer to the
224 * buffer containing the on-disk inode in the bpp parameter, and in
225 * the dip parameter it returns a pointer to the on-disk inode within
226 * that buffer.
227 *
228 * If a non-zero error is returned, then the contents of bpp and
229 * dipp are undefined.
230 *
231 * If the inode is new and has not yet been initialized, use xfs_imap()
232 * to determine the size and location of the buffer to read from disk.
233 * If the inode has already been mapped to its buffer and read in once,
234 * then use the mapping information stored in the inode rather than
235 * calling xfs_imap(). This allows us to avoid the overhead of looking
236 * at the inode btree for small block file systems (see xfs_dilocate()).
237 * We can tell whether the inode has been mapped in before by comparing
238 * its disk block address to 0. Only uninitialized inodes will have
239 * 0 for the disk block address.
240 */
241int
242xfs_itobp(
243 xfs_mount_t *mp,
244 xfs_trans_t *tp,
245 xfs_inode_t *ip,
246 xfs_dinode_t **dipp,
247 xfs_buf_t **bpp,
b12dd342
NS
248 xfs_daddr_t bno,
249 uint imap_flags)
1da177e4 250{
4d1a2ed3 251 xfs_imap_t imap;
1da177e4
LT
252 xfs_buf_t *bp;
253 int error;
1da177e4
LT
254 int i;
255 int ni;
1da177e4
LT
256
257 if (ip->i_blkno == (xfs_daddr_t)0) {
258 /*
259 * Call the space management code to find the location of the
260 * inode on disk.
261 */
262 imap.im_blkno = bno;
b12dd342
NS
263 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 XFS_IMAP_LOOKUP | imap_flags)))
1da177e4 265 return error;
1da177e4
LT
266
267 /*
268 * If the inode number maps to a block outside the bounds
269 * of the file system then return NULL rather than calling
270 * read_buf and panicing when we get an error from the
271 * driver.
272 */
273 if ((imap.im_blkno + imap.im_len) >
274 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
275#ifdef DEBUG
276 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 "(imap.im_blkno (0x%llx) "
278 "+ imap.im_len (0x%llx)) > "
279 " XFS_FSB_TO_BB(mp, "
280 "mp->m_sb.sb_dblocks) (0x%llx)",
281 (unsigned long long) imap.im_blkno,
282 (unsigned long long) imap.im_len,
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
284#endif /* DEBUG */
285 return XFS_ERROR(EINVAL);
286 }
287
288 /*
289 * Fill in the fields in the inode that will be used to
290 * map the inode to its buffer from now on.
291 */
292 ip->i_blkno = imap.im_blkno;
293 ip->i_len = imap.im_len;
294 ip->i_boffset = imap.im_boffset;
295 } else {
296 /*
297 * We've already mapped the inode once, so just use the
298 * mapping that we saved the first time.
299 */
300 imap.im_blkno = ip->i_blkno;
301 imap.im_len = ip->i_len;
302 imap.im_boffset = ip->i_boffset;
303 }
304 ASSERT(bno == 0 || bno == imap.im_blkno);
305
306 /*
307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
308 * default to just a read_buf() call.
309 */
310 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 (int)imap.im_len, XFS_BUF_LOCK, &bp);
1da177e4
LT
312 if (error) {
313#ifdef DEBUG
314 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 "xfs_trans_read_buf() returned error %d, "
316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 error, (unsigned long long) imap.im_blkno,
318 (unsigned long long) imap.im_len);
319#endif /* DEBUG */
320 return error;
321 }
4d1a2ed3 322
1da177e4
LT
323 /*
324 * Validate the magic number and version of every inode in the buffer
325 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
4d1a2ed3 326 * No validation is done here in userspace (xfs_repair).
1da177e4 327 */
4d1a2ed3
NS
328#if !defined(__KERNEL__)
329 ni = 0;
330#elif defined(DEBUG)
41ff715a 331 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
4d1a2ed3 332#else /* usual case */
41ff715a 333 ni = 1;
1da177e4 334#endif
4d1a2ed3 335
1da177e4
LT
336 for (i = 0; i < ni; i++) {
337 int di_ok;
338 xfs_dinode_t *dip;
339
340 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 (i << mp->m_sb.sb_inodelog));
347d1c01
CH
342 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
41ff715a
NS
344 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 XFS_ERRTAG_ITOBP_INOTOBP,
346 XFS_RANDOM_ITOBP_INOTOBP))) {
347 if (imap_flags & XFS_IMAP_BULKSTAT) {
348 xfs_trans_brelse(tp, bp);
349 return XFS_ERROR(EINVAL);
350 }
1da177e4 351#ifdef DEBUG
41ff715a 352 cmn_err(CE_ALERT,
4d1a2ed3
NS
353 "Device %s - bad inode magic/vsn "
354 "daddr %lld #%d (magic=%x)",
b6574520 355 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1da177e4 356 (unsigned long long)imap.im_blkno, i,
347d1c01 357 be16_to_cpu(dip->di_core.di_magic));
1da177e4
LT
358#endif
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 mp, dip);
361 xfs_trans_brelse(tp, bp);
362 return XFS_ERROR(EFSCORRUPTED);
363 }
364 }
1da177e4
LT
365
366 xfs_inobp_check(mp, bp);
367
368 /*
369 * Mark the buffer as an inode buffer now that it looks good
370 */
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
372
373 /*
374 * Set *dipp to point to the on-disk inode in the buffer.
375 */
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 *bpp = bp;
378 return 0;
379}
380
381/*
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
389 */
390STATIC int
391xfs_iformat(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip)
394{
395 xfs_attr_shortform_t *atp;
396 int size;
397 int error;
398 xfs_fsize_t di_size;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 error = 0;
402
347d1c01
CH
403 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 be16_to_cpu(dip->di_core.di_anextents) >
405 be64_to_cpu(dip->di_core.di_nblocks))) {
3762ec6b
NS
406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 408 (unsigned long long)ip->i_ino,
347d1c01
CH
409 (int)(be32_to_cpu(dip->di_core.di_nextents) +
410 be16_to_cpu(dip->di_core.di_anextents)),
1da177e4 411 (unsigned long long)
347d1c01 412 be64_to_cpu(dip->di_core.di_nblocks));
1da177e4
LT
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 ip->i_mount, dip);
415 return XFS_ERROR(EFSCORRUPTED);
416 }
417
347d1c01 418 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 421 (unsigned long long)ip->i_ino,
347d1c01 422 dip->di_core.di_forkoff);
1da177e4
LT
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 ip->i_mount, dip);
425 return XFS_ERROR(EFSCORRUPTED);
426 }
427
428 switch (ip->i_d.di_mode & S_IFMT) {
429 case S_IFIFO:
430 case S_IFCHR:
431 case S_IFBLK:
432 case S_IFSOCK:
347d1c01 433 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
437 }
438 ip->i_d.di_size = 0;
ba87ea69 439 ip->i_size = 0;
347d1c01 440 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
1da177e4
LT
441 break;
442
443 case S_IFREG:
444 case S_IFLNK:
445 case S_IFDIR:
347d1c01 446 switch (dip->di_core.di_format) {
1da177e4
LT
447 case XFS_DINODE_FMT_LOCAL:
448 /*
449 * no local regular files yet
450 */
347d1c01 451 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 "corrupt inode %Lu "
454 "(local format for regular file).",
1da177e4
LT
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 XFS_ERRLEVEL_LOW,
458 ip->i_mount, dip);
459 return XFS_ERROR(EFSCORRUPTED);
460 }
461
347d1c01 462 di_size = be64_to_cpu(dip->di_core.di_size);
1da177e4 463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 "corrupt inode %Lu "
466 "(bad size %Ld for local inode).",
1da177e4
LT
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
473 }
474
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
488 }
489 break;
490
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
494 }
495 if (error) {
496 return error;
497 }
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
347d1c01 504 switch (dip->di_core.di_aformat) {
1da177e4
LT
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 507 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
519 }
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
524 }
525 return error;
526}
527
528/*
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
537 */
538STATIC int
539xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
544{
545 xfs_ifork_t *ifp;
546 int real_size;
547
548 /*
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
552 */
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu "
556 "(bad size %d for local fork, size = %d).",
1da177e4
LT
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 ip->i_mount, dip);
561 return XFS_ERROR(EFSCORRUPTED);
562 }
563 ifp = XFS_IFORK_PTR(ip, whichfork);
564 real_size = 0;
565 if (size == 0)
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 else {
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
572 }
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
575 if (size)
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
579 return 0;
580}
581
582/*
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
590 */
591STATIC int
592xfs_iformat_extents(
593 xfs_inode_t *ip,
594 xfs_dinode_t *dip,
595 int whichfork)
596{
a6f64d4a 597 xfs_bmbt_rec_t *dp;
1da177e4
LT
598 xfs_ifork_t *ifp;
599 int nex;
1da177e4
LT
600 int size;
601 int i;
602
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
606
607 /*
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
611 */
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
619 }
620
4eea22f0 621 ifp->if_real_bytes = 0;
1da177e4
LT
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
626 else
627 xfs_iext_add(ifp, 0, nex);
628
1da177e4 629 ifp->if_bytes = size;
1da177e4
LT
630 if (size) {
631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 633 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
cd8b0a97
CH
635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
1da177e4 637 }
3a59c94c 638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
639 if (whichfork != XFS_DATA_FORK ||
640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 if (unlikely(xfs_check_nostate_extents(
4eea22f0 642 ifp, 0, nex))) {
1da177e4
LT
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 XFS_ERRLEVEL_LOW,
645 ip->i_mount);
646 return XFS_ERROR(EFSCORRUPTED);
647 }
648 }
649 ifp->if_flags |= XFS_IFEXTENTS;
650 return 0;
651}
652
653/*
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
660 */
661STATIC int
662xfs_iformat_btree(
663 xfs_inode_t *ip,
664 xfs_dinode_t *dip,
665 int whichfork)
666{
667 xfs_bmdr_block_t *dfp;
668 xfs_ifork_t *ifp;
669 /* REFERENCED */
670 int nrecs;
671 int size;
672
673 ifp = XFS_IFORK_PTR(ip, whichfork);
674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 size = XFS_BMAP_BROOT_SPACE(dfp);
676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
677
678 /*
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
683 * blocks.
684 */
685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs) >
687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 "corrupt inode %Lu (btree).",
1da177e4
LT
691 (unsigned long long) ip->i_ino);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 ip->i_mount);
694 return XFS_ERROR(EFSCORRUPTED);
695 }
696
697 ifp->if_broot_bytes = size;
698 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 ASSERT(ifp->if_broot != NULL);
700 /*
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
703 */
704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 ifp->if_broot, size);
706 ifp->if_flags &= ~XFS_IFEXTENTS;
707 ifp->if_flags |= XFS_IFBROOT;
708
709 return 0;
710}
711
1da177e4 712void
347d1c01
CH
713xfs_dinode_from_disk(
714 xfs_icdinode_t *to,
715 xfs_dinode_core_t *from)
1da177e4 716{
347d1c01
CH
717 to->di_magic = be16_to_cpu(from->di_magic);
718 to->di_mode = be16_to_cpu(from->di_mode);
719 to->di_version = from ->di_version;
720 to->di_format = from->di_format;
721 to->di_onlink = be16_to_cpu(from->di_onlink);
722 to->di_uid = be32_to_cpu(from->di_uid);
723 to->di_gid = be32_to_cpu(from->di_gid);
724 to->di_nlink = be32_to_cpu(from->di_nlink);
725 to->di_projid = be16_to_cpu(from->di_projid);
726 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 to->di_size = be64_to_cpu(from->di_size);
735 to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 to->di_extsize = be32_to_cpu(from->di_extsize);
737 to->di_nextents = be32_to_cpu(from->di_nextents);
738 to->di_anextents = be16_to_cpu(from->di_anextents);
739 to->di_forkoff = from->di_forkoff;
740 to->di_aformat = from->di_aformat;
741 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
742 to->di_dmstate = be16_to_cpu(from->di_dmstate);
743 to->di_flags = be16_to_cpu(from->di_flags);
744 to->di_gen = be32_to_cpu(from->di_gen);
745}
746
747void
748xfs_dinode_to_disk(
749 xfs_dinode_core_t *to,
750 xfs_icdinode_t *from)
751{
752 to->di_magic = cpu_to_be16(from->di_magic);
753 to->di_mode = cpu_to_be16(from->di_mode);
754 to->di_version = from ->di_version;
755 to->di_format = from->di_format;
756 to->di_onlink = cpu_to_be16(from->di_onlink);
757 to->di_uid = cpu_to_be32(from->di_uid);
758 to->di_gid = cpu_to_be32(from->di_gid);
759 to->di_nlink = cpu_to_be32(from->di_nlink);
760 to->di_projid = cpu_to_be16(from->di_projid);
761 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 to->di_size = cpu_to_be64(from->di_size);
770 to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 to->di_extsize = cpu_to_be32(from->di_extsize);
772 to->di_nextents = cpu_to_be32(from->di_nextents);
773 to->di_anextents = cpu_to_be16(from->di_anextents);
774 to->di_forkoff = from->di_forkoff;
775 to->di_aformat = from->di_aformat;
776 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 to->di_flags = cpu_to_be16(from->di_flags);
779 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
780}
781
782STATIC uint
783_xfs_dic2xflags(
1da177e4
LT
784 __uint16_t di_flags)
785{
786 uint flags = 0;
787
788 if (di_flags & XFS_DIFLAG_ANY) {
789 if (di_flags & XFS_DIFLAG_REALTIME)
790 flags |= XFS_XFLAG_REALTIME;
791 if (di_flags & XFS_DIFLAG_PREALLOC)
792 flags |= XFS_XFLAG_PREALLOC;
793 if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 flags |= XFS_XFLAG_IMMUTABLE;
795 if (di_flags & XFS_DIFLAG_APPEND)
796 flags |= XFS_XFLAG_APPEND;
797 if (di_flags & XFS_DIFLAG_SYNC)
798 flags |= XFS_XFLAG_SYNC;
799 if (di_flags & XFS_DIFLAG_NOATIME)
800 flags |= XFS_XFLAG_NOATIME;
801 if (di_flags & XFS_DIFLAG_NODUMP)
802 flags |= XFS_XFLAG_NODUMP;
803 if (di_flags & XFS_DIFLAG_RTINHERIT)
804 flags |= XFS_XFLAG_RTINHERIT;
805 if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 flags |= XFS_XFLAG_PROJINHERIT;
807 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
809 if (di_flags & XFS_DIFLAG_EXTSIZE)
810 flags |= XFS_XFLAG_EXTSIZE;
811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
813 if (di_flags & XFS_DIFLAG_NODEFRAG)
814 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
815 if (di_flags & XFS_DIFLAG_FILESTREAM)
816 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
817 }
818
819 return flags;
820}
821
822uint
823xfs_ip2xflags(
824 xfs_inode_t *ip)
825{
347d1c01 826 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 827
a916e2bd
NS
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
830}
831
832uint
833xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
835{
347d1c01 836 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
a916e2bd 837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
838}
839
840/*
841 * Given a mount structure and an inode number, return a pointer
c41564b5 842 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
843 * inode number.
844 *
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
847 */
848int
849xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
745b1f47
NS
854 xfs_daddr_t bno,
855 uint imap_flags)
1da177e4
LT
856{
857 xfs_buf_t *bp;
858 xfs_dinode_t *dip;
859 xfs_inode_t *ip;
860 int error;
861
862 ASSERT(xfs_inode_zone != NULL);
863
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 ip->i_ino = ino;
866 ip->i_mount = mp;
f273ab84 867 spin_lock_init(&ip->i_flags_lock);
1da177e4
LT
868
869 /*
870 * Get pointer's to the on-disk inode and the buffer containing it.
871 * If the inode number refers to a block outside the file system
872 * then xfs_itobp() will return NULL. In this case we should
873 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
874 * know that this is a new incore inode.
875 */
745b1f47 876 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
b12dd342 877 if (error) {
1da177e4
LT
878 kmem_zone_free(xfs_inode_zone, ip);
879 return error;
880 }
881
882 /*
883 * Initialize inode's trace buffers.
884 * Do this before xfs_iformat in case it adds entries.
885 */
886#ifdef XFS_BMAP_TRACE
887 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
888#endif
889#ifdef XFS_BMBT_TRACE
890 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
891#endif
892#ifdef XFS_RW_TRACE
893 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
894#endif
895#ifdef XFS_ILOCK_TRACE
896 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
897#endif
898#ifdef XFS_DIR2_TRACE
899 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
900#endif
901
902 /*
903 * If we got something that isn't an inode it means someone
904 * (nfs or dmi) has a stale handle.
905 */
347d1c01 906 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
1da177e4
LT
907 kmem_zone_free(xfs_inode_zone, ip);
908 xfs_trans_brelse(tp, bp);
909#ifdef DEBUG
910 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
911 "dip->di_core.di_magic (0x%x) != "
912 "XFS_DINODE_MAGIC (0x%x)",
347d1c01 913 be16_to_cpu(dip->di_core.di_magic),
1da177e4
LT
914 XFS_DINODE_MAGIC);
915#endif /* DEBUG */
916 return XFS_ERROR(EINVAL);
917 }
918
919 /*
920 * If the on-disk inode is already linked to a directory
921 * entry, copy all of the inode into the in-core inode.
922 * xfs_iformat() handles copying in the inode format
923 * specific information.
924 * Otherwise, just get the truly permanent information.
925 */
926 if (dip->di_core.di_mode) {
347d1c01 927 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
1da177e4
LT
928 error = xfs_iformat(ip, dip);
929 if (error) {
930 kmem_zone_free(xfs_inode_zone, ip);
931 xfs_trans_brelse(tp, bp);
932#ifdef DEBUG
933 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
934 "xfs_iformat() returned error %d",
935 error);
936#endif /* DEBUG */
937 return error;
938 }
939 } else {
347d1c01
CH
940 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
941 ip->i_d.di_version = dip->di_core.di_version;
942 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
943 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
1da177e4
LT
944 /*
945 * Make sure to pull in the mode here as well in
946 * case the inode is released without being used.
947 * This ensures that xfs_inactive() will see that
948 * the inode is already free and not try to mess
949 * with the uninitialized part of it.
950 */
951 ip->i_d.di_mode = 0;
952 /*
953 * Initialize the per-fork minima and maxima for a new
954 * inode here. xfs_iformat will do it for old inodes.
955 */
956 ip->i_df.if_ext_max =
957 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
958 }
959
960 INIT_LIST_HEAD(&ip->i_reclaim);
961
962 /*
963 * The inode format changed when we moved the link count and
964 * made it 32 bits long. If this is an old format inode,
965 * convert it in memory to look like a new one. If it gets
966 * flushed to disk we will convert back before flushing or
967 * logging it. We zero out the new projid field and the old link
968 * count field. We'll handle clearing the pad field (the remains
969 * of the old uuid field) when we actually convert the inode to
970 * the new format. We don't change the version number so that we
971 * can distinguish this from a real new format inode.
972 */
973 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
974 ip->i_d.di_nlink = ip->i_d.di_onlink;
975 ip->i_d.di_onlink = 0;
976 ip->i_d.di_projid = 0;
977 }
978
979 ip->i_delayed_blks = 0;
ba87ea69 980 ip->i_size = ip->i_d.di_size;
1da177e4
LT
981
982 /*
983 * Mark the buffer containing the inode as something to keep
984 * around for a while. This helps to keep recently accessed
985 * meta-data in-core longer.
986 */
987 XFS_BUF_SET_REF(bp, XFS_INO_REF);
988
989 /*
990 * Use xfs_trans_brelse() to release the buffer containing the
991 * on-disk inode, because it was acquired with xfs_trans_read_buf()
992 * in xfs_itobp() above. If tp is NULL, this is just a normal
993 * brelse(). If we're within a transaction, then xfs_trans_brelse()
994 * will only release the buffer if it is not dirty within the
995 * transaction. It will be OK to release the buffer in this case,
996 * because inodes on disk are never destroyed and we will be
997 * locking the new in-core inode before putting it in the hash
998 * table where other processes can find it. Thus we don't have
999 * to worry about the inode being changed just because we released
1000 * the buffer.
1001 */
1002 xfs_trans_brelse(tp, bp);
1003 *ipp = ip;
1004 return 0;
1005}
1006
1007/*
1008 * Read in extents from a btree-format inode.
1009 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1010 */
1011int
1012xfs_iread_extents(
1013 xfs_trans_t *tp,
1014 xfs_inode_t *ip,
1015 int whichfork)
1016{
1017 int error;
1018 xfs_ifork_t *ifp;
4eea22f0 1019 xfs_extnum_t nextents;
1da177e4
LT
1020 size_t size;
1021
1022 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1023 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1024 ip->i_mount);
1025 return XFS_ERROR(EFSCORRUPTED);
1026 }
4eea22f0
MK
1027 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1028 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1029 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1030
1da177e4
LT
1031 /*
1032 * We know that the size is valid (it's checked in iformat_btree)
1033 */
1da177e4 1034 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1035 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1036 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1037 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1038 error = xfs_bmap_read_extents(tp, ip, whichfork);
1039 if (error) {
4eea22f0 1040 xfs_iext_destroy(ifp);
1da177e4
LT
1041 ifp->if_flags &= ~XFS_IFEXTENTS;
1042 return error;
1043 }
a6f64d4a 1044 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1045 return 0;
1046}
1047
1048/*
1049 * Allocate an inode on disk and return a copy of its in-core version.
1050 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1051 * appropriately within the inode. The uid and gid for the inode are
1052 * set according to the contents of the given cred structure.
1053 *
1054 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1055 * has a free inode available, call xfs_iget()
1056 * to obtain the in-core version of the allocated inode. Finally,
1057 * fill in the inode and log its initial contents. In this case,
1058 * ialloc_context would be set to NULL and call_again set to false.
1059 *
1060 * If xfs_dialloc() does not have an available inode,
1061 * it will replenish its supply by doing an allocation. Since we can
1062 * only do one allocation within a transaction without deadlocks, we
1063 * must commit the current transaction before returning the inode itself.
1064 * In this case, therefore, we will set call_again to true and return.
1065 * The caller should then commit the current transaction, start a new
1066 * transaction, and call xfs_ialloc() again to actually get the inode.
1067 *
1068 * To ensure that some other process does not grab the inode that
1069 * was allocated during the first call to xfs_ialloc(), this routine
1070 * also returns the [locked] bp pointing to the head of the freelist
1071 * as ialloc_context. The caller should hold this buffer across
1072 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1073 *
1074 * If we are allocating quota inodes, we do not have a parent inode
1075 * to attach to or associate with (i.e. pip == NULL) because they
1076 * are not linked into the directory structure - they are attached
1077 * directly to the superblock - and so have no parent.
1da177e4
LT
1078 */
1079int
1080xfs_ialloc(
1081 xfs_trans_t *tp,
1082 xfs_inode_t *pip,
1083 mode_t mode,
31b084ae 1084 xfs_nlink_t nlink,
1da177e4
LT
1085 xfs_dev_t rdev,
1086 cred_t *cr,
1087 xfs_prid_t prid,
1088 int okalloc,
1089 xfs_buf_t **ialloc_context,
1090 boolean_t *call_again,
1091 xfs_inode_t **ipp)
1092{
1093 xfs_ino_t ino;
1094 xfs_inode_t *ip;
67fcaa73 1095 bhv_vnode_t *vp;
1da177e4
LT
1096 uint flags;
1097 int error;
1098
1099 /*
1100 * Call the space management code to pick
1101 * the on-disk inode to be allocated.
1102 */
b11f94d5 1103 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4
LT
1104 ialloc_context, call_again, &ino);
1105 if (error != 0) {
1106 return error;
1107 }
1108 if (*call_again || ino == NULLFSINO) {
1109 *ipp = NULL;
1110 return 0;
1111 }
1112 ASSERT(*ialloc_context == NULL);
1113
1114 /*
1115 * Get the in-core inode with the lock held exclusively.
1116 * This is because we're setting fields here we need
1117 * to prevent others from looking at until we're done.
1118 */
1119 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1120 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1da177e4
LT
1121 if (error != 0) {
1122 return error;
1123 }
1124 ASSERT(ip != NULL);
1125
1126 vp = XFS_ITOV(ip);
1da177e4
LT
1127 ip->i_d.di_mode = (__uint16_t)mode;
1128 ip->i_d.di_onlink = 0;
1129 ip->i_d.di_nlink = nlink;
1130 ASSERT(ip->i_d.di_nlink == nlink);
1131 ip->i_d.di_uid = current_fsuid(cr);
1132 ip->i_d.di_gid = current_fsgid(cr);
1133 ip->i_d.di_projid = prid;
1134 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1135
1136 /*
1137 * If the superblock version is up to where we support new format
1138 * inodes and this is currently an old format inode, then change
1139 * the inode version number now. This way we only do the conversion
1140 * here rather than here and in the flush/logging code.
1141 */
1142 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1143 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1144 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1145 /*
1146 * We've already zeroed the old link count, the projid field,
1147 * and the pad field.
1148 */
1149 }
1150
1151 /*
1152 * Project ids won't be stored on disk if we are using a version 1 inode.
1153 */
2a82b8be 1154 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1da177e4
LT
1155 xfs_bump_ino_vers2(tp, ip);
1156
b11f94d5 1157 if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1da177e4
LT
1158 ip->i_d.di_gid = pip->i_d.di_gid;
1159 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1160 ip->i_d.di_mode |= S_ISGID;
1161 }
1162 }
1163
1164 /*
1165 * If the group ID of the new file does not match the effective group
1166 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1167 * (and only if the irix_sgid_inherit compatibility variable is set).
1168 */
1169 if ((irix_sgid_inherit) &&
1170 (ip->i_d.di_mode & S_ISGID) &&
1171 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1172 ip->i_d.di_mode &= ~S_ISGID;
1173 }
1174
1175 ip->i_d.di_size = 0;
ba87ea69 1176 ip->i_size = 0;
1da177e4
LT
1177 ip->i_d.di_nextents = 0;
1178 ASSERT(ip->i_d.di_nblocks == 0);
1179 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1180 /*
1181 * di_gen will have been taken care of in xfs_iread.
1182 */
1183 ip->i_d.di_extsize = 0;
1184 ip->i_d.di_dmevmask = 0;
1185 ip->i_d.di_dmstate = 0;
1186 ip->i_d.di_flags = 0;
1187 flags = XFS_ILOG_CORE;
1188 switch (mode & S_IFMT) {
1189 case S_IFIFO:
1190 case S_IFCHR:
1191 case S_IFBLK:
1192 case S_IFSOCK:
1193 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1194 ip->i_df.if_u2.if_rdev = rdev;
1195 ip->i_df.if_flags = 0;
1196 flags |= XFS_ILOG_DEV;
1197 break;
1198 case S_IFREG:
b11f94d5 1199 if (pip && xfs_inode_is_filestream(pip)) {
2a82b8be
DC
1200 error = xfs_filestream_associate(pip, ip);
1201 if (error < 0)
1202 return -error;
1203 if (!error)
1204 xfs_iflags_set(ip, XFS_IFILESTREAM);
1205 }
1206 /* fall through */
1da177e4 1207 case S_IFDIR:
b11f94d5 1208 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1209 uint di_flags = 0;
1210
1211 if ((mode & S_IFMT) == S_IFDIR) {
1212 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1213 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1214 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1215 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1216 ip->i_d.di_extsize = pip->i_d.di_extsize;
1217 }
1218 } else if ((mode & S_IFMT) == S_IFREG) {
365ca83d
NS
1219 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1220 di_flags |= XFS_DIFLAG_REALTIME;
1da177e4
LT
1221 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1222 }
dd9f438e
NS
1223 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1224 di_flags |= XFS_DIFLAG_EXTSIZE;
1225 ip->i_d.di_extsize = pip->i_d.di_extsize;
1226 }
1da177e4
LT
1227 }
1228 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1229 xfs_inherit_noatime)
365ca83d 1230 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1231 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1232 xfs_inherit_nodump)
365ca83d 1233 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1234 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1235 xfs_inherit_sync)
365ca83d 1236 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1237 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1238 xfs_inherit_nosymlinks)
365ca83d
NS
1239 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1240 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1241 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1242 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1243 xfs_inherit_nodefrag)
1244 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1245 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1246 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1247 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1248 }
1249 /* FALLTHROUGH */
1250 case S_IFLNK:
1251 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1252 ip->i_df.if_flags = XFS_IFEXTENTS;
1253 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1254 ip->i_df.if_u1.if_extents = NULL;
1255 break;
1256 default:
1257 ASSERT(0);
1258 }
1259 /*
1260 * Attribute fork settings for new inode.
1261 */
1262 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1263 ip->i_d.di_anextents = 0;
1264
1265 /*
1266 * Log the new values stuffed into the inode.
1267 */
1268 xfs_trans_log_inode(tp, ip, flags);
1269
b83bd138 1270 /* now that we have an i_mode we can setup inode ops and unlock */
739bfb2a 1271 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, ip, 1);
1da177e4
LT
1272
1273 *ipp = ip;
1274 return 0;
1275}
1276
1277/*
1278 * Check to make sure that there are no blocks allocated to the
1279 * file beyond the size of the file. We don't check this for
1280 * files with fixed size extents or real time extents, but we
1281 * at least do it for regular files.
1282 */
1283#ifdef DEBUG
1284void
1285xfs_isize_check(
1286 xfs_mount_t *mp,
1287 xfs_inode_t *ip,
1288 xfs_fsize_t isize)
1289{
1290 xfs_fileoff_t map_first;
1291 int nimaps;
1292 xfs_bmbt_irec_t imaps[2];
1293
1294 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1295 return;
1296
dd9f438e 1297 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1da177e4
LT
1298 return;
1299
1300 nimaps = 2;
1301 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1302 /*
1303 * The filesystem could be shutting down, so bmapi may return
1304 * an error.
1305 */
1306 if (xfs_bmapi(NULL, ip, map_first,
1307 (XFS_B_TO_FSB(mp,
1308 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1309 map_first),
1310 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1311 NULL, NULL))
1da177e4
LT
1312 return;
1313 ASSERT(nimaps == 1);
1314 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1315}
1316#endif /* DEBUG */
1317
1318/*
1319 * Calculate the last possible buffered byte in a file. This must
1320 * include data that was buffered beyond the EOF by the write code.
1321 * This also needs to deal with overflowing the xfs_fsize_t type
1322 * which can happen for sizes near the limit.
1323 *
1324 * We also need to take into account any blocks beyond the EOF. It
1325 * may be the case that they were buffered by a write which failed.
1326 * In that case the pages will still be in memory, but the inode size
1327 * will never have been updated.
1328 */
1329xfs_fsize_t
1330xfs_file_last_byte(
1331 xfs_inode_t *ip)
1332{
1333 xfs_mount_t *mp;
1334 xfs_fsize_t last_byte;
1335 xfs_fileoff_t last_block;
1336 xfs_fileoff_t size_last_block;
1337 int error;
1338
1339 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1340
1341 mp = ip->i_mount;
1342 /*
1343 * Only check for blocks beyond the EOF if the extents have
1344 * been read in. This eliminates the need for the inode lock,
1345 * and it also saves us from looking when it really isn't
1346 * necessary.
1347 */
1348 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1349 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1350 XFS_DATA_FORK);
1351 if (error) {
1352 last_block = 0;
1353 }
1354 } else {
1355 last_block = 0;
1356 }
ba87ea69 1357 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1358 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1359
1360 last_byte = XFS_FSB_TO_B(mp, last_block);
1361 if (last_byte < 0) {
1362 return XFS_MAXIOFFSET(mp);
1363 }
1364 last_byte += (1 << mp->m_writeio_log);
1365 if (last_byte < 0) {
1366 return XFS_MAXIOFFSET(mp);
1367 }
1368 return last_byte;
1369}
1370
1371#if defined(XFS_RW_TRACE)
1372STATIC void
1373xfs_itrunc_trace(
1374 int tag,
1375 xfs_inode_t *ip,
1376 int flag,
1377 xfs_fsize_t new_size,
1378 xfs_off_t toss_start,
1379 xfs_off_t toss_finish)
1380{
1381 if (ip->i_rwtrace == NULL) {
1382 return;
1383 }
1384
1385 ktrace_enter(ip->i_rwtrace,
1386 (void*)((long)tag),
1387 (void*)ip,
1388 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1389 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1390 (void*)((long)flag),
1391 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1392 (void*)(unsigned long)(new_size & 0xffffffff),
1393 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1394 (void*)(unsigned long)(toss_start & 0xffffffff),
1395 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1396 (void*)(unsigned long)(toss_finish & 0xffffffff),
1397 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1398 (void*)(unsigned long)current_pid(),
1399 (void*)NULL,
1400 (void*)NULL,
1401 (void*)NULL);
1da177e4
LT
1402}
1403#else
1404#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1405#endif
1406
1407/*
1408 * Start the truncation of the file to new_size. The new size
1409 * must be smaller than the current size. This routine will
1410 * clear the buffer and page caches of file data in the removed
1411 * range, and xfs_itruncate_finish() will remove the underlying
1412 * disk blocks.
1413 *
1414 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1415 * must NOT have the inode lock held at all. This is because we're
1416 * calling into the buffer/page cache code and we can't hold the
1417 * inode lock when we do so.
1418 *
38e2299a
DC
1419 * We need to wait for any direct I/Os in flight to complete before we
1420 * proceed with the truncate. This is needed to prevent the extents
1421 * being read or written by the direct I/Os from being removed while the
1422 * I/O is in flight as there is no other method of synchronising
1423 * direct I/O with the truncate operation. Also, because we hold
1424 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1425 * started until the truncate completes and drops the lock. Essentially,
1426 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1427 * between direct I/Os and the truncate operation.
1428 *
1da177e4
LT
1429 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1430 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1431 * in the case that the caller is locking things out of order and
1432 * may not be able to call xfs_itruncate_finish() with the inode lock
1433 * held without dropping the I/O lock. If the caller must drop the
1434 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1435 * must be called again with all the same restrictions as the initial
1436 * call.
1437 */
d3cf2094 1438int
1da177e4
LT
1439xfs_itruncate_start(
1440 xfs_inode_t *ip,
1441 uint flags,
1442 xfs_fsize_t new_size)
1443{
1444 xfs_fsize_t last_byte;
1445 xfs_off_t toss_start;
1446 xfs_mount_t *mp;
67fcaa73 1447 bhv_vnode_t *vp;
d3cf2094 1448 int error = 0;
1da177e4
LT
1449
1450 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
ba87ea69 1451 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1452 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1453 (flags == XFS_ITRUNC_MAYBE));
1454
1455 mp = ip->i_mount;
1456 vp = XFS_ITOV(ip);
9fa8046f
YL
1457
1458 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1459
1da177e4 1460 /*
67fcaa73 1461 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1462 * overlapping the region being removed. We have to use
67fcaa73 1463 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1464 * caller may not be able to finish the truncate without
1465 * dropping the inode's I/O lock. Make sure
1466 * to catch any pages brought in by buffers overlapping
1467 * the EOF by searching out beyond the isize by our
1468 * block size. We round new_size up to a block boundary
1469 * so that we don't toss things on the same block as
1470 * new_size but before it.
1471 *
67fcaa73 1472 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1473 * call remapf() over the same region if the file is mapped.
1474 * This frees up mapped file references to the pages in the
67fcaa73 1475 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1476 * that we get the latest mapped changes flushed out.
1477 */
1478 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1479 toss_start = XFS_FSB_TO_B(mp, toss_start);
1480 if (toss_start < 0) {
1481 /*
1482 * The place to start tossing is beyond our maximum
1483 * file size, so there is no way that the data extended
1484 * out there.
1485 */
d3cf2094 1486 return 0;
1da177e4
LT
1487 }
1488 last_byte = xfs_file_last_byte(ip);
1489 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1490 last_byte);
1491 if (last_byte > toss_start) {
1492 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1493 xfs_tosspages(ip, toss_start,
1494 -1, FI_REMAPF_LOCKED);
1da177e4 1495 } else {
739bfb2a
CH
1496 error = xfs_flushinval_pages(ip, toss_start,
1497 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1498 }
1499 }
1500
1501#ifdef DEBUG
1502 if (new_size == 0) {
1503 ASSERT(VN_CACHED(vp) == 0);
1504 }
1505#endif
d3cf2094 1506 return error;
1da177e4
LT
1507}
1508
1509/*
1510 * Shrink the file to the given new_size. The new
1511 * size must be smaller than the current size.
1512 * This will free up the underlying blocks
1513 * in the removed range after a call to xfs_itruncate_start()
1514 * or xfs_atruncate_start().
1515 *
1516 * The transaction passed to this routine must have made
1517 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1518 * This routine may commit the given transaction and
1519 * start new ones, so make sure everything involved in
1520 * the transaction is tidy before calling here.
1521 * Some transaction will be returned to the caller to be
1522 * committed. The incoming transaction must already include
1523 * the inode, and both inode locks must be held exclusively.
1524 * The inode must also be "held" within the transaction. On
1525 * return the inode will be "held" within the returned transaction.
1526 * This routine does NOT require any disk space to be reserved
1527 * for it within the transaction.
1528 *
1529 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1530 * and it indicates the fork which is to be truncated. For the
1531 * attribute fork we only support truncation to size 0.
1532 *
1533 * We use the sync parameter to indicate whether or not the first
1534 * transaction we perform might have to be synchronous. For the attr fork,
1535 * it needs to be so if the unlink of the inode is not yet known to be
1536 * permanent in the log. This keeps us from freeing and reusing the
1537 * blocks of the attribute fork before the unlink of the inode becomes
1538 * permanent.
1539 *
1540 * For the data fork, we normally have to run synchronously if we're
1541 * being called out of the inactive path or we're being called
1542 * out of the create path where we're truncating an existing file.
1543 * Either way, the truncate needs to be sync so blocks don't reappear
1544 * in the file with altered data in case of a crash. wsync filesystems
1545 * can run the first case async because anything that shrinks the inode
1546 * has to run sync so by the time we're called here from inactive, the
1547 * inode size is permanently set to 0.
1548 *
1549 * Calls from the truncate path always need to be sync unless we're
1550 * in a wsync filesystem and the file has already been unlinked.
1551 *
1552 * The caller is responsible for correctly setting the sync parameter.
1553 * It gets too hard for us to guess here which path we're being called
1554 * out of just based on inode state.
1555 */
1556int
1557xfs_itruncate_finish(
1558 xfs_trans_t **tp,
1559 xfs_inode_t *ip,
1560 xfs_fsize_t new_size,
1561 int fork,
1562 int sync)
1563{
1564 xfs_fsblock_t first_block;
1565 xfs_fileoff_t first_unmap_block;
1566 xfs_fileoff_t last_block;
1567 xfs_filblks_t unmap_len=0;
1568 xfs_mount_t *mp;
1569 xfs_trans_t *ntp;
1570 int done;
1571 int committed;
1572 xfs_bmap_free_t free_list;
1573 int error;
1574
1575 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1576 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
ba87ea69 1577 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1578 ASSERT(*tp != NULL);
1579 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1580 ASSERT(ip->i_transp == *tp);
1581 ASSERT(ip->i_itemp != NULL);
1582 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1583
1584
1585 ntp = *tp;
1586 mp = (ntp)->t_mountp;
1587 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1588
1589 /*
1590 * We only support truncating the entire attribute fork.
1591 */
1592 if (fork == XFS_ATTR_FORK) {
1593 new_size = 0LL;
1594 }
1595 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1596 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1597 /*
1598 * The first thing we do is set the size to new_size permanently
1599 * on disk. This way we don't have to worry about anyone ever
1600 * being able to look at the data being freed even in the face
1601 * of a crash. What we're getting around here is the case where
1602 * we free a block, it is allocated to another file, it is written
1603 * to, and then we crash. If the new data gets written to the
1604 * file but the log buffers containing the free and reallocation
1605 * don't, then we'd end up with garbage in the blocks being freed.
1606 * As long as we make the new_size permanent before actually
1607 * freeing any blocks it doesn't matter if they get writtten to.
1608 *
1609 * The callers must signal into us whether or not the size
1610 * setting here must be synchronous. There are a few cases
1611 * where it doesn't have to be synchronous. Those cases
1612 * occur if the file is unlinked and we know the unlink is
1613 * permanent or if the blocks being truncated are guaranteed
1614 * to be beyond the inode eof (regardless of the link count)
1615 * and the eof value is permanent. Both of these cases occur
1616 * only on wsync-mounted filesystems. In those cases, we're
1617 * guaranteed that no user will ever see the data in the blocks
1618 * that are being truncated so the truncate can run async.
1619 * In the free beyond eof case, the file may wind up with
1620 * more blocks allocated to it than it needs if we crash
1621 * and that won't get fixed until the next time the file
1622 * is re-opened and closed but that's ok as that shouldn't
1623 * be too many blocks.
1624 *
1625 * However, we can't just make all wsync xactions run async
1626 * because there's one call out of the create path that needs
1627 * to run sync where it's truncating an existing file to size
1628 * 0 whose size is > 0.
1629 *
1630 * It's probably possible to come up with a test in this
1631 * routine that would correctly distinguish all the above
1632 * cases from the values of the function parameters and the
1633 * inode state but for sanity's sake, I've decided to let the
1634 * layers above just tell us. It's simpler to correctly figure
1635 * out in the layer above exactly under what conditions we
1636 * can run async and I think it's easier for others read and
1637 * follow the logic in case something has to be changed.
1638 * cscope is your friend -- rcc.
1639 *
1640 * The attribute fork is much simpler.
1641 *
1642 * For the attribute fork we allow the caller to tell us whether
1643 * the unlink of the inode that led to this call is yet permanent
1644 * in the on disk log. If it is not and we will be freeing extents
1645 * in this inode then we make the first transaction synchronous
1646 * to make sure that the unlink is permanent by the time we free
1647 * the blocks.
1648 */
1649 if (fork == XFS_DATA_FORK) {
1650 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1651 /*
1652 * If we are not changing the file size then do
1653 * not update the on-disk file size - we may be
1654 * called from xfs_inactive_free_eofblocks(). If we
1655 * update the on-disk file size and then the system
1656 * crashes before the contents of the file are
1657 * flushed to disk then the files may be full of
1658 * holes (ie NULL files bug).
1659 */
1660 if (ip->i_size != new_size) {
1661 ip->i_d.di_size = new_size;
1662 ip->i_size = new_size;
1663 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1664 }
1da177e4
LT
1665 }
1666 } else if (sync) {
1667 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1668 if (ip->i_d.di_anextents > 0)
1669 xfs_trans_set_sync(ntp);
1670 }
1671 ASSERT(fork == XFS_DATA_FORK ||
1672 (fork == XFS_ATTR_FORK &&
1673 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1674 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1675
1676 /*
1677 * Since it is possible for space to become allocated beyond
1678 * the end of the file (in a crash where the space is allocated
1679 * but the inode size is not yet updated), simply remove any
1680 * blocks which show up between the new EOF and the maximum
1681 * possible file size. If the first block to be removed is
1682 * beyond the maximum file size (ie it is the same as last_block),
1683 * then there is nothing to do.
1684 */
1685 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1686 ASSERT(first_unmap_block <= last_block);
1687 done = 0;
1688 if (last_block == first_unmap_block) {
1689 done = 1;
1690 } else {
1691 unmap_len = last_block - first_unmap_block + 1;
1692 }
1693 while (!done) {
1694 /*
1695 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1696 * will tell us whether it freed the entire range or
1697 * not. If this is a synchronous mount (wsync),
1698 * then we can tell bunmapi to keep all the
1699 * transactions asynchronous since the unlink
1700 * transaction that made this inode inactive has
1701 * already hit the disk. There's no danger of
1702 * the freed blocks being reused, there being a
1703 * crash, and the reused blocks suddenly reappearing
1704 * in this file with garbage in them once recovery
1705 * runs.
1706 */
1707 XFS_BMAP_INIT(&free_list, &first_block);
3e57ecf6
OW
1708 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1709 first_unmap_block, unmap_len,
1da177e4
LT
1710 XFS_BMAPI_AFLAG(fork) |
1711 (sync ? 0 : XFS_BMAPI_ASYNC),
1712 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1713 &first_block, &free_list,
1714 NULL, &done);
1da177e4
LT
1715 if (error) {
1716 /*
1717 * If the bunmapi call encounters an error,
1718 * return to the caller where the transaction
1719 * can be properly aborted. We just need to
1720 * make sure we're not holding any resources
1721 * that we were not when we came in.
1722 */
1723 xfs_bmap_cancel(&free_list);
1724 return error;
1725 }
1726
1727 /*
1728 * Duplicate the transaction that has the permanent
1729 * reservation and commit the old transaction.
1730 */
f7c99b6f 1731 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4
LT
1732 ntp = *tp;
1733 if (error) {
1734 /*
1735 * If the bmap finish call encounters an error,
1736 * return to the caller where the transaction
1737 * can be properly aborted. We just need to
1738 * make sure we're not holding any resources
1739 * that we were not when we came in.
1740 *
1741 * Aborting from this point might lose some
1742 * blocks in the file system, but oh well.
1743 */
1744 xfs_bmap_cancel(&free_list);
1745 if (committed) {
1746 /*
1747 * If the passed in transaction committed
1748 * in xfs_bmap_finish(), then we want to
1749 * add the inode to this one before returning.
1750 * This keeps things simple for the higher
1751 * level code, because it always knows that
1752 * the inode is locked and held in the
1753 * transaction that returns to it whether
1754 * errors occur or not. We don't mark the
1755 * inode dirty so that this transaction can
1756 * be easily aborted if possible.
1757 */
1758 xfs_trans_ijoin(ntp, ip,
1759 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1760 xfs_trans_ihold(ntp, ip);
1761 }
1762 return error;
1763 }
1764
1765 if (committed) {
1766 /*
1767 * The first xact was committed,
1768 * so add the inode to the new one.
1769 * Mark it dirty so it will be logged
1770 * and moved forward in the log as
1771 * part of every commit.
1772 */
1773 xfs_trans_ijoin(ntp, ip,
1774 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1775 xfs_trans_ihold(ntp, ip);
1776 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1777 }
1778 ntp = xfs_trans_dup(ntp);
1c72bf90 1779 (void) xfs_trans_commit(*tp, 0);
1da177e4
LT
1780 *tp = ntp;
1781 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1782 XFS_TRANS_PERM_LOG_RES,
1783 XFS_ITRUNCATE_LOG_COUNT);
1784 /*
1785 * Add the inode being truncated to the next chained
1786 * transaction.
1787 */
1788 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1789 xfs_trans_ihold(ntp, ip);
1790 if (error)
1791 return (error);
1792 }
1793 /*
1794 * Only update the size in the case of the data fork, but
1795 * always re-log the inode so that our permanent transaction
1796 * can keep on rolling it forward in the log.
1797 */
1798 if (fork == XFS_DATA_FORK) {
1799 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1800 /*
1801 * If we are not changing the file size then do
1802 * not update the on-disk file size - we may be
1803 * called from xfs_inactive_free_eofblocks(). If we
1804 * update the on-disk file size and then the system
1805 * crashes before the contents of the file are
1806 * flushed to disk then the files may be full of
1807 * holes (ie NULL files bug).
1808 */
1809 if (ip->i_size != new_size) {
1810 ip->i_d.di_size = new_size;
1811 ip->i_size = new_size;
1812 }
1da177e4
LT
1813 }
1814 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1815 ASSERT((new_size != 0) ||
1816 (fork == XFS_ATTR_FORK) ||
1817 (ip->i_delayed_blks == 0));
1818 ASSERT((new_size != 0) ||
1819 (fork == XFS_ATTR_FORK) ||
1820 (ip->i_d.di_nextents == 0));
1821 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1822 return 0;
1823}
1824
1825
1826/*
1827 * xfs_igrow_start
1828 *
1829 * Do the first part of growing a file: zero any data in the last
1830 * block that is beyond the old EOF. We need to do this before
1831 * the inode is joined to the transaction to modify the i_size.
1832 * That way we can drop the inode lock and call into the buffer
1833 * cache to get the buffer mapping the EOF.
1834 */
1835int
1836xfs_igrow_start(
1837 xfs_inode_t *ip,
1838 xfs_fsize_t new_size,
1839 cred_t *credp)
1840{
1da177e4
LT
1841 int error;
1842
1843 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1844 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
ba87ea69 1845 ASSERT(new_size > ip->i_size);
1da177e4 1846
1da177e4
LT
1847 /*
1848 * Zero any pages that may have been created by
1849 * xfs_write_file() beyond the end of the file
1850 * and any blocks between the old and new file sizes.
1851 */
24ee8088 1852 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
ba87ea69 1853 ip->i_size);
1da177e4
LT
1854 return error;
1855}
1856
1857/*
1858 * xfs_igrow_finish
1859 *
1860 * This routine is called to extend the size of a file.
1861 * The inode must have both the iolock and the ilock locked
1862 * for update and it must be a part of the current transaction.
1863 * The xfs_igrow_start() function must have been called previously.
1864 * If the change_flag is not zero, the inode change timestamp will
1865 * be updated.
1866 */
1867void
1868xfs_igrow_finish(
1869 xfs_trans_t *tp,
1870 xfs_inode_t *ip,
1871 xfs_fsize_t new_size,
1872 int change_flag)
1873{
1874 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1875 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1876 ASSERT(ip->i_transp == tp);
ba87ea69 1877 ASSERT(new_size > ip->i_size);
1da177e4
LT
1878
1879 /*
1880 * Update the file size. Update the inode change timestamp
1881 * if change_flag set.
1882 */
1883 ip->i_d.di_size = new_size;
ba87ea69 1884 ip->i_size = new_size;
1da177e4
LT
1885 if (change_flag)
1886 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1887 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1888
1889}
1890
1891
1892/*
1893 * This is called when the inode's link count goes to 0.
1894 * We place the on-disk inode on a list in the AGI. It
1895 * will be pulled from this list when the inode is freed.
1896 */
1897int
1898xfs_iunlink(
1899 xfs_trans_t *tp,
1900 xfs_inode_t *ip)
1901{
1902 xfs_mount_t *mp;
1903 xfs_agi_t *agi;
1904 xfs_dinode_t *dip;
1905 xfs_buf_t *agibp;
1906 xfs_buf_t *ibp;
1907 xfs_agnumber_t agno;
1908 xfs_daddr_t agdaddr;
1909 xfs_agino_t agino;
1910 short bucket_index;
1911 int offset;
1912 int error;
1913 int agi_ok;
1914
1915 ASSERT(ip->i_d.di_nlink == 0);
1916 ASSERT(ip->i_d.di_mode != 0);
1917 ASSERT(ip->i_transp == tp);
1918
1919 mp = tp->t_mountp;
1920
1921 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1922 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1923
1924 /*
1925 * Get the agi buffer first. It ensures lock ordering
1926 * on the list.
1927 */
1928 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1929 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1930 if (error) {
1931 return error;
1932 }
1933 /*
1934 * Validate the magic number of the agi block.
1935 */
1936 agi = XFS_BUF_TO_AGI(agibp);
1937 agi_ok =
16259e7d
CH
1938 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1939 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1940 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1941 XFS_RANDOM_IUNLINK))) {
1942 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1943 xfs_trans_brelse(tp, agibp);
1944 return XFS_ERROR(EFSCORRUPTED);
1945 }
1946 /*
1947 * Get the index into the agi hash table for the
1948 * list this inode will go on.
1949 */
1950 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1951 ASSERT(agino != 0);
1952 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1953 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1954 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1955
16259e7d 1956 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1957 /*
1958 * There is already another inode in the bucket we need
1959 * to add ourselves to. Add us at the front of the list.
1960 * Here we put the head pointer into our next pointer,
1961 * and then we fall through to point the head at us.
1962 */
b12dd342 1963 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
1964 if (error) {
1965 return error;
1966 }
347d1c01 1967 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1968 /* both on-disk, don't endian flip twice */
1969 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1970 offset = ip->i_boffset +
1971 offsetof(xfs_dinode_t, di_next_unlinked);
1972 xfs_trans_inode_buf(tp, ibp);
1973 xfs_trans_log_buf(tp, ibp, offset,
1974 (offset + sizeof(xfs_agino_t) - 1));
1975 xfs_inobp_check(mp, ibp);
1976 }
1977
1978 /*
1979 * Point the bucket head pointer at the inode being inserted.
1980 */
1981 ASSERT(agino != 0);
16259e7d 1982 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1983 offset = offsetof(xfs_agi_t, agi_unlinked) +
1984 (sizeof(xfs_agino_t) * bucket_index);
1985 xfs_trans_log_buf(tp, agibp, offset,
1986 (offset + sizeof(xfs_agino_t) - 1));
1987 return 0;
1988}
1989
1990/*
1991 * Pull the on-disk inode from the AGI unlinked list.
1992 */
1993STATIC int
1994xfs_iunlink_remove(
1995 xfs_trans_t *tp,
1996 xfs_inode_t *ip)
1997{
1998 xfs_ino_t next_ino;
1999 xfs_mount_t *mp;
2000 xfs_agi_t *agi;
2001 xfs_dinode_t *dip;
2002 xfs_buf_t *agibp;
2003 xfs_buf_t *ibp;
2004 xfs_agnumber_t agno;
2005 xfs_daddr_t agdaddr;
2006 xfs_agino_t agino;
2007 xfs_agino_t next_agino;
2008 xfs_buf_t *last_ibp;
6fdf8ccc 2009 xfs_dinode_t *last_dip = NULL;
1da177e4 2010 short bucket_index;
6fdf8ccc 2011 int offset, last_offset = 0;
1da177e4
LT
2012 int error;
2013 int agi_ok;
2014
2015 /*
2016 * First pull the on-disk inode from the AGI unlinked list.
2017 */
2018 mp = tp->t_mountp;
2019
2020 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2021 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2022
2023 /*
2024 * Get the agi buffer first. It ensures lock ordering
2025 * on the list.
2026 */
2027 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2028 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2029 if (error) {
2030 cmn_err(CE_WARN,
2031 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2032 error, mp->m_fsname);
2033 return error;
2034 }
2035 /*
2036 * Validate the magic number of the agi block.
2037 */
2038 agi = XFS_BUF_TO_AGI(agibp);
2039 agi_ok =
16259e7d
CH
2040 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2041 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
2042 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2043 XFS_RANDOM_IUNLINK_REMOVE))) {
2044 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2045 mp, agi);
2046 xfs_trans_brelse(tp, agibp);
2047 cmn_err(CE_WARN,
2048 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2049 mp->m_fsname);
2050 return XFS_ERROR(EFSCORRUPTED);
2051 }
2052 /*
2053 * Get the index into the agi hash table for the
2054 * list this inode will go on.
2055 */
2056 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2057 ASSERT(agino != 0);
2058 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 2059 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
2060 ASSERT(agi->agi_unlinked[bucket_index]);
2061
16259e7d 2062 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
2063 /*
2064 * We're at the head of the list. Get the inode's
2065 * on-disk buffer to see if there is anyone after us
2066 * on the list. Only modify our next pointer if it
2067 * is not already NULLAGINO. This saves us the overhead
2068 * of dealing with the buffer when there is no need to
2069 * change it.
2070 */
b12dd342 2071 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2072 if (error) {
2073 cmn_err(CE_WARN,
2074 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2075 error, mp->m_fsname);
2076 return error;
2077 }
347d1c01 2078 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2079 ASSERT(next_agino != 0);
2080 if (next_agino != NULLAGINO) {
347d1c01 2081 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2082 offset = ip->i_boffset +
2083 offsetof(xfs_dinode_t, di_next_unlinked);
2084 xfs_trans_inode_buf(tp, ibp);
2085 xfs_trans_log_buf(tp, ibp, offset,
2086 (offset + sizeof(xfs_agino_t) - 1));
2087 xfs_inobp_check(mp, ibp);
2088 } else {
2089 xfs_trans_brelse(tp, ibp);
2090 }
2091 /*
2092 * Point the bucket head pointer at the next inode.
2093 */
2094 ASSERT(next_agino != 0);
2095 ASSERT(next_agino != agino);
16259e7d 2096 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2097 offset = offsetof(xfs_agi_t, agi_unlinked) +
2098 (sizeof(xfs_agino_t) * bucket_index);
2099 xfs_trans_log_buf(tp, agibp, offset,
2100 (offset + sizeof(xfs_agino_t) - 1));
2101 } else {
2102 /*
2103 * We need to search the list for the inode being freed.
2104 */
16259e7d 2105 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2106 last_ibp = NULL;
2107 while (next_agino != agino) {
2108 /*
2109 * If the last inode wasn't the one pointing to
2110 * us, then release its buffer since we're not
2111 * going to do anything with it.
2112 */
2113 if (last_ibp != NULL) {
2114 xfs_trans_brelse(tp, last_ibp);
2115 }
2116 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2117 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2118 &last_ibp, &last_offset);
2119 if (error) {
2120 cmn_err(CE_WARN,
2121 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2122 error, mp->m_fsname);
2123 return error;
2124 }
347d1c01 2125 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2126 ASSERT(next_agino != NULLAGINO);
2127 ASSERT(next_agino != 0);
2128 }
2129 /*
2130 * Now last_ibp points to the buffer previous to us on
2131 * the unlinked list. Pull us from the list.
2132 */
b12dd342 2133 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2134 if (error) {
2135 cmn_err(CE_WARN,
2136 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2137 error, mp->m_fsname);
2138 return error;
2139 }
347d1c01 2140 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2141 ASSERT(next_agino != 0);
2142 ASSERT(next_agino != agino);
2143 if (next_agino != NULLAGINO) {
347d1c01 2144 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2145 offset = ip->i_boffset +
2146 offsetof(xfs_dinode_t, di_next_unlinked);
2147 xfs_trans_inode_buf(tp, ibp);
2148 xfs_trans_log_buf(tp, ibp, offset,
2149 (offset + sizeof(xfs_agino_t) - 1));
2150 xfs_inobp_check(mp, ibp);
2151 } else {
2152 xfs_trans_brelse(tp, ibp);
2153 }
2154 /*
2155 * Point the previous inode on the list to the next inode.
2156 */
347d1c01 2157 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2158 ASSERT(next_agino != 0);
2159 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2160 xfs_trans_inode_buf(tp, last_ibp);
2161 xfs_trans_log_buf(tp, last_ibp, offset,
2162 (offset + sizeof(xfs_agino_t) - 1));
2163 xfs_inobp_check(mp, last_ibp);
2164 }
2165 return 0;
2166}
2167
7989cb8e 2168STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
1da177e4
LT
2169{
2170 return (((ip->i_itemp == NULL) ||
2171 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2172 (ip->i_update_core == 0));
2173}
2174
ba0f32d4 2175STATIC void
1da177e4
LT
2176xfs_ifree_cluster(
2177 xfs_inode_t *free_ip,
2178 xfs_trans_t *tp,
2179 xfs_ino_t inum)
2180{
2181 xfs_mount_t *mp = free_ip->i_mount;
2182 int blks_per_cluster;
2183 int nbufs;
2184 int ninodes;
2185 int i, j, found, pre_flushed;
2186 xfs_daddr_t blkno;
2187 xfs_buf_t *bp;
1da177e4
LT
2188 xfs_inode_t *ip, **ip_found;
2189 xfs_inode_log_item_t *iip;
2190 xfs_log_item_t *lip;
da353b0d 2191 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2192 SPLDECL(s);
2193
2194 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2195 blks_per_cluster = 1;
2196 ninodes = mp->m_sb.sb_inopblock;
2197 nbufs = XFS_IALLOC_BLOCKS(mp);
2198 } else {
2199 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2200 mp->m_sb.sb_blocksize;
2201 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2202 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2203 }
2204
2205 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2206
2207 for (j = 0; j < nbufs; j++, inum += ninodes) {
2208 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2209 XFS_INO_TO_AGBNO(mp, inum));
2210
2211
2212 /*
2213 * Look for each inode in memory and attempt to lock it,
2214 * we can be racing with flush and tail pushing here.
2215 * any inode we get the locks on, add to an array of
2216 * inode items to process later.
2217 *
2218 * The get the buffer lock, we could beat a flush
2219 * or tail pushing thread to the lock here, in which
2220 * case they will go looking for the inode buffer
2221 * and fail, we need some other form of interlock
2222 * here.
2223 */
2224 found = 0;
2225 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2226 read_lock(&pag->pag_ici_lock);
2227 ip = radix_tree_lookup(&pag->pag_ici_root,
2228 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2229
2230 /* Inode not in memory or we found it already,
2231 * nothing to do
2232 */
7a18c386 2233 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2234 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2235 continue;
2236 }
2237
2238 if (xfs_inode_clean(ip)) {
da353b0d 2239 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2240 continue;
2241 }
2242
2243 /* If we can get the locks then add it to the
2244 * list, otherwise by the time we get the bp lock
2245 * below it will already be attached to the
2246 * inode buffer.
2247 */
2248
2249 /* This inode will already be locked - by us, lets
2250 * keep it that way.
2251 */
2252
2253 if (ip == free_ip) {
2254 if (xfs_iflock_nowait(ip)) {
7a18c386 2255 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2256 if (xfs_inode_clean(ip)) {
2257 xfs_ifunlock(ip);
2258 } else {
2259 ip_found[found++] = ip;
2260 }
2261 }
da353b0d 2262 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2263 continue;
2264 }
2265
2266 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2267 if (xfs_iflock_nowait(ip)) {
7a18c386 2268 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2269
2270 if (xfs_inode_clean(ip)) {
2271 xfs_ifunlock(ip);
2272 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2273 } else {
2274 ip_found[found++] = ip;
2275 }
2276 } else {
2277 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2278 }
2279 }
da353b0d 2280 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2281 }
2282
2283 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2284 mp->m_bsize * blks_per_cluster,
2285 XFS_BUF_LOCK);
2286
2287 pre_flushed = 0;
2288 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2289 while (lip) {
2290 if (lip->li_type == XFS_LI_INODE) {
2291 iip = (xfs_inode_log_item_t *)lip;
2292 ASSERT(iip->ili_logged == 1);
2293 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2294 AIL_LOCK(mp,s);
2295 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2296 AIL_UNLOCK(mp, s);
e5ffd2bb 2297 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2298 pre_flushed++;
2299 }
2300 lip = lip->li_bio_list;
2301 }
2302
2303 for (i = 0; i < found; i++) {
2304 ip = ip_found[i];
2305 iip = ip->i_itemp;
2306
2307 if (!iip) {
2308 ip->i_update_core = 0;
2309 xfs_ifunlock(ip);
2310 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2311 continue;
2312 }
2313
2314 iip->ili_last_fields = iip->ili_format.ilf_fields;
2315 iip->ili_format.ilf_fields = 0;
2316 iip->ili_logged = 1;
2317 AIL_LOCK(mp,s);
2318 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2319 AIL_UNLOCK(mp, s);
2320
2321 xfs_buf_attach_iodone(bp,
2322 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2323 xfs_istale_done, (xfs_log_item_t *)iip);
2324 if (ip != free_ip) {
2325 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2326 }
2327 }
2328
2329 if (found || pre_flushed)
2330 xfs_trans_stale_inode_buf(tp, bp);
2331 xfs_trans_binval(tp, bp);
2332 }
2333
2334 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
da353b0d 2335 xfs_put_perag(mp, pag);
1da177e4
LT
2336}
2337
2338/*
2339 * This is called to return an inode to the inode free list.
2340 * The inode should already be truncated to 0 length and have
2341 * no pages associated with it. This routine also assumes that
2342 * the inode is already a part of the transaction.
2343 *
2344 * The on-disk copy of the inode will have been added to the list
2345 * of unlinked inodes in the AGI. We need to remove the inode from
2346 * that list atomically with respect to freeing it here.
2347 */
2348int
2349xfs_ifree(
2350 xfs_trans_t *tp,
2351 xfs_inode_t *ip,
2352 xfs_bmap_free_t *flist)
2353{
2354 int error;
2355 int delete;
2356 xfs_ino_t first_ino;
2357
2358 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2359 ASSERT(ip->i_transp == tp);
2360 ASSERT(ip->i_d.di_nlink == 0);
2361 ASSERT(ip->i_d.di_nextents == 0);
2362 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2363 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2364 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2365 ASSERT(ip->i_d.di_nblocks == 0);
2366
2367 /*
2368 * Pull the on-disk inode from the AGI unlinked list.
2369 */
2370 error = xfs_iunlink_remove(tp, ip);
2371 if (error != 0) {
2372 return error;
2373 }
2374
2375 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2376 if (error != 0) {
2377 return error;
2378 }
2379 ip->i_d.di_mode = 0; /* mark incore inode as free */
2380 ip->i_d.di_flags = 0;
2381 ip->i_d.di_dmevmask = 0;
2382 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2383 ip->i_df.if_ext_max =
2384 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2385 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2386 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2387 /*
2388 * Bump the generation count so no one will be confused
2389 * by reincarnations of this inode.
2390 */
2391 ip->i_d.di_gen++;
2392 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2393
2394 if (delete) {
2395 xfs_ifree_cluster(ip, tp, first_ino);
2396 }
2397
2398 return 0;
2399}
2400
2401/*
2402 * Reallocate the space for if_broot based on the number of records
2403 * being added or deleted as indicated in rec_diff. Move the records
2404 * and pointers in if_broot to fit the new size. When shrinking this
2405 * will eliminate holes between the records and pointers created by
2406 * the caller. When growing this will create holes to be filled in
2407 * by the caller.
2408 *
2409 * The caller must not request to add more records than would fit in
2410 * the on-disk inode root. If the if_broot is currently NULL, then
2411 * if we adding records one will be allocated. The caller must also
2412 * not request that the number of records go below zero, although
2413 * it can go to zero.
2414 *
2415 * ip -- the inode whose if_broot area is changing
2416 * ext_diff -- the change in the number of records, positive or negative,
2417 * requested for the if_broot array.
2418 */
2419void
2420xfs_iroot_realloc(
2421 xfs_inode_t *ip,
2422 int rec_diff,
2423 int whichfork)
2424{
2425 int cur_max;
2426 xfs_ifork_t *ifp;
2427 xfs_bmbt_block_t *new_broot;
2428 int new_max;
2429 size_t new_size;
2430 char *np;
2431 char *op;
2432
2433 /*
2434 * Handle the degenerate case quietly.
2435 */
2436 if (rec_diff == 0) {
2437 return;
2438 }
2439
2440 ifp = XFS_IFORK_PTR(ip, whichfork);
2441 if (rec_diff > 0) {
2442 /*
2443 * If there wasn't any memory allocated before, just
2444 * allocate it now and get out.
2445 */
2446 if (ifp->if_broot_bytes == 0) {
2447 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2448 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2449 KM_SLEEP);
2450 ifp->if_broot_bytes = (int)new_size;
2451 return;
2452 }
2453
2454 /*
2455 * If there is already an existing if_broot, then we need
2456 * to realloc() it and shift the pointers to their new
2457 * location. The records don't change location because
2458 * they are kept butted up against the btree block header.
2459 */
2460 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2461 new_max = cur_max + rec_diff;
2462 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2463 ifp->if_broot = (xfs_bmbt_block_t *)
2464 kmem_realloc(ifp->if_broot,
2465 new_size,
2466 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2467 KM_SLEEP);
2468 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2469 ifp->if_broot_bytes);
2470 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2471 (int)new_size);
2472 ifp->if_broot_bytes = (int)new_size;
2473 ASSERT(ifp->if_broot_bytes <=
2474 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2475 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2476 return;
2477 }
2478
2479 /*
2480 * rec_diff is less than 0. In this case, we are shrinking the
2481 * if_broot buffer. It must already exist. If we go to zero
2482 * records, just get rid of the root and clear the status bit.
2483 */
2484 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2485 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2486 new_max = cur_max + rec_diff;
2487 ASSERT(new_max >= 0);
2488 if (new_max > 0)
2489 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2490 else
2491 new_size = 0;
2492 if (new_size > 0) {
2493 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2494 /*
2495 * First copy over the btree block header.
2496 */
2497 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2498 } else {
2499 new_broot = NULL;
2500 ifp->if_flags &= ~XFS_IFBROOT;
2501 }
2502
2503 /*
2504 * Only copy the records and pointers if there are any.
2505 */
2506 if (new_max > 0) {
2507 /*
2508 * First copy the records.
2509 */
2510 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2511 ifp->if_broot_bytes);
2512 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2513 (int)new_size);
2514 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2515
2516 /*
2517 * Then copy the pointers.
2518 */
2519 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2520 ifp->if_broot_bytes);
2521 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2522 (int)new_size);
2523 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2524 }
2525 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2526 ifp->if_broot = new_broot;
2527 ifp->if_broot_bytes = (int)new_size;
2528 ASSERT(ifp->if_broot_bytes <=
2529 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2530 return;
2531}
2532
2533
1da177e4
LT
2534/*
2535 * This is called when the amount of space needed for if_data
2536 * is increased or decreased. The change in size is indicated by
2537 * the number of bytes that need to be added or deleted in the
2538 * byte_diff parameter.
2539 *
2540 * If the amount of space needed has decreased below the size of the
2541 * inline buffer, then switch to using the inline buffer. Otherwise,
2542 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2543 * to what is needed.
2544 *
2545 * ip -- the inode whose if_data area is changing
2546 * byte_diff -- the change in the number of bytes, positive or negative,
2547 * requested for the if_data array.
2548 */
2549void
2550xfs_idata_realloc(
2551 xfs_inode_t *ip,
2552 int byte_diff,
2553 int whichfork)
2554{
2555 xfs_ifork_t *ifp;
2556 int new_size;
2557 int real_size;
2558
2559 if (byte_diff == 0) {
2560 return;
2561 }
2562
2563 ifp = XFS_IFORK_PTR(ip, whichfork);
2564 new_size = (int)ifp->if_bytes + byte_diff;
2565 ASSERT(new_size >= 0);
2566
2567 if (new_size == 0) {
2568 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2569 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2570 }
2571 ifp->if_u1.if_data = NULL;
2572 real_size = 0;
2573 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2574 /*
2575 * If the valid extents/data can fit in if_inline_ext/data,
2576 * copy them from the malloc'd vector and free it.
2577 */
2578 if (ifp->if_u1.if_data == NULL) {
2579 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2580 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2581 ASSERT(ifp->if_real_bytes != 0);
2582 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2583 new_size);
2584 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2585 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2586 }
2587 real_size = 0;
2588 } else {
2589 /*
2590 * Stuck with malloc/realloc.
2591 * For inline data, the underlying buffer must be
2592 * a multiple of 4 bytes in size so that it can be
2593 * logged and stay on word boundaries. We enforce
2594 * that here.
2595 */
2596 real_size = roundup(new_size, 4);
2597 if (ifp->if_u1.if_data == NULL) {
2598 ASSERT(ifp->if_real_bytes == 0);
2599 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2600 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2601 /*
2602 * Only do the realloc if the underlying size
2603 * is really changing.
2604 */
2605 if (ifp->if_real_bytes != real_size) {
2606 ifp->if_u1.if_data =
2607 kmem_realloc(ifp->if_u1.if_data,
2608 real_size,
2609 ifp->if_real_bytes,
2610 KM_SLEEP);
2611 }
2612 } else {
2613 ASSERT(ifp->if_real_bytes == 0);
2614 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2615 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2616 ifp->if_bytes);
2617 }
2618 }
2619 ifp->if_real_bytes = real_size;
2620 ifp->if_bytes = new_size;
2621 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2622}
2623
2624
2625
2626
2627/*
2628 * Map inode to disk block and offset.
2629 *
2630 * mp -- the mount point structure for the current file system
2631 * tp -- the current transaction
2632 * ino -- the inode number of the inode to be located
2633 * imap -- this structure is filled in with the information necessary
2634 * to retrieve the given inode from disk
2635 * flags -- flags to pass to xfs_dilocate indicating whether or not
2636 * lookups in the inode btree were OK or not
2637 */
2638int
2639xfs_imap(
2640 xfs_mount_t *mp,
2641 xfs_trans_t *tp,
2642 xfs_ino_t ino,
2643 xfs_imap_t *imap,
2644 uint flags)
2645{
2646 xfs_fsblock_t fsbno;
2647 int len;
2648 int off;
2649 int error;
2650
2651 fsbno = imap->im_blkno ?
2652 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2653 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2654 if (error != 0) {
2655 return error;
2656 }
2657 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2658 imap->im_len = XFS_FSB_TO_BB(mp, len);
2659 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2660 imap->im_ioffset = (ushort)off;
2661 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2662 return 0;
2663}
2664
2665void
2666xfs_idestroy_fork(
2667 xfs_inode_t *ip,
2668 int whichfork)
2669{
2670 xfs_ifork_t *ifp;
2671
2672 ifp = XFS_IFORK_PTR(ip, whichfork);
2673 if (ifp->if_broot != NULL) {
2674 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2675 ifp->if_broot = NULL;
2676 }
2677
2678 /*
2679 * If the format is local, then we can't have an extents
2680 * array so just look for an inline data array. If we're
2681 * not local then we may or may not have an extents list,
2682 * so check and free it up if we do.
2683 */
2684 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2685 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2686 (ifp->if_u1.if_data != NULL)) {
2687 ASSERT(ifp->if_real_bytes != 0);
2688 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2689 ifp->if_u1.if_data = NULL;
2690 ifp->if_real_bytes = 0;
2691 }
2692 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2693 ((ifp->if_flags & XFS_IFEXTIREC) ||
2694 ((ifp->if_u1.if_extents != NULL) &&
2695 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2696 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2697 xfs_iext_destroy(ifp);
1da177e4
LT
2698 }
2699 ASSERT(ifp->if_u1.if_extents == NULL ||
2700 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2701 ASSERT(ifp->if_real_bytes == 0);
2702 if (whichfork == XFS_ATTR_FORK) {
2703 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2704 ip->i_afp = NULL;
2705 }
2706}
2707
2708/*
2709 * This is called free all the memory associated with an inode.
2710 * It must free the inode itself and any buffers allocated for
2711 * if_extents/if_data and if_broot. It must also free the lock
2712 * associated with the inode.
2713 */
2714void
2715xfs_idestroy(
2716 xfs_inode_t *ip)
2717{
2718
2719 switch (ip->i_d.di_mode & S_IFMT) {
2720 case S_IFREG:
2721 case S_IFDIR:
2722 case S_IFLNK:
2723 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2724 break;
2725 }
2726 if (ip->i_afp)
2727 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2728 mrfree(&ip->i_lock);
2729 mrfree(&ip->i_iolock);
2730 freesema(&ip->i_flock);
2731#ifdef XFS_BMAP_TRACE
2732 ktrace_free(ip->i_xtrace);
2733#endif
2734#ifdef XFS_BMBT_TRACE
2735 ktrace_free(ip->i_btrace);
2736#endif
2737#ifdef XFS_RW_TRACE
2738 ktrace_free(ip->i_rwtrace);
2739#endif
2740#ifdef XFS_ILOCK_TRACE
2741 ktrace_free(ip->i_lock_trace);
2742#endif
2743#ifdef XFS_DIR2_TRACE
2744 ktrace_free(ip->i_dir_trace);
2745#endif
2746 if (ip->i_itemp) {
f74eaf59
DC
2747 /*
2748 * Only if we are shutting down the fs will we see an
2749 * inode still in the AIL. If it is there, we should remove
2750 * it to prevent a use-after-free from occurring.
2751 */
2752 xfs_mount_t *mp = ip->i_mount;
2753 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2754 int s;
2755
2756 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2757 XFS_FORCED_SHUTDOWN(ip->i_mount));
2758 if (lip->li_flags & XFS_LI_IN_AIL) {
2759 AIL_LOCK(mp, s);
2760 if (lip->li_flags & XFS_LI_IN_AIL)
2761 xfs_trans_delete_ail(mp, lip, s);
2762 else
2763 AIL_UNLOCK(mp, s);
2764 }
1da177e4
LT
2765 xfs_inode_item_destroy(ip);
2766 }
2767 kmem_zone_free(xfs_inode_zone, ip);
2768}
2769
2770
2771/*
2772 * Increment the pin count of the given buffer.
2773 * This value is protected by ipinlock spinlock in the mount structure.
2774 */
2775void
2776xfs_ipin(
2777 xfs_inode_t *ip)
2778{
2779 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2780
2781 atomic_inc(&ip->i_pincount);
2782}
2783
2784/*
2785 * Decrement the pin count of the given inode, and wake up
2786 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2787 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2788 */
2789void
2790xfs_iunpin(
2791 xfs_inode_t *ip)
2792{
2793 ASSERT(atomic_read(&ip->i_pincount) > 0);
2794
4c60658e
DC
2795 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2796
58829e49 2797 /*
4c60658e
DC
2798 * If the inode is currently being reclaimed, the link between
2799 * the bhv_vnode and the xfs_inode will be broken after the
2800 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2801 * set, then we can move forward and mark the linux inode dirty
2802 * knowing that it is still valid as it won't freed until after
2803 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2804 * i_flags_lock is used to synchronise the setting of the
2805 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2806 * can execute atomically w.r.t to reclaim by holding this lock
2807 * here.
58829e49 2808 *
4c60658e
DC
2809 * However, we still need to issue the unpin wakeup call as the
2810 * inode reclaim may be blocked waiting for the inode to become
2811 * unpinned.
58829e49 2812 */
f273ab84 2813
7a18c386 2814 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
67fcaa73 2815 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
4c60658e
DC
2816 struct inode *inode = NULL;
2817
2818 BUG_ON(vp == NULL);
2819 inode = vn_to_inode(vp);
2820 BUG_ON(inode->i_state & I_CLEAR);
1da177e4 2821
58829e49 2822 /* make sync come back and flush this inode */
4c60658e
DC
2823 if (!(inode->i_state & (I_NEW|I_FREEING)))
2824 mark_inode_dirty_sync(inode);
1da177e4 2825 }
f273ab84 2826 spin_unlock(&ip->i_flags_lock);
1da177e4
LT
2827 wake_up(&ip->i_ipin_wait);
2828 }
2829}
2830
2831/*
2832 * This is called to wait for the given inode to be unpinned.
2833 * It will sleep until this happens. The caller must have the
2834 * inode locked in at least shared mode so that the buffer cannot
2835 * be subsequently pinned once someone is waiting for it to be
2836 * unpinned.
2837 */
ba0f32d4 2838STATIC void
1da177e4
LT
2839xfs_iunpin_wait(
2840 xfs_inode_t *ip)
2841{
2842 xfs_inode_log_item_t *iip;
2843 xfs_lsn_t lsn;
2844
2845 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2846
2847 if (atomic_read(&ip->i_pincount) == 0) {
2848 return;
2849 }
2850
2851 iip = ip->i_itemp;
2852 if (iip && iip->ili_last_lsn) {
2853 lsn = iip->ili_last_lsn;
2854 } else {
2855 lsn = (xfs_lsn_t)0;
2856 }
2857
2858 /*
2859 * Give the log a push so we don't wait here too long.
2860 */
2861 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2862
2863 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2864}
2865
2866
2867/*
2868 * xfs_iextents_copy()
2869 *
2870 * This is called to copy the REAL extents (as opposed to the delayed
2871 * allocation extents) from the inode into the given buffer. It
2872 * returns the number of bytes copied into the buffer.
2873 *
2874 * If there are no delayed allocation extents, then we can just
2875 * memcpy() the extents into the buffer. Otherwise, we need to
2876 * examine each extent in turn and skip those which are delayed.
2877 */
2878int
2879xfs_iextents_copy(
2880 xfs_inode_t *ip,
a6f64d4a 2881 xfs_bmbt_rec_t *dp,
1da177e4
LT
2882 int whichfork)
2883{
2884 int copied;
1da177e4
LT
2885 int i;
2886 xfs_ifork_t *ifp;
2887 int nrecs;
2888 xfs_fsblock_t start_block;
2889
2890 ifp = XFS_IFORK_PTR(ip, whichfork);
2891 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2892 ASSERT(ifp->if_bytes > 0);
2893
2894 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2895 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2896 ASSERT(nrecs > 0);
2897
2898 /*
2899 * There are some delayed allocation extents in the
2900 * inode, so copy the extents one at a time and skip
2901 * the delayed ones. There must be at least one
2902 * non-delayed extent.
2903 */
1da177e4
LT
2904 copied = 0;
2905 for (i = 0; i < nrecs; i++) {
a6f64d4a 2906 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2907 start_block = xfs_bmbt_get_startblock(ep);
2908 if (ISNULLSTARTBLOCK(start_block)) {
2909 /*
2910 * It's a delayed allocation extent, so skip it.
2911 */
1da177e4
LT
2912 continue;
2913 }
2914
2915 /* Translate to on disk format */
cd8b0a97
CH
2916 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2917 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2918 dp++;
1da177e4
LT
2919 copied++;
2920 }
2921 ASSERT(copied != 0);
a6f64d4a 2922 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2923
2924 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2925}
2926
2927/*
2928 * Each of the following cases stores data into the same region
2929 * of the on-disk inode, so only one of them can be valid at
2930 * any given time. While it is possible to have conflicting formats
2931 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2932 * in EXTENTS format, this can only happen when the fork has
2933 * changed formats after being modified but before being flushed.
2934 * In these cases, the format always takes precedence, because the
2935 * format indicates the current state of the fork.
2936 */
2937/*ARGSUSED*/
2938STATIC int
2939xfs_iflush_fork(
2940 xfs_inode_t *ip,
2941 xfs_dinode_t *dip,
2942 xfs_inode_log_item_t *iip,
2943 int whichfork,
2944 xfs_buf_t *bp)
2945{
2946 char *cp;
2947 xfs_ifork_t *ifp;
2948 xfs_mount_t *mp;
2949#ifdef XFS_TRANS_DEBUG
2950 int first;
2951#endif
2952 static const short brootflag[2] =
2953 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2954 static const short dataflag[2] =
2955 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2956 static const short extflag[2] =
2957 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2958
2959 if (iip == NULL)
2960 return 0;
2961 ifp = XFS_IFORK_PTR(ip, whichfork);
2962 /*
2963 * This can happen if we gave up in iformat in an error path,
2964 * for the attribute fork.
2965 */
2966 if (ifp == NULL) {
2967 ASSERT(whichfork == XFS_ATTR_FORK);
2968 return 0;
2969 }
2970 cp = XFS_DFORK_PTR(dip, whichfork);
2971 mp = ip->i_mount;
2972 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2973 case XFS_DINODE_FMT_LOCAL:
2974 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2975 (ifp->if_bytes > 0)) {
2976 ASSERT(ifp->if_u1.if_data != NULL);
2977 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2978 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2979 }
1da177e4
LT
2980 break;
2981
2982 case XFS_DINODE_FMT_EXTENTS:
2983 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2984 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2985 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2986 (ifp->if_bytes == 0));
2987 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2988 (ifp->if_bytes > 0));
1da177e4
LT
2989 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2990 (ifp->if_bytes > 0)) {
2991 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2992 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2993 whichfork);
2994 }
2995 break;
2996
2997 case XFS_DINODE_FMT_BTREE:
2998 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2999 (ifp->if_broot_bytes > 0)) {
3000 ASSERT(ifp->if_broot != NULL);
3001 ASSERT(ifp->if_broot_bytes <=
3002 (XFS_IFORK_SIZE(ip, whichfork) +
3003 XFS_BROOT_SIZE_ADJ));
3004 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3005 (xfs_bmdr_block_t *)cp,
3006 XFS_DFORK_SIZE(dip, mp, whichfork));
3007 }
3008 break;
3009
3010 case XFS_DINODE_FMT_DEV:
3011 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3012 ASSERT(whichfork == XFS_DATA_FORK);
347d1c01 3013 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
1da177e4
LT
3014 }
3015 break;
3016
3017 case XFS_DINODE_FMT_UUID:
3018 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3019 ASSERT(whichfork == XFS_DATA_FORK);
3020 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3021 sizeof(uuid_t));
3022 }
3023 break;
3024
3025 default:
3026 ASSERT(0);
3027 break;
3028 }
3029
3030 return 0;
3031}
3032
3033/*
3034 * xfs_iflush() will write a modified inode's changes out to the
3035 * inode's on disk home. The caller must have the inode lock held
3036 * in at least shared mode and the inode flush semaphore must be
3037 * held as well. The inode lock will still be held upon return from
3038 * the call and the caller is free to unlock it.
3039 * The inode flush lock will be unlocked when the inode reaches the disk.
3040 * The flags indicate how the inode's buffer should be written out.
3041 */
3042int
3043xfs_iflush(
3044 xfs_inode_t *ip,
3045 uint flags)
3046{
3047 xfs_inode_log_item_t *iip;
3048 xfs_buf_t *bp;
3049 xfs_dinode_t *dip;
3050 xfs_mount_t *mp;
3051 int error;
3052 /* REFERENCED */
1da177e4
LT
3053 xfs_inode_t *iq;
3054 int clcount; /* count of inodes clustered */
3055 int bufwasdelwri;
da353b0d 3056 struct hlist_node *entry;
1da177e4 3057 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3058
3059 XFS_STATS_INC(xs_iflush_count);
3060
3061 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3062 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3063 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3064 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3065
3066 iip = ip->i_itemp;
3067 mp = ip->i_mount;
3068
3069 /*
3070 * If the inode isn't dirty, then just release the inode
3071 * flush lock and do nothing.
3072 */
3073 if ((ip->i_update_core == 0) &&
3074 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3075 ASSERT((iip != NULL) ?
3076 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3077 xfs_ifunlock(ip);
3078 return 0;
3079 }
3080
3081 /*
3082 * We can't flush the inode until it is unpinned, so
3083 * wait for it. We know noone new can pin it, because
3084 * we are holding the inode lock shared and you need
3085 * to hold it exclusively to pin the inode.
3086 */
3087 xfs_iunpin_wait(ip);
3088
3089 /*
3090 * This may have been unpinned because the filesystem is shutting
3091 * down forcibly. If that's the case we must not write this inode
3092 * to disk, because the log record didn't make it to disk!
3093 */
3094 if (XFS_FORCED_SHUTDOWN(mp)) {
3095 ip->i_update_core = 0;
3096 if (iip)
3097 iip->ili_format.ilf_fields = 0;
3098 xfs_ifunlock(ip);
3099 return XFS_ERROR(EIO);
3100 }
3101
3102 /*
3103 * Get the buffer containing the on-disk inode.
3104 */
b12dd342
NS
3105 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3106 if (error) {
1da177e4
LT
3107 xfs_ifunlock(ip);
3108 return error;
3109 }
3110
3111 /*
3112 * Decide how buffer will be flushed out. This is done before
3113 * the call to xfs_iflush_int because this field is zeroed by it.
3114 */
3115 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3116 /*
3117 * Flush out the inode buffer according to the directions
3118 * of the caller. In the cases where the caller has given
3119 * us a choice choose the non-delwri case. This is because
3120 * the inode is in the AIL and we need to get it out soon.
3121 */
3122 switch (flags) {
3123 case XFS_IFLUSH_SYNC:
3124 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3125 flags = 0;
3126 break;
3127 case XFS_IFLUSH_ASYNC:
3128 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3129 flags = INT_ASYNC;
3130 break;
3131 case XFS_IFLUSH_DELWRI:
3132 flags = INT_DELWRI;
3133 break;
3134 default:
3135 ASSERT(0);
3136 flags = 0;
3137 break;
3138 }
3139 } else {
3140 switch (flags) {
3141 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3142 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3143 case XFS_IFLUSH_DELWRI:
3144 flags = INT_DELWRI;
3145 break;
3146 case XFS_IFLUSH_ASYNC:
3147 flags = INT_ASYNC;
3148 break;
3149 case XFS_IFLUSH_SYNC:
3150 flags = 0;
3151 break;
3152 default:
3153 ASSERT(0);
3154 flags = 0;
3155 break;
3156 }
3157 }
3158
3159 /*
3160 * First flush out the inode that xfs_iflush was called with.
3161 */
3162 error = xfs_iflush_int(ip, bp);
3163 if (error) {
3164 goto corrupt_out;
3165 }
3166
3167 /*
3168 * inode clustering:
3169 * see if other inodes can be gathered into this write
3170 */
da353b0d
DC
3171 spin_lock(&ip->i_cluster->icl_lock);
3172 ip->i_cluster->icl_buf = bp;
1da177e4
LT
3173
3174 clcount = 0;
da353b0d
DC
3175 hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3176 if (iq == ip)
3177 continue;
3178
1da177e4
LT
3179 /*
3180 * Do an un-protected check to see if the inode is dirty and
3181 * is a candidate for flushing. These checks will be repeated
3182 * later after the appropriate locks are acquired.
3183 */
3184 iip = iq->i_itemp;
3185 if ((iq->i_update_core == 0) &&
3186 ((iip == NULL) ||
3187 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3188 xfs_ipincount(iq) == 0) {
3189 continue;
3190 }
3191
3192 /*
3193 * Try to get locks. If any are unavailable,
3194 * then this inode cannot be flushed and is skipped.
3195 */
3196
3197 /* get inode locks (just i_lock) */
3198 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3199 /* get inode flush lock */
3200 if (xfs_iflock_nowait(iq)) {
3201 /* check if pinned */
3202 if (xfs_ipincount(iq) == 0) {
3203 /* arriving here means that
3204 * this inode can be flushed.
3205 * first re-check that it's
3206 * dirty
3207 */
3208 iip = iq->i_itemp;
3209 if ((iq->i_update_core != 0)||
3210 ((iip != NULL) &&
3211 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3212 clcount++;
3213 error = xfs_iflush_int(iq, bp);
3214 if (error) {
3215 xfs_iunlock(iq,
3216 XFS_ILOCK_SHARED);
3217 goto cluster_corrupt_out;
3218 }
3219 } else {
3220 xfs_ifunlock(iq);
3221 }
3222 } else {
3223 xfs_ifunlock(iq);
3224 }
3225 }
3226 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3227 }
3228 }
da353b0d 3229 spin_unlock(&ip->i_cluster->icl_lock);
1da177e4
LT
3230
3231 if (clcount) {
3232 XFS_STATS_INC(xs_icluster_flushcnt);
3233 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3234 }
3235
3236 /*
3237 * If the buffer is pinned then push on the log so we won't
3238 * get stuck waiting in the write for too long.
3239 */
3240 if (XFS_BUF_ISPINNED(bp)){
3241 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3242 }
3243
3244 if (flags & INT_DELWRI) {
3245 xfs_bdwrite(mp, bp);
3246 } else if (flags & INT_ASYNC) {
3247 xfs_bawrite(mp, bp);
3248 } else {
3249 error = xfs_bwrite(mp, bp);
3250 }
3251 return error;
3252
3253corrupt_out:
3254 xfs_buf_relse(bp);
7d04a335 3255 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3256 xfs_iflush_abort(ip);
3257 /*
3258 * Unlocks the flush lock
3259 */
3260 return XFS_ERROR(EFSCORRUPTED);
3261
3262cluster_corrupt_out:
3263 /* Corruption detected in the clustering loop. Invalidate the
3264 * inode buffer and shut down the filesystem.
3265 */
da353b0d 3266 spin_unlock(&ip->i_cluster->icl_lock);
1da177e4
LT
3267
3268 /*
3269 * Clean up the buffer. If it was B_DELWRI, just release it --
3270 * brelse can handle it with no problems. If not, shut down the
3271 * filesystem before releasing the buffer.
3272 */
3273 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3274 xfs_buf_relse(bp);
3275 }
3276
7d04a335 3277 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3278
3279 if(!bufwasdelwri) {
3280 /*
3281 * Just like incore_relse: if we have b_iodone functions,
3282 * mark the buffer as an error and call them. Otherwise
3283 * mark it as stale and brelse.
3284 */
3285 if (XFS_BUF_IODONE_FUNC(bp)) {
3286 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3287 XFS_BUF_UNDONE(bp);
3288 XFS_BUF_STALE(bp);
3289 XFS_BUF_SHUT(bp);
3290 XFS_BUF_ERROR(bp,EIO);
3291 xfs_biodone(bp);
3292 } else {
3293 XFS_BUF_STALE(bp);
3294 xfs_buf_relse(bp);
3295 }
3296 }
3297
3298 xfs_iflush_abort(iq);
3299 /*
3300 * Unlocks the flush lock
3301 */
3302 return XFS_ERROR(EFSCORRUPTED);
3303}
3304
3305
3306STATIC int
3307xfs_iflush_int(
3308 xfs_inode_t *ip,
3309 xfs_buf_t *bp)
3310{
3311 xfs_inode_log_item_t *iip;
3312 xfs_dinode_t *dip;
3313 xfs_mount_t *mp;
3314#ifdef XFS_TRANS_DEBUG
3315 int first;
3316#endif
3317 SPLDECL(s);
3318
3319 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3320 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3321 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3322 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3323
3324 iip = ip->i_itemp;
3325 mp = ip->i_mount;
3326
3327
3328 /*
3329 * If the inode isn't dirty, then just release the inode
3330 * flush lock and do nothing.
3331 */
3332 if ((ip->i_update_core == 0) &&
3333 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3334 xfs_ifunlock(ip);
3335 return 0;
3336 }
3337
3338 /* set *dip = inode's place in the buffer */
3339 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3340
3341 /*
3342 * Clear i_update_core before copying out the data.
3343 * This is for coordination with our timestamp updates
3344 * that don't hold the inode lock. They will always
3345 * update the timestamps BEFORE setting i_update_core,
3346 * so if we clear i_update_core after they set it we
3347 * are guaranteed to see their updates to the timestamps.
3348 * I believe that this depends on strongly ordered memory
3349 * semantics, but we have that. We use the SYNCHRONIZE
3350 * macro to make sure that the compiler does not reorder
3351 * the i_update_core access below the data copy below.
3352 */
3353 ip->i_update_core = 0;
3354 SYNCHRONIZE();
3355
42fe2b1f
CH
3356 /*
3357 * Make sure to get the latest atime from the Linux inode.
3358 */
3359 xfs_synchronize_atime(ip);
3360
347d1c01 3361 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3362 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3363 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3364 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
347d1c01 3365 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
1da177e4
LT
3366 goto corrupt_out;
3367 }
3368 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3369 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3370 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3371 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3372 ip->i_ino, ip, ip->i_d.di_magic);
3373 goto corrupt_out;
3374 }
3375 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3376 if (XFS_TEST_ERROR(
3377 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3378 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3379 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3380 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3381 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3382 ip->i_ino, ip);
3383 goto corrupt_out;
3384 }
3385 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3386 if (XFS_TEST_ERROR(
3387 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3388 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3389 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3390 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3391 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3392 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3393 ip->i_ino, ip);
3394 goto corrupt_out;
3395 }
3396 }
3397 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3398 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3399 XFS_RANDOM_IFLUSH_5)) {
3400 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3401 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3402 ip->i_ino,
3403 ip->i_d.di_nextents + ip->i_d.di_anextents,
3404 ip->i_d.di_nblocks,
3405 ip);
3406 goto corrupt_out;
3407 }
3408 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3409 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3410 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3411 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3412 ip->i_ino, ip->i_d.di_forkoff, ip);
3413 goto corrupt_out;
3414 }
3415 /*
3416 * bump the flush iteration count, used to detect flushes which
3417 * postdate a log record during recovery.
3418 */
3419
3420 ip->i_d.di_flushiter++;
3421
3422 /*
3423 * Copy the dirty parts of the inode into the on-disk
3424 * inode. We always copy out the core of the inode,
3425 * because if the inode is dirty at all the core must
3426 * be.
3427 */
347d1c01 3428 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
1da177e4
LT
3429
3430 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3431 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3432 ip->i_d.di_flushiter = 0;
3433
3434 /*
3435 * If this is really an old format inode and the superblock version
3436 * has not been updated to support only new format inodes, then
3437 * convert back to the old inode format. If the superblock version
3438 * has been updated, then make the conversion permanent.
3439 */
3440 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3441 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3442 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3443 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3444 /*
3445 * Convert it back.
3446 */
3447 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
347d1c01 3448 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3449 } else {
3450 /*
3451 * The superblock version has already been bumped,
3452 * so just make the conversion to the new inode
3453 * format permanent.
3454 */
3455 ip->i_d.di_version = XFS_DINODE_VERSION_2;
347d1c01 3456 dip->di_core.di_version = XFS_DINODE_VERSION_2;
1da177e4
LT
3457 ip->i_d.di_onlink = 0;
3458 dip->di_core.di_onlink = 0;
3459 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3460 memset(&(dip->di_core.di_pad[0]), 0,
3461 sizeof(dip->di_core.di_pad));
3462 ASSERT(ip->i_d.di_projid == 0);
3463 }
3464 }
3465
3466 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3467 goto corrupt_out;
3468 }
3469
3470 if (XFS_IFORK_Q(ip)) {
3471 /*
3472 * The only error from xfs_iflush_fork is on the data fork.
3473 */
3474 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3475 }
3476 xfs_inobp_check(mp, bp);
3477
3478 /*
3479 * We've recorded everything logged in the inode, so we'd
3480 * like to clear the ilf_fields bits so we don't log and
3481 * flush things unnecessarily. However, we can't stop
3482 * logging all this information until the data we've copied
3483 * into the disk buffer is written to disk. If we did we might
3484 * overwrite the copy of the inode in the log with all the
3485 * data after re-logging only part of it, and in the face of
3486 * a crash we wouldn't have all the data we need to recover.
3487 *
3488 * What we do is move the bits to the ili_last_fields field.
3489 * When logging the inode, these bits are moved back to the
3490 * ilf_fields field. In the xfs_iflush_done() routine we
3491 * clear ili_last_fields, since we know that the information
3492 * those bits represent is permanently on disk. As long as
3493 * the flush completes before the inode is logged again, then
3494 * both ilf_fields and ili_last_fields will be cleared.
3495 *
3496 * We can play with the ilf_fields bits here, because the inode
3497 * lock must be held exclusively in order to set bits there
3498 * and the flush lock protects the ili_last_fields bits.
3499 * Set ili_logged so the flush done
3500 * routine can tell whether or not to look in the AIL.
3501 * Also, store the current LSN of the inode so that we can tell
3502 * whether the item has moved in the AIL from xfs_iflush_done().
3503 * In order to read the lsn we need the AIL lock, because
3504 * it is a 64 bit value that cannot be read atomically.
3505 */
3506 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3507 iip->ili_last_fields = iip->ili_format.ilf_fields;
3508 iip->ili_format.ilf_fields = 0;
3509 iip->ili_logged = 1;
3510
3511 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3512 AIL_LOCK(mp,s);
3513 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3514 AIL_UNLOCK(mp, s);
3515
3516 /*
3517 * Attach the function xfs_iflush_done to the inode's
3518 * buffer. This will remove the inode from the AIL
3519 * and unlock the inode's flush lock when the inode is
3520 * completely written to disk.
3521 */
3522 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3523 xfs_iflush_done, (xfs_log_item_t *)iip);
3524
3525 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3526 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3527 } else {
3528 /*
3529 * We're flushing an inode which is not in the AIL and has
3530 * not been logged but has i_update_core set. For this
3531 * case we can use a B_DELWRI flush and immediately drop
3532 * the inode flush lock because we can avoid the whole
3533 * AIL state thing. It's OK to drop the flush lock now,
3534 * because we've already locked the buffer and to do anything
3535 * you really need both.
3536 */
3537 if (iip != NULL) {
3538 ASSERT(iip->ili_logged == 0);
3539 ASSERT(iip->ili_last_fields == 0);
3540 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3541 }
3542 xfs_ifunlock(ip);
3543 }
3544
3545 return 0;
3546
3547corrupt_out:
3548 return XFS_ERROR(EFSCORRUPTED);
3549}
3550
3551
3552/*
efa80278 3553 * Flush all inactive inodes in mp.
1da177e4 3554 */
efa80278 3555void
1da177e4 3556xfs_iflush_all(
efa80278 3557 xfs_mount_t *mp)
1da177e4 3558{
1da177e4 3559 xfs_inode_t *ip;
67fcaa73 3560 bhv_vnode_t *vp;
1da177e4 3561
efa80278
CH
3562 again:
3563 XFS_MOUNT_ILOCK(mp);
3564 ip = mp->m_inodes;
3565 if (ip == NULL)
3566 goto out;
1da177e4 3567
efa80278
CH
3568 do {
3569 /* Make sure we skip markers inserted by sync */
3570 if (ip->i_mount == NULL) {
3571 ip = ip->i_mnext;
3572 continue;
3573 }
1da177e4 3574
efa80278
CH
3575 vp = XFS_ITOV_NULL(ip);
3576 if (!vp) {
1da177e4 3577 XFS_MOUNT_IUNLOCK(mp);
efa80278
CH
3578 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3579 goto again;
3580 }
1da177e4 3581
efa80278 3582 ASSERT(vn_count(vp) == 0);
1da177e4 3583
efa80278
CH
3584 ip = ip->i_mnext;
3585 } while (ip != mp->m_inodes);
3586 out:
1da177e4 3587 XFS_MOUNT_IUNLOCK(mp);
1da177e4
LT
3588}
3589
1da177e4
LT
3590/*
3591 * xfs_iaccess: check accessibility of inode for mode.
3592 */
3593int
3594xfs_iaccess(
3595 xfs_inode_t *ip,
3596 mode_t mode,
3597 cred_t *cr)
3598{
3599 int error;
3600 mode_t orgmode = mode;
ec86dc02 3601 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
1da177e4
LT
3602
3603 if (mode & S_IWUSR) {
3604 umode_t imode = inode->i_mode;
3605
3606 if (IS_RDONLY(inode) &&
3607 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3608 return XFS_ERROR(EROFS);
3609
3610 if (IS_IMMUTABLE(inode))
3611 return XFS_ERROR(EACCES);
3612 }
3613
3614 /*
3615 * If there's an Access Control List it's used instead of
3616 * the mode bits.
3617 */
3618 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3619 return error ? XFS_ERROR(error) : 0;
3620
3621 if (current_fsuid(cr) != ip->i_d.di_uid) {
3622 mode >>= 3;
3623 if (!in_group_p((gid_t)ip->i_d.di_gid))
3624 mode >>= 3;
3625 }
3626
3627 /*
3628 * If the DACs are ok we don't need any capability check.
3629 */
3630 if ((ip->i_d.di_mode & mode) == mode)
3631 return 0;
3632 /*
3633 * Read/write DACs are always overridable.
3634 * Executable DACs are overridable if at least one exec bit is set.
3635 */
3636 if (!(orgmode & S_IXUSR) ||
3637 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3638 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3639 return 0;
3640
3641 if ((orgmode == S_IRUSR) ||
3642 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3643 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3644 return 0;
3645#ifdef NOISE
3646 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3647#endif /* NOISE */
3648 return XFS_ERROR(EACCES);
3649 }
3650 return XFS_ERROR(EACCES);
3651}
3652
3653/*
3654 * xfs_iroundup: round up argument to next power of two
3655 */
3656uint
3657xfs_iroundup(
3658 uint v)
3659{
3660 int i;
3661 uint m;
3662
3663 if ((v & (v - 1)) == 0)
3664 return v;
3665 ASSERT((v & 0x80000000) == 0);
3666 if ((v & (v + 1)) == 0)
3667 return v + 1;
3668 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3669 if (v & m)
3670 continue;
3671 v |= m;
3672 if ((v & (v + 1)) == 0)
3673 return v + 1;
3674 }
3675 ASSERT(0);
3676 return( 0 );
3677}
3678
1da177e4
LT
3679#ifdef XFS_ILOCK_TRACE
3680ktrace_t *xfs_ilock_trace_buf;
3681
3682void
3683xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3684{
3685 ktrace_enter(ip->i_lock_trace,
3686 (void *)ip,
3687 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3688 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3689 (void *)ra, /* caller of ilock */
3690 (void *)(unsigned long)current_cpu(),
3691 (void *)(unsigned long)current_pid(),
3692 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3693}
3694#endif
4eea22f0
MK
3695
3696/*
3697 * Return a pointer to the extent record at file index idx.
3698 */
a6f64d4a 3699xfs_bmbt_rec_host_t *
4eea22f0
MK
3700xfs_iext_get_ext(
3701 xfs_ifork_t *ifp, /* inode fork pointer */
3702 xfs_extnum_t idx) /* index of target extent */
3703{
3704 ASSERT(idx >= 0);
0293ce3a
MK
3705 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3706 return ifp->if_u1.if_ext_irec->er_extbuf;
3707 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3708 xfs_ext_irec_t *erp; /* irec pointer */
3709 int erp_idx = 0; /* irec index */
3710 xfs_extnum_t page_idx = idx; /* ext index in target list */
3711
3712 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3713 return &erp->er_extbuf[page_idx];
3714 } else if (ifp->if_bytes) {
4eea22f0
MK
3715 return &ifp->if_u1.if_extents[idx];
3716 } else {
3717 return NULL;
3718 }
3719}
3720
3721/*
3722 * Insert new item(s) into the extent records for incore inode
3723 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3724 */
3725void
3726xfs_iext_insert(
3727 xfs_ifork_t *ifp, /* inode fork pointer */
3728 xfs_extnum_t idx, /* starting index of new items */
3729 xfs_extnum_t count, /* number of inserted items */
3730 xfs_bmbt_irec_t *new) /* items to insert */
3731{
4eea22f0
MK
3732 xfs_extnum_t i; /* extent record index */
3733
3734 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3735 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3736 for (i = idx; i < idx + count; i++, new++)
3737 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3738}
3739
3740/*
3741 * This is called when the amount of space required for incore file
3742 * extents needs to be increased. The ext_diff parameter stores the
3743 * number of new extents being added and the idx parameter contains
3744 * the extent index where the new extents will be added. If the new
3745 * extents are being appended, then we just need to (re)allocate and
3746 * initialize the space. Otherwise, if the new extents are being
3747 * inserted into the middle of the existing entries, a bit more work
3748 * is required to make room for the new extents to be inserted. The
3749 * caller is responsible for filling in the new extent entries upon
3750 * return.
3751 */
3752void
3753xfs_iext_add(
3754 xfs_ifork_t *ifp, /* inode fork pointer */
3755 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3756 int ext_diff) /* number of extents to add */
4eea22f0
MK
3757{
3758 int byte_diff; /* new bytes being added */
3759 int new_size; /* size of extents after adding */
3760 xfs_extnum_t nextents; /* number of extents in file */
3761
3762 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3763 ASSERT((idx >= 0) && (idx <= nextents));
3764 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3765 new_size = ifp->if_bytes + byte_diff;
3766 /*
3767 * If the new number of extents (nextents + ext_diff)
3768 * fits inside the inode, then continue to use the inline
3769 * extent buffer.
3770 */
3771 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3772 if (idx < nextents) {
3773 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3774 &ifp->if_u2.if_inline_ext[idx],
3775 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3776 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3777 }
3778 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3779 ifp->if_real_bytes = 0;
0293ce3a 3780 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3781 }
3782 /*
3783 * Otherwise use a linear (direct) extent list.
3784 * If the extents are currently inside the inode,
3785 * xfs_iext_realloc_direct will switch us from
3786 * inline to direct extent allocation mode.
3787 */
0293ce3a 3788 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3789 xfs_iext_realloc_direct(ifp, new_size);
3790 if (idx < nextents) {
3791 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3792 &ifp->if_u1.if_extents[idx],
3793 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3794 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3795 }
3796 }
0293ce3a
MK
3797 /* Indirection array */
3798 else {
3799 xfs_ext_irec_t *erp;
3800 int erp_idx = 0;
3801 int page_idx = idx;
3802
3803 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3804 if (ifp->if_flags & XFS_IFEXTIREC) {
3805 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3806 } else {
3807 xfs_iext_irec_init(ifp);
3808 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3809 erp = ifp->if_u1.if_ext_irec;
3810 }
3811 /* Extents fit in target extent page */
3812 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3813 if (page_idx < erp->er_extcount) {
3814 memmove(&erp->er_extbuf[page_idx + ext_diff],
3815 &erp->er_extbuf[page_idx],
3816 (erp->er_extcount - page_idx) *
3817 sizeof(xfs_bmbt_rec_t));
3818 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3819 }
3820 erp->er_extcount += ext_diff;
3821 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3822 }
3823 /* Insert a new extent page */
3824 else if (erp) {
3825 xfs_iext_add_indirect_multi(ifp,
3826 erp_idx, page_idx, ext_diff);
3827 }
3828 /*
3829 * If extent(s) are being appended to the last page in
3830 * the indirection array and the new extent(s) don't fit
3831 * in the page, then erp is NULL and erp_idx is set to
3832 * the next index needed in the indirection array.
3833 */
3834 else {
3835 int count = ext_diff;
3836
3837 while (count) {
3838 erp = xfs_iext_irec_new(ifp, erp_idx);
3839 erp->er_extcount = count;
3840 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3841 if (count) {
3842 erp_idx++;
3843 }
3844 }
3845 }
3846 }
4eea22f0
MK
3847 ifp->if_bytes = new_size;
3848}
3849
0293ce3a
MK
3850/*
3851 * This is called when incore extents are being added to the indirection
3852 * array and the new extents do not fit in the target extent list. The
3853 * erp_idx parameter contains the irec index for the target extent list
3854 * in the indirection array, and the idx parameter contains the extent
3855 * index within the list. The number of extents being added is stored
3856 * in the count parameter.
3857 *
3858 * |-------| |-------|
3859 * | | | | idx - number of extents before idx
3860 * | idx | | count |
3861 * | | | | count - number of extents being inserted at idx
3862 * |-------| |-------|
3863 * | count | | nex2 | nex2 - number of extents after idx + count
3864 * |-------| |-------|
3865 */
3866void
3867xfs_iext_add_indirect_multi(
3868 xfs_ifork_t *ifp, /* inode fork pointer */
3869 int erp_idx, /* target extent irec index */
3870 xfs_extnum_t idx, /* index within target list */
3871 int count) /* new extents being added */
3872{
3873 int byte_diff; /* new bytes being added */
3874 xfs_ext_irec_t *erp; /* pointer to irec entry */
3875 xfs_extnum_t ext_diff; /* number of extents to add */
3876 xfs_extnum_t ext_cnt; /* new extents still needed */
3877 xfs_extnum_t nex2; /* extents after idx + count */
3878 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3879 int nlists; /* number of irec's (lists) */
3880
3881 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3882 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3883 nex2 = erp->er_extcount - idx;
3884 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3885
3886 /*
3887 * Save second part of target extent list
3888 * (all extents past */
3889 if (nex2) {
3890 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3891 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3892 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3893 erp->er_extcount -= nex2;
3894 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3895 memset(&erp->er_extbuf[idx], 0, byte_diff);
3896 }
3897
3898 /*
3899 * Add the new extents to the end of the target
3900 * list, then allocate new irec record(s) and
3901 * extent buffer(s) as needed to store the rest
3902 * of the new extents.
3903 */
3904 ext_cnt = count;
3905 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3906 if (ext_diff) {
3907 erp->er_extcount += ext_diff;
3908 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3909 ext_cnt -= ext_diff;
3910 }
3911 while (ext_cnt) {
3912 erp_idx++;
3913 erp = xfs_iext_irec_new(ifp, erp_idx);
3914 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3915 erp->er_extcount = ext_diff;
3916 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3917 ext_cnt -= ext_diff;
3918 }
3919
3920 /* Add nex2 extents back to indirection array */
3921 if (nex2) {
3922 xfs_extnum_t ext_avail;
3923 int i;
3924
3925 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3926 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3927 i = 0;
3928 /*
3929 * If nex2 extents fit in the current page, append
3930 * nex2_ep after the new extents.
3931 */
3932 if (nex2 <= ext_avail) {
3933 i = erp->er_extcount;
3934 }
3935 /*
3936 * Otherwise, check if space is available in the
3937 * next page.
3938 */
3939 else if ((erp_idx < nlists - 1) &&
3940 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3941 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3942 erp_idx++;
3943 erp++;
3944 /* Create a hole for nex2 extents */
3945 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3946 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3947 }
3948 /*
3949 * Final choice, create a new extent page for
3950 * nex2 extents.
3951 */
3952 else {
3953 erp_idx++;
3954 erp = xfs_iext_irec_new(ifp, erp_idx);
3955 }
3956 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3957 kmem_free(nex2_ep, byte_diff);
3958 erp->er_extcount += nex2;
3959 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3960 }
3961}
3962
4eea22f0
MK
3963/*
3964 * This is called when the amount of space required for incore file
3965 * extents needs to be decreased. The ext_diff parameter stores the
3966 * number of extents to be removed and the idx parameter contains
3967 * the extent index where the extents will be removed from.
0293ce3a
MK
3968 *
3969 * If the amount of space needed has decreased below the linear
3970 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3971 * extent array. Otherwise, use kmem_realloc() to adjust the
3972 * size to what is needed.
4eea22f0
MK
3973 */
3974void
3975xfs_iext_remove(
3976 xfs_ifork_t *ifp, /* inode fork pointer */
3977 xfs_extnum_t idx, /* index to begin removing exts */
3978 int ext_diff) /* number of extents to remove */
3979{
3980 xfs_extnum_t nextents; /* number of extents in file */
3981 int new_size; /* size of extents after removal */
3982
3983 ASSERT(ext_diff > 0);
3984 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3985 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3986
3987 if (new_size == 0) {
3988 xfs_iext_destroy(ifp);
0293ce3a
MK
3989 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3990 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3991 } else if (ifp->if_real_bytes) {
3992 xfs_iext_remove_direct(ifp, idx, ext_diff);
3993 } else {
3994 xfs_iext_remove_inline(ifp, idx, ext_diff);
3995 }
3996 ifp->if_bytes = new_size;
3997}
3998
3999/*
4000 * This removes ext_diff extents from the inline buffer, beginning
4001 * at extent index idx.
4002 */
4003void
4004xfs_iext_remove_inline(
4005 xfs_ifork_t *ifp, /* inode fork pointer */
4006 xfs_extnum_t idx, /* index to begin removing exts */
4007 int ext_diff) /* number of extents to remove */
4008{
4009 int nextents; /* number of extents in file */
4010
0293ce3a 4011 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4012 ASSERT(idx < XFS_INLINE_EXTS);
4013 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4014 ASSERT(((nextents - ext_diff) > 0) &&
4015 (nextents - ext_diff) < XFS_INLINE_EXTS);
4016
4017 if (idx + ext_diff < nextents) {
4018 memmove(&ifp->if_u2.if_inline_ext[idx],
4019 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4020 (nextents - (idx + ext_diff)) *
4021 sizeof(xfs_bmbt_rec_t));
4022 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4023 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4024 } else {
4025 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4026 ext_diff * sizeof(xfs_bmbt_rec_t));
4027 }
4028}
4029
4030/*
4031 * This removes ext_diff extents from a linear (direct) extent list,
4032 * beginning at extent index idx. If the extents are being removed
4033 * from the end of the list (ie. truncate) then we just need to re-
4034 * allocate the list to remove the extra space. Otherwise, if the
4035 * extents are being removed from the middle of the existing extent
4036 * entries, then we first need to move the extent records beginning
4037 * at idx + ext_diff up in the list to overwrite the records being
4038 * removed, then remove the extra space via kmem_realloc.
4039 */
4040void
4041xfs_iext_remove_direct(
4042 xfs_ifork_t *ifp, /* inode fork pointer */
4043 xfs_extnum_t idx, /* index to begin removing exts */
4044 int ext_diff) /* number of extents to remove */
4045{
4046 xfs_extnum_t nextents; /* number of extents in file */
4047 int new_size; /* size of extents after removal */
4048
0293ce3a 4049 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4050 new_size = ifp->if_bytes -
4051 (ext_diff * sizeof(xfs_bmbt_rec_t));
4052 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4053
4054 if (new_size == 0) {
4055 xfs_iext_destroy(ifp);
4056 return;
4057 }
4058 /* Move extents up in the list (if needed) */
4059 if (idx + ext_diff < nextents) {
4060 memmove(&ifp->if_u1.if_extents[idx],
4061 &ifp->if_u1.if_extents[idx + ext_diff],
4062 (nextents - (idx + ext_diff)) *
4063 sizeof(xfs_bmbt_rec_t));
4064 }
4065 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4066 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4067 /*
4068 * Reallocate the direct extent list. If the extents
4069 * will fit inside the inode then xfs_iext_realloc_direct
4070 * will switch from direct to inline extent allocation
4071 * mode for us.
4072 */
4073 xfs_iext_realloc_direct(ifp, new_size);
4074 ifp->if_bytes = new_size;
4075}
4076
0293ce3a
MK
4077/*
4078 * This is called when incore extents are being removed from the
4079 * indirection array and the extents being removed span multiple extent
4080 * buffers. The idx parameter contains the file extent index where we
4081 * want to begin removing extents, and the count parameter contains
4082 * how many extents need to be removed.
4083 *
4084 * |-------| |-------|
4085 * | nex1 | | | nex1 - number of extents before idx
4086 * |-------| | count |
4087 * | | | | count - number of extents being removed at idx
4088 * | count | |-------|
4089 * | | | nex2 | nex2 - number of extents after idx + count
4090 * |-------| |-------|
4091 */
4092void
4093xfs_iext_remove_indirect(
4094 xfs_ifork_t *ifp, /* inode fork pointer */
4095 xfs_extnum_t idx, /* index to begin removing extents */
4096 int count) /* number of extents to remove */
4097{
4098 xfs_ext_irec_t *erp; /* indirection array pointer */
4099 int erp_idx = 0; /* indirection array index */
4100 xfs_extnum_t ext_cnt; /* extents left to remove */
4101 xfs_extnum_t ext_diff; /* extents to remove in current list */
4102 xfs_extnum_t nex1; /* number of extents before idx */
4103 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 4104 int nlists; /* entries in indirection array */
0293ce3a
MK
4105 int page_idx = idx; /* index in target extent list */
4106
4107 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4108 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4109 ASSERT(erp != NULL);
4110 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4111 nex1 = page_idx;
4112 ext_cnt = count;
4113 while (ext_cnt) {
4114 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4115 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4116 /*
4117 * Check for deletion of entire list;
4118 * xfs_iext_irec_remove() updates extent offsets.
4119 */
4120 if (ext_diff == erp->er_extcount) {
4121 xfs_iext_irec_remove(ifp, erp_idx);
4122 ext_cnt -= ext_diff;
4123 nex1 = 0;
4124 if (ext_cnt) {
4125 ASSERT(erp_idx < ifp->if_real_bytes /
4126 XFS_IEXT_BUFSZ);
4127 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4128 nex1 = 0;
4129 continue;
4130 } else {
4131 break;
4132 }
4133 }
4134 /* Move extents up (if needed) */
4135 if (nex2) {
4136 memmove(&erp->er_extbuf[nex1],
4137 &erp->er_extbuf[nex1 + ext_diff],
4138 nex2 * sizeof(xfs_bmbt_rec_t));
4139 }
4140 /* Zero out rest of page */
4141 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4142 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4143 /* Update remaining counters */
4144 erp->er_extcount -= ext_diff;
4145 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4146 ext_cnt -= ext_diff;
4147 nex1 = 0;
4148 erp_idx++;
4149 erp++;
4150 }
4151 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4152 xfs_iext_irec_compact(ifp);
4153}
4154
4eea22f0
MK
4155/*
4156 * Create, destroy, or resize a linear (direct) block of extents.
4157 */
4158void
4159xfs_iext_realloc_direct(
4160 xfs_ifork_t *ifp, /* inode fork pointer */
4161 int new_size) /* new size of extents */
4162{
4163 int rnew_size; /* real new size of extents */
4164
4165 rnew_size = new_size;
4166
0293ce3a
MK
4167 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4168 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4169 (new_size != ifp->if_real_bytes)));
4170
4eea22f0
MK
4171 /* Free extent records */
4172 if (new_size == 0) {
4173 xfs_iext_destroy(ifp);
4174 }
4175 /* Resize direct extent list and zero any new bytes */
4176 else if (ifp->if_real_bytes) {
4177 /* Check if extents will fit inside the inode */
4178 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4179 xfs_iext_direct_to_inline(ifp, new_size /
4180 (uint)sizeof(xfs_bmbt_rec_t));
4181 ifp->if_bytes = new_size;
4182 return;
4183 }
16a087d8 4184 if (!is_power_of_2(new_size)){
4eea22f0
MK
4185 rnew_size = xfs_iroundup(new_size);
4186 }
4187 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 4188 ifp->if_u1.if_extents =
4eea22f0
MK
4189 kmem_realloc(ifp->if_u1.if_extents,
4190 rnew_size,
4191 ifp->if_real_bytes,
4192 KM_SLEEP);
4193 }
4194 if (rnew_size > ifp->if_real_bytes) {
4195 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4196 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4197 rnew_size - ifp->if_real_bytes);
4198 }
4199 }
4200 /*
4201 * Switch from the inline extent buffer to a direct
4202 * extent list. Be sure to include the inline extent
4203 * bytes in new_size.
4204 */
4205 else {
4206 new_size += ifp->if_bytes;
16a087d8 4207 if (!is_power_of_2(new_size)) {
4eea22f0
MK
4208 rnew_size = xfs_iroundup(new_size);
4209 }
4210 xfs_iext_inline_to_direct(ifp, rnew_size);
4211 }
4212 ifp->if_real_bytes = rnew_size;
4213 ifp->if_bytes = new_size;
4214}
4215
4216/*
4217 * Switch from linear (direct) extent records to inline buffer.
4218 */
4219void
4220xfs_iext_direct_to_inline(
4221 xfs_ifork_t *ifp, /* inode fork pointer */
4222 xfs_extnum_t nextents) /* number of extents in file */
4223{
4224 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4225 ASSERT(nextents <= XFS_INLINE_EXTS);
4226 /*
4227 * The inline buffer was zeroed when we switched
4228 * from inline to direct extent allocation mode,
4229 * so we don't need to clear it here.
4230 */
4231 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4232 nextents * sizeof(xfs_bmbt_rec_t));
fe6c1e72 4233 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4eea22f0
MK
4234 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4235 ifp->if_real_bytes = 0;
4236}
4237
4238/*
4239 * Switch from inline buffer to linear (direct) extent records.
4240 * new_size should already be rounded up to the next power of 2
4241 * by the caller (when appropriate), so use new_size as it is.
4242 * However, since new_size may be rounded up, we can't update
4243 * if_bytes here. It is the caller's responsibility to update
4244 * if_bytes upon return.
4245 */
4246void
4247xfs_iext_inline_to_direct(
4248 xfs_ifork_t *ifp, /* inode fork pointer */
4249 int new_size) /* number of extents in file */
4250{
a6f64d4a 4251 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4eea22f0
MK
4252 memset(ifp->if_u1.if_extents, 0, new_size);
4253 if (ifp->if_bytes) {
4254 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4255 ifp->if_bytes);
4256 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4257 sizeof(xfs_bmbt_rec_t));
4258 }
4259 ifp->if_real_bytes = new_size;
4260}
4261
0293ce3a
MK
4262/*
4263 * Resize an extent indirection array to new_size bytes.
4264 */
4265void
4266xfs_iext_realloc_indirect(
4267 xfs_ifork_t *ifp, /* inode fork pointer */
4268 int new_size) /* new indirection array size */
4269{
4270 int nlists; /* number of irec's (ex lists) */
4271 int size; /* current indirection array size */
4272
4273 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4274 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4275 size = nlists * sizeof(xfs_ext_irec_t);
4276 ASSERT(ifp->if_real_bytes);
4277 ASSERT((new_size >= 0) && (new_size != size));
4278 if (new_size == 0) {
4279 xfs_iext_destroy(ifp);
4280 } else {
4281 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4282 kmem_realloc(ifp->if_u1.if_ext_irec,
4283 new_size, size, KM_SLEEP);
4284 }
4285}
4286
4287/*
4288 * Switch from indirection array to linear (direct) extent allocations.
4289 */
4290void
4291xfs_iext_indirect_to_direct(
4292 xfs_ifork_t *ifp) /* inode fork pointer */
4293{
a6f64d4a 4294 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4295 xfs_extnum_t nextents; /* number of extents in file */
4296 int size; /* size of file extents */
4297
4298 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4299 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4300 ASSERT(nextents <= XFS_LINEAR_EXTS);
4301 size = nextents * sizeof(xfs_bmbt_rec_t);
4302
4303 xfs_iext_irec_compact_full(ifp);
4304 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4305
4306 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4307 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4308 ifp->if_flags &= ~XFS_IFEXTIREC;
4309 ifp->if_u1.if_extents = ep;
4310 ifp->if_bytes = size;
4311 if (nextents < XFS_LINEAR_EXTS) {
4312 xfs_iext_realloc_direct(ifp, size);
4313 }
4314}
4315
4eea22f0
MK
4316/*
4317 * Free incore file extents.
4318 */
4319void
4320xfs_iext_destroy(
4321 xfs_ifork_t *ifp) /* inode fork pointer */
4322{
0293ce3a
MK
4323 if (ifp->if_flags & XFS_IFEXTIREC) {
4324 int erp_idx;
4325 int nlists;
4326
4327 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4328 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4329 xfs_iext_irec_remove(ifp, erp_idx);
4330 }
4331 ifp->if_flags &= ~XFS_IFEXTIREC;
4332 } else if (ifp->if_real_bytes) {
4eea22f0
MK
4333 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4334 } else if (ifp->if_bytes) {
4335 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4336 sizeof(xfs_bmbt_rec_t));
4337 }
4338 ifp->if_u1.if_extents = NULL;
4339 ifp->if_real_bytes = 0;
4340 ifp->if_bytes = 0;
4341}
0293ce3a 4342
8867bc9b
MK
4343/*
4344 * Return a pointer to the extent record for file system block bno.
4345 */
a6f64d4a 4346xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4347xfs_iext_bno_to_ext(
4348 xfs_ifork_t *ifp, /* inode fork pointer */
4349 xfs_fileoff_t bno, /* block number to search for */
4350 xfs_extnum_t *idxp) /* index of target extent */
4351{
a6f64d4a 4352 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4353 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4354 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4355 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4356 int high; /* upper boundary in search */
8867bc9b 4357 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4358 int low; /* lower boundary in search */
8867bc9b
MK
4359 xfs_extnum_t nextents; /* number of file extents */
4360 xfs_fileoff_t startoff = 0; /* start offset of extent */
4361
4362 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4363 if (nextents == 0) {
4364 *idxp = 0;
4365 return NULL;
4366 }
4367 low = 0;
4368 if (ifp->if_flags & XFS_IFEXTIREC) {
4369 /* Find target extent list */
4370 int erp_idx = 0;
4371 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4372 base = erp->er_extbuf;
4373 high = erp->er_extcount - 1;
4374 } else {
4375 base = ifp->if_u1.if_extents;
4376 high = nextents - 1;
4377 }
4378 /* Binary search extent records */
4379 while (low <= high) {
4380 idx = (low + high) >> 1;
4381 ep = base + idx;
4382 startoff = xfs_bmbt_get_startoff(ep);
4383 blockcount = xfs_bmbt_get_blockcount(ep);
4384 if (bno < startoff) {
4385 high = idx - 1;
4386 } else if (bno >= startoff + blockcount) {
4387 low = idx + 1;
4388 } else {
4389 /* Convert back to file-based extent index */
4390 if (ifp->if_flags & XFS_IFEXTIREC) {
4391 idx += erp->er_extoff;
4392 }
4393 *idxp = idx;
4394 return ep;
4395 }
4396 }
4397 /* Convert back to file-based extent index */
4398 if (ifp->if_flags & XFS_IFEXTIREC) {
4399 idx += erp->er_extoff;
4400 }
4401 if (bno >= startoff + blockcount) {
4402 if (++idx == nextents) {
4403 ep = NULL;
4404 } else {
4405 ep = xfs_iext_get_ext(ifp, idx);
4406 }
4407 }
4408 *idxp = idx;
4409 return ep;
4410}
4411
0293ce3a
MK
4412/*
4413 * Return a pointer to the indirection array entry containing the
4414 * extent record for filesystem block bno. Store the index of the
4415 * target irec in *erp_idxp.
4416 */
8867bc9b 4417xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4418xfs_iext_bno_to_irec(
4419 xfs_ifork_t *ifp, /* inode fork pointer */
4420 xfs_fileoff_t bno, /* block number to search for */
4421 int *erp_idxp) /* irec index of target ext list */
4422{
4423 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4424 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4425 int erp_idx; /* indirection array index */
0293ce3a
MK
4426 int nlists; /* number of extent irec's (lists) */
4427 int high; /* binary search upper limit */
4428 int low; /* binary search lower limit */
4429
4430 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4431 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4432 erp_idx = 0;
4433 low = 0;
4434 high = nlists - 1;
4435 while (low <= high) {
4436 erp_idx = (low + high) >> 1;
4437 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4438 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4439 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4440 high = erp_idx - 1;
4441 } else if (erp_next && bno >=
4442 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4443 low = erp_idx + 1;
4444 } else {
4445 break;
4446 }
4447 }
4448 *erp_idxp = erp_idx;
4449 return erp;
4450}
4451
4452/*
4453 * Return a pointer to the indirection array entry containing the
4454 * extent record at file extent index *idxp. Store the index of the
4455 * target irec in *erp_idxp and store the page index of the target
4456 * extent record in *idxp.
4457 */
4458xfs_ext_irec_t *
4459xfs_iext_idx_to_irec(
4460 xfs_ifork_t *ifp, /* inode fork pointer */
4461 xfs_extnum_t *idxp, /* extent index (file -> page) */
4462 int *erp_idxp, /* pointer to target irec */
4463 int realloc) /* new bytes were just added */
4464{
4465 xfs_ext_irec_t *prev; /* pointer to previous irec */
4466 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4467 int erp_idx; /* indirection array index */
4468 int nlists; /* number of irec's (ex lists) */
4469 int high; /* binary search upper limit */
4470 int low; /* binary search lower limit */
4471 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4472
4473 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4474 ASSERT(page_idx >= 0 && page_idx <=
4475 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4476 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4477 erp_idx = 0;
4478 low = 0;
4479 high = nlists - 1;
4480
4481 /* Binary search extent irec's */
4482 while (low <= high) {
4483 erp_idx = (low + high) >> 1;
4484 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4485 prev = erp_idx > 0 ? erp - 1 : NULL;
4486 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4487 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4488 high = erp_idx - 1;
4489 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4490 (page_idx == erp->er_extoff + erp->er_extcount &&
4491 !realloc)) {
4492 low = erp_idx + 1;
4493 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4494 erp->er_extcount == XFS_LINEAR_EXTS) {
4495 ASSERT(realloc);
4496 page_idx = 0;
4497 erp_idx++;
4498 erp = erp_idx < nlists ? erp + 1 : NULL;
4499 break;
4500 } else {
4501 page_idx -= erp->er_extoff;
4502 break;
4503 }
4504 }
4505 *idxp = page_idx;
4506 *erp_idxp = erp_idx;
4507 return(erp);
4508}
4509
4510/*
4511 * Allocate and initialize an indirection array once the space needed
4512 * for incore extents increases above XFS_IEXT_BUFSZ.
4513 */
4514void
4515xfs_iext_irec_init(
4516 xfs_ifork_t *ifp) /* inode fork pointer */
4517{
4518 xfs_ext_irec_t *erp; /* indirection array pointer */
4519 xfs_extnum_t nextents; /* number of extents in file */
4520
4521 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4522 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4523 ASSERT(nextents <= XFS_LINEAR_EXTS);
4524
4525 erp = (xfs_ext_irec_t *)
4526 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4527
4528 if (nextents == 0) {
a6f64d4a 4529 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
0293ce3a
MK
4530 } else if (!ifp->if_real_bytes) {
4531 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4532 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4533 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4534 }
4535 erp->er_extbuf = ifp->if_u1.if_extents;
4536 erp->er_extcount = nextents;
4537 erp->er_extoff = 0;
4538
4539 ifp->if_flags |= XFS_IFEXTIREC;
4540 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4541 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4542 ifp->if_u1.if_ext_irec = erp;
4543
4544 return;
4545}
4546
4547/*
4548 * Allocate and initialize a new entry in the indirection array.
4549 */
4550xfs_ext_irec_t *
4551xfs_iext_irec_new(
4552 xfs_ifork_t *ifp, /* inode fork pointer */
4553 int erp_idx) /* index for new irec */
4554{
4555 xfs_ext_irec_t *erp; /* indirection array pointer */
4556 int i; /* loop counter */
4557 int nlists; /* number of irec's (ex lists) */
4558
4559 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4560 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4561
4562 /* Resize indirection array */
4563 xfs_iext_realloc_indirect(ifp, ++nlists *
4564 sizeof(xfs_ext_irec_t));
4565 /*
4566 * Move records down in the array so the
4567 * new page can use erp_idx.
4568 */
4569 erp = ifp->if_u1.if_ext_irec;
4570 for (i = nlists - 1; i > erp_idx; i--) {
4571 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4572 }
4573 ASSERT(i == erp_idx);
4574
4575 /* Initialize new extent record */
4576 erp = ifp->if_u1.if_ext_irec;
a6f64d4a 4577 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
0293ce3a
MK
4578 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4579 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4580 erp[erp_idx].er_extcount = 0;
4581 erp[erp_idx].er_extoff = erp_idx > 0 ?
4582 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4583 return (&erp[erp_idx]);
4584}
4585
4586/*
4587 * Remove a record from the indirection array.
4588 */
4589void
4590xfs_iext_irec_remove(
4591 xfs_ifork_t *ifp, /* inode fork pointer */
4592 int erp_idx) /* irec index to remove */
4593{
4594 xfs_ext_irec_t *erp; /* indirection array pointer */
4595 int i; /* loop counter */
4596 int nlists; /* number of irec's (ex lists) */
4597
4598 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4599 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4600 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4601 if (erp->er_extbuf) {
4602 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4603 -erp->er_extcount);
4604 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4605 }
4606 /* Compact extent records */
4607 erp = ifp->if_u1.if_ext_irec;
4608 for (i = erp_idx; i < nlists - 1; i++) {
4609 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4610 }
4611 /*
4612 * Manually free the last extent record from the indirection
4613 * array. A call to xfs_iext_realloc_indirect() with a size
4614 * of zero would result in a call to xfs_iext_destroy() which
4615 * would in turn call this function again, creating a nasty
4616 * infinite loop.
4617 */
4618 if (--nlists) {
4619 xfs_iext_realloc_indirect(ifp,
4620 nlists * sizeof(xfs_ext_irec_t));
4621 } else {
4622 kmem_free(ifp->if_u1.if_ext_irec,
4623 sizeof(xfs_ext_irec_t));
4624 }
4625 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4626}
4627
4628/*
4629 * This is called to clean up large amounts of unused memory allocated
4630 * by the indirection array. Before compacting anything though, verify
4631 * that the indirection array is still needed and switch back to the
4632 * linear extent list (or even the inline buffer) if possible. The
4633 * compaction policy is as follows:
4634 *
4635 * Full Compaction: Extents fit into a single page (or inline buffer)
4636 * Full Compaction: Extents occupy less than 10% of allocated space
4637 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4638 * No Compaction: Extents occupy at least 50% of allocated space
4639 */
4640void
4641xfs_iext_irec_compact(
4642 xfs_ifork_t *ifp) /* inode fork pointer */
4643{
4644 xfs_extnum_t nextents; /* number of extents in file */
4645 int nlists; /* number of irec's (ex lists) */
4646
4647 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4648 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4649 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4650
4651 if (nextents == 0) {
4652 xfs_iext_destroy(ifp);
4653 } else if (nextents <= XFS_INLINE_EXTS) {
4654 xfs_iext_indirect_to_direct(ifp);
4655 xfs_iext_direct_to_inline(ifp, nextents);
4656 } else if (nextents <= XFS_LINEAR_EXTS) {
4657 xfs_iext_indirect_to_direct(ifp);
4658 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4659 xfs_iext_irec_compact_full(ifp);
4660 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4661 xfs_iext_irec_compact_pages(ifp);
4662 }
4663}
4664
4665/*
4666 * Combine extents from neighboring extent pages.
4667 */
4668void
4669xfs_iext_irec_compact_pages(
4670 xfs_ifork_t *ifp) /* inode fork pointer */
4671{
4672 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4673 int erp_idx = 0; /* indirection array index */
4674 int nlists; /* number of irec's (ex lists) */
4675
4676 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4677 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4678 while (erp_idx < nlists - 1) {
4679 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4680 erp_next = erp + 1;
4681 if (erp_next->er_extcount <=
4682 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4683 memmove(&erp->er_extbuf[erp->er_extcount],
4684 erp_next->er_extbuf, erp_next->er_extcount *
4685 sizeof(xfs_bmbt_rec_t));
4686 erp->er_extcount += erp_next->er_extcount;
4687 /*
4688 * Free page before removing extent record
4689 * so er_extoffs don't get modified in
4690 * xfs_iext_irec_remove.
4691 */
4692 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4693 erp_next->er_extbuf = NULL;
4694 xfs_iext_irec_remove(ifp, erp_idx + 1);
4695 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4696 } else {
4697 erp_idx++;
4698 }
4699 }
4700}
4701
4702/*
4703 * Fully compact the extent records managed by the indirection array.
4704 */
4705void
4706xfs_iext_irec_compact_full(
4707 xfs_ifork_t *ifp) /* inode fork pointer */
4708{
a6f64d4a 4709 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
0293ce3a
MK
4710 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4711 int erp_idx = 0; /* extent irec index */
4712 int ext_avail; /* empty entries in ex list */
4713 int ext_diff; /* number of exts to add */
4714 int nlists; /* number of irec's (ex lists) */
4715
4716 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4717 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4718 erp = ifp->if_u1.if_ext_irec;
4719 ep = &erp->er_extbuf[erp->er_extcount];
4720 erp_next = erp + 1;
4721 ep_next = erp_next->er_extbuf;
4722 while (erp_idx < nlists - 1) {
4723 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4724 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4725 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4726 erp->er_extcount += ext_diff;
4727 erp_next->er_extcount -= ext_diff;
4728 /* Remove next page */
4729 if (erp_next->er_extcount == 0) {
4730 /*
4731 * Free page before removing extent record
4732 * so er_extoffs don't get modified in
4733 * xfs_iext_irec_remove.
4734 */
4735 kmem_free(erp_next->er_extbuf,
4736 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4737 erp_next->er_extbuf = NULL;
4738 xfs_iext_irec_remove(ifp, erp_idx + 1);
4739 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4740 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4741 /* Update next page */
4742 } else {
4743 /* Move rest of page up to become next new page */
4744 memmove(erp_next->er_extbuf, ep_next,
4745 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4746 ep_next = erp_next->er_extbuf;
4747 memset(&ep_next[erp_next->er_extcount], 0,
4748 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4749 sizeof(xfs_bmbt_rec_t));
4750 }
4751 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4752 erp_idx++;
4753 if (erp_idx < nlists)
4754 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4755 else
4756 break;
4757 }
4758 ep = &erp->er_extbuf[erp->er_extcount];
4759 erp_next = erp + 1;
4760 ep_next = erp_next->er_extbuf;
4761 }
4762}
4763
4764/*
4765 * This is called to update the er_extoff field in the indirection
4766 * array when extents have been added or removed from one of the
4767 * extent lists. erp_idx contains the irec index to begin updating
4768 * at and ext_diff contains the number of extents that were added
4769 * or removed.
4770 */
4771void
4772xfs_iext_irec_update_extoffs(
4773 xfs_ifork_t *ifp, /* inode fork pointer */
4774 int erp_idx, /* irec index to update */
4775 int ext_diff) /* number of new extents */
4776{
4777 int i; /* loop counter */
4778 int nlists; /* number of irec's (ex lists */
4779
4780 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4781 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4782 for (i = erp_idx; i < nlists; i++) {
4783 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4784 }
4785}
This page took 0.496275 seconds and 5 git commands to generate.