xfs: convert the quota debug prints to new API
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451 25#include "xfs_inum.h"
1da177e4
LT
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_sb.h"
29#include "xfs_ag.h"
1da177e4 30#include "xfs_mount.h"
1da177e4 31#include "xfs_bmap_btree.h"
a844f451 32#include "xfs_alloc_btree.h"
1da177e4 33#include "xfs_ialloc_btree.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4 35#include "xfs_dinode.h"
1da177e4 36#include "xfs_inode.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451
NS
38#include "xfs_inode_item.h"
39#include "xfs_btree.h"
8c4ed633 40#include "xfs_btree_trace.h"
a844f451
NS
41#include "xfs_alloc.h"
42#include "xfs_ialloc.h"
43#include "xfs_bmap.h"
1da177e4 44#include "xfs_error.h"
1da177e4 45#include "xfs_utils.h"
1da177e4 46#include "xfs_quota.h"
2a82b8be 47#include "xfs_filestream.h"
739bfb2a 48#include "xfs_vnodeops.h"
0b1b213f 49#include "xfs_trace.h"
1da177e4 50
1da177e4
LT
51kmem_zone_t *xfs_ifork_zone;
52kmem_zone_t *xfs_inode_zone;
1da177e4
LT
53
54/*
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64
1da177e4
LT
65#ifdef DEBUG
66/*
67 * Make sure that the extents in the given memory buffer
68 * are valid.
69 */
70STATIC void
71xfs_validate_extents(
4eea22f0 72 xfs_ifork_t *ifp,
1da177e4 73 int nrecs,
1da177e4
LT
74 xfs_exntfmt_t fmt)
75{
76 xfs_bmbt_irec_t irec;
a6f64d4a 77 xfs_bmbt_rec_host_t rec;
1da177e4
LT
78 int i;
79
80 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
81 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 rec.l0 = get_unaligned(&ep->l0);
83 rec.l1 = get_unaligned(&ep->l1);
84 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
85 if (fmt == XFS_EXTFMT_NOSTATE)
86 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
87 }
88}
89#else /* DEBUG */
a6f64d4a 90#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
91#endif /* DEBUG */
92
93/*
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
96 */
97#if defined(DEBUG)
98void
99xfs_inobp_check(
100 xfs_mount_t *mp,
101 xfs_buf_t *bp)
102{
103 int i;
104 int j;
105 xfs_dinode_t *dip;
106
107 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108
109 for (i = 0; i < j; i++) {
110 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 i * mp->m_sb.sb_inodesize);
112 if (!dip->di_next_unlinked) {
53487786
DC
113 xfs_alert(mp,
114 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
1da177e4
LT
115 bp);
116 ASSERT(dip->di_next_unlinked);
117 }
118 }
119}
120#endif
121
4ae29b43
DC
122/*
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
126 */
127STATIC int
128xfs_imap_to_bp(
129 xfs_mount_t *mp,
130 xfs_trans_t *tp,
92bfc6e7 131 struct xfs_imap *imap,
4ae29b43
DC
132 xfs_buf_t **bpp,
133 uint buf_flags,
b48d8d64 134 uint iget_flags)
4ae29b43
DC
135{
136 int error;
137 int i;
138 int ni;
139 xfs_buf_t *bp;
140
141 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 142 (int)imap->im_len, buf_flags, &bp);
4ae29b43 143 if (error) {
a3f74ffb
DC
144 if (error != EAGAIN) {
145 cmn_err(CE_WARN,
146 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
4ae29b43
DC
147 "an error %d on %s. Returning error.",
148 error, mp->m_fsname);
a3f74ffb 149 } else {
0cadda1c 150 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb 151 }
4ae29b43
DC
152 return error;
153 }
154
155 /*
156 * Validate the magic number and version of every inode in the buffer
157 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
158 */
159#ifdef DEBUG
160 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
161#else /* usual case */
162 ni = 1;
163#endif
164
165 for (i = 0; i < ni; i++) {
166 int di_ok;
167 xfs_dinode_t *dip;
168
169 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
170 (i << mp->m_sb.sb_inodelog));
81591fe2
CH
171 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
172 XFS_DINODE_GOOD_VERSION(dip->di_version);
4ae29b43
DC
173 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
174 XFS_ERRTAG_ITOBP_INOTOBP,
175 XFS_RANDOM_ITOBP_INOTOBP))) {
1920779e 176 if (iget_flags & XFS_IGET_UNTRUSTED) {
4ae29b43
DC
177 xfs_trans_brelse(tp, bp);
178 return XFS_ERROR(EINVAL);
179 }
180 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 XFS_ERRLEVEL_HIGH, mp, dip);
182#ifdef DEBUG
183 cmn_err(CE_PANIC,
184 "Device %s - bad inode magic/vsn "
185 "daddr %lld #%d (magic=%x)",
186 XFS_BUFTARG_NAME(mp->m_ddev_targp),
187 (unsigned long long)imap->im_blkno, i,
81591fe2 188 be16_to_cpu(dip->di_magic));
4ae29b43
DC
189#endif
190 xfs_trans_brelse(tp, bp);
191 return XFS_ERROR(EFSCORRUPTED);
192 }
193 }
194
195 xfs_inobp_check(mp, bp);
196
197 /*
198 * Mark the buffer as an inode buffer now that it looks good
199 */
200 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
201
202 *bpp = bp;
203 return 0;
204}
205
1da177e4
LT
206/*
207 * This routine is called to map an inode number within a file
208 * system to the buffer containing the on-disk version of the
209 * inode. It returns a pointer to the buffer containing the
210 * on-disk inode in the bpp parameter, and in the dip parameter
211 * it returns a pointer to the on-disk inode within that buffer.
212 *
213 * If a non-zero error is returned, then the contents of bpp and
214 * dipp are undefined.
215 *
216 * Use xfs_imap() to determine the size and location of the
217 * buffer to read from disk.
218 */
c679eef0 219int
1da177e4
LT
220xfs_inotobp(
221 xfs_mount_t *mp,
222 xfs_trans_t *tp,
223 xfs_ino_t ino,
224 xfs_dinode_t **dipp,
225 xfs_buf_t **bpp,
c679eef0
CH
226 int *offset,
227 uint imap_flags)
1da177e4 228{
92bfc6e7 229 struct xfs_imap imap;
1da177e4
LT
230 xfs_buf_t *bp;
231 int error;
1da177e4 232
1da177e4 233 imap.im_blkno = 0;
a1941895 234 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
4ae29b43 235 if (error)
1da177e4 236 return error;
1da177e4 237
0cadda1c 238 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
4ae29b43 239 if (error)
1da177e4 240 return error;
1da177e4 241
1da177e4
LT
242 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
243 *bpp = bp;
244 *offset = imap.im_boffset;
245 return 0;
246}
247
248
249/*
250 * This routine is called to map an inode to the buffer containing
251 * the on-disk version of the inode. It returns a pointer to the
252 * buffer containing the on-disk inode in the bpp parameter, and in
253 * the dip parameter it returns a pointer to the on-disk inode within
254 * that buffer.
255 *
256 * If a non-zero error is returned, then the contents of bpp and
257 * dipp are undefined.
258 *
76d8b277
CH
259 * The inode is expected to already been mapped to its buffer and read
260 * in once, thus we can use the mapping information stored in the inode
261 * rather than calling xfs_imap(). This allows us to avoid the overhead
262 * of looking at the inode btree for small block file systems
94e1b69d 263 * (see xfs_imap()).
1da177e4
LT
264 */
265int
266xfs_itobp(
267 xfs_mount_t *mp,
268 xfs_trans_t *tp,
269 xfs_inode_t *ip,
270 xfs_dinode_t **dipp,
271 xfs_buf_t **bpp,
a3f74ffb 272 uint buf_flags)
1da177e4
LT
273{
274 xfs_buf_t *bp;
275 int error;
1da177e4 276
92bfc6e7 277 ASSERT(ip->i_imap.im_blkno != 0);
1da177e4 278
92bfc6e7 279 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
4ae29b43 280 if (error)
1da177e4 281 return error;
1da177e4 282
a3f74ffb 283 if (!bp) {
0cadda1c 284 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb
DC
285 ASSERT(tp == NULL);
286 *bpp = NULL;
287 return EAGAIN;
288 }
289
92bfc6e7 290 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
291 *bpp = bp;
292 return 0;
293}
294
295/*
296 * Move inode type and inode format specific information from the
297 * on-disk inode to the in-core inode. For fifos, devs, and sockets
298 * this means set if_rdev to the proper value. For files, directories,
299 * and symlinks this means to bring in the in-line data or extent
300 * pointers. For a file in B-tree format, only the root is immediately
301 * brought in-core. The rest will be in-lined in if_extents when it
302 * is first referenced (see xfs_iread_extents()).
303 */
304STATIC int
305xfs_iformat(
306 xfs_inode_t *ip,
307 xfs_dinode_t *dip)
308{
309 xfs_attr_shortform_t *atp;
310 int size;
311 int error;
312 xfs_fsize_t di_size;
313 ip->i_df.if_ext_max =
314 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
315 error = 0;
316
81591fe2
CH
317 if (unlikely(be32_to_cpu(dip->di_nextents) +
318 be16_to_cpu(dip->di_anextents) >
319 be64_to_cpu(dip->di_nblocks))) {
65333b4c 320 xfs_warn(ip->i_mount,
3762ec6b 321 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 322 (unsigned long long)ip->i_ino,
81591fe2
CH
323 (int)(be32_to_cpu(dip->di_nextents) +
324 be16_to_cpu(dip->di_anextents)),
1da177e4 325 (unsigned long long)
81591fe2 326 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
327 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
328 ip->i_mount, dip);
329 return XFS_ERROR(EFSCORRUPTED);
330 }
331
81591fe2 332 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
65333b4c 333 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 334 (unsigned long long)ip->i_ino,
81591fe2 335 dip->di_forkoff);
1da177e4
LT
336 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
337 ip->i_mount, dip);
338 return XFS_ERROR(EFSCORRUPTED);
339 }
340
b89d4208
CH
341 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
342 !ip->i_mount->m_rtdev_targp)) {
65333b4c 343 xfs_warn(ip->i_mount,
b89d4208
CH
344 "corrupt dinode %Lu, has realtime flag set.",
345 ip->i_ino);
346 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
347 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
348 return XFS_ERROR(EFSCORRUPTED);
349 }
350
1da177e4
LT
351 switch (ip->i_d.di_mode & S_IFMT) {
352 case S_IFIFO:
353 case S_IFCHR:
354 case S_IFBLK:
355 case S_IFSOCK:
81591fe2 356 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
357 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
358 ip->i_mount, dip);
359 return XFS_ERROR(EFSCORRUPTED);
360 }
361 ip->i_d.di_size = 0;
ba87ea69 362 ip->i_size = 0;
81591fe2 363 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
364 break;
365
366 case S_IFREG:
367 case S_IFLNK:
368 case S_IFDIR:
81591fe2 369 switch (dip->di_format) {
1da177e4
LT
370 case XFS_DINODE_FMT_LOCAL:
371 /*
372 * no local regular files yet
373 */
81591fe2 374 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
65333b4c
DC
375 xfs_warn(ip->i_mount,
376 "corrupt inode %Lu (local format for regular file).",
1da177e4
LT
377 (unsigned long long) ip->i_ino);
378 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
379 XFS_ERRLEVEL_LOW,
380 ip->i_mount, dip);
381 return XFS_ERROR(EFSCORRUPTED);
382 }
383
81591fe2 384 di_size = be64_to_cpu(dip->di_size);
1da177e4 385 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
65333b4c
DC
386 xfs_warn(ip->i_mount,
387 "corrupt inode %Lu (bad size %Ld for local inode).",
1da177e4
LT
388 (unsigned long long) ip->i_ino,
389 (long long) di_size);
390 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
391 XFS_ERRLEVEL_LOW,
392 ip->i_mount, dip);
393 return XFS_ERROR(EFSCORRUPTED);
394 }
395
396 size = (int)di_size;
397 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
398 break;
399 case XFS_DINODE_FMT_EXTENTS:
400 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
401 break;
402 case XFS_DINODE_FMT_BTREE:
403 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
404 break;
405 default:
406 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
407 ip->i_mount);
408 return XFS_ERROR(EFSCORRUPTED);
409 }
410 break;
411
412 default:
413 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
414 return XFS_ERROR(EFSCORRUPTED);
415 }
416 if (error) {
417 return error;
418 }
419 if (!XFS_DFORK_Q(dip))
420 return 0;
421 ASSERT(ip->i_afp == NULL);
4a7edddc 422 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
1da177e4
LT
423 ip->i_afp->if_ext_max =
424 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
81591fe2 425 switch (dip->di_aformat) {
1da177e4
LT
426 case XFS_DINODE_FMT_LOCAL:
427 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 428 size = be16_to_cpu(atp->hdr.totsize);
2809f76a
CH
429
430 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
65333b4c
DC
431 xfs_warn(ip->i_mount,
432 "corrupt inode %Lu (bad attr fork size %Ld).",
2809f76a
CH
433 (unsigned long long) ip->i_ino,
434 (long long) size);
435 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
436 XFS_ERRLEVEL_LOW,
437 ip->i_mount, dip);
438 return XFS_ERROR(EFSCORRUPTED);
439 }
440
1da177e4
LT
441 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
442 break;
443 case XFS_DINODE_FMT_EXTENTS:
444 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
445 break;
446 case XFS_DINODE_FMT_BTREE:
447 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
448 break;
449 default:
450 error = XFS_ERROR(EFSCORRUPTED);
451 break;
452 }
453 if (error) {
454 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
455 ip->i_afp = NULL;
456 xfs_idestroy_fork(ip, XFS_DATA_FORK);
457 }
458 return error;
459}
460
461/*
462 * The file is in-lined in the on-disk inode.
463 * If it fits into if_inline_data, then copy
464 * it there, otherwise allocate a buffer for it
465 * and copy the data there. Either way, set
466 * if_data to point at the data.
467 * If we allocate a buffer for the data, make
468 * sure that its size is a multiple of 4 and
469 * record the real size in i_real_bytes.
470 */
471STATIC int
472xfs_iformat_local(
473 xfs_inode_t *ip,
474 xfs_dinode_t *dip,
475 int whichfork,
476 int size)
477{
478 xfs_ifork_t *ifp;
479 int real_size;
480
481 /*
482 * If the size is unreasonable, then something
483 * is wrong and we just bail out rather than crash in
484 * kmem_alloc() or memcpy() below.
485 */
486 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c
DC
487 xfs_warn(ip->i_mount,
488 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
1da177e4
LT
489 (unsigned long long) ip->i_ino, size,
490 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
491 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
492 ip->i_mount, dip);
493 return XFS_ERROR(EFSCORRUPTED);
494 }
495 ifp = XFS_IFORK_PTR(ip, whichfork);
496 real_size = 0;
497 if (size == 0)
498 ifp->if_u1.if_data = NULL;
499 else if (size <= sizeof(ifp->if_u2.if_inline_data))
500 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
501 else {
502 real_size = roundup(size, 4);
4a7edddc 503 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
504 }
505 ifp->if_bytes = size;
506 ifp->if_real_bytes = real_size;
507 if (size)
508 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
509 ifp->if_flags &= ~XFS_IFEXTENTS;
510 ifp->if_flags |= XFS_IFINLINE;
511 return 0;
512}
513
514/*
515 * The file consists of a set of extents all
516 * of which fit into the on-disk inode.
517 * If there are few enough extents to fit into
518 * the if_inline_ext, then copy them there.
519 * Otherwise allocate a buffer for them and copy
520 * them into it. Either way, set if_extents
521 * to point at the extents.
522 */
523STATIC int
524xfs_iformat_extents(
525 xfs_inode_t *ip,
526 xfs_dinode_t *dip,
527 int whichfork)
528{
a6f64d4a 529 xfs_bmbt_rec_t *dp;
1da177e4
LT
530 xfs_ifork_t *ifp;
531 int nex;
1da177e4
LT
532 int size;
533 int i;
534
535 ifp = XFS_IFORK_PTR(ip, whichfork);
536 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
537 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
538
539 /*
540 * If the number of extents is unreasonable, then something
541 * is wrong and we just bail out rather than crash in
542 * kmem_alloc() or memcpy() below.
543 */
544 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c 545 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
546 (unsigned long long) ip->i_ino, nex);
547 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
548 ip->i_mount, dip);
549 return XFS_ERROR(EFSCORRUPTED);
550 }
551
4eea22f0 552 ifp->if_real_bytes = 0;
1da177e4
LT
553 if (nex == 0)
554 ifp->if_u1.if_extents = NULL;
555 else if (nex <= XFS_INLINE_EXTS)
556 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
557 else
558 xfs_iext_add(ifp, 0, nex);
559
1da177e4 560 ifp->if_bytes = size;
1da177e4
LT
561 if (size) {
562 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 563 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 564 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 565 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
566 ep->l0 = get_unaligned_be64(&dp->l0);
567 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 568 }
3a59c94c 569 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
570 if (whichfork != XFS_DATA_FORK ||
571 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
572 if (unlikely(xfs_check_nostate_extents(
4eea22f0 573 ifp, 0, nex))) {
1da177e4
LT
574 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
575 XFS_ERRLEVEL_LOW,
576 ip->i_mount);
577 return XFS_ERROR(EFSCORRUPTED);
578 }
579 }
580 ifp->if_flags |= XFS_IFEXTENTS;
581 return 0;
582}
583
584/*
585 * The file has too many extents to fit into
586 * the inode, so they are in B-tree format.
587 * Allocate a buffer for the root of the B-tree
588 * and copy the root into it. The i_extents
589 * field will remain NULL until all of the
590 * extents are read in (when they are needed).
591 */
592STATIC int
593xfs_iformat_btree(
594 xfs_inode_t *ip,
595 xfs_dinode_t *dip,
596 int whichfork)
597{
598 xfs_bmdr_block_t *dfp;
599 xfs_ifork_t *ifp;
600 /* REFERENCED */
601 int nrecs;
602 int size;
603
604 ifp = XFS_IFORK_PTR(ip, whichfork);
605 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
606 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 607 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
608
609 /*
610 * blow out if -- fork has less extents than can fit in
611 * fork (fork shouldn't be a btree format), root btree
612 * block has more records than can fit into the fork,
613 * or the number of extents is greater than the number of
614 * blocks.
615 */
616 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
617 || XFS_BMDR_SPACE_CALC(nrecs) >
618 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
619 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
65333b4c 620 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
1da177e4 621 (unsigned long long) ip->i_ino);
65333b4c
DC
622 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
623 ip->i_mount, dip);
1da177e4
LT
624 return XFS_ERROR(EFSCORRUPTED);
625 }
626
627 ifp->if_broot_bytes = size;
4a7edddc 628 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
1da177e4
LT
629 ASSERT(ifp->if_broot != NULL);
630 /*
631 * Copy and convert from the on-disk structure
632 * to the in-memory structure.
633 */
60197e8d
CH
634 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
635 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
636 ifp->if_broot, size);
1da177e4
LT
637 ifp->if_flags &= ~XFS_IFEXTENTS;
638 ifp->if_flags |= XFS_IFBROOT;
639
640 return 0;
641}
642
d96f8f89 643STATIC void
347d1c01
CH
644xfs_dinode_from_disk(
645 xfs_icdinode_t *to,
81591fe2 646 xfs_dinode_t *from)
1da177e4 647{
347d1c01
CH
648 to->di_magic = be16_to_cpu(from->di_magic);
649 to->di_mode = be16_to_cpu(from->di_mode);
650 to->di_version = from ->di_version;
651 to->di_format = from->di_format;
652 to->di_onlink = be16_to_cpu(from->di_onlink);
653 to->di_uid = be32_to_cpu(from->di_uid);
654 to->di_gid = be32_to_cpu(from->di_gid);
655 to->di_nlink = be32_to_cpu(from->di_nlink);
6743099c
AM
656 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
657 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
347d1c01
CH
658 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
659 to->di_flushiter = be16_to_cpu(from->di_flushiter);
660 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
661 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
662 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
663 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
664 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
665 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
666 to->di_size = be64_to_cpu(from->di_size);
667 to->di_nblocks = be64_to_cpu(from->di_nblocks);
668 to->di_extsize = be32_to_cpu(from->di_extsize);
669 to->di_nextents = be32_to_cpu(from->di_nextents);
670 to->di_anextents = be16_to_cpu(from->di_anextents);
671 to->di_forkoff = from->di_forkoff;
672 to->di_aformat = from->di_aformat;
673 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
674 to->di_dmstate = be16_to_cpu(from->di_dmstate);
675 to->di_flags = be16_to_cpu(from->di_flags);
676 to->di_gen = be32_to_cpu(from->di_gen);
677}
678
679void
680xfs_dinode_to_disk(
81591fe2 681 xfs_dinode_t *to,
347d1c01
CH
682 xfs_icdinode_t *from)
683{
684 to->di_magic = cpu_to_be16(from->di_magic);
685 to->di_mode = cpu_to_be16(from->di_mode);
686 to->di_version = from ->di_version;
687 to->di_format = from->di_format;
688 to->di_onlink = cpu_to_be16(from->di_onlink);
689 to->di_uid = cpu_to_be32(from->di_uid);
690 to->di_gid = cpu_to_be32(from->di_gid);
691 to->di_nlink = cpu_to_be32(from->di_nlink);
6743099c
AM
692 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
693 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
347d1c01
CH
694 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
695 to->di_flushiter = cpu_to_be16(from->di_flushiter);
696 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
697 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
698 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
699 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
700 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
701 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
702 to->di_size = cpu_to_be64(from->di_size);
703 to->di_nblocks = cpu_to_be64(from->di_nblocks);
704 to->di_extsize = cpu_to_be32(from->di_extsize);
705 to->di_nextents = cpu_to_be32(from->di_nextents);
706 to->di_anextents = cpu_to_be16(from->di_anextents);
707 to->di_forkoff = from->di_forkoff;
708 to->di_aformat = from->di_aformat;
709 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
710 to->di_dmstate = cpu_to_be16(from->di_dmstate);
711 to->di_flags = cpu_to_be16(from->di_flags);
712 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
713}
714
715STATIC uint
716_xfs_dic2xflags(
1da177e4
LT
717 __uint16_t di_flags)
718{
719 uint flags = 0;
720
721 if (di_flags & XFS_DIFLAG_ANY) {
722 if (di_flags & XFS_DIFLAG_REALTIME)
723 flags |= XFS_XFLAG_REALTIME;
724 if (di_flags & XFS_DIFLAG_PREALLOC)
725 flags |= XFS_XFLAG_PREALLOC;
726 if (di_flags & XFS_DIFLAG_IMMUTABLE)
727 flags |= XFS_XFLAG_IMMUTABLE;
728 if (di_flags & XFS_DIFLAG_APPEND)
729 flags |= XFS_XFLAG_APPEND;
730 if (di_flags & XFS_DIFLAG_SYNC)
731 flags |= XFS_XFLAG_SYNC;
732 if (di_flags & XFS_DIFLAG_NOATIME)
733 flags |= XFS_XFLAG_NOATIME;
734 if (di_flags & XFS_DIFLAG_NODUMP)
735 flags |= XFS_XFLAG_NODUMP;
736 if (di_flags & XFS_DIFLAG_RTINHERIT)
737 flags |= XFS_XFLAG_RTINHERIT;
738 if (di_flags & XFS_DIFLAG_PROJINHERIT)
739 flags |= XFS_XFLAG_PROJINHERIT;
740 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
741 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
742 if (di_flags & XFS_DIFLAG_EXTSIZE)
743 flags |= XFS_XFLAG_EXTSIZE;
744 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
745 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
746 if (di_flags & XFS_DIFLAG_NODEFRAG)
747 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
748 if (di_flags & XFS_DIFLAG_FILESTREAM)
749 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
750 }
751
752 return flags;
753}
754
755uint
756xfs_ip2xflags(
757 xfs_inode_t *ip)
758{
347d1c01 759 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 760
a916e2bd 761 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 762 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
763}
764
765uint
766xfs_dic2xflags(
45ba598e 767 xfs_dinode_t *dip)
1da177e4 768{
81591fe2 769 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 770 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
771}
772
07c8f675 773/*
24f211ba 774 * Read the disk inode attributes into the in-core inode structure.
1da177e4
LT
775 */
776int
777xfs_iread(
778 xfs_mount_t *mp,
779 xfs_trans_t *tp,
24f211ba 780 xfs_inode_t *ip,
24f211ba 781 uint iget_flags)
1da177e4
LT
782{
783 xfs_buf_t *bp;
784 xfs_dinode_t *dip;
1da177e4
LT
785 int error;
786
1da177e4 787 /*
92bfc6e7 788 * Fill in the location information in the in-core inode.
1da177e4 789 */
24f211ba 790 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
76d8b277 791 if (error)
24f211ba 792 return error;
76d8b277
CH
793
794 /*
92bfc6e7 795 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 796 */
92bfc6e7 797 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
0cadda1c 798 XBF_LOCK, iget_flags);
9ed0451e 799 if (error)
24f211ba 800 return error;
92bfc6e7 801 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 802
1da177e4
LT
803 /*
804 * If we got something that isn't an inode it means someone
805 * (nfs or dmi) has a stale handle.
806 */
81591fe2 807 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
1da177e4 808#ifdef DEBUG
53487786
DC
809 xfs_alert(mp,
810 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
811 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
1da177e4 812#endif /* DEBUG */
9ed0451e
CH
813 error = XFS_ERROR(EINVAL);
814 goto out_brelse;
1da177e4
LT
815 }
816
817 /*
818 * If the on-disk inode is already linked to a directory
819 * entry, copy all of the inode into the in-core inode.
820 * xfs_iformat() handles copying in the inode format
821 * specific information.
822 * Otherwise, just get the truly permanent information.
823 */
81591fe2
CH
824 if (dip->di_mode) {
825 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
826 error = xfs_iformat(ip, dip);
827 if (error) {
1da177e4 828#ifdef DEBUG
53487786
DC
829 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
830 __func__, error);
1da177e4 831#endif /* DEBUG */
9ed0451e 832 goto out_brelse;
1da177e4
LT
833 }
834 } else {
81591fe2
CH
835 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
836 ip->i_d.di_version = dip->di_version;
837 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
838 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
839 /*
840 * Make sure to pull in the mode here as well in
841 * case the inode is released without being used.
842 * This ensures that xfs_inactive() will see that
843 * the inode is already free and not try to mess
844 * with the uninitialized part of it.
845 */
846 ip->i_d.di_mode = 0;
847 /*
848 * Initialize the per-fork minima and maxima for a new
849 * inode here. xfs_iformat will do it for old inodes.
850 */
851 ip->i_df.if_ext_max =
852 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
853 }
854
1da177e4
LT
855 /*
856 * The inode format changed when we moved the link count and
857 * made it 32 bits long. If this is an old format inode,
858 * convert it in memory to look like a new one. If it gets
859 * flushed to disk we will convert back before flushing or
860 * logging it. We zero out the new projid field and the old link
861 * count field. We'll handle clearing the pad field (the remains
862 * of the old uuid field) when we actually convert the inode to
863 * the new format. We don't change the version number so that we
864 * can distinguish this from a real new format inode.
865 */
51ce16d5 866 if (ip->i_d.di_version == 1) {
1da177e4
LT
867 ip->i_d.di_nlink = ip->i_d.di_onlink;
868 ip->i_d.di_onlink = 0;
6743099c 869 xfs_set_projid(ip, 0);
1da177e4
LT
870 }
871
872 ip->i_delayed_blks = 0;
ba87ea69 873 ip->i_size = ip->i_d.di_size;
1da177e4
LT
874
875 /*
876 * Mark the buffer containing the inode as something to keep
877 * around for a while. This helps to keep recently accessed
878 * meta-data in-core longer.
879 */
821eb21d 880 xfs_buf_set_ref(bp, XFS_INO_REF);
1da177e4
LT
881
882 /*
883 * Use xfs_trans_brelse() to release the buffer containing the
884 * on-disk inode, because it was acquired with xfs_trans_read_buf()
885 * in xfs_itobp() above. If tp is NULL, this is just a normal
886 * brelse(). If we're within a transaction, then xfs_trans_brelse()
887 * will only release the buffer if it is not dirty within the
888 * transaction. It will be OK to release the buffer in this case,
889 * because inodes on disk are never destroyed and we will be
890 * locking the new in-core inode before putting it in the hash
891 * table where other processes can find it. Thus we don't have
892 * to worry about the inode being changed just because we released
893 * the buffer.
894 */
9ed0451e
CH
895 out_brelse:
896 xfs_trans_brelse(tp, bp);
9ed0451e 897 return error;
1da177e4
LT
898}
899
900/*
901 * Read in extents from a btree-format inode.
902 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
903 */
904int
905xfs_iread_extents(
906 xfs_trans_t *tp,
907 xfs_inode_t *ip,
908 int whichfork)
909{
910 int error;
911 xfs_ifork_t *ifp;
4eea22f0 912 xfs_extnum_t nextents;
1da177e4
LT
913
914 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
915 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
916 ip->i_mount);
917 return XFS_ERROR(EFSCORRUPTED);
918 }
4eea22f0 919 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1da177e4 920 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 921
1da177e4
LT
922 /*
923 * We know that the size is valid (it's checked in iformat_btree)
924 */
1da177e4 925 ifp->if_lastex = NULLEXTNUM;
4eea22f0 926 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 927 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 928 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
929 error = xfs_bmap_read_extents(tp, ip, whichfork);
930 if (error) {
4eea22f0 931 xfs_iext_destroy(ifp);
1da177e4
LT
932 ifp->if_flags &= ~XFS_IFEXTENTS;
933 return error;
934 }
a6f64d4a 935 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
936 return 0;
937}
938
939/*
940 * Allocate an inode on disk and return a copy of its in-core version.
941 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
942 * appropriately within the inode. The uid and gid for the inode are
943 * set according to the contents of the given cred structure.
944 *
945 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
946 * has a free inode available, call xfs_iget()
947 * to obtain the in-core version of the allocated inode. Finally,
948 * fill in the inode and log its initial contents. In this case,
949 * ialloc_context would be set to NULL and call_again set to false.
950 *
951 * If xfs_dialloc() does not have an available inode,
952 * it will replenish its supply by doing an allocation. Since we can
953 * only do one allocation within a transaction without deadlocks, we
954 * must commit the current transaction before returning the inode itself.
955 * In this case, therefore, we will set call_again to true and return.
956 * The caller should then commit the current transaction, start a new
957 * transaction, and call xfs_ialloc() again to actually get the inode.
958 *
959 * To ensure that some other process does not grab the inode that
960 * was allocated during the first call to xfs_ialloc(), this routine
961 * also returns the [locked] bp pointing to the head of the freelist
962 * as ialloc_context. The caller should hold this buffer across
963 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
964 *
965 * If we are allocating quota inodes, we do not have a parent inode
966 * to attach to or associate with (i.e. pip == NULL) because they
967 * are not linked into the directory structure - they are attached
968 * directly to the superblock - and so have no parent.
1da177e4
LT
969 */
970int
971xfs_ialloc(
972 xfs_trans_t *tp,
973 xfs_inode_t *pip,
974 mode_t mode,
31b084ae 975 xfs_nlink_t nlink,
1da177e4 976 xfs_dev_t rdev,
6743099c 977 prid_t prid,
1da177e4
LT
978 int okalloc,
979 xfs_buf_t **ialloc_context,
980 boolean_t *call_again,
981 xfs_inode_t **ipp)
982{
983 xfs_ino_t ino;
984 xfs_inode_t *ip;
1da177e4
LT
985 uint flags;
986 int error;
dff35fd4 987 timespec_t tv;
bf904248 988 int filestreams = 0;
1da177e4
LT
989
990 /*
991 * Call the space management code to pick
992 * the on-disk inode to be allocated.
993 */
b11f94d5 994 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 995 ialloc_context, call_again, &ino);
bf904248 996 if (error)
1da177e4 997 return error;
1da177e4
LT
998 if (*call_again || ino == NULLFSINO) {
999 *ipp = NULL;
1000 return 0;
1001 }
1002 ASSERT(*ialloc_context == NULL);
1003
1004 /*
1005 * Get the in-core inode with the lock held exclusively.
1006 * This is because we're setting fields here we need
1007 * to prevent others from looking at until we're done.
1008 */
ec3ba85f
CH
1009 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1010 XFS_ILOCK_EXCL, &ip);
bf904248 1011 if (error)
1da177e4 1012 return error;
1da177e4
LT
1013 ASSERT(ip != NULL);
1014
1da177e4
LT
1015 ip->i_d.di_mode = (__uint16_t)mode;
1016 ip->i_d.di_onlink = 0;
1017 ip->i_d.di_nlink = nlink;
1018 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1019 ip->i_d.di_uid = current_fsuid();
1020 ip->i_d.di_gid = current_fsgid();
6743099c 1021 xfs_set_projid(ip, prid);
1da177e4
LT
1022 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1023
1024 /*
1025 * If the superblock version is up to where we support new format
1026 * inodes and this is currently an old format inode, then change
1027 * the inode version number now. This way we only do the conversion
1028 * here rather than here and in the flush/logging code.
1029 */
62118709 1030 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1031 ip->i_d.di_version == 1) {
1032 ip->i_d.di_version = 2;
1da177e4
LT
1033 /*
1034 * We've already zeroed the old link count, the projid field,
1035 * and the pad field.
1036 */
1037 }
1038
1039 /*
1040 * Project ids won't be stored on disk if we are using a version 1 inode.
1041 */
51ce16d5 1042 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1043 xfs_bump_ino_vers2(tp, ip);
1044
bd186aa9 1045 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1046 ip->i_d.di_gid = pip->i_d.di_gid;
1047 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1048 ip->i_d.di_mode |= S_ISGID;
1049 }
1050 }
1051
1052 /*
1053 * If the group ID of the new file does not match the effective group
1054 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1055 * (and only if the irix_sgid_inherit compatibility variable is set).
1056 */
1057 if ((irix_sgid_inherit) &&
1058 (ip->i_d.di_mode & S_ISGID) &&
1059 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1060 ip->i_d.di_mode &= ~S_ISGID;
1061 }
1062
1063 ip->i_d.di_size = 0;
ba87ea69 1064 ip->i_size = 0;
1da177e4
LT
1065 ip->i_d.di_nextents = 0;
1066 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1067
1068 nanotime(&tv);
1069 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1070 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1071 ip->i_d.di_atime = ip->i_d.di_mtime;
1072 ip->i_d.di_ctime = ip->i_d.di_mtime;
1073
1da177e4
LT
1074 /*
1075 * di_gen will have been taken care of in xfs_iread.
1076 */
1077 ip->i_d.di_extsize = 0;
1078 ip->i_d.di_dmevmask = 0;
1079 ip->i_d.di_dmstate = 0;
1080 ip->i_d.di_flags = 0;
1081 flags = XFS_ILOG_CORE;
1082 switch (mode & S_IFMT) {
1083 case S_IFIFO:
1084 case S_IFCHR:
1085 case S_IFBLK:
1086 case S_IFSOCK:
1087 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1088 ip->i_df.if_u2.if_rdev = rdev;
1089 ip->i_df.if_flags = 0;
1090 flags |= XFS_ILOG_DEV;
1091 break;
1092 case S_IFREG:
bf904248
DC
1093 /*
1094 * we can't set up filestreams until after the VFS inode
1095 * is set up properly.
1096 */
1097 if (pip && xfs_inode_is_filestream(pip))
1098 filestreams = 1;
2a82b8be 1099 /* fall through */
1da177e4 1100 case S_IFDIR:
b11f94d5 1101 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1102 uint di_flags = 0;
1103
1104 if ((mode & S_IFMT) == S_IFDIR) {
1105 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1106 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1107 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1108 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1109 ip->i_d.di_extsize = pip->i_d.di_extsize;
1110 }
1111 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1112 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1113 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1114 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1115 di_flags |= XFS_DIFLAG_EXTSIZE;
1116 ip->i_d.di_extsize = pip->i_d.di_extsize;
1117 }
1da177e4
LT
1118 }
1119 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1120 xfs_inherit_noatime)
365ca83d 1121 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1122 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1123 xfs_inherit_nodump)
365ca83d 1124 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1125 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1126 xfs_inherit_sync)
365ca83d 1127 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1128 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1129 xfs_inherit_nosymlinks)
365ca83d
NS
1130 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1131 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1132 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1133 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1134 xfs_inherit_nodefrag)
1135 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1136 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1137 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1138 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1139 }
1140 /* FALLTHROUGH */
1141 case S_IFLNK:
1142 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1143 ip->i_df.if_flags = XFS_IFEXTENTS;
1144 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1145 ip->i_df.if_u1.if_extents = NULL;
1146 break;
1147 default:
1148 ASSERT(0);
1149 }
1150 /*
1151 * Attribute fork settings for new inode.
1152 */
1153 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1154 ip->i_d.di_anextents = 0;
1155
1156 /*
1157 * Log the new values stuffed into the inode.
1158 */
ec3ba85f 1159 xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
1160 xfs_trans_log_inode(tp, ip, flags);
1161
b83bd138 1162 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1163 xfs_setup_inode(ip);
1da177e4 1164
bf904248
DC
1165 /* now we have set up the vfs inode we can associate the filestream */
1166 if (filestreams) {
1167 error = xfs_filestream_associate(pip, ip);
1168 if (error < 0)
1169 return -error;
1170 if (!error)
1171 xfs_iflags_set(ip, XFS_IFILESTREAM);
1172 }
1173
1da177e4
LT
1174 *ipp = ip;
1175 return 0;
1176}
1177
1178/*
1179 * Check to make sure that there are no blocks allocated to the
1180 * file beyond the size of the file. We don't check this for
1181 * files with fixed size extents or real time extents, but we
1182 * at least do it for regular files.
1183 */
1184#ifdef DEBUG
1185void
1186xfs_isize_check(
1187 xfs_mount_t *mp,
1188 xfs_inode_t *ip,
1189 xfs_fsize_t isize)
1190{
1191 xfs_fileoff_t map_first;
1192 int nimaps;
1193 xfs_bmbt_irec_t imaps[2];
1194
1195 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1196 return;
1197
71ddabb9
ES
1198 if (XFS_IS_REALTIME_INODE(ip))
1199 return;
1200
1201 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1202 return;
1203
1204 nimaps = 2;
1205 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1206 /*
1207 * The filesystem could be shutting down, so bmapi may return
1208 * an error.
1209 */
1210 if (xfs_bmapi(NULL, ip, map_first,
1211 (XFS_B_TO_FSB(mp,
1212 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1213 map_first),
1214 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
b4e9181e 1215 NULL))
1da177e4
LT
1216 return;
1217 ASSERT(nimaps == 1);
1218 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1219}
1220#endif /* DEBUG */
1221
1222/*
1223 * Calculate the last possible buffered byte in a file. This must
1224 * include data that was buffered beyond the EOF by the write code.
1225 * This also needs to deal with overflowing the xfs_fsize_t type
1226 * which can happen for sizes near the limit.
1227 *
1228 * We also need to take into account any blocks beyond the EOF. It
1229 * may be the case that they were buffered by a write which failed.
1230 * In that case the pages will still be in memory, but the inode size
1231 * will never have been updated.
1232 */
d96f8f89 1233STATIC xfs_fsize_t
1da177e4
LT
1234xfs_file_last_byte(
1235 xfs_inode_t *ip)
1236{
1237 xfs_mount_t *mp;
1238 xfs_fsize_t last_byte;
1239 xfs_fileoff_t last_block;
1240 xfs_fileoff_t size_last_block;
1241 int error;
1242
579aa9ca 1243 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1da177e4
LT
1244
1245 mp = ip->i_mount;
1246 /*
1247 * Only check for blocks beyond the EOF if the extents have
1248 * been read in. This eliminates the need for the inode lock,
1249 * and it also saves us from looking when it really isn't
1250 * necessary.
1251 */
1252 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
f25181f5 1253 xfs_ilock(ip, XFS_ILOCK_SHARED);
1da177e4
LT
1254 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1255 XFS_DATA_FORK);
f25181f5 1256 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1da177e4
LT
1257 if (error) {
1258 last_block = 0;
1259 }
1260 } else {
1261 last_block = 0;
1262 }
ba87ea69 1263 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1264 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1265
1266 last_byte = XFS_FSB_TO_B(mp, last_block);
1267 if (last_byte < 0) {
1268 return XFS_MAXIOFFSET(mp);
1269 }
1270 last_byte += (1 << mp->m_writeio_log);
1271 if (last_byte < 0) {
1272 return XFS_MAXIOFFSET(mp);
1273 }
1274 return last_byte;
1275}
1276
1da177e4
LT
1277/*
1278 * Start the truncation of the file to new_size. The new size
1279 * must be smaller than the current size. This routine will
1280 * clear the buffer and page caches of file data in the removed
1281 * range, and xfs_itruncate_finish() will remove the underlying
1282 * disk blocks.
1283 *
1284 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1285 * must NOT have the inode lock held at all. This is because we're
1286 * calling into the buffer/page cache code and we can't hold the
1287 * inode lock when we do so.
1288 *
38e2299a
DC
1289 * We need to wait for any direct I/Os in flight to complete before we
1290 * proceed with the truncate. This is needed to prevent the extents
1291 * being read or written by the direct I/Os from being removed while the
1292 * I/O is in flight as there is no other method of synchronising
1293 * direct I/O with the truncate operation. Also, because we hold
1294 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1295 * started until the truncate completes and drops the lock. Essentially,
25e41b3d
CH
1296 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1297 * ordering between direct I/Os and the truncate operation.
38e2299a 1298 *
1da177e4
LT
1299 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1300 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1301 * in the case that the caller is locking things out of order and
1302 * may not be able to call xfs_itruncate_finish() with the inode lock
1303 * held without dropping the I/O lock. If the caller must drop the
1304 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1305 * must be called again with all the same restrictions as the initial
1306 * call.
1307 */
d3cf2094 1308int
1da177e4
LT
1309xfs_itruncate_start(
1310 xfs_inode_t *ip,
1311 uint flags,
1312 xfs_fsize_t new_size)
1313{
1314 xfs_fsize_t last_byte;
1315 xfs_off_t toss_start;
1316 xfs_mount_t *mp;
d3cf2094 1317 int error = 0;
1da177e4 1318
579aa9ca 1319 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ba87ea69 1320 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1321 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1322 (flags == XFS_ITRUNC_MAYBE));
1323
1324 mp = ip->i_mount;
9fa8046f 1325
c734c79b 1326 /* wait for the completion of any pending DIOs */
d112f298 1327 if (new_size == 0 || new_size < ip->i_size)
25e41b3d 1328 xfs_ioend_wait(ip);
c734c79b 1329
1da177e4 1330 /*
67fcaa73 1331 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1332 * overlapping the region being removed. We have to use
67fcaa73 1333 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1334 * caller may not be able to finish the truncate without
1335 * dropping the inode's I/O lock. Make sure
1336 * to catch any pages brought in by buffers overlapping
1337 * the EOF by searching out beyond the isize by our
1338 * block size. We round new_size up to a block boundary
1339 * so that we don't toss things on the same block as
1340 * new_size but before it.
1341 *
67fcaa73 1342 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1343 * call remapf() over the same region if the file is mapped.
1344 * This frees up mapped file references to the pages in the
67fcaa73 1345 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1346 * that we get the latest mapped changes flushed out.
1347 */
1348 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1349 toss_start = XFS_FSB_TO_B(mp, toss_start);
1350 if (toss_start < 0) {
1351 /*
1352 * The place to start tossing is beyond our maximum
1353 * file size, so there is no way that the data extended
1354 * out there.
1355 */
d3cf2094 1356 return 0;
1da177e4
LT
1357 }
1358 last_byte = xfs_file_last_byte(ip);
0b1b213f 1359 trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1da177e4
LT
1360 if (last_byte > toss_start) {
1361 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1362 xfs_tosspages(ip, toss_start,
1363 -1, FI_REMAPF_LOCKED);
1da177e4 1364 } else {
739bfb2a
CH
1365 error = xfs_flushinval_pages(ip, toss_start,
1366 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1367 }
1368 }
1369
1370#ifdef DEBUG
1371 if (new_size == 0) {
df80c933 1372 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1da177e4
LT
1373 }
1374#endif
d3cf2094 1375 return error;
1da177e4
LT
1376}
1377
1378/*
f6485057
DC
1379 * Shrink the file to the given new_size. The new size must be smaller than
1380 * the current size. This will free up the underlying blocks in the removed
1381 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1da177e4 1382 *
f6485057
DC
1383 * The transaction passed to this routine must have made a permanent log
1384 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1385 * given transaction and start new ones, so make sure everything involved in
1386 * the transaction is tidy before calling here. Some transaction will be
1387 * returned to the caller to be committed. The incoming transaction must
1388 * already include the inode, and both inode locks must be held exclusively.
1389 * The inode must also be "held" within the transaction. On return the inode
1390 * will be "held" within the returned transaction. This routine does NOT
1391 * require any disk space to be reserved for it within the transaction.
1da177e4 1392 *
f6485057
DC
1393 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1394 * indicates the fork which is to be truncated. For the attribute fork we only
1395 * support truncation to size 0.
1da177e4 1396 *
f6485057
DC
1397 * We use the sync parameter to indicate whether or not the first transaction
1398 * we perform might have to be synchronous. For the attr fork, it needs to be
1399 * so if the unlink of the inode is not yet known to be permanent in the log.
1400 * This keeps us from freeing and reusing the blocks of the attribute fork
1401 * before the unlink of the inode becomes permanent.
1da177e4 1402 *
f6485057
DC
1403 * For the data fork, we normally have to run synchronously if we're being
1404 * called out of the inactive path or we're being called out of the create path
1405 * where we're truncating an existing file. Either way, the truncate needs to
1406 * be sync so blocks don't reappear in the file with altered data in case of a
1407 * crash. wsync filesystems can run the first case async because anything that
1408 * shrinks the inode has to run sync so by the time we're called here from
1409 * inactive, the inode size is permanently set to 0.
1da177e4 1410 *
f6485057
DC
1411 * Calls from the truncate path always need to be sync unless we're in a wsync
1412 * filesystem and the file has already been unlinked.
1da177e4 1413 *
f6485057
DC
1414 * The caller is responsible for correctly setting the sync parameter. It gets
1415 * too hard for us to guess here which path we're being called out of just
1416 * based on inode state.
1417 *
1418 * If we get an error, we must return with the inode locked and linked into the
1419 * current transaction. This keeps things simple for the higher level code,
1420 * because it always knows that the inode is locked and held in the transaction
1421 * that returns to it whether errors occur or not. We don't mark the inode
1422 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1423 */
1424int
1425xfs_itruncate_finish(
1426 xfs_trans_t **tp,
1427 xfs_inode_t *ip,
1428 xfs_fsize_t new_size,
1429 int fork,
1430 int sync)
1431{
1432 xfs_fsblock_t first_block;
1433 xfs_fileoff_t first_unmap_block;
1434 xfs_fileoff_t last_block;
1435 xfs_filblks_t unmap_len=0;
1436 xfs_mount_t *mp;
1437 xfs_trans_t *ntp;
1438 int done;
1439 int committed;
1440 xfs_bmap_free_t free_list;
1441 int error;
1442
579aa9ca 1443 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ba87ea69 1444 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1445 ASSERT(*tp != NULL);
1446 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1447 ASSERT(ip->i_transp == *tp);
1448 ASSERT(ip->i_itemp != NULL);
898621d5 1449 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1da177e4
LT
1450
1451
1452 ntp = *tp;
1453 mp = (ntp)->t_mountp;
1454 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1455
1456 /*
1457 * We only support truncating the entire attribute fork.
1458 */
1459 if (fork == XFS_ATTR_FORK) {
1460 new_size = 0LL;
1461 }
1462 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
0b1b213f
CH
1463 trace_xfs_itruncate_finish_start(ip, new_size);
1464
1da177e4
LT
1465 /*
1466 * The first thing we do is set the size to new_size permanently
1467 * on disk. This way we don't have to worry about anyone ever
1468 * being able to look at the data being freed even in the face
1469 * of a crash. What we're getting around here is the case where
1470 * we free a block, it is allocated to another file, it is written
1471 * to, and then we crash. If the new data gets written to the
1472 * file but the log buffers containing the free and reallocation
1473 * don't, then we'd end up with garbage in the blocks being freed.
1474 * As long as we make the new_size permanent before actually
1475 * freeing any blocks it doesn't matter if they get writtten to.
1476 *
1477 * The callers must signal into us whether or not the size
1478 * setting here must be synchronous. There are a few cases
1479 * where it doesn't have to be synchronous. Those cases
1480 * occur if the file is unlinked and we know the unlink is
1481 * permanent or if the blocks being truncated are guaranteed
1482 * to be beyond the inode eof (regardless of the link count)
1483 * and the eof value is permanent. Both of these cases occur
1484 * only on wsync-mounted filesystems. In those cases, we're
1485 * guaranteed that no user will ever see the data in the blocks
1486 * that are being truncated so the truncate can run async.
1487 * In the free beyond eof case, the file may wind up with
1488 * more blocks allocated to it than it needs if we crash
1489 * and that won't get fixed until the next time the file
1490 * is re-opened and closed but that's ok as that shouldn't
1491 * be too many blocks.
1492 *
1493 * However, we can't just make all wsync xactions run async
1494 * because there's one call out of the create path that needs
1495 * to run sync where it's truncating an existing file to size
1496 * 0 whose size is > 0.
1497 *
1498 * It's probably possible to come up with a test in this
1499 * routine that would correctly distinguish all the above
1500 * cases from the values of the function parameters and the
1501 * inode state but for sanity's sake, I've decided to let the
1502 * layers above just tell us. It's simpler to correctly figure
1503 * out in the layer above exactly under what conditions we
1504 * can run async and I think it's easier for others read and
1505 * follow the logic in case something has to be changed.
1506 * cscope is your friend -- rcc.
1507 *
1508 * The attribute fork is much simpler.
1509 *
1510 * For the attribute fork we allow the caller to tell us whether
1511 * the unlink of the inode that led to this call is yet permanent
1512 * in the on disk log. If it is not and we will be freeing extents
1513 * in this inode then we make the first transaction synchronous
1514 * to make sure that the unlink is permanent by the time we free
1515 * the blocks.
1516 */
1517 if (fork == XFS_DATA_FORK) {
1518 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1519 /*
1520 * If we are not changing the file size then do
1521 * not update the on-disk file size - we may be
1522 * called from xfs_inactive_free_eofblocks(). If we
1523 * update the on-disk file size and then the system
1524 * crashes before the contents of the file are
1525 * flushed to disk then the files may be full of
1526 * holes (ie NULL files bug).
1527 */
1528 if (ip->i_size != new_size) {
1529 ip->i_d.di_size = new_size;
1530 ip->i_size = new_size;
1531 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1532 }
1da177e4
LT
1533 }
1534 } else if (sync) {
1535 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1536 if (ip->i_d.di_anextents > 0)
1537 xfs_trans_set_sync(ntp);
1538 }
1539 ASSERT(fork == XFS_DATA_FORK ||
1540 (fork == XFS_ATTR_FORK &&
1541 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1542 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1543
1544 /*
1545 * Since it is possible for space to become allocated beyond
1546 * the end of the file (in a crash where the space is allocated
1547 * but the inode size is not yet updated), simply remove any
1548 * blocks which show up between the new EOF and the maximum
1549 * possible file size. If the first block to be removed is
1550 * beyond the maximum file size (ie it is the same as last_block),
1551 * then there is nothing to do.
1552 */
1553 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1554 ASSERT(first_unmap_block <= last_block);
1555 done = 0;
1556 if (last_block == first_unmap_block) {
1557 done = 1;
1558 } else {
1559 unmap_len = last_block - first_unmap_block + 1;
1560 }
1561 while (!done) {
1562 /*
1563 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1564 * will tell us whether it freed the entire range or
1565 * not. If this is a synchronous mount (wsync),
1566 * then we can tell bunmapi to keep all the
1567 * transactions asynchronous since the unlink
1568 * transaction that made this inode inactive has
1569 * already hit the disk. There's no danger of
1570 * the freed blocks being reused, there being a
1571 * crash, and the reused blocks suddenly reappearing
1572 * in this file with garbage in them once recovery
1573 * runs.
1574 */
9d87c319 1575 xfs_bmap_init(&free_list, &first_block);
541d7d3c 1576 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1577 first_unmap_block, unmap_len,
cd8b0bb3 1578 xfs_bmapi_aflag(fork),
1da177e4 1579 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1580 &first_block, &free_list,
b4e9181e 1581 &done);
1da177e4
LT
1582 if (error) {
1583 /*
1584 * If the bunmapi call encounters an error,
1585 * return to the caller where the transaction
1586 * can be properly aborted. We just need to
1587 * make sure we're not holding any resources
1588 * that we were not when we came in.
1589 */
1590 xfs_bmap_cancel(&free_list);
1591 return error;
1592 }
1593
1594 /*
1595 * Duplicate the transaction that has the permanent
1596 * reservation and commit the old transaction.
1597 */
f7c99b6f 1598 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4 1599 ntp = *tp;
898621d5
CH
1600 if (committed)
1601 xfs_trans_ijoin(ntp, ip);
f6485057 1602
1da177e4
LT
1603 if (error) {
1604 /*
f6485057
DC
1605 * If the bmap finish call encounters an error, return
1606 * to the caller where the transaction can be properly
1607 * aborted. We just need to make sure we're not
1608 * holding any resources that we were not when we came
1609 * in.
1da177e4 1610 *
f6485057
DC
1611 * Aborting from this point might lose some blocks in
1612 * the file system, but oh well.
1da177e4
LT
1613 */
1614 xfs_bmap_cancel(&free_list);
1da177e4
LT
1615 return error;
1616 }
1617
1618 if (committed) {
1619 /*
f6485057 1620 * Mark the inode dirty so it will be logged and
e5720eec 1621 * moved forward in the log as part of every commit.
1da177e4 1622 */
1da177e4
LT
1623 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1624 }
f6485057 1625
1da177e4 1626 ntp = xfs_trans_dup(ntp);
e5720eec 1627 error = xfs_trans_commit(*tp, 0);
1da177e4 1628 *tp = ntp;
e5720eec 1629
898621d5 1630 xfs_trans_ijoin(ntp, ip);
f6485057 1631
cc09c0dc
DC
1632 if (error)
1633 return error;
1634 /*
1635 * transaction commit worked ok so we can drop the extra ticket
1636 * reference that we gained in xfs_trans_dup()
1637 */
1638 xfs_log_ticket_put(ntp->t_ticket);
1639 error = xfs_trans_reserve(ntp, 0,
f6485057
DC
1640 XFS_ITRUNCATE_LOG_RES(mp), 0,
1641 XFS_TRANS_PERM_LOG_RES,
1642 XFS_ITRUNCATE_LOG_COUNT);
1643 if (error)
1644 return error;
1da177e4
LT
1645 }
1646 /*
1647 * Only update the size in the case of the data fork, but
1648 * always re-log the inode so that our permanent transaction
1649 * can keep on rolling it forward in the log.
1650 */
1651 if (fork == XFS_DATA_FORK) {
1652 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1653 /*
1654 * If we are not changing the file size then do
1655 * not update the on-disk file size - we may be
1656 * called from xfs_inactive_free_eofblocks(). If we
1657 * update the on-disk file size and then the system
1658 * crashes before the contents of the file are
1659 * flushed to disk then the files may be full of
1660 * holes (ie NULL files bug).
1661 */
1662 if (ip->i_size != new_size) {
1663 ip->i_d.di_size = new_size;
1664 ip->i_size = new_size;
1665 }
1da177e4
LT
1666 }
1667 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1668 ASSERT((new_size != 0) ||
1669 (fork == XFS_ATTR_FORK) ||
1670 (ip->i_delayed_blks == 0));
1671 ASSERT((new_size != 0) ||
1672 (fork == XFS_ATTR_FORK) ||
1673 (ip->i_d.di_nextents == 0));
0b1b213f 1674 trace_xfs_itruncate_finish_end(ip, new_size);
1da177e4
LT
1675 return 0;
1676}
1677
1da177e4
LT
1678/*
1679 * This is called when the inode's link count goes to 0.
1680 * We place the on-disk inode on a list in the AGI. It
1681 * will be pulled from this list when the inode is freed.
1682 */
1683int
1684xfs_iunlink(
1685 xfs_trans_t *tp,
1686 xfs_inode_t *ip)
1687{
1688 xfs_mount_t *mp;
1689 xfs_agi_t *agi;
1690 xfs_dinode_t *dip;
1691 xfs_buf_t *agibp;
1692 xfs_buf_t *ibp;
1da177e4
LT
1693 xfs_agino_t agino;
1694 short bucket_index;
1695 int offset;
1696 int error;
1da177e4
LT
1697
1698 ASSERT(ip->i_d.di_nlink == 0);
1699 ASSERT(ip->i_d.di_mode != 0);
1700 ASSERT(ip->i_transp == tp);
1701
1702 mp = tp->t_mountp;
1703
1da177e4
LT
1704 /*
1705 * Get the agi buffer first. It ensures lock ordering
1706 * on the list.
1707 */
5e1be0fb 1708 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1709 if (error)
1da177e4 1710 return error;
1da177e4 1711 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1712
1da177e4
LT
1713 /*
1714 * Get the index into the agi hash table for the
1715 * list this inode will go on.
1716 */
1717 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1718 ASSERT(agino != 0);
1719 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1720 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1721 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1722
16259e7d 1723 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1724 /*
1725 * There is already another inode in the bucket we need
1726 * to add ourselves to. Add us at the front of the list.
1727 * Here we put the head pointer into our next pointer,
1728 * and then we fall through to point the head at us.
1729 */
0cadda1c 1730 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
c319b58b
VA
1731 if (error)
1732 return error;
1733
347d1c01 1734 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1735 /* both on-disk, don't endian flip twice */
1736 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1737 offset = ip->i_imap.im_boffset +
1da177e4
LT
1738 offsetof(xfs_dinode_t, di_next_unlinked);
1739 xfs_trans_inode_buf(tp, ibp);
1740 xfs_trans_log_buf(tp, ibp, offset,
1741 (offset + sizeof(xfs_agino_t) - 1));
1742 xfs_inobp_check(mp, ibp);
1743 }
1744
1745 /*
1746 * Point the bucket head pointer at the inode being inserted.
1747 */
1748 ASSERT(agino != 0);
16259e7d 1749 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1750 offset = offsetof(xfs_agi_t, agi_unlinked) +
1751 (sizeof(xfs_agino_t) * bucket_index);
1752 xfs_trans_log_buf(tp, agibp, offset,
1753 (offset + sizeof(xfs_agino_t) - 1));
1754 return 0;
1755}
1756
1757/*
1758 * Pull the on-disk inode from the AGI unlinked list.
1759 */
1760STATIC int
1761xfs_iunlink_remove(
1762 xfs_trans_t *tp,
1763 xfs_inode_t *ip)
1764{
1765 xfs_ino_t next_ino;
1766 xfs_mount_t *mp;
1767 xfs_agi_t *agi;
1768 xfs_dinode_t *dip;
1769 xfs_buf_t *agibp;
1770 xfs_buf_t *ibp;
1771 xfs_agnumber_t agno;
1da177e4
LT
1772 xfs_agino_t agino;
1773 xfs_agino_t next_agino;
1774 xfs_buf_t *last_ibp;
6fdf8ccc 1775 xfs_dinode_t *last_dip = NULL;
1da177e4 1776 short bucket_index;
6fdf8ccc 1777 int offset, last_offset = 0;
1da177e4 1778 int error;
1da177e4 1779
1da177e4 1780 mp = tp->t_mountp;
1da177e4 1781 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1782
1783 /*
1784 * Get the agi buffer first. It ensures lock ordering
1785 * on the list.
1786 */
5e1be0fb
CH
1787 error = xfs_read_agi(mp, tp, agno, &agibp);
1788 if (error)
1da177e4 1789 return error;
5e1be0fb 1790
1da177e4 1791 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1792
1da177e4
LT
1793 /*
1794 * Get the index into the agi hash table for the
1795 * list this inode will go on.
1796 */
1797 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1798 ASSERT(agino != 0);
1799 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 1800 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
1801 ASSERT(agi->agi_unlinked[bucket_index]);
1802
16259e7d 1803 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1804 /*
1805 * We're at the head of the list. Get the inode's
1806 * on-disk buffer to see if there is anyone after us
1807 * on the list. Only modify our next pointer if it
1808 * is not already NULLAGINO. This saves us the overhead
1809 * of dealing with the buffer when there is no need to
1810 * change it.
1811 */
0cadda1c 1812 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1da177e4
LT
1813 if (error) {
1814 cmn_err(CE_WARN,
1815 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1816 error, mp->m_fsname);
1817 return error;
1818 }
347d1c01 1819 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1820 ASSERT(next_agino != 0);
1821 if (next_agino != NULLAGINO) {
347d1c01 1822 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1823 offset = ip->i_imap.im_boffset +
1da177e4
LT
1824 offsetof(xfs_dinode_t, di_next_unlinked);
1825 xfs_trans_inode_buf(tp, ibp);
1826 xfs_trans_log_buf(tp, ibp, offset,
1827 (offset + sizeof(xfs_agino_t) - 1));
1828 xfs_inobp_check(mp, ibp);
1829 } else {
1830 xfs_trans_brelse(tp, ibp);
1831 }
1832 /*
1833 * Point the bucket head pointer at the next inode.
1834 */
1835 ASSERT(next_agino != 0);
1836 ASSERT(next_agino != agino);
16259e7d 1837 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1838 offset = offsetof(xfs_agi_t, agi_unlinked) +
1839 (sizeof(xfs_agino_t) * bucket_index);
1840 xfs_trans_log_buf(tp, agibp, offset,
1841 (offset + sizeof(xfs_agino_t) - 1));
1842 } else {
1843 /*
1844 * We need to search the list for the inode being freed.
1845 */
16259e7d 1846 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1847 last_ibp = NULL;
1848 while (next_agino != agino) {
1849 /*
1850 * If the last inode wasn't the one pointing to
1851 * us, then release its buffer since we're not
1852 * going to do anything with it.
1853 */
1854 if (last_ibp != NULL) {
1855 xfs_trans_brelse(tp, last_ibp);
1856 }
1857 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1858 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
c679eef0 1859 &last_ibp, &last_offset, 0);
1da177e4
LT
1860 if (error) {
1861 cmn_err(CE_WARN,
1862 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1863 error, mp->m_fsname);
1864 return error;
1865 }
347d1c01 1866 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1867 ASSERT(next_agino != NULLAGINO);
1868 ASSERT(next_agino != 0);
1869 }
1870 /*
1871 * Now last_ibp points to the buffer previous to us on
1872 * the unlinked list. Pull us from the list.
1873 */
0cadda1c 1874 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1da177e4
LT
1875 if (error) {
1876 cmn_err(CE_WARN,
1877 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1878 error, mp->m_fsname);
1879 return error;
1880 }
347d1c01 1881 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1882 ASSERT(next_agino != 0);
1883 ASSERT(next_agino != agino);
1884 if (next_agino != NULLAGINO) {
347d1c01 1885 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1886 offset = ip->i_imap.im_boffset +
1da177e4
LT
1887 offsetof(xfs_dinode_t, di_next_unlinked);
1888 xfs_trans_inode_buf(tp, ibp);
1889 xfs_trans_log_buf(tp, ibp, offset,
1890 (offset + sizeof(xfs_agino_t) - 1));
1891 xfs_inobp_check(mp, ibp);
1892 } else {
1893 xfs_trans_brelse(tp, ibp);
1894 }
1895 /*
1896 * Point the previous inode on the list to the next inode.
1897 */
347d1c01 1898 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
1899 ASSERT(next_agino != 0);
1900 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1901 xfs_trans_inode_buf(tp, last_ibp);
1902 xfs_trans_log_buf(tp, last_ibp, offset,
1903 (offset + sizeof(xfs_agino_t) - 1));
1904 xfs_inobp_check(mp, last_ibp);
1905 }
1906 return 0;
1907}
1908
5b3eed75
DC
1909/*
1910 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1911 * inodes that are in memory - they all must be marked stale and attached to
1912 * the cluster buffer.
1913 */
ba0f32d4 1914STATIC void
1da177e4
LT
1915xfs_ifree_cluster(
1916 xfs_inode_t *free_ip,
1917 xfs_trans_t *tp,
1918 xfs_ino_t inum)
1919{
1920 xfs_mount_t *mp = free_ip->i_mount;
1921 int blks_per_cluster;
1922 int nbufs;
1923 int ninodes;
5b257b4a 1924 int i, j;
1da177e4
LT
1925 xfs_daddr_t blkno;
1926 xfs_buf_t *bp;
5b257b4a 1927 xfs_inode_t *ip;
1da177e4
LT
1928 xfs_inode_log_item_t *iip;
1929 xfs_log_item_t *lip;
5017e97d 1930 struct xfs_perag *pag;
1da177e4 1931
5017e97d 1932 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
1933 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1934 blks_per_cluster = 1;
1935 ninodes = mp->m_sb.sb_inopblock;
1936 nbufs = XFS_IALLOC_BLOCKS(mp);
1937 } else {
1938 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1939 mp->m_sb.sb_blocksize;
1940 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1941 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1942 }
1943
1da177e4
LT
1944 for (j = 0; j < nbufs; j++, inum += ninodes) {
1945 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1946 XFS_INO_TO_AGBNO(mp, inum));
1947
5b257b4a
DC
1948 /*
1949 * We obtain and lock the backing buffer first in the process
1950 * here, as we have to ensure that any dirty inode that we
1951 * can't get the flush lock on is attached to the buffer.
1952 * If we scan the in-memory inodes first, then buffer IO can
1953 * complete before we get a lock on it, and hence we may fail
1954 * to mark all the active inodes on the buffer stale.
1955 */
1956 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1957 mp->m_bsize * blks_per_cluster,
1958 XBF_LOCK);
1959
1960 /*
1961 * Walk the inodes already attached to the buffer and mark them
1962 * stale. These will all have the flush locks held, so an
5b3eed75
DC
1963 * in-memory inode walk can't lock them. By marking them all
1964 * stale first, we will not attempt to lock them in the loop
1965 * below as the XFS_ISTALE flag will be set.
5b257b4a
DC
1966 */
1967 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1968 while (lip) {
1969 if (lip->li_type == XFS_LI_INODE) {
1970 iip = (xfs_inode_log_item_t *)lip;
1971 ASSERT(iip->ili_logged == 1);
ca30b2a7 1972 lip->li_cb = xfs_istale_done;
5b257b4a
DC
1973 xfs_trans_ail_copy_lsn(mp->m_ail,
1974 &iip->ili_flush_lsn,
1975 &iip->ili_item.li_lsn);
1976 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
1977 }
1978 lip = lip->li_bio_list;
1979 }
1da177e4 1980
5b3eed75 1981
1da177e4 1982 /*
5b257b4a
DC
1983 * For each inode in memory attempt to add it to the inode
1984 * buffer and set it up for being staled on buffer IO
1985 * completion. This is safe as we've locked out tail pushing
1986 * and flushing by locking the buffer.
1da177e4 1987 *
5b257b4a
DC
1988 * We have already marked every inode that was part of a
1989 * transaction stale above, which means there is no point in
1990 * even trying to lock them.
1da177e4 1991 */
1da177e4 1992 for (i = 0; i < ninodes; i++) {
5b3eed75 1993retry:
1a3e8f3d 1994 rcu_read_lock();
da353b0d
DC
1995 ip = radix_tree_lookup(&pag->pag_ici_root,
1996 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 1997
1a3e8f3d
DC
1998 /* Inode not in memory, nothing to do */
1999 if (!ip) {
2000 rcu_read_unlock();
1da177e4
LT
2001 continue;
2002 }
2003
1a3e8f3d
DC
2004 /*
2005 * because this is an RCU protected lookup, we could
2006 * find a recently freed or even reallocated inode
2007 * during the lookup. We need to check under the
2008 * i_flags_lock for a valid inode here. Skip it if it
2009 * is not valid, the wrong inode or stale.
2010 */
2011 spin_lock(&ip->i_flags_lock);
2012 if (ip->i_ino != inum + i ||
2013 __xfs_iflags_test(ip, XFS_ISTALE)) {
2014 spin_unlock(&ip->i_flags_lock);
2015 rcu_read_unlock();
2016 continue;
2017 }
2018 spin_unlock(&ip->i_flags_lock);
2019
5b3eed75
DC
2020 /*
2021 * Don't try to lock/unlock the current inode, but we
2022 * _cannot_ skip the other inodes that we did not find
2023 * in the list attached to the buffer and are not
2024 * already marked stale. If we can't lock it, back off
2025 * and retry.
2026 */
5b257b4a
DC
2027 if (ip != free_ip &&
2028 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2029 rcu_read_unlock();
5b3eed75
DC
2030 delay(1);
2031 goto retry;
1da177e4 2032 }
1a3e8f3d 2033 rcu_read_unlock();
1da177e4 2034
5b3eed75 2035 xfs_iflock(ip);
5b257b4a 2036 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2037
5b3eed75
DC
2038 /*
2039 * we don't need to attach clean inodes or those only
2040 * with unlogged changes (which we throw away, anyway).
2041 */
1da177e4 2042 iip = ip->i_itemp;
5b3eed75 2043 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2044 ASSERT(ip != free_ip);
1da177e4
LT
2045 ip->i_update_core = 0;
2046 xfs_ifunlock(ip);
2047 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2048 continue;
2049 }
2050
2051 iip->ili_last_fields = iip->ili_format.ilf_fields;
2052 iip->ili_format.ilf_fields = 0;
2053 iip->ili_logged = 1;
7b2e2a31
DC
2054 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2055 &iip->ili_item.li_lsn);
1da177e4 2056
ca30b2a7
CH
2057 xfs_buf_attach_iodone(bp, xfs_istale_done,
2058 &iip->ili_item);
5b257b4a
DC
2059
2060 if (ip != free_ip)
1da177e4 2061 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2062 }
2063
5b3eed75 2064 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2065 xfs_trans_binval(tp, bp);
2066 }
2067
5017e97d 2068 xfs_perag_put(pag);
1da177e4
LT
2069}
2070
2071/*
2072 * This is called to return an inode to the inode free list.
2073 * The inode should already be truncated to 0 length and have
2074 * no pages associated with it. This routine also assumes that
2075 * the inode is already a part of the transaction.
2076 *
2077 * The on-disk copy of the inode will have been added to the list
2078 * of unlinked inodes in the AGI. We need to remove the inode from
2079 * that list atomically with respect to freeing it here.
2080 */
2081int
2082xfs_ifree(
2083 xfs_trans_t *tp,
2084 xfs_inode_t *ip,
2085 xfs_bmap_free_t *flist)
2086{
2087 int error;
2088 int delete;
2089 xfs_ino_t first_ino;
c319b58b
VA
2090 xfs_dinode_t *dip;
2091 xfs_buf_t *ibp;
1da177e4 2092
579aa9ca 2093 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2094 ASSERT(ip->i_transp == tp);
2095 ASSERT(ip->i_d.di_nlink == 0);
2096 ASSERT(ip->i_d.di_nextents == 0);
2097 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2098 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2099 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2100 ASSERT(ip->i_d.di_nblocks == 0);
2101
2102 /*
2103 * Pull the on-disk inode from the AGI unlinked list.
2104 */
2105 error = xfs_iunlink_remove(tp, ip);
2106 if (error != 0) {
2107 return error;
2108 }
2109
2110 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2111 if (error != 0) {
2112 return error;
2113 }
2114 ip->i_d.di_mode = 0; /* mark incore inode as free */
2115 ip->i_d.di_flags = 0;
2116 ip->i_d.di_dmevmask = 0;
2117 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2118 ip->i_df.if_ext_max =
2119 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2120 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2121 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2122 /*
2123 * Bump the generation count so no one will be confused
2124 * by reincarnations of this inode.
2125 */
2126 ip->i_d.di_gen++;
c319b58b 2127
1da177e4
LT
2128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2129
0cadda1c 2130 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
c319b58b
VA
2131 if (error)
2132 return error;
2133
2134 /*
2135 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2136 * from picking up this inode when it is reclaimed (its incore state
2137 * initialzed but not flushed to disk yet). The in-core di_mode is
2138 * already cleared and a corresponding transaction logged.
2139 * The hack here just synchronizes the in-core to on-disk
2140 * di_mode value in advance before the actual inode sync to disk.
2141 * This is OK because the inode is already unlinked and would never
2142 * change its di_mode again for this inode generation.
2143 * This is a temporary hack that would require a proper fix
2144 * in the future.
2145 */
81591fe2 2146 dip->di_mode = 0;
c319b58b 2147
1da177e4
LT
2148 if (delete) {
2149 xfs_ifree_cluster(ip, tp, first_ino);
2150 }
2151
2152 return 0;
2153}
2154
2155/*
2156 * Reallocate the space for if_broot based on the number of records
2157 * being added or deleted as indicated in rec_diff. Move the records
2158 * and pointers in if_broot to fit the new size. When shrinking this
2159 * will eliminate holes between the records and pointers created by
2160 * the caller. When growing this will create holes to be filled in
2161 * by the caller.
2162 *
2163 * The caller must not request to add more records than would fit in
2164 * the on-disk inode root. If the if_broot is currently NULL, then
2165 * if we adding records one will be allocated. The caller must also
2166 * not request that the number of records go below zero, although
2167 * it can go to zero.
2168 *
2169 * ip -- the inode whose if_broot area is changing
2170 * ext_diff -- the change in the number of records, positive or negative,
2171 * requested for the if_broot array.
2172 */
2173void
2174xfs_iroot_realloc(
2175 xfs_inode_t *ip,
2176 int rec_diff,
2177 int whichfork)
2178{
60197e8d 2179 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
2180 int cur_max;
2181 xfs_ifork_t *ifp;
7cc95a82 2182 struct xfs_btree_block *new_broot;
1da177e4
LT
2183 int new_max;
2184 size_t new_size;
2185 char *np;
2186 char *op;
2187
2188 /*
2189 * Handle the degenerate case quietly.
2190 */
2191 if (rec_diff == 0) {
2192 return;
2193 }
2194
2195 ifp = XFS_IFORK_PTR(ip, whichfork);
2196 if (rec_diff > 0) {
2197 /*
2198 * If there wasn't any memory allocated before, just
2199 * allocate it now and get out.
2200 */
2201 if (ifp->if_broot_bytes == 0) {
2202 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
4a7edddc 2203 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2204 ifp->if_broot_bytes = (int)new_size;
2205 return;
2206 }
2207
2208 /*
2209 * If there is already an existing if_broot, then we need
2210 * to realloc() it and shift the pointers to their new
2211 * location. The records don't change location because
2212 * they are kept butted up against the btree block header.
2213 */
60197e8d 2214 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2215 new_max = cur_max + rec_diff;
2216 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 2217 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4 2218 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
4a7edddc 2219 KM_SLEEP | KM_NOFS);
60197e8d
CH
2220 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2221 ifp->if_broot_bytes);
2222 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2223 (int)new_size);
1da177e4
LT
2224 ifp->if_broot_bytes = (int)new_size;
2225 ASSERT(ifp->if_broot_bytes <=
2226 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2227 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2228 return;
2229 }
2230
2231 /*
2232 * rec_diff is less than 0. In this case, we are shrinking the
2233 * if_broot buffer. It must already exist. If we go to zero
2234 * records, just get rid of the root and clear the status bit.
2235 */
2236 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2237 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2238 new_max = cur_max + rec_diff;
2239 ASSERT(new_max >= 0);
2240 if (new_max > 0)
2241 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2242 else
2243 new_size = 0;
2244 if (new_size > 0) {
4a7edddc 2245 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2246 /*
2247 * First copy over the btree block header.
2248 */
7cc95a82 2249 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
2250 } else {
2251 new_broot = NULL;
2252 ifp->if_flags &= ~XFS_IFBROOT;
2253 }
2254
2255 /*
2256 * Only copy the records and pointers if there are any.
2257 */
2258 if (new_max > 0) {
2259 /*
2260 * First copy the records.
2261 */
136341b4
CH
2262 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2263 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2264 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2265
2266 /*
2267 * Then copy the pointers.
2268 */
60197e8d 2269 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2270 ifp->if_broot_bytes);
60197e8d 2271 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2272 (int)new_size);
2273 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2274 }
f0e2d93c 2275 kmem_free(ifp->if_broot);
1da177e4
LT
2276 ifp->if_broot = new_broot;
2277 ifp->if_broot_bytes = (int)new_size;
2278 ASSERT(ifp->if_broot_bytes <=
2279 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2280 return;
2281}
2282
2283
1da177e4
LT
2284/*
2285 * This is called when the amount of space needed for if_data
2286 * is increased or decreased. The change in size is indicated by
2287 * the number of bytes that need to be added or deleted in the
2288 * byte_diff parameter.
2289 *
2290 * If the amount of space needed has decreased below the size of the
2291 * inline buffer, then switch to using the inline buffer. Otherwise,
2292 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2293 * to what is needed.
2294 *
2295 * ip -- the inode whose if_data area is changing
2296 * byte_diff -- the change in the number of bytes, positive or negative,
2297 * requested for the if_data array.
2298 */
2299void
2300xfs_idata_realloc(
2301 xfs_inode_t *ip,
2302 int byte_diff,
2303 int whichfork)
2304{
2305 xfs_ifork_t *ifp;
2306 int new_size;
2307 int real_size;
2308
2309 if (byte_diff == 0) {
2310 return;
2311 }
2312
2313 ifp = XFS_IFORK_PTR(ip, whichfork);
2314 new_size = (int)ifp->if_bytes + byte_diff;
2315 ASSERT(new_size >= 0);
2316
2317 if (new_size == 0) {
2318 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2319 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2320 }
2321 ifp->if_u1.if_data = NULL;
2322 real_size = 0;
2323 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2324 /*
2325 * If the valid extents/data can fit in if_inline_ext/data,
2326 * copy them from the malloc'd vector and free it.
2327 */
2328 if (ifp->if_u1.if_data == NULL) {
2329 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2330 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2331 ASSERT(ifp->if_real_bytes != 0);
2332 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2333 new_size);
f0e2d93c 2334 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2335 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2336 }
2337 real_size = 0;
2338 } else {
2339 /*
2340 * Stuck with malloc/realloc.
2341 * For inline data, the underlying buffer must be
2342 * a multiple of 4 bytes in size so that it can be
2343 * logged and stay on word boundaries. We enforce
2344 * that here.
2345 */
2346 real_size = roundup(new_size, 4);
2347 if (ifp->if_u1.if_data == NULL) {
2348 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2349 ifp->if_u1.if_data = kmem_alloc(real_size,
2350 KM_SLEEP | KM_NOFS);
1da177e4
LT
2351 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2352 /*
2353 * Only do the realloc if the underlying size
2354 * is really changing.
2355 */
2356 if (ifp->if_real_bytes != real_size) {
2357 ifp->if_u1.if_data =
2358 kmem_realloc(ifp->if_u1.if_data,
2359 real_size,
2360 ifp->if_real_bytes,
4a7edddc 2361 KM_SLEEP | KM_NOFS);
1da177e4
LT
2362 }
2363 } else {
2364 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2365 ifp->if_u1.if_data = kmem_alloc(real_size,
2366 KM_SLEEP | KM_NOFS);
1da177e4
LT
2367 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2368 ifp->if_bytes);
2369 }
2370 }
2371 ifp->if_real_bytes = real_size;
2372 ifp->if_bytes = new_size;
2373 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2374}
2375
1da177e4
LT
2376void
2377xfs_idestroy_fork(
2378 xfs_inode_t *ip,
2379 int whichfork)
2380{
2381 xfs_ifork_t *ifp;
2382
2383 ifp = XFS_IFORK_PTR(ip, whichfork);
2384 if (ifp->if_broot != NULL) {
f0e2d93c 2385 kmem_free(ifp->if_broot);
1da177e4
LT
2386 ifp->if_broot = NULL;
2387 }
2388
2389 /*
2390 * If the format is local, then we can't have an extents
2391 * array so just look for an inline data array. If we're
2392 * not local then we may or may not have an extents list,
2393 * so check and free it up if we do.
2394 */
2395 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2396 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2397 (ifp->if_u1.if_data != NULL)) {
2398 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2399 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2400 ifp->if_u1.if_data = NULL;
2401 ifp->if_real_bytes = 0;
2402 }
2403 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2404 ((ifp->if_flags & XFS_IFEXTIREC) ||
2405 ((ifp->if_u1.if_extents != NULL) &&
2406 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2407 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2408 xfs_iext_destroy(ifp);
1da177e4
LT
2409 }
2410 ASSERT(ifp->if_u1.if_extents == NULL ||
2411 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2412 ASSERT(ifp->if_real_bytes == 0);
2413 if (whichfork == XFS_ATTR_FORK) {
2414 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2415 ip->i_afp = NULL;
2416 }
2417}
2418
1da177e4 2419/*
60ec6783
CH
2420 * This is called to unpin an inode. The caller must have the inode locked
2421 * in at least shared mode so that the buffer cannot be subsequently pinned
2422 * once someone is waiting for it to be unpinned.
1da177e4 2423 */
60ec6783
CH
2424static void
2425xfs_iunpin_nowait(
2426 struct xfs_inode *ip)
1da177e4 2427{
579aa9ca 2428 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2429
4aaf15d1
DC
2430 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2431
a3f74ffb 2432 /* Give the log a push to start the unpinning I/O */
60ec6783 2433 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2434
a3f74ffb 2435}
1da177e4 2436
777df5af 2437void
a3f74ffb 2438xfs_iunpin_wait(
60ec6783 2439 struct xfs_inode *ip)
a3f74ffb 2440{
60ec6783
CH
2441 if (xfs_ipincount(ip)) {
2442 xfs_iunpin_nowait(ip);
2443 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2444 }
1da177e4
LT
2445}
2446
1da177e4
LT
2447/*
2448 * xfs_iextents_copy()
2449 *
2450 * This is called to copy the REAL extents (as opposed to the delayed
2451 * allocation extents) from the inode into the given buffer. It
2452 * returns the number of bytes copied into the buffer.
2453 *
2454 * If there are no delayed allocation extents, then we can just
2455 * memcpy() the extents into the buffer. Otherwise, we need to
2456 * examine each extent in turn and skip those which are delayed.
2457 */
2458int
2459xfs_iextents_copy(
2460 xfs_inode_t *ip,
a6f64d4a 2461 xfs_bmbt_rec_t *dp,
1da177e4
LT
2462 int whichfork)
2463{
2464 int copied;
1da177e4
LT
2465 int i;
2466 xfs_ifork_t *ifp;
2467 int nrecs;
2468 xfs_fsblock_t start_block;
2469
2470 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2471 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2472 ASSERT(ifp->if_bytes > 0);
2473
2474 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2475 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2476 ASSERT(nrecs > 0);
2477
2478 /*
2479 * There are some delayed allocation extents in the
2480 * inode, so copy the extents one at a time and skip
2481 * the delayed ones. There must be at least one
2482 * non-delayed extent.
2483 */
1da177e4
LT
2484 copied = 0;
2485 for (i = 0; i < nrecs; i++) {
a6f64d4a 2486 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4 2487 start_block = xfs_bmbt_get_startblock(ep);
9d87c319 2488 if (isnullstartblock(start_block)) {
1da177e4
LT
2489 /*
2490 * It's a delayed allocation extent, so skip it.
2491 */
1da177e4
LT
2492 continue;
2493 }
2494
2495 /* Translate to on disk format */
cd8b0a97
CH
2496 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2497 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2498 dp++;
1da177e4
LT
2499 copied++;
2500 }
2501 ASSERT(copied != 0);
a6f64d4a 2502 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2503
2504 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2505}
2506
2507/*
2508 * Each of the following cases stores data into the same region
2509 * of the on-disk inode, so only one of them can be valid at
2510 * any given time. While it is possible to have conflicting formats
2511 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2512 * in EXTENTS format, this can only happen when the fork has
2513 * changed formats after being modified but before being flushed.
2514 * In these cases, the format always takes precedence, because the
2515 * format indicates the current state of the fork.
2516 */
2517/*ARGSUSED*/
e4ac967b 2518STATIC void
1da177e4
LT
2519xfs_iflush_fork(
2520 xfs_inode_t *ip,
2521 xfs_dinode_t *dip,
2522 xfs_inode_log_item_t *iip,
2523 int whichfork,
2524 xfs_buf_t *bp)
2525{
2526 char *cp;
2527 xfs_ifork_t *ifp;
2528 xfs_mount_t *mp;
2529#ifdef XFS_TRANS_DEBUG
2530 int first;
2531#endif
2532 static const short brootflag[2] =
2533 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2534 static const short dataflag[2] =
2535 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2536 static const short extflag[2] =
2537 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2538
e4ac967b
DC
2539 if (!iip)
2540 return;
1da177e4
LT
2541 ifp = XFS_IFORK_PTR(ip, whichfork);
2542 /*
2543 * This can happen if we gave up in iformat in an error path,
2544 * for the attribute fork.
2545 */
e4ac967b 2546 if (!ifp) {
1da177e4 2547 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2548 return;
1da177e4
LT
2549 }
2550 cp = XFS_DFORK_PTR(dip, whichfork);
2551 mp = ip->i_mount;
2552 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2553 case XFS_DINODE_FMT_LOCAL:
2554 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2555 (ifp->if_bytes > 0)) {
2556 ASSERT(ifp->if_u1.if_data != NULL);
2557 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2558 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2559 }
1da177e4
LT
2560 break;
2561
2562 case XFS_DINODE_FMT_EXTENTS:
2563 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2564 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2565 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2566 (ifp->if_bytes == 0));
2567 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2568 (ifp->if_bytes > 0));
1da177e4
LT
2569 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2570 (ifp->if_bytes > 0)) {
2571 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2572 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2573 whichfork);
2574 }
2575 break;
2576
2577 case XFS_DINODE_FMT_BTREE:
2578 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2579 (ifp->if_broot_bytes > 0)) {
2580 ASSERT(ifp->if_broot != NULL);
2581 ASSERT(ifp->if_broot_bytes <=
2582 (XFS_IFORK_SIZE(ip, whichfork) +
2583 XFS_BROOT_SIZE_ADJ));
60197e8d 2584 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2585 (xfs_bmdr_block_t *)cp,
2586 XFS_DFORK_SIZE(dip, mp, whichfork));
2587 }
2588 break;
2589
2590 case XFS_DINODE_FMT_DEV:
2591 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2592 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2593 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2594 }
2595 break;
2596
2597 case XFS_DINODE_FMT_UUID:
2598 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2599 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2600 memcpy(XFS_DFORK_DPTR(dip),
2601 &ip->i_df.if_u2.if_uuid,
2602 sizeof(uuid_t));
1da177e4
LT
2603 }
2604 break;
2605
2606 default:
2607 ASSERT(0);
2608 break;
2609 }
1da177e4
LT
2610}
2611
bad55843
DC
2612STATIC int
2613xfs_iflush_cluster(
2614 xfs_inode_t *ip,
2615 xfs_buf_t *bp)
2616{
2617 xfs_mount_t *mp = ip->i_mount;
5017e97d 2618 struct xfs_perag *pag;
bad55843 2619 unsigned long first_index, mask;
c8f5f12e 2620 unsigned long inodes_per_cluster;
bad55843
DC
2621 int ilist_size;
2622 xfs_inode_t **ilist;
2623 xfs_inode_t *iq;
bad55843
DC
2624 int nr_found;
2625 int clcount = 0;
2626 int bufwasdelwri;
2627 int i;
2628
5017e97d 2629 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
bad55843 2630
c8f5f12e
DC
2631 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2632 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2633 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843 2634 if (!ilist)
44b56e0a 2635 goto out_put;
bad55843
DC
2636
2637 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2638 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
1a3e8f3d 2639 rcu_read_lock();
bad55843
DC
2640 /* really need a gang lookup range call here */
2641 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2642 first_index, inodes_per_cluster);
bad55843
DC
2643 if (nr_found == 0)
2644 goto out_free;
2645
2646 for (i = 0; i < nr_found; i++) {
2647 iq = ilist[i];
2648 if (iq == ip)
2649 continue;
1a3e8f3d
DC
2650
2651 /*
2652 * because this is an RCU protected lookup, we could find a
2653 * recently freed or even reallocated inode during the lookup.
2654 * We need to check under the i_flags_lock for a valid inode
2655 * here. Skip it if it is not valid or the wrong inode.
2656 */
2657 spin_lock(&ip->i_flags_lock);
2658 if (!ip->i_ino ||
2659 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2660 spin_unlock(&ip->i_flags_lock);
2661 continue;
2662 }
2663 spin_unlock(&ip->i_flags_lock);
2664
bad55843
DC
2665 /*
2666 * Do an un-protected check to see if the inode is dirty and
2667 * is a candidate for flushing. These checks will be repeated
2668 * later after the appropriate locks are acquired.
2669 */
33540408 2670 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2671 continue;
bad55843
DC
2672
2673 /*
2674 * Try to get locks. If any are unavailable or it is pinned,
2675 * then this inode cannot be flushed and is skipped.
2676 */
2677
2678 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2679 continue;
2680 if (!xfs_iflock_nowait(iq)) {
2681 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2682 continue;
2683 }
2684 if (xfs_ipincount(iq)) {
2685 xfs_ifunlock(iq);
2686 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2687 continue;
2688 }
2689
2690 /*
2691 * arriving here means that this inode can be flushed. First
2692 * re-check that it's dirty before flushing.
2693 */
33540408
DC
2694 if (!xfs_inode_clean(iq)) {
2695 int error;
bad55843
DC
2696 error = xfs_iflush_int(iq, bp);
2697 if (error) {
2698 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2699 goto cluster_corrupt_out;
2700 }
2701 clcount++;
2702 } else {
2703 xfs_ifunlock(iq);
2704 }
2705 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2706 }
2707
2708 if (clcount) {
2709 XFS_STATS_INC(xs_icluster_flushcnt);
2710 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2711 }
2712
2713out_free:
1a3e8f3d 2714 rcu_read_unlock();
f0e2d93c 2715 kmem_free(ilist);
44b56e0a
DC
2716out_put:
2717 xfs_perag_put(pag);
bad55843
DC
2718 return 0;
2719
2720
2721cluster_corrupt_out:
2722 /*
2723 * Corruption detected in the clustering loop. Invalidate the
2724 * inode buffer and shut down the filesystem.
2725 */
1a3e8f3d 2726 rcu_read_unlock();
bad55843
DC
2727 /*
2728 * Clean up the buffer. If it was B_DELWRI, just release it --
2729 * brelse can handle it with no problems. If not, shut down the
2730 * filesystem before releasing the buffer.
2731 */
2732 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2733 if (bufwasdelwri)
2734 xfs_buf_relse(bp);
2735
2736 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2737
2738 if (!bufwasdelwri) {
2739 /*
2740 * Just like incore_relse: if we have b_iodone functions,
2741 * mark the buffer as an error and call them. Otherwise
2742 * mark it as stale and brelse.
2743 */
2744 if (XFS_BUF_IODONE_FUNC(bp)) {
bad55843
DC
2745 XFS_BUF_UNDONE(bp);
2746 XFS_BUF_STALE(bp);
bad55843 2747 XFS_BUF_ERROR(bp,EIO);
1a1a3e97 2748 xfs_buf_ioend(bp, 0);
bad55843
DC
2749 } else {
2750 XFS_BUF_STALE(bp);
2751 xfs_buf_relse(bp);
2752 }
2753 }
2754
2755 /*
2756 * Unlocks the flush lock
2757 */
2758 xfs_iflush_abort(iq);
f0e2d93c 2759 kmem_free(ilist);
44b56e0a 2760 xfs_perag_put(pag);
bad55843
DC
2761 return XFS_ERROR(EFSCORRUPTED);
2762}
2763
1da177e4
LT
2764/*
2765 * xfs_iflush() will write a modified inode's changes out to the
2766 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
2767 * in at least shared mode and the inode flush completion must be
2768 * active as well. The inode lock will still be held upon return from
1da177e4 2769 * the call and the caller is free to unlock it.
c63942d3 2770 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
2771 * The flags indicate how the inode's buffer should be written out.
2772 */
2773int
2774xfs_iflush(
2775 xfs_inode_t *ip,
2776 uint flags)
2777{
2778 xfs_inode_log_item_t *iip;
2779 xfs_buf_t *bp;
2780 xfs_dinode_t *dip;
2781 xfs_mount_t *mp;
2782 int error;
1da177e4
LT
2783
2784 XFS_STATS_INC(xs_iflush_count);
2785
579aa9ca 2786 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 2787 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
2788 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2789 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2790
2791 iip = ip->i_itemp;
2792 mp = ip->i_mount;
2793
1da177e4 2794 /*
a3f74ffb
DC
2795 * We can't flush the inode until it is unpinned, so wait for it if we
2796 * are allowed to block. We know noone new can pin it, because we are
2797 * holding the inode lock shared and you need to hold it exclusively to
2798 * pin the inode.
2799 *
2800 * If we are not allowed to block, force the log out asynchronously so
2801 * that when we come back the inode will be unpinned. If other inodes
2802 * in the same cluster are dirty, they will probably write the inode
2803 * out for us if they occur after the log force completes.
1da177e4 2804 */
c854363e 2805 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
a3f74ffb
DC
2806 xfs_iunpin_nowait(ip);
2807 xfs_ifunlock(ip);
2808 return EAGAIN;
2809 }
1da177e4
LT
2810 xfs_iunpin_wait(ip);
2811
4b6a4688
DC
2812 /*
2813 * For stale inodes we cannot rely on the backing buffer remaining
2814 * stale in cache for the remaining life of the stale inode and so
2815 * xfs_itobp() below may give us a buffer that no longer contains
2816 * inodes below. We have to check this after ensuring the inode is
2817 * unpinned so that it is safe to reclaim the stale inode after the
2818 * flush call.
2819 */
2820 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2821 xfs_ifunlock(ip);
2822 return 0;
2823 }
2824
1da177e4
LT
2825 /*
2826 * This may have been unpinned because the filesystem is shutting
2827 * down forcibly. If that's the case we must not write this inode
2828 * to disk, because the log record didn't make it to disk!
2829 */
2830 if (XFS_FORCED_SHUTDOWN(mp)) {
2831 ip->i_update_core = 0;
2832 if (iip)
2833 iip->ili_format.ilf_fields = 0;
2834 xfs_ifunlock(ip);
2835 return XFS_ERROR(EIO);
2836 }
2837
a3f74ffb
DC
2838 /*
2839 * Get the buffer containing the on-disk inode.
2840 */
76d8b277 2841 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
c854363e 2842 (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
a3f74ffb
DC
2843 if (error || !bp) {
2844 xfs_ifunlock(ip);
2845 return error;
2846 }
2847
1da177e4
LT
2848 /*
2849 * First flush out the inode that xfs_iflush was called with.
2850 */
2851 error = xfs_iflush_int(ip, bp);
bad55843 2852 if (error)
1da177e4 2853 goto corrupt_out;
1da177e4 2854
a3f74ffb
DC
2855 /*
2856 * If the buffer is pinned then push on the log now so we won't
2857 * get stuck waiting in the write for too long.
2858 */
2859 if (XFS_BUF_ISPINNED(bp))
a14a348b 2860 xfs_log_force(mp, 0);
a3f74ffb 2861
1da177e4
LT
2862 /*
2863 * inode clustering:
2864 * see if other inodes can be gathered into this write
2865 */
bad55843
DC
2866 error = xfs_iflush_cluster(ip, bp);
2867 if (error)
2868 goto cluster_corrupt_out;
1da177e4 2869
c854363e 2870 if (flags & SYNC_WAIT)
1da177e4 2871 error = xfs_bwrite(mp, bp);
c854363e
DC
2872 else
2873 xfs_bdwrite(mp, bp);
1da177e4
LT
2874 return error;
2875
2876corrupt_out:
2877 xfs_buf_relse(bp);
7d04a335 2878 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 2879cluster_corrupt_out:
1da177e4
LT
2880 /*
2881 * Unlocks the flush lock
2882 */
bad55843 2883 xfs_iflush_abort(ip);
1da177e4
LT
2884 return XFS_ERROR(EFSCORRUPTED);
2885}
2886
2887
2888STATIC int
2889xfs_iflush_int(
2890 xfs_inode_t *ip,
2891 xfs_buf_t *bp)
2892{
2893 xfs_inode_log_item_t *iip;
2894 xfs_dinode_t *dip;
2895 xfs_mount_t *mp;
2896#ifdef XFS_TRANS_DEBUG
2897 int first;
2898#endif
1da177e4 2899
579aa9ca 2900 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 2901 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
2902 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2903 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2904
2905 iip = ip->i_itemp;
2906 mp = ip->i_mount;
2907
1da177e4 2908 /* set *dip = inode's place in the buffer */
92bfc6e7 2909 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
2910
2911 /*
2912 * Clear i_update_core before copying out the data.
2913 * This is for coordination with our timestamp updates
2914 * that don't hold the inode lock. They will always
2915 * update the timestamps BEFORE setting i_update_core,
2916 * so if we clear i_update_core after they set it we
2917 * are guaranteed to see their updates to the timestamps.
2918 * I believe that this depends on strongly ordered memory
2919 * semantics, but we have that. We use the SYNCHRONIZE
2920 * macro to make sure that the compiler does not reorder
2921 * the i_update_core access below the data copy below.
2922 */
2923 ip->i_update_core = 0;
2924 SYNCHRONIZE();
2925
42fe2b1f 2926 /*
f9581b14 2927 * Make sure to get the latest timestamps from the Linux inode.
42fe2b1f 2928 */
f9581b14 2929 xfs_synchronize_times(ip);
42fe2b1f 2930
81591fe2 2931 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
1da177e4 2932 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
2933 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2934 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2935 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
2936 goto corrupt_out;
2937 }
2938 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2939 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
2940 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2941 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2942 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
2943 goto corrupt_out;
2944 }
2945 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2946 if (XFS_TEST_ERROR(
2947 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2948 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2949 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
2950 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2951 "%s: Bad regular inode %Lu, ptr 0x%p",
2952 __func__, ip->i_ino, ip);
1da177e4
LT
2953 goto corrupt_out;
2954 }
2955 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2956 if (XFS_TEST_ERROR(
2957 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2958 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2959 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2960 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
2961 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2962 "%s: Bad directory inode %Lu, ptr 0x%p",
2963 __func__, ip->i_ino, ip);
1da177e4
LT
2964 goto corrupt_out;
2965 }
2966 }
2967 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2968 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2969 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
2970 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2971 "%s: detected corrupt incore inode %Lu, "
2972 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2973 __func__, ip->i_ino,
1da177e4 2974 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 2975 ip->i_d.di_nblocks, ip);
1da177e4
LT
2976 goto corrupt_out;
2977 }
2978 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2979 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
2980 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2981 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2982 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
2983 goto corrupt_out;
2984 }
2985 /*
2986 * bump the flush iteration count, used to detect flushes which
2987 * postdate a log record during recovery.
2988 */
2989
2990 ip->i_d.di_flushiter++;
2991
2992 /*
2993 * Copy the dirty parts of the inode into the on-disk
2994 * inode. We always copy out the core of the inode,
2995 * because if the inode is dirty at all the core must
2996 * be.
2997 */
81591fe2 2998 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
2999
3000 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3001 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3002 ip->i_d.di_flushiter = 0;
3003
3004 /*
3005 * If this is really an old format inode and the superblock version
3006 * has not been updated to support only new format inodes, then
3007 * convert back to the old inode format. If the superblock version
3008 * has been updated, then make the conversion permanent.
3009 */
51ce16d5
CH
3010 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3011 if (ip->i_d.di_version == 1) {
62118709 3012 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3013 /*
3014 * Convert it back.
3015 */
3016 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 3017 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3018 } else {
3019 /*
3020 * The superblock version has already been bumped,
3021 * so just make the conversion to the new inode
3022 * format permanent.
3023 */
51ce16d5
CH
3024 ip->i_d.di_version = 2;
3025 dip->di_version = 2;
1da177e4 3026 ip->i_d.di_onlink = 0;
81591fe2 3027 dip->di_onlink = 0;
1da177e4 3028 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
3029 memset(&(dip->di_pad[0]), 0,
3030 sizeof(dip->di_pad));
6743099c 3031 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
3032 }
3033 }
3034
e4ac967b
DC
3035 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3036 if (XFS_IFORK_Q(ip))
3037 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3038 xfs_inobp_check(mp, bp);
3039
3040 /*
3041 * We've recorded everything logged in the inode, so we'd
3042 * like to clear the ilf_fields bits so we don't log and
3043 * flush things unnecessarily. However, we can't stop
3044 * logging all this information until the data we've copied
3045 * into the disk buffer is written to disk. If we did we might
3046 * overwrite the copy of the inode in the log with all the
3047 * data after re-logging only part of it, and in the face of
3048 * a crash we wouldn't have all the data we need to recover.
3049 *
3050 * What we do is move the bits to the ili_last_fields field.
3051 * When logging the inode, these bits are moved back to the
3052 * ilf_fields field. In the xfs_iflush_done() routine we
3053 * clear ili_last_fields, since we know that the information
3054 * those bits represent is permanently on disk. As long as
3055 * the flush completes before the inode is logged again, then
3056 * both ilf_fields and ili_last_fields will be cleared.
3057 *
3058 * We can play with the ilf_fields bits here, because the inode
3059 * lock must be held exclusively in order to set bits there
3060 * and the flush lock protects the ili_last_fields bits.
3061 * Set ili_logged so the flush done
3062 * routine can tell whether or not to look in the AIL.
3063 * Also, store the current LSN of the inode so that we can tell
3064 * whether the item has moved in the AIL from xfs_iflush_done().
3065 * In order to read the lsn we need the AIL lock, because
3066 * it is a 64 bit value that cannot be read atomically.
3067 */
3068 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3069 iip->ili_last_fields = iip->ili_format.ilf_fields;
3070 iip->ili_format.ilf_fields = 0;
3071 iip->ili_logged = 1;
3072
7b2e2a31
DC
3073 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3074 &iip->ili_item.li_lsn);
1da177e4
LT
3075
3076 /*
3077 * Attach the function xfs_iflush_done to the inode's
3078 * buffer. This will remove the inode from the AIL
3079 * and unlock the inode's flush lock when the inode is
3080 * completely written to disk.
3081 */
ca30b2a7 3082 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4
LT
3083
3084 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3085 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3086 } else {
3087 /*
3088 * We're flushing an inode which is not in the AIL and has
3089 * not been logged but has i_update_core set. For this
3090 * case we can use a B_DELWRI flush and immediately drop
3091 * the inode flush lock because we can avoid the whole
3092 * AIL state thing. It's OK to drop the flush lock now,
3093 * because we've already locked the buffer and to do anything
3094 * you really need both.
3095 */
3096 if (iip != NULL) {
3097 ASSERT(iip->ili_logged == 0);
3098 ASSERT(iip->ili_last_fields == 0);
3099 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3100 }
3101 xfs_ifunlock(ip);
3102 }
3103
3104 return 0;
3105
3106corrupt_out:
3107 return XFS_ERROR(EFSCORRUPTED);
3108}
3109
4eea22f0
MK
3110/*
3111 * Return a pointer to the extent record at file index idx.
3112 */
a6f64d4a 3113xfs_bmbt_rec_host_t *
4eea22f0
MK
3114xfs_iext_get_ext(
3115 xfs_ifork_t *ifp, /* inode fork pointer */
3116 xfs_extnum_t idx) /* index of target extent */
3117{
3118 ASSERT(idx >= 0);
0293ce3a
MK
3119 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3120 return ifp->if_u1.if_ext_irec->er_extbuf;
3121 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3122 xfs_ext_irec_t *erp; /* irec pointer */
3123 int erp_idx = 0; /* irec index */
3124 xfs_extnum_t page_idx = idx; /* ext index in target list */
3125
3126 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3127 return &erp->er_extbuf[page_idx];
3128 } else if (ifp->if_bytes) {
4eea22f0
MK
3129 return &ifp->if_u1.if_extents[idx];
3130 } else {
3131 return NULL;
3132 }
3133}
3134
3135/*
3136 * Insert new item(s) into the extent records for incore inode
3137 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3138 */
3139void
3140xfs_iext_insert(
6ef35544 3141 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0
MK
3142 xfs_extnum_t idx, /* starting index of new items */
3143 xfs_extnum_t count, /* number of inserted items */
6ef35544
CH
3144 xfs_bmbt_irec_t *new, /* items to insert */
3145 int state) /* type of extent conversion */
4eea22f0 3146{
6ef35544 3147 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3148 xfs_extnum_t i; /* extent record index */
3149
0b1b213f
CH
3150 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3151
4eea22f0
MK
3152 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3153 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3154 for (i = idx; i < idx + count; i++, new++)
3155 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3156}
3157
3158/*
3159 * This is called when the amount of space required for incore file
3160 * extents needs to be increased. The ext_diff parameter stores the
3161 * number of new extents being added and the idx parameter contains
3162 * the extent index where the new extents will be added. If the new
3163 * extents are being appended, then we just need to (re)allocate and
3164 * initialize the space. Otherwise, if the new extents are being
3165 * inserted into the middle of the existing entries, a bit more work
3166 * is required to make room for the new extents to be inserted. The
3167 * caller is responsible for filling in the new extent entries upon
3168 * return.
3169 */
3170void
3171xfs_iext_add(
3172 xfs_ifork_t *ifp, /* inode fork pointer */
3173 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3174 int ext_diff) /* number of extents to add */
4eea22f0
MK
3175{
3176 int byte_diff; /* new bytes being added */
3177 int new_size; /* size of extents after adding */
3178 xfs_extnum_t nextents; /* number of extents in file */
3179
3180 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3181 ASSERT((idx >= 0) && (idx <= nextents));
3182 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3183 new_size = ifp->if_bytes + byte_diff;
3184 /*
3185 * If the new number of extents (nextents + ext_diff)
3186 * fits inside the inode, then continue to use the inline
3187 * extent buffer.
3188 */
3189 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3190 if (idx < nextents) {
3191 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3192 &ifp->if_u2.if_inline_ext[idx],
3193 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3194 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3195 }
3196 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3197 ifp->if_real_bytes = 0;
0293ce3a 3198 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3199 }
3200 /*
3201 * Otherwise use a linear (direct) extent list.
3202 * If the extents are currently inside the inode,
3203 * xfs_iext_realloc_direct will switch us from
3204 * inline to direct extent allocation mode.
3205 */
0293ce3a 3206 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3207 xfs_iext_realloc_direct(ifp, new_size);
3208 if (idx < nextents) {
3209 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3210 &ifp->if_u1.if_extents[idx],
3211 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3212 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3213 }
3214 }
0293ce3a
MK
3215 /* Indirection array */
3216 else {
3217 xfs_ext_irec_t *erp;
3218 int erp_idx = 0;
3219 int page_idx = idx;
3220
3221 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3222 if (ifp->if_flags & XFS_IFEXTIREC) {
3223 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3224 } else {
3225 xfs_iext_irec_init(ifp);
3226 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3227 erp = ifp->if_u1.if_ext_irec;
3228 }
3229 /* Extents fit in target extent page */
3230 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3231 if (page_idx < erp->er_extcount) {
3232 memmove(&erp->er_extbuf[page_idx + ext_diff],
3233 &erp->er_extbuf[page_idx],
3234 (erp->er_extcount - page_idx) *
3235 sizeof(xfs_bmbt_rec_t));
3236 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3237 }
3238 erp->er_extcount += ext_diff;
3239 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3240 }
3241 /* Insert a new extent page */
3242 else if (erp) {
3243 xfs_iext_add_indirect_multi(ifp,
3244 erp_idx, page_idx, ext_diff);
3245 }
3246 /*
3247 * If extent(s) are being appended to the last page in
3248 * the indirection array and the new extent(s) don't fit
3249 * in the page, then erp is NULL and erp_idx is set to
3250 * the next index needed in the indirection array.
3251 */
3252 else {
3253 int count = ext_diff;
3254
3255 while (count) {
3256 erp = xfs_iext_irec_new(ifp, erp_idx);
3257 erp->er_extcount = count;
3258 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3259 if (count) {
3260 erp_idx++;
3261 }
3262 }
3263 }
3264 }
4eea22f0
MK
3265 ifp->if_bytes = new_size;
3266}
3267
0293ce3a
MK
3268/*
3269 * This is called when incore extents are being added to the indirection
3270 * array and the new extents do not fit in the target extent list. The
3271 * erp_idx parameter contains the irec index for the target extent list
3272 * in the indirection array, and the idx parameter contains the extent
3273 * index within the list. The number of extents being added is stored
3274 * in the count parameter.
3275 *
3276 * |-------| |-------|
3277 * | | | | idx - number of extents before idx
3278 * | idx | | count |
3279 * | | | | count - number of extents being inserted at idx
3280 * |-------| |-------|
3281 * | count | | nex2 | nex2 - number of extents after idx + count
3282 * |-------| |-------|
3283 */
3284void
3285xfs_iext_add_indirect_multi(
3286 xfs_ifork_t *ifp, /* inode fork pointer */
3287 int erp_idx, /* target extent irec index */
3288 xfs_extnum_t idx, /* index within target list */
3289 int count) /* new extents being added */
3290{
3291 int byte_diff; /* new bytes being added */
3292 xfs_ext_irec_t *erp; /* pointer to irec entry */
3293 xfs_extnum_t ext_diff; /* number of extents to add */
3294 xfs_extnum_t ext_cnt; /* new extents still needed */
3295 xfs_extnum_t nex2; /* extents after idx + count */
3296 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3297 int nlists; /* number of irec's (lists) */
3298
3299 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3300 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3301 nex2 = erp->er_extcount - idx;
3302 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3303
3304 /*
3305 * Save second part of target extent list
3306 * (all extents past */
3307 if (nex2) {
3308 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3309 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3310 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3311 erp->er_extcount -= nex2;
3312 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3313 memset(&erp->er_extbuf[idx], 0, byte_diff);
3314 }
3315
3316 /*
3317 * Add the new extents to the end of the target
3318 * list, then allocate new irec record(s) and
3319 * extent buffer(s) as needed to store the rest
3320 * of the new extents.
3321 */
3322 ext_cnt = count;
3323 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3324 if (ext_diff) {
3325 erp->er_extcount += ext_diff;
3326 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3327 ext_cnt -= ext_diff;
3328 }
3329 while (ext_cnt) {
3330 erp_idx++;
3331 erp = xfs_iext_irec_new(ifp, erp_idx);
3332 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3333 erp->er_extcount = ext_diff;
3334 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3335 ext_cnt -= ext_diff;
3336 }
3337
3338 /* Add nex2 extents back to indirection array */
3339 if (nex2) {
3340 xfs_extnum_t ext_avail;
3341 int i;
3342
3343 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3344 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3345 i = 0;
3346 /*
3347 * If nex2 extents fit in the current page, append
3348 * nex2_ep after the new extents.
3349 */
3350 if (nex2 <= ext_avail) {
3351 i = erp->er_extcount;
3352 }
3353 /*
3354 * Otherwise, check if space is available in the
3355 * next page.
3356 */
3357 else if ((erp_idx < nlists - 1) &&
3358 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3359 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3360 erp_idx++;
3361 erp++;
3362 /* Create a hole for nex2 extents */
3363 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3364 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3365 }
3366 /*
3367 * Final choice, create a new extent page for
3368 * nex2 extents.
3369 */
3370 else {
3371 erp_idx++;
3372 erp = xfs_iext_irec_new(ifp, erp_idx);
3373 }
3374 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3375 kmem_free(nex2_ep);
0293ce3a
MK
3376 erp->er_extcount += nex2;
3377 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3378 }
3379}
3380
4eea22f0
MK
3381/*
3382 * This is called when the amount of space required for incore file
3383 * extents needs to be decreased. The ext_diff parameter stores the
3384 * number of extents to be removed and the idx parameter contains
3385 * the extent index where the extents will be removed from.
0293ce3a
MK
3386 *
3387 * If the amount of space needed has decreased below the linear
3388 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3389 * extent array. Otherwise, use kmem_realloc() to adjust the
3390 * size to what is needed.
4eea22f0
MK
3391 */
3392void
3393xfs_iext_remove(
6ef35544 3394 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0 3395 xfs_extnum_t idx, /* index to begin removing exts */
6ef35544
CH
3396 int ext_diff, /* number of extents to remove */
3397 int state) /* type of extent conversion */
4eea22f0 3398{
6ef35544 3399 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3400 xfs_extnum_t nextents; /* number of extents in file */
3401 int new_size; /* size of extents after removal */
3402
0b1b213f
CH
3403 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3404
4eea22f0
MK
3405 ASSERT(ext_diff > 0);
3406 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3407 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3408
3409 if (new_size == 0) {
3410 xfs_iext_destroy(ifp);
0293ce3a
MK
3411 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3412 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3413 } else if (ifp->if_real_bytes) {
3414 xfs_iext_remove_direct(ifp, idx, ext_diff);
3415 } else {
3416 xfs_iext_remove_inline(ifp, idx, ext_diff);
3417 }
3418 ifp->if_bytes = new_size;
3419}
3420
3421/*
3422 * This removes ext_diff extents from the inline buffer, beginning
3423 * at extent index idx.
3424 */
3425void
3426xfs_iext_remove_inline(
3427 xfs_ifork_t *ifp, /* inode fork pointer */
3428 xfs_extnum_t idx, /* index to begin removing exts */
3429 int ext_diff) /* number of extents to remove */
3430{
3431 int nextents; /* number of extents in file */
3432
0293ce3a 3433 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3434 ASSERT(idx < XFS_INLINE_EXTS);
3435 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3436 ASSERT(((nextents - ext_diff) > 0) &&
3437 (nextents - ext_diff) < XFS_INLINE_EXTS);
3438
3439 if (idx + ext_diff < nextents) {
3440 memmove(&ifp->if_u2.if_inline_ext[idx],
3441 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3442 (nextents - (idx + ext_diff)) *
3443 sizeof(xfs_bmbt_rec_t));
3444 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3445 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3446 } else {
3447 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3448 ext_diff * sizeof(xfs_bmbt_rec_t));
3449 }
3450}
3451
3452/*
3453 * This removes ext_diff extents from a linear (direct) extent list,
3454 * beginning at extent index idx. If the extents are being removed
3455 * from the end of the list (ie. truncate) then we just need to re-
3456 * allocate the list to remove the extra space. Otherwise, if the
3457 * extents are being removed from the middle of the existing extent
3458 * entries, then we first need to move the extent records beginning
3459 * at idx + ext_diff up in the list to overwrite the records being
3460 * removed, then remove the extra space via kmem_realloc.
3461 */
3462void
3463xfs_iext_remove_direct(
3464 xfs_ifork_t *ifp, /* inode fork pointer */
3465 xfs_extnum_t idx, /* index to begin removing exts */
3466 int ext_diff) /* number of extents to remove */
3467{
3468 xfs_extnum_t nextents; /* number of extents in file */
3469 int new_size; /* size of extents after removal */
3470
0293ce3a 3471 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3472 new_size = ifp->if_bytes -
3473 (ext_diff * sizeof(xfs_bmbt_rec_t));
3474 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3475
3476 if (new_size == 0) {
3477 xfs_iext_destroy(ifp);
3478 return;
3479 }
3480 /* Move extents up in the list (if needed) */
3481 if (idx + ext_diff < nextents) {
3482 memmove(&ifp->if_u1.if_extents[idx],
3483 &ifp->if_u1.if_extents[idx + ext_diff],
3484 (nextents - (idx + ext_diff)) *
3485 sizeof(xfs_bmbt_rec_t));
3486 }
3487 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3488 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3489 /*
3490 * Reallocate the direct extent list. If the extents
3491 * will fit inside the inode then xfs_iext_realloc_direct
3492 * will switch from direct to inline extent allocation
3493 * mode for us.
3494 */
3495 xfs_iext_realloc_direct(ifp, new_size);
3496 ifp->if_bytes = new_size;
3497}
3498
0293ce3a
MK
3499/*
3500 * This is called when incore extents are being removed from the
3501 * indirection array and the extents being removed span multiple extent
3502 * buffers. The idx parameter contains the file extent index where we
3503 * want to begin removing extents, and the count parameter contains
3504 * how many extents need to be removed.
3505 *
3506 * |-------| |-------|
3507 * | nex1 | | | nex1 - number of extents before idx
3508 * |-------| | count |
3509 * | | | | count - number of extents being removed at idx
3510 * | count | |-------|
3511 * | | | nex2 | nex2 - number of extents after idx + count
3512 * |-------| |-------|
3513 */
3514void
3515xfs_iext_remove_indirect(
3516 xfs_ifork_t *ifp, /* inode fork pointer */
3517 xfs_extnum_t idx, /* index to begin removing extents */
3518 int count) /* number of extents to remove */
3519{
3520 xfs_ext_irec_t *erp; /* indirection array pointer */
3521 int erp_idx = 0; /* indirection array index */
3522 xfs_extnum_t ext_cnt; /* extents left to remove */
3523 xfs_extnum_t ext_diff; /* extents to remove in current list */
3524 xfs_extnum_t nex1; /* number of extents before idx */
3525 xfs_extnum_t nex2; /* extents after idx + count */
0293ce3a
MK
3526 int page_idx = idx; /* index in target extent list */
3527
3528 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3529 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3530 ASSERT(erp != NULL);
0293ce3a
MK
3531 nex1 = page_idx;
3532 ext_cnt = count;
3533 while (ext_cnt) {
3534 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3535 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3536 /*
3537 * Check for deletion of entire list;
3538 * xfs_iext_irec_remove() updates extent offsets.
3539 */
3540 if (ext_diff == erp->er_extcount) {
3541 xfs_iext_irec_remove(ifp, erp_idx);
3542 ext_cnt -= ext_diff;
3543 nex1 = 0;
3544 if (ext_cnt) {
3545 ASSERT(erp_idx < ifp->if_real_bytes /
3546 XFS_IEXT_BUFSZ);
3547 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3548 nex1 = 0;
3549 continue;
3550 } else {
3551 break;
3552 }
3553 }
3554 /* Move extents up (if needed) */
3555 if (nex2) {
3556 memmove(&erp->er_extbuf[nex1],
3557 &erp->er_extbuf[nex1 + ext_diff],
3558 nex2 * sizeof(xfs_bmbt_rec_t));
3559 }
3560 /* Zero out rest of page */
3561 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3562 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3563 /* Update remaining counters */
3564 erp->er_extcount -= ext_diff;
3565 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3566 ext_cnt -= ext_diff;
3567 nex1 = 0;
3568 erp_idx++;
3569 erp++;
3570 }
3571 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3572 xfs_iext_irec_compact(ifp);
3573}
3574
4eea22f0
MK
3575/*
3576 * Create, destroy, or resize a linear (direct) block of extents.
3577 */
3578void
3579xfs_iext_realloc_direct(
3580 xfs_ifork_t *ifp, /* inode fork pointer */
3581 int new_size) /* new size of extents */
3582{
3583 int rnew_size; /* real new size of extents */
3584
3585 rnew_size = new_size;
3586
0293ce3a
MK
3587 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3588 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3589 (new_size != ifp->if_real_bytes)));
3590
4eea22f0
MK
3591 /* Free extent records */
3592 if (new_size == 0) {
3593 xfs_iext_destroy(ifp);
3594 }
3595 /* Resize direct extent list and zero any new bytes */
3596 else if (ifp->if_real_bytes) {
3597 /* Check if extents will fit inside the inode */
3598 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3599 xfs_iext_direct_to_inline(ifp, new_size /
3600 (uint)sizeof(xfs_bmbt_rec_t));
3601 ifp->if_bytes = new_size;
3602 return;
3603 }
16a087d8 3604 if (!is_power_of_2(new_size)){
40ebd81d 3605 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3606 }
3607 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3608 ifp->if_u1.if_extents =
4eea22f0
MK
3609 kmem_realloc(ifp->if_u1.if_extents,
3610 rnew_size,
6785073b 3611 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3612 }
3613 if (rnew_size > ifp->if_real_bytes) {
3614 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3615 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3616 rnew_size - ifp->if_real_bytes);
3617 }
3618 }
3619 /*
3620 * Switch from the inline extent buffer to a direct
3621 * extent list. Be sure to include the inline extent
3622 * bytes in new_size.
3623 */
3624 else {
3625 new_size += ifp->if_bytes;
16a087d8 3626 if (!is_power_of_2(new_size)) {
40ebd81d 3627 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3628 }
3629 xfs_iext_inline_to_direct(ifp, rnew_size);
3630 }
3631 ifp->if_real_bytes = rnew_size;
3632 ifp->if_bytes = new_size;
3633}
3634
3635/*
3636 * Switch from linear (direct) extent records to inline buffer.
3637 */
3638void
3639xfs_iext_direct_to_inline(
3640 xfs_ifork_t *ifp, /* inode fork pointer */
3641 xfs_extnum_t nextents) /* number of extents in file */
3642{
3643 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3644 ASSERT(nextents <= XFS_INLINE_EXTS);
3645 /*
3646 * The inline buffer was zeroed when we switched
3647 * from inline to direct extent allocation mode,
3648 * so we don't need to clear it here.
3649 */
3650 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3651 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3652 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3653 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3654 ifp->if_real_bytes = 0;
3655}
3656
3657/*
3658 * Switch from inline buffer to linear (direct) extent records.
3659 * new_size should already be rounded up to the next power of 2
3660 * by the caller (when appropriate), so use new_size as it is.
3661 * However, since new_size may be rounded up, we can't update
3662 * if_bytes here. It is the caller's responsibility to update
3663 * if_bytes upon return.
3664 */
3665void
3666xfs_iext_inline_to_direct(
3667 xfs_ifork_t *ifp, /* inode fork pointer */
3668 int new_size) /* number of extents in file */
3669{
6785073b 3670 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3671 memset(ifp->if_u1.if_extents, 0, new_size);
3672 if (ifp->if_bytes) {
3673 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3674 ifp->if_bytes);
3675 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3676 sizeof(xfs_bmbt_rec_t));
3677 }
3678 ifp->if_real_bytes = new_size;
3679}
3680
0293ce3a
MK
3681/*
3682 * Resize an extent indirection array to new_size bytes.
3683 */
d96f8f89 3684STATIC void
0293ce3a
MK
3685xfs_iext_realloc_indirect(
3686 xfs_ifork_t *ifp, /* inode fork pointer */
3687 int new_size) /* new indirection array size */
3688{
3689 int nlists; /* number of irec's (ex lists) */
3690 int size; /* current indirection array size */
3691
3692 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3693 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3694 size = nlists * sizeof(xfs_ext_irec_t);
3695 ASSERT(ifp->if_real_bytes);
3696 ASSERT((new_size >= 0) && (new_size != size));
3697 if (new_size == 0) {
3698 xfs_iext_destroy(ifp);
3699 } else {
3700 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3701 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3702 new_size, size, KM_NOFS);
0293ce3a
MK
3703 }
3704}
3705
3706/*
3707 * Switch from indirection array to linear (direct) extent allocations.
3708 */
d96f8f89 3709STATIC void
0293ce3a
MK
3710xfs_iext_indirect_to_direct(
3711 xfs_ifork_t *ifp) /* inode fork pointer */
3712{
a6f64d4a 3713 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
3714 xfs_extnum_t nextents; /* number of extents in file */
3715 int size; /* size of file extents */
3716
3717 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3718 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3719 ASSERT(nextents <= XFS_LINEAR_EXTS);
3720 size = nextents * sizeof(xfs_bmbt_rec_t);
3721
71a8c87f 3722 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
3723 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3724
3725 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 3726 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3727 ifp->if_flags &= ~XFS_IFEXTIREC;
3728 ifp->if_u1.if_extents = ep;
3729 ifp->if_bytes = size;
3730 if (nextents < XFS_LINEAR_EXTS) {
3731 xfs_iext_realloc_direct(ifp, size);
3732 }
3733}
3734
4eea22f0
MK
3735/*
3736 * Free incore file extents.
3737 */
3738void
3739xfs_iext_destroy(
3740 xfs_ifork_t *ifp) /* inode fork pointer */
3741{
0293ce3a
MK
3742 if (ifp->if_flags & XFS_IFEXTIREC) {
3743 int erp_idx;
3744 int nlists;
3745
3746 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3747 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3748 xfs_iext_irec_remove(ifp, erp_idx);
3749 }
3750 ifp->if_flags &= ~XFS_IFEXTIREC;
3751 } else if (ifp->if_real_bytes) {
f0e2d93c 3752 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3753 } else if (ifp->if_bytes) {
3754 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3755 sizeof(xfs_bmbt_rec_t));
3756 }
3757 ifp->if_u1.if_extents = NULL;
3758 ifp->if_real_bytes = 0;
3759 ifp->if_bytes = 0;
3760}
0293ce3a 3761
8867bc9b
MK
3762/*
3763 * Return a pointer to the extent record for file system block bno.
3764 */
a6f64d4a 3765xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
3766xfs_iext_bno_to_ext(
3767 xfs_ifork_t *ifp, /* inode fork pointer */
3768 xfs_fileoff_t bno, /* block number to search for */
3769 xfs_extnum_t *idxp) /* index of target extent */
3770{
a6f64d4a 3771 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 3772 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 3773 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 3774 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 3775 int high; /* upper boundary in search */
8867bc9b 3776 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 3777 int low; /* lower boundary in search */
8867bc9b
MK
3778 xfs_extnum_t nextents; /* number of file extents */
3779 xfs_fileoff_t startoff = 0; /* start offset of extent */
3780
3781 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3782 if (nextents == 0) {
3783 *idxp = 0;
3784 return NULL;
3785 }
3786 low = 0;
3787 if (ifp->if_flags & XFS_IFEXTIREC) {
3788 /* Find target extent list */
3789 int erp_idx = 0;
3790 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3791 base = erp->er_extbuf;
3792 high = erp->er_extcount - 1;
3793 } else {
3794 base = ifp->if_u1.if_extents;
3795 high = nextents - 1;
3796 }
3797 /* Binary search extent records */
3798 while (low <= high) {
3799 idx = (low + high) >> 1;
3800 ep = base + idx;
3801 startoff = xfs_bmbt_get_startoff(ep);
3802 blockcount = xfs_bmbt_get_blockcount(ep);
3803 if (bno < startoff) {
3804 high = idx - 1;
3805 } else if (bno >= startoff + blockcount) {
3806 low = idx + 1;
3807 } else {
3808 /* Convert back to file-based extent index */
3809 if (ifp->if_flags & XFS_IFEXTIREC) {
3810 idx += erp->er_extoff;
3811 }
3812 *idxp = idx;
3813 return ep;
3814 }
3815 }
3816 /* Convert back to file-based extent index */
3817 if (ifp->if_flags & XFS_IFEXTIREC) {
3818 idx += erp->er_extoff;
3819 }
3820 if (bno >= startoff + blockcount) {
3821 if (++idx == nextents) {
3822 ep = NULL;
3823 } else {
3824 ep = xfs_iext_get_ext(ifp, idx);
3825 }
3826 }
3827 *idxp = idx;
3828 return ep;
3829}
3830
0293ce3a
MK
3831/*
3832 * Return a pointer to the indirection array entry containing the
3833 * extent record for filesystem block bno. Store the index of the
3834 * target irec in *erp_idxp.
3835 */
8867bc9b 3836xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
3837xfs_iext_bno_to_irec(
3838 xfs_ifork_t *ifp, /* inode fork pointer */
3839 xfs_fileoff_t bno, /* block number to search for */
3840 int *erp_idxp) /* irec index of target ext list */
3841{
3842 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3843 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 3844 int erp_idx; /* indirection array index */
0293ce3a
MK
3845 int nlists; /* number of extent irec's (lists) */
3846 int high; /* binary search upper limit */
3847 int low; /* binary search lower limit */
3848
3849 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3850 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3851 erp_idx = 0;
3852 low = 0;
3853 high = nlists - 1;
3854 while (low <= high) {
3855 erp_idx = (low + high) >> 1;
3856 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3857 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3858 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3859 high = erp_idx - 1;
3860 } else if (erp_next && bno >=
3861 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3862 low = erp_idx + 1;
3863 } else {
3864 break;
3865 }
3866 }
3867 *erp_idxp = erp_idx;
3868 return erp;
3869}
3870
3871/*
3872 * Return a pointer to the indirection array entry containing the
3873 * extent record at file extent index *idxp. Store the index of the
3874 * target irec in *erp_idxp and store the page index of the target
3875 * extent record in *idxp.
3876 */
3877xfs_ext_irec_t *
3878xfs_iext_idx_to_irec(
3879 xfs_ifork_t *ifp, /* inode fork pointer */
3880 xfs_extnum_t *idxp, /* extent index (file -> page) */
3881 int *erp_idxp, /* pointer to target irec */
3882 int realloc) /* new bytes were just added */
3883{
3884 xfs_ext_irec_t *prev; /* pointer to previous irec */
3885 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3886 int erp_idx; /* indirection array index */
3887 int nlists; /* number of irec's (ex lists) */
3888 int high; /* binary search upper limit */
3889 int low; /* binary search lower limit */
3890 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3891
3892 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3893 ASSERT(page_idx >= 0 && page_idx <=
3894 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3895 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3896 erp_idx = 0;
3897 low = 0;
3898 high = nlists - 1;
3899
3900 /* Binary search extent irec's */
3901 while (low <= high) {
3902 erp_idx = (low + high) >> 1;
3903 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3904 prev = erp_idx > 0 ? erp - 1 : NULL;
3905 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3906 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3907 high = erp_idx - 1;
3908 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3909 (page_idx == erp->er_extoff + erp->er_extcount &&
3910 !realloc)) {
3911 low = erp_idx + 1;
3912 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3913 erp->er_extcount == XFS_LINEAR_EXTS) {
3914 ASSERT(realloc);
3915 page_idx = 0;
3916 erp_idx++;
3917 erp = erp_idx < nlists ? erp + 1 : NULL;
3918 break;
3919 } else {
3920 page_idx -= erp->er_extoff;
3921 break;
3922 }
3923 }
3924 *idxp = page_idx;
3925 *erp_idxp = erp_idx;
3926 return(erp);
3927}
3928
3929/*
3930 * Allocate and initialize an indirection array once the space needed
3931 * for incore extents increases above XFS_IEXT_BUFSZ.
3932 */
3933void
3934xfs_iext_irec_init(
3935 xfs_ifork_t *ifp) /* inode fork pointer */
3936{
3937 xfs_ext_irec_t *erp; /* indirection array pointer */
3938 xfs_extnum_t nextents; /* number of extents in file */
3939
3940 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3941 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3942 ASSERT(nextents <= XFS_LINEAR_EXTS);
3943
6785073b 3944 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
3945
3946 if (nextents == 0) {
6785073b 3947 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3948 } else if (!ifp->if_real_bytes) {
3949 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3950 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3951 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3952 }
3953 erp->er_extbuf = ifp->if_u1.if_extents;
3954 erp->er_extcount = nextents;
3955 erp->er_extoff = 0;
3956
3957 ifp->if_flags |= XFS_IFEXTIREC;
3958 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3959 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3960 ifp->if_u1.if_ext_irec = erp;
3961
3962 return;
3963}
3964
3965/*
3966 * Allocate and initialize a new entry in the indirection array.
3967 */
3968xfs_ext_irec_t *
3969xfs_iext_irec_new(
3970 xfs_ifork_t *ifp, /* inode fork pointer */
3971 int erp_idx) /* index for new irec */
3972{
3973 xfs_ext_irec_t *erp; /* indirection array pointer */
3974 int i; /* loop counter */
3975 int nlists; /* number of irec's (ex lists) */
3976
3977 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3978 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3979
3980 /* Resize indirection array */
3981 xfs_iext_realloc_indirect(ifp, ++nlists *
3982 sizeof(xfs_ext_irec_t));
3983 /*
3984 * Move records down in the array so the
3985 * new page can use erp_idx.
3986 */
3987 erp = ifp->if_u1.if_ext_irec;
3988 for (i = nlists - 1; i > erp_idx; i--) {
3989 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3990 }
3991 ASSERT(i == erp_idx);
3992
3993 /* Initialize new extent record */
3994 erp = ifp->if_u1.if_ext_irec;
6785073b 3995 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3996 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3997 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3998 erp[erp_idx].er_extcount = 0;
3999 erp[erp_idx].er_extoff = erp_idx > 0 ?
4000 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4001 return (&erp[erp_idx]);
4002}
4003
4004/*
4005 * Remove a record from the indirection array.
4006 */
4007void
4008xfs_iext_irec_remove(
4009 xfs_ifork_t *ifp, /* inode fork pointer */
4010 int erp_idx) /* irec index to remove */
4011{
4012 xfs_ext_irec_t *erp; /* indirection array pointer */
4013 int i; /* loop counter */
4014 int nlists; /* number of irec's (ex lists) */
4015
4016 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4017 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4018 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4019 if (erp->er_extbuf) {
4020 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4021 -erp->er_extcount);
f0e2d93c 4022 kmem_free(erp->er_extbuf);
0293ce3a
MK
4023 }
4024 /* Compact extent records */
4025 erp = ifp->if_u1.if_ext_irec;
4026 for (i = erp_idx; i < nlists - 1; i++) {
4027 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4028 }
4029 /*
4030 * Manually free the last extent record from the indirection
4031 * array. A call to xfs_iext_realloc_indirect() with a size
4032 * of zero would result in a call to xfs_iext_destroy() which
4033 * would in turn call this function again, creating a nasty
4034 * infinite loop.
4035 */
4036 if (--nlists) {
4037 xfs_iext_realloc_indirect(ifp,
4038 nlists * sizeof(xfs_ext_irec_t));
4039 } else {
f0e2d93c 4040 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4041 }
4042 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4043}
4044
4045/*
4046 * This is called to clean up large amounts of unused memory allocated
4047 * by the indirection array. Before compacting anything though, verify
4048 * that the indirection array is still needed and switch back to the
4049 * linear extent list (or even the inline buffer) if possible. The
4050 * compaction policy is as follows:
4051 *
4052 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 4053 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
4054 * No Compaction: Extents occupy at least 50% of allocated space
4055 */
4056void
4057xfs_iext_irec_compact(
4058 xfs_ifork_t *ifp) /* inode fork pointer */
4059{
4060 xfs_extnum_t nextents; /* number of extents in file */
4061 int nlists; /* number of irec's (ex lists) */
4062
4063 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4064 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4065 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4066
4067 if (nextents == 0) {
4068 xfs_iext_destroy(ifp);
4069 } else if (nextents <= XFS_INLINE_EXTS) {
4070 xfs_iext_indirect_to_direct(ifp);
4071 xfs_iext_direct_to_inline(ifp, nextents);
4072 } else if (nextents <= XFS_LINEAR_EXTS) {
4073 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
4074 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4075 xfs_iext_irec_compact_pages(ifp);
4076 }
4077}
4078
4079/*
4080 * Combine extents from neighboring extent pages.
4081 */
4082void
4083xfs_iext_irec_compact_pages(
4084 xfs_ifork_t *ifp) /* inode fork pointer */
4085{
4086 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4087 int erp_idx = 0; /* indirection array index */
4088 int nlists; /* number of irec's (ex lists) */
4089
4090 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4091 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4092 while (erp_idx < nlists - 1) {
4093 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4094 erp_next = erp + 1;
4095 if (erp_next->er_extcount <=
4096 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 4097 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
4098 erp_next->er_extbuf, erp_next->er_extcount *
4099 sizeof(xfs_bmbt_rec_t));
4100 erp->er_extcount += erp_next->er_extcount;
4101 /*
4102 * Free page before removing extent record
4103 * so er_extoffs don't get modified in
4104 * xfs_iext_irec_remove.
4105 */
f0e2d93c 4106 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
4107 erp_next->er_extbuf = NULL;
4108 xfs_iext_irec_remove(ifp, erp_idx + 1);
4109 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4110 } else {
4111 erp_idx++;
4112 }
4113 }
4114}
4115
0293ce3a
MK
4116/*
4117 * This is called to update the er_extoff field in the indirection
4118 * array when extents have been added or removed from one of the
4119 * extent lists. erp_idx contains the irec index to begin updating
4120 * at and ext_diff contains the number of extents that were added
4121 * or removed.
4122 */
4123void
4124xfs_iext_irec_update_extoffs(
4125 xfs_ifork_t *ifp, /* inode fork pointer */
4126 int erp_idx, /* irec index to update */
4127 int ext_diff) /* number of new extents */
4128{
4129 int i; /* loop counter */
4130 int nlists; /* number of irec's (ex lists */
4131
4132 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4133 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4134 for (i = erp_idx; i < nlists; i++) {
4135 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4136 }
4137}
This page took 0.719544 seconds and 5 git commands to generate.