xfs: move di_changecount to VFS inode
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
a4fbe6ab 28#include "xfs_inode.h"
57062787 29#include "xfs_da_format.h"
c24b5dfa 30#include "xfs_da_btree.h"
c24b5dfa 31#include "xfs_dir2.h"
a844f451 32#include "xfs_attr_sf.h"
c24b5dfa 33#include "xfs_attr.h"
239880ef
DC
34#include "xfs_trans_space.h"
35#include "xfs_trans.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451 37#include "xfs_inode_item.h"
a844f451
NS
38#include "xfs_ialloc.h"
39#include "xfs_bmap.h"
68988114 40#include "xfs_bmap_util.h"
1da177e4 41#include "xfs_error.h"
1da177e4 42#include "xfs_quota.h"
2a82b8be 43#include "xfs_filestream.h"
93848a99 44#include "xfs_cksum.h"
0b1b213f 45#include "xfs_trace.h"
33479e05 46#include "xfs_icache.h"
c24b5dfa 47#include "xfs_symlink.h"
239880ef
DC
48#include "xfs_trans_priv.h"
49#include "xfs_log.h"
a4fbe6ab 50#include "xfs_bmap_btree.h"
1da177e4 51
1da177e4 52kmem_zone_t *xfs_inode_zone;
1da177e4
LT
53
54/*
8f04c47a 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
54d7b5c1
DC
60STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
61STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
62STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 63
2a0ec1d9
DC
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
fa96acad 78/*
efa70be1
CH
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
fa96acad 89 *
efa70be1 90 * The functions return a value which should be given to the corresponding
01f4f327 91 * xfs_iunlock() call.
fa96acad
DC
92 */
93uint
309ecac8
CH
94xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
fa96acad 96{
309ecac8 97 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 98
309ecac8
CH
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 101 lock_mode = XFS_ILOCK_EXCL;
fa96acad 102 xfs_ilock(ip, lock_mode);
fa96acad
DC
103 return lock_mode;
104}
105
efa70be1
CH
106uint
107xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
fa96acad 109{
efa70be1
CH
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
fa96acad
DC
117}
118
119/*
653c60b6
DC
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
fa96acad 123 *
653c60b6
DC
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 126 *
653c60b6
DC
127 * Basic locking order:
128 *
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130 *
131 * mmap_sem locking order:
132 *
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
135 *
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
142 *
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
fa96acad
DC
148 */
149void
150xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
153{
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155
156 /*
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 */
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
168
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173
653c60b6
DC
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178
fa96acad
DC
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183}
184
185/*
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
191 *
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
196 */
197int
198xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
201{
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203
204 /*
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 */
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
216
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
223 }
653c60b6
DC
224
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
231 }
232
fa96acad
DC
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
653c60b6 235 goto out_undo_mmaplock;
fa96acad
DC
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
653c60b6 238 goto out_undo_mmaplock;
fa96acad
DC
239 }
240 return 1;
241
653c60b6
DC
242out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247out_undo_iolock:
fa96acad
DC
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
653c60b6 252out:
fa96acad
DC
253 return 0;
254}
255
256/*
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
261 *
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
266 *
267 */
268void
269xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
272{
273 /*
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 */
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
285 ASSERT(lock_flags != 0);
286
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
291
653c60b6
DC
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
296
fa96acad
DC
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
301
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303}
304
305/*
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
308 */
309void
310xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
313{
653c60b6
DC
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
317
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
653c60b6
DC
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
fa96acad
DC
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
324
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326}
327
742ae1e3 328#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
329int
330xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
333{
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
338 }
339
653c60b6
DC
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 }
345
fa96acad
DC
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 }
351
352 ASSERT(0);
353 return 0;
354}
355#endif
356
c24b5dfa
DC
357#ifdef DEBUG
358int xfs_locked_n;
359int xfs_small_retries;
360int xfs_middle_retries;
361int xfs_lots_retries;
362int xfs_lock_delays;
363#endif
364
b6a9947e
DC
365/*
366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369 * errors and warnings.
370 */
371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
372static bool
373xfs_lockdep_subclass_ok(
374 int subclass)
375{
376 return subclass < MAX_LOCKDEP_SUBCLASSES;
377}
378#else
379#define xfs_lockdep_subclass_ok(subclass) (true)
380#endif
381
c24b5dfa 382/*
653c60b6 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
384 * value. This can be called for any type of inode lock combination, including
385 * parent locking. Care must be taken to ensure we don't overrun the subclass
386 * storage fields in the class mask we build.
c24b5dfa
DC
387 */
388static inline int
389xfs_lock_inumorder(int lock_mode, int subclass)
390{
0952c818
DC
391 int class = 0;
392
393 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
394 XFS_ILOCK_RTSUM)));
3403ccc0 395 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 396
653c60b6 397 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 398 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
3403ccc0
DC
399 ASSERT(xfs_lockdep_subclass_ok(subclass +
400 XFS_IOLOCK_PARENT_VAL));
0952c818
DC
401 class += subclass << XFS_IOLOCK_SHIFT;
402 if (lock_mode & XFS_IOLOCK_PARENT)
403 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
653c60b6
DC
404 }
405
406 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
407 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
408 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
409 }
410
0952c818
DC
411 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
412 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
413 class += subclass << XFS_ILOCK_SHIFT;
414 }
c24b5dfa 415
0952c818 416 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
417}
418
419/*
95afcf5c
DC
420 * The following routine will lock n inodes in exclusive mode. We assume the
421 * caller calls us with the inodes in i_ino order.
c24b5dfa 422 *
95afcf5c
DC
423 * We need to detect deadlock where an inode that we lock is in the AIL and we
424 * start waiting for another inode that is locked by a thread in a long running
425 * transaction (such as truncate). This can result in deadlock since the long
426 * running trans might need to wait for the inode we just locked in order to
427 * push the tail and free space in the log.
0952c818
DC
428 *
429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431 * lock more than one at a time, lockdep will report false positives saying we
432 * have violated locking orders.
c24b5dfa
DC
433 */
434void
435xfs_lock_inodes(
436 xfs_inode_t **ips,
437 int inodes,
438 uint lock_mode)
439{
440 int attempts = 0, i, j, try_lock;
441 xfs_log_item_t *lp;
442
0952c818
DC
443 /*
444 * Currently supports between 2 and 5 inodes with exclusive locking. We
445 * support an arbitrary depth of locking here, but absolute limits on
446 * inodes depend on the the type of locking and the limits placed by
447 * lockdep annotations in xfs_lock_inumorder. These are all checked by
448 * the asserts.
449 */
95afcf5c 450 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
451 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
452 XFS_ILOCK_EXCL));
453 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
454 XFS_ILOCK_SHARED)));
455 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
456 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461
462 if (lock_mode & XFS_IOLOCK_EXCL) {
463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
466
467 try_lock = 0;
468 i = 0;
c24b5dfa
DC
469again:
470 for (; i < inodes; i++) {
471 ASSERT(ips[i]);
472
95afcf5c 473 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
474 continue;
475
476 /*
95afcf5c
DC
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 479 */
c24b5dfa
DC
480 if (!try_lock) {
481 for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 483 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 484 try_lock++;
c24b5dfa
DC
485 }
486 }
487
488 /*
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
492 * and try again.
493 */
95afcf5c
DC
494 if (!try_lock) {
495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 continue;
497 }
498
499 /* try_lock means we have an inode locked that is in the AIL. */
500 ASSERT(i != 0);
501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 continue;
c24b5dfa 503
95afcf5c
DC
504 /*
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
507 */
508 attempts++;
509 for (j = i - 1; j >= 0; j--) {
c24b5dfa 510 /*
95afcf5c
DC
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
513 * same.
c24b5dfa 514 */
95afcf5c
DC
515 if (j != (i - 1) && ips[j] == ips[j + 1])
516 continue;
c24b5dfa 517
95afcf5c
DC
518 xfs_iunlock(ips[j], lock_mode);
519 }
c24b5dfa 520
95afcf5c
DC
521 if ((attempts % 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
c24b5dfa 523#ifdef DEBUG
95afcf5c 524 xfs_lock_delays++;
c24b5dfa 525#endif
c24b5dfa 526 }
95afcf5c
DC
527 i = 0;
528 try_lock = 0;
529 goto again;
c24b5dfa
DC
530 }
531
532#ifdef DEBUG
533 if (attempts) {
534 if (attempts < 5) xfs_small_retries++;
535 else if (attempts < 100) xfs_middle_retries++;
536 else xfs_lots_retries++;
537 } else {
538 xfs_locked_n++;
539 }
540#endif
541}
542
543/*
653c60b6
DC
544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546 * lock more than one at a time, lockdep will report false positives saying we
547 * have violated locking orders.
c24b5dfa
DC
548 */
549void
550xfs_lock_two_inodes(
551 xfs_inode_t *ip0,
552 xfs_inode_t *ip1,
553 uint lock_mode)
554{
555 xfs_inode_t *temp;
556 int attempts = 0;
557 xfs_log_item_t *lp;
558
653c60b6
DC
559 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
560 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564
c24b5dfa
DC
565 ASSERT(ip0->i_ino != ip1->i_ino);
566
567 if (ip0->i_ino > ip1->i_ino) {
568 temp = ip0;
569 ip0 = ip1;
570 ip1 = temp;
571 }
572
573 again:
574 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
575
576 /*
577 * If the first lock we have locked is in the AIL, we must TRY to get
578 * the second lock. If we can't get it, we must release the first one
579 * and try again.
580 */
581 lp = (xfs_log_item_t *)ip0->i_itemp;
582 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
584 xfs_iunlock(ip0, lock_mode);
585 if ((++attempts % 5) == 0)
586 delay(1); /* Don't just spin the CPU */
587 goto again;
588 }
589 } else {
590 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
591 }
592}
593
594
fa96acad
DC
595void
596__xfs_iflock(
597 struct xfs_inode *ip)
598{
599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601
602 do {
603 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
604 if (xfs_isiflocked(ip))
605 io_schedule();
606 } while (!xfs_iflock_nowait(ip));
607
608 finish_wait(wq, &wait.wait);
609}
610
1da177e4
LT
611STATIC uint
612_xfs_dic2xflags(
58f88ca2
DC
613 __uint16_t di_flags,
614 uint64_t di_flags2,
615 bool has_attr)
1da177e4
LT
616{
617 uint flags = 0;
618
619 if (di_flags & XFS_DIFLAG_ANY) {
620 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 621 flags |= FS_XFLAG_REALTIME;
1da177e4 622 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 623 flags |= FS_XFLAG_PREALLOC;
1da177e4 624 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 625 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 626 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 627 flags |= FS_XFLAG_APPEND;
1da177e4 628 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 629 flags |= FS_XFLAG_SYNC;
1da177e4 630 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 631 flags |= FS_XFLAG_NOATIME;
1da177e4 632 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 633 flags |= FS_XFLAG_NODUMP;
1da177e4 634 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 635 flags |= FS_XFLAG_RTINHERIT;
1da177e4 636 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 637 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 638 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 639 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 640 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 641 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 643 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 644 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 645 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 646 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 647 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
648 }
649
58f88ca2
DC
650 if (di_flags2 & XFS_DIFLAG2_ANY) {
651 if (di_flags2 & XFS_DIFLAG2_DAX)
652 flags |= FS_XFLAG_DAX;
653 }
654
655 if (has_attr)
656 flags |= FS_XFLAG_HASATTR;
657
1da177e4
LT
658 return flags;
659}
660
661uint
662xfs_ip2xflags(
58f88ca2 663 struct xfs_inode *ip)
1da177e4 664{
58f88ca2 665 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 666
58f88ca2 667 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
668}
669
670uint
671xfs_dic2xflags(
58f88ca2 672 struct xfs_dinode *dip)
1da177e4 673{
58f88ca2
DC
674 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
675 be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
1da177e4
LT
676}
677
c24b5dfa
DC
678/*
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
683 */
684int
685xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
690{
691 xfs_ino_t inum;
692 int error;
c24b5dfa
DC
693
694 trace_xfs_lookup(dp, name);
695
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 697 return -EIO;
c24b5dfa 698
dbad7c99 699 xfs_ilock(dp, XFS_IOLOCK_SHARED);
c24b5dfa 700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 701 if (error)
dbad7c99 702 goto out_unlock;
c24b5dfa
DC
703
704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 if (error)
706 goto out_free_name;
707
dbad7c99 708 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
c24b5dfa
DC
709 return 0;
710
711out_free_name:
712 if (ci_name)
713 kmem_free(ci_name->name);
dbad7c99
DC
714out_unlock:
715 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
c24b5dfa
DC
716 *ipp = NULL;
717 return error;
718}
719
1da177e4
LT
720/*
721 * Allocate an inode on disk and return a copy of its in-core version.
722 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
723 * appropriately within the inode. The uid and gid for the inode are
724 * set according to the contents of the given cred structure.
725 *
726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
727 * has a free inode available, call xfs_iget() to obtain the in-core
728 * version of the allocated inode. Finally, fill in the inode and
729 * log its initial contents. In this case, ialloc_context would be
730 * set to NULL.
1da177e4 731 *
cd856db6
CM
732 * If xfs_dialloc() does not have an available inode, it will replenish
733 * its supply by doing an allocation. Since we can only do one
734 * allocation within a transaction without deadlocks, we must commit
735 * the current transaction before returning the inode itself.
736 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
737 * The caller should then commit the current transaction, start a new
738 * transaction, and call xfs_ialloc() again to actually get the inode.
739 *
740 * To ensure that some other process does not grab the inode that
741 * was allocated during the first call to xfs_ialloc(), this routine
742 * also returns the [locked] bp pointing to the head of the freelist
743 * as ialloc_context. The caller should hold this buffer across
744 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
745 *
746 * If we are allocating quota inodes, we do not have a parent inode
747 * to attach to or associate with (i.e. pip == NULL) because they
748 * are not linked into the directory structure - they are attached
749 * directly to the superblock - and so have no parent.
1da177e4
LT
750 */
751int
752xfs_ialloc(
753 xfs_trans_t *tp,
754 xfs_inode_t *pip,
576b1d67 755 umode_t mode,
31b084ae 756 xfs_nlink_t nlink,
1da177e4 757 xfs_dev_t rdev,
6743099c 758 prid_t prid,
1da177e4
LT
759 int okalloc,
760 xfs_buf_t **ialloc_context,
1da177e4
LT
761 xfs_inode_t **ipp)
762{
93848a99 763 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
764 xfs_ino_t ino;
765 xfs_inode_t *ip;
1da177e4
LT
766 uint flags;
767 int error;
e076b0f3 768 struct timespec tv;
3987848c 769 struct inode *inode;
1da177e4
LT
770
771 /*
772 * Call the space management code to pick
773 * the on-disk inode to be allocated.
774 */
b11f94d5 775 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 776 ialloc_context, &ino);
bf904248 777 if (error)
1da177e4 778 return error;
08358906 779 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
780 *ipp = NULL;
781 return 0;
782 }
783 ASSERT(*ialloc_context == NULL);
784
785 /*
786 * Get the in-core inode with the lock held exclusively.
787 * This is because we're setting fields here we need
788 * to prevent others from looking at until we're done.
789 */
93848a99 790 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 791 XFS_ILOCK_EXCL, &ip);
bf904248 792 if (error)
1da177e4 793 return error;
1da177e4 794 ASSERT(ip != NULL);
3987848c 795 inode = VFS_I(ip);
1da177e4 796
263997a6
DC
797 /*
798 * We always convert v1 inodes to v2 now - we only support filesystems
799 * with >= v2 inode capability, so there is no reason for ever leaving
800 * an inode in v1 format.
801 */
802 if (ip->i_d.di_version == 1)
803 ip->i_d.di_version = 2;
804
576b1d67 805 ip->i_d.di_mode = mode;
54d7b5c1 806 set_nlink(inode, nlink);
7aab1b28
DE
807 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
808 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 809 xfs_set_projid(ip, prid);
1da177e4 810
bd186aa9 811 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 812 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 813 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
814 ip->i_d.di_mode |= S_ISGID;
815 }
816 }
817
818 /*
819 * If the group ID of the new file does not match the effective group
820 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
821 * (and only if the irix_sgid_inherit compatibility variable is set).
822 */
823 if ((irix_sgid_inherit) &&
824 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 825 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
826 ip->i_d.di_mode &= ~S_ISGID;
827 }
828
829 ip->i_d.di_size = 0;
830 ip->i_d.di_nextents = 0;
831 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 832
e076b0f3 833 tv = current_fs_time(mp->m_super);
3987848c
DC
834 inode->i_mtime = tv;
835 inode->i_atime = tv;
836 inode->i_ctime = tv;
dff35fd4 837
1da177e4
LT
838 ip->i_d.di_extsize = 0;
839 ip->i_d.di_dmevmask = 0;
840 ip->i_d.di_dmstate = 0;
841 ip->i_d.di_flags = 0;
93848a99
CH
842
843 if (ip->i_d.di_version == 3) {
83e06f21 844 inode->i_version = 1;
93848a99 845 ip->i_d.di_flags2 = 0;
3987848c
DC
846 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
847 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
93848a99
CH
848 }
849
850
1da177e4
LT
851 flags = XFS_ILOG_CORE;
852 switch (mode & S_IFMT) {
853 case S_IFIFO:
854 case S_IFCHR:
855 case S_IFBLK:
856 case S_IFSOCK:
857 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
858 ip->i_df.if_u2.if_rdev = rdev;
859 ip->i_df.if_flags = 0;
860 flags |= XFS_ILOG_DEV;
861 break;
862 case S_IFREG:
863 case S_IFDIR:
b11f94d5 864 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2
DC
865 uint64_t di_flags2 = 0;
866 uint di_flags = 0;
365ca83d 867
abbede1b 868 if (S_ISDIR(mode)) {
365ca83d
NS
869 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
870 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
871 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
872 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
873 ip->i_d.di_extsize = pip->i_d.di_extsize;
874 }
9336e3a7
DC
875 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
876 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 877 } else if (S_ISREG(mode)) {
613d7043 878 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 879 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
880 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
881 di_flags |= XFS_DIFLAG_EXTSIZE;
882 ip->i_d.di_extsize = pip->i_d.di_extsize;
883 }
1da177e4
LT
884 }
885 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
886 xfs_inherit_noatime)
365ca83d 887 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
888 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
889 xfs_inherit_nodump)
365ca83d 890 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
891 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
892 xfs_inherit_sync)
365ca83d 893 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
895 xfs_inherit_nosymlinks)
365ca83d 896 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
897 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
898 xfs_inherit_nodefrag)
899 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
900 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
901 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2
DC
902 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
903 di_flags2 |= XFS_DIFLAG2_DAX;
904
365ca83d 905 ip->i_d.di_flags |= di_flags;
58f88ca2 906 ip->i_d.di_flags2 |= di_flags2;
1da177e4
LT
907 }
908 /* FALLTHROUGH */
909 case S_IFLNK:
910 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
911 ip->i_df.if_flags = XFS_IFEXTENTS;
912 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
913 ip->i_df.if_u1.if_extents = NULL;
914 break;
915 default:
916 ASSERT(0);
917 }
918 /*
919 * Attribute fork settings for new inode.
920 */
921 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
922 ip->i_d.di_anextents = 0;
923
924 /*
925 * Log the new values stuffed into the inode.
926 */
ddc3415a 927 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
928 xfs_trans_log_inode(tp, ip, flags);
929
58c90473 930 /* now that we have an i_mode we can setup the inode structure */
41be8bed 931 xfs_setup_inode(ip);
1da177e4
LT
932
933 *ipp = ip;
934 return 0;
935}
936
e546cb79
DC
937/*
938 * Allocates a new inode from disk and return a pointer to the
939 * incore copy. This routine will internally commit the current
940 * transaction and allocate a new one if the Space Manager needed
941 * to do an allocation to replenish the inode free-list.
942 *
943 * This routine is designed to be called from xfs_create and
944 * xfs_create_dir.
945 *
946 */
947int
948xfs_dir_ialloc(
949 xfs_trans_t **tpp, /* input: current transaction;
950 output: may be a new transaction. */
951 xfs_inode_t *dp, /* directory within whose allocate
952 the inode. */
953 umode_t mode,
954 xfs_nlink_t nlink,
955 xfs_dev_t rdev,
956 prid_t prid, /* project id */
957 int okalloc, /* ok to allocate new space */
958 xfs_inode_t **ipp, /* pointer to inode; it will be
959 locked. */
960 int *committed)
961
962{
963 xfs_trans_t *tp;
e546cb79
DC
964 xfs_inode_t *ip;
965 xfs_buf_t *ialloc_context = NULL;
966 int code;
e546cb79
DC
967 void *dqinfo;
968 uint tflags;
969
970 tp = *tpp;
971 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
972
973 /*
974 * xfs_ialloc will return a pointer to an incore inode if
975 * the Space Manager has an available inode on the free
976 * list. Otherwise, it will do an allocation and replenish
977 * the freelist. Since we can only do one allocation per
978 * transaction without deadlocks, we will need to commit the
979 * current transaction and start a new one. We will then
980 * need to call xfs_ialloc again to get the inode.
981 *
982 * If xfs_ialloc did an allocation to replenish the freelist,
983 * it returns the bp containing the head of the freelist as
984 * ialloc_context. We will hold a lock on it across the
985 * transaction commit so that no other process can steal
986 * the inode(s) that we've just allocated.
987 */
988 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
989 &ialloc_context, &ip);
990
991 /*
992 * Return an error if we were unable to allocate a new inode.
993 * This should only happen if we run out of space on disk or
994 * encounter a disk error.
995 */
996 if (code) {
997 *ipp = NULL;
998 return code;
999 }
1000 if (!ialloc_context && !ip) {
1001 *ipp = NULL;
2451337d 1002 return -ENOSPC;
e546cb79
DC
1003 }
1004
1005 /*
1006 * If the AGI buffer is non-NULL, then we were unable to get an
1007 * inode in one operation. We need to commit the current
1008 * transaction and call xfs_ialloc() again. It is guaranteed
1009 * to succeed the second time.
1010 */
1011 if (ialloc_context) {
1012 /*
1013 * Normally, xfs_trans_commit releases all the locks.
1014 * We call bhold to hang on to the ialloc_context across
1015 * the commit. Holding this buffer prevents any other
1016 * processes from doing any allocations in this
1017 * allocation group.
1018 */
1019 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1020
1021 /*
1022 * We want the quota changes to be associated with the next
1023 * transaction, NOT this one. So, detach the dqinfo from this
1024 * and attach it to the next transaction.
1025 */
1026 dqinfo = NULL;
1027 tflags = 0;
1028 if (tp->t_dqinfo) {
1029 dqinfo = (void *)tp->t_dqinfo;
1030 tp->t_dqinfo = NULL;
1031 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1032 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1033 }
1034
2e6db6c4
CH
1035 code = xfs_trans_roll(&tp, 0);
1036 if (committed != NULL)
e546cb79 1037 *committed = 1;
3d3c8b52 1038
e546cb79
DC
1039 /*
1040 * Re-attach the quota info that we detached from prev trx.
1041 */
1042 if (dqinfo) {
1043 tp->t_dqinfo = dqinfo;
1044 tp->t_flags |= tflags;
1045 }
1046
1047 if (code) {
1048 xfs_buf_relse(ialloc_context);
2e6db6c4 1049 *tpp = tp;
e546cb79
DC
1050 *ipp = NULL;
1051 return code;
1052 }
1053 xfs_trans_bjoin(tp, ialloc_context);
1054
1055 /*
1056 * Call ialloc again. Since we've locked out all
1057 * other allocations in this allocation group,
1058 * this call should always succeed.
1059 */
1060 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1061 okalloc, &ialloc_context, &ip);
1062
1063 /*
1064 * If we get an error at this point, return to the caller
1065 * so that the current transaction can be aborted.
1066 */
1067 if (code) {
1068 *tpp = tp;
1069 *ipp = NULL;
1070 return code;
1071 }
1072 ASSERT(!ialloc_context && ip);
1073
1074 } else {
1075 if (committed != NULL)
1076 *committed = 0;
1077 }
1078
1079 *ipp = ip;
1080 *tpp = tp;
1081
1082 return 0;
1083}
1084
1085/*
54d7b5c1
DC
1086 * Decrement the link count on an inode & log the change. If this causes the
1087 * link count to go to zero, move the inode to AGI unlinked list so that it can
1088 * be freed when the last active reference goes away via xfs_inactive().
e546cb79
DC
1089 */
1090int /* error */
1091xfs_droplink(
1092 xfs_trans_t *tp,
1093 xfs_inode_t *ip)
1094{
e546cb79
DC
1095 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1096
e546cb79
DC
1097 drop_nlink(VFS_I(ip));
1098 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1099
54d7b5c1
DC
1100 if (VFS_I(ip)->i_nlink)
1101 return 0;
1102
1103 return xfs_iunlink(tp, ip);
e546cb79
DC
1104}
1105
e546cb79
DC
1106/*
1107 * Increment the link count on an inode & log the change.
1108 */
1109int
1110xfs_bumplink(
1111 xfs_trans_t *tp,
1112 xfs_inode_t *ip)
1113{
1114 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1115
263997a6 1116 ASSERT(ip->i_d.di_version > 1);
e546cb79 1117 inc_nlink(VFS_I(ip));
e546cb79
DC
1118 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1119 return 0;
1120}
1121
c24b5dfa
DC
1122int
1123xfs_create(
1124 xfs_inode_t *dp,
1125 struct xfs_name *name,
1126 umode_t mode,
1127 xfs_dev_t rdev,
1128 xfs_inode_t **ipp)
1129{
1130 int is_dir = S_ISDIR(mode);
1131 struct xfs_mount *mp = dp->i_mount;
1132 struct xfs_inode *ip = NULL;
1133 struct xfs_trans *tp = NULL;
1134 int error;
1135 xfs_bmap_free_t free_list;
1136 xfs_fsblock_t first_block;
1137 bool unlock_dp_on_error = false;
c24b5dfa
DC
1138 prid_t prid;
1139 struct xfs_dquot *udqp = NULL;
1140 struct xfs_dquot *gdqp = NULL;
1141 struct xfs_dquot *pdqp = NULL;
062647a8 1142 struct xfs_trans_res *tres;
c24b5dfa 1143 uint resblks;
c24b5dfa
DC
1144
1145 trace_xfs_create(dp, name);
1146
1147 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1148 return -EIO;
c24b5dfa 1149
163467d3 1150 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1151
1152 /*
1153 * Make sure that we have allocated dquot(s) on disk.
1154 */
7aab1b28
DE
1155 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1156 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1157 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1158 &udqp, &gdqp, &pdqp);
1159 if (error)
1160 return error;
1161
1162 if (is_dir) {
1163 rdev = 0;
1164 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1165 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1166 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1167 } else {
1168 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1169 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1170 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1171 }
1172
c24b5dfa
DC
1173 /*
1174 * Initially assume that the file does not exist and
1175 * reserve the resources for that case. If that is not
1176 * the case we'll drop the one we have and get a more
1177 * appropriate transaction later.
1178 */
062647a8 1179 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1180 if (error == -ENOSPC) {
c24b5dfa
DC
1181 /* flush outstanding delalloc blocks and retry */
1182 xfs_flush_inodes(mp);
062647a8 1183 error = xfs_trans_reserve(tp, tres, resblks, 0);
c24b5dfa 1184 }
2451337d 1185 if (error == -ENOSPC) {
c24b5dfa
DC
1186 /* No space at all so try a "no-allocation" reservation */
1187 resblks = 0;
062647a8 1188 error = xfs_trans_reserve(tp, tres, 0, 0);
c24b5dfa 1189 }
4906e215 1190 if (error)
c24b5dfa 1191 goto out_trans_cancel;
4906e215 1192
c24b5dfa 1193
dbad7c99
DC
1194 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1195 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
c24b5dfa
DC
1196 unlock_dp_on_error = true;
1197
1198 xfs_bmap_init(&free_list, &first_block);
1199
1200 /*
1201 * Reserve disk quota and the inode.
1202 */
1203 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1204 pdqp, resblks, 1, 0);
1205 if (error)
1206 goto out_trans_cancel;
1207
94f3cad5
ES
1208 if (!resblks) {
1209 error = xfs_dir_canenter(tp, dp, name);
1210 if (error)
1211 goto out_trans_cancel;
1212 }
c24b5dfa
DC
1213
1214 /*
1215 * A newly created regular or special file just has one directory
1216 * entry pointing to them, but a directory also the "." entry
1217 * pointing to itself.
1218 */
1219 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
f6106efa 1220 prid, resblks > 0, &ip, NULL);
d6077aa3 1221 if (error)
4906e215 1222 goto out_trans_cancel;
c24b5dfa
DC
1223
1224 /*
1225 * Now we join the directory inode to the transaction. We do not do it
1226 * earlier because xfs_dir_ialloc might commit the previous transaction
1227 * (and release all the locks). An error from here on will result in
1228 * the transaction cancel unlocking dp so don't do it explicitly in the
1229 * error path.
1230 */
dbad7c99 1231 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1232 unlock_dp_on_error = false;
1233
1234 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1235 &first_block, &free_list, resblks ?
1236 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1237 if (error) {
2451337d 1238 ASSERT(error != -ENOSPC);
4906e215 1239 goto out_trans_cancel;
c24b5dfa
DC
1240 }
1241 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1242 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1243
1244 if (is_dir) {
1245 error = xfs_dir_init(tp, ip, dp);
1246 if (error)
1247 goto out_bmap_cancel;
1248
1249 error = xfs_bumplink(tp, dp);
1250 if (error)
1251 goto out_bmap_cancel;
1252 }
1253
1254 /*
1255 * If this is a synchronous mount, make sure that the
1256 * create transaction goes to disk before returning to
1257 * the user.
1258 */
1259 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1260 xfs_trans_set_sync(tp);
1261
1262 /*
1263 * Attach the dquot(s) to the inodes and modify them incore.
1264 * These ids of the inode couldn't have changed since the new
1265 * inode has been locked ever since it was created.
1266 */
1267 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1268
f6106efa 1269 error = xfs_bmap_finish(&tp, &free_list, NULL);
c24b5dfa
DC
1270 if (error)
1271 goto out_bmap_cancel;
1272
70393313 1273 error = xfs_trans_commit(tp);
c24b5dfa
DC
1274 if (error)
1275 goto out_release_inode;
1276
1277 xfs_qm_dqrele(udqp);
1278 xfs_qm_dqrele(gdqp);
1279 xfs_qm_dqrele(pdqp);
1280
1281 *ipp = ip;
1282 return 0;
1283
1284 out_bmap_cancel:
1285 xfs_bmap_cancel(&free_list);
c24b5dfa 1286 out_trans_cancel:
4906e215 1287 xfs_trans_cancel(tp);
c24b5dfa
DC
1288 out_release_inode:
1289 /*
58c90473
DC
1290 * Wait until after the current transaction is aborted to finish the
1291 * setup of the inode and release the inode. This prevents recursive
1292 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1293 */
58c90473
DC
1294 if (ip) {
1295 xfs_finish_inode_setup(ip);
c24b5dfa 1296 IRELE(ip);
58c90473 1297 }
c24b5dfa
DC
1298
1299 xfs_qm_dqrele(udqp);
1300 xfs_qm_dqrele(gdqp);
1301 xfs_qm_dqrele(pdqp);
1302
1303 if (unlock_dp_on_error)
dbad7c99 1304 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1305 return error;
1306}
1307
99b6436b
ZYW
1308int
1309xfs_create_tmpfile(
1310 struct xfs_inode *dp,
1311 struct dentry *dentry,
330033d6
BF
1312 umode_t mode,
1313 struct xfs_inode **ipp)
99b6436b
ZYW
1314{
1315 struct xfs_mount *mp = dp->i_mount;
1316 struct xfs_inode *ip = NULL;
1317 struct xfs_trans *tp = NULL;
1318 int error;
99b6436b
ZYW
1319 prid_t prid;
1320 struct xfs_dquot *udqp = NULL;
1321 struct xfs_dquot *gdqp = NULL;
1322 struct xfs_dquot *pdqp = NULL;
1323 struct xfs_trans_res *tres;
1324 uint resblks;
1325
1326 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1327 return -EIO;
99b6436b
ZYW
1328
1329 prid = xfs_get_initial_prid(dp);
1330
1331 /*
1332 * Make sure that we have allocated dquot(s) on disk.
1333 */
1334 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1335 xfs_kgid_to_gid(current_fsgid()), prid,
1336 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1337 &udqp, &gdqp, &pdqp);
1338 if (error)
1339 return error;
1340
1341 resblks = XFS_IALLOC_SPACE_RES(mp);
1342 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1343
1344 tres = &M_RES(mp)->tr_create_tmpfile;
1345 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1346 if (error == -ENOSPC) {
99b6436b
ZYW
1347 /* No space at all so try a "no-allocation" reservation */
1348 resblks = 0;
1349 error = xfs_trans_reserve(tp, tres, 0, 0);
1350 }
4906e215 1351 if (error)
99b6436b 1352 goto out_trans_cancel;
99b6436b
ZYW
1353
1354 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1355 pdqp, resblks, 1, 0);
1356 if (error)
1357 goto out_trans_cancel;
1358
1359 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1360 prid, resblks > 0, &ip, NULL);
d6077aa3 1361 if (error)
4906e215 1362 goto out_trans_cancel;
99b6436b
ZYW
1363
1364 if (mp->m_flags & XFS_MOUNT_WSYNC)
1365 xfs_trans_set_sync(tp);
1366
1367 /*
1368 * Attach the dquot(s) to the inodes and modify them incore.
1369 * These ids of the inode couldn't have changed since the new
1370 * inode has been locked ever since it was created.
1371 */
1372 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1373
99b6436b
ZYW
1374 error = xfs_iunlink(tp, ip);
1375 if (error)
4906e215 1376 goto out_trans_cancel;
99b6436b 1377
70393313 1378 error = xfs_trans_commit(tp);
99b6436b
ZYW
1379 if (error)
1380 goto out_release_inode;
1381
1382 xfs_qm_dqrele(udqp);
1383 xfs_qm_dqrele(gdqp);
1384 xfs_qm_dqrele(pdqp);
1385
330033d6 1386 *ipp = ip;
99b6436b
ZYW
1387 return 0;
1388
99b6436b 1389 out_trans_cancel:
4906e215 1390 xfs_trans_cancel(tp);
99b6436b
ZYW
1391 out_release_inode:
1392 /*
58c90473
DC
1393 * Wait until after the current transaction is aborted to finish the
1394 * setup of the inode and release the inode. This prevents recursive
1395 * transactions and deadlocks from xfs_inactive.
99b6436b 1396 */
58c90473
DC
1397 if (ip) {
1398 xfs_finish_inode_setup(ip);
99b6436b 1399 IRELE(ip);
58c90473 1400 }
99b6436b
ZYW
1401
1402 xfs_qm_dqrele(udqp);
1403 xfs_qm_dqrele(gdqp);
1404 xfs_qm_dqrele(pdqp);
1405
1406 return error;
1407}
1408
c24b5dfa
DC
1409int
1410xfs_link(
1411 xfs_inode_t *tdp,
1412 xfs_inode_t *sip,
1413 struct xfs_name *target_name)
1414{
1415 xfs_mount_t *mp = tdp->i_mount;
1416 xfs_trans_t *tp;
1417 int error;
1418 xfs_bmap_free_t free_list;
1419 xfs_fsblock_t first_block;
c24b5dfa
DC
1420 int resblks;
1421
1422 trace_xfs_link(tdp, target_name);
1423
1424 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1425
1426 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1427 return -EIO;
c24b5dfa
DC
1428
1429 error = xfs_qm_dqattach(sip, 0);
1430 if (error)
1431 goto std_return;
1432
1433 error = xfs_qm_dqattach(tdp, 0);
1434 if (error)
1435 goto std_return;
1436
1437 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
c24b5dfa 1438 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1439 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
2451337d 1440 if (error == -ENOSPC) {
c24b5dfa 1441 resblks = 0;
3d3c8b52 1442 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa 1443 }
4906e215 1444 if (error)
c24b5dfa 1445 goto error_return;
c24b5dfa 1446
dbad7c99 1447 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
c24b5dfa
DC
1448 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1449
1450 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
dbad7c99 1451 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1452
1453 /*
1454 * If we are using project inheritance, we only allow hard link
1455 * creation in our tree when the project IDs are the same; else
1456 * the tree quota mechanism could be circumvented.
1457 */
1458 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1459 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1460 error = -EXDEV;
c24b5dfa
DC
1461 goto error_return;
1462 }
1463
94f3cad5
ES
1464 if (!resblks) {
1465 error = xfs_dir_canenter(tp, tdp, target_name);
1466 if (error)
1467 goto error_return;
1468 }
c24b5dfa
DC
1469
1470 xfs_bmap_init(&free_list, &first_block);
1471
54d7b5c1
DC
1472 /*
1473 * Handle initial link state of O_TMPFILE inode
1474 */
1475 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1476 error = xfs_iunlink_remove(tp, sip);
1477 if (error)
4906e215 1478 goto error_return;
ab297431
ZYW
1479 }
1480
c24b5dfa
DC
1481 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1482 &first_block, &free_list, resblks);
1483 if (error)
4906e215 1484 goto error_return;
c24b5dfa
DC
1485 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1486 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1487
1488 error = xfs_bumplink(tp, sip);
1489 if (error)
4906e215 1490 goto error_return;
c24b5dfa
DC
1491
1492 /*
1493 * If this is a synchronous mount, make sure that the
1494 * link transaction goes to disk before returning to
1495 * the user.
1496 */
f6106efa 1497 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1498 xfs_trans_set_sync(tp);
c24b5dfa 1499
f6106efa 1500 error = xfs_bmap_finish(&tp, &free_list, NULL);
c24b5dfa
DC
1501 if (error) {
1502 xfs_bmap_cancel(&free_list);
4906e215 1503 goto error_return;
c24b5dfa
DC
1504 }
1505
70393313 1506 return xfs_trans_commit(tp);
c24b5dfa 1507
c24b5dfa 1508 error_return:
4906e215 1509 xfs_trans_cancel(tp);
c24b5dfa
DC
1510 std_return:
1511 return error;
1512}
1513
1da177e4 1514/*
8f04c47a
CH
1515 * Free up the underlying blocks past new_size. The new size must be smaller
1516 * than the current size. This routine can be used both for the attribute and
1517 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1518 *
f6485057
DC
1519 * The transaction passed to this routine must have made a permanent log
1520 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1521 * given transaction and start new ones, so make sure everything involved in
1522 * the transaction is tidy before calling here. Some transaction will be
1523 * returned to the caller to be committed. The incoming transaction must
1524 * already include the inode, and both inode locks must be held exclusively.
1525 * The inode must also be "held" within the transaction. On return the inode
1526 * will be "held" within the returned transaction. This routine does NOT
1527 * require any disk space to be reserved for it within the transaction.
1da177e4 1528 *
f6485057
DC
1529 * If we get an error, we must return with the inode locked and linked into the
1530 * current transaction. This keeps things simple for the higher level code,
1531 * because it always knows that the inode is locked and held in the transaction
1532 * that returns to it whether errors occur or not. We don't mark the inode
1533 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1534 */
1535int
8f04c47a
CH
1536xfs_itruncate_extents(
1537 struct xfs_trans **tpp,
1538 struct xfs_inode *ip,
1539 int whichfork,
1540 xfs_fsize_t new_size)
1da177e4 1541{
8f04c47a
CH
1542 struct xfs_mount *mp = ip->i_mount;
1543 struct xfs_trans *tp = *tpp;
8f04c47a
CH
1544 xfs_bmap_free_t free_list;
1545 xfs_fsblock_t first_block;
1546 xfs_fileoff_t first_unmap_block;
1547 xfs_fileoff_t last_block;
1548 xfs_filblks_t unmap_len;
8f04c47a
CH
1549 int error = 0;
1550 int done = 0;
1da177e4 1551
0b56185b
CH
1552 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1553 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1554 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1555 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1556 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1557 ASSERT(ip->i_itemp != NULL);
898621d5 1558 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1559 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1560
673e8e59
CH
1561 trace_xfs_itruncate_extents_start(ip, new_size);
1562
1da177e4
LT
1563 /*
1564 * Since it is possible for space to become allocated beyond
1565 * the end of the file (in a crash where the space is allocated
1566 * but the inode size is not yet updated), simply remove any
1567 * blocks which show up between the new EOF and the maximum
1568 * possible file size. If the first block to be removed is
1569 * beyond the maximum file size (ie it is the same as last_block),
1570 * then there is nothing to do.
1571 */
8f04c47a 1572 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1573 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1574 if (first_unmap_block == last_block)
1575 return 0;
1576
1577 ASSERT(first_unmap_block < last_block);
1578 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1579 while (!done) {
9d87c319 1580 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1581 error = xfs_bunmapi(tp, ip,
3e57ecf6 1582 first_unmap_block, unmap_len,
8f04c47a 1583 xfs_bmapi_aflag(whichfork),
1da177e4 1584 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1585 &first_block, &free_list,
b4e9181e 1586 &done);
8f04c47a
CH
1587 if (error)
1588 goto out_bmap_cancel;
1da177e4
LT
1589
1590 /*
1591 * Duplicate the transaction that has the permanent
1592 * reservation and commit the old transaction.
1593 */
f6106efa 1594 error = xfs_bmap_finish(&tp, &free_list, ip);
8f04c47a
CH
1595 if (error)
1596 goto out_bmap_cancel;
1da177e4 1597
2e6db6c4 1598 error = xfs_trans_roll(&tp, ip);
f6485057 1599 if (error)
8f04c47a 1600 goto out;
1da177e4 1601 }
8f04c47a 1602
673e8e59
CH
1603 /*
1604 * Always re-log the inode so that our permanent transaction can keep
1605 * on rolling it forward in the log.
1606 */
1607 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1608
1609 trace_xfs_itruncate_extents_end(ip, new_size);
1610
8f04c47a
CH
1611out:
1612 *tpp = tp;
1613 return error;
1614out_bmap_cancel:
1da177e4 1615 /*
8f04c47a
CH
1616 * If the bunmapi call encounters an error, return to the caller where
1617 * the transaction can be properly aborted. We just need to make sure
1618 * we're not holding any resources that we were not when we came in.
1da177e4 1619 */
8f04c47a
CH
1620 xfs_bmap_cancel(&free_list);
1621 goto out;
1622}
1623
c24b5dfa
DC
1624int
1625xfs_release(
1626 xfs_inode_t *ip)
1627{
1628 xfs_mount_t *mp = ip->i_mount;
1629 int error;
1630
1631 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1632 return 0;
1633
1634 /* If this is a read-only mount, don't do this (would generate I/O) */
1635 if (mp->m_flags & XFS_MOUNT_RDONLY)
1636 return 0;
1637
1638 if (!XFS_FORCED_SHUTDOWN(mp)) {
1639 int truncated;
1640
c24b5dfa
DC
1641 /*
1642 * If we previously truncated this file and removed old data
1643 * in the process, we want to initiate "early" writeout on
1644 * the last close. This is an attempt to combat the notorious
1645 * NULL files problem which is particularly noticeable from a
1646 * truncate down, buffered (re-)write (delalloc), followed by
1647 * a crash. What we are effectively doing here is
1648 * significantly reducing the time window where we'd otherwise
1649 * be exposed to that problem.
1650 */
1651 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1652 if (truncated) {
1653 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1654 if (ip->i_delayed_blks > 0) {
2451337d 1655 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1656 if (error)
1657 return error;
1658 }
1659 }
1660 }
1661
54d7b5c1 1662 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1663 return 0;
1664
1665 if (xfs_can_free_eofblocks(ip, false)) {
1666
1667 /*
1668 * If we can't get the iolock just skip truncating the blocks
1669 * past EOF because we could deadlock with the mmap_sem
1670 * otherwise. We'll get another chance to drop them once the
1671 * last reference to the inode is dropped, so we'll never leak
1672 * blocks permanently.
1673 *
1674 * Further, check if the inode is being opened, written and
1675 * closed frequently and we have delayed allocation blocks
1676 * outstanding (e.g. streaming writes from the NFS server),
1677 * truncating the blocks past EOF will cause fragmentation to
1678 * occur.
1679 *
1680 * In this case don't do the truncation, either, but we have to
1681 * be careful how we detect this case. Blocks beyond EOF show
1682 * up as i_delayed_blks even when the inode is clean, so we
1683 * need to truncate them away first before checking for a dirty
1684 * release. Hence on the first dirty close we will still remove
1685 * the speculative allocation, but after that we will leave it
1686 * in place.
1687 */
1688 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1689 return 0;
1690
1691 error = xfs_free_eofblocks(mp, ip, true);
2451337d 1692 if (error && error != -EAGAIN)
c24b5dfa
DC
1693 return error;
1694
1695 /* delalloc blocks after truncation means it really is dirty */
1696 if (ip->i_delayed_blks)
1697 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1698 }
1699 return 0;
1700}
1701
f7be2d7f
BF
1702/*
1703 * xfs_inactive_truncate
1704 *
1705 * Called to perform a truncate when an inode becomes unlinked.
1706 */
1707STATIC int
1708xfs_inactive_truncate(
1709 struct xfs_inode *ip)
1710{
1711 struct xfs_mount *mp = ip->i_mount;
1712 struct xfs_trans *tp;
1713 int error;
1714
1715 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1716 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1717 if (error) {
1718 ASSERT(XFS_FORCED_SHUTDOWN(mp));
4906e215 1719 xfs_trans_cancel(tp);
f7be2d7f
BF
1720 return error;
1721 }
1722
1723 xfs_ilock(ip, XFS_ILOCK_EXCL);
1724 xfs_trans_ijoin(tp, ip, 0);
1725
1726 /*
1727 * Log the inode size first to prevent stale data exposure in the event
1728 * of a system crash before the truncate completes. See the related
1729 * comment in xfs_setattr_size() for details.
1730 */
1731 ip->i_d.di_size = 0;
1732 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1733
1734 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1735 if (error)
1736 goto error_trans_cancel;
1737
1738 ASSERT(ip->i_d.di_nextents == 0);
1739
70393313 1740 error = xfs_trans_commit(tp);
f7be2d7f
BF
1741 if (error)
1742 goto error_unlock;
1743
1744 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1745 return 0;
1746
1747error_trans_cancel:
4906e215 1748 xfs_trans_cancel(tp);
f7be2d7f
BF
1749error_unlock:
1750 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1751 return error;
1752}
1753
88877d2b
BF
1754/*
1755 * xfs_inactive_ifree()
1756 *
1757 * Perform the inode free when an inode is unlinked.
1758 */
1759STATIC int
1760xfs_inactive_ifree(
1761 struct xfs_inode *ip)
1762{
1763 xfs_bmap_free_t free_list;
1764 xfs_fsblock_t first_block;
88877d2b
BF
1765 struct xfs_mount *mp = ip->i_mount;
1766 struct xfs_trans *tp;
1767 int error;
1768
1769 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
9d43b180
BF
1770
1771 /*
1772 * The ifree transaction might need to allocate blocks for record
1773 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1774 * allow ifree to dip into the reserved block pool if necessary.
1775 *
1776 * Freeing large sets of inodes generally means freeing inode chunks,
1777 * directory and file data blocks, so this should be relatively safe.
1778 * Only under severe circumstances should it be possible to free enough
1779 * inodes to exhaust the reserve block pool via finobt expansion while
1780 * at the same time not creating free space in the filesystem.
1781 *
1782 * Send a warning if the reservation does happen to fail, as the inode
1783 * now remains allocated and sits on the unlinked list until the fs is
1784 * repaired.
1785 */
1786 tp->t_flags |= XFS_TRANS_RESERVE;
1787 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1788 XFS_IFREE_SPACE_RES(mp), 0);
88877d2b 1789 if (error) {
2451337d 1790 if (error == -ENOSPC) {
9d43b180
BF
1791 xfs_warn_ratelimited(mp,
1792 "Failed to remove inode(s) from unlinked list. "
1793 "Please free space, unmount and run xfs_repair.");
1794 } else {
1795 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1796 }
4906e215 1797 xfs_trans_cancel(tp);
88877d2b
BF
1798 return error;
1799 }
1800
1801 xfs_ilock(ip, XFS_ILOCK_EXCL);
1802 xfs_trans_ijoin(tp, ip, 0);
1803
1804 xfs_bmap_init(&free_list, &first_block);
1805 error = xfs_ifree(tp, ip, &free_list);
1806 if (error) {
1807 /*
1808 * If we fail to free the inode, shut down. The cancel
1809 * might do that, we need to make sure. Otherwise the
1810 * inode might be lost for a long time or forever.
1811 */
1812 if (!XFS_FORCED_SHUTDOWN(mp)) {
1813 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1814 __func__, error);
1815 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1816 }
4906e215 1817 xfs_trans_cancel(tp);
88877d2b
BF
1818 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1819 return error;
1820 }
1821
1822 /*
1823 * Credit the quota account(s). The inode is gone.
1824 */
1825 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1826
1827 /*
d4a97a04
BF
1828 * Just ignore errors at this point. There is nothing we can do except
1829 * to try to keep going. Make sure it's not a silent error.
88877d2b 1830 */
f6106efa 1831 error = xfs_bmap_finish(&tp, &free_list, NULL);
d4a97a04 1832 if (error) {
88877d2b
BF
1833 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1834 __func__, error);
d4a97a04
BF
1835 xfs_bmap_cancel(&free_list);
1836 }
70393313 1837 error = xfs_trans_commit(tp);
88877d2b
BF
1838 if (error)
1839 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1840 __func__, error);
1841
1842 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1843 return 0;
1844}
1845
c24b5dfa
DC
1846/*
1847 * xfs_inactive
1848 *
1849 * This is called when the vnode reference count for the vnode
1850 * goes to zero. If the file has been unlinked, then it must
1851 * now be truncated. Also, we clear all of the read-ahead state
1852 * kept for the inode here since the file is now closed.
1853 */
74564fb4 1854void
c24b5dfa
DC
1855xfs_inactive(
1856 xfs_inode_t *ip)
1857{
3d3c8b52 1858 struct xfs_mount *mp;
3d3c8b52
JL
1859 int error;
1860 int truncate = 0;
c24b5dfa
DC
1861
1862 /*
1863 * If the inode is already free, then there can be nothing
1864 * to clean up here.
1865 */
d948709b 1866 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1867 ASSERT(ip->i_df.if_real_bytes == 0);
1868 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1869 return;
c24b5dfa
DC
1870 }
1871
1872 mp = ip->i_mount;
1873
c24b5dfa
DC
1874 /* If this is a read-only mount, don't do this (would generate I/O) */
1875 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1876 return;
c24b5dfa 1877
54d7b5c1 1878 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1879 /*
1880 * force is true because we are evicting an inode from the
1881 * cache. Post-eof blocks must be freed, lest we end up with
1882 * broken free space accounting.
1883 */
74564fb4
BF
1884 if (xfs_can_free_eofblocks(ip, true))
1885 xfs_free_eofblocks(mp, ip, false);
1886
1887 return;
c24b5dfa
DC
1888 }
1889
1890 if (S_ISREG(ip->i_d.di_mode) &&
1891 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1892 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1893 truncate = 1;
1894
1895 error = xfs_qm_dqattach(ip, 0);
1896 if (error)
74564fb4 1897 return;
c24b5dfa 1898
f7be2d7f 1899 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1900 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1901 else if (truncate)
1902 error = xfs_inactive_truncate(ip);
1903 if (error)
74564fb4 1904 return;
c24b5dfa
DC
1905
1906 /*
1907 * If there are attributes associated with the file then blow them away
1908 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1909 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1910 */
6dfe5a04 1911 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1912 error = xfs_attr_inactive(ip);
1913 if (error)
74564fb4 1914 return;
c24b5dfa
DC
1915 }
1916
6dfe5a04 1917 ASSERT(!ip->i_afp);
c24b5dfa 1918 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1919 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1920
1921 /*
1922 * Free the inode.
1923 */
88877d2b
BF
1924 error = xfs_inactive_ifree(ip);
1925 if (error)
74564fb4 1926 return;
c24b5dfa
DC
1927
1928 /*
1929 * Release the dquots held by inode, if any.
1930 */
1931 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1932}
1933
1da177e4 1934/*
54d7b5c1
DC
1935 * This is called when the inode's link count goes to 0 or we are creating a
1936 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1937 * set to true as the link count is dropped to zero by the VFS after we've
1938 * created the file successfully, so we have to add it to the unlinked list
1939 * while the link count is non-zero.
1940 *
1941 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1942 * list when the inode is freed.
1da177e4 1943 */
54d7b5c1 1944STATIC int
1da177e4 1945xfs_iunlink(
54d7b5c1
DC
1946 struct xfs_trans *tp,
1947 struct xfs_inode *ip)
1da177e4 1948{
54d7b5c1 1949 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1950 xfs_agi_t *agi;
1951 xfs_dinode_t *dip;
1952 xfs_buf_t *agibp;
1953 xfs_buf_t *ibp;
1da177e4
LT
1954 xfs_agino_t agino;
1955 short bucket_index;
1956 int offset;
1957 int error;
1da177e4 1958
1da177e4 1959 ASSERT(ip->i_d.di_mode != 0);
1da177e4 1960
1da177e4
LT
1961 /*
1962 * Get the agi buffer first. It ensures lock ordering
1963 * on the list.
1964 */
5e1be0fb 1965 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1966 if (error)
1da177e4 1967 return error;
1da177e4 1968 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1969
1da177e4
LT
1970 /*
1971 * Get the index into the agi hash table for the
1972 * list this inode will go on.
1973 */
1974 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1975 ASSERT(agino != 0);
1976 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1977 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1978 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1979
69ef921b 1980 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1981 /*
1982 * There is already another inode in the bucket we need
1983 * to add ourselves to. Add us at the front of the list.
1984 * Here we put the head pointer into our next pointer,
1985 * and then we fall through to point the head at us.
1986 */
475ee413
CH
1987 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1988 0, 0);
c319b58b
VA
1989 if (error)
1990 return error;
1991
69ef921b 1992 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1993 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1994 offset = ip->i_imap.im_boffset +
1da177e4 1995 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
1996
1997 /* need to recalc the inode CRC if appropriate */
1998 xfs_dinode_calc_crc(mp, dip);
1999
1da177e4
LT
2000 xfs_trans_inode_buf(tp, ibp);
2001 xfs_trans_log_buf(tp, ibp, offset,
2002 (offset + sizeof(xfs_agino_t) - 1));
2003 xfs_inobp_check(mp, ibp);
2004 }
2005
2006 /*
2007 * Point the bucket head pointer at the inode being inserted.
2008 */
2009 ASSERT(agino != 0);
16259e7d 2010 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2011 offset = offsetof(xfs_agi_t, agi_unlinked) +
2012 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2013 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2014 xfs_trans_log_buf(tp, agibp, offset,
2015 (offset + sizeof(xfs_agino_t) - 1));
2016 return 0;
2017}
2018
2019/*
2020 * Pull the on-disk inode from the AGI unlinked list.
2021 */
2022STATIC int
2023xfs_iunlink_remove(
2024 xfs_trans_t *tp,
2025 xfs_inode_t *ip)
2026{
2027 xfs_ino_t next_ino;
2028 xfs_mount_t *mp;
2029 xfs_agi_t *agi;
2030 xfs_dinode_t *dip;
2031 xfs_buf_t *agibp;
2032 xfs_buf_t *ibp;
2033 xfs_agnumber_t agno;
1da177e4
LT
2034 xfs_agino_t agino;
2035 xfs_agino_t next_agino;
2036 xfs_buf_t *last_ibp;
6fdf8ccc 2037 xfs_dinode_t *last_dip = NULL;
1da177e4 2038 short bucket_index;
6fdf8ccc 2039 int offset, last_offset = 0;
1da177e4 2040 int error;
1da177e4 2041
1da177e4 2042 mp = tp->t_mountp;
1da177e4 2043 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2044
2045 /*
2046 * Get the agi buffer first. It ensures lock ordering
2047 * on the list.
2048 */
5e1be0fb
CH
2049 error = xfs_read_agi(mp, tp, agno, &agibp);
2050 if (error)
1da177e4 2051 return error;
5e1be0fb 2052
1da177e4 2053 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2054
1da177e4
LT
2055 /*
2056 * Get the index into the agi hash table for the
2057 * list this inode will go on.
2058 */
2059 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2060 ASSERT(agino != 0);
2061 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2062 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2063 ASSERT(agi->agi_unlinked[bucket_index]);
2064
16259e7d 2065 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2066 /*
475ee413
CH
2067 * We're at the head of the list. Get the inode's on-disk
2068 * buffer to see if there is anyone after us on the list.
2069 * Only modify our next pointer if it is not already NULLAGINO.
2070 * This saves us the overhead of dealing with the buffer when
2071 * there is no need to change it.
1da177e4 2072 */
475ee413
CH
2073 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2074 0, 0);
1da177e4 2075 if (error) {
475ee413 2076 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2077 __func__, error);
1da177e4
LT
2078 return error;
2079 }
347d1c01 2080 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2081 ASSERT(next_agino != 0);
2082 if (next_agino != NULLAGINO) {
347d1c01 2083 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2084 offset = ip->i_imap.im_boffset +
1da177e4 2085 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2086
2087 /* need to recalc the inode CRC if appropriate */
2088 xfs_dinode_calc_crc(mp, dip);
2089
1da177e4
LT
2090 xfs_trans_inode_buf(tp, ibp);
2091 xfs_trans_log_buf(tp, ibp, offset,
2092 (offset + sizeof(xfs_agino_t) - 1));
2093 xfs_inobp_check(mp, ibp);
2094 } else {
2095 xfs_trans_brelse(tp, ibp);
2096 }
2097 /*
2098 * Point the bucket head pointer at the next inode.
2099 */
2100 ASSERT(next_agino != 0);
2101 ASSERT(next_agino != agino);
16259e7d 2102 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2103 offset = offsetof(xfs_agi_t, agi_unlinked) +
2104 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2105 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2106 xfs_trans_log_buf(tp, agibp, offset,
2107 (offset + sizeof(xfs_agino_t) - 1));
2108 } else {
2109 /*
2110 * We need to search the list for the inode being freed.
2111 */
16259e7d 2112 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2113 last_ibp = NULL;
2114 while (next_agino != agino) {
129dbc9a
CH
2115 struct xfs_imap imap;
2116
2117 if (last_ibp)
1da177e4 2118 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2119
2120 imap.im_blkno = 0;
1da177e4 2121 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2122
2123 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2124 if (error) {
2125 xfs_warn(mp,
2126 "%s: xfs_imap returned error %d.",
2127 __func__, error);
2128 return error;
2129 }
2130
2131 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2132 &last_ibp, 0, 0);
1da177e4 2133 if (error) {
0b932ccc 2134 xfs_warn(mp,
129dbc9a 2135 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2136 __func__, error);
1da177e4
LT
2137 return error;
2138 }
129dbc9a
CH
2139
2140 last_offset = imap.im_boffset;
347d1c01 2141 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2142 ASSERT(next_agino != NULLAGINO);
2143 ASSERT(next_agino != 0);
2144 }
475ee413 2145
1da177e4 2146 /*
475ee413
CH
2147 * Now last_ibp points to the buffer previous to us on the
2148 * unlinked list. Pull us from the list.
1da177e4 2149 */
475ee413
CH
2150 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2151 0, 0);
1da177e4 2152 if (error) {
475ee413 2153 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2154 __func__, error);
1da177e4
LT
2155 return error;
2156 }
347d1c01 2157 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2158 ASSERT(next_agino != 0);
2159 ASSERT(next_agino != agino);
2160 if (next_agino != NULLAGINO) {
347d1c01 2161 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2162 offset = ip->i_imap.im_boffset +
1da177e4 2163 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2164
2165 /* need to recalc the inode CRC if appropriate */
2166 xfs_dinode_calc_crc(mp, dip);
2167
1da177e4
LT
2168 xfs_trans_inode_buf(tp, ibp);
2169 xfs_trans_log_buf(tp, ibp, offset,
2170 (offset + sizeof(xfs_agino_t) - 1));
2171 xfs_inobp_check(mp, ibp);
2172 } else {
2173 xfs_trans_brelse(tp, ibp);
2174 }
2175 /*
2176 * Point the previous inode on the list to the next inode.
2177 */
347d1c01 2178 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2179 ASSERT(next_agino != 0);
2180 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2181
2182 /* need to recalc the inode CRC if appropriate */
2183 xfs_dinode_calc_crc(mp, last_dip);
2184
1da177e4
LT
2185 xfs_trans_inode_buf(tp, last_ibp);
2186 xfs_trans_log_buf(tp, last_ibp, offset,
2187 (offset + sizeof(xfs_agino_t) - 1));
2188 xfs_inobp_check(mp, last_ibp);
2189 }
2190 return 0;
2191}
2192
5b3eed75 2193/*
0b8182db 2194 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2195 * inodes that are in memory - they all must be marked stale and attached to
2196 * the cluster buffer.
2197 */
2a30f36d 2198STATIC int
1da177e4 2199xfs_ifree_cluster(
09b56604
BF
2200 xfs_inode_t *free_ip,
2201 xfs_trans_t *tp,
2202 struct xfs_icluster *xic)
1da177e4
LT
2203{
2204 xfs_mount_t *mp = free_ip->i_mount;
2205 int blks_per_cluster;
982e939e 2206 int inodes_per_cluster;
1da177e4 2207 int nbufs;
5b257b4a 2208 int i, j;
3cdaa189 2209 int ioffset;
1da177e4
LT
2210 xfs_daddr_t blkno;
2211 xfs_buf_t *bp;
5b257b4a 2212 xfs_inode_t *ip;
1da177e4
LT
2213 xfs_inode_log_item_t *iip;
2214 xfs_log_item_t *lip;
5017e97d 2215 struct xfs_perag *pag;
09b56604 2216 xfs_ino_t inum;
1da177e4 2217
09b56604 2218 inum = xic->first_ino;
5017e97d 2219 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2220 blks_per_cluster = xfs_icluster_size_fsb(mp);
2221 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2222 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2223
982e939e 2224 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2225 /*
2226 * The allocation bitmap tells us which inodes of the chunk were
2227 * physically allocated. Skip the cluster if an inode falls into
2228 * a sparse region.
2229 */
3cdaa189
BF
2230 ioffset = inum - xic->first_ino;
2231 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2232 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2233 continue;
2234 }
2235
1da177e4
LT
2236 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2237 XFS_INO_TO_AGBNO(mp, inum));
2238
5b257b4a
DC
2239 /*
2240 * We obtain and lock the backing buffer first in the process
2241 * here, as we have to ensure that any dirty inode that we
2242 * can't get the flush lock on is attached to the buffer.
2243 * If we scan the in-memory inodes first, then buffer IO can
2244 * complete before we get a lock on it, and hence we may fail
2245 * to mark all the active inodes on the buffer stale.
2246 */
2247 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2248 mp->m_bsize * blks_per_cluster,
2249 XBF_UNMAPPED);
5b257b4a 2250
2a30f36d 2251 if (!bp)
2451337d 2252 return -ENOMEM;
b0f539de
DC
2253
2254 /*
2255 * This buffer may not have been correctly initialised as we
2256 * didn't read it from disk. That's not important because we are
2257 * only using to mark the buffer as stale in the log, and to
2258 * attach stale cached inodes on it. That means it will never be
2259 * dispatched for IO. If it is, we want to know about it, and we
2260 * want it to fail. We can acheive this by adding a write
2261 * verifier to the buffer.
2262 */
1813dd64 2263 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2264
5b257b4a
DC
2265 /*
2266 * Walk the inodes already attached to the buffer and mark them
2267 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2268 * in-memory inode walk can't lock them. By marking them all
2269 * stale first, we will not attempt to lock them in the loop
2270 * below as the XFS_ISTALE flag will be set.
5b257b4a 2271 */
adadbeef 2272 lip = bp->b_fspriv;
5b257b4a
DC
2273 while (lip) {
2274 if (lip->li_type == XFS_LI_INODE) {
2275 iip = (xfs_inode_log_item_t *)lip;
2276 ASSERT(iip->ili_logged == 1);
ca30b2a7 2277 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2278 xfs_trans_ail_copy_lsn(mp->m_ail,
2279 &iip->ili_flush_lsn,
2280 &iip->ili_item.li_lsn);
2281 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2282 }
2283 lip = lip->li_bio_list;
2284 }
1da177e4 2285
5b3eed75 2286
1da177e4 2287 /*
5b257b4a
DC
2288 * For each inode in memory attempt to add it to the inode
2289 * buffer and set it up for being staled on buffer IO
2290 * completion. This is safe as we've locked out tail pushing
2291 * and flushing by locking the buffer.
1da177e4 2292 *
5b257b4a
DC
2293 * We have already marked every inode that was part of a
2294 * transaction stale above, which means there is no point in
2295 * even trying to lock them.
1da177e4 2296 */
982e939e 2297 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2298retry:
1a3e8f3d 2299 rcu_read_lock();
da353b0d
DC
2300 ip = radix_tree_lookup(&pag->pag_ici_root,
2301 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2302
1a3e8f3d
DC
2303 /* Inode not in memory, nothing to do */
2304 if (!ip) {
2305 rcu_read_unlock();
1da177e4
LT
2306 continue;
2307 }
2308
1a3e8f3d
DC
2309 /*
2310 * because this is an RCU protected lookup, we could
2311 * find a recently freed or even reallocated inode
2312 * during the lookup. We need to check under the
2313 * i_flags_lock for a valid inode here. Skip it if it
2314 * is not valid, the wrong inode or stale.
2315 */
2316 spin_lock(&ip->i_flags_lock);
2317 if (ip->i_ino != inum + i ||
2318 __xfs_iflags_test(ip, XFS_ISTALE)) {
2319 spin_unlock(&ip->i_flags_lock);
2320 rcu_read_unlock();
2321 continue;
2322 }
2323 spin_unlock(&ip->i_flags_lock);
2324
5b3eed75
DC
2325 /*
2326 * Don't try to lock/unlock the current inode, but we
2327 * _cannot_ skip the other inodes that we did not find
2328 * in the list attached to the buffer and are not
2329 * already marked stale. If we can't lock it, back off
2330 * and retry.
2331 */
5b257b4a
DC
2332 if (ip != free_ip &&
2333 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2334 rcu_read_unlock();
5b3eed75
DC
2335 delay(1);
2336 goto retry;
1da177e4 2337 }
1a3e8f3d 2338 rcu_read_unlock();
1da177e4 2339
5b3eed75 2340 xfs_iflock(ip);
5b257b4a 2341 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2342
5b3eed75
DC
2343 /*
2344 * we don't need to attach clean inodes or those only
2345 * with unlogged changes (which we throw away, anyway).
2346 */
1da177e4 2347 iip = ip->i_itemp;
5b3eed75 2348 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2349 ASSERT(ip != free_ip);
1da177e4
LT
2350 xfs_ifunlock(ip);
2351 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2352 continue;
2353 }
2354
f5d8d5c4
CH
2355 iip->ili_last_fields = iip->ili_fields;
2356 iip->ili_fields = 0;
fc0561ce 2357 iip->ili_fsync_fields = 0;
1da177e4 2358 iip->ili_logged = 1;
7b2e2a31
DC
2359 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2360 &iip->ili_item.li_lsn);
1da177e4 2361
ca30b2a7
CH
2362 xfs_buf_attach_iodone(bp, xfs_istale_done,
2363 &iip->ili_item);
5b257b4a
DC
2364
2365 if (ip != free_ip)
1da177e4 2366 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2367 }
2368
5b3eed75 2369 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2370 xfs_trans_binval(tp, bp);
2371 }
2372
5017e97d 2373 xfs_perag_put(pag);
2a30f36d 2374 return 0;
1da177e4
LT
2375}
2376
2377/*
2378 * This is called to return an inode to the inode free list.
2379 * The inode should already be truncated to 0 length and have
2380 * no pages associated with it. This routine also assumes that
2381 * the inode is already a part of the transaction.
2382 *
2383 * The on-disk copy of the inode will have been added to the list
2384 * of unlinked inodes in the AGI. We need to remove the inode from
2385 * that list atomically with respect to freeing it here.
2386 */
2387int
2388xfs_ifree(
2389 xfs_trans_t *tp,
2390 xfs_inode_t *ip,
2391 xfs_bmap_free_t *flist)
2392{
2393 int error;
09b56604 2394 struct xfs_icluster xic = { 0 };
1da177e4 2395
579aa9ca 2396 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2397 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2398 ASSERT(ip->i_d.di_nextents == 0);
2399 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2400 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2401 ASSERT(ip->i_d.di_nblocks == 0);
2402
2403 /*
2404 * Pull the on-disk inode from the AGI unlinked list.
2405 */
2406 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2407 if (error)
1da177e4 2408 return error;
1da177e4 2409
09b56604 2410 error = xfs_difree(tp, ip->i_ino, flist, &xic);
1baaed8f 2411 if (error)
1da177e4 2412 return error;
1baaed8f 2413
1da177e4
LT
2414 ip->i_d.di_mode = 0; /* mark incore inode as free */
2415 ip->i_d.di_flags = 0;
2416 ip->i_d.di_dmevmask = 0;
2417 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2418 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2419 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2420 /*
2421 * Bump the generation count so no one will be confused
2422 * by reincarnations of this inode.
2423 */
9e9a2674 2424 VFS_I(ip)->i_generation++;
1da177e4
LT
2425 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2426
09b56604
BF
2427 if (xic.deleted)
2428 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2429
2a30f36d 2430 return error;
1da177e4
LT
2431}
2432
1da177e4 2433/*
60ec6783
CH
2434 * This is called to unpin an inode. The caller must have the inode locked
2435 * in at least shared mode so that the buffer cannot be subsequently pinned
2436 * once someone is waiting for it to be unpinned.
1da177e4 2437 */
60ec6783 2438static void
f392e631 2439xfs_iunpin(
60ec6783 2440 struct xfs_inode *ip)
1da177e4 2441{
579aa9ca 2442 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2443
4aaf15d1
DC
2444 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2445
a3f74ffb 2446 /* Give the log a push to start the unpinning I/O */
60ec6783 2447 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2448
a3f74ffb 2449}
1da177e4 2450
f392e631
CH
2451static void
2452__xfs_iunpin_wait(
2453 struct xfs_inode *ip)
2454{
2455 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2456 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2457
2458 xfs_iunpin(ip);
2459
2460 do {
2461 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2462 if (xfs_ipincount(ip))
2463 io_schedule();
2464 } while (xfs_ipincount(ip));
2465 finish_wait(wq, &wait.wait);
2466}
2467
777df5af 2468void
a3f74ffb 2469xfs_iunpin_wait(
60ec6783 2470 struct xfs_inode *ip)
a3f74ffb 2471{
f392e631
CH
2472 if (xfs_ipincount(ip))
2473 __xfs_iunpin_wait(ip);
1da177e4
LT
2474}
2475
27320369
DC
2476/*
2477 * Removing an inode from the namespace involves removing the directory entry
2478 * and dropping the link count on the inode. Removing the directory entry can
2479 * result in locking an AGF (directory blocks were freed) and removing a link
2480 * count can result in placing the inode on an unlinked list which results in
2481 * locking an AGI.
2482 *
2483 * The big problem here is that we have an ordering constraint on AGF and AGI
2484 * locking - inode allocation locks the AGI, then can allocate a new extent for
2485 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2486 * removes the inode from the unlinked list, requiring that we lock the AGI
2487 * first, and then freeing the inode can result in an inode chunk being freed
2488 * and hence freeing disk space requiring that we lock an AGF.
2489 *
2490 * Hence the ordering that is imposed by other parts of the code is AGI before
2491 * AGF. This means we cannot remove the directory entry before we drop the inode
2492 * reference count and put it on the unlinked list as this results in a lock
2493 * order of AGF then AGI, and this can deadlock against inode allocation and
2494 * freeing. Therefore we must drop the link counts before we remove the
2495 * directory entry.
2496 *
2497 * This is still safe from a transactional point of view - it is not until we
2498 * get to xfs_bmap_finish() that we have the possibility of multiple
2499 * transactions in this operation. Hence as long as we remove the directory
2500 * entry and drop the link count in the first transaction of the remove
2501 * operation, there are no transactional constraints on the ordering here.
2502 */
c24b5dfa
DC
2503int
2504xfs_remove(
2505 xfs_inode_t *dp,
2506 struct xfs_name *name,
2507 xfs_inode_t *ip)
2508{
2509 xfs_mount_t *mp = dp->i_mount;
2510 xfs_trans_t *tp = NULL;
2511 int is_dir = S_ISDIR(ip->i_d.di_mode);
2512 int error = 0;
2513 xfs_bmap_free_t free_list;
2514 xfs_fsblock_t first_block;
c24b5dfa 2515 uint resblks;
c24b5dfa
DC
2516
2517 trace_xfs_remove(dp, name);
2518
2519 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2520 return -EIO;
c24b5dfa
DC
2521
2522 error = xfs_qm_dqattach(dp, 0);
2523 if (error)
2524 goto std_return;
2525
2526 error = xfs_qm_dqattach(ip, 0);
2527 if (error)
2528 goto std_return;
2529
32296f86 2530 if (is_dir)
c24b5dfa 2531 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
32296f86 2532 else
c24b5dfa 2533 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
c24b5dfa
DC
2534
2535 /*
2536 * We try to get the real space reservation first,
2537 * allowing for directory btree deletion(s) implying
2538 * possible bmap insert(s). If we can't get the space
2539 * reservation then we use 0 instead, and avoid the bmap
2540 * btree insert(s) in the directory code by, if the bmap
2541 * insert tries to happen, instead trimming the LAST
2542 * block from the directory.
2543 */
2544 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2545 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2451337d 2546 if (error == -ENOSPC) {
c24b5dfa 2547 resblks = 0;
3d3c8b52 2548 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2549 }
2550 if (error) {
2451337d 2551 ASSERT(error != -ENOSPC);
c24b5dfa
DC
2552 goto out_trans_cancel;
2553 }
2554
dbad7c99 2555 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
c24b5dfa
DC
2556 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2557
dbad7c99 2558 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
2559 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2560
2561 /*
2562 * If we're removing a directory perform some additional validation.
2563 */
2564 if (is_dir) {
54d7b5c1
DC
2565 ASSERT(VFS_I(ip)->i_nlink >= 2);
2566 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2567 error = -ENOTEMPTY;
c24b5dfa
DC
2568 goto out_trans_cancel;
2569 }
2570 if (!xfs_dir_isempty(ip)) {
2451337d 2571 error = -ENOTEMPTY;
c24b5dfa
DC
2572 goto out_trans_cancel;
2573 }
c24b5dfa 2574
27320369 2575 /* Drop the link from ip's "..". */
c24b5dfa
DC
2576 error = xfs_droplink(tp, dp);
2577 if (error)
27320369 2578 goto out_trans_cancel;
c24b5dfa 2579
27320369 2580 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2581 error = xfs_droplink(tp, ip);
2582 if (error)
27320369 2583 goto out_trans_cancel;
c24b5dfa
DC
2584 } else {
2585 /*
2586 * When removing a non-directory we need to log the parent
2587 * inode here. For a directory this is done implicitly
2588 * by the xfs_droplink call for the ".." entry.
2589 */
2590 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2591 }
27320369 2592 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2593
27320369 2594 /* Drop the link from dp to ip. */
c24b5dfa
DC
2595 error = xfs_droplink(tp, ip);
2596 if (error)
27320369 2597 goto out_trans_cancel;
c24b5dfa 2598
27320369
DC
2599 xfs_bmap_init(&free_list, &first_block);
2600 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2601 &first_block, &free_list, resblks);
2602 if (error) {
2451337d 2603 ASSERT(error != -ENOENT);
27320369
DC
2604 goto out_bmap_cancel;
2605 }
2606
c24b5dfa
DC
2607 /*
2608 * If this is a synchronous mount, make sure that the
2609 * remove transaction goes to disk before returning to
2610 * the user.
2611 */
2612 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2613 xfs_trans_set_sync(tp);
2614
f6106efa 2615 error = xfs_bmap_finish(&tp, &free_list, NULL);
c24b5dfa
DC
2616 if (error)
2617 goto out_bmap_cancel;
2618
70393313 2619 error = xfs_trans_commit(tp);
c24b5dfa
DC
2620 if (error)
2621 goto std_return;
2622
2cd2ef6a 2623 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2624 xfs_filestream_deassociate(ip);
2625
2626 return 0;
2627
2628 out_bmap_cancel:
2629 xfs_bmap_cancel(&free_list);
c24b5dfa 2630 out_trans_cancel:
4906e215 2631 xfs_trans_cancel(tp);
c24b5dfa
DC
2632 std_return:
2633 return error;
2634}
2635
f6bba201
DC
2636/*
2637 * Enter all inodes for a rename transaction into a sorted array.
2638 */
95afcf5c 2639#define __XFS_SORT_INODES 5
f6bba201
DC
2640STATIC void
2641xfs_sort_for_rename(
95afcf5c
DC
2642 struct xfs_inode *dp1, /* in: old (source) directory inode */
2643 struct xfs_inode *dp2, /* in: new (target) directory inode */
2644 struct xfs_inode *ip1, /* in: inode of old entry */
2645 struct xfs_inode *ip2, /* in: inode of new entry */
2646 struct xfs_inode *wip, /* in: whiteout inode */
2647 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2648 int *num_inodes) /* in/out: inodes in array */
f6bba201 2649{
f6bba201
DC
2650 int i, j;
2651
95afcf5c
DC
2652 ASSERT(*num_inodes == __XFS_SORT_INODES);
2653 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2654
f6bba201
DC
2655 /*
2656 * i_tab contains a list of pointers to inodes. We initialize
2657 * the table here & we'll sort it. We will then use it to
2658 * order the acquisition of the inode locks.
2659 *
2660 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2661 */
95afcf5c
DC
2662 i = 0;
2663 i_tab[i++] = dp1;
2664 i_tab[i++] = dp2;
2665 i_tab[i++] = ip1;
2666 if (ip2)
2667 i_tab[i++] = ip2;
2668 if (wip)
2669 i_tab[i++] = wip;
2670 *num_inodes = i;
f6bba201
DC
2671
2672 /*
2673 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2674 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2675 */
2676 for (i = 0; i < *num_inodes; i++) {
2677 for (j = 1; j < *num_inodes; j++) {
2678 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2679 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2680 i_tab[j] = i_tab[j-1];
2681 i_tab[j-1] = temp;
2682 }
2683 }
2684 }
2685}
2686
310606b0
DC
2687static int
2688xfs_finish_rename(
2689 struct xfs_trans *tp,
2690 struct xfs_bmap_free *free_list)
2691{
310606b0
DC
2692 int error;
2693
2694 /*
2695 * If this is a synchronous mount, make sure that the rename transaction
2696 * goes to disk before returning to the user.
2697 */
2698 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2699 xfs_trans_set_sync(tp);
2700
f6106efa 2701 error = xfs_bmap_finish(&tp, free_list, NULL);
310606b0
DC
2702 if (error) {
2703 xfs_bmap_cancel(free_list);
4906e215 2704 xfs_trans_cancel(tp);
310606b0
DC
2705 return error;
2706 }
2707
70393313 2708 return xfs_trans_commit(tp);
310606b0
DC
2709}
2710
d31a1825
CM
2711/*
2712 * xfs_cross_rename()
2713 *
2714 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2715 */
2716STATIC int
2717xfs_cross_rename(
2718 struct xfs_trans *tp,
2719 struct xfs_inode *dp1,
2720 struct xfs_name *name1,
2721 struct xfs_inode *ip1,
2722 struct xfs_inode *dp2,
2723 struct xfs_name *name2,
2724 struct xfs_inode *ip2,
2725 struct xfs_bmap_free *free_list,
2726 xfs_fsblock_t *first_block,
2727 int spaceres)
2728{
2729 int error = 0;
2730 int ip1_flags = 0;
2731 int ip2_flags = 0;
2732 int dp2_flags = 0;
2733
2734 /* Swap inode number for dirent in first parent */
2735 error = xfs_dir_replace(tp, dp1, name1,
2736 ip2->i_ino,
2737 first_block, free_list, spaceres);
2738 if (error)
eeacd321 2739 goto out_trans_abort;
d31a1825
CM
2740
2741 /* Swap inode number for dirent in second parent */
2742 error = xfs_dir_replace(tp, dp2, name2,
2743 ip1->i_ino,
2744 first_block, free_list, spaceres);
2745 if (error)
eeacd321 2746 goto out_trans_abort;
d31a1825
CM
2747
2748 /*
2749 * If we're renaming one or more directories across different parents,
2750 * update the respective ".." entries (and link counts) to match the new
2751 * parents.
2752 */
2753 if (dp1 != dp2) {
2754 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2755
2756 if (S_ISDIR(ip2->i_d.di_mode)) {
2757 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2758 dp1->i_ino, first_block,
2759 free_list, spaceres);
2760 if (error)
eeacd321 2761 goto out_trans_abort;
d31a1825
CM
2762
2763 /* transfer ip2 ".." reference to dp1 */
2764 if (!S_ISDIR(ip1->i_d.di_mode)) {
2765 error = xfs_droplink(tp, dp2);
2766 if (error)
eeacd321 2767 goto out_trans_abort;
d31a1825
CM
2768 error = xfs_bumplink(tp, dp1);
2769 if (error)
eeacd321 2770 goto out_trans_abort;
d31a1825
CM
2771 }
2772
2773 /*
2774 * Although ip1 isn't changed here, userspace needs
2775 * to be warned about the change, so that applications
2776 * relying on it (like backup ones), will properly
2777 * notify the change
2778 */
2779 ip1_flags |= XFS_ICHGTIME_CHG;
2780 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2781 }
2782
2783 if (S_ISDIR(ip1->i_d.di_mode)) {
2784 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2785 dp2->i_ino, first_block,
2786 free_list, spaceres);
2787 if (error)
eeacd321 2788 goto out_trans_abort;
d31a1825
CM
2789
2790 /* transfer ip1 ".." reference to dp2 */
2791 if (!S_ISDIR(ip2->i_d.di_mode)) {
2792 error = xfs_droplink(tp, dp1);
2793 if (error)
eeacd321 2794 goto out_trans_abort;
d31a1825
CM
2795 error = xfs_bumplink(tp, dp2);
2796 if (error)
eeacd321 2797 goto out_trans_abort;
d31a1825
CM
2798 }
2799
2800 /*
2801 * Although ip2 isn't changed here, userspace needs
2802 * to be warned about the change, so that applications
2803 * relying on it (like backup ones), will properly
2804 * notify the change
2805 */
2806 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2807 ip2_flags |= XFS_ICHGTIME_CHG;
2808 }
2809 }
2810
2811 if (ip1_flags) {
2812 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2813 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2814 }
2815 if (ip2_flags) {
2816 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2817 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2818 }
2819 if (dp2_flags) {
2820 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2821 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2822 }
2823 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2824 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
eeacd321
DC
2825 return xfs_finish_rename(tp, free_list);
2826
2827out_trans_abort:
2828 xfs_bmap_cancel(free_list);
4906e215 2829 xfs_trans_cancel(tp);
d31a1825
CM
2830 return error;
2831}
2832
7dcf5c3e
DC
2833/*
2834 * xfs_rename_alloc_whiteout()
2835 *
2836 * Return a referenced, unlinked, unlocked inode that that can be used as a
2837 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2838 * crash between allocating the inode and linking it into the rename transaction
2839 * recovery will free the inode and we won't leak it.
2840 */
2841static int
2842xfs_rename_alloc_whiteout(
2843 struct xfs_inode *dp,
2844 struct xfs_inode **wip)
2845{
2846 struct xfs_inode *tmpfile;
2847 int error;
2848
2849 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2850 if (error)
2851 return error;
2852
22419ac9
BF
2853 /*
2854 * Prepare the tmpfile inode as if it were created through the VFS.
2855 * Otherwise, the link increment paths will complain about nlink 0->1.
2856 * Drop the link count as done by d_tmpfile(), complete the inode setup
2857 * and flag it as linkable.
2858 */
2859 drop_nlink(VFS_I(tmpfile));
7dcf5c3e
DC
2860 xfs_finish_inode_setup(tmpfile);
2861 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2862
2863 *wip = tmpfile;
2864 return 0;
2865}
2866
f6bba201
DC
2867/*
2868 * xfs_rename
2869 */
2870int
2871xfs_rename(
7dcf5c3e
DC
2872 struct xfs_inode *src_dp,
2873 struct xfs_name *src_name,
2874 struct xfs_inode *src_ip,
2875 struct xfs_inode *target_dp,
2876 struct xfs_name *target_name,
2877 struct xfs_inode *target_ip,
2878 unsigned int flags)
f6bba201 2879{
7dcf5c3e
DC
2880 struct xfs_mount *mp = src_dp->i_mount;
2881 struct xfs_trans *tp;
2882 struct xfs_bmap_free free_list;
2883 xfs_fsblock_t first_block;
2884 struct xfs_inode *wip = NULL; /* whiteout inode */
2885 struct xfs_inode *inodes[__XFS_SORT_INODES];
2886 int num_inodes = __XFS_SORT_INODES;
2b93681f
DC
2887 bool new_parent = (src_dp != target_dp);
2888 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
7dcf5c3e
DC
2889 int spaceres;
2890 int error;
f6bba201
DC
2891
2892 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2893
eeacd321
DC
2894 if ((flags & RENAME_EXCHANGE) && !target_ip)
2895 return -EINVAL;
2896
7dcf5c3e
DC
2897 /*
2898 * If we are doing a whiteout operation, allocate the whiteout inode
2899 * we will be placing at the target and ensure the type is set
2900 * appropriately.
2901 */
2902 if (flags & RENAME_WHITEOUT) {
2903 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2904 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2905 if (error)
2906 return error;
2907
2908 /* setup target dirent info as whiteout */
2909 src_name->type = XFS_DIR3_FT_CHRDEV;
2910 }
f6bba201 2911
7dcf5c3e 2912 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2913 inodes, &num_inodes);
2914
f6bba201 2915 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
f6bba201 2916 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2917 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2451337d 2918 if (error == -ENOSPC) {
f6bba201 2919 spaceres = 0;
3d3c8b52 2920 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201 2921 }
445883e8
DC
2922 if (error)
2923 goto out_trans_cancel;
f6bba201
DC
2924
2925 /*
2926 * Attach the dquots to the inodes
2927 */
2928 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2929 if (error)
2930 goto out_trans_cancel;
f6bba201
DC
2931
2932 /*
2933 * Lock all the participating inodes. Depending upon whether
2934 * the target_name exists in the target directory, and
2935 * whether the target directory is the same as the source
2936 * directory, we can lock from 2 to 4 inodes.
2937 */
dbad7c99
DC
2938 if (!new_parent)
2939 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2940 else
2941 xfs_lock_two_inodes(src_dp, target_dp,
2942 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2943
f6bba201
DC
2944 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2945
2946 /*
2947 * Join all the inodes to the transaction. From this point on,
2948 * we can rely on either trans_commit or trans_cancel to unlock
2949 * them.
2950 */
dbad7c99 2951 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
f6bba201 2952 if (new_parent)
dbad7c99 2953 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
f6bba201
DC
2954 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2955 if (target_ip)
2956 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2957 if (wip)
2958 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2959
2960 /*
2961 * If we are using project inheritance, we only allow renames
2962 * into our tree when the project IDs are the same; else the
2963 * tree quota mechanism would be circumvented.
2964 */
2965 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2966 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2967 error = -EXDEV;
445883e8 2968 goto out_trans_cancel;
f6bba201
DC
2969 }
2970
445883e8
DC
2971 xfs_bmap_init(&free_list, &first_block);
2972
eeacd321
DC
2973 /* RENAME_EXCHANGE is unique from here on. */
2974 if (flags & RENAME_EXCHANGE)
2975 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2976 target_dp, target_name, target_ip,
2977 &free_list, &first_block, spaceres);
d31a1825 2978
f6bba201
DC
2979 /*
2980 * Set up the target.
2981 */
2982 if (target_ip == NULL) {
2983 /*
2984 * If there's no space reservation, check the entry will
2985 * fit before actually inserting it.
2986 */
94f3cad5
ES
2987 if (!spaceres) {
2988 error = xfs_dir_canenter(tp, target_dp, target_name);
2989 if (error)
445883e8 2990 goto out_trans_cancel;
94f3cad5 2991 }
f6bba201
DC
2992 /*
2993 * If target does not exist and the rename crosses
2994 * directories, adjust the target directory link count
2995 * to account for the ".." reference from the new entry.
2996 */
2997 error = xfs_dir_createname(tp, target_dp, target_name,
2998 src_ip->i_ino, &first_block,
2999 &free_list, spaceres);
f6bba201 3000 if (error)
4906e215 3001 goto out_bmap_cancel;
f6bba201
DC
3002
3003 xfs_trans_ichgtime(tp, target_dp,
3004 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3005
3006 if (new_parent && src_is_directory) {
3007 error = xfs_bumplink(tp, target_dp);
3008 if (error)
4906e215 3009 goto out_bmap_cancel;
f6bba201
DC
3010 }
3011 } else { /* target_ip != NULL */
3012 /*
3013 * If target exists and it's a directory, check that both
3014 * target and source are directories and that target can be
3015 * destroyed, or that neither is a directory.
3016 */
3017 if (S_ISDIR(target_ip->i_d.di_mode)) {
3018 /*
3019 * Make sure target dir is empty.
3020 */
3021 if (!(xfs_dir_isempty(target_ip)) ||
54d7b5c1 3022 (VFS_I(target_ip)->i_nlink > 2)) {
2451337d 3023 error = -EEXIST;
445883e8 3024 goto out_trans_cancel;
f6bba201
DC
3025 }
3026 }
3027
3028 /*
3029 * Link the source inode under the target name.
3030 * If the source inode is a directory and we are moving
3031 * it across directories, its ".." entry will be
3032 * inconsistent until we replace that down below.
3033 *
3034 * In case there is already an entry with the same
3035 * name at the destination directory, remove it first.
3036 */
3037 error = xfs_dir_replace(tp, target_dp, target_name,
3038 src_ip->i_ino,
3039 &first_block, &free_list, spaceres);
3040 if (error)
4906e215 3041 goto out_bmap_cancel;
f6bba201
DC
3042
3043 xfs_trans_ichgtime(tp, target_dp,
3044 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3045
3046 /*
3047 * Decrement the link count on the target since the target
3048 * dir no longer points to it.
3049 */
3050 error = xfs_droplink(tp, target_ip);
3051 if (error)
4906e215 3052 goto out_bmap_cancel;
f6bba201
DC
3053
3054 if (src_is_directory) {
3055 /*
3056 * Drop the link from the old "." entry.
3057 */
3058 error = xfs_droplink(tp, target_ip);
3059 if (error)
4906e215 3060 goto out_bmap_cancel;
f6bba201
DC
3061 }
3062 } /* target_ip != NULL */
3063
3064 /*
3065 * Remove the source.
3066 */
3067 if (new_parent && src_is_directory) {
3068 /*
3069 * Rewrite the ".." entry to point to the new
3070 * directory.
3071 */
3072 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3073 target_dp->i_ino,
3074 &first_block, &free_list, spaceres);
2451337d 3075 ASSERT(error != -EEXIST);
f6bba201 3076 if (error)
4906e215 3077 goto out_bmap_cancel;
f6bba201
DC
3078 }
3079
3080 /*
3081 * We always want to hit the ctime on the source inode.
3082 *
3083 * This isn't strictly required by the standards since the source
3084 * inode isn't really being changed, but old unix file systems did
3085 * it and some incremental backup programs won't work without it.
3086 */
3087 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3088 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3089
3090 /*
3091 * Adjust the link count on src_dp. This is necessary when
3092 * renaming a directory, either within one parent when
3093 * the target existed, or across two parent directories.
3094 */
3095 if (src_is_directory && (new_parent || target_ip != NULL)) {
3096
3097 /*
3098 * Decrement link count on src_directory since the
3099 * entry that's moved no longer points to it.
3100 */
3101 error = xfs_droplink(tp, src_dp);
3102 if (error)
4906e215 3103 goto out_bmap_cancel;
f6bba201
DC
3104 }
3105
7dcf5c3e
DC
3106 /*
3107 * For whiteouts, we only need to update the source dirent with the
3108 * inode number of the whiteout inode rather than removing it
3109 * altogether.
3110 */
3111 if (wip) {
3112 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
f6bba201 3113 &first_block, &free_list, spaceres);
7dcf5c3e
DC
3114 } else
3115 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3116 &first_block, &free_list, spaceres);
f6bba201 3117 if (error)
4906e215 3118 goto out_bmap_cancel;
f6bba201
DC
3119
3120 /*
7dcf5c3e
DC
3121 * For whiteouts, we need to bump the link count on the whiteout inode.
3122 * This means that failures all the way up to this point leave the inode
3123 * on the unlinked list and so cleanup is a simple matter of dropping
3124 * the remaining reference to it. If we fail here after bumping the link
3125 * count, we're shutting down the filesystem so we'll never see the
3126 * intermediate state on disk.
f6bba201 3127 */
7dcf5c3e 3128 if (wip) {
54d7b5c1 3129 ASSERT(VFS_I(wip)->i_nlink == 0);
7dcf5c3e
DC
3130 error = xfs_bumplink(tp, wip);
3131 if (error)
4906e215 3132 goto out_bmap_cancel;
7dcf5c3e
DC
3133 error = xfs_iunlink_remove(tp, wip);
3134 if (error)
4906e215 3135 goto out_bmap_cancel;
7dcf5c3e 3136 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3137
7dcf5c3e
DC
3138 /*
3139 * Now we have a real link, clear the "I'm a tmpfile" state
3140 * flag from the inode so it doesn't accidentally get misused in
3141 * future.
3142 */
3143 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3144 }
3145
f6bba201
DC
3146 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3147 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3148 if (new_parent)
3149 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3150
7dcf5c3e
DC
3151 error = xfs_finish_rename(tp, &free_list);
3152 if (wip)
3153 IRELE(wip);
3154 return error;
f6bba201 3155
445883e8 3156out_bmap_cancel:
f6bba201 3157 xfs_bmap_cancel(&free_list);
445883e8 3158out_trans_cancel:
4906e215 3159 xfs_trans_cancel(tp);
7dcf5c3e
DC
3160 if (wip)
3161 IRELE(wip);
f6bba201
DC
3162 return error;
3163}
3164
5c4d97d0
DC
3165STATIC int
3166xfs_iflush_cluster(
3167 xfs_inode_t *ip,
3168 xfs_buf_t *bp)
1da177e4 3169{
5c4d97d0
DC
3170 xfs_mount_t *mp = ip->i_mount;
3171 struct xfs_perag *pag;
3172 unsigned long first_index, mask;
3173 unsigned long inodes_per_cluster;
3174 int ilist_size;
3175 xfs_inode_t **ilist;
3176 xfs_inode_t *iq;
3177 int nr_found;
3178 int clcount = 0;
3179 int bufwasdelwri;
1da177e4 3180 int i;
1da177e4 3181
5c4d97d0 3182 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3183
0f49efd8 3184 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
5c4d97d0
DC
3185 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3186 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3187 if (!ilist)
3188 goto out_put;
1da177e4 3189
0f49efd8 3190 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3191 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3192 rcu_read_lock();
3193 /* really need a gang lookup range call here */
3194 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3195 first_index, inodes_per_cluster);
3196 if (nr_found == 0)
3197 goto out_free;
3198
3199 for (i = 0; i < nr_found; i++) {
3200 iq = ilist[i];
3201 if (iq == ip)
bad55843 3202 continue;
1a3e8f3d
DC
3203
3204 /*
3205 * because this is an RCU protected lookup, we could find a
3206 * recently freed or even reallocated inode during the lookup.
3207 * We need to check under the i_flags_lock for a valid inode
3208 * here. Skip it if it is not valid or the wrong inode.
3209 */
3210 spin_lock(&ip->i_flags_lock);
3211 if (!ip->i_ino ||
3212 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3213 spin_unlock(&ip->i_flags_lock);
3214 continue;
3215 }
3216 spin_unlock(&ip->i_flags_lock);
3217
bad55843
DC
3218 /*
3219 * Do an un-protected check to see if the inode is dirty and
3220 * is a candidate for flushing. These checks will be repeated
3221 * later after the appropriate locks are acquired.
3222 */
33540408 3223 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3224 continue;
bad55843
DC
3225
3226 /*
3227 * Try to get locks. If any are unavailable or it is pinned,
3228 * then this inode cannot be flushed and is skipped.
3229 */
3230
3231 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3232 continue;
3233 if (!xfs_iflock_nowait(iq)) {
3234 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3235 continue;
3236 }
3237 if (xfs_ipincount(iq)) {
3238 xfs_ifunlock(iq);
3239 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3240 continue;
3241 }
3242
3243 /*
3244 * arriving here means that this inode can be flushed. First
3245 * re-check that it's dirty before flushing.
3246 */
33540408
DC
3247 if (!xfs_inode_clean(iq)) {
3248 int error;
bad55843
DC
3249 error = xfs_iflush_int(iq, bp);
3250 if (error) {
3251 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3252 goto cluster_corrupt_out;
3253 }
3254 clcount++;
3255 } else {
3256 xfs_ifunlock(iq);
3257 }
3258 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3259 }
3260
3261 if (clcount) {
ff6d6af2
BD
3262 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3263 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3264 }
3265
3266out_free:
1a3e8f3d 3267 rcu_read_unlock();
f0e2d93c 3268 kmem_free(ilist);
44b56e0a
DC
3269out_put:
3270 xfs_perag_put(pag);
bad55843
DC
3271 return 0;
3272
3273
3274cluster_corrupt_out:
3275 /*
3276 * Corruption detected in the clustering loop. Invalidate the
3277 * inode buffer and shut down the filesystem.
3278 */
1a3e8f3d 3279 rcu_read_unlock();
bad55843 3280 /*
43ff2122 3281 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3282 * brelse can handle it with no problems. If not, shut down the
3283 * filesystem before releasing the buffer.
3284 */
43ff2122 3285 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3286 if (bufwasdelwri)
3287 xfs_buf_relse(bp);
3288
3289 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3290
3291 if (!bufwasdelwri) {
3292 /*
3293 * Just like incore_relse: if we have b_iodone functions,
3294 * mark the buffer as an error and call them. Otherwise
3295 * mark it as stale and brelse.
3296 */
cb669ca5 3297 if (bp->b_iodone) {
bad55843 3298 XFS_BUF_UNDONE(bp);
c867cb61 3299 xfs_buf_stale(bp);
2451337d 3300 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3301 xfs_buf_ioend(bp);
bad55843 3302 } else {
c867cb61 3303 xfs_buf_stale(bp);
bad55843
DC
3304 xfs_buf_relse(bp);
3305 }
3306 }
3307
3308 /*
3309 * Unlocks the flush lock
3310 */
04913fdd 3311 xfs_iflush_abort(iq, false);
f0e2d93c 3312 kmem_free(ilist);
44b56e0a 3313 xfs_perag_put(pag);
2451337d 3314 return -EFSCORRUPTED;
bad55843
DC
3315}
3316
1da177e4 3317/*
4c46819a
CH
3318 * Flush dirty inode metadata into the backing buffer.
3319 *
3320 * The caller must have the inode lock and the inode flush lock held. The
3321 * inode lock will still be held upon return to the caller, and the inode
3322 * flush lock will be released after the inode has reached the disk.
3323 *
3324 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3325 */
3326int
3327xfs_iflush(
4c46819a
CH
3328 struct xfs_inode *ip,
3329 struct xfs_buf **bpp)
1da177e4 3330{
4c46819a
CH
3331 struct xfs_mount *mp = ip->i_mount;
3332 struct xfs_buf *bp;
3333 struct xfs_dinode *dip;
1da177e4 3334 int error;
1da177e4 3335
ff6d6af2 3336 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3337
579aa9ca 3338 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3339 ASSERT(xfs_isiflocked(ip));
1da177e4 3340 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3341 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3342
4c46819a 3343 *bpp = NULL;
1da177e4 3344
1da177e4
LT
3345 xfs_iunpin_wait(ip);
3346
4b6a4688
DC
3347 /*
3348 * For stale inodes we cannot rely on the backing buffer remaining
3349 * stale in cache for the remaining life of the stale inode and so
475ee413 3350 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3351 * inodes below. We have to check this after ensuring the inode is
3352 * unpinned so that it is safe to reclaim the stale inode after the
3353 * flush call.
3354 */
3355 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3356 xfs_ifunlock(ip);
3357 return 0;
3358 }
3359
1da177e4
LT
3360 /*
3361 * This may have been unpinned because the filesystem is shutting
3362 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3363 * to disk, because the log record didn't make it to disk.
3364 *
3365 * We also have to remove the log item from the AIL in this case,
3366 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3367 */
3368 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3369 error = -EIO;
32ce90a4 3370 goto abort_out;
1da177e4
LT
3371 }
3372
a3f74ffb
DC
3373 /*
3374 * Get the buffer containing the on-disk inode.
3375 */
475ee413
CH
3376 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3377 0);
a3f74ffb
DC
3378 if (error || !bp) {
3379 xfs_ifunlock(ip);
3380 return error;
3381 }
3382
1da177e4
LT
3383 /*
3384 * First flush out the inode that xfs_iflush was called with.
3385 */
3386 error = xfs_iflush_int(ip, bp);
bad55843 3387 if (error)
1da177e4 3388 goto corrupt_out;
1da177e4 3389
a3f74ffb
DC
3390 /*
3391 * If the buffer is pinned then push on the log now so we won't
3392 * get stuck waiting in the write for too long.
3393 */
811e64c7 3394 if (xfs_buf_ispinned(bp))
a14a348b 3395 xfs_log_force(mp, 0);
a3f74ffb 3396
1da177e4
LT
3397 /*
3398 * inode clustering:
3399 * see if other inodes can be gathered into this write
3400 */
bad55843
DC
3401 error = xfs_iflush_cluster(ip, bp);
3402 if (error)
3403 goto cluster_corrupt_out;
1da177e4 3404
4c46819a
CH
3405 *bpp = bp;
3406 return 0;
1da177e4
LT
3407
3408corrupt_out:
3409 xfs_buf_relse(bp);
7d04a335 3410 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3411cluster_corrupt_out:
2451337d 3412 error = -EFSCORRUPTED;
32ce90a4 3413abort_out:
1da177e4
LT
3414 /*
3415 * Unlocks the flush lock
3416 */
04913fdd 3417 xfs_iflush_abort(ip, false);
32ce90a4 3418 return error;
1da177e4
LT
3419}
3420
1da177e4
LT
3421STATIC int
3422xfs_iflush_int(
93848a99
CH
3423 struct xfs_inode *ip,
3424 struct xfs_buf *bp)
1da177e4 3425{
93848a99
CH
3426 struct xfs_inode_log_item *iip = ip->i_itemp;
3427 struct xfs_dinode *dip;
3428 struct xfs_mount *mp = ip->i_mount;
1da177e4 3429
579aa9ca 3430 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3431 ASSERT(xfs_isiflocked(ip));
1da177e4 3432 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3433 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3434 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3435 ASSERT(ip->i_d.di_version > 1);
1da177e4 3436
1da177e4 3437 /* set *dip = inode's place in the buffer */
88ee2df7 3438 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3439
69ef921b 3440 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3441 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3442 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3443 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3444 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3445 goto corrupt_out;
3446 }
abbede1b 3447 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3448 if (XFS_TEST_ERROR(
3449 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3450 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3451 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3452 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3453 "%s: Bad regular inode %Lu, ptr 0x%p",
3454 __func__, ip->i_ino, ip);
1da177e4
LT
3455 goto corrupt_out;
3456 }
abbede1b 3457 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3458 if (XFS_TEST_ERROR(
3459 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3460 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3461 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3462 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3463 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3464 "%s: Bad directory inode %Lu, ptr 0x%p",
3465 __func__, ip->i_ino, ip);
1da177e4
LT
3466 goto corrupt_out;
3467 }
3468 }
3469 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3470 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3471 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3472 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3473 "%s: detected corrupt incore inode %Lu, "
3474 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3475 __func__, ip->i_ino,
1da177e4 3476 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3477 ip->i_d.di_nblocks, ip);
1da177e4
LT
3478 goto corrupt_out;
3479 }
3480 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3481 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3482 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3483 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3484 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3485 goto corrupt_out;
3486 }
e60896d8 3487
1da177e4 3488 /*
263997a6 3489 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3490 * di_flushiter count for correct sequencing. We bump the flush
3491 * iteration count so we can detect flushes which postdate a log record
3492 * during recovery. This is redundant as we now log every change and
3493 * hence this can't happen but we need to still do it to ensure
3494 * backwards compatibility with old kernels that predate logging all
3495 * inode changes.
1da177e4 3496 */
e60896d8
DC
3497 if (ip->i_d.di_version < 3)
3498 ip->i_d.di_flushiter++;
1da177e4
LT
3499
3500 /*
3987848c
DC
3501 * Copy the dirty parts of the inode into the on-disk inode. We always
3502 * copy out the core of the inode, because if the inode is dirty at all
3503 * the core must be.
1da177e4 3504 */
93f958f9 3505 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3506
3507 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3508 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3509 ip->i_d.di_flushiter = 0;
3510
fd9fdba6 3511 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
e4ac967b 3512 if (XFS_IFORK_Q(ip))
fd9fdba6 3513 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3514 xfs_inobp_check(mp, bp);
3515
3516 /*
f5d8d5c4
CH
3517 * We've recorded everything logged in the inode, so we'd like to clear
3518 * the ili_fields bits so we don't log and flush things unnecessarily.
3519 * However, we can't stop logging all this information until the data
3520 * we've copied into the disk buffer is written to disk. If we did we
3521 * might overwrite the copy of the inode in the log with all the data
3522 * after re-logging only part of it, and in the face of a crash we
3523 * wouldn't have all the data we need to recover.
1da177e4 3524 *
f5d8d5c4
CH
3525 * What we do is move the bits to the ili_last_fields field. When
3526 * logging the inode, these bits are moved back to the ili_fields field.
3527 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3528 * know that the information those bits represent is permanently on
3529 * disk. As long as the flush completes before the inode is logged
3530 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3531 *
f5d8d5c4
CH
3532 * We can play with the ili_fields bits here, because the inode lock
3533 * must be held exclusively in order to set bits there and the flush
3534 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3535 * done routine can tell whether or not to look in the AIL. Also, store
3536 * the current LSN of the inode so that we can tell whether the item has
3537 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3538 * need the AIL lock, because it is a 64 bit value that cannot be read
3539 * atomically.
1da177e4 3540 */
93848a99
CH
3541 iip->ili_last_fields = iip->ili_fields;
3542 iip->ili_fields = 0;
fc0561ce 3543 iip->ili_fsync_fields = 0;
93848a99 3544 iip->ili_logged = 1;
1da177e4 3545
93848a99
CH
3546 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3547 &iip->ili_item.li_lsn);
1da177e4 3548
93848a99
CH
3549 /*
3550 * Attach the function xfs_iflush_done to the inode's
3551 * buffer. This will remove the inode from the AIL
3552 * and unlock the inode's flush lock when the inode is
3553 * completely written to disk.
3554 */
3555 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3556
93848a99
CH
3557 /* generate the checksum. */
3558 xfs_dinode_calc_crc(mp, dip);
1da177e4 3559
93848a99
CH
3560 ASSERT(bp->b_fspriv != NULL);
3561 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3562 return 0;
3563
3564corrupt_out:
2451337d 3565 return -EFSCORRUPTED;
1da177e4 3566}
This page took 0.863579 seconds and 5 git commands to generate.