xfs: push down inactive transaction mgmt for ifree
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
6ca1c906 22#include "xfs_format.h"
1da177e4 23#include "xfs_log.h"
a844f451 24#include "xfs_inum.h"
1da177e4 25#include "xfs_trans.h"
c24b5dfa 26#include "xfs_trans_space.h"
1da177e4
LT
27#include "xfs_trans_priv.h"
28#include "xfs_sb.h"
29#include "xfs_ag.h"
1da177e4 30#include "xfs_mount.h"
c24b5dfa
DC
31#include "xfs_da_btree.h"
32#include "xfs_dir2_format.h"
33#include "xfs_dir2.h"
1da177e4 34#include "xfs_bmap_btree.h"
a844f451 35#include "xfs_alloc_btree.h"
1da177e4 36#include "xfs_ialloc_btree.h"
a844f451 37#include "xfs_attr_sf.h"
c24b5dfa 38#include "xfs_attr.h"
1da177e4 39#include "xfs_dinode.h"
1da177e4 40#include "xfs_inode.h"
1da177e4 41#include "xfs_buf_item.h"
a844f451
NS
42#include "xfs_inode_item.h"
43#include "xfs_btree.h"
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
68988114 47#include "xfs_bmap_util.h"
1da177e4 48#include "xfs_error.h"
1da177e4 49#include "xfs_quota.h"
2a82b8be 50#include "xfs_filestream.h"
93848a99 51#include "xfs_cksum.h"
0b1b213f 52#include "xfs_trace.h"
33479e05 53#include "xfs_icache.h"
c24b5dfa 54#include "xfs_symlink.h"
1da177e4 55
1da177e4 56kmem_zone_t *xfs_inode_zone;
1da177e4
LT
57
58/*
8f04c47a 59 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
60 * freed from a file in a single transaction.
61 */
62#define XFS_ITRUNC_MAX_EXTENTS 2
63
64STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 65
2a0ec1d9
DC
66/*
67 * helper function to extract extent size hint from inode
68 */
69xfs_extlen_t
70xfs_get_extsz_hint(
71 struct xfs_inode *ip)
72{
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
78}
79
fa96acad
DC
80/*
81 * This is a wrapper routine around the xfs_ilock() routine used to centralize
82 * some grungy code. It is used in places that wish to lock the inode solely
83 * for reading the extents. The reason these places can't just call
84 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
85 * extents from disk for a file in b-tree format. If the inode is in b-tree
86 * format, then we need to lock the inode exclusively until the extents are read
87 * in. Locking it exclusively all the time would limit our parallelism
88 * unnecessarily, though. What we do instead is check to see if the extents
89 * have been read in yet, and only lock the inode exclusively if they have not.
90 *
91 * The function returns a value which should be given to the corresponding
92 * xfs_iunlock_map_shared(). This value is the mode in which the lock was
93 * actually taken.
94 */
95uint
96xfs_ilock_map_shared(
97 xfs_inode_t *ip)
98{
99 uint lock_mode;
100
101 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
102 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
103 lock_mode = XFS_ILOCK_EXCL;
104 } else {
105 lock_mode = XFS_ILOCK_SHARED;
106 }
107
108 xfs_ilock(ip, lock_mode);
109
110 return lock_mode;
111}
112
113/*
114 * This is simply the unlock routine to go with xfs_ilock_map_shared().
115 * All it does is call xfs_iunlock() with the given lock_mode.
116 */
117void
118xfs_iunlock_map_shared(
119 xfs_inode_t *ip,
120 unsigned int lock_mode)
121{
122 xfs_iunlock(ip, lock_mode);
123}
124
125/*
126 * The xfs inode contains 2 locks: a multi-reader lock called the
127 * i_iolock and a multi-reader lock called the i_lock. This routine
128 * allows either or both of the locks to be obtained.
129 *
130 * The 2 locks should always be ordered so that the IO lock is
131 * obtained first in order to prevent deadlock.
132 *
133 * ip -- the inode being locked
134 * lock_flags -- this parameter indicates the inode's locks
135 * to be locked. It can be:
136 * XFS_IOLOCK_SHARED,
137 * XFS_IOLOCK_EXCL,
138 * XFS_ILOCK_SHARED,
139 * XFS_ILOCK_EXCL,
140 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
141 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
142 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
143 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
144 */
145void
146xfs_ilock(
147 xfs_inode_t *ip,
148 uint lock_flags)
149{
150 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
151
152 /*
153 * You can't set both SHARED and EXCL for the same lock,
154 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
155 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
156 */
157 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
158 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
159 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
160 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
161 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
162
163 if (lock_flags & XFS_IOLOCK_EXCL)
164 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
165 else if (lock_flags & XFS_IOLOCK_SHARED)
166 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
167
168 if (lock_flags & XFS_ILOCK_EXCL)
169 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
170 else if (lock_flags & XFS_ILOCK_SHARED)
171 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
172}
173
174/*
175 * This is just like xfs_ilock(), except that the caller
176 * is guaranteed not to sleep. It returns 1 if it gets
177 * the requested locks and 0 otherwise. If the IO lock is
178 * obtained but the inode lock cannot be, then the IO lock
179 * is dropped before returning.
180 *
181 * ip -- the inode being locked
182 * lock_flags -- this parameter indicates the inode's locks to be
183 * to be locked. See the comment for xfs_ilock() for a list
184 * of valid values.
185 */
186int
187xfs_ilock_nowait(
188 xfs_inode_t *ip,
189 uint lock_flags)
190{
191 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
192
193 /*
194 * You can't set both SHARED and EXCL for the same lock,
195 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
196 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
197 */
198 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
199 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
200 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
201 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
202 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
203
204 if (lock_flags & XFS_IOLOCK_EXCL) {
205 if (!mrtryupdate(&ip->i_iolock))
206 goto out;
207 } else if (lock_flags & XFS_IOLOCK_SHARED) {
208 if (!mrtryaccess(&ip->i_iolock))
209 goto out;
210 }
211 if (lock_flags & XFS_ILOCK_EXCL) {
212 if (!mrtryupdate(&ip->i_lock))
213 goto out_undo_iolock;
214 } else if (lock_flags & XFS_ILOCK_SHARED) {
215 if (!mrtryaccess(&ip->i_lock))
216 goto out_undo_iolock;
217 }
218 return 1;
219
220 out_undo_iolock:
221 if (lock_flags & XFS_IOLOCK_EXCL)
222 mrunlock_excl(&ip->i_iolock);
223 else if (lock_flags & XFS_IOLOCK_SHARED)
224 mrunlock_shared(&ip->i_iolock);
225 out:
226 return 0;
227}
228
229/*
230 * xfs_iunlock() is used to drop the inode locks acquired with
231 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
232 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
233 * that we know which locks to drop.
234 *
235 * ip -- the inode being unlocked
236 * lock_flags -- this parameter indicates the inode's locks to be
237 * to be unlocked. See the comment for xfs_ilock() for a list
238 * of valid values for this parameter.
239 *
240 */
241void
242xfs_iunlock(
243 xfs_inode_t *ip,
244 uint lock_flags)
245{
246 /*
247 * You can't set both SHARED and EXCL for the same lock,
248 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
249 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
250 */
251 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
252 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
253 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
254 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
255 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
256 ASSERT(lock_flags != 0);
257
258 if (lock_flags & XFS_IOLOCK_EXCL)
259 mrunlock_excl(&ip->i_iolock);
260 else if (lock_flags & XFS_IOLOCK_SHARED)
261 mrunlock_shared(&ip->i_iolock);
262
263 if (lock_flags & XFS_ILOCK_EXCL)
264 mrunlock_excl(&ip->i_lock);
265 else if (lock_flags & XFS_ILOCK_SHARED)
266 mrunlock_shared(&ip->i_lock);
267
268 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
269}
270
271/*
272 * give up write locks. the i/o lock cannot be held nested
273 * if it is being demoted.
274 */
275void
276xfs_ilock_demote(
277 xfs_inode_t *ip,
278 uint lock_flags)
279{
280 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
281 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
282
283 if (lock_flags & XFS_ILOCK_EXCL)
284 mrdemote(&ip->i_lock);
285 if (lock_flags & XFS_IOLOCK_EXCL)
286 mrdemote(&ip->i_iolock);
287
288 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
289}
290
742ae1e3 291#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
292int
293xfs_isilocked(
294 xfs_inode_t *ip,
295 uint lock_flags)
296{
297 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
298 if (!(lock_flags & XFS_ILOCK_SHARED))
299 return !!ip->i_lock.mr_writer;
300 return rwsem_is_locked(&ip->i_lock.mr_lock);
301 }
302
303 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
304 if (!(lock_flags & XFS_IOLOCK_SHARED))
305 return !!ip->i_iolock.mr_writer;
306 return rwsem_is_locked(&ip->i_iolock.mr_lock);
307 }
308
309 ASSERT(0);
310 return 0;
311}
312#endif
313
c24b5dfa
DC
314#ifdef DEBUG
315int xfs_locked_n;
316int xfs_small_retries;
317int xfs_middle_retries;
318int xfs_lots_retries;
319int xfs_lock_delays;
320#endif
321
322/*
323 * Bump the subclass so xfs_lock_inodes() acquires each lock with
324 * a different value
325 */
326static inline int
327xfs_lock_inumorder(int lock_mode, int subclass)
328{
329 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
330 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
331 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
332 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
333
334 return lock_mode;
335}
336
337/*
338 * The following routine will lock n inodes in exclusive mode.
339 * We assume the caller calls us with the inodes in i_ino order.
340 *
341 * We need to detect deadlock where an inode that we lock
342 * is in the AIL and we start waiting for another inode that is locked
343 * by a thread in a long running transaction (such as truncate). This can
344 * result in deadlock since the long running trans might need to wait
345 * for the inode we just locked in order to push the tail and free space
346 * in the log.
347 */
348void
349xfs_lock_inodes(
350 xfs_inode_t **ips,
351 int inodes,
352 uint lock_mode)
353{
354 int attempts = 0, i, j, try_lock;
355 xfs_log_item_t *lp;
356
357 ASSERT(ips && (inodes >= 2)); /* we need at least two */
358
359 try_lock = 0;
360 i = 0;
361
362again:
363 for (; i < inodes; i++) {
364 ASSERT(ips[i]);
365
366 if (i && (ips[i] == ips[i-1])) /* Already locked */
367 continue;
368
369 /*
370 * If try_lock is not set yet, make sure all locked inodes
371 * are not in the AIL.
372 * If any are, set try_lock to be used later.
373 */
374
375 if (!try_lock) {
376 for (j = (i - 1); j >= 0 && !try_lock; j--) {
377 lp = (xfs_log_item_t *)ips[j]->i_itemp;
378 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
379 try_lock++;
380 }
381 }
382 }
383
384 /*
385 * If any of the previous locks we have locked is in the AIL,
386 * we must TRY to get the second and subsequent locks. If
387 * we can't get any, we must release all we have
388 * and try again.
389 */
390
391 if (try_lock) {
392 /* try_lock must be 0 if i is 0. */
393 /*
394 * try_lock means we have an inode locked
395 * that is in the AIL.
396 */
397 ASSERT(i != 0);
398 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
399 attempts++;
400
401 /*
402 * Unlock all previous guys and try again.
403 * xfs_iunlock will try to push the tail
404 * if the inode is in the AIL.
405 */
406
407 for(j = i - 1; j >= 0; j--) {
408
409 /*
410 * Check to see if we've already
411 * unlocked this one.
412 * Not the first one going back,
413 * and the inode ptr is the same.
414 */
415 if ((j != (i - 1)) && ips[j] ==
416 ips[j+1])
417 continue;
418
419 xfs_iunlock(ips[j], lock_mode);
420 }
421
422 if ((attempts % 5) == 0) {
423 delay(1); /* Don't just spin the CPU */
424#ifdef DEBUG
425 xfs_lock_delays++;
426#endif
427 }
428 i = 0;
429 try_lock = 0;
430 goto again;
431 }
432 } else {
433 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
434 }
435 }
436
437#ifdef DEBUG
438 if (attempts) {
439 if (attempts < 5) xfs_small_retries++;
440 else if (attempts < 100) xfs_middle_retries++;
441 else xfs_lots_retries++;
442 } else {
443 xfs_locked_n++;
444 }
445#endif
446}
447
448/*
449 * xfs_lock_two_inodes() can only be used to lock one type of lock
450 * at a time - the iolock or the ilock, but not both at once. If
451 * we lock both at once, lockdep will report false positives saying
452 * we have violated locking orders.
453 */
454void
455xfs_lock_two_inodes(
456 xfs_inode_t *ip0,
457 xfs_inode_t *ip1,
458 uint lock_mode)
459{
460 xfs_inode_t *temp;
461 int attempts = 0;
462 xfs_log_item_t *lp;
463
464 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
465 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
466 ASSERT(ip0->i_ino != ip1->i_ino);
467
468 if (ip0->i_ino > ip1->i_ino) {
469 temp = ip0;
470 ip0 = ip1;
471 ip1 = temp;
472 }
473
474 again:
475 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
476
477 /*
478 * If the first lock we have locked is in the AIL, we must TRY to get
479 * the second lock. If we can't get it, we must release the first one
480 * and try again.
481 */
482 lp = (xfs_log_item_t *)ip0->i_itemp;
483 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
484 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
485 xfs_iunlock(ip0, lock_mode);
486 if ((++attempts % 5) == 0)
487 delay(1); /* Don't just spin the CPU */
488 goto again;
489 }
490 } else {
491 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
492 }
493}
494
495
fa96acad
DC
496void
497__xfs_iflock(
498 struct xfs_inode *ip)
499{
500 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
501 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
502
503 do {
504 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
505 if (xfs_isiflocked(ip))
506 io_schedule();
507 } while (!xfs_iflock_nowait(ip));
508
509 finish_wait(wq, &wait.wait);
510}
511
1da177e4
LT
512STATIC uint
513_xfs_dic2xflags(
1da177e4
LT
514 __uint16_t di_flags)
515{
516 uint flags = 0;
517
518 if (di_flags & XFS_DIFLAG_ANY) {
519 if (di_flags & XFS_DIFLAG_REALTIME)
520 flags |= XFS_XFLAG_REALTIME;
521 if (di_flags & XFS_DIFLAG_PREALLOC)
522 flags |= XFS_XFLAG_PREALLOC;
523 if (di_flags & XFS_DIFLAG_IMMUTABLE)
524 flags |= XFS_XFLAG_IMMUTABLE;
525 if (di_flags & XFS_DIFLAG_APPEND)
526 flags |= XFS_XFLAG_APPEND;
527 if (di_flags & XFS_DIFLAG_SYNC)
528 flags |= XFS_XFLAG_SYNC;
529 if (di_flags & XFS_DIFLAG_NOATIME)
530 flags |= XFS_XFLAG_NOATIME;
531 if (di_flags & XFS_DIFLAG_NODUMP)
532 flags |= XFS_XFLAG_NODUMP;
533 if (di_flags & XFS_DIFLAG_RTINHERIT)
534 flags |= XFS_XFLAG_RTINHERIT;
535 if (di_flags & XFS_DIFLAG_PROJINHERIT)
536 flags |= XFS_XFLAG_PROJINHERIT;
537 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
538 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
539 if (di_flags & XFS_DIFLAG_EXTSIZE)
540 flags |= XFS_XFLAG_EXTSIZE;
541 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
542 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
543 if (di_flags & XFS_DIFLAG_NODEFRAG)
544 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
545 if (di_flags & XFS_DIFLAG_FILESTREAM)
546 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
547 }
548
549 return flags;
550}
551
552uint
553xfs_ip2xflags(
554 xfs_inode_t *ip)
555{
347d1c01 556 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 557
a916e2bd 558 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 559 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
560}
561
562uint
563xfs_dic2xflags(
45ba598e 564 xfs_dinode_t *dip)
1da177e4 565{
81591fe2 566 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 567 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
568}
569
c24b5dfa
DC
570/*
571 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
572 * is allowed, otherwise it has to be an exact match. If a CI match is found,
573 * ci_name->name will point to a the actual name (caller must free) or
574 * will be set to NULL if an exact match is found.
575 */
576int
577xfs_lookup(
578 xfs_inode_t *dp,
579 struct xfs_name *name,
580 xfs_inode_t **ipp,
581 struct xfs_name *ci_name)
582{
583 xfs_ino_t inum;
584 int error;
585 uint lock_mode;
586
587 trace_xfs_lookup(dp, name);
588
589 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
590 return XFS_ERROR(EIO);
591
592 lock_mode = xfs_ilock_map_shared(dp);
593 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
594 xfs_iunlock_map_shared(dp, lock_mode);
595
596 if (error)
597 goto out;
598
599 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
600 if (error)
601 goto out_free_name;
602
603 return 0;
604
605out_free_name:
606 if (ci_name)
607 kmem_free(ci_name->name);
608out:
609 *ipp = NULL;
610 return error;
611}
612
1da177e4
LT
613/*
614 * Allocate an inode on disk and return a copy of its in-core version.
615 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
616 * appropriately within the inode. The uid and gid for the inode are
617 * set according to the contents of the given cred structure.
618 *
619 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
620 * has a free inode available, call xfs_iget() to obtain the in-core
621 * version of the allocated inode. Finally, fill in the inode and
622 * log its initial contents. In this case, ialloc_context would be
623 * set to NULL.
1da177e4 624 *
cd856db6
CM
625 * If xfs_dialloc() does not have an available inode, it will replenish
626 * its supply by doing an allocation. Since we can only do one
627 * allocation within a transaction without deadlocks, we must commit
628 * the current transaction before returning the inode itself.
629 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
630 * The caller should then commit the current transaction, start a new
631 * transaction, and call xfs_ialloc() again to actually get the inode.
632 *
633 * To ensure that some other process does not grab the inode that
634 * was allocated during the first call to xfs_ialloc(), this routine
635 * also returns the [locked] bp pointing to the head of the freelist
636 * as ialloc_context. The caller should hold this buffer across
637 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
638 *
639 * If we are allocating quota inodes, we do not have a parent inode
640 * to attach to or associate with (i.e. pip == NULL) because they
641 * are not linked into the directory structure - they are attached
642 * directly to the superblock - and so have no parent.
1da177e4
LT
643 */
644int
645xfs_ialloc(
646 xfs_trans_t *tp,
647 xfs_inode_t *pip,
576b1d67 648 umode_t mode,
31b084ae 649 xfs_nlink_t nlink,
1da177e4 650 xfs_dev_t rdev,
6743099c 651 prid_t prid,
1da177e4
LT
652 int okalloc,
653 xfs_buf_t **ialloc_context,
1da177e4
LT
654 xfs_inode_t **ipp)
655{
93848a99 656 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
657 xfs_ino_t ino;
658 xfs_inode_t *ip;
1da177e4
LT
659 uint flags;
660 int error;
dff35fd4 661 timespec_t tv;
bf904248 662 int filestreams = 0;
1da177e4
LT
663
664 /*
665 * Call the space management code to pick
666 * the on-disk inode to be allocated.
667 */
b11f94d5 668 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 669 ialloc_context, &ino);
bf904248 670 if (error)
1da177e4 671 return error;
08358906 672 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
673 *ipp = NULL;
674 return 0;
675 }
676 ASSERT(*ialloc_context == NULL);
677
678 /*
679 * Get the in-core inode with the lock held exclusively.
680 * This is because we're setting fields here we need
681 * to prevent others from looking at until we're done.
682 */
93848a99 683 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 684 XFS_ILOCK_EXCL, &ip);
bf904248 685 if (error)
1da177e4 686 return error;
1da177e4
LT
687 ASSERT(ip != NULL);
688
576b1d67 689 ip->i_d.di_mode = mode;
1da177e4
LT
690 ip->i_d.di_onlink = 0;
691 ip->i_d.di_nlink = nlink;
692 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
693 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
694 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 695 xfs_set_projid(ip, prid);
1da177e4
LT
696 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
697
698 /*
699 * If the superblock version is up to where we support new format
700 * inodes and this is currently an old format inode, then change
701 * the inode version number now. This way we only do the conversion
702 * here rather than here and in the flush/logging code.
703 */
93848a99 704 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
51ce16d5
CH
705 ip->i_d.di_version == 1) {
706 ip->i_d.di_version = 2;
1da177e4
LT
707 /*
708 * We've already zeroed the old link count, the projid field,
709 * and the pad field.
710 */
711 }
712
713 /*
714 * Project ids won't be stored on disk if we are using a version 1 inode.
715 */
51ce16d5 716 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
717 xfs_bump_ino_vers2(tp, ip);
718
bd186aa9 719 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 720 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 721 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
722 ip->i_d.di_mode |= S_ISGID;
723 }
724 }
725
726 /*
727 * If the group ID of the new file does not match the effective group
728 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
729 * (and only if the irix_sgid_inherit compatibility variable is set).
730 */
731 if ((irix_sgid_inherit) &&
732 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 733 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
734 ip->i_d.di_mode &= ~S_ISGID;
735 }
736
737 ip->i_d.di_size = 0;
738 ip->i_d.di_nextents = 0;
739 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
740
741 nanotime(&tv);
742 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
743 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
744 ip->i_d.di_atime = ip->i_d.di_mtime;
745 ip->i_d.di_ctime = ip->i_d.di_mtime;
746
1da177e4
LT
747 /*
748 * di_gen will have been taken care of in xfs_iread.
749 */
750 ip->i_d.di_extsize = 0;
751 ip->i_d.di_dmevmask = 0;
752 ip->i_d.di_dmstate = 0;
753 ip->i_d.di_flags = 0;
93848a99
CH
754
755 if (ip->i_d.di_version == 3) {
756 ASSERT(ip->i_d.di_ino == ino);
757 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
758 ip->i_d.di_crc = 0;
759 ip->i_d.di_changecount = 1;
760 ip->i_d.di_lsn = 0;
761 ip->i_d.di_flags2 = 0;
762 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
763 ip->i_d.di_crtime = ip->i_d.di_mtime;
764 }
765
766
1da177e4
LT
767 flags = XFS_ILOG_CORE;
768 switch (mode & S_IFMT) {
769 case S_IFIFO:
770 case S_IFCHR:
771 case S_IFBLK:
772 case S_IFSOCK:
773 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
774 ip->i_df.if_u2.if_rdev = rdev;
775 ip->i_df.if_flags = 0;
776 flags |= XFS_ILOG_DEV;
777 break;
778 case S_IFREG:
bf904248
DC
779 /*
780 * we can't set up filestreams until after the VFS inode
781 * is set up properly.
782 */
783 if (pip && xfs_inode_is_filestream(pip))
784 filestreams = 1;
2a82b8be 785 /* fall through */
1da177e4 786 case S_IFDIR:
b11f94d5 787 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
788 uint di_flags = 0;
789
abbede1b 790 if (S_ISDIR(mode)) {
365ca83d
NS
791 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
792 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
793 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
794 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
795 ip->i_d.di_extsize = pip->i_d.di_extsize;
796 }
abbede1b 797 } else if (S_ISREG(mode)) {
613d7043 798 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 799 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
800 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
801 di_flags |= XFS_DIFLAG_EXTSIZE;
802 ip->i_d.di_extsize = pip->i_d.di_extsize;
803 }
1da177e4
LT
804 }
805 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
806 xfs_inherit_noatime)
365ca83d 807 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
808 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
809 xfs_inherit_nodump)
365ca83d 810 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
811 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
812 xfs_inherit_sync)
365ca83d 813 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
814 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
815 xfs_inherit_nosymlinks)
365ca83d
NS
816 di_flags |= XFS_DIFLAG_NOSYMLINKS;
817 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
818 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
819 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
820 xfs_inherit_nodefrag)
821 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
822 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
823 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 824 ip->i_d.di_flags |= di_flags;
1da177e4
LT
825 }
826 /* FALLTHROUGH */
827 case S_IFLNK:
828 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
829 ip->i_df.if_flags = XFS_IFEXTENTS;
830 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
831 ip->i_df.if_u1.if_extents = NULL;
832 break;
833 default:
834 ASSERT(0);
835 }
836 /*
837 * Attribute fork settings for new inode.
838 */
839 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
840 ip->i_d.di_anextents = 0;
841
842 /*
843 * Log the new values stuffed into the inode.
844 */
ddc3415a 845 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
846 xfs_trans_log_inode(tp, ip, flags);
847
b83bd138 848 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 849 xfs_setup_inode(ip);
1da177e4 850
bf904248
DC
851 /* now we have set up the vfs inode we can associate the filestream */
852 if (filestreams) {
853 error = xfs_filestream_associate(pip, ip);
854 if (error < 0)
855 return -error;
856 if (!error)
857 xfs_iflags_set(ip, XFS_IFILESTREAM);
858 }
859
1da177e4
LT
860 *ipp = ip;
861 return 0;
862}
863
e546cb79
DC
864/*
865 * Allocates a new inode from disk and return a pointer to the
866 * incore copy. This routine will internally commit the current
867 * transaction and allocate a new one if the Space Manager needed
868 * to do an allocation to replenish the inode free-list.
869 *
870 * This routine is designed to be called from xfs_create and
871 * xfs_create_dir.
872 *
873 */
874int
875xfs_dir_ialloc(
876 xfs_trans_t **tpp, /* input: current transaction;
877 output: may be a new transaction. */
878 xfs_inode_t *dp, /* directory within whose allocate
879 the inode. */
880 umode_t mode,
881 xfs_nlink_t nlink,
882 xfs_dev_t rdev,
883 prid_t prid, /* project id */
884 int okalloc, /* ok to allocate new space */
885 xfs_inode_t **ipp, /* pointer to inode; it will be
886 locked. */
887 int *committed)
888
889{
890 xfs_trans_t *tp;
891 xfs_trans_t *ntp;
892 xfs_inode_t *ip;
893 xfs_buf_t *ialloc_context = NULL;
894 int code;
e546cb79
DC
895 void *dqinfo;
896 uint tflags;
897
898 tp = *tpp;
899 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
900
901 /*
902 * xfs_ialloc will return a pointer to an incore inode if
903 * the Space Manager has an available inode on the free
904 * list. Otherwise, it will do an allocation and replenish
905 * the freelist. Since we can only do one allocation per
906 * transaction without deadlocks, we will need to commit the
907 * current transaction and start a new one. We will then
908 * need to call xfs_ialloc again to get the inode.
909 *
910 * If xfs_ialloc did an allocation to replenish the freelist,
911 * it returns the bp containing the head of the freelist as
912 * ialloc_context. We will hold a lock on it across the
913 * transaction commit so that no other process can steal
914 * the inode(s) that we've just allocated.
915 */
916 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
917 &ialloc_context, &ip);
918
919 /*
920 * Return an error if we were unable to allocate a new inode.
921 * This should only happen if we run out of space on disk or
922 * encounter a disk error.
923 */
924 if (code) {
925 *ipp = NULL;
926 return code;
927 }
928 if (!ialloc_context && !ip) {
929 *ipp = NULL;
930 return XFS_ERROR(ENOSPC);
931 }
932
933 /*
934 * If the AGI buffer is non-NULL, then we were unable to get an
935 * inode in one operation. We need to commit the current
936 * transaction and call xfs_ialloc() again. It is guaranteed
937 * to succeed the second time.
938 */
939 if (ialloc_context) {
3d3c8b52
JL
940 struct xfs_trans_res tres;
941
e546cb79
DC
942 /*
943 * Normally, xfs_trans_commit releases all the locks.
944 * We call bhold to hang on to the ialloc_context across
945 * the commit. Holding this buffer prevents any other
946 * processes from doing any allocations in this
947 * allocation group.
948 */
949 xfs_trans_bhold(tp, ialloc_context);
950 /*
951 * Save the log reservation so we can use
952 * them in the next transaction.
953 */
3d3c8b52
JL
954 tres.tr_logres = xfs_trans_get_log_res(tp);
955 tres.tr_logcount = xfs_trans_get_log_count(tp);
e546cb79
DC
956
957 /*
958 * We want the quota changes to be associated with the next
959 * transaction, NOT this one. So, detach the dqinfo from this
960 * and attach it to the next transaction.
961 */
962 dqinfo = NULL;
963 tflags = 0;
964 if (tp->t_dqinfo) {
965 dqinfo = (void *)tp->t_dqinfo;
966 tp->t_dqinfo = NULL;
967 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
968 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
969 }
970
971 ntp = xfs_trans_dup(tp);
972 code = xfs_trans_commit(tp, 0);
973 tp = ntp;
974 if (committed != NULL) {
975 *committed = 1;
976 }
977 /*
978 * If we get an error during the commit processing,
979 * release the buffer that is still held and return
980 * to the caller.
981 */
982 if (code) {
983 xfs_buf_relse(ialloc_context);
984 if (dqinfo) {
985 tp->t_dqinfo = dqinfo;
986 xfs_trans_free_dqinfo(tp);
987 }
988 *tpp = ntp;
989 *ipp = NULL;
990 return code;
991 }
992
993 /*
994 * transaction commit worked ok so we can drop the extra ticket
995 * reference that we gained in xfs_trans_dup()
996 */
997 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52
JL
998 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
999 code = xfs_trans_reserve(tp, &tres, 0, 0);
1000
e546cb79
DC
1001 /*
1002 * Re-attach the quota info that we detached from prev trx.
1003 */
1004 if (dqinfo) {
1005 tp->t_dqinfo = dqinfo;
1006 tp->t_flags |= tflags;
1007 }
1008
1009 if (code) {
1010 xfs_buf_relse(ialloc_context);
1011 *tpp = ntp;
1012 *ipp = NULL;
1013 return code;
1014 }
1015 xfs_trans_bjoin(tp, ialloc_context);
1016
1017 /*
1018 * Call ialloc again. Since we've locked out all
1019 * other allocations in this allocation group,
1020 * this call should always succeed.
1021 */
1022 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1023 okalloc, &ialloc_context, &ip);
1024
1025 /*
1026 * If we get an error at this point, return to the caller
1027 * so that the current transaction can be aborted.
1028 */
1029 if (code) {
1030 *tpp = tp;
1031 *ipp = NULL;
1032 return code;
1033 }
1034 ASSERT(!ialloc_context && ip);
1035
1036 } else {
1037 if (committed != NULL)
1038 *committed = 0;
1039 }
1040
1041 *ipp = ip;
1042 *tpp = tp;
1043
1044 return 0;
1045}
1046
1047/*
1048 * Decrement the link count on an inode & log the change.
1049 * If this causes the link count to go to zero, initiate the
1050 * logging activity required to truncate a file.
1051 */
1052int /* error */
1053xfs_droplink(
1054 xfs_trans_t *tp,
1055 xfs_inode_t *ip)
1056{
1057 int error;
1058
1059 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1060
1061 ASSERT (ip->i_d.di_nlink > 0);
1062 ip->i_d.di_nlink--;
1063 drop_nlink(VFS_I(ip));
1064 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1065
1066 error = 0;
1067 if (ip->i_d.di_nlink == 0) {
1068 /*
1069 * We're dropping the last link to this file.
1070 * Move the on-disk inode to the AGI unlinked list.
1071 * From xfs_inactive() we will pull the inode from
1072 * the list and free it.
1073 */
1074 error = xfs_iunlink(tp, ip);
1075 }
1076 return error;
1077}
1078
1079/*
1080 * This gets called when the inode's version needs to be changed from 1 to 2.
1081 * Currently this happens when the nlink field overflows the old 16-bit value
1082 * or when chproj is called to change the project for the first time.
1083 * As a side effect the superblock version will also get rev'd
1084 * to contain the NLINK bit.
1085 */
1086void
1087xfs_bump_ino_vers2(
1088 xfs_trans_t *tp,
1089 xfs_inode_t *ip)
1090{
1091 xfs_mount_t *mp;
1092
1093 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1094 ASSERT(ip->i_d.di_version == 1);
1095
1096 ip->i_d.di_version = 2;
1097 ip->i_d.di_onlink = 0;
1098 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1099 mp = tp->t_mountp;
1100 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1101 spin_lock(&mp->m_sb_lock);
1102 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1103 xfs_sb_version_addnlink(&mp->m_sb);
1104 spin_unlock(&mp->m_sb_lock);
1105 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1106 } else {
1107 spin_unlock(&mp->m_sb_lock);
1108 }
1109 }
1110 /* Caller must log the inode */
1111}
1112
1113/*
1114 * Increment the link count on an inode & log the change.
1115 */
1116int
1117xfs_bumplink(
1118 xfs_trans_t *tp,
1119 xfs_inode_t *ip)
1120{
1121 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1122
1123 ASSERT(ip->i_d.di_nlink > 0);
1124 ip->i_d.di_nlink++;
1125 inc_nlink(VFS_I(ip));
1126 if ((ip->i_d.di_version == 1) &&
1127 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1128 /*
1129 * The inode has increased its number of links beyond
1130 * what can fit in an old format inode. It now needs
1131 * to be converted to a version 2 inode with a 32 bit
1132 * link count. If this is the first inode in the file
1133 * system to do this, then we need to bump the superblock
1134 * version number as well.
1135 */
1136 xfs_bump_ino_vers2(tp, ip);
1137 }
1138
1139 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1140 return 0;
1141}
1142
c24b5dfa
DC
1143int
1144xfs_create(
1145 xfs_inode_t *dp,
1146 struct xfs_name *name,
1147 umode_t mode,
1148 xfs_dev_t rdev,
1149 xfs_inode_t **ipp)
1150{
1151 int is_dir = S_ISDIR(mode);
1152 struct xfs_mount *mp = dp->i_mount;
1153 struct xfs_inode *ip = NULL;
1154 struct xfs_trans *tp = NULL;
1155 int error;
1156 xfs_bmap_free_t free_list;
1157 xfs_fsblock_t first_block;
1158 bool unlock_dp_on_error = false;
1159 uint cancel_flags;
1160 int committed;
1161 prid_t prid;
1162 struct xfs_dquot *udqp = NULL;
1163 struct xfs_dquot *gdqp = NULL;
1164 struct xfs_dquot *pdqp = NULL;
3d3c8b52 1165 struct xfs_trans_res tres;
c24b5dfa 1166 uint resblks;
c24b5dfa
DC
1167
1168 trace_xfs_create(dp, name);
1169
1170 if (XFS_FORCED_SHUTDOWN(mp))
1171 return XFS_ERROR(EIO);
1172
1173 if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1174 prid = xfs_get_projid(dp);
1175 else
1176 prid = XFS_PROJID_DEFAULT;
1177
1178 /*
1179 * Make sure that we have allocated dquot(s) on disk.
1180 */
7aab1b28
DE
1181 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1182 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1183 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1184 &udqp, &gdqp, &pdqp);
1185 if (error)
1186 return error;
1187
1188 if (is_dir) {
1189 rdev = 0;
1190 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
3d3c8b52
JL
1191 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1192 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
c24b5dfa
DC
1193 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1194 } else {
1195 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
3d3c8b52
JL
1196 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1197 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
c24b5dfa
DC
1198 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1199 }
1200
1201 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1202
1203 /*
1204 * Initially assume that the file does not exist and
1205 * reserve the resources for that case. If that is not
1206 * the case we'll drop the one we have and get a more
1207 * appropriate transaction later.
1208 */
3d3c8b52
JL
1209 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1210 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1211 if (error == ENOSPC) {
1212 /* flush outstanding delalloc blocks and retry */
1213 xfs_flush_inodes(mp);
3d3c8b52 1214 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1215 }
1216 if (error == ENOSPC) {
1217 /* No space at all so try a "no-allocation" reservation */
1218 resblks = 0;
3d3c8b52 1219 error = xfs_trans_reserve(tp, &tres, 0, 0);
c24b5dfa
DC
1220 }
1221 if (error) {
1222 cancel_flags = 0;
1223 goto out_trans_cancel;
1224 }
1225
1226 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1227 unlock_dp_on_error = true;
1228
1229 xfs_bmap_init(&free_list, &first_block);
1230
1231 /*
1232 * Reserve disk quota and the inode.
1233 */
1234 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1235 pdqp, resblks, 1, 0);
1236 if (error)
1237 goto out_trans_cancel;
1238
1239 error = xfs_dir_canenter(tp, dp, name, resblks);
1240 if (error)
1241 goto out_trans_cancel;
1242
1243 /*
1244 * A newly created regular or special file just has one directory
1245 * entry pointing to them, but a directory also the "." entry
1246 * pointing to itself.
1247 */
1248 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1249 prid, resblks > 0, &ip, &committed);
1250 if (error) {
1251 if (error == ENOSPC)
1252 goto out_trans_cancel;
1253 goto out_trans_abort;
1254 }
1255
1256 /*
1257 * Now we join the directory inode to the transaction. We do not do it
1258 * earlier because xfs_dir_ialloc might commit the previous transaction
1259 * (and release all the locks). An error from here on will result in
1260 * the transaction cancel unlocking dp so don't do it explicitly in the
1261 * error path.
1262 */
1263 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1264 unlock_dp_on_error = false;
1265
1266 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1267 &first_block, &free_list, resblks ?
1268 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1269 if (error) {
1270 ASSERT(error != ENOSPC);
1271 goto out_trans_abort;
1272 }
1273 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1274 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1275
1276 if (is_dir) {
1277 error = xfs_dir_init(tp, ip, dp);
1278 if (error)
1279 goto out_bmap_cancel;
1280
1281 error = xfs_bumplink(tp, dp);
1282 if (error)
1283 goto out_bmap_cancel;
1284 }
1285
1286 /*
1287 * If this is a synchronous mount, make sure that the
1288 * create transaction goes to disk before returning to
1289 * the user.
1290 */
1291 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1292 xfs_trans_set_sync(tp);
1293
1294 /*
1295 * Attach the dquot(s) to the inodes and modify them incore.
1296 * These ids of the inode couldn't have changed since the new
1297 * inode has been locked ever since it was created.
1298 */
1299 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1300
1301 error = xfs_bmap_finish(&tp, &free_list, &committed);
1302 if (error)
1303 goto out_bmap_cancel;
1304
1305 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1306 if (error)
1307 goto out_release_inode;
1308
1309 xfs_qm_dqrele(udqp);
1310 xfs_qm_dqrele(gdqp);
1311 xfs_qm_dqrele(pdqp);
1312
1313 *ipp = ip;
1314 return 0;
1315
1316 out_bmap_cancel:
1317 xfs_bmap_cancel(&free_list);
1318 out_trans_abort:
1319 cancel_flags |= XFS_TRANS_ABORT;
1320 out_trans_cancel:
1321 xfs_trans_cancel(tp, cancel_flags);
1322 out_release_inode:
1323 /*
1324 * Wait until after the current transaction is aborted to
1325 * release the inode. This prevents recursive transactions
1326 * and deadlocks from xfs_inactive.
1327 */
1328 if (ip)
1329 IRELE(ip);
1330
1331 xfs_qm_dqrele(udqp);
1332 xfs_qm_dqrele(gdqp);
1333 xfs_qm_dqrele(pdqp);
1334
1335 if (unlock_dp_on_error)
1336 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1337 return error;
1338}
1339
1340int
1341xfs_link(
1342 xfs_inode_t *tdp,
1343 xfs_inode_t *sip,
1344 struct xfs_name *target_name)
1345{
1346 xfs_mount_t *mp = tdp->i_mount;
1347 xfs_trans_t *tp;
1348 int error;
1349 xfs_bmap_free_t free_list;
1350 xfs_fsblock_t first_block;
1351 int cancel_flags;
1352 int committed;
1353 int resblks;
1354
1355 trace_xfs_link(tdp, target_name);
1356
1357 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1358
1359 if (XFS_FORCED_SHUTDOWN(mp))
1360 return XFS_ERROR(EIO);
1361
1362 error = xfs_qm_dqattach(sip, 0);
1363 if (error)
1364 goto std_return;
1365
1366 error = xfs_qm_dqattach(tdp, 0);
1367 if (error)
1368 goto std_return;
1369
1370 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1371 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1372 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1373 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
c24b5dfa
DC
1374 if (error == ENOSPC) {
1375 resblks = 0;
3d3c8b52 1376 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa
DC
1377 }
1378 if (error) {
1379 cancel_flags = 0;
1380 goto error_return;
1381 }
1382
1383 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1384
1385 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1386 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1387
1388 /*
1389 * If we are using project inheritance, we only allow hard link
1390 * creation in our tree when the project IDs are the same; else
1391 * the tree quota mechanism could be circumvented.
1392 */
1393 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1394 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1395 error = XFS_ERROR(EXDEV);
1396 goto error_return;
1397 }
1398
1399 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1400 if (error)
1401 goto error_return;
1402
1403 xfs_bmap_init(&free_list, &first_block);
1404
1405 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1406 &first_block, &free_list, resblks);
1407 if (error)
1408 goto abort_return;
1409 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1410 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1411
1412 error = xfs_bumplink(tp, sip);
1413 if (error)
1414 goto abort_return;
1415
1416 /*
1417 * If this is a synchronous mount, make sure that the
1418 * link transaction goes to disk before returning to
1419 * the user.
1420 */
1421 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1422 xfs_trans_set_sync(tp);
1423 }
1424
1425 error = xfs_bmap_finish (&tp, &free_list, &committed);
1426 if (error) {
1427 xfs_bmap_cancel(&free_list);
1428 goto abort_return;
1429 }
1430
1431 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1432
1433 abort_return:
1434 cancel_flags |= XFS_TRANS_ABORT;
1435 error_return:
1436 xfs_trans_cancel(tp, cancel_flags);
1437 std_return:
1438 return error;
1439}
1440
1da177e4 1441/*
8f04c47a
CH
1442 * Free up the underlying blocks past new_size. The new size must be smaller
1443 * than the current size. This routine can be used both for the attribute and
1444 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1445 *
f6485057
DC
1446 * The transaction passed to this routine must have made a permanent log
1447 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1448 * given transaction and start new ones, so make sure everything involved in
1449 * the transaction is tidy before calling here. Some transaction will be
1450 * returned to the caller to be committed. The incoming transaction must
1451 * already include the inode, and both inode locks must be held exclusively.
1452 * The inode must also be "held" within the transaction. On return the inode
1453 * will be "held" within the returned transaction. This routine does NOT
1454 * require any disk space to be reserved for it within the transaction.
1da177e4 1455 *
f6485057
DC
1456 * If we get an error, we must return with the inode locked and linked into the
1457 * current transaction. This keeps things simple for the higher level code,
1458 * because it always knows that the inode is locked and held in the transaction
1459 * that returns to it whether errors occur or not. We don't mark the inode
1460 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1461 */
1462int
8f04c47a
CH
1463xfs_itruncate_extents(
1464 struct xfs_trans **tpp,
1465 struct xfs_inode *ip,
1466 int whichfork,
1467 xfs_fsize_t new_size)
1da177e4 1468{
8f04c47a
CH
1469 struct xfs_mount *mp = ip->i_mount;
1470 struct xfs_trans *tp = *tpp;
1471 struct xfs_trans *ntp;
1472 xfs_bmap_free_t free_list;
1473 xfs_fsblock_t first_block;
1474 xfs_fileoff_t first_unmap_block;
1475 xfs_fileoff_t last_block;
1476 xfs_filblks_t unmap_len;
1477 int committed;
1478 int error = 0;
1479 int done = 0;
1da177e4 1480
0b56185b
CH
1481 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1482 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1483 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1484 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1485 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1486 ASSERT(ip->i_itemp != NULL);
898621d5 1487 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1488 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1489
673e8e59
CH
1490 trace_xfs_itruncate_extents_start(ip, new_size);
1491
1da177e4
LT
1492 /*
1493 * Since it is possible for space to become allocated beyond
1494 * the end of the file (in a crash where the space is allocated
1495 * but the inode size is not yet updated), simply remove any
1496 * blocks which show up between the new EOF and the maximum
1497 * possible file size. If the first block to be removed is
1498 * beyond the maximum file size (ie it is the same as last_block),
1499 * then there is nothing to do.
1500 */
8f04c47a 1501 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1502 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1503 if (first_unmap_block == last_block)
1504 return 0;
1505
1506 ASSERT(first_unmap_block < last_block);
1507 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1508 while (!done) {
9d87c319 1509 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1510 error = xfs_bunmapi(tp, ip,
3e57ecf6 1511 first_unmap_block, unmap_len,
8f04c47a 1512 xfs_bmapi_aflag(whichfork),
1da177e4 1513 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1514 &first_block, &free_list,
b4e9181e 1515 &done);
8f04c47a
CH
1516 if (error)
1517 goto out_bmap_cancel;
1da177e4
LT
1518
1519 /*
1520 * Duplicate the transaction that has the permanent
1521 * reservation and commit the old transaction.
1522 */
8f04c47a 1523 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1524 if (committed)
ddc3415a 1525 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1526 if (error)
1527 goto out_bmap_cancel;
1da177e4
LT
1528
1529 if (committed) {
1530 /*
f6485057 1531 * Mark the inode dirty so it will be logged and
e5720eec 1532 * moved forward in the log as part of every commit.
1da177e4 1533 */
8f04c47a 1534 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1535 }
f6485057 1536
8f04c47a
CH
1537 ntp = xfs_trans_dup(tp);
1538 error = xfs_trans_commit(tp, 0);
1539 tp = ntp;
e5720eec 1540
ddc3415a 1541 xfs_trans_ijoin(tp, ip, 0);
f6485057 1542
cc09c0dc 1543 if (error)
8f04c47a
CH
1544 goto out;
1545
cc09c0dc 1546 /*
8f04c47a 1547 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1548 * reference that we gained in xfs_trans_dup()
1549 */
8f04c47a 1550 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52 1551 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
f6485057 1552 if (error)
8f04c47a 1553 goto out;
1da177e4 1554 }
8f04c47a 1555
673e8e59
CH
1556 /*
1557 * Always re-log the inode so that our permanent transaction can keep
1558 * on rolling it forward in the log.
1559 */
1560 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1561
1562 trace_xfs_itruncate_extents_end(ip, new_size);
1563
8f04c47a
CH
1564out:
1565 *tpp = tp;
1566 return error;
1567out_bmap_cancel:
1da177e4 1568 /*
8f04c47a
CH
1569 * If the bunmapi call encounters an error, return to the caller where
1570 * the transaction can be properly aborted. We just need to make sure
1571 * we're not holding any resources that we were not when we came in.
1da177e4 1572 */
8f04c47a
CH
1573 xfs_bmap_cancel(&free_list);
1574 goto out;
1575}
1576
c24b5dfa
DC
1577int
1578xfs_release(
1579 xfs_inode_t *ip)
1580{
1581 xfs_mount_t *mp = ip->i_mount;
1582 int error;
1583
1584 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1585 return 0;
1586
1587 /* If this is a read-only mount, don't do this (would generate I/O) */
1588 if (mp->m_flags & XFS_MOUNT_RDONLY)
1589 return 0;
1590
1591 if (!XFS_FORCED_SHUTDOWN(mp)) {
1592 int truncated;
1593
1594 /*
1595 * If we are using filestreams, and we have an unlinked
1596 * file that we are processing the last close on, then nothing
1597 * will be able to reopen and write to this file. Purge this
1598 * inode from the filestreams cache so that it doesn't delay
1599 * teardown of the inode.
1600 */
1601 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1602 xfs_filestream_deassociate(ip);
1603
1604 /*
1605 * If we previously truncated this file and removed old data
1606 * in the process, we want to initiate "early" writeout on
1607 * the last close. This is an attempt to combat the notorious
1608 * NULL files problem which is particularly noticeable from a
1609 * truncate down, buffered (re-)write (delalloc), followed by
1610 * a crash. What we are effectively doing here is
1611 * significantly reducing the time window where we'd otherwise
1612 * be exposed to that problem.
1613 */
1614 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1615 if (truncated) {
1616 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1617 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1618 error = -filemap_flush(VFS_I(ip)->i_mapping);
1619 if (error)
1620 return error;
1621 }
1622 }
1623 }
1624
1625 if (ip->i_d.di_nlink == 0)
1626 return 0;
1627
1628 if (xfs_can_free_eofblocks(ip, false)) {
1629
1630 /*
1631 * If we can't get the iolock just skip truncating the blocks
1632 * past EOF because we could deadlock with the mmap_sem
1633 * otherwise. We'll get another chance to drop them once the
1634 * last reference to the inode is dropped, so we'll never leak
1635 * blocks permanently.
1636 *
1637 * Further, check if the inode is being opened, written and
1638 * closed frequently and we have delayed allocation blocks
1639 * outstanding (e.g. streaming writes from the NFS server),
1640 * truncating the blocks past EOF will cause fragmentation to
1641 * occur.
1642 *
1643 * In this case don't do the truncation, either, but we have to
1644 * be careful how we detect this case. Blocks beyond EOF show
1645 * up as i_delayed_blks even when the inode is clean, so we
1646 * need to truncate them away first before checking for a dirty
1647 * release. Hence on the first dirty close we will still remove
1648 * the speculative allocation, but after that we will leave it
1649 * in place.
1650 */
1651 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1652 return 0;
1653
1654 error = xfs_free_eofblocks(mp, ip, true);
1655 if (error && error != EAGAIN)
1656 return error;
1657
1658 /* delalloc blocks after truncation means it really is dirty */
1659 if (ip->i_delayed_blks)
1660 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1661 }
1662 return 0;
1663}
1664
f7be2d7f
BF
1665/*
1666 * xfs_inactive_truncate
1667 *
1668 * Called to perform a truncate when an inode becomes unlinked.
1669 */
1670STATIC int
1671xfs_inactive_truncate(
1672 struct xfs_inode *ip)
1673{
1674 struct xfs_mount *mp = ip->i_mount;
1675 struct xfs_trans *tp;
1676 int error;
1677
1678 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1679 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1680 if (error) {
1681 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1682 xfs_trans_cancel(tp, 0);
1683 return error;
1684 }
1685
1686 xfs_ilock(ip, XFS_ILOCK_EXCL);
1687 xfs_trans_ijoin(tp, ip, 0);
1688
1689 /*
1690 * Log the inode size first to prevent stale data exposure in the event
1691 * of a system crash before the truncate completes. See the related
1692 * comment in xfs_setattr_size() for details.
1693 */
1694 ip->i_d.di_size = 0;
1695 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1696
1697 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1698 if (error)
1699 goto error_trans_cancel;
1700
1701 ASSERT(ip->i_d.di_nextents == 0);
1702
1703 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1704 if (error)
1705 goto error_unlock;
1706
1707 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1708 return 0;
1709
1710error_trans_cancel:
1711 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1712error_unlock:
1713 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1714 return error;
1715}
1716
88877d2b
BF
1717/*
1718 * xfs_inactive_ifree()
1719 *
1720 * Perform the inode free when an inode is unlinked.
1721 */
1722STATIC int
1723xfs_inactive_ifree(
1724 struct xfs_inode *ip)
1725{
1726 xfs_bmap_free_t free_list;
1727 xfs_fsblock_t first_block;
1728 int committed;
1729 struct xfs_mount *mp = ip->i_mount;
1730 struct xfs_trans *tp;
1731 int error;
1732
1733 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1734 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1735 if (error) {
1736 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1737 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1738 return error;
1739 }
1740
1741 xfs_ilock(ip, XFS_ILOCK_EXCL);
1742 xfs_trans_ijoin(tp, ip, 0);
1743
1744 xfs_bmap_init(&free_list, &first_block);
1745 error = xfs_ifree(tp, ip, &free_list);
1746 if (error) {
1747 /*
1748 * If we fail to free the inode, shut down. The cancel
1749 * might do that, we need to make sure. Otherwise the
1750 * inode might be lost for a long time or forever.
1751 */
1752 if (!XFS_FORCED_SHUTDOWN(mp)) {
1753 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1754 __func__, error);
1755 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1756 }
1757 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1758 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1759 return error;
1760 }
1761
1762 /*
1763 * Credit the quota account(s). The inode is gone.
1764 */
1765 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1766
1767 /*
1768 * Just ignore errors at this point. There is nothing we can
1769 * do except to try to keep going. Make sure it's not a silent
1770 * error.
1771 */
1772 error = xfs_bmap_finish(&tp, &free_list, &committed);
1773 if (error)
1774 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1775 __func__, error);
1776 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1777 if (error)
1778 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1779 __func__, error);
1780
1781 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1782 return 0;
1783}
1784
c24b5dfa
DC
1785/*
1786 * xfs_inactive
1787 *
1788 * This is called when the vnode reference count for the vnode
1789 * goes to zero. If the file has been unlinked, then it must
1790 * now be truncated. Also, we clear all of the read-ahead state
1791 * kept for the inode here since the file is now closed.
1792 */
1793int
1794xfs_inactive(
1795 xfs_inode_t *ip)
1796{
3d3c8b52 1797 struct xfs_mount *mp;
3d3c8b52
JL
1798 int error;
1799 int truncate = 0;
c24b5dfa
DC
1800
1801 /*
1802 * If the inode is already free, then there can be nothing
1803 * to clean up here.
1804 */
d948709b 1805 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1806 ASSERT(ip->i_df.if_real_bytes == 0);
1807 ASSERT(ip->i_df.if_broot_bytes == 0);
1808 return VN_INACTIVE_CACHE;
1809 }
1810
1811 mp = ip->i_mount;
1812
1813 error = 0;
1814
1815 /* If this is a read-only mount, don't do this (would generate I/O) */
1816 if (mp->m_flags & XFS_MOUNT_RDONLY)
1817 goto out;
1818
1819 if (ip->i_d.di_nlink != 0) {
1820 /*
1821 * force is true because we are evicting an inode from the
1822 * cache. Post-eof blocks must be freed, lest we end up with
1823 * broken free space accounting.
1824 */
1825 if (xfs_can_free_eofblocks(ip, true)) {
1826 error = xfs_free_eofblocks(mp, ip, false);
1827 if (error)
1828 return VN_INACTIVE_CACHE;
1829 }
1830 goto out;
1831 }
1832
1833 if (S_ISREG(ip->i_d.di_mode) &&
1834 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1835 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1836 truncate = 1;
1837
1838 error = xfs_qm_dqattach(ip, 0);
1839 if (error)
1840 return VN_INACTIVE_CACHE;
1841
f7be2d7f 1842 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1843 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1844 else if (truncate)
1845 error = xfs_inactive_truncate(ip);
1846 if (error)
1847 goto out;
c24b5dfa
DC
1848
1849 /*
1850 * If there are attributes associated with the file then blow them away
1851 * now. The code calls a routine that recursively deconstructs the
1852 * attribute fork. We need to just commit the current transaction
1853 * because we can't use it for xfs_attr_inactive().
1854 */
1855 if (ip->i_d.di_anextents > 0) {
1856 ASSERT(ip->i_d.di_forkoff != 0);
1857
c24b5dfa
DC
1858 error = xfs_attr_inactive(ip);
1859 if (error)
1860 goto out;
c24b5dfa
DC
1861 }
1862
1863 if (ip->i_afp)
1864 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1865
1866 ASSERT(ip->i_d.di_anextents == 0);
1867
1868 /*
1869 * Free the inode.
1870 */
88877d2b
BF
1871 error = xfs_inactive_ifree(ip);
1872 if (error)
1873 goto out;
c24b5dfa
DC
1874
1875 /*
1876 * Release the dquots held by inode, if any.
1877 */
1878 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1879out:
1880 return VN_INACTIVE_CACHE;
c24b5dfa
DC
1881}
1882
1da177e4
LT
1883/*
1884 * This is called when the inode's link count goes to 0.
1885 * We place the on-disk inode on a list in the AGI. It
1886 * will be pulled from this list when the inode is freed.
1887 */
1888int
1889xfs_iunlink(
1890 xfs_trans_t *tp,
1891 xfs_inode_t *ip)
1892{
1893 xfs_mount_t *mp;
1894 xfs_agi_t *agi;
1895 xfs_dinode_t *dip;
1896 xfs_buf_t *agibp;
1897 xfs_buf_t *ibp;
1da177e4
LT
1898 xfs_agino_t agino;
1899 short bucket_index;
1900 int offset;
1901 int error;
1da177e4
LT
1902
1903 ASSERT(ip->i_d.di_nlink == 0);
1904 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1905
1906 mp = tp->t_mountp;
1907
1da177e4
LT
1908 /*
1909 * Get the agi buffer first. It ensures lock ordering
1910 * on the list.
1911 */
5e1be0fb 1912 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1913 if (error)
1da177e4 1914 return error;
1da177e4 1915 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1916
1da177e4
LT
1917 /*
1918 * Get the index into the agi hash table for the
1919 * list this inode will go on.
1920 */
1921 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1922 ASSERT(agino != 0);
1923 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1924 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1925 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1926
69ef921b 1927 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1928 /*
1929 * There is already another inode in the bucket we need
1930 * to add ourselves to. Add us at the front of the list.
1931 * Here we put the head pointer into our next pointer,
1932 * and then we fall through to point the head at us.
1933 */
475ee413
CH
1934 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1935 0, 0);
c319b58b
VA
1936 if (error)
1937 return error;
1938
69ef921b 1939 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1940 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1941 offset = ip->i_imap.im_boffset +
1da177e4 1942 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
1943
1944 /* need to recalc the inode CRC if appropriate */
1945 xfs_dinode_calc_crc(mp, dip);
1946
1da177e4
LT
1947 xfs_trans_inode_buf(tp, ibp);
1948 xfs_trans_log_buf(tp, ibp, offset,
1949 (offset + sizeof(xfs_agino_t) - 1));
1950 xfs_inobp_check(mp, ibp);
1951 }
1952
1953 /*
1954 * Point the bucket head pointer at the inode being inserted.
1955 */
1956 ASSERT(agino != 0);
16259e7d 1957 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1958 offset = offsetof(xfs_agi_t, agi_unlinked) +
1959 (sizeof(xfs_agino_t) * bucket_index);
1960 xfs_trans_log_buf(tp, agibp, offset,
1961 (offset + sizeof(xfs_agino_t) - 1));
1962 return 0;
1963}
1964
1965/*
1966 * Pull the on-disk inode from the AGI unlinked list.
1967 */
1968STATIC int
1969xfs_iunlink_remove(
1970 xfs_trans_t *tp,
1971 xfs_inode_t *ip)
1972{
1973 xfs_ino_t next_ino;
1974 xfs_mount_t *mp;
1975 xfs_agi_t *agi;
1976 xfs_dinode_t *dip;
1977 xfs_buf_t *agibp;
1978 xfs_buf_t *ibp;
1979 xfs_agnumber_t agno;
1da177e4
LT
1980 xfs_agino_t agino;
1981 xfs_agino_t next_agino;
1982 xfs_buf_t *last_ibp;
6fdf8ccc 1983 xfs_dinode_t *last_dip = NULL;
1da177e4 1984 short bucket_index;
6fdf8ccc 1985 int offset, last_offset = 0;
1da177e4 1986 int error;
1da177e4 1987
1da177e4 1988 mp = tp->t_mountp;
1da177e4 1989 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1990
1991 /*
1992 * Get the agi buffer first. It ensures lock ordering
1993 * on the list.
1994 */
5e1be0fb
CH
1995 error = xfs_read_agi(mp, tp, agno, &agibp);
1996 if (error)
1da177e4 1997 return error;
5e1be0fb 1998
1da177e4 1999 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2000
1da177e4
LT
2001 /*
2002 * Get the index into the agi hash table for the
2003 * list this inode will go on.
2004 */
2005 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2006 ASSERT(agino != 0);
2007 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2008 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2009 ASSERT(agi->agi_unlinked[bucket_index]);
2010
16259e7d 2011 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2012 /*
475ee413
CH
2013 * We're at the head of the list. Get the inode's on-disk
2014 * buffer to see if there is anyone after us on the list.
2015 * Only modify our next pointer if it is not already NULLAGINO.
2016 * This saves us the overhead of dealing with the buffer when
2017 * there is no need to change it.
1da177e4 2018 */
475ee413
CH
2019 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2020 0, 0);
1da177e4 2021 if (error) {
475ee413 2022 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2023 __func__, error);
1da177e4
LT
2024 return error;
2025 }
347d1c01 2026 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2027 ASSERT(next_agino != 0);
2028 if (next_agino != NULLAGINO) {
347d1c01 2029 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2030 offset = ip->i_imap.im_boffset +
1da177e4 2031 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2032
2033 /* need to recalc the inode CRC if appropriate */
2034 xfs_dinode_calc_crc(mp, dip);
2035
1da177e4
LT
2036 xfs_trans_inode_buf(tp, ibp);
2037 xfs_trans_log_buf(tp, ibp, offset,
2038 (offset + sizeof(xfs_agino_t) - 1));
2039 xfs_inobp_check(mp, ibp);
2040 } else {
2041 xfs_trans_brelse(tp, ibp);
2042 }
2043 /*
2044 * Point the bucket head pointer at the next inode.
2045 */
2046 ASSERT(next_agino != 0);
2047 ASSERT(next_agino != agino);
16259e7d 2048 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2049 offset = offsetof(xfs_agi_t, agi_unlinked) +
2050 (sizeof(xfs_agino_t) * bucket_index);
2051 xfs_trans_log_buf(tp, agibp, offset,
2052 (offset + sizeof(xfs_agino_t) - 1));
2053 } else {
2054 /*
2055 * We need to search the list for the inode being freed.
2056 */
16259e7d 2057 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2058 last_ibp = NULL;
2059 while (next_agino != agino) {
129dbc9a
CH
2060 struct xfs_imap imap;
2061
2062 if (last_ibp)
1da177e4 2063 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2064
2065 imap.im_blkno = 0;
1da177e4 2066 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2067
2068 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2069 if (error) {
2070 xfs_warn(mp,
2071 "%s: xfs_imap returned error %d.",
2072 __func__, error);
2073 return error;
2074 }
2075
2076 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2077 &last_ibp, 0, 0);
1da177e4 2078 if (error) {
0b932ccc 2079 xfs_warn(mp,
129dbc9a 2080 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2081 __func__, error);
1da177e4
LT
2082 return error;
2083 }
129dbc9a
CH
2084
2085 last_offset = imap.im_boffset;
347d1c01 2086 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2087 ASSERT(next_agino != NULLAGINO);
2088 ASSERT(next_agino != 0);
2089 }
475ee413 2090
1da177e4 2091 /*
475ee413
CH
2092 * Now last_ibp points to the buffer previous to us on the
2093 * unlinked list. Pull us from the list.
1da177e4 2094 */
475ee413
CH
2095 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2096 0, 0);
1da177e4 2097 if (error) {
475ee413 2098 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2099 __func__, error);
1da177e4
LT
2100 return error;
2101 }
347d1c01 2102 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2103 ASSERT(next_agino != 0);
2104 ASSERT(next_agino != agino);
2105 if (next_agino != NULLAGINO) {
347d1c01 2106 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2107 offset = ip->i_imap.im_boffset +
1da177e4 2108 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2109
2110 /* need to recalc the inode CRC if appropriate */
2111 xfs_dinode_calc_crc(mp, dip);
2112
1da177e4
LT
2113 xfs_trans_inode_buf(tp, ibp);
2114 xfs_trans_log_buf(tp, ibp, offset,
2115 (offset + sizeof(xfs_agino_t) - 1));
2116 xfs_inobp_check(mp, ibp);
2117 } else {
2118 xfs_trans_brelse(tp, ibp);
2119 }
2120 /*
2121 * Point the previous inode on the list to the next inode.
2122 */
347d1c01 2123 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2124 ASSERT(next_agino != 0);
2125 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2126
2127 /* need to recalc the inode CRC if appropriate */
2128 xfs_dinode_calc_crc(mp, last_dip);
2129
1da177e4
LT
2130 xfs_trans_inode_buf(tp, last_ibp);
2131 xfs_trans_log_buf(tp, last_ibp, offset,
2132 (offset + sizeof(xfs_agino_t) - 1));
2133 xfs_inobp_check(mp, last_ibp);
2134 }
2135 return 0;
2136}
2137
5b3eed75 2138/*
0b8182db 2139 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2140 * inodes that are in memory - they all must be marked stale and attached to
2141 * the cluster buffer.
2142 */
2a30f36d 2143STATIC int
1da177e4
LT
2144xfs_ifree_cluster(
2145 xfs_inode_t *free_ip,
2146 xfs_trans_t *tp,
2147 xfs_ino_t inum)
2148{
2149 xfs_mount_t *mp = free_ip->i_mount;
2150 int blks_per_cluster;
2151 int nbufs;
2152 int ninodes;
5b257b4a 2153 int i, j;
1da177e4
LT
2154 xfs_daddr_t blkno;
2155 xfs_buf_t *bp;
5b257b4a 2156 xfs_inode_t *ip;
1da177e4
LT
2157 xfs_inode_log_item_t *iip;
2158 xfs_log_item_t *lip;
5017e97d 2159 struct xfs_perag *pag;
1da177e4 2160
5017e97d 2161 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
2162 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2163 blks_per_cluster = 1;
2164 ninodes = mp->m_sb.sb_inopblock;
2165 nbufs = XFS_IALLOC_BLOCKS(mp);
2166 } else {
2167 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2168 mp->m_sb.sb_blocksize;
2169 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2170 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2171 }
2172
1da177e4
LT
2173 for (j = 0; j < nbufs; j++, inum += ninodes) {
2174 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2175 XFS_INO_TO_AGBNO(mp, inum));
2176
5b257b4a
DC
2177 /*
2178 * We obtain and lock the backing buffer first in the process
2179 * here, as we have to ensure that any dirty inode that we
2180 * can't get the flush lock on is attached to the buffer.
2181 * If we scan the in-memory inodes first, then buffer IO can
2182 * complete before we get a lock on it, and hence we may fail
2183 * to mark all the active inodes on the buffer stale.
2184 */
2185 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2186 mp->m_bsize * blks_per_cluster,
2187 XBF_UNMAPPED);
5b257b4a 2188
2a30f36d
CS
2189 if (!bp)
2190 return ENOMEM;
b0f539de
DC
2191
2192 /*
2193 * This buffer may not have been correctly initialised as we
2194 * didn't read it from disk. That's not important because we are
2195 * only using to mark the buffer as stale in the log, and to
2196 * attach stale cached inodes on it. That means it will never be
2197 * dispatched for IO. If it is, we want to know about it, and we
2198 * want it to fail. We can acheive this by adding a write
2199 * verifier to the buffer.
2200 */
1813dd64 2201 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2202
5b257b4a
DC
2203 /*
2204 * Walk the inodes already attached to the buffer and mark them
2205 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2206 * in-memory inode walk can't lock them. By marking them all
2207 * stale first, we will not attempt to lock them in the loop
2208 * below as the XFS_ISTALE flag will be set.
5b257b4a 2209 */
adadbeef 2210 lip = bp->b_fspriv;
5b257b4a
DC
2211 while (lip) {
2212 if (lip->li_type == XFS_LI_INODE) {
2213 iip = (xfs_inode_log_item_t *)lip;
2214 ASSERT(iip->ili_logged == 1);
ca30b2a7 2215 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2216 xfs_trans_ail_copy_lsn(mp->m_ail,
2217 &iip->ili_flush_lsn,
2218 &iip->ili_item.li_lsn);
2219 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2220 }
2221 lip = lip->li_bio_list;
2222 }
1da177e4 2223
5b3eed75 2224
1da177e4 2225 /*
5b257b4a
DC
2226 * For each inode in memory attempt to add it to the inode
2227 * buffer and set it up for being staled on buffer IO
2228 * completion. This is safe as we've locked out tail pushing
2229 * and flushing by locking the buffer.
1da177e4 2230 *
5b257b4a
DC
2231 * We have already marked every inode that was part of a
2232 * transaction stale above, which means there is no point in
2233 * even trying to lock them.
1da177e4 2234 */
1da177e4 2235 for (i = 0; i < ninodes; i++) {
5b3eed75 2236retry:
1a3e8f3d 2237 rcu_read_lock();
da353b0d
DC
2238 ip = radix_tree_lookup(&pag->pag_ici_root,
2239 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2240
1a3e8f3d
DC
2241 /* Inode not in memory, nothing to do */
2242 if (!ip) {
2243 rcu_read_unlock();
1da177e4
LT
2244 continue;
2245 }
2246
1a3e8f3d
DC
2247 /*
2248 * because this is an RCU protected lookup, we could
2249 * find a recently freed or even reallocated inode
2250 * during the lookup. We need to check under the
2251 * i_flags_lock for a valid inode here. Skip it if it
2252 * is not valid, the wrong inode or stale.
2253 */
2254 spin_lock(&ip->i_flags_lock);
2255 if (ip->i_ino != inum + i ||
2256 __xfs_iflags_test(ip, XFS_ISTALE)) {
2257 spin_unlock(&ip->i_flags_lock);
2258 rcu_read_unlock();
2259 continue;
2260 }
2261 spin_unlock(&ip->i_flags_lock);
2262
5b3eed75
DC
2263 /*
2264 * Don't try to lock/unlock the current inode, but we
2265 * _cannot_ skip the other inodes that we did not find
2266 * in the list attached to the buffer and are not
2267 * already marked stale. If we can't lock it, back off
2268 * and retry.
2269 */
5b257b4a
DC
2270 if (ip != free_ip &&
2271 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2272 rcu_read_unlock();
5b3eed75
DC
2273 delay(1);
2274 goto retry;
1da177e4 2275 }
1a3e8f3d 2276 rcu_read_unlock();
1da177e4 2277
5b3eed75 2278 xfs_iflock(ip);
5b257b4a 2279 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2280
5b3eed75
DC
2281 /*
2282 * we don't need to attach clean inodes or those only
2283 * with unlogged changes (which we throw away, anyway).
2284 */
1da177e4 2285 iip = ip->i_itemp;
5b3eed75 2286 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2287 ASSERT(ip != free_ip);
1da177e4
LT
2288 xfs_ifunlock(ip);
2289 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2290 continue;
2291 }
2292
f5d8d5c4
CH
2293 iip->ili_last_fields = iip->ili_fields;
2294 iip->ili_fields = 0;
1da177e4 2295 iip->ili_logged = 1;
7b2e2a31
DC
2296 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2297 &iip->ili_item.li_lsn);
1da177e4 2298
ca30b2a7
CH
2299 xfs_buf_attach_iodone(bp, xfs_istale_done,
2300 &iip->ili_item);
5b257b4a
DC
2301
2302 if (ip != free_ip)
1da177e4 2303 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2304 }
2305
5b3eed75 2306 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2307 xfs_trans_binval(tp, bp);
2308 }
2309
5017e97d 2310 xfs_perag_put(pag);
2a30f36d 2311 return 0;
1da177e4
LT
2312}
2313
2314/*
2315 * This is called to return an inode to the inode free list.
2316 * The inode should already be truncated to 0 length and have
2317 * no pages associated with it. This routine also assumes that
2318 * the inode is already a part of the transaction.
2319 *
2320 * The on-disk copy of the inode will have been added to the list
2321 * of unlinked inodes in the AGI. We need to remove the inode from
2322 * that list atomically with respect to freeing it here.
2323 */
2324int
2325xfs_ifree(
2326 xfs_trans_t *tp,
2327 xfs_inode_t *ip,
2328 xfs_bmap_free_t *flist)
2329{
2330 int error;
2331 int delete;
2332 xfs_ino_t first_ino;
2333
579aa9ca 2334 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2335 ASSERT(ip->i_d.di_nlink == 0);
2336 ASSERT(ip->i_d.di_nextents == 0);
2337 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2338 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2339 ASSERT(ip->i_d.di_nblocks == 0);
2340
2341 /*
2342 * Pull the on-disk inode from the AGI unlinked list.
2343 */
2344 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2345 if (error)
1da177e4 2346 return error;
1da177e4
LT
2347
2348 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1baaed8f 2349 if (error)
1da177e4 2350 return error;
1baaed8f 2351
1da177e4
LT
2352 ip->i_d.di_mode = 0; /* mark incore inode as free */
2353 ip->i_d.di_flags = 0;
2354 ip->i_d.di_dmevmask = 0;
2355 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2356 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2357 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2358 /*
2359 * Bump the generation count so no one will be confused
2360 * by reincarnations of this inode.
2361 */
2362 ip->i_d.di_gen++;
2363 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2364
1baaed8f 2365 if (delete)
2a30f36d 2366 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4 2367
2a30f36d 2368 return error;
1da177e4
LT
2369}
2370
1da177e4 2371/*
60ec6783
CH
2372 * This is called to unpin an inode. The caller must have the inode locked
2373 * in at least shared mode so that the buffer cannot be subsequently pinned
2374 * once someone is waiting for it to be unpinned.
1da177e4 2375 */
60ec6783 2376static void
f392e631 2377xfs_iunpin(
60ec6783 2378 struct xfs_inode *ip)
1da177e4 2379{
579aa9ca 2380 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2381
4aaf15d1
DC
2382 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2383
a3f74ffb 2384 /* Give the log a push to start the unpinning I/O */
60ec6783 2385 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2386
a3f74ffb 2387}
1da177e4 2388
f392e631
CH
2389static void
2390__xfs_iunpin_wait(
2391 struct xfs_inode *ip)
2392{
2393 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2394 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2395
2396 xfs_iunpin(ip);
2397
2398 do {
2399 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2400 if (xfs_ipincount(ip))
2401 io_schedule();
2402 } while (xfs_ipincount(ip));
2403 finish_wait(wq, &wait.wait);
2404}
2405
777df5af 2406void
a3f74ffb 2407xfs_iunpin_wait(
60ec6783 2408 struct xfs_inode *ip)
a3f74ffb 2409{
f392e631
CH
2410 if (xfs_ipincount(ip))
2411 __xfs_iunpin_wait(ip);
1da177e4
LT
2412}
2413
c24b5dfa
DC
2414int
2415xfs_remove(
2416 xfs_inode_t *dp,
2417 struct xfs_name *name,
2418 xfs_inode_t *ip)
2419{
2420 xfs_mount_t *mp = dp->i_mount;
2421 xfs_trans_t *tp = NULL;
2422 int is_dir = S_ISDIR(ip->i_d.di_mode);
2423 int error = 0;
2424 xfs_bmap_free_t free_list;
2425 xfs_fsblock_t first_block;
2426 int cancel_flags;
2427 int committed;
2428 int link_zero;
2429 uint resblks;
2430 uint log_count;
2431
2432 trace_xfs_remove(dp, name);
2433
2434 if (XFS_FORCED_SHUTDOWN(mp))
2435 return XFS_ERROR(EIO);
2436
2437 error = xfs_qm_dqattach(dp, 0);
2438 if (error)
2439 goto std_return;
2440
2441 error = xfs_qm_dqattach(ip, 0);
2442 if (error)
2443 goto std_return;
2444
2445 if (is_dir) {
2446 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2447 log_count = XFS_DEFAULT_LOG_COUNT;
2448 } else {
2449 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2450 log_count = XFS_REMOVE_LOG_COUNT;
2451 }
2452 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2453
2454 /*
2455 * We try to get the real space reservation first,
2456 * allowing for directory btree deletion(s) implying
2457 * possible bmap insert(s). If we can't get the space
2458 * reservation then we use 0 instead, and avoid the bmap
2459 * btree insert(s) in the directory code by, if the bmap
2460 * insert tries to happen, instead trimming the LAST
2461 * block from the directory.
2462 */
2463 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2464 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
c24b5dfa
DC
2465 if (error == ENOSPC) {
2466 resblks = 0;
3d3c8b52 2467 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2468 }
2469 if (error) {
2470 ASSERT(error != ENOSPC);
2471 cancel_flags = 0;
2472 goto out_trans_cancel;
2473 }
2474
2475 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2476
2477 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2478 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2479
2480 /*
2481 * If we're removing a directory perform some additional validation.
2482 */
2483 if (is_dir) {
2484 ASSERT(ip->i_d.di_nlink >= 2);
2485 if (ip->i_d.di_nlink != 2) {
2486 error = XFS_ERROR(ENOTEMPTY);
2487 goto out_trans_cancel;
2488 }
2489 if (!xfs_dir_isempty(ip)) {
2490 error = XFS_ERROR(ENOTEMPTY);
2491 goto out_trans_cancel;
2492 }
2493 }
2494
2495 xfs_bmap_init(&free_list, &first_block);
2496 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2497 &first_block, &free_list, resblks);
2498 if (error) {
2499 ASSERT(error != ENOENT);
2500 goto out_bmap_cancel;
2501 }
2502 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2503
2504 if (is_dir) {
2505 /*
2506 * Drop the link from ip's "..".
2507 */
2508 error = xfs_droplink(tp, dp);
2509 if (error)
2510 goto out_bmap_cancel;
2511
2512 /*
2513 * Drop the "." link from ip to self.
2514 */
2515 error = xfs_droplink(tp, ip);
2516 if (error)
2517 goto out_bmap_cancel;
2518 } else {
2519 /*
2520 * When removing a non-directory we need to log the parent
2521 * inode here. For a directory this is done implicitly
2522 * by the xfs_droplink call for the ".." entry.
2523 */
2524 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2525 }
2526
2527 /*
2528 * Drop the link from dp to ip.
2529 */
2530 error = xfs_droplink(tp, ip);
2531 if (error)
2532 goto out_bmap_cancel;
2533
2534 /*
2535 * Determine if this is the last link while
2536 * we are in the transaction.
2537 */
2538 link_zero = (ip->i_d.di_nlink == 0);
2539
2540 /*
2541 * If this is a synchronous mount, make sure that the
2542 * remove transaction goes to disk before returning to
2543 * the user.
2544 */
2545 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2546 xfs_trans_set_sync(tp);
2547
2548 error = xfs_bmap_finish(&tp, &free_list, &committed);
2549 if (error)
2550 goto out_bmap_cancel;
2551
2552 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2553 if (error)
2554 goto std_return;
2555
2556 /*
2557 * If we are using filestreams, kill the stream association.
2558 * If the file is still open it may get a new one but that
2559 * will get killed on last close in xfs_close() so we don't
2560 * have to worry about that.
2561 */
2562 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2563 xfs_filestream_deassociate(ip);
2564
2565 return 0;
2566
2567 out_bmap_cancel:
2568 xfs_bmap_cancel(&free_list);
2569 cancel_flags |= XFS_TRANS_ABORT;
2570 out_trans_cancel:
2571 xfs_trans_cancel(tp, cancel_flags);
2572 std_return:
2573 return error;
2574}
2575
f6bba201
DC
2576/*
2577 * Enter all inodes for a rename transaction into a sorted array.
2578 */
2579STATIC void
2580xfs_sort_for_rename(
2581 xfs_inode_t *dp1, /* in: old (source) directory inode */
2582 xfs_inode_t *dp2, /* in: new (target) directory inode */
2583 xfs_inode_t *ip1, /* in: inode of old entry */
2584 xfs_inode_t *ip2, /* in: inode of new entry, if it
2585 already exists, NULL otherwise. */
2586 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2587 int *num_inodes) /* out: number of inodes in array */
2588{
2589 xfs_inode_t *temp;
2590 int i, j;
2591
2592 /*
2593 * i_tab contains a list of pointers to inodes. We initialize
2594 * the table here & we'll sort it. We will then use it to
2595 * order the acquisition of the inode locks.
2596 *
2597 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2598 */
2599 i_tab[0] = dp1;
2600 i_tab[1] = dp2;
2601 i_tab[2] = ip1;
2602 if (ip2) {
2603 *num_inodes = 4;
2604 i_tab[3] = ip2;
2605 } else {
2606 *num_inodes = 3;
2607 i_tab[3] = NULL;
2608 }
2609
2610 /*
2611 * Sort the elements via bubble sort. (Remember, there are at
2612 * most 4 elements to sort, so this is adequate.)
2613 */
2614 for (i = 0; i < *num_inodes; i++) {
2615 for (j = 1; j < *num_inodes; j++) {
2616 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2617 temp = i_tab[j];
2618 i_tab[j] = i_tab[j-1];
2619 i_tab[j-1] = temp;
2620 }
2621 }
2622 }
2623}
2624
2625/*
2626 * xfs_rename
2627 */
2628int
2629xfs_rename(
2630 xfs_inode_t *src_dp,
2631 struct xfs_name *src_name,
2632 xfs_inode_t *src_ip,
2633 xfs_inode_t *target_dp,
2634 struct xfs_name *target_name,
2635 xfs_inode_t *target_ip)
2636{
2637 xfs_trans_t *tp = NULL;
2638 xfs_mount_t *mp = src_dp->i_mount;
2639 int new_parent; /* moving to a new dir */
2640 int src_is_directory; /* src_name is a directory */
2641 int error;
2642 xfs_bmap_free_t free_list;
2643 xfs_fsblock_t first_block;
2644 int cancel_flags;
2645 int committed;
2646 xfs_inode_t *inodes[4];
2647 int spaceres;
2648 int num_inodes;
2649
2650 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2651
2652 new_parent = (src_dp != target_dp);
2653 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2654
2655 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2656 inodes, &num_inodes);
2657
2658 xfs_bmap_init(&free_list, &first_block);
2659 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2660 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2661 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2662 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
f6bba201
DC
2663 if (error == ENOSPC) {
2664 spaceres = 0;
3d3c8b52 2665 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201
DC
2666 }
2667 if (error) {
2668 xfs_trans_cancel(tp, 0);
2669 goto std_return;
2670 }
2671
2672 /*
2673 * Attach the dquots to the inodes
2674 */
2675 error = xfs_qm_vop_rename_dqattach(inodes);
2676 if (error) {
2677 xfs_trans_cancel(tp, cancel_flags);
2678 goto std_return;
2679 }
2680
2681 /*
2682 * Lock all the participating inodes. Depending upon whether
2683 * the target_name exists in the target directory, and
2684 * whether the target directory is the same as the source
2685 * directory, we can lock from 2 to 4 inodes.
2686 */
2687 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2688
2689 /*
2690 * Join all the inodes to the transaction. From this point on,
2691 * we can rely on either trans_commit or trans_cancel to unlock
2692 * them.
2693 */
2694 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2695 if (new_parent)
2696 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2697 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2698 if (target_ip)
2699 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2700
2701 /*
2702 * If we are using project inheritance, we only allow renames
2703 * into our tree when the project IDs are the same; else the
2704 * tree quota mechanism would be circumvented.
2705 */
2706 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2707 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2708 error = XFS_ERROR(EXDEV);
2709 goto error_return;
2710 }
2711
2712 /*
2713 * Set up the target.
2714 */
2715 if (target_ip == NULL) {
2716 /*
2717 * If there's no space reservation, check the entry will
2718 * fit before actually inserting it.
2719 */
2720 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2721 if (error)
2722 goto error_return;
2723 /*
2724 * If target does not exist and the rename crosses
2725 * directories, adjust the target directory link count
2726 * to account for the ".." reference from the new entry.
2727 */
2728 error = xfs_dir_createname(tp, target_dp, target_name,
2729 src_ip->i_ino, &first_block,
2730 &free_list, spaceres);
2731 if (error == ENOSPC)
2732 goto error_return;
2733 if (error)
2734 goto abort_return;
2735
2736 xfs_trans_ichgtime(tp, target_dp,
2737 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2738
2739 if (new_parent && src_is_directory) {
2740 error = xfs_bumplink(tp, target_dp);
2741 if (error)
2742 goto abort_return;
2743 }
2744 } else { /* target_ip != NULL */
2745 /*
2746 * If target exists and it's a directory, check that both
2747 * target and source are directories and that target can be
2748 * destroyed, or that neither is a directory.
2749 */
2750 if (S_ISDIR(target_ip->i_d.di_mode)) {
2751 /*
2752 * Make sure target dir is empty.
2753 */
2754 if (!(xfs_dir_isempty(target_ip)) ||
2755 (target_ip->i_d.di_nlink > 2)) {
2756 error = XFS_ERROR(EEXIST);
2757 goto error_return;
2758 }
2759 }
2760
2761 /*
2762 * Link the source inode under the target name.
2763 * If the source inode is a directory and we are moving
2764 * it across directories, its ".." entry will be
2765 * inconsistent until we replace that down below.
2766 *
2767 * In case there is already an entry with the same
2768 * name at the destination directory, remove it first.
2769 */
2770 error = xfs_dir_replace(tp, target_dp, target_name,
2771 src_ip->i_ino,
2772 &first_block, &free_list, spaceres);
2773 if (error)
2774 goto abort_return;
2775
2776 xfs_trans_ichgtime(tp, target_dp,
2777 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2778
2779 /*
2780 * Decrement the link count on the target since the target
2781 * dir no longer points to it.
2782 */
2783 error = xfs_droplink(tp, target_ip);
2784 if (error)
2785 goto abort_return;
2786
2787 if (src_is_directory) {
2788 /*
2789 * Drop the link from the old "." entry.
2790 */
2791 error = xfs_droplink(tp, target_ip);
2792 if (error)
2793 goto abort_return;
2794 }
2795 } /* target_ip != NULL */
2796
2797 /*
2798 * Remove the source.
2799 */
2800 if (new_parent && src_is_directory) {
2801 /*
2802 * Rewrite the ".." entry to point to the new
2803 * directory.
2804 */
2805 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2806 target_dp->i_ino,
2807 &first_block, &free_list, spaceres);
2808 ASSERT(error != EEXIST);
2809 if (error)
2810 goto abort_return;
2811 }
2812
2813 /*
2814 * We always want to hit the ctime on the source inode.
2815 *
2816 * This isn't strictly required by the standards since the source
2817 * inode isn't really being changed, but old unix file systems did
2818 * it and some incremental backup programs won't work without it.
2819 */
2820 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2821 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2822
2823 /*
2824 * Adjust the link count on src_dp. This is necessary when
2825 * renaming a directory, either within one parent when
2826 * the target existed, or across two parent directories.
2827 */
2828 if (src_is_directory && (new_parent || target_ip != NULL)) {
2829
2830 /*
2831 * Decrement link count on src_directory since the
2832 * entry that's moved no longer points to it.
2833 */
2834 error = xfs_droplink(tp, src_dp);
2835 if (error)
2836 goto abort_return;
2837 }
2838
2839 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2840 &first_block, &free_list, spaceres);
2841 if (error)
2842 goto abort_return;
2843
2844 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2845 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2846 if (new_parent)
2847 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2848
2849 /*
2850 * If this is a synchronous mount, make sure that the
2851 * rename transaction goes to disk before returning to
2852 * the user.
2853 */
2854 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2855 xfs_trans_set_sync(tp);
2856 }
2857
2858 error = xfs_bmap_finish(&tp, &free_list, &committed);
2859 if (error) {
2860 xfs_bmap_cancel(&free_list);
2861 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2862 XFS_TRANS_ABORT));
2863 goto std_return;
2864 }
2865
2866 /*
2867 * trans_commit will unlock src_ip, target_ip & decrement
2868 * the vnode references.
2869 */
2870 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2871
2872 abort_return:
2873 cancel_flags |= XFS_TRANS_ABORT;
2874 error_return:
2875 xfs_bmap_cancel(&free_list);
2876 xfs_trans_cancel(tp, cancel_flags);
2877 std_return:
2878 return error;
2879}
2880
5c4d97d0
DC
2881STATIC int
2882xfs_iflush_cluster(
2883 xfs_inode_t *ip,
2884 xfs_buf_t *bp)
1da177e4 2885{
5c4d97d0
DC
2886 xfs_mount_t *mp = ip->i_mount;
2887 struct xfs_perag *pag;
2888 unsigned long first_index, mask;
2889 unsigned long inodes_per_cluster;
2890 int ilist_size;
2891 xfs_inode_t **ilist;
2892 xfs_inode_t *iq;
2893 int nr_found;
2894 int clcount = 0;
2895 int bufwasdelwri;
1da177e4 2896 int i;
1da177e4 2897
5c4d97d0 2898 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 2899
5c4d97d0
DC
2900 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2901 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2902 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2903 if (!ilist)
2904 goto out_put;
1da177e4 2905
5c4d97d0
DC
2906 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2907 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2908 rcu_read_lock();
2909 /* really need a gang lookup range call here */
2910 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2911 first_index, inodes_per_cluster);
2912 if (nr_found == 0)
2913 goto out_free;
2914
2915 for (i = 0; i < nr_found; i++) {
2916 iq = ilist[i];
2917 if (iq == ip)
bad55843 2918 continue;
1a3e8f3d
DC
2919
2920 /*
2921 * because this is an RCU protected lookup, we could find a
2922 * recently freed or even reallocated inode during the lookup.
2923 * We need to check under the i_flags_lock for a valid inode
2924 * here. Skip it if it is not valid or the wrong inode.
2925 */
2926 spin_lock(&ip->i_flags_lock);
2927 if (!ip->i_ino ||
2928 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2929 spin_unlock(&ip->i_flags_lock);
2930 continue;
2931 }
2932 spin_unlock(&ip->i_flags_lock);
2933
bad55843
DC
2934 /*
2935 * Do an un-protected check to see if the inode is dirty and
2936 * is a candidate for flushing. These checks will be repeated
2937 * later after the appropriate locks are acquired.
2938 */
33540408 2939 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2940 continue;
bad55843
DC
2941
2942 /*
2943 * Try to get locks. If any are unavailable or it is pinned,
2944 * then this inode cannot be flushed and is skipped.
2945 */
2946
2947 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2948 continue;
2949 if (!xfs_iflock_nowait(iq)) {
2950 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2951 continue;
2952 }
2953 if (xfs_ipincount(iq)) {
2954 xfs_ifunlock(iq);
2955 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2956 continue;
2957 }
2958
2959 /*
2960 * arriving here means that this inode can be flushed. First
2961 * re-check that it's dirty before flushing.
2962 */
33540408
DC
2963 if (!xfs_inode_clean(iq)) {
2964 int error;
bad55843
DC
2965 error = xfs_iflush_int(iq, bp);
2966 if (error) {
2967 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2968 goto cluster_corrupt_out;
2969 }
2970 clcount++;
2971 } else {
2972 xfs_ifunlock(iq);
2973 }
2974 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2975 }
2976
2977 if (clcount) {
2978 XFS_STATS_INC(xs_icluster_flushcnt);
2979 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2980 }
2981
2982out_free:
1a3e8f3d 2983 rcu_read_unlock();
f0e2d93c 2984 kmem_free(ilist);
44b56e0a
DC
2985out_put:
2986 xfs_perag_put(pag);
bad55843
DC
2987 return 0;
2988
2989
2990cluster_corrupt_out:
2991 /*
2992 * Corruption detected in the clustering loop. Invalidate the
2993 * inode buffer and shut down the filesystem.
2994 */
1a3e8f3d 2995 rcu_read_unlock();
bad55843 2996 /*
43ff2122 2997 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
2998 * brelse can handle it with no problems. If not, shut down the
2999 * filesystem before releasing the buffer.
3000 */
43ff2122 3001 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3002 if (bufwasdelwri)
3003 xfs_buf_relse(bp);
3004
3005 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3006
3007 if (!bufwasdelwri) {
3008 /*
3009 * Just like incore_relse: if we have b_iodone functions,
3010 * mark the buffer as an error and call them. Otherwise
3011 * mark it as stale and brelse.
3012 */
cb669ca5 3013 if (bp->b_iodone) {
bad55843 3014 XFS_BUF_UNDONE(bp);
c867cb61 3015 xfs_buf_stale(bp);
5a52c2a5 3016 xfs_buf_ioerror(bp, EIO);
1a1a3e97 3017 xfs_buf_ioend(bp, 0);
bad55843 3018 } else {
c867cb61 3019 xfs_buf_stale(bp);
bad55843
DC
3020 xfs_buf_relse(bp);
3021 }
3022 }
3023
3024 /*
3025 * Unlocks the flush lock
3026 */
04913fdd 3027 xfs_iflush_abort(iq, false);
f0e2d93c 3028 kmem_free(ilist);
44b56e0a 3029 xfs_perag_put(pag);
bad55843
DC
3030 return XFS_ERROR(EFSCORRUPTED);
3031}
3032
1da177e4 3033/*
4c46819a
CH
3034 * Flush dirty inode metadata into the backing buffer.
3035 *
3036 * The caller must have the inode lock and the inode flush lock held. The
3037 * inode lock will still be held upon return to the caller, and the inode
3038 * flush lock will be released after the inode has reached the disk.
3039 *
3040 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3041 */
3042int
3043xfs_iflush(
4c46819a
CH
3044 struct xfs_inode *ip,
3045 struct xfs_buf **bpp)
1da177e4 3046{
4c46819a
CH
3047 struct xfs_mount *mp = ip->i_mount;
3048 struct xfs_buf *bp;
3049 struct xfs_dinode *dip;
1da177e4 3050 int error;
1da177e4
LT
3051
3052 XFS_STATS_INC(xs_iflush_count);
3053
579aa9ca 3054 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3055 ASSERT(xfs_isiflocked(ip));
1da177e4 3056 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3057 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3058
4c46819a 3059 *bpp = NULL;
1da177e4 3060
1da177e4
LT
3061 xfs_iunpin_wait(ip);
3062
4b6a4688
DC
3063 /*
3064 * For stale inodes we cannot rely on the backing buffer remaining
3065 * stale in cache for the remaining life of the stale inode and so
475ee413 3066 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3067 * inodes below. We have to check this after ensuring the inode is
3068 * unpinned so that it is safe to reclaim the stale inode after the
3069 * flush call.
3070 */
3071 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3072 xfs_ifunlock(ip);
3073 return 0;
3074 }
3075
1da177e4
LT
3076 /*
3077 * This may have been unpinned because the filesystem is shutting
3078 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3079 * to disk, because the log record didn't make it to disk.
3080 *
3081 * We also have to remove the log item from the AIL in this case,
3082 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3083 */
3084 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
3085 error = XFS_ERROR(EIO);
3086 goto abort_out;
1da177e4
LT
3087 }
3088
a3f74ffb
DC
3089 /*
3090 * Get the buffer containing the on-disk inode.
3091 */
475ee413
CH
3092 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3093 0);
a3f74ffb
DC
3094 if (error || !bp) {
3095 xfs_ifunlock(ip);
3096 return error;
3097 }
3098
1da177e4
LT
3099 /*
3100 * First flush out the inode that xfs_iflush was called with.
3101 */
3102 error = xfs_iflush_int(ip, bp);
bad55843 3103 if (error)
1da177e4 3104 goto corrupt_out;
1da177e4 3105
a3f74ffb
DC
3106 /*
3107 * If the buffer is pinned then push on the log now so we won't
3108 * get stuck waiting in the write for too long.
3109 */
811e64c7 3110 if (xfs_buf_ispinned(bp))
a14a348b 3111 xfs_log_force(mp, 0);
a3f74ffb 3112
1da177e4
LT
3113 /*
3114 * inode clustering:
3115 * see if other inodes can be gathered into this write
3116 */
bad55843
DC
3117 error = xfs_iflush_cluster(ip, bp);
3118 if (error)
3119 goto cluster_corrupt_out;
1da177e4 3120
4c46819a
CH
3121 *bpp = bp;
3122 return 0;
1da177e4
LT
3123
3124corrupt_out:
3125 xfs_buf_relse(bp);
7d04a335 3126 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3127cluster_corrupt_out:
32ce90a4
CH
3128 error = XFS_ERROR(EFSCORRUPTED);
3129abort_out:
1da177e4
LT
3130 /*
3131 * Unlocks the flush lock
3132 */
04913fdd 3133 xfs_iflush_abort(ip, false);
32ce90a4 3134 return error;
1da177e4
LT
3135}
3136
1da177e4
LT
3137STATIC int
3138xfs_iflush_int(
93848a99
CH
3139 struct xfs_inode *ip,
3140 struct xfs_buf *bp)
1da177e4 3141{
93848a99
CH
3142 struct xfs_inode_log_item *iip = ip->i_itemp;
3143 struct xfs_dinode *dip;
3144 struct xfs_mount *mp = ip->i_mount;
1da177e4 3145
579aa9ca 3146 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3147 ASSERT(xfs_isiflocked(ip));
1da177e4 3148 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3149 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3150 ASSERT(iip != NULL && iip->ili_fields != 0);
1da177e4 3151
1da177e4 3152 /* set *dip = inode's place in the buffer */
92bfc6e7 3153 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3154
69ef921b 3155 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3156 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3157 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3158 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3159 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3160 goto corrupt_out;
3161 }
3162 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3163 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3164 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3165 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3166 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3167 goto corrupt_out;
3168 }
abbede1b 3169 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3170 if (XFS_TEST_ERROR(
3171 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3172 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3173 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3174 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3175 "%s: Bad regular inode %Lu, ptr 0x%p",
3176 __func__, ip->i_ino, ip);
1da177e4
LT
3177 goto corrupt_out;
3178 }
abbede1b 3179 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3180 if (XFS_TEST_ERROR(
3181 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3182 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3183 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3184 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3185 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3186 "%s: Bad directory inode %Lu, ptr 0x%p",
3187 __func__, ip->i_ino, ip);
1da177e4
LT
3188 goto corrupt_out;
3189 }
3190 }
3191 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3192 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3193 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3194 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3195 "%s: detected corrupt incore inode %Lu, "
3196 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3197 __func__, ip->i_ino,
1da177e4 3198 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3199 ip->i_d.di_nblocks, ip);
1da177e4
LT
3200 goto corrupt_out;
3201 }
3202 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3203 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3204 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3205 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3206 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3207 goto corrupt_out;
3208 }
e60896d8 3209
1da177e4 3210 /*
e60896d8
DC
3211 * Inode item log recovery for v1/v2 inodes are dependent on the
3212 * di_flushiter count for correct sequencing. We bump the flush
3213 * iteration count so we can detect flushes which postdate a log record
3214 * during recovery. This is redundant as we now log every change and
3215 * hence this can't happen but we need to still do it to ensure
3216 * backwards compatibility with old kernels that predate logging all
3217 * inode changes.
1da177e4 3218 */
e60896d8
DC
3219 if (ip->i_d.di_version < 3)
3220 ip->i_d.di_flushiter++;
1da177e4
LT
3221
3222 /*
3223 * Copy the dirty parts of the inode into the on-disk
3224 * inode. We always copy out the core of the inode,
3225 * because if the inode is dirty at all the core must
3226 * be.
3227 */
81591fe2 3228 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3229
3230 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3231 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3232 ip->i_d.di_flushiter = 0;
3233
3234 /*
3235 * If this is really an old format inode and the superblock version
3236 * has not been updated to support only new format inodes, then
3237 * convert back to the old inode format. If the superblock version
3238 * has been updated, then make the conversion permanent.
3239 */
51ce16d5
CH
3240 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3241 if (ip->i_d.di_version == 1) {
62118709 3242 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3243 /*
3244 * Convert it back.
3245 */
3246 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 3247 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3248 } else {
3249 /*
3250 * The superblock version has already been bumped,
3251 * so just make the conversion to the new inode
3252 * format permanent.
3253 */
51ce16d5
CH
3254 ip->i_d.di_version = 2;
3255 dip->di_version = 2;
1da177e4 3256 ip->i_d.di_onlink = 0;
81591fe2 3257 dip->di_onlink = 0;
1da177e4 3258 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
3259 memset(&(dip->di_pad[0]), 0,
3260 sizeof(dip->di_pad));
6743099c 3261 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
3262 }
3263 }
3264
e4ac967b
DC
3265 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3266 if (XFS_IFORK_Q(ip))
3267 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3268 xfs_inobp_check(mp, bp);
3269
3270 /*
f5d8d5c4
CH
3271 * We've recorded everything logged in the inode, so we'd like to clear
3272 * the ili_fields bits so we don't log and flush things unnecessarily.
3273 * However, we can't stop logging all this information until the data
3274 * we've copied into the disk buffer is written to disk. If we did we
3275 * might overwrite the copy of the inode in the log with all the data
3276 * after re-logging only part of it, and in the face of a crash we
3277 * wouldn't have all the data we need to recover.
1da177e4 3278 *
f5d8d5c4
CH
3279 * What we do is move the bits to the ili_last_fields field. When
3280 * logging the inode, these bits are moved back to the ili_fields field.
3281 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3282 * know that the information those bits represent is permanently on
3283 * disk. As long as the flush completes before the inode is logged
3284 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3285 *
f5d8d5c4
CH
3286 * We can play with the ili_fields bits here, because the inode lock
3287 * must be held exclusively in order to set bits there and the flush
3288 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3289 * done routine can tell whether or not to look in the AIL. Also, store
3290 * the current LSN of the inode so that we can tell whether the item has
3291 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3292 * need the AIL lock, because it is a 64 bit value that cannot be read
3293 * atomically.
1da177e4 3294 */
93848a99
CH
3295 iip->ili_last_fields = iip->ili_fields;
3296 iip->ili_fields = 0;
3297 iip->ili_logged = 1;
1da177e4 3298
93848a99
CH
3299 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3300 &iip->ili_item.li_lsn);
1da177e4 3301
93848a99
CH
3302 /*
3303 * Attach the function xfs_iflush_done to the inode's
3304 * buffer. This will remove the inode from the AIL
3305 * and unlock the inode's flush lock when the inode is
3306 * completely written to disk.
3307 */
3308 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3309
93848a99
CH
3310 /* update the lsn in the on disk inode if required */
3311 if (ip->i_d.di_version == 3)
3312 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3313
3314 /* generate the checksum. */
3315 xfs_dinode_calc_crc(mp, dip);
1da177e4 3316
93848a99
CH
3317 ASSERT(bp->b_fspriv != NULL);
3318 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3319 return 0;
3320
3321corrupt_out:
3322 return XFS_ERROR(EFSCORRUPTED);
3323}
This page took 1.306939 seconds and 5 git commands to generate.