xfs: Convert xlog_warn to new logging interface
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451 25#include "xfs_inum.h"
1da177e4
LT
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_sb.h"
29#include "xfs_ag.h"
1da177e4 30#include "xfs_mount.h"
1da177e4 31#include "xfs_bmap_btree.h"
a844f451 32#include "xfs_alloc_btree.h"
1da177e4 33#include "xfs_ialloc_btree.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4 35#include "xfs_dinode.h"
1da177e4 36#include "xfs_inode.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451
NS
38#include "xfs_inode_item.h"
39#include "xfs_btree.h"
8c4ed633 40#include "xfs_btree_trace.h"
a844f451
NS
41#include "xfs_alloc.h"
42#include "xfs_ialloc.h"
43#include "xfs_bmap.h"
1da177e4 44#include "xfs_error.h"
1da177e4 45#include "xfs_utils.h"
1da177e4 46#include "xfs_quota.h"
2a82b8be 47#include "xfs_filestream.h"
739bfb2a 48#include "xfs_vnodeops.h"
0b1b213f 49#include "xfs_trace.h"
1da177e4 50
1da177e4
LT
51kmem_zone_t *xfs_ifork_zone;
52kmem_zone_t *xfs_inode_zone;
1da177e4
LT
53
54/*
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64
1da177e4
LT
65#ifdef DEBUG
66/*
67 * Make sure that the extents in the given memory buffer
68 * are valid.
69 */
70STATIC void
71xfs_validate_extents(
4eea22f0 72 xfs_ifork_t *ifp,
1da177e4 73 int nrecs,
1da177e4
LT
74 xfs_exntfmt_t fmt)
75{
76 xfs_bmbt_irec_t irec;
a6f64d4a 77 xfs_bmbt_rec_host_t rec;
1da177e4
LT
78 int i;
79
80 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
81 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 rec.l0 = get_unaligned(&ep->l0);
83 rec.l1 = get_unaligned(&ep->l1);
84 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
85 if (fmt == XFS_EXTFMT_NOSTATE)
86 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
87 }
88}
89#else /* DEBUG */
a6f64d4a 90#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
91#endif /* DEBUG */
92
93/*
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
96 */
97#if defined(DEBUG)
98void
99xfs_inobp_check(
100 xfs_mount_t *mp,
101 xfs_buf_t *bp)
102{
103 int i;
104 int j;
105 xfs_dinode_t *dip;
106
107 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108
109 for (i = 0; i < j; i++) {
110 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 i * mp->m_sb.sb_inodesize);
112 if (!dip->di_next_unlinked) {
113 xfs_fs_cmn_err(CE_ALERT, mp,
114 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
115 bp);
116 ASSERT(dip->di_next_unlinked);
117 }
118 }
119}
120#endif
121
4ae29b43
DC
122/*
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
126 */
127STATIC int
128xfs_imap_to_bp(
129 xfs_mount_t *mp,
130 xfs_trans_t *tp,
92bfc6e7 131 struct xfs_imap *imap,
4ae29b43
DC
132 xfs_buf_t **bpp,
133 uint buf_flags,
b48d8d64 134 uint iget_flags)
4ae29b43
DC
135{
136 int error;
137 int i;
138 int ni;
139 xfs_buf_t *bp;
140
141 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 142 (int)imap->im_len, buf_flags, &bp);
4ae29b43 143 if (error) {
a3f74ffb
DC
144 if (error != EAGAIN) {
145 cmn_err(CE_WARN,
146 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
4ae29b43
DC
147 "an error %d on %s. Returning error.",
148 error, mp->m_fsname);
a3f74ffb 149 } else {
0cadda1c 150 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb 151 }
4ae29b43
DC
152 return error;
153 }
154
155 /*
156 * Validate the magic number and version of every inode in the buffer
157 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
158 */
159#ifdef DEBUG
160 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
161#else /* usual case */
162 ni = 1;
163#endif
164
165 for (i = 0; i < ni; i++) {
166 int di_ok;
167 xfs_dinode_t *dip;
168
169 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
170 (i << mp->m_sb.sb_inodelog));
81591fe2
CH
171 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
172 XFS_DINODE_GOOD_VERSION(dip->di_version);
4ae29b43
DC
173 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
174 XFS_ERRTAG_ITOBP_INOTOBP,
175 XFS_RANDOM_ITOBP_INOTOBP))) {
1920779e 176 if (iget_flags & XFS_IGET_UNTRUSTED) {
4ae29b43
DC
177 xfs_trans_brelse(tp, bp);
178 return XFS_ERROR(EINVAL);
179 }
180 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 XFS_ERRLEVEL_HIGH, mp, dip);
182#ifdef DEBUG
183 cmn_err(CE_PANIC,
184 "Device %s - bad inode magic/vsn "
185 "daddr %lld #%d (magic=%x)",
186 XFS_BUFTARG_NAME(mp->m_ddev_targp),
187 (unsigned long long)imap->im_blkno, i,
81591fe2 188 be16_to_cpu(dip->di_magic));
4ae29b43
DC
189#endif
190 xfs_trans_brelse(tp, bp);
191 return XFS_ERROR(EFSCORRUPTED);
192 }
193 }
194
195 xfs_inobp_check(mp, bp);
196
197 /*
198 * Mark the buffer as an inode buffer now that it looks good
199 */
200 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
201
202 *bpp = bp;
203 return 0;
204}
205
1da177e4
LT
206/*
207 * This routine is called to map an inode number within a file
208 * system to the buffer containing the on-disk version of the
209 * inode. It returns a pointer to the buffer containing the
210 * on-disk inode in the bpp parameter, and in the dip parameter
211 * it returns a pointer to the on-disk inode within that buffer.
212 *
213 * If a non-zero error is returned, then the contents of bpp and
214 * dipp are undefined.
215 *
216 * Use xfs_imap() to determine the size and location of the
217 * buffer to read from disk.
218 */
c679eef0 219int
1da177e4
LT
220xfs_inotobp(
221 xfs_mount_t *mp,
222 xfs_trans_t *tp,
223 xfs_ino_t ino,
224 xfs_dinode_t **dipp,
225 xfs_buf_t **bpp,
c679eef0
CH
226 int *offset,
227 uint imap_flags)
1da177e4 228{
92bfc6e7 229 struct xfs_imap imap;
1da177e4
LT
230 xfs_buf_t *bp;
231 int error;
1da177e4 232
1da177e4 233 imap.im_blkno = 0;
a1941895 234 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
4ae29b43 235 if (error)
1da177e4 236 return error;
1da177e4 237
0cadda1c 238 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
4ae29b43 239 if (error)
1da177e4 240 return error;
1da177e4 241
1da177e4
LT
242 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
243 *bpp = bp;
244 *offset = imap.im_boffset;
245 return 0;
246}
247
248
249/*
250 * This routine is called to map an inode to the buffer containing
251 * the on-disk version of the inode. It returns a pointer to the
252 * buffer containing the on-disk inode in the bpp parameter, and in
253 * the dip parameter it returns a pointer to the on-disk inode within
254 * that buffer.
255 *
256 * If a non-zero error is returned, then the contents of bpp and
257 * dipp are undefined.
258 *
76d8b277
CH
259 * The inode is expected to already been mapped to its buffer and read
260 * in once, thus we can use the mapping information stored in the inode
261 * rather than calling xfs_imap(). This allows us to avoid the overhead
262 * of looking at the inode btree for small block file systems
94e1b69d 263 * (see xfs_imap()).
1da177e4
LT
264 */
265int
266xfs_itobp(
267 xfs_mount_t *mp,
268 xfs_trans_t *tp,
269 xfs_inode_t *ip,
270 xfs_dinode_t **dipp,
271 xfs_buf_t **bpp,
a3f74ffb 272 uint buf_flags)
1da177e4
LT
273{
274 xfs_buf_t *bp;
275 int error;
1da177e4 276
92bfc6e7 277 ASSERT(ip->i_imap.im_blkno != 0);
1da177e4 278
92bfc6e7 279 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
4ae29b43 280 if (error)
1da177e4 281 return error;
1da177e4 282
a3f74ffb 283 if (!bp) {
0cadda1c 284 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb
DC
285 ASSERT(tp == NULL);
286 *bpp = NULL;
287 return EAGAIN;
288 }
289
92bfc6e7 290 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
291 *bpp = bp;
292 return 0;
293}
294
295/*
296 * Move inode type and inode format specific information from the
297 * on-disk inode to the in-core inode. For fifos, devs, and sockets
298 * this means set if_rdev to the proper value. For files, directories,
299 * and symlinks this means to bring in the in-line data or extent
300 * pointers. For a file in B-tree format, only the root is immediately
301 * brought in-core. The rest will be in-lined in if_extents when it
302 * is first referenced (see xfs_iread_extents()).
303 */
304STATIC int
305xfs_iformat(
306 xfs_inode_t *ip,
307 xfs_dinode_t *dip)
308{
309 xfs_attr_shortform_t *atp;
310 int size;
311 int error;
312 xfs_fsize_t di_size;
313 ip->i_df.if_ext_max =
314 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
315 error = 0;
316
81591fe2
CH
317 if (unlikely(be32_to_cpu(dip->di_nextents) +
318 be16_to_cpu(dip->di_anextents) >
319 be64_to_cpu(dip->di_nblocks))) {
3762ec6b
NS
320 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
321 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 322 (unsigned long long)ip->i_ino,
81591fe2
CH
323 (int)(be32_to_cpu(dip->di_nextents) +
324 be16_to_cpu(dip->di_anextents)),
1da177e4 325 (unsigned long long)
81591fe2 326 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
327 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
328 ip->i_mount, dip);
329 return XFS_ERROR(EFSCORRUPTED);
330 }
331
81591fe2 332 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
333 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
334 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 335 (unsigned long long)ip->i_ino,
81591fe2 336 dip->di_forkoff);
1da177e4
LT
337 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
338 ip->i_mount, dip);
339 return XFS_ERROR(EFSCORRUPTED);
340 }
341
b89d4208
CH
342 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
343 !ip->i_mount->m_rtdev_targp)) {
344 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
345 "corrupt dinode %Lu, has realtime flag set.",
346 ip->i_ino);
347 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
348 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
349 return XFS_ERROR(EFSCORRUPTED);
350 }
351
1da177e4
LT
352 switch (ip->i_d.di_mode & S_IFMT) {
353 case S_IFIFO:
354 case S_IFCHR:
355 case S_IFBLK:
356 case S_IFSOCK:
81591fe2 357 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
358 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
359 ip->i_mount, dip);
360 return XFS_ERROR(EFSCORRUPTED);
361 }
362 ip->i_d.di_size = 0;
ba87ea69 363 ip->i_size = 0;
81591fe2 364 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
365 break;
366
367 case S_IFREG:
368 case S_IFLNK:
369 case S_IFDIR:
81591fe2 370 switch (dip->di_format) {
1da177e4
LT
371 case XFS_DINODE_FMT_LOCAL:
372 /*
373 * no local regular files yet
374 */
81591fe2 375 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
376 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
377 "corrupt inode %Lu "
378 "(local format for regular file).",
1da177e4
LT
379 (unsigned long long) ip->i_ino);
380 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
381 XFS_ERRLEVEL_LOW,
382 ip->i_mount, dip);
383 return XFS_ERROR(EFSCORRUPTED);
384 }
385
81591fe2 386 di_size = be64_to_cpu(dip->di_size);
1da177e4 387 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
388 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
389 "corrupt inode %Lu "
390 "(bad size %Ld for local inode).",
1da177e4
LT
391 (unsigned long long) ip->i_ino,
392 (long long) di_size);
393 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
394 XFS_ERRLEVEL_LOW,
395 ip->i_mount, dip);
396 return XFS_ERROR(EFSCORRUPTED);
397 }
398
399 size = (int)di_size;
400 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
401 break;
402 case XFS_DINODE_FMT_EXTENTS:
403 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
404 break;
405 case XFS_DINODE_FMT_BTREE:
406 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
407 break;
408 default:
409 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
410 ip->i_mount);
411 return XFS_ERROR(EFSCORRUPTED);
412 }
413 break;
414
415 default:
416 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
417 return XFS_ERROR(EFSCORRUPTED);
418 }
419 if (error) {
420 return error;
421 }
422 if (!XFS_DFORK_Q(dip))
423 return 0;
424 ASSERT(ip->i_afp == NULL);
4a7edddc 425 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
1da177e4
LT
426 ip->i_afp->if_ext_max =
427 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
81591fe2 428 switch (dip->di_aformat) {
1da177e4
LT
429 case XFS_DINODE_FMT_LOCAL:
430 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 431 size = be16_to_cpu(atp->hdr.totsize);
2809f76a
CH
432
433 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
434 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
435 "corrupt inode %Lu "
436 "(bad attr fork size %Ld).",
437 (unsigned long long) ip->i_ino,
438 (long long) size);
439 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
440 XFS_ERRLEVEL_LOW,
441 ip->i_mount, dip);
442 return XFS_ERROR(EFSCORRUPTED);
443 }
444
1da177e4
LT
445 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
446 break;
447 case XFS_DINODE_FMT_EXTENTS:
448 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
449 break;
450 case XFS_DINODE_FMT_BTREE:
451 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
452 break;
453 default:
454 error = XFS_ERROR(EFSCORRUPTED);
455 break;
456 }
457 if (error) {
458 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
459 ip->i_afp = NULL;
460 xfs_idestroy_fork(ip, XFS_DATA_FORK);
461 }
462 return error;
463}
464
465/*
466 * The file is in-lined in the on-disk inode.
467 * If it fits into if_inline_data, then copy
468 * it there, otherwise allocate a buffer for it
469 * and copy the data there. Either way, set
470 * if_data to point at the data.
471 * If we allocate a buffer for the data, make
472 * sure that its size is a multiple of 4 and
473 * record the real size in i_real_bytes.
474 */
475STATIC int
476xfs_iformat_local(
477 xfs_inode_t *ip,
478 xfs_dinode_t *dip,
479 int whichfork,
480 int size)
481{
482 xfs_ifork_t *ifp;
483 int real_size;
484
485 /*
486 * If the size is unreasonable, then something
487 * is wrong and we just bail out rather than crash in
488 * kmem_alloc() or memcpy() below.
489 */
490 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
491 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
492 "corrupt inode %Lu "
493 "(bad size %d for local fork, size = %d).",
1da177e4
LT
494 (unsigned long long) ip->i_ino, size,
495 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
496 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
497 ip->i_mount, dip);
498 return XFS_ERROR(EFSCORRUPTED);
499 }
500 ifp = XFS_IFORK_PTR(ip, whichfork);
501 real_size = 0;
502 if (size == 0)
503 ifp->if_u1.if_data = NULL;
504 else if (size <= sizeof(ifp->if_u2.if_inline_data))
505 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
506 else {
507 real_size = roundup(size, 4);
4a7edddc 508 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
509 }
510 ifp->if_bytes = size;
511 ifp->if_real_bytes = real_size;
512 if (size)
513 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
514 ifp->if_flags &= ~XFS_IFEXTENTS;
515 ifp->if_flags |= XFS_IFINLINE;
516 return 0;
517}
518
519/*
520 * The file consists of a set of extents all
521 * of which fit into the on-disk inode.
522 * If there are few enough extents to fit into
523 * the if_inline_ext, then copy them there.
524 * Otherwise allocate a buffer for them and copy
525 * them into it. Either way, set if_extents
526 * to point at the extents.
527 */
528STATIC int
529xfs_iformat_extents(
530 xfs_inode_t *ip,
531 xfs_dinode_t *dip,
532 int whichfork)
533{
a6f64d4a 534 xfs_bmbt_rec_t *dp;
1da177e4
LT
535 xfs_ifork_t *ifp;
536 int nex;
1da177e4
LT
537 int size;
538 int i;
539
540 ifp = XFS_IFORK_PTR(ip, whichfork);
541 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
542 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
543
544 /*
545 * If the number of extents is unreasonable, then something
546 * is wrong and we just bail out rather than crash in
547 * kmem_alloc() or memcpy() below.
548 */
549 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
550 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
551 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
552 (unsigned long long) ip->i_ino, nex);
553 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
554 ip->i_mount, dip);
555 return XFS_ERROR(EFSCORRUPTED);
556 }
557
4eea22f0 558 ifp->if_real_bytes = 0;
1da177e4
LT
559 if (nex == 0)
560 ifp->if_u1.if_extents = NULL;
561 else if (nex <= XFS_INLINE_EXTS)
562 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
563 else
564 xfs_iext_add(ifp, 0, nex);
565
1da177e4 566 ifp->if_bytes = size;
1da177e4
LT
567 if (size) {
568 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 569 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 570 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 571 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
572 ep->l0 = get_unaligned_be64(&dp->l0);
573 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 574 }
3a59c94c 575 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
576 if (whichfork != XFS_DATA_FORK ||
577 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
578 if (unlikely(xfs_check_nostate_extents(
4eea22f0 579 ifp, 0, nex))) {
1da177e4
LT
580 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
581 XFS_ERRLEVEL_LOW,
582 ip->i_mount);
583 return XFS_ERROR(EFSCORRUPTED);
584 }
585 }
586 ifp->if_flags |= XFS_IFEXTENTS;
587 return 0;
588}
589
590/*
591 * The file has too many extents to fit into
592 * the inode, so they are in B-tree format.
593 * Allocate a buffer for the root of the B-tree
594 * and copy the root into it. The i_extents
595 * field will remain NULL until all of the
596 * extents are read in (when they are needed).
597 */
598STATIC int
599xfs_iformat_btree(
600 xfs_inode_t *ip,
601 xfs_dinode_t *dip,
602 int whichfork)
603{
604 xfs_bmdr_block_t *dfp;
605 xfs_ifork_t *ifp;
606 /* REFERENCED */
607 int nrecs;
608 int size;
609
610 ifp = XFS_IFORK_PTR(ip, whichfork);
611 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
612 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 613 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
614
615 /*
616 * blow out if -- fork has less extents than can fit in
617 * fork (fork shouldn't be a btree format), root btree
618 * block has more records than can fit into the fork,
619 * or the number of extents is greater than the number of
620 * blocks.
621 */
622 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
623 || XFS_BMDR_SPACE_CALC(nrecs) >
624 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
625 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
626 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
627 "corrupt inode %Lu (btree).",
1da177e4
LT
628 (unsigned long long) ip->i_ino);
629 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
630 ip->i_mount);
631 return XFS_ERROR(EFSCORRUPTED);
632 }
633
634 ifp->if_broot_bytes = size;
4a7edddc 635 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
1da177e4
LT
636 ASSERT(ifp->if_broot != NULL);
637 /*
638 * Copy and convert from the on-disk structure
639 * to the in-memory structure.
640 */
60197e8d
CH
641 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
642 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
643 ifp->if_broot, size);
1da177e4
LT
644 ifp->if_flags &= ~XFS_IFEXTENTS;
645 ifp->if_flags |= XFS_IFBROOT;
646
647 return 0;
648}
649
d96f8f89 650STATIC void
347d1c01
CH
651xfs_dinode_from_disk(
652 xfs_icdinode_t *to,
81591fe2 653 xfs_dinode_t *from)
1da177e4 654{
347d1c01
CH
655 to->di_magic = be16_to_cpu(from->di_magic);
656 to->di_mode = be16_to_cpu(from->di_mode);
657 to->di_version = from ->di_version;
658 to->di_format = from->di_format;
659 to->di_onlink = be16_to_cpu(from->di_onlink);
660 to->di_uid = be32_to_cpu(from->di_uid);
661 to->di_gid = be32_to_cpu(from->di_gid);
662 to->di_nlink = be32_to_cpu(from->di_nlink);
6743099c
AM
663 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
664 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
347d1c01
CH
665 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
666 to->di_flushiter = be16_to_cpu(from->di_flushiter);
667 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
668 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
669 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
670 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
671 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
672 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
673 to->di_size = be64_to_cpu(from->di_size);
674 to->di_nblocks = be64_to_cpu(from->di_nblocks);
675 to->di_extsize = be32_to_cpu(from->di_extsize);
676 to->di_nextents = be32_to_cpu(from->di_nextents);
677 to->di_anextents = be16_to_cpu(from->di_anextents);
678 to->di_forkoff = from->di_forkoff;
679 to->di_aformat = from->di_aformat;
680 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
681 to->di_dmstate = be16_to_cpu(from->di_dmstate);
682 to->di_flags = be16_to_cpu(from->di_flags);
683 to->di_gen = be32_to_cpu(from->di_gen);
684}
685
686void
687xfs_dinode_to_disk(
81591fe2 688 xfs_dinode_t *to,
347d1c01
CH
689 xfs_icdinode_t *from)
690{
691 to->di_magic = cpu_to_be16(from->di_magic);
692 to->di_mode = cpu_to_be16(from->di_mode);
693 to->di_version = from ->di_version;
694 to->di_format = from->di_format;
695 to->di_onlink = cpu_to_be16(from->di_onlink);
696 to->di_uid = cpu_to_be32(from->di_uid);
697 to->di_gid = cpu_to_be32(from->di_gid);
698 to->di_nlink = cpu_to_be32(from->di_nlink);
6743099c
AM
699 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
700 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
347d1c01
CH
701 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
702 to->di_flushiter = cpu_to_be16(from->di_flushiter);
703 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
704 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
705 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
706 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
707 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
708 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
709 to->di_size = cpu_to_be64(from->di_size);
710 to->di_nblocks = cpu_to_be64(from->di_nblocks);
711 to->di_extsize = cpu_to_be32(from->di_extsize);
712 to->di_nextents = cpu_to_be32(from->di_nextents);
713 to->di_anextents = cpu_to_be16(from->di_anextents);
714 to->di_forkoff = from->di_forkoff;
715 to->di_aformat = from->di_aformat;
716 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
717 to->di_dmstate = cpu_to_be16(from->di_dmstate);
718 to->di_flags = cpu_to_be16(from->di_flags);
719 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
720}
721
722STATIC uint
723_xfs_dic2xflags(
1da177e4
LT
724 __uint16_t di_flags)
725{
726 uint flags = 0;
727
728 if (di_flags & XFS_DIFLAG_ANY) {
729 if (di_flags & XFS_DIFLAG_REALTIME)
730 flags |= XFS_XFLAG_REALTIME;
731 if (di_flags & XFS_DIFLAG_PREALLOC)
732 flags |= XFS_XFLAG_PREALLOC;
733 if (di_flags & XFS_DIFLAG_IMMUTABLE)
734 flags |= XFS_XFLAG_IMMUTABLE;
735 if (di_flags & XFS_DIFLAG_APPEND)
736 flags |= XFS_XFLAG_APPEND;
737 if (di_flags & XFS_DIFLAG_SYNC)
738 flags |= XFS_XFLAG_SYNC;
739 if (di_flags & XFS_DIFLAG_NOATIME)
740 flags |= XFS_XFLAG_NOATIME;
741 if (di_flags & XFS_DIFLAG_NODUMP)
742 flags |= XFS_XFLAG_NODUMP;
743 if (di_flags & XFS_DIFLAG_RTINHERIT)
744 flags |= XFS_XFLAG_RTINHERIT;
745 if (di_flags & XFS_DIFLAG_PROJINHERIT)
746 flags |= XFS_XFLAG_PROJINHERIT;
747 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
748 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
749 if (di_flags & XFS_DIFLAG_EXTSIZE)
750 flags |= XFS_XFLAG_EXTSIZE;
751 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
752 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
753 if (di_flags & XFS_DIFLAG_NODEFRAG)
754 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
755 if (di_flags & XFS_DIFLAG_FILESTREAM)
756 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
757 }
758
759 return flags;
760}
761
762uint
763xfs_ip2xflags(
764 xfs_inode_t *ip)
765{
347d1c01 766 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 767
a916e2bd 768 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 769 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
770}
771
772uint
773xfs_dic2xflags(
45ba598e 774 xfs_dinode_t *dip)
1da177e4 775{
81591fe2 776 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 777 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
778}
779
07c8f675 780/*
24f211ba 781 * Read the disk inode attributes into the in-core inode structure.
1da177e4
LT
782 */
783int
784xfs_iread(
785 xfs_mount_t *mp,
786 xfs_trans_t *tp,
24f211ba 787 xfs_inode_t *ip,
24f211ba 788 uint iget_flags)
1da177e4
LT
789{
790 xfs_buf_t *bp;
791 xfs_dinode_t *dip;
1da177e4
LT
792 int error;
793
1da177e4 794 /*
92bfc6e7 795 * Fill in the location information in the in-core inode.
1da177e4 796 */
24f211ba 797 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
76d8b277 798 if (error)
24f211ba 799 return error;
76d8b277
CH
800
801 /*
92bfc6e7 802 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 803 */
92bfc6e7 804 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
0cadda1c 805 XBF_LOCK, iget_flags);
9ed0451e 806 if (error)
24f211ba 807 return error;
92bfc6e7 808 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 809
1da177e4
LT
810 /*
811 * If we got something that isn't an inode it means someone
812 * (nfs or dmi) has a stale handle.
813 */
81591fe2 814 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
1da177e4
LT
815#ifdef DEBUG
816 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
81591fe2 817 "dip->di_magic (0x%x) != "
1da177e4 818 "XFS_DINODE_MAGIC (0x%x)",
81591fe2 819 be16_to_cpu(dip->di_magic),
1da177e4
LT
820 XFS_DINODE_MAGIC);
821#endif /* DEBUG */
9ed0451e
CH
822 error = XFS_ERROR(EINVAL);
823 goto out_brelse;
1da177e4
LT
824 }
825
826 /*
827 * If the on-disk inode is already linked to a directory
828 * entry, copy all of the inode into the in-core inode.
829 * xfs_iformat() handles copying in the inode format
830 * specific information.
831 * Otherwise, just get the truly permanent information.
832 */
81591fe2
CH
833 if (dip->di_mode) {
834 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
835 error = xfs_iformat(ip, dip);
836 if (error) {
1da177e4
LT
837#ifdef DEBUG
838 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
839 "xfs_iformat() returned error %d",
840 error);
841#endif /* DEBUG */
9ed0451e 842 goto out_brelse;
1da177e4
LT
843 }
844 } else {
81591fe2
CH
845 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
846 ip->i_d.di_version = dip->di_version;
847 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
848 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
849 /*
850 * Make sure to pull in the mode here as well in
851 * case the inode is released without being used.
852 * This ensures that xfs_inactive() will see that
853 * the inode is already free and not try to mess
854 * with the uninitialized part of it.
855 */
856 ip->i_d.di_mode = 0;
857 /*
858 * Initialize the per-fork minima and maxima for a new
859 * inode here. xfs_iformat will do it for old inodes.
860 */
861 ip->i_df.if_ext_max =
862 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
863 }
864
1da177e4
LT
865 /*
866 * The inode format changed when we moved the link count and
867 * made it 32 bits long. If this is an old format inode,
868 * convert it in memory to look like a new one. If it gets
869 * flushed to disk we will convert back before flushing or
870 * logging it. We zero out the new projid field and the old link
871 * count field. We'll handle clearing the pad field (the remains
872 * of the old uuid field) when we actually convert the inode to
873 * the new format. We don't change the version number so that we
874 * can distinguish this from a real new format inode.
875 */
51ce16d5 876 if (ip->i_d.di_version == 1) {
1da177e4
LT
877 ip->i_d.di_nlink = ip->i_d.di_onlink;
878 ip->i_d.di_onlink = 0;
6743099c 879 xfs_set_projid(ip, 0);
1da177e4
LT
880 }
881
882 ip->i_delayed_blks = 0;
ba87ea69 883 ip->i_size = ip->i_d.di_size;
1da177e4
LT
884
885 /*
886 * Mark the buffer containing the inode as something to keep
887 * around for a while. This helps to keep recently accessed
888 * meta-data in-core longer.
889 */
821eb21d 890 xfs_buf_set_ref(bp, XFS_INO_REF);
1da177e4
LT
891
892 /*
893 * Use xfs_trans_brelse() to release the buffer containing the
894 * on-disk inode, because it was acquired with xfs_trans_read_buf()
895 * in xfs_itobp() above. If tp is NULL, this is just a normal
896 * brelse(). If we're within a transaction, then xfs_trans_brelse()
897 * will only release the buffer if it is not dirty within the
898 * transaction. It will be OK to release the buffer in this case,
899 * because inodes on disk are never destroyed and we will be
900 * locking the new in-core inode before putting it in the hash
901 * table where other processes can find it. Thus we don't have
902 * to worry about the inode being changed just because we released
903 * the buffer.
904 */
9ed0451e
CH
905 out_brelse:
906 xfs_trans_brelse(tp, bp);
9ed0451e 907 return error;
1da177e4
LT
908}
909
910/*
911 * Read in extents from a btree-format inode.
912 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
913 */
914int
915xfs_iread_extents(
916 xfs_trans_t *tp,
917 xfs_inode_t *ip,
918 int whichfork)
919{
920 int error;
921 xfs_ifork_t *ifp;
4eea22f0 922 xfs_extnum_t nextents;
1da177e4
LT
923
924 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
925 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
926 ip->i_mount);
927 return XFS_ERROR(EFSCORRUPTED);
928 }
4eea22f0 929 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1da177e4 930 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 931
1da177e4
LT
932 /*
933 * We know that the size is valid (it's checked in iformat_btree)
934 */
1da177e4 935 ifp->if_lastex = NULLEXTNUM;
4eea22f0 936 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 937 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 938 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
939 error = xfs_bmap_read_extents(tp, ip, whichfork);
940 if (error) {
4eea22f0 941 xfs_iext_destroy(ifp);
1da177e4
LT
942 ifp->if_flags &= ~XFS_IFEXTENTS;
943 return error;
944 }
a6f64d4a 945 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
946 return 0;
947}
948
949/*
950 * Allocate an inode on disk and return a copy of its in-core version.
951 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
952 * appropriately within the inode. The uid and gid for the inode are
953 * set according to the contents of the given cred structure.
954 *
955 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
956 * has a free inode available, call xfs_iget()
957 * to obtain the in-core version of the allocated inode. Finally,
958 * fill in the inode and log its initial contents. In this case,
959 * ialloc_context would be set to NULL and call_again set to false.
960 *
961 * If xfs_dialloc() does not have an available inode,
962 * it will replenish its supply by doing an allocation. Since we can
963 * only do one allocation within a transaction without deadlocks, we
964 * must commit the current transaction before returning the inode itself.
965 * In this case, therefore, we will set call_again to true and return.
966 * The caller should then commit the current transaction, start a new
967 * transaction, and call xfs_ialloc() again to actually get the inode.
968 *
969 * To ensure that some other process does not grab the inode that
970 * was allocated during the first call to xfs_ialloc(), this routine
971 * also returns the [locked] bp pointing to the head of the freelist
972 * as ialloc_context. The caller should hold this buffer across
973 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
974 *
975 * If we are allocating quota inodes, we do not have a parent inode
976 * to attach to or associate with (i.e. pip == NULL) because they
977 * are not linked into the directory structure - they are attached
978 * directly to the superblock - and so have no parent.
1da177e4
LT
979 */
980int
981xfs_ialloc(
982 xfs_trans_t *tp,
983 xfs_inode_t *pip,
984 mode_t mode,
31b084ae 985 xfs_nlink_t nlink,
1da177e4 986 xfs_dev_t rdev,
6743099c 987 prid_t prid,
1da177e4
LT
988 int okalloc,
989 xfs_buf_t **ialloc_context,
990 boolean_t *call_again,
991 xfs_inode_t **ipp)
992{
993 xfs_ino_t ino;
994 xfs_inode_t *ip;
1da177e4
LT
995 uint flags;
996 int error;
dff35fd4 997 timespec_t tv;
bf904248 998 int filestreams = 0;
1da177e4
LT
999
1000 /*
1001 * Call the space management code to pick
1002 * the on-disk inode to be allocated.
1003 */
b11f94d5 1004 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 1005 ialloc_context, call_again, &ino);
bf904248 1006 if (error)
1da177e4 1007 return error;
1da177e4
LT
1008 if (*call_again || ino == NULLFSINO) {
1009 *ipp = NULL;
1010 return 0;
1011 }
1012 ASSERT(*ialloc_context == NULL);
1013
1014 /*
1015 * Get the in-core inode with the lock held exclusively.
1016 * This is because we're setting fields here we need
1017 * to prevent others from looking at until we're done.
1018 */
ec3ba85f
CH
1019 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1020 XFS_ILOCK_EXCL, &ip);
bf904248 1021 if (error)
1da177e4 1022 return error;
1da177e4
LT
1023 ASSERT(ip != NULL);
1024
1da177e4
LT
1025 ip->i_d.di_mode = (__uint16_t)mode;
1026 ip->i_d.di_onlink = 0;
1027 ip->i_d.di_nlink = nlink;
1028 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1029 ip->i_d.di_uid = current_fsuid();
1030 ip->i_d.di_gid = current_fsgid();
6743099c 1031 xfs_set_projid(ip, prid);
1da177e4
LT
1032 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1033
1034 /*
1035 * If the superblock version is up to where we support new format
1036 * inodes and this is currently an old format inode, then change
1037 * the inode version number now. This way we only do the conversion
1038 * here rather than here and in the flush/logging code.
1039 */
62118709 1040 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1041 ip->i_d.di_version == 1) {
1042 ip->i_d.di_version = 2;
1da177e4
LT
1043 /*
1044 * We've already zeroed the old link count, the projid field,
1045 * and the pad field.
1046 */
1047 }
1048
1049 /*
1050 * Project ids won't be stored on disk if we are using a version 1 inode.
1051 */
51ce16d5 1052 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1053 xfs_bump_ino_vers2(tp, ip);
1054
bd186aa9 1055 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1056 ip->i_d.di_gid = pip->i_d.di_gid;
1057 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1058 ip->i_d.di_mode |= S_ISGID;
1059 }
1060 }
1061
1062 /*
1063 * If the group ID of the new file does not match the effective group
1064 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1065 * (and only if the irix_sgid_inherit compatibility variable is set).
1066 */
1067 if ((irix_sgid_inherit) &&
1068 (ip->i_d.di_mode & S_ISGID) &&
1069 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1070 ip->i_d.di_mode &= ~S_ISGID;
1071 }
1072
1073 ip->i_d.di_size = 0;
ba87ea69 1074 ip->i_size = 0;
1da177e4
LT
1075 ip->i_d.di_nextents = 0;
1076 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1077
1078 nanotime(&tv);
1079 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1080 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1081 ip->i_d.di_atime = ip->i_d.di_mtime;
1082 ip->i_d.di_ctime = ip->i_d.di_mtime;
1083
1da177e4
LT
1084 /*
1085 * di_gen will have been taken care of in xfs_iread.
1086 */
1087 ip->i_d.di_extsize = 0;
1088 ip->i_d.di_dmevmask = 0;
1089 ip->i_d.di_dmstate = 0;
1090 ip->i_d.di_flags = 0;
1091 flags = XFS_ILOG_CORE;
1092 switch (mode & S_IFMT) {
1093 case S_IFIFO:
1094 case S_IFCHR:
1095 case S_IFBLK:
1096 case S_IFSOCK:
1097 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1098 ip->i_df.if_u2.if_rdev = rdev;
1099 ip->i_df.if_flags = 0;
1100 flags |= XFS_ILOG_DEV;
1101 break;
1102 case S_IFREG:
bf904248
DC
1103 /*
1104 * we can't set up filestreams until after the VFS inode
1105 * is set up properly.
1106 */
1107 if (pip && xfs_inode_is_filestream(pip))
1108 filestreams = 1;
2a82b8be 1109 /* fall through */
1da177e4 1110 case S_IFDIR:
b11f94d5 1111 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1112 uint di_flags = 0;
1113
1114 if ((mode & S_IFMT) == S_IFDIR) {
1115 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1116 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1117 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1118 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1119 ip->i_d.di_extsize = pip->i_d.di_extsize;
1120 }
1121 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1122 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1123 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1124 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1125 di_flags |= XFS_DIFLAG_EXTSIZE;
1126 ip->i_d.di_extsize = pip->i_d.di_extsize;
1127 }
1da177e4
LT
1128 }
1129 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1130 xfs_inherit_noatime)
365ca83d 1131 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1132 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1133 xfs_inherit_nodump)
365ca83d 1134 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1135 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1136 xfs_inherit_sync)
365ca83d 1137 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1138 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1139 xfs_inherit_nosymlinks)
365ca83d
NS
1140 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1141 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1142 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1143 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1144 xfs_inherit_nodefrag)
1145 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1146 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1147 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1148 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1149 }
1150 /* FALLTHROUGH */
1151 case S_IFLNK:
1152 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1153 ip->i_df.if_flags = XFS_IFEXTENTS;
1154 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1155 ip->i_df.if_u1.if_extents = NULL;
1156 break;
1157 default:
1158 ASSERT(0);
1159 }
1160 /*
1161 * Attribute fork settings for new inode.
1162 */
1163 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1164 ip->i_d.di_anextents = 0;
1165
1166 /*
1167 * Log the new values stuffed into the inode.
1168 */
ec3ba85f 1169 xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
1170 xfs_trans_log_inode(tp, ip, flags);
1171
b83bd138 1172 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1173 xfs_setup_inode(ip);
1da177e4 1174
bf904248
DC
1175 /* now we have set up the vfs inode we can associate the filestream */
1176 if (filestreams) {
1177 error = xfs_filestream_associate(pip, ip);
1178 if (error < 0)
1179 return -error;
1180 if (!error)
1181 xfs_iflags_set(ip, XFS_IFILESTREAM);
1182 }
1183
1da177e4
LT
1184 *ipp = ip;
1185 return 0;
1186}
1187
1188/*
1189 * Check to make sure that there are no blocks allocated to the
1190 * file beyond the size of the file. We don't check this for
1191 * files with fixed size extents or real time extents, but we
1192 * at least do it for regular files.
1193 */
1194#ifdef DEBUG
1195void
1196xfs_isize_check(
1197 xfs_mount_t *mp,
1198 xfs_inode_t *ip,
1199 xfs_fsize_t isize)
1200{
1201 xfs_fileoff_t map_first;
1202 int nimaps;
1203 xfs_bmbt_irec_t imaps[2];
1204
1205 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1206 return;
1207
71ddabb9
ES
1208 if (XFS_IS_REALTIME_INODE(ip))
1209 return;
1210
1211 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1212 return;
1213
1214 nimaps = 2;
1215 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1216 /*
1217 * The filesystem could be shutting down, so bmapi may return
1218 * an error.
1219 */
1220 if (xfs_bmapi(NULL, ip, map_first,
1221 (XFS_B_TO_FSB(mp,
1222 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1223 map_first),
1224 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
b4e9181e 1225 NULL))
1da177e4
LT
1226 return;
1227 ASSERT(nimaps == 1);
1228 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1229}
1230#endif /* DEBUG */
1231
1232/*
1233 * Calculate the last possible buffered byte in a file. This must
1234 * include data that was buffered beyond the EOF by the write code.
1235 * This also needs to deal with overflowing the xfs_fsize_t type
1236 * which can happen for sizes near the limit.
1237 *
1238 * We also need to take into account any blocks beyond the EOF. It
1239 * may be the case that they were buffered by a write which failed.
1240 * In that case the pages will still be in memory, but the inode size
1241 * will never have been updated.
1242 */
d96f8f89 1243STATIC xfs_fsize_t
1da177e4
LT
1244xfs_file_last_byte(
1245 xfs_inode_t *ip)
1246{
1247 xfs_mount_t *mp;
1248 xfs_fsize_t last_byte;
1249 xfs_fileoff_t last_block;
1250 xfs_fileoff_t size_last_block;
1251 int error;
1252
579aa9ca 1253 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1da177e4
LT
1254
1255 mp = ip->i_mount;
1256 /*
1257 * Only check for blocks beyond the EOF if the extents have
1258 * been read in. This eliminates the need for the inode lock,
1259 * and it also saves us from looking when it really isn't
1260 * necessary.
1261 */
1262 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
f25181f5 1263 xfs_ilock(ip, XFS_ILOCK_SHARED);
1da177e4
LT
1264 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1265 XFS_DATA_FORK);
f25181f5 1266 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1da177e4
LT
1267 if (error) {
1268 last_block = 0;
1269 }
1270 } else {
1271 last_block = 0;
1272 }
ba87ea69 1273 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1274 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1275
1276 last_byte = XFS_FSB_TO_B(mp, last_block);
1277 if (last_byte < 0) {
1278 return XFS_MAXIOFFSET(mp);
1279 }
1280 last_byte += (1 << mp->m_writeio_log);
1281 if (last_byte < 0) {
1282 return XFS_MAXIOFFSET(mp);
1283 }
1284 return last_byte;
1285}
1286
1da177e4
LT
1287/*
1288 * Start the truncation of the file to new_size. The new size
1289 * must be smaller than the current size. This routine will
1290 * clear the buffer and page caches of file data in the removed
1291 * range, and xfs_itruncate_finish() will remove the underlying
1292 * disk blocks.
1293 *
1294 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1295 * must NOT have the inode lock held at all. This is because we're
1296 * calling into the buffer/page cache code and we can't hold the
1297 * inode lock when we do so.
1298 *
38e2299a
DC
1299 * We need to wait for any direct I/Os in flight to complete before we
1300 * proceed with the truncate. This is needed to prevent the extents
1301 * being read or written by the direct I/Os from being removed while the
1302 * I/O is in flight as there is no other method of synchronising
1303 * direct I/O with the truncate operation. Also, because we hold
1304 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1305 * started until the truncate completes and drops the lock. Essentially,
25e41b3d
CH
1306 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1307 * ordering between direct I/Os and the truncate operation.
38e2299a 1308 *
1da177e4
LT
1309 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1310 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1311 * in the case that the caller is locking things out of order and
1312 * may not be able to call xfs_itruncate_finish() with the inode lock
1313 * held without dropping the I/O lock. If the caller must drop the
1314 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1315 * must be called again with all the same restrictions as the initial
1316 * call.
1317 */
d3cf2094 1318int
1da177e4
LT
1319xfs_itruncate_start(
1320 xfs_inode_t *ip,
1321 uint flags,
1322 xfs_fsize_t new_size)
1323{
1324 xfs_fsize_t last_byte;
1325 xfs_off_t toss_start;
1326 xfs_mount_t *mp;
d3cf2094 1327 int error = 0;
1da177e4 1328
579aa9ca 1329 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ba87ea69 1330 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1331 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1332 (flags == XFS_ITRUNC_MAYBE));
1333
1334 mp = ip->i_mount;
9fa8046f 1335
c734c79b 1336 /* wait for the completion of any pending DIOs */
d112f298 1337 if (new_size == 0 || new_size < ip->i_size)
25e41b3d 1338 xfs_ioend_wait(ip);
c734c79b 1339
1da177e4 1340 /*
67fcaa73 1341 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1342 * overlapping the region being removed. We have to use
67fcaa73 1343 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1344 * caller may not be able to finish the truncate without
1345 * dropping the inode's I/O lock. Make sure
1346 * to catch any pages brought in by buffers overlapping
1347 * the EOF by searching out beyond the isize by our
1348 * block size. We round new_size up to a block boundary
1349 * so that we don't toss things on the same block as
1350 * new_size but before it.
1351 *
67fcaa73 1352 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1353 * call remapf() over the same region if the file is mapped.
1354 * This frees up mapped file references to the pages in the
67fcaa73 1355 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1356 * that we get the latest mapped changes flushed out.
1357 */
1358 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1359 toss_start = XFS_FSB_TO_B(mp, toss_start);
1360 if (toss_start < 0) {
1361 /*
1362 * The place to start tossing is beyond our maximum
1363 * file size, so there is no way that the data extended
1364 * out there.
1365 */
d3cf2094 1366 return 0;
1da177e4
LT
1367 }
1368 last_byte = xfs_file_last_byte(ip);
0b1b213f 1369 trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1da177e4
LT
1370 if (last_byte > toss_start) {
1371 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1372 xfs_tosspages(ip, toss_start,
1373 -1, FI_REMAPF_LOCKED);
1da177e4 1374 } else {
739bfb2a
CH
1375 error = xfs_flushinval_pages(ip, toss_start,
1376 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1377 }
1378 }
1379
1380#ifdef DEBUG
1381 if (new_size == 0) {
df80c933 1382 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1da177e4
LT
1383 }
1384#endif
d3cf2094 1385 return error;
1da177e4
LT
1386}
1387
1388/*
f6485057
DC
1389 * Shrink the file to the given new_size. The new size must be smaller than
1390 * the current size. This will free up the underlying blocks in the removed
1391 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1da177e4 1392 *
f6485057
DC
1393 * The transaction passed to this routine must have made a permanent log
1394 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1395 * given transaction and start new ones, so make sure everything involved in
1396 * the transaction is tidy before calling here. Some transaction will be
1397 * returned to the caller to be committed. The incoming transaction must
1398 * already include the inode, and both inode locks must be held exclusively.
1399 * The inode must also be "held" within the transaction. On return the inode
1400 * will be "held" within the returned transaction. This routine does NOT
1401 * require any disk space to be reserved for it within the transaction.
1da177e4 1402 *
f6485057
DC
1403 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1404 * indicates the fork which is to be truncated. For the attribute fork we only
1405 * support truncation to size 0.
1da177e4 1406 *
f6485057
DC
1407 * We use the sync parameter to indicate whether or not the first transaction
1408 * we perform might have to be synchronous. For the attr fork, it needs to be
1409 * so if the unlink of the inode is not yet known to be permanent in the log.
1410 * This keeps us from freeing and reusing the blocks of the attribute fork
1411 * before the unlink of the inode becomes permanent.
1da177e4 1412 *
f6485057
DC
1413 * For the data fork, we normally have to run synchronously if we're being
1414 * called out of the inactive path or we're being called out of the create path
1415 * where we're truncating an existing file. Either way, the truncate needs to
1416 * be sync so blocks don't reappear in the file with altered data in case of a
1417 * crash. wsync filesystems can run the first case async because anything that
1418 * shrinks the inode has to run sync so by the time we're called here from
1419 * inactive, the inode size is permanently set to 0.
1da177e4 1420 *
f6485057
DC
1421 * Calls from the truncate path always need to be sync unless we're in a wsync
1422 * filesystem and the file has already been unlinked.
1da177e4 1423 *
f6485057
DC
1424 * The caller is responsible for correctly setting the sync parameter. It gets
1425 * too hard for us to guess here which path we're being called out of just
1426 * based on inode state.
1427 *
1428 * If we get an error, we must return with the inode locked and linked into the
1429 * current transaction. This keeps things simple for the higher level code,
1430 * because it always knows that the inode is locked and held in the transaction
1431 * that returns to it whether errors occur or not. We don't mark the inode
1432 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1433 */
1434int
1435xfs_itruncate_finish(
1436 xfs_trans_t **tp,
1437 xfs_inode_t *ip,
1438 xfs_fsize_t new_size,
1439 int fork,
1440 int sync)
1441{
1442 xfs_fsblock_t first_block;
1443 xfs_fileoff_t first_unmap_block;
1444 xfs_fileoff_t last_block;
1445 xfs_filblks_t unmap_len=0;
1446 xfs_mount_t *mp;
1447 xfs_trans_t *ntp;
1448 int done;
1449 int committed;
1450 xfs_bmap_free_t free_list;
1451 int error;
1452
579aa9ca 1453 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ba87ea69 1454 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1455 ASSERT(*tp != NULL);
1456 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1457 ASSERT(ip->i_transp == *tp);
1458 ASSERT(ip->i_itemp != NULL);
898621d5 1459 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1da177e4
LT
1460
1461
1462 ntp = *tp;
1463 mp = (ntp)->t_mountp;
1464 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1465
1466 /*
1467 * We only support truncating the entire attribute fork.
1468 */
1469 if (fork == XFS_ATTR_FORK) {
1470 new_size = 0LL;
1471 }
1472 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
0b1b213f
CH
1473 trace_xfs_itruncate_finish_start(ip, new_size);
1474
1da177e4
LT
1475 /*
1476 * The first thing we do is set the size to new_size permanently
1477 * on disk. This way we don't have to worry about anyone ever
1478 * being able to look at the data being freed even in the face
1479 * of a crash. What we're getting around here is the case where
1480 * we free a block, it is allocated to another file, it is written
1481 * to, and then we crash. If the new data gets written to the
1482 * file but the log buffers containing the free and reallocation
1483 * don't, then we'd end up with garbage in the blocks being freed.
1484 * As long as we make the new_size permanent before actually
1485 * freeing any blocks it doesn't matter if they get writtten to.
1486 *
1487 * The callers must signal into us whether or not the size
1488 * setting here must be synchronous. There are a few cases
1489 * where it doesn't have to be synchronous. Those cases
1490 * occur if the file is unlinked and we know the unlink is
1491 * permanent or if the blocks being truncated are guaranteed
1492 * to be beyond the inode eof (regardless of the link count)
1493 * and the eof value is permanent. Both of these cases occur
1494 * only on wsync-mounted filesystems. In those cases, we're
1495 * guaranteed that no user will ever see the data in the blocks
1496 * that are being truncated so the truncate can run async.
1497 * In the free beyond eof case, the file may wind up with
1498 * more blocks allocated to it than it needs if we crash
1499 * and that won't get fixed until the next time the file
1500 * is re-opened and closed but that's ok as that shouldn't
1501 * be too many blocks.
1502 *
1503 * However, we can't just make all wsync xactions run async
1504 * because there's one call out of the create path that needs
1505 * to run sync where it's truncating an existing file to size
1506 * 0 whose size is > 0.
1507 *
1508 * It's probably possible to come up with a test in this
1509 * routine that would correctly distinguish all the above
1510 * cases from the values of the function parameters and the
1511 * inode state but for sanity's sake, I've decided to let the
1512 * layers above just tell us. It's simpler to correctly figure
1513 * out in the layer above exactly under what conditions we
1514 * can run async and I think it's easier for others read and
1515 * follow the logic in case something has to be changed.
1516 * cscope is your friend -- rcc.
1517 *
1518 * The attribute fork is much simpler.
1519 *
1520 * For the attribute fork we allow the caller to tell us whether
1521 * the unlink of the inode that led to this call is yet permanent
1522 * in the on disk log. If it is not and we will be freeing extents
1523 * in this inode then we make the first transaction synchronous
1524 * to make sure that the unlink is permanent by the time we free
1525 * the blocks.
1526 */
1527 if (fork == XFS_DATA_FORK) {
1528 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1529 /*
1530 * If we are not changing the file size then do
1531 * not update the on-disk file size - we may be
1532 * called from xfs_inactive_free_eofblocks(). If we
1533 * update the on-disk file size and then the system
1534 * crashes before the contents of the file are
1535 * flushed to disk then the files may be full of
1536 * holes (ie NULL files bug).
1537 */
1538 if (ip->i_size != new_size) {
1539 ip->i_d.di_size = new_size;
1540 ip->i_size = new_size;
1541 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1542 }
1da177e4
LT
1543 }
1544 } else if (sync) {
1545 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1546 if (ip->i_d.di_anextents > 0)
1547 xfs_trans_set_sync(ntp);
1548 }
1549 ASSERT(fork == XFS_DATA_FORK ||
1550 (fork == XFS_ATTR_FORK &&
1551 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1552 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1553
1554 /*
1555 * Since it is possible for space to become allocated beyond
1556 * the end of the file (in a crash where the space is allocated
1557 * but the inode size is not yet updated), simply remove any
1558 * blocks which show up between the new EOF and the maximum
1559 * possible file size. If the first block to be removed is
1560 * beyond the maximum file size (ie it is the same as last_block),
1561 * then there is nothing to do.
1562 */
1563 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1564 ASSERT(first_unmap_block <= last_block);
1565 done = 0;
1566 if (last_block == first_unmap_block) {
1567 done = 1;
1568 } else {
1569 unmap_len = last_block - first_unmap_block + 1;
1570 }
1571 while (!done) {
1572 /*
1573 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1574 * will tell us whether it freed the entire range or
1575 * not. If this is a synchronous mount (wsync),
1576 * then we can tell bunmapi to keep all the
1577 * transactions asynchronous since the unlink
1578 * transaction that made this inode inactive has
1579 * already hit the disk. There's no danger of
1580 * the freed blocks being reused, there being a
1581 * crash, and the reused blocks suddenly reappearing
1582 * in this file with garbage in them once recovery
1583 * runs.
1584 */
9d87c319 1585 xfs_bmap_init(&free_list, &first_block);
541d7d3c 1586 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1587 first_unmap_block, unmap_len,
cd8b0bb3 1588 xfs_bmapi_aflag(fork),
1da177e4 1589 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1590 &first_block, &free_list,
b4e9181e 1591 &done);
1da177e4
LT
1592 if (error) {
1593 /*
1594 * If the bunmapi call encounters an error,
1595 * return to the caller where the transaction
1596 * can be properly aborted. We just need to
1597 * make sure we're not holding any resources
1598 * that we were not when we came in.
1599 */
1600 xfs_bmap_cancel(&free_list);
1601 return error;
1602 }
1603
1604 /*
1605 * Duplicate the transaction that has the permanent
1606 * reservation and commit the old transaction.
1607 */
f7c99b6f 1608 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4 1609 ntp = *tp;
898621d5
CH
1610 if (committed)
1611 xfs_trans_ijoin(ntp, ip);
f6485057 1612
1da177e4
LT
1613 if (error) {
1614 /*
f6485057
DC
1615 * If the bmap finish call encounters an error, return
1616 * to the caller where the transaction can be properly
1617 * aborted. We just need to make sure we're not
1618 * holding any resources that we were not when we came
1619 * in.
1da177e4 1620 *
f6485057
DC
1621 * Aborting from this point might lose some blocks in
1622 * the file system, but oh well.
1da177e4
LT
1623 */
1624 xfs_bmap_cancel(&free_list);
1da177e4
LT
1625 return error;
1626 }
1627
1628 if (committed) {
1629 /*
f6485057 1630 * Mark the inode dirty so it will be logged and
e5720eec 1631 * moved forward in the log as part of every commit.
1da177e4 1632 */
1da177e4
LT
1633 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1634 }
f6485057 1635
1da177e4 1636 ntp = xfs_trans_dup(ntp);
e5720eec 1637 error = xfs_trans_commit(*tp, 0);
1da177e4 1638 *tp = ntp;
e5720eec 1639
898621d5 1640 xfs_trans_ijoin(ntp, ip);
f6485057 1641
cc09c0dc
DC
1642 if (error)
1643 return error;
1644 /*
1645 * transaction commit worked ok so we can drop the extra ticket
1646 * reference that we gained in xfs_trans_dup()
1647 */
1648 xfs_log_ticket_put(ntp->t_ticket);
1649 error = xfs_trans_reserve(ntp, 0,
f6485057
DC
1650 XFS_ITRUNCATE_LOG_RES(mp), 0,
1651 XFS_TRANS_PERM_LOG_RES,
1652 XFS_ITRUNCATE_LOG_COUNT);
1653 if (error)
1654 return error;
1da177e4
LT
1655 }
1656 /*
1657 * Only update the size in the case of the data fork, but
1658 * always re-log the inode so that our permanent transaction
1659 * can keep on rolling it forward in the log.
1660 */
1661 if (fork == XFS_DATA_FORK) {
1662 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1663 /*
1664 * If we are not changing the file size then do
1665 * not update the on-disk file size - we may be
1666 * called from xfs_inactive_free_eofblocks(). If we
1667 * update the on-disk file size and then the system
1668 * crashes before the contents of the file are
1669 * flushed to disk then the files may be full of
1670 * holes (ie NULL files bug).
1671 */
1672 if (ip->i_size != new_size) {
1673 ip->i_d.di_size = new_size;
1674 ip->i_size = new_size;
1675 }
1da177e4
LT
1676 }
1677 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1678 ASSERT((new_size != 0) ||
1679 (fork == XFS_ATTR_FORK) ||
1680 (ip->i_delayed_blks == 0));
1681 ASSERT((new_size != 0) ||
1682 (fork == XFS_ATTR_FORK) ||
1683 (ip->i_d.di_nextents == 0));
0b1b213f 1684 trace_xfs_itruncate_finish_end(ip, new_size);
1da177e4
LT
1685 return 0;
1686}
1687
1da177e4
LT
1688/*
1689 * This is called when the inode's link count goes to 0.
1690 * We place the on-disk inode on a list in the AGI. It
1691 * will be pulled from this list when the inode is freed.
1692 */
1693int
1694xfs_iunlink(
1695 xfs_trans_t *tp,
1696 xfs_inode_t *ip)
1697{
1698 xfs_mount_t *mp;
1699 xfs_agi_t *agi;
1700 xfs_dinode_t *dip;
1701 xfs_buf_t *agibp;
1702 xfs_buf_t *ibp;
1da177e4
LT
1703 xfs_agino_t agino;
1704 short bucket_index;
1705 int offset;
1706 int error;
1da177e4
LT
1707
1708 ASSERT(ip->i_d.di_nlink == 0);
1709 ASSERT(ip->i_d.di_mode != 0);
1710 ASSERT(ip->i_transp == tp);
1711
1712 mp = tp->t_mountp;
1713
1da177e4
LT
1714 /*
1715 * Get the agi buffer first. It ensures lock ordering
1716 * on the list.
1717 */
5e1be0fb 1718 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1719 if (error)
1da177e4 1720 return error;
1da177e4 1721 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1722
1da177e4
LT
1723 /*
1724 * Get the index into the agi hash table for the
1725 * list this inode will go on.
1726 */
1727 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1728 ASSERT(agino != 0);
1729 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1730 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1731 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1732
16259e7d 1733 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1734 /*
1735 * There is already another inode in the bucket we need
1736 * to add ourselves to. Add us at the front of the list.
1737 * Here we put the head pointer into our next pointer,
1738 * and then we fall through to point the head at us.
1739 */
0cadda1c 1740 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
c319b58b
VA
1741 if (error)
1742 return error;
1743
347d1c01 1744 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1745 /* both on-disk, don't endian flip twice */
1746 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1747 offset = ip->i_imap.im_boffset +
1da177e4
LT
1748 offsetof(xfs_dinode_t, di_next_unlinked);
1749 xfs_trans_inode_buf(tp, ibp);
1750 xfs_trans_log_buf(tp, ibp, offset,
1751 (offset + sizeof(xfs_agino_t) - 1));
1752 xfs_inobp_check(mp, ibp);
1753 }
1754
1755 /*
1756 * Point the bucket head pointer at the inode being inserted.
1757 */
1758 ASSERT(agino != 0);
16259e7d 1759 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1760 offset = offsetof(xfs_agi_t, agi_unlinked) +
1761 (sizeof(xfs_agino_t) * bucket_index);
1762 xfs_trans_log_buf(tp, agibp, offset,
1763 (offset + sizeof(xfs_agino_t) - 1));
1764 return 0;
1765}
1766
1767/*
1768 * Pull the on-disk inode from the AGI unlinked list.
1769 */
1770STATIC int
1771xfs_iunlink_remove(
1772 xfs_trans_t *tp,
1773 xfs_inode_t *ip)
1774{
1775 xfs_ino_t next_ino;
1776 xfs_mount_t *mp;
1777 xfs_agi_t *agi;
1778 xfs_dinode_t *dip;
1779 xfs_buf_t *agibp;
1780 xfs_buf_t *ibp;
1781 xfs_agnumber_t agno;
1da177e4
LT
1782 xfs_agino_t agino;
1783 xfs_agino_t next_agino;
1784 xfs_buf_t *last_ibp;
6fdf8ccc 1785 xfs_dinode_t *last_dip = NULL;
1da177e4 1786 short bucket_index;
6fdf8ccc 1787 int offset, last_offset = 0;
1da177e4 1788 int error;
1da177e4 1789
1da177e4 1790 mp = tp->t_mountp;
1da177e4 1791 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1792
1793 /*
1794 * Get the agi buffer first. It ensures lock ordering
1795 * on the list.
1796 */
5e1be0fb
CH
1797 error = xfs_read_agi(mp, tp, agno, &agibp);
1798 if (error)
1da177e4 1799 return error;
5e1be0fb 1800
1da177e4 1801 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1802
1da177e4
LT
1803 /*
1804 * Get the index into the agi hash table for the
1805 * list this inode will go on.
1806 */
1807 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1808 ASSERT(agino != 0);
1809 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 1810 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
1811 ASSERT(agi->agi_unlinked[bucket_index]);
1812
16259e7d 1813 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1814 /*
1815 * We're at the head of the list. Get the inode's
1816 * on-disk buffer to see if there is anyone after us
1817 * on the list. Only modify our next pointer if it
1818 * is not already NULLAGINO. This saves us the overhead
1819 * of dealing with the buffer when there is no need to
1820 * change it.
1821 */
0cadda1c 1822 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1da177e4
LT
1823 if (error) {
1824 cmn_err(CE_WARN,
1825 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1826 error, mp->m_fsname);
1827 return error;
1828 }
347d1c01 1829 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1830 ASSERT(next_agino != 0);
1831 if (next_agino != NULLAGINO) {
347d1c01 1832 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1833 offset = ip->i_imap.im_boffset +
1da177e4
LT
1834 offsetof(xfs_dinode_t, di_next_unlinked);
1835 xfs_trans_inode_buf(tp, ibp);
1836 xfs_trans_log_buf(tp, ibp, offset,
1837 (offset + sizeof(xfs_agino_t) - 1));
1838 xfs_inobp_check(mp, ibp);
1839 } else {
1840 xfs_trans_brelse(tp, ibp);
1841 }
1842 /*
1843 * Point the bucket head pointer at the next inode.
1844 */
1845 ASSERT(next_agino != 0);
1846 ASSERT(next_agino != agino);
16259e7d 1847 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1848 offset = offsetof(xfs_agi_t, agi_unlinked) +
1849 (sizeof(xfs_agino_t) * bucket_index);
1850 xfs_trans_log_buf(tp, agibp, offset,
1851 (offset + sizeof(xfs_agino_t) - 1));
1852 } else {
1853 /*
1854 * We need to search the list for the inode being freed.
1855 */
16259e7d 1856 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1857 last_ibp = NULL;
1858 while (next_agino != agino) {
1859 /*
1860 * If the last inode wasn't the one pointing to
1861 * us, then release its buffer since we're not
1862 * going to do anything with it.
1863 */
1864 if (last_ibp != NULL) {
1865 xfs_trans_brelse(tp, last_ibp);
1866 }
1867 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1868 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
c679eef0 1869 &last_ibp, &last_offset, 0);
1da177e4
LT
1870 if (error) {
1871 cmn_err(CE_WARN,
1872 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1873 error, mp->m_fsname);
1874 return error;
1875 }
347d1c01 1876 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1877 ASSERT(next_agino != NULLAGINO);
1878 ASSERT(next_agino != 0);
1879 }
1880 /*
1881 * Now last_ibp points to the buffer previous to us on
1882 * the unlinked list. Pull us from the list.
1883 */
0cadda1c 1884 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1da177e4
LT
1885 if (error) {
1886 cmn_err(CE_WARN,
1887 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1888 error, mp->m_fsname);
1889 return error;
1890 }
347d1c01 1891 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1892 ASSERT(next_agino != 0);
1893 ASSERT(next_agino != agino);
1894 if (next_agino != NULLAGINO) {
347d1c01 1895 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1896 offset = ip->i_imap.im_boffset +
1da177e4
LT
1897 offsetof(xfs_dinode_t, di_next_unlinked);
1898 xfs_trans_inode_buf(tp, ibp);
1899 xfs_trans_log_buf(tp, ibp, offset,
1900 (offset + sizeof(xfs_agino_t) - 1));
1901 xfs_inobp_check(mp, ibp);
1902 } else {
1903 xfs_trans_brelse(tp, ibp);
1904 }
1905 /*
1906 * Point the previous inode on the list to the next inode.
1907 */
347d1c01 1908 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
1909 ASSERT(next_agino != 0);
1910 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1911 xfs_trans_inode_buf(tp, last_ibp);
1912 xfs_trans_log_buf(tp, last_ibp, offset,
1913 (offset + sizeof(xfs_agino_t) - 1));
1914 xfs_inobp_check(mp, last_ibp);
1915 }
1916 return 0;
1917}
1918
5b3eed75
DC
1919/*
1920 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1921 * inodes that are in memory - they all must be marked stale and attached to
1922 * the cluster buffer.
1923 */
ba0f32d4 1924STATIC void
1da177e4
LT
1925xfs_ifree_cluster(
1926 xfs_inode_t *free_ip,
1927 xfs_trans_t *tp,
1928 xfs_ino_t inum)
1929{
1930 xfs_mount_t *mp = free_ip->i_mount;
1931 int blks_per_cluster;
1932 int nbufs;
1933 int ninodes;
5b257b4a 1934 int i, j;
1da177e4
LT
1935 xfs_daddr_t blkno;
1936 xfs_buf_t *bp;
5b257b4a 1937 xfs_inode_t *ip;
1da177e4
LT
1938 xfs_inode_log_item_t *iip;
1939 xfs_log_item_t *lip;
5017e97d 1940 struct xfs_perag *pag;
1da177e4 1941
5017e97d 1942 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
1943 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1944 blks_per_cluster = 1;
1945 ninodes = mp->m_sb.sb_inopblock;
1946 nbufs = XFS_IALLOC_BLOCKS(mp);
1947 } else {
1948 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1949 mp->m_sb.sb_blocksize;
1950 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1951 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1952 }
1953
1da177e4
LT
1954 for (j = 0; j < nbufs; j++, inum += ninodes) {
1955 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1956 XFS_INO_TO_AGBNO(mp, inum));
1957
5b257b4a
DC
1958 /*
1959 * We obtain and lock the backing buffer first in the process
1960 * here, as we have to ensure that any dirty inode that we
1961 * can't get the flush lock on is attached to the buffer.
1962 * If we scan the in-memory inodes first, then buffer IO can
1963 * complete before we get a lock on it, and hence we may fail
1964 * to mark all the active inodes on the buffer stale.
1965 */
1966 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1967 mp->m_bsize * blks_per_cluster,
1968 XBF_LOCK);
1969
1970 /*
1971 * Walk the inodes already attached to the buffer and mark them
1972 * stale. These will all have the flush locks held, so an
5b3eed75
DC
1973 * in-memory inode walk can't lock them. By marking them all
1974 * stale first, we will not attempt to lock them in the loop
1975 * below as the XFS_ISTALE flag will be set.
5b257b4a
DC
1976 */
1977 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1978 while (lip) {
1979 if (lip->li_type == XFS_LI_INODE) {
1980 iip = (xfs_inode_log_item_t *)lip;
1981 ASSERT(iip->ili_logged == 1);
ca30b2a7 1982 lip->li_cb = xfs_istale_done;
5b257b4a
DC
1983 xfs_trans_ail_copy_lsn(mp->m_ail,
1984 &iip->ili_flush_lsn,
1985 &iip->ili_item.li_lsn);
1986 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
1987 }
1988 lip = lip->li_bio_list;
1989 }
1da177e4 1990
5b3eed75 1991
1da177e4 1992 /*
5b257b4a
DC
1993 * For each inode in memory attempt to add it to the inode
1994 * buffer and set it up for being staled on buffer IO
1995 * completion. This is safe as we've locked out tail pushing
1996 * and flushing by locking the buffer.
1da177e4 1997 *
5b257b4a
DC
1998 * We have already marked every inode that was part of a
1999 * transaction stale above, which means there is no point in
2000 * even trying to lock them.
1da177e4 2001 */
1da177e4 2002 for (i = 0; i < ninodes; i++) {
5b3eed75 2003retry:
1a3e8f3d 2004 rcu_read_lock();
da353b0d
DC
2005 ip = radix_tree_lookup(&pag->pag_ici_root,
2006 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2007
1a3e8f3d
DC
2008 /* Inode not in memory, nothing to do */
2009 if (!ip) {
2010 rcu_read_unlock();
1da177e4
LT
2011 continue;
2012 }
2013
1a3e8f3d
DC
2014 /*
2015 * because this is an RCU protected lookup, we could
2016 * find a recently freed or even reallocated inode
2017 * during the lookup. We need to check under the
2018 * i_flags_lock for a valid inode here. Skip it if it
2019 * is not valid, the wrong inode or stale.
2020 */
2021 spin_lock(&ip->i_flags_lock);
2022 if (ip->i_ino != inum + i ||
2023 __xfs_iflags_test(ip, XFS_ISTALE)) {
2024 spin_unlock(&ip->i_flags_lock);
2025 rcu_read_unlock();
2026 continue;
2027 }
2028 spin_unlock(&ip->i_flags_lock);
2029
5b3eed75
DC
2030 /*
2031 * Don't try to lock/unlock the current inode, but we
2032 * _cannot_ skip the other inodes that we did not find
2033 * in the list attached to the buffer and are not
2034 * already marked stale. If we can't lock it, back off
2035 * and retry.
2036 */
5b257b4a
DC
2037 if (ip != free_ip &&
2038 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2039 rcu_read_unlock();
5b3eed75
DC
2040 delay(1);
2041 goto retry;
1da177e4 2042 }
1a3e8f3d 2043 rcu_read_unlock();
1da177e4 2044
5b3eed75 2045 xfs_iflock(ip);
5b257b4a 2046 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2047
5b3eed75
DC
2048 /*
2049 * we don't need to attach clean inodes or those only
2050 * with unlogged changes (which we throw away, anyway).
2051 */
1da177e4 2052 iip = ip->i_itemp;
5b3eed75 2053 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2054 ASSERT(ip != free_ip);
1da177e4
LT
2055 ip->i_update_core = 0;
2056 xfs_ifunlock(ip);
2057 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2058 continue;
2059 }
2060
2061 iip->ili_last_fields = iip->ili_format.ilf_fields;
2062 iip->ili_format.ilf_fields = 0;
2063 iip->ili_logged = 1;
7b2e2a31
DC
2064 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2065 &iip->ili_item.li_lsn);
1da177e4 2066
ca30b2a7
CH
2067 xfs_buf_attach_iodone(bp, xfs_istale_done,
2068 &iip->ili_item);
5b257b4a
DC
2069
2070 if (ip != free_ip)
1da177e4 2071 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2072 }
2073
5b3eed75 2074 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2075 xfs_trans_binval(tp, bp);
2076 }
2077
5017e97d 2078 xfs_perag_put(pag);
1da177e4
LT
2079}
2080
2081/*
2082 * This is called to return an inode to the inode free list.
2083 * The inode should already be truncated to 0 length and have
2084 * no pages associated with it. This routine also assumes that
2085 * the inode is already a part of the transaction.
2086 *
2087 * The on-disk copy of the inode will have been added to the list
2088 * of unlinked inodes in the AGI. We need to remove the inode from
2089 * that list atomically with respect to freeing it here.
2090 */
2091int
2092xfs_ifree(
2093 xfs_trans_t *tp,
2094 xfs_inode_t *ip,
2095 xfs_bmap_free_t *flist)
2096{
2097 int error;
2098 int delete;
2099 xfs_ino_t first_ino;
c319b58b
VA
2100 xfs_dinode_t *dip;
2101 xfs_buf_t *ibp;
1da177e4 2102
579aa9ca 2103 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2104 ASSERT(ip->i_transp == tp);
2105 ASSERT(ip->i_d.di_nlink == 0);
2106 ASSERT(ip->i_d.di_nextents == 0);
2107 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2108 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2109 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2110 ASSERT(ip->i_d.di_nblocks == 0);
2111
2112 /*
2113 * Pull the on-disk inode from the AGI unlinked list.
2114 */
2115 error = xfs_iunlink_remove(tp, ip);
2116 if (error != 0) {
2117 return error;
2118 }
2119
2120 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2121 if (error != 0) {
2122 return error;
2123 }
2124 ip->i_d.di_mode = 0; /* mark incore inode as free */
2125 ip->i_d.di_flags = 0;
2126 ip->i_d.di_dmevmask = 0;
2127 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2128 ip->i_df.if_ext_max =
2129 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2130 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2131 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2132 /*
2133 * Bump the generation count so no one will be confused
2134 * by reincarnations of this inode.
2135 */
2136 ip->i_d.di_gen++;
c319b58b 2137
1da177e4
LT
2138 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2139
0cadda1c 2140 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
c319b58b
VA
2141 if (error)
2142 return error;
2143
2144 /*
2145 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2146 * from picking up this inode when it is reclaimed (its incore state
2147 * initialzed but not flushed to disk yet). The in-core di_mode is
2148 * already cleared and a corresponding transaction logged.
2149 * The hack here just synchronizes the in-core to on-disk
2150 * di_mode value in advance before the actual inode sync to disk.
2151 * This is OK because the inode is already unlinked and would never
2152 * change its di_mode again for this inode generation.
2153 * This is a temporary hack that would require a proper fix
2154 * in the future.
2155 */
81591fe2 2156 dip->di_mode = 0;
c319b58b 2157
1da177e4
LT
2158 if (delete) {
2159 xfs_ifree_cluster(ip, tp, first_ino);
2160 }
2161
2162 return 0;
2163}
2164
2165/*
2166 * Reallocate the space for if_broot based on the number of records
2167 * being added or deleted as indicated in rec_diff. Move the records
2168 * and pointers in if_broot to fit the new size. When shrinking this
2169 * will eliminate holes between the records and pointers created by
2170 * the caller. When growing this will create holes to be filled in
2171 * by the caller.
2172 *
2173 * The caller must not request to add more records than would fit in
2174 * the on-disk inode root. If the if_broot is currently NULL, then
2175 * if we adding records one will be allocated. The caller must also
2176 * not request that the number of records go below zero, although
2177 * it can go to zero.
2178 *
2179 * ip -- the inode whose if_broot area is changing
2180 * ext_diff -- the change in the number of records, positive or negative,
2181 * requested for the if_broot array.
2182 */
2183void
2184xfs_iroot_realloc(
2185 xfs_inode_t *ip,
2186 int rec_diff,
2187 int whichfork)
2188{
60197e8d 2189 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
2190 int cur_max;
2191 xfs_ifork_t *ifp;
7cc95a82 2192 struct xfs_btree_block *new_broot;
1da177e4
LT
2193 int new_max;
2194 size_t new_size;
2195 char *np;
2196 char *op;
2197
2198 /*
2199 * Handle the degenerate case quietly.
2200 */
2201 if (rec_diff == 0) {
2202 return;
2203 }
2204
2205 ifp = XFS_IFORK_PTR(ip, whichfork);
2206 if (rec_diff > 0) {
2207 /*
2208 * If there wasn't any memory allocated before, just
2209 * allocate it now and get out.
2210 */
2211 if (ifp->if_broot_bytes == 0) {
2212 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
4a7edddc 2213 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2214 ifp->if_broot_bytes = (int)new_size;
2215 return;
2216 }
2217
2218 /*
2219 * If there is already an existing if_broot, then we need
2220 * to realloc() it and shift the pointers to their new
2221 * location. The records don't change location because
2222 * they are kept butted up against the btree block header.
2223 */
60197e8d 2224 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2225 new_max = cur_max + rec_diff;
2226 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 2227 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4 2228 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
4a7edddc 2229 KM_SLEEP | KM_NOFS);
60197e8d
CH
2230 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2231 ifp->if_broot_bytes);
2232 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2233 (int)new_size);
1da177e4
LT
2234 ifp->if_broot_bytes = (int)new_size;
2235 ASSERT(ifp->if_broot_bytes <=
2236 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2237 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2238 return;
2239 }
2240
2241 /*
2242 * rec_diff is less than 0. In this case, we are shrinking the
2243 * if_broot buffer. It must already exist. If we go to zero
2244 * records, just get rid of the root and clear the status bit.
2245 */
2246 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2247 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2248 new_max = cur_max + rec_diff;
2249 ASSERT(new_max >= 0);
2250 if (new_max > 0)
2251 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2252 else
2253 new_size = 0;
2254 if (new_size > 0) {
4a7edddc 2255 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2256 /*
2257 * First copy over the btree block header.
2258 */
7cc95a82 2259 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
2260 } else {
2261 new_broot = NULL;
2262 ifp->if_flags &= ~XFS_IFBROOT;
2263 }
2264
2265 /*
2266 * Only copy the records and pointers if there are any.
2267 */
2268 if (new_max > 0) {
2269 /*
2270 * First copy the records.
2271 */
136341b4
CH
2272 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2273 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2274 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2275
2276 /*
2277 * Then copy the pointers.
2278 */
60197e8d 2279 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2280 ifp->if_broot_bytes);
60197e8d 2281 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2282 (int)new_size);
2283 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2284 }
f0e2d93c 2285 kmem_free(ifp->if_broot);
1da177e4
LT
2286 ifp->if_broot = new_broot;
2287 ifp->if_broot_bytes = (int)new_size;
2288 ASSERT(ifp->if_broot_bytes <=
2289 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2290 return;
2291}
2292
2293
1da177e4
LT
2294/*
2295 * This is called when the amount of space needed for if_data
2296 * is increased or decreased. The change in size is indicated by
2297 * the number of bytes that need to be added or deleted in the
2298 * byte_diff parameter.
2299 *
2300 * If the amount of space needed has decreased below the size of the
2301 * inline buffer, then switch to using the inline buffer. Otherwise,
2302 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2303 * to what is needed.
2304 *
2305 * ip -- the inode whose if_data area is changing
2306 * byte_diff -- the change in the number of bytes, positive or negative,
2307 * requested for the if_data array.
2308 */
2309void
2310xfs_idata_realloc(
2311 xfs_inode_t *ip,
2312 int byte_diff,
2313 int whichfork)
2314{
2315 xfs_ifork_t *ifp;
2316 int new_size;
2317 int real_size;
2318
2319 if (byte_diff == 0) {
2320 return;
2321 }
2322
2323 ifp = XFS_IFORK_PTR(ip, whichfork);
2324 new_size = (int)ifp->if_bytes + byte_diff;
2325 ASSERT(new_size >= 0);
2326
2327 if (new_size == 0) {
2328 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2329 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2330 }
2331 ifp->if_u1.if_data = NULL;
2332 real_size = 0;
2333 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2334 /*
2335 * If the valid extents/data can fit in if_inline_ext/data,
2336 * copy them from the malloc'd vector and free it.
2337 */
2338 if (ifp->if_u1.if_data == NULL) {
2339 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2340 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2341 ASSERT(ifp->if_real_bytes != 0);
2342 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2343 new_size);
f0e2d93c 2344 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2345 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2346 }
2347 real_size = 0;
2348 } else {
2349 /*
2350 * Stuck with malloc/realloc.
2351 * For inline data, the underlying buffer must be
2352 * a multiple of 4 bytes in size so that it can be
2353 * logged and stay on word boundaries. We enforce
2354 * that here.
2355 */
2356 real_size = roundup(new_size, 4);
2357 if (ifp->if_u1.if_data == NULL) {
2358 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2359 ifp->if_u1.if_data = kmem_alloc(real_size,
2360 KM_SLEEP | KM_NOFS);
1da177e4
LT
2361 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2362 /*
2363 * Only do the realloc if the underlying size
2364 * is really changing.
2365 */
2366 if (ifp->if_real_bytes != real_size) {
2367 ifp->if_u1.if_data =
2368 kmem_realloc(ifp->if_u1.if_data,
2369 real_size,
2370 ifp->if_real_bytes,
4a7edddc 2371 KM_SLEEP | KM_NOFS);
1da177e4
LT
2372 }
2373 } else {
2374 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2375 ifp->if_u1.if_data = kmem_alloc(real_size,
2376 KM_SLEEP | KM_NOFS);
1da177e4
LT
2377 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2378 ifp->if_bytes);
2379 }
2380 }
2381 ifp->if_real_bytes = real_size;
2382 ifp->if_bytes = new_size;
2383 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2384}
2385
1da177e4
LT
2386void
2387xfs_idestroy_fork(
2388 xfs_inode_t *ip,
2389 int whichfork)
2390{
2391 xfs_ifork_t *ifp;
2392
2393 ifp = XFS_IFORK_PTR(ip, whichfork);
2394 if (ifp->if_broot != NULL) {
f0e2d93c 2395 kmem_free(ifp->if_broot);
1da177e4
LT
2396 ifp->if_broot = NULL;
2397 }
2398
2399 /*
2400 * If the format is local, then we can't have an extents
2401 * array so just look for an inline data array. If we're
2402 * not local then we may or may not have an extents list,
2403 * so check and free it up if we do.
2404 */
2405 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2406 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2407 (ifp->if_u1.if_data != NULL)) {
2408 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2409 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2410 ifp->if_u1.if_data = NULL;
2411 ifp->if_real_bytes = 0;
2412 }
2413 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2414 ((ifp->if_flags & XFS_IFEXTIREC) ||
2415 ((ifp->if_u1.if_extents != NULL) &&
2416 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2417 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2418 xfs_iext_destroy(ifp);
1da177e4
LT
2419 }
2420 ASSERT(ifp->if_u1.if_extents == NULL ||
2421 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2422 ASSERT(ifp->if_real_bytes == 0);
2423 if (whichfork == XFS_ATTR_FORK) {
2424 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2425 ip->i_afp = NULL;
2426 }
2427}
2428
1da177e4 2429/*
60ec6783
CH
2430 * This is called to unpin an inode. The caller must have the inode locked
2431 * in at least shared mode so that the buffer cannot be subsequently pinned
2432 * once someone is waiting for it to be unpinned.
1da177e4 2433 */
60ec6783
CH
2434static void
2435xfs_iunpin_nowait(
2436 struct xfs_inode *ip)
1da177e4 2437{
579aa9ca 2438 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2439
4aaf15d1
DC
2440 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2441
a3f74ffb 2442 /* Give the log a push to start the unpinning I/O */
60ec6783 2443 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2444
a3f74ffb 2445}
1da177e4 2446
777df5af 2447void
a3f74ffb 2448xfs_iunpin_wait(
60ec6783 2449 struct xfs_inode *ip)
a3f74ffb 2450{
60ec6783
CH
2451 if (xfs_ipincount(ip)) {
2452 xfs_iunpin_nowait(ip);
2453 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2454 }
1da177e4
LT
2455}
2456
1da177e4
LT
2457/*
2458 * xfs_iextents_copy()
2459 *
2460 * This is called to copy the REAL extents (as opposed to the delayed
2461 * allocation extents) from the inode into the given buffer. It
2462 * returns the number of bytes copied into the buffer.
2463 *
2464 * If there are no delayed allocation extents, then we can just
2465 * memcpy() the extents into the buffer. Otherwise, we need to
2466 * examine each extent in turn and skip those which are delayed.
2467 */
2468int
2469xfs_iextents_copy(
2470 xfs_inode_t *ip,
a6f64d4a 2471 xfs_bmbt_rec_t *dp,
1da177e4
LT
2472 int whichfork)
2473{
2474 int copied;
1da177e4
LT
2475 int i;
2476 xfs_ifork_t *ifp;
2477 int nrecs;
2478 xfs_fsblock_t start_block;
2479
2480 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2481 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2482 ASSERT(ifp->if_bytes > 0);
2483
2484 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2485 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2486 ASSERT(nrecs > 0);
2487
2488 /*
2489 * There are some delayed allocation extents in the
2490 * inode, so copy the extents one at a time and skip
2491 * the delayed ones. There must be at least one
2492 * non-delayed extent.
2493 */
1da177e4
LT
2494 copied = 0;
2495 for (i = 0; i < nrecs; i++) {
a6f64d4a 2496 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4 2497 start_block = xfs_bmbt_get_startblock(ep);
9d87c319 2498 if (isnullstartblock(start_block)) {
1da177e4
LT
2499 /*
2500 * It's a delayed allocation extent, so skip it.
2501 */
1da177e4
LT
2502 continue;
2503 }
2504
2505 /* Translate to on disk format */
cd8b0a97
CH
2506 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2507 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2508 dp++;
1da177e4
LT
2509 copied++;
2510 }
2511 ASSERT(copied != 0);
a6f64d4a 2512 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2513
2514 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2515}
2516
2517/*
2518 * Each of the following cases stores data into the same region
2519 * of the on-disk inode, so only one of them can be valid at
2520 * any given time. While it is possible to have conflicting formats
2521 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2522 * in EXTENTS format, this can only happen when the fork has
2523 * changed formats after being modified but before being flushed.
2524 * In these cases, the format always takes precedence, because the
2525 * format indicates the current state of the fork.
2526 */
2527/*ARGSUSED*/
e4ac967b 2528STATIC void
1da177e4
LT
2529xfs_iflush_fork(
2530 xfs_inode_t *ip,
2531 xfs_dinode_t *dip,
2532 xfs_inode_log_item_t *iip,
2533 int whichfork,
2534 xfs_buf_t *bp)
2535{
2536 char *cp;
2537 xfs_ifork_t *ifp;
2538 xfs_mount_t *mp;
2539#ifdef XFS_TRANS_DEBUG
2540 int first;
2541#endif
2542 static const short brootflag[2] =
2543 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2544 static const short dataflag[2] =
2545 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2546 static const short extflag[2] =
2547 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2548
e4ac967b
DC
2549 if (!iip)
2550 return;
1da177e4
LT
2551 ifp = XFS_IFORK_PTR(ip, whichfork);
2552 /*
2553 * This can happen if we gave up in iformat in an error path,
2554 * for the attribute fork.
2555 */
e4ac967b 2556 if (!ifp) {
1da177e4 2557 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2558 return;
1da177e4
LT
2559 }
2560 cp = XFS_DFORK_PTR(dip, whichfork);
2561 mp = ip->i_mount;
2562 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2563 case XFS_DINODE_FMT_LOCAL:
2564 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2565 (ifp->if_bytes > 0)) {
2566 ASSERT(ifp->if_u1.if_data != NULL);
2567 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2568 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2569 }
1da177e4
LT
2570 break;
2571
2572 case XFS_DINODE_FMT_EXTENTS:
2573 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2574 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2575 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2576 (ifp->if_bytes == 0));
2577 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2578 (ifp->if_bytes > 0));
1da177e4
LT
2579 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2580 (ifp->if_bytes > 0)) {
2581 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2582 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2583 whichfork);
2584 }
2585 break;
2586
2587 case XFS_DINODE_FMT_BTREE:
2588 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2589 (ifp->if_broot_bytes > 0)) {
2590 ASSERT(ifp->if_broot != NULL);
2591 ASSERT(ifp->if_broot_bytes <=
2592 (XFS_IFORK_SIZE(ip, whichfork) +
2593 XFS_BROOT_SIZE_ADJ));
60197e8d 2594 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2595 (xfs_bmdr_block_t *)cp,
2596 XFS_DFORK_SIZE(dip, mp, whichfork));
2597 }
2598 break;
2599
2600 case XFS_DINODE_FMT_DEV:
2601 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2602 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2603 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2604 }
2605 break;
2606
2607 case XFS_DINODE_FMT_UUID:
2608 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2609 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2610 memcpy(XFS_DFORK_DPTR(dip),
2611 &ip->i_df.if_u2.if_uuid,
2612 sizeof(uuid_t));
1da177e4
LT
2613 }
2614 break;
2615
2616 default:
2617 ASSERT(0);
2618 break;
2619 }
1da177e4
LT
2620}
2621
bad55843
DC
2622STATIC int
2623xfs_iflush_cluster(
2624 xfs_inode_t *ip,
2625 xfs_buf_t *bp)
2626{
2627 xfs_mount_t *mp = ip->i_mount;
5017e97d 2628 struct xfs_perag *pag;
bad55843 2629 unsigned long first_index, mask;
c8f5f12e 2630 unsigned long inodes_per_cluster;
bad55843
DC
2631 int ilist_size;
2632 xfs_inode_t **ilist;
2633 xfs_inode_t *iq;
bad55843
DC
2634 int nr_found;
2635 int clcount = 0;
2636 int bufwasdelwri;
2637 int i;
2638
5017e97d 2639 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
bad55843 2640
c8f5f12e
DC
2641 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2642 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2643 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843 2644 if (!ilist)
44b56e0a 2645 goto out_put;
bad55843
DC
2646
2647 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2648 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
1a3e8f3d 2649 rcu_read_lock();
bad55843
DC
2650 /* really need a gang lookup range call here */
2651 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2652 first_index, inodes_per_cluster);
bad55843
DC
2653 if (nr_found == 0)
2654 goto out_free;
2655
2656 for (i = 0; i < nr_found; i++) {
2657 iq = ilist[i];
2658 if (iq == ip)
2659 continue;
1a3e8f3d
DC
2660
2661 /*
2662 * because this is an RCU protected lookup, we could find a
2663 * recently freed or even reallocated inode during the lookup.
2664 * We need to check under the i_flags_lock for a valid inode
2665 * here. Skip it if it is not valid or the wrong inode.
2666 */
2667 spin_lock(&ip->i_flags_lock);
2668 if (!ip->i_ino ||
2669 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2670 spin_unlock(&ip->i_flags_lock);
2671 continue;
2672 }
2673 spin_unlock(&ip->i_flags_lock);
2674
bad55843
DC
2675 /*
2676 * Do an un-protected check to see if the inode is dirty and
2677 * is a candidate for flushing. These checks will be repeated
2678 * later after the appropriate locks are acquired.
2679 */
33540408 2680 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2681 continue;
bad55843
DC
2682
2683 /*
2684 * Try to get locks. If any are unavailable or it is pinned,
2685 * then this inode cannot be flushed and is skipped.
2686 */
2687
2688 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2689 continue;
2690 if (!xfs_iflock_nowait(iq)) {
2691 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2692 continue;
2693 }
2694 if (xfs_ipincount(iq)) {
2695 xfs_ifunlock(iq);
2696 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2697 continue;
2698 }
2699
2700 /*
2701 * arriving here means that this inode can be flushed. First
2702 * re-check that it's dirty before flushing.
2703 */
33540408
DC
2704 if (!xfs_inode_clean(iq)) {
2705 int error;
bad55843
DC
2706 error = xfs_iflush_int(iq, bp);
2707 if (error) {
2708 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2709 goto cluster_corrupt_out;
2710 }
2711 clcount++;
2712 } else {
2713 xfs_ifunlock(iq);
2714 }
2715 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2716 }
2717
2718 if (clcount) {
2719 XFS_STATS_INC(xs_icluster_flushcnt);
2720 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2721 }
2722
2723out_free:
1a3e8f3d 2724 rcu_read_unlock();
f0e2d93c 2725 kmem_free(ilist);
44b56e0a
DC
2726out_put:
2727 xfs_perag_put(pag);
bad55843
DC
2728 return 0;
2729
2730
2731cluster_corrupt_out:
2732 /*
2733 * Corruption detected in the clustering loop. Invalidate the
2734 * inode buffer and shut down the filesystem.
2735 */
1a3e8f3d 2736 rcu_read_unlock();
bad55843
DC
2737 /*
2738 * Clean up the buffer. If it was B_DELWRI, just release it --
2739 * brelse can handle it with no problems. If not, shut down the
2740 * filesystem before releasing the buffer.
2741 */
2742 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2743 if (bufwasdelwri)
2744 xfs_buf_relse(bp);
2745
2746 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2747
2748 if (!bufwasdelwri) {
2749 /*
2750 * Just like incore_relse: if we have b_iodone functions,
2751 * mark the buffer as an error and call them. Otherwise
2752 * mark it as stale and brelse.
2753 */
2754 if (XFS_BUF_IODONE_FUNC(bp)) {
bad55843
DC
2755 XFS_BUF_UNDONE(bp);
2756 XFS_BUF_STALE(bp);
bad55843 2757 XFS_BUF_ERROR(bp,EIO);
1a1a3e97 2758 xfs_buf_ioend(bp, 0);
bad55843
DC
2759 } else {
2760 XFS_BUF_STALE(bp);
2761 xfs_buf_relse(bp);
2762 }
2763 }
2764
2765 /*
2766 * Unlocks the flush lock
2767 */
2768 xfs_iflush_abort(iq);
f0e2d93c 2769 kmem_free(ilist);
44b56e0a 2770 xfs_perag_put(pag);
bad55843
DC
2771 return XFS_ERROR(EFSCORRUPTED);
2772}
2773
1da177e4
LT
2774/*
2775 * xfs_iflush() will write a modified inode's changes out to the
2776 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
2777 * in at least shared mode and the inode flush completion must be
2778 * active as well. The inode lock will still be held upon return from
1da177e4 2779 * the call and the caller is free to unlock it.
c63942d3 2780 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
2781 * The flags indicate how the inode's buffer should be written out.
2782 */
2783int
2784xfs_iflush(
2785 xfs_inode_t *ip,
2786 uint flags)
2787{
2788 xfs_inode_log_item_t *iip;
2789 xfs_buf_t *bp;
2790 xfs_dinode_t *dip;
2791 xfs_mount_t *mp;
2792 int error;
1da177e4
LT
2793
2794 XFS_STATS_INC(xs_iflush_count);
2795
579aa9ca 2796 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 2797 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
2798 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2799 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2800
2801 iip = ip->i_itemp;
2802 mp = ip->i_mount;
2803
1da177e4 2804 /*
a3f74ffb
DC
2805 * We can't flush the inode until it is unpinned, so wait for it if we
2806 * are allowed to block. We know noone new can pin it, because we are
2807 * holding the inode lock shared and you need to hold it exclusively to
2808 * pin the inode.
2809 *
2810 * If we are not allowed to block, force the log out asynchronously so
2811 * that when we come back the inode will be unpinned. If other inodes
2812 * in the same cluster are dirty, they will probably write the inode
2813 * out for us if they occur after the log force completes.
1da177e4 2814 */
c854363e 2815 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
a3f74ffb
DC
2816 xfs_iunpin_nowait(ip);
2817 xfs_ifunlock(ip);
2818 return EAGAIN;
2819 }
1da177e4
LT
2820 xfs_iunpin_wait(ip);
2821
4b6a4688
DC
2822 /*
2823 * For stale inodes we cannot rely on the backing buffer remaining
2824 * stale in cache for the remaining life of the stale inode and so
2825 * xfs_itobp() below may give us a buffer that no longer contains
2826 * inodes below. We have to check this after ensuring the inode is
2827 * unpinned so that it is safe to reclaim the stale inode after the
2828 * flush call.
2829 */
2830 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2831 xfs_ifunlock(ip);
2832 return 0;
2833 }
2834
1da177e4
LT
2835 /*
2836 * This may have been unpinned because the filesystem is shutting
2837 * down forcibly. If that's the case we must not write this inode
2838 * to disk, because the log record didn't make it to disk!
2839 */
2840 if (XFS_FORCED_SHUTDOWN(mp)) {
2841 ip->i_update_core = 0;
2842 if (iip)
2843 iip->ili_format.ilf_fields = 0;
2844 xfs_ifunlock(ip);
2845 return XFS_ERROR(EIO);
2846 }
2847
a3f74ffb
DC
2848 /*
2849 * Get the buffer containing the on-disk inode.
2850 */
76d8b277 2851 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
c854363e 2852 (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
a3f74ffb
DC
2853 if (error || !bp) {
2854 xfs_ifunlock(ip);
2855 return error;
2856 }
2857
1da177e4
LT
2858 /*
2859 * First flush out the inode that xfs_iflush was called with.
2860 */
2861 error = xfs_iflush_int(ip, bp);
bad55843 2862 if (error)
1da177e4 2863 goto corrupt_out;
1da177e4 2864
a3f74ffb
DC
2865 /*
2866 * If the buffer is pinned then push on the log now so we won't
2867 * get stuck waiting in the write for too long.
2868 */
2869 if (XFS_BUF_ISPINNED(bp))
a14a348b 2870 xfs_log_force(mp, 0);
a3f74ffb 2871
1da177e4
LT
2872 /*
2873 * inode clustering:
2874 * see if other inodes can be gathered into this write
2875 */
bad55843
DC
2876 error = xfs_iflush_cluster(ip, bp);
2877 if (error)
2878 goto cluster_corrupt_out;
1da177e4 2879
c854363e 2880 if (flags & SYNC_WAIT)
1da177e4 2881 error = xfs_bwrite(mp, bp);
c854363e
DC
2882 else
2883 xfs_bdwrite(mp, bp);
1da177e4
LT
2884 return error;
2885
2886corrupt_out:
2887 xfs_buf_relse(bp);
7d04a335 2888 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 2889cluster_corrupt_out:
1da177e4
LT
2890 /*
2891 * Unlocks the flush lock
2892 */
bad55843 2893 xfs_iflush_abort(ip);
1da177e4
LT
2894 return XFS_ERROR(EFSCORRUPTED);
2895}
2896
2897
2898STATIC int
2899xfs_iflush_int(
2900 xfs_inode_t *ip,
2901 xfs_buf_t *bp)
2902{
2903 xfs_inode_log_item_t *iip;
2904 xfs_dinode_t *dip;
2905 xfs_mount_t *mp;
2906#ifdef XFS_TRANS_DEBUG
2907 int first;
2908#endif
1da177e4 2909
579aa9ca 2910 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 2911 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
2912 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2913 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2914
2915 iip = ip->i_itemp;
2916 mp = ip->i_mount;
2917
1da177e4 2918 /* set *dip = inode's place in the buffer */
92bfc6e7 2919 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
2920
2921 /*
2922 * Clear i_update_core before copying out the data.
2923 * This is for coordination with our timestamp updates
2924 * that don't hold the inode lock. They will always
2925 * update the timestamps BEFORE setting i_update_core,
2926 * so if we clear i_update_core after they set it we
2927 * are guaranteed to see their updates to the timestamps.
2928 * I believe that this depends on strongly ordered memory
2929 * semantics, but we have that. We use the SYNCHRONIZE
2930 * macro to make sure that the compiler does not reorder
2931 * the i_update_core access below the data copy below.
2932 */
2933 ip->i_update_core = 0;
2934 SYNCHRONIZE();
2935
42fe2b1f 2936 /*
f9581b14 2937 * Make sure to get the latest timestamps from the Linux inode.
42fe2b1f 2938 */
f9581b14 2939 xfs_synchronize_times(ip);
42fe2b1f 2940
81591fe2 2941 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
2942 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2943 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2944 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
81591fe2 2945 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
2946 goto corrupt_out;
2947 }
2948 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2949 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2950 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2951 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2952 ip->i_ino, ip, ip->i_d.di_magic);
2953 goto corrupt_out;
2954 }
2955 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2956 if (XFS_TEST_ERROR(
2957 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2958 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2959 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2960 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2961 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2962 ip->i_ino, ip);
2963 goto corrupt_out;
2964 }
2965 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2966 if (XFS_TEST_ERROR(
2967 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2968 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2969 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2970 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2971 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2972 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2973 ip->i_ino, ip);
2974 goto corrupt_out;
2975 }
2976 }
2977 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2978 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2979 XFS_RANDOM_IFLUSH_5)) {
2980 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2981 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2982 ip->i_ino,
2983 ip->i_d.di_nextents + ip->i_d.di_anextents,
2984 ip->i_d.di_nblocks,
2985 ip);
2986 goto corrupt_out;
2987 }
2988 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2989 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2990 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2991 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2992 ip->i_ino, ip->i_d.di_forkoff, ip);
2993 goto corrupt_out;
2994 }
2995 /*
2996 * bump the flush iteration count, used to detect flushes which
2997 * postdate a log record during recovery.
2998 */
2999
3000 ip->i_d.di_flushiter++;
3001
3002 /*
3003 * Copy the dirty parts of the inode into the on-disk
3004 * inode. We always copy out the core of the inode,
3005 * because if the inode is dirty at all the core must
3006 * be.
3007 */
81591fe2 3008 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3009
3010 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3011 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3012 ip->i_d.di_flushiter = 0;
3013
3014 /*
3015 * If this is really an old format inode and the superblock version
3016 * has not been updated to support only new format inodes, then
3017 * convert back to the old inode format. If the superblock version
3018 * has been updated, then make the conversion permanent.
3019 */
51ce16d5
CH
3020 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3021 if (ip->i_d.di_version == 1) {
62118709 3022 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3023 /*
3024 * Convert it back.
3025 */
3026 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 3027 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3028 } else {
3029 /*
3030 * The superblock version has already been bumped,
3031 * so just make the conversion to the new inode
3032 * format permanent.
3033 */
51ce16d5
CH
3034 ip->i_d.di_version = 2;
3035 dip->di_version = 2;
1da177e4 3036 ip->i_d.di_onlink = 0;
81591fe2 3037 dip->di_onlink = 0;
1da177e4 3038 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
3039 memset(&(dip->di_pad[0]), 0,
3040 sizeof(dip->di_pad));
6743099c 3041 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
3042 }
3043 }
3044
e4ac967b
DC
3045 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3046 if (XFS_IFORK_Q(ip))
3047 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3048 xfs_inobp_check(mp, bp);
3049
3050 /*
3051 * We've recorded everything logged in the inode, so we'd
3052 * like to clear the ilf_fields bits so we don't log and
3053 * flush things unnecessarily. However, we can't stop
3054 * logging all this information until the data we've copied
3055 * into the disk buffer is written to disk. If we did we might
3056 * overwrite the copy of the inode in the log with all the
3057 * data after re-logging only part of it, and in the face of
3058 * a crash we wouldn't have all the data we need to recover.
3059 *
3060 * What we do is move the bits to the ili_last_fields field.
3061 * When logging the inode, these bits are moved back to the
3062 * ilf_fields field. In the xfs_iflush_done() routine we
3063 * clear ili_last_fields, since we know that the information
3064 * those bits represent is permanently on disk. As long as
3065 * the flush completes before the inode is logged again, then
3066 * both ilf_fields and ili_last_fields will be cleared.
3067 *
3068 * We can play with the ilf_fields bits here, because the inode
3069 * lock must be held exclusively in order to set bits there
3070 * and the flush lock protects the ili_last_fields bits.
3071 * Set ili_logged so the flush done
3072 * routine can tell whether or not to look in the AIL.
3073 * Also, store the current LSN of the inode so that we can tell
3074 * whether the item has moved in the AIL from xfs_iflush_done().
3075 * In order to read the lsn we need the AIL lock, because
3076 * it is a 64 bit value that cannot be read atomically.
3077 */
3078 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3079 iip->ili_last_fields = iip->ili_format.ilf_fields;
3080 iip->ili_format.ilf_fields = 0;
3081 iip->ili_logged = 1;
3082
7b2e2a31
DC
3083 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3084 &iip->ili_item.li_lsn);
1da177e4
LT
3085
3086 /*
3087 * Attach the function xfs_iflush_done to the inode's
3088 * buffer. This will remove the inode from the AIL
3089 * and unlock the inode's flush lock when the inode is
3090 * completely written to disk.
3091 */
ca30b2a7 3092 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4
LT
3093
3094 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3095 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3096 } else {
3097 /*
3098 * We're flushing an inode which is not in the AIL and has
3099 * not been logged but has i_update_core set. For this
3100 * case we can use a B_DELWRI flush and immediately drop
3101 * the inode flush lock because we can avoid the whole
3102 * AIL state thing. It's OK to drop the flush lock now,
3103 * because we've already locked the buffer and to do anything
3104 * you really need both.
3105 */
3106 if (iip != NULL) {
3107 ASSERT(iip->ili_logged == 0);
3108 ASSERT(iip->ili_last_fields == 0);
3109 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3110 }
3111 xfs_ifunlock(ip);
3112 }
3113
3114 return 0;
3115
3116corrupt_out:
3117 return XFS_ERROR(EFSCORRUPTED);
3118}
3119
4eea22f0
MK
3120/*
3121 * Return a pointer to the extent record at file index idx.
3122 */
a6f64d4a 3123xfs_bmbt_rec_host_t *
4eea22f0
MK
3124xfs_iext_get_ext(
3125 xfs_ifork_t *ifp, /* inode fork pointer */
3126 xfs_extnum_t idx) /* index of target extent */
3127{
3128 ASSERT(idx >= 0);
0293ce3a
MK
3129 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3130 return ifp->if_u1.if_ext_irec->er_extbuf;
3131 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3132 xfs_ext_irec_t *erp; /* irec pointer */
3133 int erp_idx = 0; /* irec index */
3134 xfs_extnum_t page_idx = idx; /* ext index in target list */
3135
3136 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3137 return &erp->er_extbuf[page_idx];
3138 } else if (ifp->if_bytes) {
4eea22f0
MK
3139 return &ifp->if_u1.if_extents[idx];
3140 } else {
3141 return NULL;
3142 }
3143}
3144
3145/*
3146 * Insert new item(s) into the extent records for incore inode
3147 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3148 */
3149void
3150xfs_iext_insert(
6ef35544 3151 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0
MK
3152 xfs_extnum_t idx, /* starting index of new items */
3153 xfs_extnum_t count, /* number of inserted items */
6ef35544
CH
3154 xfs_bmbt_irec_t *new, /* items to insert */
3155 int state) /* type of extent conversion */
4eea22f0 3156{
6ef35544 3157 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3158 xfs_extnum_t i; /* extent record index */
3159
0b1b213f
CH
3160 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3161
4eea22f0
MK
3162 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3163 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3164 for (i = idx; i < idx + count; i++, new++)
3165 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3166}
3167
3168/*
3169 * This is called when the amount of space required for incore file
3170 * extents needs to be increased. The ext_diff parameter stores the
3171 * number of new extents being added and the idx parameter contains
3172 * the extent index where the new extents will be added. If the new
3173 * extents are being appended, then we just need to (re)allocate and
3174 * initialize the space. Otherwise, if the new extents are being
3175 * inserted into the middle of the existing entries, a bit more work
3176 * is required to make room for the new extents to be inserted. The
3177 * caller is responsible for filling in the new extent entries upon
3178 * return.
3179 */
3180void
3181xfs_iext_add(
3182 xfs_ifork_t *ifp, /* inode fork pointer */
3183 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3184 int ext_diff) /* number of extents to add */
4eea22f0
MK
3185{
3186 int byte_diff; /* new bytes being added */
3187 int new_size; /* size of extents after adding */
3188 xfs_extnum_t nextents; /* number of extents in file */
3189
3190 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3191 ASSERT((idx >= 0) && (idx <= nextents));
3192 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3193 new_size = ifp->if_bytes + byte_diff;
3194 /*
3195 * If the new number of extents (nextents + ext_diff)
3196 * fits inside the inode, then continue to use the inline
3197 * extent buffer.
3198 */
3199 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3200 if (idx < nextents) {
3201 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3202 &ifp->if_u2.if_inline_ext[idx],
3203 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3204 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3205 }
3206 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3207 ifp->if_real_bytes = 0;
0293ce3a 3208 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3209 }
3210 /*
3211 * Otherwise use a linear (direct) extent list.
3212 * If the extents are currently inside the inode,
3213 * xfs_iext_realloc_direct will switch us from
3214 * inline to direct extent allocation mode.
3215 */
0293ce3a 3216 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3217 xfs_iext_realloc_direct(ifp, new_size);
3218 if (idx < nextents) {
3219 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3220 &ifp->if_u1.if_extents[idx],
3221 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3222 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3223 }
3224 }
0293ce3a
MK
3225 /* Indirection array */
3226 else {
3227 xfs_ext_irec_t *erp;
3228 int erp_idx = 0;
3229 int page_idx = idx;
3230
3231 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3232 if (ifp->if_flags & XFS_IFEXTIREC) {
3233 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3234 } else {
3235 xfs_iext_irec_init(ifp);
3236 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3237 erp = ifp->if_u1.if_ext_irec;
3238 }
3239 /* Extents fit in target extent page */
3240 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3241 if (page_idx < erp->er_extcount) {
3242 memmove(&erp->er_extbuf[page_idx + ext_diff],
3243 &erp->er_extbuf[page_idx],
3244 (erp->er_extcount - page_idx) *
3245 sizeof(xfs_bmbt_rec_t));
3246 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3247 }
3248 erp->er_extcount += ext_diff;
3249 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3250 }
3251 /* Insert a new extent page */
3252 else if (erp) {
3253 xfs_iext_add_indirect_multi(ifp,
3254 erp_idx, page_idx, ext_diff);
3255 }
3256 /*
3257 * If extent(s) are being appended to the last page in
3258 * the indirection array and the new extent(s) don't fit
3259 * in the page, then erp is NULL and erp_idx is set to
3260 * the next index needed in the indirection array.
3261 */
3262 else {
3263 int count = ext_diff;
3264
3265 while (count) {
3266 erp = xfs_iext_irec_new(ifp, erp_idx);
3267 erp->er_extcount = count;
3268 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3269 if (count) {
3270 erp_idx++;
3271 }
3272 }
3273 }
3274 }
4eea22f0
MK
3275 ifp->if_bytes = new_size;
3276}
3277
0293ce3a
MK
3278/*
3279 * This is called when incore extents are being added to the indirection
3280 * array and the new extents do not fit in the target extent list. The
3281 * erp_idx parameter contains the irec index for the target extent list
3282 * in the indirection array, and the idx parameter contains the extent
3283 * index within the list. The number of extents being added is stored
3284 * in the count parameter.
3285 *
3286 * |-------| |-------|
3287 * | | | | idx - number of extents before idx
3288 * | idx | | count |
3289 * | | | | count - number of extents being inserted at idx
3290 * |-------| |-------|
3291 * | count | | nex2 | nex2 - number of extents after idx + count
3292 * |-------| |-------|
3293 */
3294void
3295xfs_iext_add_indirect_multi(
3296 xfs_ifork_t *ifp, /* inode fork pointer */
3297 int erp_idx, /* target extent irec index */
3298 xfs_extnum_t idx, /* index within target list */
3299 int count) /* new extents being added */
3300{
3301 int byte_diff; /* new bytes being added */
3302 xfs_ext_irec_t *erp; /* pointer to irec entry */
3303 xfs_extnum_t ext_diff; /* number of extents to add */
3304 xfs_extnum_t ext_cnt; /* new extents still needed */
3305 xfs_extnum_t nex2; /* extents after idx + count */
3306 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3307 int nlists; /* number of irec's (lists) */
3308
3309 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3310 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3311 nex2 = erp->er_extcount - idx;
3312 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3313
3314 /*
3315 * Save second part of target extent list
3316 * (all extents past */
3317 if (nex2) {
3318 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3319 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3320 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3321 erp->er_extcount -= nex2;
3322 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3323 memset(&erp->er_extbuf[idx], 0, byte_diff);
3324 }
3325
3326 /*
3327 * Add the new extents to the end of the target
3328 * list, then allocate new irec record(s) and
3329 * extent buffer(s) as needed to store the rest
3330 * of the new extents.
3331 */
3332 ext_cnt = count;
3333 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3334 if (ext_diff) {
3335 erp->er_extcount += ext_diff;
3336 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3337 ext_cnt -= ext_diff;
3338 }
3339 while (ext_cnt) {
3340 erp_idx++;
3341 erp = xfs_iext_irec_new(ifp, erp_idx);
3342 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3343 erp->er_extcount = ext_diff;
3344 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3345 ext_cnt -= ext_diff;
3346 }
3347
3348 /* Add nex2 extents back to indirection array */
3349 if (nex2) {
3350 xfs_extnum_t ext_avail;
3351 int i;
3352
3353 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3354 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3355 i = 0;
3356 /*
3357 * If nex2 extents fit in the current page, append
3358 * nex2_ep after the new extents.
3359 */
3360 if (nex2 <= ext_avail) {
3361 i = erp->er_extcount;
3362 }
3363 /*
3364 * Otherwise, check if space is available in the
3365 * next page.
3366 */
3367 else if ((erp_idx < nlists - 1) &&
3368 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3369 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3370 erp_idx++;
3371 erp++;
3372 /* Create a hole for nex2 extents */
3373 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3374 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3375 }
3376 /*
3377 * Final choice, create a new extent page for
3378 * nex2 extents.
3379 */
3380 else {
3381 erp_idx++;
3382 erp = xfs_iext_irec_new(ifp, erp_idx);
3383 }
3384 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3385 kmem_free(nex2_ep);
0293ce3a
MK
3386 erp->er_extcount += nex2;
3387 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3388 }
3389}
3390
4eea22f0
MK
3391/*
3392 * This is called when the amount of space required for incore file
3393 * extents needs to be decreased. The ext_diff parameter stores the
3394 * number of extents to be removed and the idx parameter contains
3395 * the extent index where the extents will be removed from.
0293ce3a
MK
3396 *
3397 * If the amount of space needed has decreased below the linear
3398 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3399 * extent array. Otherwise, use kmem_realloc() to adjust the
3400 * size to what is needed.
4eea22f0
MK
3401 */
3402void
3403xfs_iext_remove(
6ef35544 3404 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0 3405 xfs_extnum_t idx, /* index to begin removing exts */
6ef35544
CH
3406 int ext_diff, /* number of extents to remove */
3407 int state) /* type of extent conversion */
4eea22f0 3408{
6ef35544 3409 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3410 xfs_extnum_t nextents; /* number of extents in file */
3411 int new_size; /* size of extents after removal */
3412
0b1b213f
CH
3413 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3414
4eea22f0
MK
3415 ASSERT(ext_diff > 0);
3416 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3417 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3418
3419 if (new_size == 0) {
3420 xfs_iext_destroy(ifp);
0293ce3a
MK
3421 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3422 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3423 } else if (ifp->if_real_bytes) {
3424 xfs_iext_remove_direct(ifp, idx, ext_diff);
3425 } else {
3426 xfs_iext_remove_inline(ifp, idx, ext_diff);
3427 }
3428 ifp->if_bytes = new_size;
3429}
3430
3431/*
3432 * This removes ext_diff extents from the inline buffer, beginning
3433 * at extent index idx.
3434 */
3435void
3436xfs_iext_remove_inline(
3437 xfs_ifork_t *ifp, /* inode fork pointer */
3438 xfs_extnum_t idx, /* index to begin removing exts */
3439 int ext_diff) /* number of extents to remove */
3440{
3441 int nextents; /* number of extents in file */
3442
0293ce3a 3443 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3444 ASSERT(idx < XFS_INLINE_EXTS);
3445 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3446 ASSERT(((nextents - ext_diff) > 0) &&
3447 (nextents - ext_diff) < XFS_INLINE_EXTS);
3448
3449 if (idx + ext_diff < nextents) {
3450 memmove(&ifp->if_u2.if_inline_ext[idx],
3451 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3452 (nextents - (idx + ext_diff)) *
3453 sizeof(xfs_bmbt_rec_t));
3454 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3455 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3456 } else {
3457 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3458 ext_diff * sizeof(xfs_bmbt_rec_t));
3459 }
3460}
3461
3462/*
3463 * This removes ext_diff extents from a linear (direct) extent list,
3464 * beginning at extent index idx. If the extents are being removed
3465 * from the end of the list (ie. truncate) then we just need to re-
3466 * allocate the list to remove the extra space. Otherwise, if the
3467 * extents are being removed from the middle of the existing extent
3468 * entries, then we first need to move the extent records beginning
3469 * at idx + ext_diff up in the list to overwrite the records being
3470 * removed, then remove the extra space via kmem_realloc.
3471 */
3472void
3473xfs_iext_remove_direct(
3474 xfs_ifork_t *ifp, /* inode fork pointer */
3475 xfs_extnum_t idx, /* index to begin removing exts */
3476 int ext_diff) /* number of extents to remove */
3477{
3478 xfs_extnum_t nextents; /* number of extents in file */
3479 int new_size; /* size of extents after removal */
3480
0293ce3a 3481 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3482 new_size = ifp->if_bytes -
3483 (ext_diff * sizeof(xfs_bmbt_rec_t));
3484 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3485
3486 if (new_size == 0) {
3487 xfs_iext_destroy(ifp);
3488 return;
3489 }
3490 /* Move extents up in the list (if needed) */
3491 if (idx + ext_diff < nextents) {
3492 memmove(&ifp->if_u1.if_extents[idx],
3493 &ifp->if_u1.if_extents[idx + ext_diff],
3494 (nextents - (idx + ext_diff)) *
3495 sizeof(xfs_bmbt_rec_t));
3496 }
3497 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3498 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3499 /*
3500 * Reallocate the direct extent list. If the extents
3501 * will fit inside the inode then xfs_iext_realloc_direct
3502 * will switch from direct to inline extent allocation
3503 * mode for us.
3504 */
3505 xfs_iext_realloc_direct(ifp, new_size);
3506 ifp->if_bytes = new_size;
3507}
3508
0293ce3a
MK
3509/*
3510 * This is called when incore extents are being removed from the
3511 * indirection array and the extents being removed span multiple extent
3512 * buffers. The idx parameter contains the file extent index where we
3513 * want to begin removing extents, and the count parameter contains
3514 * how many extents need to be removed.
3515 *
3516 * |-------| |-------|
3517 * | nex1 | | | nex1 - number of extents before idx
3518 * |-------| | count |
3519 * | | | | count - number of extents being removed at idx
3520 * | count | |-------|
3521 * | | | nex2 | nex2 - number of extents after idx + count
3522 * |-------| |-------|
3523 */
3524void
3525xfs_iext_remove_indirect(
3526 xfs_ifork_t *ifp, /* inode fork pointer */
3527 xfs_extnum_t idx, /* index to begin removing extents */
3528 int count) /* number of extents to remove */
3529{
3530 xfs_ext_irec_t *erp; /* indirection array pointer */
3531 int erp_idx = 0; /* indirection array index */
3532 xfs_extnum_t ext_cnt; /* extents left to remove */
3533 xfs_extnum_t ext_diff; /* extents to remove in current list */
3534 xfs_extnum_t nex1; /* number of extents before idx */
3535 xfs_extnum_t nex2; /* extents after idx + count */
0293ce3a
MK
3536 int page_idx = idx; /* index in target extent list */
3537
3538 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3539 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3540 ASSERT(erp != NULL);
0293ce3a
MK
3541 nex1 = page_idx;
3542 ext_cnt = count;
3543 while (ext_cnt) {
3544 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3545 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3546 /*
3547 * Check for deletion of entire list;
3548 * xfs_iext_irec_remove() updates extent offsets.
3549 */
3550 if (ext_diff == erp->er_extcount) {
3551 xfs_iext_irec_remove(ifp, erp_idx);
3552 ext_cnt -= ext_diff;
3553 nex1 = 0;
3554 if (ext_cnt) {
3555 ASSERT(erp_idx < ifp->if_real_bytes /
3556 XFS_IEXT_BUFSZ);
3557 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3558 nex1 = 0;
3559 continue;
3560 } else {
3561 break;
3562 }
3563 }
3564 /* Move extents up (if needed) */
3565 if (nex2) {
3566 memmove(&erp->er_extbuf[nex1],
3567 &erp->er_extbuf[nex1 + ext_diff],
3568 nex2 * sizeof(xfs_bmbt_rec_t));
3569 }
3570 /* Zero out rest of page */
3571 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3572 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3573 /* Update remaining counters */
3574 erp->er_extcount -= ext_diff;
3575 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3576 ext_cnt -= ext_diff;
3577 nex1 = 0;
3578 erp_idx++;
3579 erp++;
3580 }
3581 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3582 xfs_iext_irec_compact(ifp);
3583}
3584
4eea22f0
MK
3585/*
3586 * Create, destroy, or resize a linear (direct) block of extents.
3587 */
3588void
3589xfs_iext_realloc_direct(
3590 xfs_ifork_t *ifp, /* inode fork pointer */
3591 int new_size) /* new size of extents */
3592{
3593 int rnew_size; /* real new size of extents */
3594
3595 rnew_size = new_size;
3596
0293ce3a
MK
3597 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3598 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3599 (new_size != ifp->if_real_bytes)));
3600
4eea22f0
MK
3601 /* Free extent records */
3602 if (new_size == 0) {
3603 xfs_iext_destroy(ifp);
3604 }
3605 /* Resize direct extent list and zero any new bytes */
3606 else if (ifp->if_real_bytes) {
3607 /* Check if extents will fit inside the inode */
3608 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3609 xfs_iext_direct_to_inline(ifp, new_size /
3610 (uint)sizeof(xfs_bmbt_rec_t));
3611 ifp->if_bytes = new_size;
3612 return;
3613 }
16a087d8 3614 if (!is_power_of_2(new_size)){
40ebd81d 3615 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3616 }
3617 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3618 ifp->if_u1.if_extents =
4eea22f0
MK
3619 kmem_realloc(ifp->if_u1.if_extents,
3620 rnew_size,
6785073b 3621 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3622 }
3623 if (rnew_size > ifp->if_real_bytes) {
3624 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3625 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3626 rnew_size - ifp->if_real_bytes);
3627 }
3628 }
3629 /*
3630 * Switch from the inline extent buffer to a direct
3631 * extent list. Be sure to include the inline extent
3632 * bytes in new_size.
3633 */
3634 else {
3635 new_size += ifp->if_bytes;
16a087d8 3636 if (!is_power_of_2(new_size)) {
40ebd81d 3637 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3638 }
3639 xfs_iext_inline_to_direct(ifp, rnew_size);
3640 }
3641 ifp->if_real_bytes = rnew_size;
3642 ifp->if_bytes = new_size;
3643}
3644
3645/*
3646 * Switch from linear (direct) extent records to inline buffer.
3647 */
3648void
3649xfs_iext_direct_to_inline(
3650 xfs_ifork_t *ifp, /* inode fork pointer */
3651 xfs_extnum_t nextents) /* number of extents in file */
3652{
3653 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3654 ASSERT(nextents <= XFS_INLINE_EXTS);
3655 /*
3656 * The inline buffer was zeroed when we switched
3657 * from inline to direct extent allocation mode,
3658 * so we don't need to clear it here.
3659 */
3660 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3661 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3662 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3663 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3664 ifp->if_real_bytes = 0;
3665}
3666
3667/*
3668 * Switch from inline buffer to linear (direct) extent records.
3669 * new_size should already be rounded up to the next power of 2
3670 * by the caller (when appropriate), so use new_size as it is.
3671 * However, since new_size may be rounded up, we can't update
3672 * if_bytes here. It is the caller's responsibility to update
3673 * if_bytes upon return.
3674 */
3675void
3676xfs_iext_inline_to_direct(
3677 xfs_ifork_t *ifp, /* inode fork pointer */
3678 int new_size) /* number of extents in file */
3679{
6785073b 3680 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3681 memset(ifp->if_u1.if_extents, 0, new_size);
3682 if (ifp->if_bytes) {
3683 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3684 ifp->if_bytes);
3685 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3686 sizeof(xfs_bmbt_rec_t));
3687 }
3688 ifp->if_real_bytes = new_size;
3689}
3690
0293ce3a
MK
3691/*
3692 * Resize an extent indirection array to new_size bytes.
3693 */
d96f8f89 3694STATIC void
0293ce3a
MK
3695xfs_iext_realloc_indirect(
3696 xfs_ifork_t *ifp, /* inode fork pointer */
3697 int new_size) /* new indirection array size */
3698{
3699 int nlists; /* number of irec's (ex lists) */
3700 int size; /* current indirection array size */
3701
3702 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3703 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3704 size = nlists * sizeof(xfs_ext_irec_t);
3705 ASSERT(ifp->if_real_bytes);
3706 ASSERT((new_size >= 0) && (new_size != size));
3707 if (new_size == 0) {
3708 xfs_iext_destroy(ifp);
3709 } else {
3710 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3711 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3712 new_size, size, KM_NOFS);
0293ce3a
MK
3713 }
3714}
3715
3716/*
3717 * Switch from indirection array to linear (direct) extent allocations.
3718 */
d96f8f89 3719STATIC void
0293ce3a
MK
3720xfs_iext_indirect_to_direct(
3721 xfs_ifork_t *ifp) /* inode fork pointer */
3722{
a6f64d4a 3723 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
3724 xfs_extnum_t nextents; /* number of extents in file */
3725 int size; /* size of file extents */
3726
3727 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3728 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3729 ASSERT(nextents <= XFS_LINEAR_EXTS);
3730 size = nextents * sizeof(xfs_bmbt_rec_t);
3731
71a8c87f 3732 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
3733 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3734
3735 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 3736 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3737 ifp->if_flags &= ~XFS_IFEXTIREC;
3738 ifp->if_u1.if_extents = ep;
3739 ifp->if_bytes = size;
3740 if (nextents < XFS_LINEAR_EXTS) {
3741 xfs_iext_realloc_direct(ifp, size);
3742 }
3743}
3744
4eea22f0
MK
3745/*
3746 * Free incore file extents.
3747 */
3748void
3749xfs_iext_destroy(
3750 xfs_ifork_t *ifp) /* inode fork pointer */
3751{
0293ce3a
MK
3752 if (ifp->if_flags & XFS_IFEXTIREC) {
3753 int erp_idx;
3754 int nlists;
3755
3756 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3757 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3758 xfs_iext_irec_remove(ifp, erp_idx);
3759 }
3760 ifp->if_flags &= ~XFS_IFEXTIREC;
3761 } else if (ifp->if_real_bytes) {
f0e2d93c 3762 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3763 } else if (ifp->if_bytes) {
3764 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3765 sizeof(xfs_bmbt_rec_t));
3766 }
3767 ifp->if_u1.if_extents = NULL;
3768 ifp->if_real_bytes = 0;
3769 ifp->if_bytes = 0;
3770}
0293ce3a 3771
8867bc9b
MK
3772/*
3773 * Return a pointer to the extent record for file system block bno.
3774 */
a6f64d4a 3775xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
3776xfs_iext_bno_to_ext(
3777 xfs_ifork_t *ifp, /* inode fork pointer */
3778 xfs_fileoff_t bno, /* block number to search for */
3779 xfs_extnum_t *idxp) /* index of target extent */
3780{
a6f64d4a 3781 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 3782 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 3783 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 3784 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 3785 int high; /* upper boundary in search */
8867bc9b 3786 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 3787 int low; /* lower boundary in search */
8867bc9b
MK
3788 xfs_extnum_t nextents; /* number of file extents */
3789 xfs_fileoff_t startoff = 0; /* start offset of extent */
3790
3791 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3792 if (nextents == 0) {
3793 *idxp = 0;
3794 return NULL;
3795 }
3796 low = 0;
3797 if (ifp->if_flags & XFS_IFEXTIREC) {
3798 /* Find target extent list */
3799 int erp_idx = 0;
3800 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3801 base = erp->er_extbuf;
3802 high = erp->er_extcount - 1;
3803 } else {
3804 base = ifp->if_u1.if_extents;
3805 high = nextents - 1;
3806 }
3807 /* Binary search extent records */
3808 while (low <= high) {
3809 idx = (low + high) >> 1;
3810 ep = base + idx;
3811 startoff = xfs_bmbt_get_startoff(ep);
3812 blockcount = xfs_bmbt_get_blockcount(ep);
3813 if (bno < startoff) {
3814 high = idx - 1;
3815 } else if (bno >= startoff + blockcount) {
3816 low = idx + 1;
3817 } else {
3818 /* Convert back to file-based extent index */
3819 if (ifp->if_flags & XFS_IFEXTIREC) {
3820 idx += erp->er_extoff;
3821 }
3822 *idxp = idx;
3823 return ep;
3824 }
3825 }
3826 /* Convert back to file-based extent index */
3827 if (ifp->if_flags & XFS_IFEXTIREC) {
3828 idx += erp->er_extoff;
3829 }
3830 if (bno >= startoff + blockcount) {
3831 if (++idx == nextents) {
3832 ep = NULL;
3833 } else {
3834 ep = xfs_iext_get_ext(ifp, idx);
3835 }
3836 }
3837 *idxp = idx;
3838 return ep;
3839}
3840
0293ce3a
MK
3841/*
3842 * Return a pointer to the indirection array entry containing the
3843 * extent record for filesystem block bno. Store the index of the
3844 * target irec in *erp_idxp.
3845 */
8867bc9b 3846xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
3847xfs_iext_bno_to_irec(
3848 xfs_ifork_t *ifp, /* inode fork pointer */
3849 xfs_fileoff_t bno, /* block number to search for */
3850 int *erp_idxp) /* irec index of target ext list */
3851{
3852 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3853 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 3854 int erp_idx; /* indirection array index */
0293ce3a
MK
3855 int nlists; /* number of extent irec's (lists) */
3856 int high; /* binary search upper limit */
3857 int low; /* binary search lower limit */
3858
3859 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3860 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3861 erp_idx = 0;
3862 low = 0;
3863 high = nlists - 1;
3864 while (low <= high) {
3865 erp_idx = (low + high) >> 1;
3866 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3867 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3868 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3869 high = erp_idx - 1;
3870 } else if (erp_next && bno >=
3871 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3872 low = erp_idx + 1;
3873 } else {
3874 break;
3875 }
3876 }
3877 *erp_idxp = erp_idx;
3878 return erp;
3879}
3880
3881/*
3882 * Return a pointer to the indirection array entry containing the
3883 * extent record at file extent index *idxp. Store the index of the
3884 * target irec in *erp_idxp and store the page index of the target
3885 * extent record in *idxp.
3886 */
3887xfs_ext_irec_t *
3888xfs_iext_idx_to_irec(
3889 xfs_ifork_t *ifp, /* inode fork pointer */
3890 xfs_extnum_t *idxp, /* extent index (file -> page) */
3891 int *erp_idxp, /* pointer to target irec */
3892 int realloc) /* new bytes were just added */
3893{
3894 xfs_ext_irec_t *prev; /* pointer to previous irec */
3895 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3896 int erp_idx; /* indirection array index */
3897 int nlists; /* number of irec's (ex lists) */
3898 int high; /* binary search upper limit */
3899 int low; /* binary search lower limit */
3900 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3901
3902 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3903 ASSERT(page_idx >= 0 && page_idx <=
3904 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3905 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3906 erp_idx = 0;
3907 low = 0;
3908 high = nlists - 1;
3909
3910 /* Binary search extent irec's */
3911 while (low <= high) {
3912 erp_idx = (low + high) >> 1;
3913 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3914 prev = erp_idx > 0 ? erp - 1 : NULL;
3915 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3916 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3917 high = erp_idx - 1;
3918 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3919 (page_idx == erp->er_extoff + erp->er_extcount &&
3920 !realloc)) {
3921 low = erp_idx + 1;
3922 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3923 erp->er_extcount == XFS_LINEAR_EXTS) {
3924 ASSERT(realloc);
3925 page_idx = 0;
3926 erp_idx++;
3927 erp = erp_idx < nlists ? erp + 1 : NULL;
3928 break;
3929 } else {
3930 page_idx -= erp->er_extoff;
3931 break;
3932 }
3933 }
3934 *idxp = page_idx;
3935 *erp_idxp = erp_idx;
3936 return(erp);
3937}
3938
3939/*
3940 * Allocate and initialize an indirection array once the space needed
3941 * for incore extents increases above XFS_IEXT_BUFSZ.
3942 */
3943void
3944xfs_iext_irec_init(
3945 xfs_ifork_t *ifp) /* inode fork pointer */
3946{
3947 xfs_ext_irec_t *erp; /* indirection array pointer */
3948 xfs_extnum_t nextents; /* number of extents in file */
3949
3950 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3951 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3952 ASSERT(nextents <= XFS_LINEAR_EXTS);
3953
6785073b 3954 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
3955
3956 if (nextents == 0) {
6785073b 3957 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3958 } else if (!ifp->if_real_bytes) {
3959 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3960 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3961 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3962 }
3963 erp->er_extbuf = ifp->if_u1.if_extents;
3964 erp->er_extcount = nextents;
3965 erp->er_extoff = 0;
3966
3967 ifp->if_flags |= XFS_IFEXTIREC;
3968 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3969 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3970 ifp->if_u1.if_ext_irec = erp;
3971
3972 return;
3973}
3974
3975/*
3976 * Allocate and initialize a new entry in the indirection array.
3977 */
3978xfs_ext_irec_t *
3979xfs_iext_irec_new(
3980 xfs_ifork_t *ifp, /* inode fork pointer */
3981 int erp_idx) /* index for new irec */
3982{
3983 xfs_ext_irec_t *erp; /* indirection array pointer */
3984 int i; /* loop counter */
3985 int nlists; /* number of irec's (ex lists) */
3986
3987 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3988 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3989
3990 /* Resize indirection array */
3991 xfs_iext_realloc_indirect(ifp, ++nlists *
3992 sizeof(xfs_ext_irec_t));
3993 /*
3994 * Move records down in the array so the
3995 * new page can use erp_idx.
3996 */
3997 erp = ifp->if_u1.if_ext_irec;
3998 for (i = nlists - 1; i > erp_idx; i--) {
3999 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4000 }
4001 ASSERT(i == erp_idx);
4002
4003 /* Initialize new extent record */
4004 erp = ifp->if_u1.if_ext_irec;
6785073b 4005 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4006 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4007 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4008 erp[erp_idx].er_extcount = 0;
4009 erp[erp_idx].er_extoff = erp_idx > 0 ?
4010 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4011 return (&erp[erp_idx]);
4012}
4013
4014/*
4015 * Remove a record from the indirection array.
4016 */
4017void
4018xfs_iext_irec_remove(
4019 xfs_ifork_t *ifp, /* inode fork pointer */
4020 int erp_idx) /* irec index to remove */
4021{
4022 xfs_ext_irec_t *erp; /* indirection array pointer */
4023 int i; /* loop counter */
4024 int nlists; /* number of irec's (ex lists) */
4025
4026 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4027 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4028 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4029 if (erp->er_extbuf) {
4030 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4031 -erp->er_extcount);
f0e2d93c 4032 kmem_free(erp->er_extbuf);
0293ce3a
MK
4033 }
4034 /* Compact extent records */
4035 erp = ifp->if_u1.if_ext_irec;
4036 for (i = erp_idx; i < nlists - 1; i++) {
4037 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4038 }
4039 /*
4040 * Manually free the last extent record from the indirection
4041 * array. A call to xfs_iext_realloc_indirect() with a size
4042 * of zero would result in a call to xfs_iext_destroy() which
4043 * would in turn call this function again, creating a nasty
4044 * infinite loop.
4045 */
4046 if (--nlists) {
4047 xfs_iext_realloc_indirect(ifp,
4048 nlists * sizeof(xfs_ext_irec_t));
4049 } else {
f0e2d93c 4050 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4051 }
4052 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4053}
4054
4055/*
4056 * This is called to clean up large amounts of unused memory allocated
4057 * by the indirection array. Before compacting anything though, verify
4058 * that the indirection array is still needed and switch back to the
4059 * linear extent list (or even the inline buffer) if possible. The
4060 * compaction policy is as follows:
4061 *
4062 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 4063 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
4064 * No Compaction: Extents occupy at least 50% of allocated space
4065 */
4066void
4067xfs_iext_irec_compact(
4068 xfs_ifork_t *ifp) /* inode fork pointer */
4069{
4070 xfs_extnum_t nextents; /* number of extents in file */
4071 int nlists; /* number of irec's (ex lists) */
4072
4073 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4074 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4075 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4076
4077 if (nextents == 0) {
4078 xfs_iext_destroy(ifp);
4079 } else if (nextents <= XFS_INLINE_EXTS) {
4080 xfs_iext_indirect_to_direct(ifp);
4081 xfs_iext_direct_to_inline(ifp, nextents);
4082 } else if (nextents <= XFS_LINEAR_EXTS) {
4083 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
4084 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4085 xfs_iext_irec_compact_pages(ifp);
4086 }
4087}
4088
4089/*
4090 * Combine extents from neighboring extent pages.
4091 */
4092void
4093xfs_iext_irec_compact_pages(
4094 xfs_ifork_t *ifp) /* inode fork pointer */
4095{
4096 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4097 int erp_idx = 0; /* indirection array index */
4098 int nlists; /* number of irec's (ex lists) */
4099
4100 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4101 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4102 while (erp_idx < nlists - 1) {
4103 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4104 erp_next = erp + 1;
4105 if (erp_next->er_extcount <=
4106 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 4107 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
4108 erp_next->er_extbuf, erp_next->er_extcount *
4109 sizeof(xfs_bmbt_rec_t));
4110 erp->er_extcount += erp_next->er_extcount;
4111 /*
4112 * Free page before removing extent record
4113 * so er_extoffs don't get modified in
4114 * xfs_iext_irec_remove.
4115 */
f0e2d93c 4116 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
4117 erp_next->er_extbuf = NULL;
4118 xfs_iext_irec_remove(ifp, erp_idx + 1);
4119 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4120 } else {
4121 erp_idx++;
4122 }
4123 }
4124}
4125
0293ce3a
MK
4126/*
4127 * This is called to update the er_extoff field in the indirection
4128 * array when extents have been added or removed from one of the
4129 * extent lists. erp_idx contains the irec index to begin updating
4130 * at and ext_diff contains the number of extents that were added
4131 * or removed.
4132 */
4133void
4134xfs_iext_irec_update_extoffs(
4135 xfs_ifork_t *ifp, /* inode fork pointer */
4136 int erp_idx, /* irec index to update */
4137 int ext_diff) /* number of new extents */
4138{
4139 int i; /* loop counter */
4140 int nlists; /* number of irec's (ex lists */
4141
4142 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4143 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4144 for (i = erp_idx; i < nlists; i++) {
4145 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4146 }
4147}
This page took 1.135784 seconds and 5 git commands to generate.