[XFS] kill the XFS_IMAP_BULKSTAT flag
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451 25#include "xfs_inum.h"
1da177e4
LT
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_sb.h"
29#include "xfs_ag.h"
1da177e4
LT
30#include "xfs_dir2.h"
31#include "xfs_dmapi.h"
32#include "xfs_mount.h"
1da177e4 33#include "xfs_bmap_btree.h"
a844f451 34#include "xfs_alloc_btree.h"
1da177e4 35#include "xfs_ialloc_btree.h"
1da177e4 36#include "xfs_dir2_sf.h"
a844f451 37#include "xfs_attr_sf.h"
1da177e4 38#include "xfs_dinode.h"
1da177e4 39#include "xfs_inode.h"
1da177e4 40#include "xfs_buf_item.h"
a844f451
NS
41#include "xfs_inode_item.h"
42#include "xfs_btree.h"
8c4ed633 43#include "xfs_btree_trace.h"
a844f451
NS
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
1da177e4
LT
47#include "xfs_rw.h"
48#include "xfs_error.h"
1da177e4
LT
49#include "xfs_utils.h"
50#include "xfs_dir2_trace.h"
51#include "xfs_quota.h"
1da177e4 52#include "xfs_acl.h"
2a82b8be 53#include "xfs_filestream.h"
739bfb2a 54#include "xfs_vnodeops.h"
1da177e4 55
1da177e4
LT
56kmem_zone_t *xfs_ifork_zone;
57kmem_zone_t *xfs_inode_zone;
1da177e4
LT
58
59/*
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
62 */
63#define XFS_ITRUNC_MAX_EXTENTS 2
64
65STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69
1da177e4
LT
70#ifdef DEBUG
71/*
72 * Make sure that the extents in the given memory buffer
73 * are valid.
74 */
75STATIC void
76xfs_validate_extents(
4eea22f0 77 xfs_ifork_t *ifp,
1da177e4 78 int nrecs,
1da177e4
LT
79 xfs_exntfmt_t fmt)
80{
81 xfs_bmbt_irec_t irec;
a6f64d4a 82 xfs_bmbt_rec_host_t rec;
1da177e4
LT
83 int i;
84
85 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
90 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
92 }
93}
94#else /* DEBUG */
a6f64d4a 95#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
96#endif /* DEBUG */
97
98/*
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
101 */
102#if defined(DEBUG)
103void
104xfs_inobp_check(
105 xfs_mount_t *mp,
106 xfs_buf_t *bp)
107{
108 int i;
109 int j;
110 xfs_dinode_t *dip;
111
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 bp);
121 ASSERT(dip->di_next_unlinked);
122 }
123 }
124}
125#endif
126
4ae29b43
DC
127/*
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
131 */
132STATIC int
133xfs_imap_to_bp(
134 xfs_mount_t *mp,
135 xfs_trans_t *tp,
92bfc6e7 136 struct xfs_imap *imap,
4ae29b43
DC
137 xfs_buf_t **bpp,
138 uint buf_flags,
b48d8d64 139 uint iget_flags)
4ae29b43
DC
140{
141 int error;
142 int i;
143 int ni;
144 xfs_buf_t *bp;
145
146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 147 (int)imap->im_len, buf_flags, &bp);
4ae29b43 148 if (error) {
a3f74ffb
DC
149 if (error != EAGAIN) {
150 cmn_err(CE_WARN,
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
4ae29b43
DC
152 "an error %d on %s. Returning error.",
153 error, mp->m_fsname);
a3f74ffb
DC
154 } else {
155 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 }
4ae29b43
DC
157 return error;
158 }
159
160 /*
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 */
164#ifdef DEBUG
165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166#else /* usual case */
167 ni = 1;
168#endif
169
170 for (i = 0; i < ni; i++) {
171 int di_ok;
172 xfs_dinode_t *dip;
173
174 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 (i << mp->m_sb.sb_inodelog));
81591fe2
CH
176 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
177 XFS_DINODE_GOOD_VERSION(dip->di_version);
4ae29b43
DC
178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 XFS_ERRTAG_ITOBP_INOTOBP,
180 XFS_RANDOM_ITOBP_INOTOBP))) {
b48d8d64 181 if (iget_flags & XFS_IGET_BULKSTAT) {
4ae29b43
DC
182 xfs_trans_brelse(tp, bp);
183 return XFS_ERROR(EINVAL);
184 }
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH, mp, dip);
187#ifdef DEBUG
188 cmn_err(CE_PANIC,
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 (unsigned long long)imap->im_blkno, i,
81591fe2 193 be16_to_cpu(dip->di_magic));
4ae29b43
DC
194#endif
195 xfs_trans_brelse(tp, bp);
196 return XFS_ERROR(EFSCORRUPTED);
197 }
198 }
199
200 xfs_inobp_check(mp, bp);
201
202 /*
203 * Mark the buffer as an inode buffer now that it looks good
204 */
205 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206
207 *bpp = bp;
208 return 0;
209}
210
1da177e4
LT
211/*
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
217 *
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
220 *
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
223 */
c679eef0 224int
1da177e4
LT
225xfs_inotobp(
226 xfs_mount_t *mp,
227 xfs_trans_t *tp,
228 xfs_ino_t ino,
229 xfs_dinode_t **dipp,
230 xfs_buf_t **bpp,
c679eef0
CH
231 int *offset,
232 uint imap_flags)
1da177e4 233{
92bfc6e7 234 struct xfs_imap imap;
1da177e4
LT
235 xfs_buf_t *bp;
236 int error;
1da177e4 237
1da177e4 238 imap.im_blkno = 0;
a1941895 239 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
4ae29b43 240 if (error)
1da177e4 241 return error;
1da177e4 242
c679eef0 243 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
4ae29b43 244 if (error)
1da177e4 245 return error;
1da177e4 246
1da177e4
LT
247 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
248 *bpp = bp;
249 *offset = imap.im_boffset;
250 return 0;
251}
252
253
254/*
255 * This routine is called to map an inode to the buffer containing
256 * the on-disk version of the inode. It returns a pointer to the
257 * buffer containing the on-disk inode in the bpp parameter, and in
258 * the dip parameter it returns a pointer to the on-disk inode within
259 * that buffer.
260 *
261 * If a non-zero error is returned, then the contents of bpp and
262 * dipp are undefined.
263 *
76d8b277
CH
264 * The inode is expected to already been mapped to its buffer and read
265 * in once, thus we can use the mapping information stored in the inode
266 * rather than calling xfs_imap(). This allows us to avoid the overhead
267 * of looking at the inode btree for small block file systems
94e1b69d 268 * (see xfs_imap()).
1da177e4
LT
269 */
270int
271xfs_itobp(
272 xfs_mount_t *mp,
273 xfs_trans_t *tp,
274 xfs_inode_t *ip,
275 xfs_dinode_t **dipp,
276 xfs_buf_t **bpp,
a3f74ffb 277 uint buf_flags)
1da177e4
LT
278{
279 xfs_buf_t *bp;
280 int error;
1da177e4 281
92bfc6e7 282 ASSERT(ip->i_imap.im_blkno != 0);
1da177e4 283
92bfc6e7 284 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
4ae29b43 285 if (error)
1da177e4 286 return error;
1da177e4 287
a3f74ffb
DC
288 if (!bp) {
289 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
290 ASSERT(tp == NULL);
291 *bpp = NULL;
292 return EAGAIN;
293 }
294
92bfc6e7 295 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
296 *bpp = bp;
297 return 0;
298}
299
300/*
301 * Move inode type and inode format specific information from the
302 * on-disk inode to the in-core inode. For fifos, devs, and sockets
303 * this means set if_rdev to the proper value. For files, directories,
304 * and symlinks this means to bring in the in-line data or extent
305 * pointers. For a file in B-tree format, only the root is immediately
306 * brought in-core. The rest will be in-lined in if_extents when it
307 * is first referenced (see xfs_iread_extents()).
308 */
309STATIC int
310xfs_iformat(
311 xfs_inode_t *ip,
312 xfs_dinode_t *dip)
313{
314 xfs_attr_shortform_t *atp;
315 int size;
316 int error;
317 xfs_fsize_t di_size;
318 ip->i_df.if_ext_max =
319 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
320 error = 0;
321
81591fe2
CH
322 if (unlikely(be32_to_cpu(dip->di_nextents) +
323 be16_to_cpu(dip->di_anextents) >
324 be64_to_cpu(dip->di_nblocks))) {
3762ec6b
NS
325 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
326 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 327 (unsigned long long)ip->i_ino,
81591fe2
CH
328 (int)(be32_to_cpu(dip->di_nextents) +
329 be16_to_cpu(dip->di_anextents)),
1da177e4 330 (unsigned long long)
81591fe2 331 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
332 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
333 ip->i_mount, dip);
334 return XFS_ERROR(EFSCORRUPTED);
335 }
336
81591fe2 337 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
338 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
339 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 340 (unsigned long long)ip->i_ino,
81591fe2 341 dip->di_forkoff);
1da177e4
LT
342 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
343 ip->i_mount, dip);
344 return XFS_ERROR(EFSCORRUPTED);
345 }
346
347 switch (ip->i_d.di_mode & S_IFMT) {
348 case S_IFIFO:
349 case S_IFCHR:
350 case S_IFBLK:
351 case S_IFSOCK:
81591fe2 352 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
353 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
354 ip->i_mount, dip);
355 return XFS_ERROR(EFSCORRUPTED);
356 }
357 ip->i_d.di_size = 0;
ba87ea69 358 ip->i_size = 0;
81591fe2 359 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
360 break;
361
362 case S_IFREG:
363 case S_IFLNK:
364 case S_IFDIR:
81591fe2 365 switch (dip->di_format) {
1da177e4
LT
366 case XFS_DINODE_FMT_LOCAL:
367 /*
368 * no local regular files yet
369 */
81591fe2 370 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
371 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
372 "corrupt inode %Lu "
373 "(local format for regular file).",
1da177e4
LT
374 (unsigned long long) ip->i_ino);
375 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
376 XFS_ERRLEVEL_LOW,
377 ip->i_mount, dip);
378 return XFS_ERROR(EFSCORRUPTED);
379 }
380
81591fe2 381 di_size = be64_to_cpu(dip->di_size);
1da177e4 382 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
383 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
384 "corrupt inode %Lu "
385 "(bad size %Ld for local inode).",
1da177e4
LT
386 (unsigned long long) ip->i_ino,
387 (long long) di_size);
388 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
389 XFS_ERRLEVEL_LOW,
390 ip->i_mount, dip);
391 return XFS_ERROR(EFSCORRUPTED);
392 }
393
394 size = (int)di_size;
395 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
396 break;
397 case XFS_DINODE_FMT_EXTENTS:
398 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
399 break;
400 case XFS_DINODE_FMT_BTREE:
401 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
402 break;
403 default:
404 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
405 ip->i_mount);
406 return XFS_ERROR(EFSCORRUPTED);
407 }
408 break;
409
410 default:
411 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
412 return XFS_ERROR(EFSCORRUPTED);
413 }
414 if (error) {
415 return error;
416 }
417 if (!XFS_DFORK_Q(dip))
418 return 0;
419 ASSERT(ip->i_afp == NULL);
420 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
421 ip->i_afp->if_ext_max =
422 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
81591fe2 423 switch (dip->di_aformat) {
1da177e4
LT
424 case XFS_DINODE_FMT_LOCAL:
425 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 426 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
427 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
428 break;
429 case XFS_DINODE_FMT_EXTENTS:
430 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
431 break;
432 case XFS_DINODE_FMT_BTREE:
433 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
434 break;
435 default:
436 error = XFS_ERROR(EFSCORRUPTED);
437 break;
438 }
439 if (error) {
440 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
441 ip->i_afp = NULL;
442 xfs_idestroy_fork(ip, XFS_DATA_FORK);
443 }
444 return error;
445}
446
447/*
448 * The file is in-lined in the on-disk inode.
449 * If it fits into if_inline_data, then copy
450 * it there, otherwise allocate a buffer for it
451 * and copy the data there. Either way, set
452 * if_data to point at the data.
453 * If we allocate a buffer for the data, make
454 * sure that its size is a multiple of 4 and
455 * record the real size in i_real_bytes.
456 */
457STATIC int
458xfs_iformat_local(
459 xfs_inode_t *ip,
460 xfs_dinode_t *dip,
461 int whichfork,
462 int size)
463{
464 xfs_ifork_t *ifp;
465 int real_size;
466
467 /*
468 * If the size is unreasonable, then something
469 * is wrong and we just bail out rather than crash in
470 * kmem_alloc() or memcpy() below.
471 */
472 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
473 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
474 "corrupt inode %Lu "
475 "(bad size %d for local fork, size = %d).",
1da177e4
LT
476 (unsigned long long) ip->i_ino, size,
477 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
478 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
479 ip->i_mount, dip);
480 return XFS_ERROR(EFSCORRUPTED);
481 }
482 ifp = XFS_IFORK_PTR(ip, whichfork);
483 real_size = 0;
484 if (size == 0)
485 ifp->if_u1.if_data = NULL;
486 else if (size <= sizeof(ifp->if_u2.if_inline_data))
487 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
488 else {
489 real_size = roundup(size, 4);
490 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
491 }
492 ifp->if_bytes = size;
493 ifp->if_real_bytes = real_size;
494 if (size)
495 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
496 ifp->if_flags &= ~XFS_IFEXTENTS;
497 ifp->if_flags |= XFS_IFINLINE;
498 return 0;
499}
500
501/*
502 * The file consists of a set of extents all
503 * of which fit into the on-disk inode.
504 * If there are few enough extents to fit into
505 * the if_inline_ext, then copy them there.
506 * Otherwise allocate a buffer for them and copy
507 * them into it. Either way, set if_extents
508 * to point at the extents.
509 */
510STATIC int
511xfs_iformat_extents(
512 xfs_inode_t *ip,
513 xfs_dinode_t *dip,
514 int whichfork)
515{
a6f64d4a 516 xfs_bmbt_rec_t *dp;
1da177e4
LT
517 xfs_ifork_t *ifp;
518 int nex;
1da177e4
LT
519 int size;
520 int i;
521
522 ifp = XFS_IFORK_PTR(ip, whichfork);
523 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
524 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
525
526 /*
527 * If the number of extents is unreasonable, then something
528 * is wrong and we just bail out rather than crash in
529 * kmem_alloc() or memcpy() below.
530 */
531 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
532 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
533 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
534 (unsigned long long) ip->i_ino, nex);
535 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
536 ip->i_mount, dip);
537 return XFS_ERROR(EFSCORRUPTED);
538 }
539
4eea22f0 540 ifp->if_real_bytes = 0;
1da177e4
LT
541 if (nex == 0)
542 ifp->if_u1.if_extents = NULL;
543 else if (nex <= XFS_INLINE_EXTS)
544 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
545 else
546 xfs_iext_add(ifp, 0, nex);
547
1da177e4 548 ifp->if_bytes = size;
1da177e4
LT
549 if (size) {
550 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 551 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 552 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 553 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
554 ep->l0 = get_unaligned_be64(&dp->l0);
555 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 556 }
3a59c94c 557 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
558 if (whichfork != XFS_DATA_FORK ||
559 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
560 if (unlikely(xfs_check_nostate_extents(
4eea22f0 561 ifp, 0, nex))) {
1da177e4
LT
562 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
563 XFS_ERRLEVEL_LOW,
564 ip->i_mount);
565 return XFS_ERROR(EFSCORRUPTED);
566 }
567 }
568 ifp->if_flags |= XFS_IFEXTENTS;
569 return 0;
570}
571
572/*
573 * The file has too many extents to fit into
574 * the inode, so they are in B-tree format.
575 * Allocate a buffer for the root of the B-tree
576 * and copy the root into it. The i_extents
577 * field will remain NULL until all of the
578 * extents are read in (when they are needed).
579 */
580STATIC int
581xfs_iformat_btree(
582 xfs_inode_t *ip,
583 xfs_dinode_t *dip,
584 int whichfork)
585{
586 xfs_bmdr_block_t *dfp;
587 xfs_ifork_t *ifp;
588 /* REFERENCED */
589 int nrecs;
590 int size;
591
592 ifp = XFS_IFORK_PTR(ip, whichfork);
593 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
594 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 595 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
596
597 /*
598 * blow out if -- fork has less extents than can fit in
599 * fork (fork shouldn't be a btree format), root btree
600 * block has more records than can fit into the fork,
601 * or the number of extents is greater than the number of
602 * blocks.
603 */
604 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
605 || XFS_BMDR_SPACE_CALC(nrecs) >
606 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
607 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
608 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
609 "corrupt inode %Lu (btree).",
1da177e4
LT
610 (unsigned long long) ip->i_ino);
611 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
612 ip->i_mount);
613 return XFS_ERROR(EFSCORRUPTED);
614 }
615
616 ifp->if_broot_bytes = size;
617 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
618 ASSERT(ifp->if_broot != NULL);
619 /*
620 * Copy and convert from the on-disk structure
621 * to the in-memory structure.
622 */
60197e8d
CH
623 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
624 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
625 ifp->if_broot, size);
1da177e4
LT
626 ifp->if_flags &= ~XFS_IFEXTENTS;
627 ifp->if_flags |= XFS_IFBROOT;
628
629 return 0;
630}
631
1da177e4 632void
347d1c01
CH
633xfs_dinode_from_disk(
634 xfs_icdinode_t *to,
81591fe2 635 xfs_dinode_t *from)
1da177e4 636{
347d1c01
CH
637 to->di_magic = be16_to_cpu(from->di_magic);
638 to->di_mode = be16_to_cpu(from->di_mode);
639 to->di_version = from ->di_version;
640 to->di_format = from->di_format;
641 to->di_onlink = be16_to_cpu(from->di_onlink);
642 to->di_uid = be32_to_cpu(from->di_uid);
643 to->di_gid = be32_to_cpu(from->di_gid);
644 to->di_nlink = be32_to_cpu(from->di_nlink);
645 to->di_projid = be16_to_cpu(from->di_projid);
646 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
647 to->di_flushiter = be16_to_cpu(from->di_flushiter);
648 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
649 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
650 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
651 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
652 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
653 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
654 to->di_size = be64_to_cpu(from->di_size);
655 to->di_nblocks = be64_to_cpu(from->di_nblocks);
656 to->di_extsize = be32_to_cpu(from->di_extsize);
657 to->di_nextents = be32_to_cpu(from->di_nextents);
658 to->di_anextents = be16_to_cpu(from->di_anextents);
659 to->di_forkoff = from->di_forkoff;
660 to->di_aformat = from->di_aformat;
661 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
662 to->di_dmstate = be16_to_cpu(from->di_dmstate);
663 to->di_flags = be16_to_cpu(from->di_flags);
664 to->di_gen = be32_to_cpu(from->di_gen);
665}
666
667void
668xfs_dinode_to_disk(
81591fe2 669 xfs_dinode_t *to,
347d1c01
CH
670 xfs_icdinode_t *from)
671{
672 to->di_magic = cpu_to_be16(from->di_magic);
673 to->di_mode = cpu_to_be16(from->di_mode);
674 to->di_version = from ->di_version;
675 to->di_format = from->di_format;
676 to->di_onlink = cpu_to_be16(from->di_onlink);
677 to->di_uid = cpu_to_be32(from->di_uid);
678 to->di_gid = cpu_to_be32(from->di_gid);
679 to->di_nlink = cpu_to_be32(from->di_nlink);
680 to->di_projid = cpu_to_be16(from->di_projid);
681 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
682 to->di_flushiter = cpu_to_be16(from->di_flushiter);
683 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
684 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
685 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
686 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
687 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
688 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
689 to->di_size = cpu_to_be64(from->di_size);
690 to->di_nblocks = cpu_to_be64(from->di_nblocks);
691 to->di_extsize = cpu_to_be32(from->di_extsize);
692 to->di_nextents = cpu_to_be32(from->di_nextents);
693 to->di_anextents = cpu_to_be16(from->di_anextents);
694 to->di_forkoff = from->di_forkoff;
695 to->di_aformat = from->di_aformat;
696 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
697 to->di_dmstate = cpu_to_be16(from->di_dmstate);
698 to->di_flags = cpu_to_be16(from->di_flags);
699 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
700}
701
702STATIC uint
703_xfs_dic2xflags(
1da177e4
LT
704 __uint16_t di_flags)
705{
706 uint flags = 0;
707
708 if (di_flags & XFS_DIFLAG_ANY) {
709 if (di_flags & XFS_DIFLAG_REALTIME)
710 flags |= XFS_XFLAG_REALTIME;
711 if (di_flags & XFS_DIFLAG_PREALLOC)
712 flags |= XFS_XFLAG_PREALLOC;
713 if (di_flags & XFS_DIFLAG_IMMUTABLE)
714 flags |= XFS_XFLAG_IMMUTABLE;
715 if (di_flags & XFS_DIFLAG_APPEND)
716 flags |= XFS_XFLAG_APPEND;
717 if (di_flags & XFS_DIFLAG_SYNC)
718 flags |= XFS_XFLAG_SYNC;
719 if (di_flags & XFS_DIFLAG_NOATIME)
720 flags |= XFS_XFLAG_NOATIME;
721 if (di_flags & XFS_DIFLAG_NODUMP)
722 flags |= XFS_XFLAG_NODUMP;
723 if (di_flags & XFS_DIFLAG_RTINHERIT)
724 flags |= XFS_XFLAG_RTINHERIT;
725 if (di_flags & XFS_DIFLAG_PROJINHERIT)
726 flags |= XFS_XFLAG_PROJINHERIT;
727 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
728 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
729 if (di_flags & XFS_DIFLAG_EXTSIZE)
730 flags |= XFS_XFLAG_EXTSIZE;
731 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
732 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
733 if (di_flags & XFS_DIFLAG_NODEFRAG)
734 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
735 if (di_flags & XFS_DIFLAG_FILESTREAM)
736 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
737 }
738
739 return flags;
740}
741
742uint
743xfs_ip2xflags(
744 xfs_inode_t *ip)
745{
347d1c01 746 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 747
a916e2bd 748 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 749 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
750}
751
752uint
753xfs_dic2xflags(
45ba598e 754 xfs_dinode_t *dip)
1da177e4 755{
81591fe2 756 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 757 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
758}
759
07c8f675
DC
760/*
761 * Allocate and initialise an xfs_inode.
762 */
c679eef0 763STATIC struct xfs_inode *
07c8f675
DC
764xfs_inode_alloc(
765 struct xfs_mount *mp,
766 xfs_ino_t ino)
767{
768 struct xfs_inode *ip;
769
770 /*
771 * if this didn't occur in transactions, we could use
772 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
773 * code up to do this anyway.
774 */
775 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
776 if (!ip)
777 return NULL;
778
779 ASSERT(atomic_read(&ip->i_iocount) == 0);
780 ASSERT(atomic_read(&ip->i_pincount) == 0);
781 ASSERT(!spin_is_locked(&ip->i_flags_lock));
11654513 782 ASSERT(completion_done(&ip->i_flush));
07c8f675 783
bf904248
DC
784 /*
785 * initialise the VFS inode here to get failures
786 * out of the way early.
787 */
788 if (!inode_init_always(mp->m_super, VFS_I(ip))) {
789 kmem_zone_free(xfs_inode_zone, ip);
790 return NULL;
791 }
792
793 /* initialise the xfs inode */
07c8f675
DC
794 ip->i_ino = ino;
795 ip->i_mount = mp;
92bfc6e7 796 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
07c8f675
DC
797 ip->i_afp = NULL;
798 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
799 ip->i_flags = 0;
800 ip->i_update_core = 0;
801 ip->i_update_size = 0;
802 ip->i_delayed_blks = 0;
803 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
804 ip->i_size = 0;
805 ip->i_new_size = 0;
806
807 /*
808 * Initialize inode's trace buffers.
809 */
810#ifdef XFS_INODE_TRACE
811 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
812#endif
813#ifdef XFS_BMAP_TRACE
814 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
815#endif
8c4ed633 816#ifdef XFS_BTREE_TRACE
07c8f675
DC
817 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
818#endif
819#ifdef XFS_RW_TRACE
820 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
821#endif
822#ifdef XFS_ILOCK_TRACE
823 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
824#endif
825#ifdef XFS_DIR2_TRACE
826 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
827#endif
828
829 return ip;
830}
831
1da177e4
LT
832/*
833 * Given a mount structure and an inode number, return a pointer
c41564b5 834 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
835 * inode number.
836 *
837 * Initialize the inode's attributes and extent pointers if it
838 * already has them (it will not if the inode has no links).
839 */
840int
841xfs_iread(
842 xfs_mount_t *mp,
843 xfs_trans_t *tp,
844 xfs_ino_t ino,
845 xfs_inode_t **ipp,
745b1f47
NS
846 xfs_daddr_t bno,
847 uint imap_flags)
1da177e4
LT
848{
849 xfs_buf_t *bp;
850 xfs_dinode_t *dip;
851 xfs_inode_t *ip;
852 int error;
853
07c8f675
DC
854 ip = xfs_inode_alloc(mp, ino);
855 if (!ip)
856 return ENOMEM;
1da177e4
LT
857
858 /*
92bfc6e7 859 * Fill in the location information in the in-core inode.
1da177e4 860 */
92bfc6e7
CH
861 ip->i_imap.im_blkno = bno;
862 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, imap_flags);
76d8b277
CH
863 if (error)
864 goto out_destroy_inode;
92bfc6e7 865 ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
76d8b277
CH
866
867 /*
92bfc6e7 868 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 869 */
92bfc6e7
CH
870 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
871 XFS_BUF_LOCK, imap_flags);
9ed0451e
CH
872 if (error)
873 goto out_destroy_inode;
92bfc6e7 874 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 875
1da177e4
LT
876 /*
877 * If we got something that isn't an inode it means someone
878 * (nfs or dmi) has a stale handle.
879 */
81591fe2 880 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
1da177e4
LT
881#ifdef DEBUG
882 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
81591fe2 883 "dip->di_magic (0x%x) != "
1da177e4 884 "XFS_DINODE_MAGIC (0x%x)",
81591fe2 885 be16_to_cpu(dip->di_magic),
1da177e4
LT
886 XFS_DINODE_MAGIC);
887#endif /* DEBUG */
9ed0451e
CH
888 error = XFS_ERROR(EINVAL);
889 goto out_brelse;
1da177e4
LT
890 }
891
892 /*
893 * If the on-disk inode is already linked to a directory
894 * entry, copy all of the inode into the in-core inode.
895 * xfs_iformat() handles copying in the inode format
896 * specific information.
897 * Otherwise, just get the truly permanent information.
898 */
81591fe2
CH
899 if (dip->di_mode) {
900 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
901 error = xfs_iformat(ip, dip);
902 if (error) {
1da177e4
LT
903#ifdef DEBUG
904 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
905 "xfs_iformat() returned error %d",
906 error);
907#endif /* DEBUG */
9ed0451e 908 goto out_brelse;
1da177e4
LT
909 }
910 } else {
81591fe2
CH
911 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
912 ip->i_d.di_version = dip->di_version;
913 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
914 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
915 /*
916 * Make sure to pull in the mode here as well in
917 * case the inode is released without being used.
918 * This ensures that xfs_inactive() will see that
919 * the inode is already free and not try to mess
920 * with the uninitialized part of it.
921 */
922 ip->i_d.di_mode = 0;
923 /*
924 * Initialize the per-fork minima and maxima for a new
925 * inode here. xfs_iformat will do it for old inodes.
926 */
927 ip->i_df.if_ext_max =
928 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
929 }
930
1da177e4
LT
931 /*
932 * The inode format changed when we moved the link count and
933 * made it 32 bits long. If this is an old format inode,
934 * convert it in memory to look like a new one. If it gets
935 * flushed to disk we will convert back before flushing or
936 * logging it. We zero out the new projid field and the old link
937 * count field. We'll handle clearing the pad field (the remains
938 * of the old uuid field) when we actually convert the inode to
939 * the new format. We don't change the version number so that we
940 * can distinguish this from a real new format inode.
941 */
51ce16d5 942 if (ip->i_d.di_version == 1) {
1da177e4
LT
943 ip->i_d.di_nlink = ip->i_d.di_onlink;
944 ip->i_d.di_onlink = 0;
945 ip->i_d.di_projid = 0;
946 }
947
948 ip->i_delayed_blks = 0;
ba87ea69 949 ip->i_size = ip->i_d.di_size;
1da177e4
LT
950
951 /*
952 * Mark the buffer containing the inode as something to keep
953 * around for a while. This helps to keep recently accessed
954 * meta-data in-core longer.
955 */
956 XFS_BUF_SET_REF(bp, XFS_INO_REF);
957
958 /*
959 * Use xfs_trans_brelse() to release the buffer containing the
960 * on-disk inode, because it was acquired with xfs_trans_read_buf()
961 * in xfs_itobp() above. If tp is NULL, this is just a normal
962 * brelse(). If we're within a transaction, then xfs_trans_brelse()
963 * will only release the buffer if it is not dirty within the
964 * transaction. It will be OK to release the buffer in this case,
965 * because inodes on disk are never destroyed and we will be
966 * locking the new in-core inode before putting it in the hash
967 * table where other processes can find it. Thus we don't have
968 * to worry about the inode being changed just because we released
969 * the buffer.
970 */
971 xfs_trans_brelse(tp, bp);
972 *ipp = ip;
973 return 0;
9ed0451e
CH
974
975 out_brelse:
976 xfs_trans_brelse(tp, bp);
977 out_destroy_inode:
978 xfs_destroy_inode(ip);
979 return error;
1da177e4
LT
980}
981
982/*
983 * Read in extents from a btree-format inode.
984 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
985 */
986int
987xfs_iread_extents(
988 xfs_trans_t *tp,
989 xfs_inode_t *ip,
990 int whichfork)
991{
992 int error;
993 xfs_ifork_t *ifp;
4eea22f0 994 xfs_extnum_t nextents;
1da177e4
LT
995 size_t size;
996
997 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
998 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
999 ip->i_mount);
1000 return XFS_ERROR(EFSCORRUPTED);
1001 }
4eea22f0
MK
1002 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1003 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1004 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1005
1da177e4
LT
1006 /*
1007 * We know that the size is valid (it's checked in iformat_btree)
1008 */
1da177e4 1009 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1010 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1011 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1012 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1013 error = xfs_bmap_read_extents(tp, ip, whichfork);
1014 if (error) {
4eea22f0 1015 xfs_iext_destroy(ifp);
1da177e4
LT
1016 ifp->if_flags &= ~XFS_IFEXTENTS;
1017 return error;
1018 }
a6f64d4a 1019 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1020 return 0;
1021}
1022
1023/*
1024 * Allocate an inode on disk and return a copy of its in-core version.
1025 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1026 * appropriately within the inode. The uid and gid for the inode are
1027 * set according to the contents of the given cred structure.
1028 *
1029 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1030 * has a free inode available, call xfs_iget()
1031 * to obtain the in-core version of the allocated inode. Finally,
1032 * fill in the inode and log its initial contents. In this case,
1033 * ialloc_context would be set to NULL and call_again set to false.
1034 *
1035 * If xfs_dialloc() does not have an available inode,
1036 * it will replenish its supply by doing an allocation. Since we can
1037 * only do one allocation within a transaction without deadlocks, we
1038 * must commit the current transaction before returning the inode itself.
1039 * In this case, therefore, we will set call_again to true and return.
1040 * The caller should then commit the current transaction, start a new
1041 * transaction, and call xfs_ialloc() again to actually get the inode.
1042 *
1043 * To ensure that some other process does not grab the inode that
1044 * was allocated during the first call to xfs_ialloc(), this routine
1045 * also returns the [locked] bp pointing to the head of the freelist
1046 * as ialloc_context. The caller should hold this buffer across
1047 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1048 *
1049 * If we are allocating quota inodes, we do not have a parent inode
1050 * to attach to or associate with (i.e. pip == NULL) because they
1051 * are not linked into the directory structure - they are attached
1052 * directly to the superblock - and so have no parent.
1da177e4
LT
1053 */
1054int
1055xfs_ialloc(
1056 xfs_trans_t *tp,
1057 xfs_inode_t *pip,
1058 mode_t mode,
31b084ae 1059 xfs_nlink_t nlink,
1da177e4
LT
1060 xfs_dev_t rdev,
1061 cred_t *cr,
1062 xfs_prid_t prid,
1063 int okalloc,
1064 xfs_buf_t **ialloc_context,
1065 boolean_t *call_again,
1066 xfs_inode_t **ipp)
1067{
1068 xfs_ino_t ino;
1069 xfs_inode_t *ip;
1da177e4
LT
1070 uint flags;
1071 int error;
dff35fd4 1072 timespec_t tv;
bf904248 1073 int filestreams = 0;
1da177e4
LT
1074
1075 /*
1076 * Call the space management code to pick
1077 * the on-disk inode to be allocated.
1078 */
b11f94d5 1079 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 1080 ialloc_context, call_again, &ino);
bf904248 1081 if (error)
1da177e4 1082 return error;
1da177e4
LT
1083 if (*call_again || ino == NULLFSINO) {
1084 *ipp = NULL;
1085 return 0;
1086 }
1087 ASSERT(*ialloc_context == NULL);
1088
1089 /*
1090 * Get the in-core inode with the lock held exclusively.
1091 * This is because we're setting fields here we need
1092 * to prevent others from looking at until we're done.
1093 */
1094 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1095 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
bf904248 1096 if (error)
1da177e4 1097 return error;
1da177e4
LT
1098 ASSERT(ip != NULL);
1099
1da177e4
LT
1100 ip->i_d.di_mode = (__uint16_t)mode;
1101 ip->i_d.di_onlink = 0;
1102 ip->i_d.di_nlink = nlink;
1103 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1104 ip->i_d.di_uid = current_fsuid();
1105 ip->i_d.di_gid = current_fsgid();
1da177e4
LT
1106 ip->i_d.di_projid = prid;
1107 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1108
1109 /*
1110 * If the superblock version is up to where we support new format
1111 * inodes and this is currently an old format inode, then change
1112 * the inode version number now. This way we only do the conversion
1113 * here rather than here and in the flush/logging code.
1114 */
62118709 1115 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1116 ip->i_d.di_version == 1) {
1117 ip->i_d.di_version = 2;
1da177e4
LT
1118 /*
1119 * We've already zeroed the old link count, the projid field,
1120 * and the pad field.
1121 */
1122 }
1123
1124 /*
1125 * Project ids won't be stored on disk if we are using a version 1 inode.
1126 */
51ce16d5 1127 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1128 xfs_bump_ino_vers2(tp, ip);
1129
bd186aa9 1130 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1131 ip->i_d.di_gid = pip->i_d.di_gid;
1132 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1133 ip->i_d.di_mode |= S_ISGID;
1134 }
1135 }
1136
1137 /*
1138 * If the group ID of the new file does not match the effective group
1139 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1140 * (and only if the irix_sgid_inherit compatibility variable is set).
1141 */
1142 if ((irix_sgid_inherit) &&
1143 (ip->i_d.di_mode & S_ISGID) &&
1144 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1145 ip->i_d.di_mode &= ~S_ISGID;
1146 }
1147
1148 ip->i_d.di_size = 0;
ba87ea69 1149 ip->i_size = 0;
1da177e4
LT
1150 ip->i_d.di_nextents = 0;
1151 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1152
1153 nanotime(&tv);
1154 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1155 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1156 ip->i_d.di_atime = ip->i_d.di_mtime;
1157 ip->i_d.di_ctime = ip->i_d.di_mtime;
1158
1da177e4
LT
1159 /*
1160 * di_gen will have been taken care of in xfs_iread.
1161 */
1162 ip->i_d.di_extsize = 0;
1163 ip->i_d.di_dmevmask = 0;
1164 ip->i_d.di_dmstate = 0;
1165 ip->i_d.di_flags = 0;
1166 flags = XFS_ILOG_CORE;
1167 switch (mode & S_IFMT) {
1168 case S_IFIFO:
1169 case S_IFCHR:
1170 case S_IFBLK:
1171 case S_IFSOCK:
1172 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1173 ip->i_df.if_u2.if_rdev = rdev;
1174 ip->i_df.if_flags = 0;
1175 flags |= XFS_ILOG_DEV;
1176 break;
1177 case S_IFREG:
bf904248
DC
1178 /*
1179 * we can't set up filestreams until after the VFS inode
1180 * is set up properly.
1181 */
1182 if (pip && xfs_inode_is_filestream(pip))
1183 filestreams = 1;
2a82b8be 1184 /* fall through */
1da177e4 1185 case S_IFDIR:
b11f94d5 1186 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1187 uint di_flags = 0;
1188
1189 if ((mode & S_IFMT) == S_IFDIR) {
1190 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1191 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1192 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1193 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1194 ip->i_d.di_extsize = pip->i_d.di_extsize;
1195 }
1196 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1197 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1198 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1199 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1200 di_flags |= XFS_DIFLAG_EXTSIZE;
1201 ip->i_d.di_extsize = pip->i_d.di_extsize;
1202 }
1da177e4
LT
1203 }
1204 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1205 xfs_inherit_noatime)
365ca83d 1206 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1207 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1208 xfs_inherit_nodump)
365ca83d 1209 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1210 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1211 xfs_inherit_sync)
365ca83d 1212 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1213 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1214 xfs_inherit_nosymlinks)
365ca83d
NS
1215 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1216 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1217 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1218 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1219 xfs_inherit_nodefrag)
1220 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1221 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1222 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1223 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1224 }
1225 /* FALLTHROUGH */
1226 case S_IFLNK:
1227 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1228 ip->i_df.if_flags = XFS_IFEXTENTS;
1229 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1230 ip->i_df.if_u1.if_extents = NULL;
1231 break;
1232 default:
1233 ASSERT(0);
1234 }
1235 /*
1236 * Attribute fork settings for new inode.
1237 */
1238 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1239 ip->i_d.di_anextents = 0;
1240
1241 /*
1242 * Log the new values stuffed into the inode.
1243 */
1244 xfs_trans_log_inode(tp, ip, flags);
1245
b83bd138 1246 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1247 xfs_setup_inode(ip);
1da177e4 1248
bf904248
DC
1249 /* now we have set up the vfs inode we can associate the filestream */
1250 if (filestreams) {
1251 error = xfs_filestream_associate(pip, ip);
1252 if (error < 0)
1253 return -error;
1254 if (!error)
1255 xfs_iflags_set(ip, XFS_IFILESTREAM);
1256 }
1257
1da177e4
LT
1258 *ipp = ip;
1259 return 0;
1260}
1261
1262/*
1263 * Check to make sure that there are no blocks allocated to the
1264 * file beyond the size of the file. We don't check this for
1265 * files with fixed size extents or real time extents, but we
1266 * at least do it for regular files.
1267 */
1268#ifdef DEBUG
1269void
1270xfs_isize_check(
1271 xfs_mount_t *mp,
1272 xfs_inode_t *ip,
1273 xfs_fsize_t isize)
1274{
1275 xfs_fileoff_t map_first;
1276 int nimaps;
1277 xfs_bmbt_irec_t imaps[2];
1278
1279 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1280 return;
1281
71ddabb9
ES
1282 if (XFS_IS_REALTIME_INODE(ip))
1283 return;
1284
1285 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1286 return;
1287
1288 nimaps = 2;
1289 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1290 /*
1291 * The filesystem could be shutting down, so bmapi may return
1292 * an error.
1293 */
1294 if (xfs_bmapi(NULL, ip, map_first,
1295 (XFS_B_TO_FSB(mp,
1296 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1297 map_first),
1298 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1299 NULL, NULL))
1da177e4
LT
1300 return;
1301 ASSERT(nimaps == 1);
1302 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1303}
1304#endif /* DEBUG */
1305
1306/*
1307 * Calculate the last possible buffered byte in a file. This must
1308 * include data that was buffered beyond the EOF by the write code.
1309 * This also needs to deal with overflowing the xfs_fsize_t type
1310 * which can happen for sizes near the limit.
1311 *
1312 * We also need to take into account any blocks beyond the EOF. It
1313 * may be the case that they were buffered by a write which failed.
1314 * In that case the pages will still be in memory, but the inode size
1315 * will never have been updated.
1316 */
1317xfs_fsize_t
1318xfs_file_last_byte(
1319 xfs_inode_t *ip)
1320{
1321 xfs_mount_t *mp;
1322 xfs_fsize_t last_byte;
1323 xfs_fileoff_t last_block;
1324 xfs_fileoff_t size_last_block;
1325 int error;
1326
579aa9ca 1327 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1da177e4
LT
1328
1329 mp = ip->i_mount;
1330 /*
1331 * Only check for blocks beyond the EOF if the extents have
1332 * been read in. This eliminates the need for the inode lock,
1333 * and it also saves us from looking when it really isn't
1334 * necessary.
1335 */
1336 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1337 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1338 XFS_DATA_FORK);
1339 if (error) {
1340 last_block = 0;
1341 }
1342 } else {
1343 last_block = 0;
1344 }
ba87ea69 1345 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1346 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1347
1348 last_byte = XFS_FSB_TO_B(mp, last_block);
1349 if (last_byte < 0) {
1350 return XFS_MAXIOFFSET(mp);
1351 }
1352 last_byte += (1 << mp->m_writeio_log);
1353 if (last_byte < 0) {
1354 return XFS_MAXIOFFSET(mp);
1355 }
1356 return last_byte;
1357}
1358
1359#if defined(XFS_RW_TRACE)
1360STATIC void
1361xfs_itrunc_trace(
1362 int tag,
1363 xfs_inode_t *ip,
1364 int flag,
1365 xfs_fsize_t new_size,
1366 xfs_off_t toss_start,
1367 xfs_off_t toss_finish)
1368{
1369 if (ip->i_rwtrace == NULL) {
1370 return;
1371 }
1372
1373 ktrace_enter(ip->i_rwtrace,
1374 (void*)((long)tag),
1375 (void*)ip,
1376 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1377 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1378 (void*)((long)flag),
1379 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1380 (void*)(unsigned long)(new_size & 0xffffffff),
1381 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1382 (void*)(unsigned long)(toss_start & 0xffffffff),
1383 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1384 (void*)(unsigned long)(toss_finish & 0xffffffff),
1385 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1386 (void*)(unsigned long)current_pid(),
1387 (void*)NULL,
1388 (void*)NULL,
1389 (void*)NULL);
1da177e4
LT
1390}
1391#else
1392#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1393#endif
1394
1395/*
1396 * Start the truncation of the file to new_size. The new size
1397 * must be smaller than the current size. This routine will
1398 * clear the buffer and page caches of file data in the removed
1399 * range, and xfs_itruncate_finish() will remove the underlying
1400 * disk blocks.
1401 *
1402 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1403 * must NOT have the inode lock held at all. This is because we're
1404 * calling into the buffer/page cache code and we can't hold the
1405 * inode lock when we do so.
1406 *
38e2299a
DC
1407 * We need to wait for any direct I/Os in flight to complete before we
1408 * proceed with the truncate. This is needed to prevent the extents
1409 * being read or written by the direct I/Os from being removed while the
1410 * I/O is in flight as there is no other method of synchronising
1411 * direct I/O with the truncate operation. Also, because we hold
1412 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1413 * started until the truncate completes and drops the lock. Essentially,
1414 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1415 * between direct I/Os and the truncate operation.
1416 *
1da177e4
LT
1417 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1418 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1419 * in the case that the caller is locking things out of order and
1420 * may not be able to call xfs_itruncate_finish() with the inode lock
1421 * held without dropping the I/O lock. If the caller must drop the
1422 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1423 * must be called again with all the same restrictions as the initial
1424 * call.
1425 */
d3cf2094 1426int
1da177e4
LT
1427xfs_itruncate_start(
1428 xfs_inode_t *ip,
1429 uint flags,
1430 xfs_fsize_t new_size)
1431{
1432 xfs_fsize_t last_byte;
1433 xfs_off_t toss_start;
1434 xfs_mount_t *mp;
d3cf2094 1435 int error = 0;
1da177e4 1436
579aa9ca 1437 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ba87ea69 1438 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1439 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1440 (flags == XFS_ITRUNC_MAYBE));
1441
1442 mp = ip->i_mount;
9fa8046f 1443
c734c79b 1444 /* wait for the completion of any pending DIOs */
d112f298 1445 if (new_size == 0 || new_size < ip->i_size)
c734c79b
LM
1446 vn_iowait(ip);
1447
1da177e4 1448 /*
67fcaa73 1449 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1450 * overlapping the region being removed. We have to use
67fcaa73 1451 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1452 * caller may not be able to finish the truncate without
1453 * dropping the inode's I/O lock. Make sure
1454 * to catch any pages brought in by buffers overlapping
1455 * the EOF by searching out beyond the isize by our
1456 * block size. We round new_size up to a block boundary
1457 * so that we don't toss things on the same block as
1458 * new_size but before it.
1459 *
67fcaa73 1460 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1461 * call remapf() over the same region if the file is mapped.
1462 * This frees up mapped file references to the pages in the
67fcaa73 1463 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1464 * that we get the latest mapped changes flushed out.
1465 */
1466 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1467 toss_start = XFS_FSB_TO_B(mp, toss_start);
1468 if (toss_start < 0) {
1469 /*
1470 * The place to start tossing is beyond our maximum
1471 * file size, so there is no way that the data extended
1472 * out there.
1473 */
d3cf2094 1474 return 0;
1da177e4
LT
1475 }
1476 last_byte = xfs_file_last_byte(ip);
1477 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1478 last_byte);
1479 if (last_byte > toss_start) {
1480 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1481 xfs_tosspages(ip, toss_start,
1482 -1, FI_REMAPF_LOCKED);
1da177e4 1483 } else {
739bfb2a
CH
1484 error = xfs_flushinval_pages(ip, toss_start,
1485 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1486 }
1487 }
1488
1489#ifdef DEBUG
1490 if (new_size == 0) {
df80c933 1491 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1da177e4
LT
1492 }
1493#endif
d3cf2094 1494 return error;
1da177e4
LT
1495}
1496
1497/*
f6485057
DC
1498 * Shrink the file to the given new_size. The new size must be smaller than
1499 * the current size. This will free up the underlying blocks in the removed
1500 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1da177e4 1501 *
f6485057
DC
1502 * The transaction passed to this routine must have made a permanent log
1503 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1504 * given transaction and start new ones, so make sure everything involved in
1505 * the transaction is tidy before calling here. Some transaction will be
1506 * returned to the caller to be committed. The incoming transaction must
1507 * already include the inode, and both inode locks must be held exclusively.
1508 * The inode must also be "held" within the transaction. On return the inode
1509 * will be "held" within the returned transaction. This routine does NOT
1510 * require any disk space to be reserved for it within the transaction.
1da177e4 1511 *
f6485057
DC
1512 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1513 * indicates the fork which is to be truncated. For the attribute fork we only
1514 * support truncation to size 0.
1da177e4 1515 *
f6485057
DC
1516 * We use the sync parameter to indicate whether or not the first transaction
1517 * we perform might have to be synchronous. For the attr fork, it needs to be
1518 * so if the unlink of the inode is not yet known to be permanent in the log.
1519 * This keeps us from freeing and reusing the blocks of the attribute fork
1520 * before the unlink of the inode becomes permanent.
1da177e4 1521 *
f6485057
DC
1522 * For the data fork, we normally have to run synchronously if we're being
1523 * called out of the inactive path or we're being called out of the create path
1524 * where we're truncating an existing file. Either way, the truncate needs to
1525 * be sync so blocks don't reappear in the file with altered data in case of a
1526 * crash. wsync filesystems can run the first case async because anything that
1527 * shrinks the inode has to run sync so by the time we're called here from
1528 * inactive, the inode size is permanently set to 0.
1da177e4 1529 *
f6485057
DC
1530 * Calls from the truncate path always need to be sync unless we're in a wsync
1531 * filesystem and the file has already been unlinked.
1da177e4 1532 *
f6485057
DC
1533 * The caller is responsible for correctly setting the sync parameter. It gets
1534 * too hard for us to guess here which path we're being called out of just
1535 * based on inode state.
1536 *
1537 * If we get an error, we must return with the inode locked and linked into the
1538 * current transaction. This keeps things simple for the higher level code,
1539 * because it always knows that the inode is locked and held in the transaction
1540 * that returns to it whether errors occur or not. We don't mark the inode
1541 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1542 */
1543int
1544xfs_itruncate_finish(
1545 xfs_trans_t **tp,
1546 xfs_inode_t *ip,
1547 xfs_fsize_t new_size,
1548 int fork,
1549 int sync)
1550{
1551 xfs_fsblock_t first_block;
1552 xfs_fileoff_t first_unmap_block;
1553 xfs_fileoff_t last_block;
1554 xfs_filblks_t unmap_len=0;
1555 xfs_mount_t *mp;
1556 xfs_trans_t *ntp;
1557 int done;
1558 int committed;
1559 xfs_bmap_free_t free_list;
1560 int error;
1561
579aa9ca 1562 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ba87ea69 1563 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1564 ASSERT(*tp != NULL);
1565 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1566 ASSERT(ip->i_transp == *tp);
1567 ASSERT(ip->i_itemp != NULL);
1568 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1569
1570
1571 ntp = *tp;
1572 mp = (ntp)->t_mountp;
1573 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1574
1575 /*
1576 * We only support truncating the entire attribute fork.
1577 */
1578 if (fork == XFS_ATTR_FORK) {
1579 new_size = 0LL;
1580 }
1581 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1582 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1583 /*
1584 * The first thing we do is set the size to new_size permanently
1585 * on disk. This way we don't have to worry about anyone ever
1586 * being able to look at the data being freed even in the face
1587 * of a crash. What we're getting around here is the case where
1588 * we free a block, it is allocated to another file, it is written
1589 * to, and then we crash. If the new data gets written to the
1590 * file but the log buffers containing the free and reallocation
1591 * don't, then we'd end up with garbage in the blocks being freed.
1592 * As long as we make the new_size permanent before actually
1593 * freeing any blocks it doesn't matter if they get writtten to.
1594 *
1595 * The callers must signal into us whether or not the size
1596 * setting here must be synchronous. There are a few cases
1597 * where it doesn't have to be synchronous. Those cases
1598 * occur if the file is unlinked and we know the unlink is
1599 * permanent or if the blocks being truncated are guaranteed
1600 * to be beyond the inode eof (regardless of the link count)
1601 * and the eof value is permanent. Both of these cases occur
1602 * only on wsync-mounted filesystems. In those cases, we're
1603 * guaranteed that no user will ever see the data in the blocks
1604 * that are being truncated so the truncate can run async.
1605 * In the free beyond eof case, the file may wind up with
1606 * more blocks allocated to it than it needs if we crash
1607 * and that won't get fixed until the next time the file
1608 * is re-opened and closed but that's ok as that shouldn't
1609 * be too many blocks.
1610 *
1611 * However, we can't just make all wsync xactions run async
1612 * because there's one call out of the create path that needs
1613 * to run sync where it's truncating an existing file to size
1614 * 0 whose size is > 0.
1615 *
1616 * It's probably possible to come up with a test in this
1617 * routine that would correctly distinguish all the above
1618 * cases from the values of the function parameters and the
1619 * inode state but for sanity's sake, I've decided to let the
1620 * layers above just tell us. It's simpler to correctly figure
1621 * out in the layer above exactly under what conditions we
1622 * can run async and I think it's easier for others read and
1623 * follow the logic in case something has to be changed.
1624 * cscope is your friend -- rcc.
1625 *
1626 * The attribute fork is much simpler.
1627 *
1628 * For the attribute fork we allow the caller to tell us whether
1629 * the unlink of the inode that led to this call is yet permanent
1630 * in the on disk log. If it is not and we will be freeing extents
1631 * in this inode then we make the first transaction synchronous
1632 * to make sure that the unlink is permanent by the time we free
1633 * the blocks.
1634 */
1635 if (fork == XFS_DATA_FORK) {
1636 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1637 /*
1638 * If we are not changing the file size then do
1639 * not update the on-disk file size - we may be
1640 * called from xfs_inactive_free_eofblocks(). If we
1641 * update the on-disk file size and then the system
1642 * crashes before the contents of the file are
1643 * flushed to disk then the files may be full of
1644 * holes (ie NULL files bug).
1645 */
1646 if (ip->i_size != new_size) {
1647 ip->i_d.di_size = new_size;
1648 ip->i_size = new_size;
1649 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1650 }
1da177e4
LT
1651 }
1652 } else if (sync) {
1653 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1654 if (ip->i_d.di_anextents > 0)
1655 xfs_trans_set_sync(ntp);
1656 }
1657 ASSERT(fork == XFS_DATA_FORK ||
1658 (fork == XFS_ATTR_FORK &&
1659 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1660 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1661
1662 /*
1663 * Since it is possible for space to become allocated beyond
1664 * the end of the file (in a crash where the space is allocated
1665 * but the inode size is not yet updated), simply remove any
1666 * blocks which show up between the new EOF and the maximum
1667 * possible file size. If the first block to be removed is
1668 * beyond the maximum file size (ie it is the same as last_block),
1669 * then there is nothing to do.
1670 */
1671 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1672 ASSERT(first_unmap_block <= last_block);
1673 done = 0;
1674 if (last_block == first_unmap_block) {
1675 done = 1;
1676 } else {
1677 unmap_len = last_block - first_unmap_block + 1;
1678 }
1679 while (!done) {
1680 /*
1681 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1682 * will tell us whether it freed the entire range or
1683 * not. If this is a synchronous mount (wsync),
1684 * then we can tell bunmapi to keep all the
1685 * transactions asynchronous since the unlink
1686 * transaction that made this inode inactive has
1687 * already hit the disk. There's no danger of
1688 * the freed blocks being reused, there being a
1689 * crash, and the reused blocks suddenly reappearing
1690 * in this file with garbage in them once recovery
1691 * runs.
1692 */
1693 XFS_BMAP_INIT(&free_list, &first_block);
541d7d3c 1694 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1695 first_unmap_block, unmap_len,
1da177e4
LT
1696 XFS_BMAPI_AFLAG(fork) |
1697 (sync ? 0 : XFS_BMAPI_ASYNC),
1698 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1699 &first_block, &free_list,
1700 NULL, &done);
1da177e4
LT
1701 if (error) {
1702 /*
1703 * If the bunmapi call encounters an error,
1704 * return to the caller where the transaction
1705 * can be properly aborted. We just need to
1706 * make sure we're not holding any resources
1707 * that we were not when we came in.
1708 */
1709 xfs_bmap_cancel(&free_list);
1710 return error;
1711 }
1712
1713 /*
1714 * Duplicate the transaction that has the permanent
1715 * reservation and commit the old transaction.
1716 */
f7c99b6f 1717 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4 1718 ntp = *tp;
f6485057
DC
1719 if (committed) {
1720 /* link the inode into the next xact in the chain */
1721 xfs_trans_ijoin(ntp, ip,
1722 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1723 xfs_trans_ihold(ntp, ip);
1724 }
1725
1da177e4
LT
1726 if (error) {
1727 /*
f6485057
DC
1728 * If the bmap finish call encounters an error, return
1729 * to the caller where the transaction can be properly
1730 * aborted. We just need to make sure we're not
1731 * holding any resources that we were not when we came
1732 * in.
1da177e4 1733 *
f6485057
DC
1734 * Aborting from this point might lose some blocks in
1735 * the file system, but oh well.
1da177e4
LT
1736 */
1737 xfs_bmap_cancel(&free_list);
1da177e4
LT
1738 return error;
1739 }
1740
1741 if (committed) {
1742 /*
f6485057 1743 * Mark the inode dirty so it will be logged and
e5720eec 1744 * moved forward in the log as part of every commit.
1da177e4 1745 */
1da177e4
LT
1746 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1747 }
f6485057 1748
1da177e4 1749 ntp = xfs_trans_dup(ntp);
e5720eec 1750 error = xfs_trans_commit(*tp, 0);
1da177e4 1751 *tp = ntp;
e5720eec 1752
f6485057
DC
1753 /* link the inode into the next transaction in the chain */
1754 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1755 xfs_trans_ihold(ntp, ip);
1756
cc09c0dc
DC
1757 if (error)
1758 return error;
1759 /*
1760 * transaction commit worked ok so we can drop the extra ticket
1761 * reference that we gained in xfs_trans_dup()
1762 */
1763 xfs_log_ticket_put(ntp->t_ticket);
1764 error = xfs_trans_reserve(ntp, 0,
f6485057
DC
1765 XFS_ITRUNCATE_LOG_RES(mp), 0,
1766 XFS_TRANS_PERM_LOG_RES,
1767 XFS_ITRUNCATE_LOG_COUNT);
1768 if (error)
1769 return error;
1da177e4
LT
1770 }
1771 /*
1772 * Only update the size in the case of the data fork, but
1773 * always re-log the inode so that our permanent transaction
1774 * can keep on rolling it forward in the log.
1775 */
1776 if (fork == XFS_DATA_FORK) {
1777 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1778 /*
1779 * If we are not changing the file size then do
1780 * not update the on-disk file size - we may be
1781 * called from xfs_inactive_free_eofblocks(). If we
1782 * update the on-disk file size and then the system
1783 * crashes before the contents of the file are
1784 * flushed to disk then the files may be full of
1785 * holes (ie NULL files bug).
1786 */
1787 if (ip->i_size != new_size) {
1788 ip->i_d.di_size = new_size;
1789 ip->i_size = new_size;
1790 }
1da177e4
LT
1791 }
1792 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1793 ASSERT((new_size != 0) ||
1794 (fork == XFS_ATTR_FORK) ||
1795 (ip->i_delayed_blks == 0));
1796 ASSERT((new_size != 0) ||
1797 (fork == XFS_ATTR_FORK) ||
1798 (ip->i_d.di_nextents == 0));
1799 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1800 return 0;
1801}
1802
1da177e4
LT
1803/*
1804 * This is called when the inode's link count goes to 0.
1805 * We place the on-disk inode on a list in the AGI. It
1806 * will be pulled from this list when the inode is freed.
1807 */
1808int
1809xfs_iunlink(
1810 xfs_trans_t *tp,
1811 xfs_inode_t *ip)
1812{
1813 xfs_mount_t *mp;
1814 xfs_agi_t *agi;
1815 xfs_dinode_t *dip;
1816 xfs_buf_t *agibp;
1817 xfs_buf_t *ibp;
1da177e4
LT
1818 xfs_agino_t agino;
1819 short bucket_index;
1820 int offset;
1821 int error;
1da177e4
LT
1822
1823 ASSERT(ip->i_d.di_nlink == 0);
1824 ASSERT(ip->i_d.di_mode != 0);
1825 ASSERT(ip->i_transp == tp);
1826
1827 mp = tp->t_mountp;
1828
1da177e4
LT
1829 /*
1830 * Get the agi buffer first. It ensures lock ordering
1831 * on the list.
1832 */
5e1be0fb 1833 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1834 if (error)
1da177e4 1835 return error;
1da177e4 1836 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1837
1da177e4
LT
1838 /*
1839 * Get the index into the agi hash table for the
1840 * list this inode will go on.
1841 */
1842 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1843 ASSERT(agino != 0);
1844 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1845 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1846 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1847
16259e7d 1848 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1849 /*
1850 * There is already another inode in the bucket we need
1851 * to add ourselves to. Add us at the front of the list.
1852 * Here we put the head pointer into our next pointer,
1853 * and then we fall through to point the head at us.
1854 */
76d8b277 1855 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
c319b58b
VA
1856 if (error)
1857 return error;
1858
347d1c01 1859 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1860 /* both on-disk, don't endian flip twice */
1861 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1862 offset = ip->i_imap.im_boffset +
1da177e4
LT
1863 offsetof(xfs_dinode_t, di_next_unlinked);
1864 xfs_trans_inode_buf(tp, ibp);
1865 xfs_trans_log_buf(tp, ibp, offset,
1866 (offset + sizeof(xfs_agino_t) - 1));
1867 xfs_inobp_check(mp, ibp);
1868 }
1869
1870 /*
1871 * Point the bucket head pointer at the inode being inserted.
1872 */
1873 ASSERT(agino != 0);
16259e7d 1874 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1875 offset = offsetof(xfs_agi_t, agi_unlinked) +
1876 (sizeof(xfs_agino_t) * bucket_index);
1877 xfs_trans_log_buf(tp, agibp, offset,
1878 (offset + sizeof(xfs_agino_t) - 1));
1879 return 0;
1880}
1881
1882/*
1883 * Pull the on-disk inode from the AGI unlinked list.
1884 */
1885STATIC int
1886xfs_iunlink_remove(
1887 xfs_trans_t *tp,
1888 xfs_inode_t *ip)
1889{
1890 xfs_ino_t next_ino;
1891 xfs_mount_t *mp;
1892 xfs_agi_t *agi;
1893 xfs_dinode_t *dip;
1894 xfs_buf_t *agibp;
1895 xfs_buf_t *ibp;
1896 xfs_agnumber_t agno;
1da177e4
LT
1897 xfs_agino_t agino;
1898 xfs_agino_t next_agino;
1899 xfs_buf_t *last_ibp;
6fdf8ccc 1900 xfs_dinode_t *last_dip = NULL;
1da177e4 1901 short bucket_index;
6fdf8ccc 1902 int offset, last_offset = 0;
1da177e4 1903 int error;
1da177e4 1904
1da177e4 1905 mp = tp->t_mountp;
1da177e4 1906 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1907
1908 /*
1909 * Get the agi buffer first. It ensures lock ordering
1910 * on the list.
1911 */
5e1be0fb
CH
1912 error = xfs_read_agi(mp, tp, agno, &agibp);
1913 if (error)
1da177e4 1914 return error;
5e1be0fb 1915
1da177e4 1916 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1917
1da177e4
LT
1918 /*
1919 * Get the index into the agi hash table for the
1920 * list this inode will go on.
1921 */
1922 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1923 ASSERT(agino != 0);
1924 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 1925 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
1926 ASSERT(agi->agi_unlinked[bucket_index]);
1927
16259e7d 1928 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1929 /*
1930 * We're at the head of the list. Get the inode's
1931 * on-disk buffer to see if there is anyone after us
1932 * on the list. Only modify our next pointer if it
1933 * is not already NULLAGINO. This saves us the overhead
1934 * of dealing with the buffer when there is no need to
1935 * change it.
1936 */
76d8b277 1937 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1da177e4
LT
1938 if (error) {
1939 cmn_err(CE_WARN,
1940 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1941 error, mp->m_fsname);
1942 return error;
1943 }
347d1c01 1944 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1945 ASSERT(next_agino != 0);
1946 if (next_agino != NULLAGINO) {
347d1c01 1947 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1948 offset = ip->i_imap.im_boffset +
1da177e4
LT
1949 offsetof(xfs_dinode_t, di_next_unlinked);
1950 xfs_trans_inode_buf(tp, ibp);
1951 xfs_trans_log_buf(tp, ibp, offset,
1952 (offset + sizeof(xfs_agino_t) - 1));
1953 xfs_inobp_check(mp, ibp);
1954 } else {
1955 xfs_trans_brelse(tp, ibp);
1956 }
1957 /*
1958 * Point the bucket head pointer at the next inode.
1959 */
1960 ASSERT(next_agino != 0);
1961 ASSERT(next_agino != agino);
16259e7d 1962 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1963 offset = offsetof(xfs_agi_t, agi_unlinked) +
1964 (sizeof(xfs_agino_t) * bucket_index);
1965 xfs_trans_log_buf(tp, agibp, offset,
1966 (offset + sizeof(xfs_agino_t) - 1));
1967 } else {
1968 /*
1969 * We need to search the list for the inode being freed.
1970 */
16259e7d 1971 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1972 last_ibp = NULL;
1973 while (next_agino != agino) {
1974 /*
1975 * If the last inode wasn't the one pointing to
1976 * us, then release its buffer since we're not
1977 * going to do anything with it.
1978 */
1979 if (last_ibp != NULL) {
1980 xfs_trans_brelse(tp, last_ibp);
1981 }
1982 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1983 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
c679eef0 1984 &last_ibp, &last_offset, 0);
1da177e4
LT
1985 if (error) {
1986 cmn_err(CE_WARN,
1987 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1988 error, mp->m_fsname);
1989 return error;
1990 }
347d1c01 1991 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1992 ASSERT(next_agino != NULLAGINO);
1993 ASSERT(next_agino != 0);
1994 }
1995 /*
1996 * Now last_ibp points to the buffer previous to us on
1997 * the unlinked list. Pull us from the list.
1998 */
76d8b277 1999 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1da177e4
LT
2000 if (error) {
2001 cmn_err(CE_WARN,
2002 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2003 error, mp->m_fsname);
2004 return error;
2005 }
347d1c01 2006 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2007 ASSERT(next_agino != 0);
2008 ASSERT(next_agino != agino);
2009 if (next_agino != NULLAGINO) {
347d1c01 2010 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2011 offset = ip->i_imap.im_boffset +
1da177e4
LT
2012 offsetof(xfs_dinode_t, di_next_unlinked);
2013 xfs_trans_inode_buf(tp, ibp);
2014 xfs_trans_log_buf(tp, ibp, offset,
2015 (offset + sizeof(xfs_agino_t) - 1));
2016 xfs_inobp_check(mp, ibp);
2017 } else {
2018 xfs_trans_brelse(tp, ibp);
2019 }
2020 /*
2021 * Point the previous inode on the list to the next inode.
2022 */
347d1c01 2023 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2024 ASSERT(next_agino != 0);
2025 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2026 xfs_trans_inode_buf(tp, last_ibp);
2027 xfs_trans_log_buf(tp, last_ibp, offset,
2028 (offset + sizeof(xfs_agino_t) - 1));
2029 xfs_inobp_check(mp, last_ibp);
2030 }
2031 return 0;
2032}
2033
ba0f32d4 2034STATIC void
1da177e4
LT
2035xfs_ifree_cluster(
2036 xfs_inode_t *free_ip,
2037 xfs_trans_t *tp,
2038 xfs_ino_t inum)
2039{
2040 xfs_mount_t *mp = free_ip->i_mount;
2041 int blks_per_cluster;
2042 int nbufs;
2043 int ninodes;
2044 int i, j, found, pre_flushed;
2045 xfs_daddr_t blkno;
2046 xfs_buf_t *bp;
1da177e4
LT
2047 xfs_inode_t *ip, **ip_found;
2048 xfs_inode_log_item_t *iip;
2049 xfs_log_item_t *lip;
da353b0d 2050 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2051
2052 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2053 blks_per_cluster = 1;
2054 ninodes = mp->m_sb.sb_inopblock;
2055 nbufs = XFS_IALLOC_BLOCKS(mp);
2056 } else {
2057 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2058 mp->m_sb.sb_blocksize;
2059 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2060 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2061 }
2062
2063 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2064
2065 for (j = 0; j < nbufs; j++, inum += ninodes) {
2066 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2067 XFS_INO_TO_AGBNO(mp, inum));
2068
2069
2070 /*
2071 * Look for each inode in memory and attempt to lock it,
2072 * we can be racing with flush and tail pushing here.
2073 * any inode we get the locks on, add to an array of
2074 * inode items to process later.
2075 *
2076 * The get the buffer lock, we could beat a flush
2077 * or tail pushing thread to the lock here, in which
2078 * case they will go looking for the inode buffer
2079 * and fail, we need some other form of interlock
2080 * here.
2081 */
2082 found = 0;
2083 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2084 read_lock(&pag->pag_ici_lock);
2085 ip = radix_tree_lookup(&pag->pag_ici_root,
2086 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2087
2088 /* Inode not in memory or we found it already,
2089 * nothing to do
2090 */
7a18c386 2091 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2092 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2093 continue;
2094 }
2095
2096 if (xfs_inode_clean(ip)) {
da353b0d 2097 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2098 continue;
2099 }
2100
2101 /* If we can get the locks then add it to the
2102 * list, otherwise by the time we get the bp lock
2103 * below it will already be attached to the
2104 * inode buffer.
2105 */
2106
2107 /* This inode will already be locked - by us, lets
2108 * keep it that way.
2109 */
2110
2111 if (ip == free_ip) {
2112 if (xfs_iflock_nowait(ip)) {
7a18c386 2113 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2114 if (xfs_inode_clean(ip)) {
2115 xfs_ifunlock(ip);
2116 } else {
2117 ip_found[found++] = ip;
2118 }
2119 }
da353b0d 2120 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2121 continue;
2122 }
2123
2124 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2125 if (xfs_iflock_nowait(ip)) {
7a18c386 2126 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2127
2128 if (xfs_inode_clean(ip)) {
2129 xfs_ifunlock(ip);
2130 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2131 } else {
2132 ip_found[found++] = ip;
2133 }
2134 } else {
2135 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2136 }
2137 }
da353b0d 2138 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2139 }
2140
2141 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2142 mp->m_bsize * blks_per_cluster,
2143 XFS_BUF_LOCK);
2144
2145 pre_flushed = 0;
2146 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2147 while (lip) {
2148 if (lip->li_type == XFS_LI_INODE) {
2149 iip = (xfs_inode_log_item_t *)lip;
2150 ASSERT(iip->ili_logged == 1);
2151 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
7b2e2a31
DC
2152 xfs_trans_ail_copy_lsn(mp->m_ail,
2153 &iip->ili_flush_lsn,
2154 &iip->ili_item.li_lsn);
e5ffd2bb 2155 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2156 pre_flushed++;
2157 }
2158 lip = lip->li_bio_list;
2159 }
2160
2161 for (i = 0; i < found; i++) {
2162 ip = ip_found[i];
2163 iip = ip->i_itemp;
2164
2165 if (!iip) {
2166 ip->i_update_core = 0;
2167 xfs_ifunlock(ip);
2168 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2169 continue;
2170 }
2171
2172 iip->ili_last_fields = iip->ili_format.ilf_fields;
2173 iip->ili_format.ilf_fields = 0;
2174 iip->ili_logged = 1;
7b2e2a31
DC
2175 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2176 &iip->ili_item.li_lsn);
1da177e4
LT
2177
2178 xfs_buf_attach_iodone(bp,
2179 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2180 xfs_istale_done, (xfs_log_item_t *)iip);
2181 if (ip != free_ip) {
2182 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2183 }
2184 }
2185
2186 if (found || pre_flushed)
2187 xfs_trans_stale_inode_buf(tp, bp);
2188 xfs_trans_binval(tp, bp);
2189 }
2190
f0e2d93c 2191 kmem_free(ip_found);
da353b0d 2192 xfs_put_perag(mp, pag);
1da177e4
LT
2193}
2194
2195/*
2196 * This is called to return an inode to the inode free list.
2197 * The inode should already be truncated to 0 length and have
2198 * no pages associated with it. This routine also assumes that
2199 * the inode is already a part of the transaction.
2200 *
2201 * The on-disk copy of the inode will have been added to the list
2202 * of unlinked inodes in the AGI. We need to remove the inode from
2203 * that list atomically with respect to freeing it here.
2204 */
2205int
2206xfs_ifree(
2207 xfs_trans_t *tp,
2208 xfs_inode_t *ip,
2209 xfs_bmap_free_t *flist)
2210{
2211 int error;
2212 int delete;
2213 xfs_ino_t first_ino;
c319b58b
VA
2214 xfs_dinode_t *dip;
2215 xfs_buf_t *ibp;
1da177e4 2216
579aa9ca 2217 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2218 ASSERT(ip->i_transp == tp);
2219 ASSERT(ip->i_d.di_nlink == 0);
2220 ASSERT(ip->i_d.di_nextents == 0);
2221 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2222 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2223 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2224 ASSERT(ip->i_d.di_nblocks == 0);
2225
2226 /*
2227 * Pull the on-disk inode from the AGI unlinked list.
2228 */
2229 error = xfs_iunlink_remove(tp, ip);
2230 if (error != 0) {
2231 return error;
2232 }
2233
2234 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2235 if (error != 0) {
2236 return error;
2237 }
2238 ip->i_d.di_mode = 0; /* mark incore inode as free */
2239 ip->i_d.di_flags = 0;
2240 ip->i_d.di_dmevmask = 0;
2241 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2242 ip->i_df.if_ext_max =
2243 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2244 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2245 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2246 /*
2247 * Bump the generation count so no one will be confused
2248 * by reincarnations of this inode.
2249 */
2250 ip->i_d.di_gen++;
c319b58b 2251
1da177e4
LT
2252 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2253
76d8b277 2254 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
c319b58b
VA
2255 if (error)
2256 return error;
2257
2258 /*
2259 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2260 * from picking up this inode when it is reclaimed (its incore state
2261 * initialzed but not flushed to disk yet). The in-core di_mode is
2262 * already cleared and a corresponding transaction logged.
2263 * The hack here just synchronizes the in-core to on-disk
2264 * di_mode value in advance before the actual inode sync to disk.
2265 * This is OK because the inode is already unlinked and would never
2266 * change its di_mode again for this inode generation.
2267 * This is a temporary hack that would require a proper fix
2268 * in the future.
2269 */
81591fe2 2270 dip->di_mode = 0;
c319b58b 2271
1da177e4
LT
2272 if (delete) {
2273 xfs_ifree_cluster(ip, tp, first_ino);
2274 }
2275
2276 return 0;
2277}
2278
2279/*
2280 * Reallocate the space for if_broot based on the number of records
2281 * being added or deleted as indicated in rec_diff. Move the records
2282 * and pointers in if_broot to fit the new size. When shrinking this
2283 * will eliminate holes between the records and pointers created by
2284 * the caller. When growing this will create holes to be filled in
2285 * by the caller.
2286 *
2287 * The caller must not request to add more records than would fit in
2288 * the on-disk inode root. If the if_broot is currently NULL, then
2289 * if we adding records one will be allocated. The caller must also
2290 * not request that the number of records go below zero, although
2291 * it can go to zero.
2292 *
2293 * ip -- the inode whose if_broot area is changing
2294 * ext_diff -- the change in the number of records, positive or negative,
2295 * requested for the if_broot array.
2296 */
2297void
2298xfs_iroot_realloc(
2299 xfs_inode_t *ip,
2300 int rec_diff,
2301 int whichfork)
2302{
60197e8d 2303 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
2304 int cur_max;
2305 xfs_ifork_t *ifp;
7cc95a82 2306 struct xfs_btree_block *new_broot;
1da177e4
LT
2307 int new_max;
2308 size_t new_size;
2309 char *np;
2310 char *op;
2311
2312 /*
2313 * Handle the degenerate case quietly.
2314 */
2315 if (rec_diff == 0) {
2316 return;
2317 }
2318
2319 ifp = XFS_IFORK_PTR(ip, whichfork);
2320 if (rec_diff > 0) {
2321 /*
2322 * If there wasn't any memory allocated before, just
2323 * allocate it now and get out.
2324 */
2325 if (ifp->if_broot_bytes == 0) {
2326 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
7cc95a82 2327 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
1da177e4
LT
2328 ifp->if_broot_bytes = (int)new_size;
2329 return;
2330 }
2331
2332 /*
2333 * If there is already an existing if_broot, then we need
2334 * to realloc() it and shift the pointers to their new
2335 * location. The records don't change location because
2336 * they are kept butted up against the btree block header.
2337 */
60197e8d 2338 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2339 new_max = cur_max + rec_diff;
2340 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 2341 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4
LT
2342 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2343 KM_SLEEP);
60197e8d
CH
2344 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2345 ifp->if_broot_bytes);
2346 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2347 (int)new_size);
1da177e4
LT
2348 ifp->if_broot_bytes = (int)new_size;
2349 ASSERT(ifp->if_broot_bytes <=
2350 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2351 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2352 return;
2353 }
2354
2355 /*
2356 * rec_diff is less than 0. In this case, we are shrinking the
2357 * if_broot buffer. It must already exist. If we go to zero
2358 * records, just get rid of the root and clear the status bit.
2359 */
2360 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2361 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2362 new_max = cur_max + rec_diff;
2363 ASSERT(new_max >= 0);
2364 if (new_max > 0)
2365 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2366 else
2367 new_size = 0;
2368 if (new_size > 0) {
7cc95a82 2369 new_broot = kmem_alloc(new_size, KM_SLEEP);
1da177e4
LT
2370 /*
2371 * First copy over the btree block header.
2372 */
7cc95a82 2373 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
2374 } else {
2375 new_broot = NULL;
2376 ifp->if_flags &= ~XFS_IFBROOT;
2377 }
2378
2379 /*
2380 * Only copy the records and pointers if there are any.
2381 */
2382 if (new_max > 0) {
2383 /*
2384 * First copy the records.
2385 */
136341b4
CH
2386 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2387 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2388 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2389
2390 /*
2391 * Then copy the pointers.
2392 */
60197e8d 2393 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2394 ifp->if_broot_bytes);
60197e8d 2395 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2396 (int)new_size);
2397 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2398 }
f0e2d93c 2399 kmem_free(ifp->if_broot);
1da177e4
LT
2400 ifp->if_broot = new_broot;
2401 ifp->if_broot_bytes = (int)new_size;
2402 ASSERT(ifp->if_broot_bytes <=
2403 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2404 return;
2405}
2406
2407
1da177e4
LT
2408/*
2409 * This is called when the amount of space needed for if_data
2410 * is increased or decreased. The change in size is indicated by
2411 * the number of bytes that need to be added or deleted in the
2412 * byte_diff parameter.
2413 *
2414 * If the amount of space needed has decreased below the size of the
2415 * inline buffer, then switch to using the inline buffer. Otherwise,
2416 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2417 * to what is needed.
2418 *
2419 * ip -- the inode whose if_data area is changing
2420 * byte_diff -- the change in the number of bytes, positive or negative,
2421 * requested for the if_data array.
2422 */
2423void
2424xfs_idata_realloc(
2425 xfs_inode_t *ip,
2426 int byte_diff,
2427 int whichfork)
2428{
2429 xfs_ifork_t *ifp;
2430 int new_size;
2431 int real_size;
2432
2433 if (byte_diff == 0) {
2434 return;
2435 }
2436
2437 ifp = XFS_IFORK_PTR(ip, whichfork);
2438 new_size = (int)ifp->if_bytes + byte_diff;
2439 ASSERT(new_size >= 0);
2440
2441 if (new_size == 0) {
2442 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2443 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2444 }
2445 ifp->if_u1.if_data = NULL;
2446 real_size = 0;
2447 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2448 /*
2449 * If the valid extents/data can fit in if_inline_ext/data,
2450 * copy them from the malloc'd vector and free it.
2451 */
2452 if (ifp->if_u1.if_data == NULL) {
2453 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2454 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2455 ASSERT(ifp->if_real_bytes != 0);
2456 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2457 new_size);
f0e2d93c 2458 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2459 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2460 }
2461 real_size = 0;
2462 } else {
2463 /*
2464 * Stuck with malloc/realloc.
2465 * For inline data, the underlying buffer must be
2466 * a multiple of 4 bytes in size so that it can be
2467 * logged and stay on word boundaries. We enforce
2468 * that here.
2469 */
2470 real_size = roundup(new_size, 4);
2471 if (ifp->if_u1.if_data == NULL) {
2472 ASSERT(ifp->if_real_bytes == 0);
2473 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2474 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2475 /*
2476 * Only do the realloc if the underlying size
2477 * is really changing.
2478 */
2479 if (ifp->if_real_bytes != real_size) {
2480 ifp->if_u1.if_data =
2481 kmem_realloc(ifp->if_u1.if_data,
2482 real_size,
2483 ifp->if_real_bytes,
2484 KM_SLEEP);
2485 }
2486 } else {
2487 ASSERT(ifp->if_real_bytes == 0);
2488 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2489 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2490 ifp->if_bytes);
2491 }
2492 }
2493 ifp->if_real_bytes = real_size;
2494 ifp->if_bytes = new_size;
2495 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2496}
2497
1da177e4
LT
2498void
2499xfs_idestroy_fork(
2500 xfs_inode_t *ip,
2501 int whichfork)
2502{
2503 xfs_ifork_t *ifp;
2504
2505 ifp = XFS_IFORK_PTR(ip, whichfork);
2506 if (ifp->if_broot != NULL) {
f0e2d93c 2507 kmem_free(ifp->if_broot);
1da177e4
LT
2508 ifp->if_broot = NULL;
2509 }
2510
2511 /*
2512 * If the format is local, then we can't have an extents
2513 * array so just look for an inline data array. If we're
2514 * not local then we may or may not have an extents list,
2515 * so check and free it up if we do.
2516 */
2517 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2518 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2519 (ifp->if_u1.if_data != NULL)) {
2520 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2521 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2522 ifp->if_u1.if_data = NULL;
2523 ifp->if_real_bytes = 0;
2524 }
2525 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2526 ((ifp->if_flags & XFS_IFEXTIREC) ||
2527 ((ifp->if_u1.if_extents != NULL) &&
2528 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2529 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2530 xfs_iext_destroy(ifp);
1da177e4
LT
2531 }
2532 ASSERT(ifp->if_u1.if_extents == NULL ||
2533 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2534 ASSERT(ifp->if_real_bytes == 0);
2535 if (whichfork == XFS_ATTR_FORK) {
2536 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2537 ip->i_afp = NULL;
2538 }
2539}
2540
2541/*
2542 * This is called free all the memory associated with an inode.
2543 * It must free the inode itself and any buffers allocated for
2544 * if_extents/if_data and if_broot. It must also free the lock
2545 * associated with the inode.
bf904248
DC
2546 *
2547 * Note: because we don't initialise everything on reallocation out
2548 * of the zone, we must ensure we nullify everything correctly before
2549 * freeing the structure.
1da177e4
LT
2550 */
2551void
2552xfs_idestroy(
2553 xfs_inode_t *ip)
2554{
1da177e4
LT
2555 switch (ip->i_d.di_mode & S_IFMT) {
2556 case S_IFREG:
2557 case S_IFDIR:
2558 case S_IFLNK:
2559 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2560 break;
2561 }
2562 if (ip->i_afp)
2563 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1543d79c 2564
cf441eeb 2565#ifdef XFS_INODE_TRACE
1543d79c
CH
2566 ktrace_free(ip->i_trace);
2567#endif
1da177e4
LT
2568#ifdef XFS_BMAP_TRACE
2569 ktrace_free(ip->i_xtrace);
2570#endif
8c4ed633 2571#ifdef XFS_BTREE_TRACE
1da177e4
LT
2572 ktrace_free(ip->i_btrace);
2573#endif
2574#ifdef XFS_RW_TRACE
2575 ktrace_free(ip->i_rwtrace);
2576#endif
2577#ifdef XFS_ILOCK_TRACE
2578 ktrace_free(ip->i_lock_trace);
2579#endif
2580#ifdef XFS_DIR2_TRACE
2581 ktrace_free(ip->i_dir_trace);
2582#endif
2583 if (ip->i_itemp) {
f74eaf59
DC
2584 /*
2585 * Only if we are shutting down the fs will we see an
2586 * inode still in the AIL. If it is there, we should remove
2587 * it to prevent a use-after-free from occurring.
2588 */
f74eaf59 2589 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
783a2f65 2590 struct xfs_ail *ailp = lip->li_ailp;
f74eaf59
DC
2591
2592 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2593 XFS_FORCED_SHUTDOWN(ip->i_mount));
2594 if (lip->li_flags & XFS_LI_IN_AIL) {
783a2f65 2595 spin_lock(&ailp->xa_lock);
f74eaf59 2596 if (lip->li_flags & XFS_LI_IN_AIL)
783a2f65 2597 xfs_trans_ail_delete(ailp, lip);
f74eaf59 2598 else
783a2f65 2599 spin_unlock(&ailp->xa_lock);
f74eaf59 2600 }
1da177e4 2601 xfs_inode_item_destroy(ip);
07c8f675 2602 ip->i_itemp = NULL;
1da177e4 2603 }
07c8f675
DC
2604 /* asserts to verify all state is correct here */
2605 ASSERT(atomic_read(&ip->i_iocount) == 0);
2606 ASSERT(atomic_read(&ip->i_pincount) == 0);
2607 ASSERT(!spin_is_locked(&ip->i_flags_lock));
11654513 2608 ASSERT(completion_done(&ip->i_flush));
1da177e4
LT
2609 kmem_zone_free(xfs_inode_zone, ip);
2610}
2611
2612
2613/*
2614 * Increment the pin count of the given buffer.
2615 * This value is protected by ipinlock spinlock in the mount structure.
2616 */
2617void
2618xfs_ipin(
2619 xfs_inode_t *ip)
2620{
579aa9ca 2621 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2622
2623 atomic_inc(&ip->i_pincount);
2624}
2625
2626/*
2627 * Decrement the pin count of the given inode, and wake up
2628 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2629 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2630 */
2631void
2632xfs_iunpin(
2633 xfs_inode_t *ip)
2634{
2635 ASSERT(atomic_read(&ip->i_pincount) > 0);
2636
5d51eff4 2637 if (atomic_dec_and_test(&ip->i_pincount))
1da177e4 2638 wake_up(&ip->i_ipin_wait);
1da177e4
LT
2639}
2640
2641/*
a3f74ffb
DC
2642 * This is called to unpin an inode. It can be directed to wait or to return
2643 * immediately without waiting for the inode to be unpinned. The caller must
2644 * have the inode locked in at least shared mode so that the buffer cannot be
2645 * subsequently pinned once someone is waiting for it to be unpinned.
1da177e4 2646 */
ba0f32d4 2647STATIC void
a3f74ffb
DC
2648__xfs_iunpin_wait(
2649 xfs_inode_t *ip,
2650 int wait)
1da177e4 2651{
a3f74ffb 2652 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 2653
579aa9ca 2654 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
a3f74ffb 2655 if (atomic_read(&ip->i_pincount) == 0)
1da177e4 2656 return;
1da177e4 2657
a3f74ffb
DC
2658 /* Give the log a push to start the unpinning I/O */
2659 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2660 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2661 if (wait)
2662 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2663}
1da177e4 2664
a3f74ffb
DC
2665static inline void
2666xfs_iunpin_wait(
2667 xfs_inode_t *ip)
2668{
2669 __xfs_iunpin_wait(ip, 1);
2670}
1da177e4 2671
a3f74ffb
DC
2672static inline void
2673xfs_iunpin_nowait(
2674 xfs_inode_t *ip)
2675{
2676 __xfs_iunpin_wait(ip, 0);
1da177e4
LT
2677}
2678
2679
2680/*
2681 * xfs_iextents_copy()
2682 *
2683 * This is called to copy the REAL extents (as opposed to the delayed
2684 * allocation extents) from the inode into the given buffer. It
2685 * returns the number of bytes copied into the buffer.
2686 *
2687 * If there are no delayed allocation extents, then we can just
2688 * memcpy() the extents into the buffer. Otherwise, we need to
2689 * examine each extent in turn and skip those which are delayed.
2690 */
2691int
2692xfs_iextents_copy(
2693 xfs_inode_t *ip,
a6f64d4a 2694 xfs_bmbt_rec_t *dp,
1da177e4
LT
2695 int whichfork)
2696{
2697 int copied;
1da177e4
LT
2698 int i;
2699 xfs_ifork_t *ifp;
2700 int nrecs;
2701 xfs_fsblock_t start_block;
2702
2703 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2704 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2705 ASSERT(ifp->if_bytes > 0);
2706
2707 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2708 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2709 ASSERT(nrecs > 0);
2710
2711 /*
2712 * There are some delayed allocation extents in the
2713 * inode, so copy the extents one at a time and skip
2714 * the delayed ones. There must be at least one
2715 * non-delayed extent.
2716 */
1da177e4
LT
2717 copied = 0;
2718 for (i = 0; i < nrecs; i++) {
a6f64d4a 2719 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2720 start_block = xfs_bmbt_get_startblock(ep);
2721 if (ISNULLSTARTBLOCK(start_block)) {
2722 /*
2723 * It's a delayed allocation extent, so skip it.
2724 */
1da177e4
LT
2725 continue;
2726 }
2727
2728 /* Translate to on disk format */
cd8b0a97
CH
2729 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2730 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2731 dp++;
1da177e4
LT
2732 copied++;
2733 }
2734 ASSERT(copied != 0);
a6f64d4a 2735 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2736
2737 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2738}
2739
2740/*
2741 * Each of the following cases stores data into the same region
2742 * of the on-disk inode, so only one of them can be valid at
2743 * any given time. While it is possible to have conflicting formats
2744 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2745 * in EXTENTS format, this can only happen when the fork has
2746 * changed formats after being modified but before being flushed.
2747 * In these cases, the format always takes precedence, because the
2748 * format indicates the current state of the fork.
2749 */
2750/*ARGSUSED*/
e4ac967b 2751STATIC void
1da177e4
LT
2752xfs_iflush_fork(
2753 xfs_inode_t *ip,
2754 xfs_dinode_t *dip,
2755 xfs_inode_log_item_t *iip,
2756 int whichfork,
2757 xfs_buf_t *bp)
2758{
2759 char *cp;
2760 xfs_ifork_t *ifp;
2761 xfs_mount_t *mp;
2762#ifdef XFS_TRANS_DEBUG
2763 int first;
2764#endif
2765 static const short brootflag[2] =
2766 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2767 static const short dataflag[2] =
2768 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2769 static const short extflag[2] =
2770 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2771
e4ac967b
DC
2772 if (!iip)
2773 return;
1da177e4
LT
2774 ifp = XFS_IFORK_PTR(ip, whichfork);
2775 /*
2776 * This can happen if we gave up in iformat in an error path,
2777 * for the attribute fork.
2778 */
e4ac967b 2779 if (!ifp) {
1da177e4 2780 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2781 return;
1da177e4
LT
2782 }
2783 cp = XFS_DFORK_PTR(dip, whichfork);
2784 mp = ip->i_mount;
2785 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2786 case XFS_DINODE_FMT_LOCAL:
2787 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2788 (ifp->if_bytes > 0)) {
2789 ASSERT(ifp->if_u1.if_data != NULL);
2790 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2791 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2792 }
1da177e4
LT
2793 break;
2794
2795 case XFS_DINODE_FMT_EXTENTS:
2796 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2797 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2798 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2799 (ifp->if_bytes == 0));
2800 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2801 (ifp->if_bytes > 0));
1da177e4
LT
2802 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2803 (ifp->if_bytes > 0)) {
2804 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2805 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2806 whichfork);
2807 }
2808 break;
2809
2810 case XFS_DINODE_FMT_BTREE:
2811 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2812 (ifp->if_broot_bytes > 0)) {
2813 ASSERT(ifp->if_broot != NULL);
2814 ASSERT(ifp->if_broot_bytes <=
2815 (XFS_IFORK_SIZE(ip, whichfork) +
2816 XFS_BROOT_SIZE_ADJ));
60197e8d 2817 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2818 (xfs_bmdr_block_t *)cp,
2819 XFS_DFORK_SIZE(dip, mp, whichfork));
2820 }
2821 break;
2822
2823 case XFS_DINODE_FMT_DEV:
2824 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2825 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2826 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2827 }
2828 break;
2829
2830 case XFS_DINODE_FMT_UUID:
2831 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2832 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2833 memcpy(XFS_DFORK_DPTR(dip),
2834 &ip->i_df.if_u2.if_uuid,
2835 sizeof(uuid_t));
1da177e4
LT
2836 }
2837 break;
2838
2839 default:
2840 ASSERT(0);
2841 break;
2842 }
1da177e4
LT
2843}
2844
bad55843
DC
2845STATIC int
2846xfs_iflush_cluster(
2847 xfs_inode_t *ip,
2848 xfs_buf_t *bp)
2849{
2850 xfs_mount_t *mp = ip->i_mount;
2851 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2852 unsigned long first_index, mask;
c8f5f12e 2853 unsigned long inodes_per_cluster;
bad55843
DC
2854 int ilist_size;
2855 xfs_inode_t **ilist;
2856 xfs_inode_t *iq;
bad55843
DC
2857 int nr_found;
2858 int clcount = 0;
2859 int bufwasdelwri;
2860 int i;
2861
2862 ASSERT(pag->pagi_inodeok);
2863 ASSERT(pag->pag_ici_init);
2864
c8f5f12e
DC
2865 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2866 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2867 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843
DC
2868 if (!ilist)
2869 return 0;
2870
2871 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2872 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2873 read_lock(&pag->pag_ici_lock);
2874 /* really need a gang lookup range call here */
2875 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2876 first_index, inodes_per_cluster);
bad55843
DC
2877 if (nr_found == 0)
2878 goto out_free;
2879
2880 for (i = 0; i < nr_found; i++) {
2881 iq = ilist[i];
2882 if (iq == ip)
2883 continue;
2884 /* if the inode lies outside this cluster, we're done. */
2885 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2886 break;
2887 /*
2888 * Do an un-protected check to see if the inode is dirty and
2889 * is a candidate for flushing. These checks will be repeated
2890 * later after the appropriate locks are acquired.
2891 */
33540408 2892 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2893 continue;
bad55843
DC
2894
2895 /*
2896 * Try to get locks. If any are unavailable or it is pinned,
2897 * then this inode cannot be flushed and is skipped.
2898 */
2899
2900 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2901 continue;
2902 if (!xfs_iflock_nowait(iq)) {
2903 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2904 continue;
2905 }
2906 if (xfs_ipincount(iq)) {
2907 xfs_ifunlock(iq);
2908 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2909 continue;
2910 }
2911
2912 /*
2913 * arriving here means that this inode can be flushed. First
2914 * re-check that it's dirty before flushing.
2915 */
33540408
DC
2916 if (!xfs_inode_clean(iq)) {
2917 int error;
bad55843
DC
2918 error = xfs_iflush_int(iq, bp);
2919 if (error) {
2920 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2921 goto cluster_corrupt_out;
2922 }
2923 clcount++;
2924 } else {
2925 xfs_ifunlock(iq);
2926 }
2927 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2928 }
2929
2930 if (clcount) {
2931 XFS_STATS_INC(xs_icluster_flushcnt);
2932 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2933 }
2934
2935out_free:
2936 read_unlock(&pag->pag_ici_lock);
f0e2d93c 2937 kmem_free(ilist);
bad55843
DC
2938 return 0;
2939
2940
2941cluster_corrupt_out:
2942 /*
2943 * Corruption detected in the clustering loop. Invalidate the
2944 * inode buffer and shut down the filesystem.
2945 */
2946 read_unlock(&pag->pag_ici_lock);
2947 /*
2948 * Clean up the buffer. If it was B_DELWRI, just release it --
2949 * brelse can handle it with no problems. If not, shut down the
2950 * filesystem before releasing the buffer.
2951 */
2952 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2953 if (bufwasdelwri)
2954 xfs_buf_relse(bp);
2955
2956 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2957
2958 if (!bufwasdelwri) {
2959 /*
2960 * Just like incore_relse: if we have b_iodone functions,
2961 * mark the buffer as an error and call them. Otherwise
2962 * mark it as stale and brelse.
2963 */
2964 if (XFS_BUF_IODONE_FUNC(bp)) {
2965 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2966 XFS_BUF_UNDONE(bp);
2967 XFS_BUF_STALE(bp);
2968 XFS_BUF_SHUT(bp);
2969 XFS_BUF_ERROR(bp,EIO);
2970 xfs_biodone(bp);
2971 } else {
2972 XFS_BUF_STALE(bp);
2973 xfs_buf_relse(bp);
2974 }
2975 }
2976
2977 /*
2978 * Unlocks the flush lock
2979 */
2980 xfs_iflush_abort(iq);
f0e2d93c 2981 kmem_free(ilist);
bad55843
DC
2982 return XFS_ERROR(EFSCORRUPTED);
2983}
2984
1da177e4
LT
2985/*
2986 * xfs_iflush() will write a modified inode's changes out to the
2987 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
2988 * in at least shared mode and the inode flush completion must be
2989 * active as well. The inode lock will still be held upon return from
1da177e4 2990 * the call and the caller is free to unlock it.
c63942d3 2991 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
2992 * The flags indicate how the inode's buffer should be written out.
2993 */
2994int
2995xfs_iflush(
2996 xfs_inode_t *ip,
2997 uint flags)
2998{
2999 xfs_inode_log_item_t *iip;
3000 xfs_buf_t *bp;
3001 xfs_dinode_t *dip;
3002 xfs_mount_t *mp;
3003 int error;
a3f74ffb 3004 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
bad55843 3005 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3006
3007 XFS_STATS_INC(xs_iflush_count);
3008
579aa9ca 3009 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3010 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3011 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3012 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3013
3014 iip = ip->i_itemp;
3015 mp = ip->i_mount;
3016
3017 /*
3018 * If the inode isn't dirty, then just release the inode
3019 * flush lock and do nothing.
3020 */
33540408 3021 if (xfs_inode_clean(ip)) {
1da177e4
LT
3022 xfs_ifunlock(ip);
3023 return 0;
3024 }
3025
3026 /*
a3f74ffb
DC
3027 * We can't flush the inode until it is unpinned, so wait for it if we
3028 * are allowed to block. We know noone new can pin it, because we are
3029 * holding the inode lock shared and you need to hold it exclusively to
3030 * pin the inode.
3031 *
3032 * If we are not allowed to block, force the log out asynchronously so
3033 * that when we come back the inode will be unpinned. If other inodes
3034 * in the same cluster are dirty, they will probably write the inode
3035 * out for us if they occur after the log force completes.
1da177e4 3036 */
a3f74ffb
DC
3037 if (noblock && xfs_ipincount(ip)) {
3038 xfs_iunpin_nowait(ip);
3039 xfs_ifunlock(ip);
3040 return EAGAIN;
3041 }
1da177e4
LT
3042 xfs_iunpin_wait(ip);
3043
3044 /*
3045 * This may have been unpinned because the filesystem is shutting
3046 * down forcibly. If that's the case we must not write this inode
3047 * to disk, because the log record didn't make it to disk!
3048 */
3049 if (XFS_FORCED_SHUTDOWN(mp)) {
3050 ip->i_update_core = 0;
3051 if (iip)
3052 iip->ili_format.ilf_fields = 0;
3053 xfs_ifunlock(ip);
3054 return XFS_ERROR(EIO);
3055 }
3056
1da177e4
LT
3057 /*
3058 * Decide how buffer will be flushed out. This is done before
3059 * the call to xfs_iflush_int because this field is zeroed by it.
3060 */
3061 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3062 /*
3063 * Flush out the inode buffer according to the directions
3064 * of the caller. In the cases where the caller has given
3065 * us a choice choose the non-delwri case. This is because
3066 * the inode is in the AIL and we need to get it out soon.
3067 */
3068 switch (flags) {
3069 case XFS_IFLUSH_SYNC:
3070 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3071 flags = 0;
3072 break;
a3f74ffb 3073 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3074 case XFS_IFLUSH_ASYNC:
3075 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3076 flags = INT_ASYNC;
3077 break;
3078 case XFS_IFLUSH_DELWRI:
3079 flags = INT_DELWRI;
3080 break;
3081 default:
3082 ASSERT(0);
3083 flags = 0;
3084 break;
3085 }
3086 } else {
3087 switch (flags) {
3088 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3089 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3090 case XFS_IFLUSH_DELWRI:
3091 flags = INT_DELWRI;
3092 break;
a3f74ffb 3093 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3094 case XFS_IFLUSH_ASYNC:
3095 flags = INT_ASYNC;
3096 break;
3097 case XFS_IFLUSH_SYNC:
3098 flags = 0;
3099 break;
3100 default:
3101 ASSERT(0);
3102 flags = 0;
3103 break;
3104 }
3105 }
3106
a3f74ffb
DC
3107 /*
3108 * Get the buffer containing the on-disk inode.
3109 */
76d8b277 3110 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
a3f74ffb
DC
3111 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3112 if (error || !bp) {
3113 xfs_ifunlock(ip);
3114 return error;
3115 }
3116
1da177e4
LT
3117 /*
3118 * First flush out the inode that xfs_iflush was called with.
3119 */
3120 error = xfs_iflush_int(ip, bp);
bad55843 3121 if (error)
1da177e4 3122 goto corrupt_out;
1da177e4 3123
a3f74ffb
DC
3124 /*
3125 * If the buffer is pinned then push on the log now so we won't
3126 * get stuck waiting in the write for too long.
3127 */
3128 if (XFS_BUF_ISPINNED(bp))
3129 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3130
1da177e4
LT
3131 /*
3132 * inode clustering:
3133 * see if other inodes can be gathered into this write
3134 */
bad55843
DC
3135 error = xfs_iflush_cluster(ip, bp);
3136 if (error)
3137 goto cluster_corrupt_out;
1da177e4 3138
1da177e4
LT
3139 if (flags & INT_DELWRI) {
3140 xfs_bdwrite(mp, bp);
3141 } else if (flags & INT_ASYNC) {
db7a19f2 3142 error = xfs_bawrite(mp, bp);
1da177e4
LT
3143 } else {
3144 error = xfs_bwrite(mp, bp);
3145 }
3146 return error;
3147
3148corrupt_out:
3149 xfs_buf_relse(bp);
7d04a335 3150 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3151cluster_corrupt_out:
1da177e4
LT
3152 /*
3153 * Unlocks the flush lock
3154 */
bad55843 3155 xfs_iflush_abort(ip);
1da177e4
LT
3156 return XFS_ERROR(EFSCORRUPTED);
3157}
3158
3159
3160STATIC int
3161xfs_iflush_int(
3162 xfs_inode_t *ip,
3163 xfs_buf_t *bp)
3164{
3165 xfs_inode_log_item_t *iip;
3166 xfs_dinode_t *dip;
3167 xfs_mount_t *mp;
3168#ifdef XFS_TRANS_DEBUG
3169 int first;
3170#endif
1da177e4 3171
579aa9ca 3172 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3173 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3174 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3175 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3176
3177 iip = ip->i_itemp;
3178 mp = ip->i_mount;
3179
3180
3181 /*
3182 * If the inode isn't dirty, then just release the inode
3183 * flush lock and do nothing.
3184 */
33540408 3185 if (xfs_inode_clean(ip)) {
1da177e4
LT
3186 xfs_ifunlock(ip);
3187 return 0;
3188 }
3189
3190 /* set *dip = inode's place in the buffer */
92bfc6e7 3191 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
3192
3193 /*
3194 * Clear i_update_core before copying out the data.
3195 * This is for coordination with our timestamp updates
3196 * that don't hold the inode lock. They will always
3197 * update the timestamps BEFORE setting i_update_core,
3198 * so if we clear i_update_core after they set it we
3199 * are guaranteed to see their updates to the timestamps.
3200 * I believe that this depends on strongly ordered memory
3201 * semantics, but we have that. We use the SYNCHRONIZE
3202 * macro to make sure that the compiler does not reorder
3203 * the i_update_core access below the data copy below.
3204 */
3205 ip->i_update_core = 0;
3206 SYNCHRONIZE();
3207
42fe2b1f
CH
3208 /*
3209 * Make sure to get the latest atime from the Linux inode.
3210 */
3211 xfs_synchronize_atime(ip);
3212
81591fe2 3213 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3214 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3215 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3216 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
81591fe2 3217 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3218 goto corrupt_out;
3219 }
3220 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3221 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3222 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3223 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3224 ip->i_ino, ip, ip->i_d.di_magic);
3225 goto corrupt_out;
3226 }
3227 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3228 if (XFS_TEST_ERROR(
3229 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3230 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3231 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3232 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3233 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3234 ip->i_ino, ip);
3235 goto corrupt_out;
3236 }
3237 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3238 if (XFS_TEST_ERROR(
3239 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3240 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3241 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3242 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3243 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3244 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3245 ip->i_ino, ip);
3246 goto corrupt_out;
3247 }
3248 }
3249 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3250 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3251 XFS_RANDOM_IFLUSH_5)) {
3252 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3253 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3254 ip->i_ino,
3255 ip->i_d.di_nextents + ip->i_d.di_anextents,
3256 ip->i_d.di_nblocks,
3257 ip);
3258 goto corrupt_out;
3259 }
3260 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3261 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3262 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3263 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3264 ip->i_ino, ip->i_d.di_forkoff, ip);
3265 goto corrupt_out;
3266 }
3267 /*
3268 * bump the flush iteration count, used to detect flushes which
3269 * postdate a log record during recovery.
3270 */
3271
3272 ip->i_d.di_flushiter++;
3273
3274 /*
3275 * Copy the dirty parts of the inode into the on-disk
3276 * inode. We always copy out the core of the inode,
3277 * because if the inode is dirty at all the core must
3278 * be.
3279 */
81591fe2 3280 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3281
3282 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3283 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3284 ip->i_d.di_flushiter = 0;
3285
3286 /*
3287 * If this is really an old format inode and the superblock version
3288 * has not been updated to support only new format inodes, then
3289 * convert back to the old inode format. If the superblock version
3290 * has been updated, then make the conversion permanent.
3291 */
51ce16d5
CH
3292 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3293 if (ip->i_d.di_version == 1) {
62118709 3294 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3295 /*
3296 * Convert it back.
3297 */
3298 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 3299 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3300 } else {
3301 /*
3302 * The superblock version has already been bumped,
3303 * so just make the conversion to the new inode
3304 * format permanent.
3305 */
51ce16d5
CH
3306 ip->i_d.di_version = 2;
3307 dip->di_version = 2;
1da177e4 3308 ip->i_d.di_onlink = 0;
81591fe2 3309 dip->di_onlink = 0;
1da177e4 3310 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
3311 memset(&(dip->di_pad[0]), 0,
3312 sizeof(dip->di_pad));
1da177e4
LT
3313 ASSERT(ip->i_d.di_projid == 0);
3314 }
3315 }
3316
e4ac967b
DC
3317 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3318 if (XFS_IFORK_Q(ip))
3319 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3320 xfs_inobp_check(mp, bp);
3321
3322 /*
3323 * We've recorded everything logged in the inode, so we'd
3324 * like to clear the ilf_fields bits so we don't log and
3325 * flush things unnecessarily. However, we can't stop
3326 * logging all this information until the data we've copied
3327 * into the disk buffer is written to disk. If we did we might
3328 * overwrite the copy of the inode in the log with all the
3329 * data after re-logging only part of it, and in the face of
3330 * a crash we wouldn't have all the data we need to recover.
3331 *
3332 * What we do is move the bits to the ili_last_fields field.
3333 * When logging the inode, these bits are moved back to the
3334 * ilf_fields field. In the xfs_iflush_done() routine we
3335 * clear ili_last_fields, since we know that the information
3336 * those bits represent is permanently on disk. As long as
3337 * the flush completes before the inode is logged again, then
3338 * both ilf_fields and ili_last_fields will be cleared.
3339 *
3340 * We can play with the ilf_fields bits here, because the inode
3341 * lock must be held exclusively in order to set bits there
3342 * and the flush lock protects the ili_last_fields bits.
3343 * Set ili_logged so the flush done
3344 * routine can tell whether or not to look in the AIL.
3345 * Also, store the current LSN of the inode so that we can tell
3346 * whether the item has moved in the AIL from xfs_iflush_done().
3347 * In order to read the lsn we need the AIL lock, because
3348 * it is a 64 bit value that cannot be read atomically.
3349 */
3350 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3351 iip->ili_last_fields = iip->ili_format.ilf_fields;
3352 iip->ili_format.ilf_fields = 0;
3353 iip->ili_logged = 1;
3354
7b2e2a31
DC
3355 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3356 &iip->ili_item.li_lsn);
1da177e4
LT
3357
3358 /*
3359 * Attach the function xfs_iflush_done to the inode's
3360 * buffer. This will remove the inode from the AIL
3361 * and unlock the inode's flush lock when the inode is
3362 * completely written to disk.
3363 */
3364 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3365 xfs_iflush_done, (xfs_log_item_t *)iip);
3366
3367 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3368 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3369 } else {
3370 /*
3371 * We're flushing an inode which is not in the AIL and has
3372 * not been logged but has i_update_core set. For this
3373 * case we can use a B_DELWRI flush and immediately drop
3374 * the inode flush lock because we can avoid the whole
3375 * AIL state thing. It's OK to drop the flush lock now,
3376 * because we've already locked the buffer and to do anything
3377 * you really need both.
3378 */
3379 if (iip != NULL) {
3380 ASSERT(iip->ili_logged == 0);
3381 ASSERT(iip->ili_last_fields == 0);
3382 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3383 }
3384 xfs_ifunlock(ip);
3385 }
3386
3387 return 0;
3388
3389corrupt_out:
3390 return XFS_ERROR(EFSCORRUPTED);
3391}
3392
3393
1da177e4 3394
1da177e4
LT
3395#ifdef XFS_ILOCK_TRACE
3396ktrace_t *xfs_ilock_trace_buf;
3397
3398void
3399xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3400{
3401 ktrace_enter(ip->i_lock_trace,
3402 (void *)ip,
3403 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3404 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3405 (void *)ra, /* caller of ilock */
3406 (void *)(unsigned long)current_cpu(),
3407 (void *)(unsigned long)current_pid(),
3408 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3409}
3410#endif
4eea22f0
MK
3411
3412/*
3413 * Return a pointer to the extent record at file index idx.
3414 */
a6f64d4a 3415xfs_bmbt_rec_host_t *
4eea22f0
MK
3416xfs_iext_get_ext(
3417 xfs_ifork_t *ifp, /* inode fork pointer */
3418 xfs_extnum_t idx) /* index of target extent */
3419{
3420 ASSERT(idx >= 0);
0293ce3a
MK
3421 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3422 return ifp->if_u1.if_ext_irec->er_extbuf;
3423 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3424 xfs_ext_irec_t *erp; /* irec pointer */
3425 int erp_idx = 0; /* irec index */
3426 xfs_extnum_t page_idx = idx; /* ext index in target list */
3427
3428 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3429 return &erp->er_extbuf[page_idx];
3430 } else if (ifp->if_bytes) {
4eea22f0
MK
3431 return &ifp->if_u1.if_extents[idx];
3432 } else {
3433 return NULL;
3434 }
3435}
3436
3437/*
3438 * Insert new item(s) into the extent records for incore inode
3439 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3440 */
3441void
3442xfs_iext_insert(
3443 xfs_ifork_t *ifp, /* inode fork pointer */
3444 xfs_extnum_t idx, /* starting index of new items */
3445 xfs_extnum_t count, /* number of inserted items */
3446 xfs_bmbt_irec_t *new) /* items to insert */
3447{
4eea22f0
MK
3448 xfs_extnum_t i; /* extent record index */
3449
3450 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3451 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3452 for (i = idx; i < idx + count; i++, new++)
3453 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3454}
3455
3456/*
3457 * This is called when the amount of space required for incore file
3458 * extents needs to be increased. The ext_diff parameter stores the
3459 * number of new extents being added and the idx parameter contains
3460 * the extent index where the new extents will be added. If the new
3461 * extents are being appended, then we just need to (re)allocate and
3462 * initialize the space. Otherwise, if the new extents are being
3463 * inserted into the middle of the existing entries, a bit more work
3464 * is required to make room for the new extents to be inserted. The
3465 * caller is responsible for filling in the new extent entries upon
3466 * return.
3467 */
3468void
3469xfs_iext_add(
3470 xfs_ifork_t *ifp, /* inode fork pointer */
3471 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3472 int ext_diff) /* number of extents to add */
4eea22f0
MK
3473{
3474 int byte_diff; /* new bytes being added */
3475 int new_size; /* size of extents after adding */
3476 xfs_extnum_t nextents; /* number of extents in file */
3477
3478 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3479 ASSERT((idx >= 0) && (idx <= nextents));
3480 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3481 new_size = ifp->if_bytes + byte_diff;
3482 /*
3483 * If the new number of extents (nextents + ext_diff)
3484 * fits inside the inode, then continue to use the inline
3485 * extent buffer.
3486 */
3487 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3488 if (idx < nextents) {
3489 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3490 &ifp->if_u2.if_inline_ext[idx],
3491 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3492 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3493 }
3494 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3495 ifp->if_real_bytes = 0;
0293ce3a 3496 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3497 }
3498 /*
3499 * Otherwise use a linear (direct) extent list.
3500 * If the extents are currently inside the inode,
3501 * xfs_iext_realloc_direct will switch us from
3502 * inline to direct extent allocation mode.
3503 */
0293ce3a 3504 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3505 xfs_iext_realloc_direct(ifp, new_size);
3506 if (idx < nextents) {
3507 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3508 &ifp->if_u1.if_extents[idx],
3509 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3510 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3511 }
3512 }
0293ce3a
MK
3513 /* Indirection array */
3514 else {
3515 xfs_ext_irec_t *erp;
3516 int erp_idx = 0;
3517 int page_idx = idx;
3518
3519 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3520 if (ifp->if_flags & XFS_IFEXTIREC) {
3521 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3522 } else {
3523 xfs_iext_irec_init(ifp);
3524 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3525 erp = ifp->if_u1.if_ext_irec;
3526 }
3527 /* Extents fit in target extent page */
3528 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3529 if (page_idx < erp->er_extcount) {
3530 memmove(&erp->er_extbuf[page_idx + ext_diff],
3531 &erp->er_extbuf[page_idx],
3532 (erp->er_extcount - page_idx) *
3533 sizeof(xfs_bmbt_rec_t));
3534 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3535 }
3536 erp->er_extcount += ext_diff;
3537 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3538 }
3539 /* Insert a new extent page */
3540 else if (erp) {
3541 xfs_iext_add_indirect_multi(ifp,
3542 erp_idx, page_idx, ext_diff);
3543 }
3544 /*
3545 * If extent(s) are being appended to the last page in
3546 * the indirection array and the new extent(s) don't fit
3547 * in the page, then erp is NULL and erp_idx is set to
3548 * the next index needed in the indirection array.
3549 */
3550 else {
3551 int count = ext_diff;
3552
3553 while (count) {
3554 erp = xfs_iext_irec_new(ifp, erp_idx);
3555 erp->er_extcount = count;
3556 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3557 if (count) {
3558 erp_idx++;
3559 }
3560 }
3561 }
3562 }
4eea22f0
MK
3563 ifp->if_bytes = new_size;
3564}
3565
0293ce3a
MK
3566/*
3567 * This is called when incore extents are being added to the indirection
3568 * array and the new extents do not fit in the target extent list. The
3569 * erp_idx parameter contains the irec index for the target extent list
3570 * in the indirection array, and the idx parameter contains the extent
3571 * index within the list. The number of extents being added is stored
3572 * in the count parameter.
3573 *
3574 * |-------| |-------|
3575 * | | | | idx - number of extents before idx
3576 * | idx | | count |
3577 * | | | | count - number of extents being inserted at idx
3578 * |-------| |-------|
3579 * | count | | nex2 | nex2 - number of extents after idx + count
3580 * |-------| |-------|
3581 */
3582void
3583xfs_iext_add_indirect_multi(
3584 xfs_ifork_t *ifp, /* inode fork pointer */
3585 int erp_idx, /* target extent irec index */
3586 xfs_extnum_t idx, /* index within target list */
3587 int count) /* new extents being added */
3588{
3589 int byte_diff; /* new bytes being added */
3590 xfs_ext_irec_t *erp; /* pointer to irec entry */
3591 xfs_extnum_t ext_diff; /* number of extents to add */
3592 xfs_extnum_t ext_cnt; /* new extents still needed */
3593 xfs_extnum_t nex2; /* extents after idx + count */
3594 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3595 int nlists; /* number of irec's (lists) */
3596
3597 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3598 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3599 nex2 = erp->er_extcount - idx;
3600 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3601
3602 /*
3603 * Save second part of target extent list
3604 * (all extents past */
3605 if (nex2) {
3606 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3607 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3608 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3609 erp->er_extcount -= nex2;
3610 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3611 memset(&erp->er_extbuf[idx], 0, byte_diff);
3612 }
3613
3614 /*
3615 * Add the new extents to the end of the target
3616 * list, then allocate new irec record(s) and
3617 * extent buffer(s) as needed to store the rest
3618 * of the new extents.
3619 */
3620 ext_cnt = count;
3621 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3622 if (ext_diff) {
3623 erp->er_extcount += ext_diff;
3624 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3625 ext_cnt -= ext_diff;
3626 }
3627 while (ext_cnt) {
3628 erp_idx++;
3629 erp = xfs_iext_irec_new(ifp, erp_idx);
3630 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3631 erp->er_extcount = ext_diff;
3632 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3633 ext_cnt -= ext_diff;
3634 }
3635
3636 /* Add nex2 extents back to indirection array */
3637 if (nex2) {
3638 xfs_extnum_t ext_avail;
3639 int i;
3640
3641 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3642 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3643 i = 0;
3644 /*
3645 * If nex2 extents fit in the current page, append
3646 * nex2_ep after the new extents.
3647 */
3648 if (nex2 <= ext_avail) {
3649 i = erp->er_extcount;
3650 }
3651 /*
3652 * Otherwise, check if space is available in the
3653 * next page.
3654 */
3655 else if ((erp_idx < nlists - 1) &&
3656 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3657 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3658 erp_idx++;
3659 erp++;
3660 /* Create a hole for nex2 extents */
3661 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3662 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3663 }
3664 /*
3665 * Final choice, create a new extent page for
3666 * nex2 extents.
3667 */
3668 else {
3669 erp_idx++;
3670 erp = xfs_iext_irec_new(ifp, erp_idx);
3671 }
3672 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3673 kmem_free(nex2_ep);
0293ce3a
MK
3674 erp->er_extcount += nex2;
3675 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3676 }
3677}
3678
4eea22f0
MK
3679/*
3680 * This is called when the amount of space required for incore file
3681 * extents needs to be decreased. The ext_diff parameter stores the
3682 * number of extents to be removed and the idx parameter contains
3683 * the extent index where the extents will be removed from.
0293ce3a
MK
3684 *
3685 * If the amount of space needed has decreased below the linear
3686 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3687 * extent array. Otherwise, use kmem_realloc() to adjust the
3688 * size to what is needed.
4eea22f0
MK
3689 */
3690void
3691xfs_iext_remove(
3692 xfs_ifork_t *ifp, /* inode fork pointer */
3693 xfs_extnum_t idx, /* index to begin removing exts */
3694 int ext_diff) /* number of extents to remove */
3695{
3696 xfs_extnum_t nextents; /* number of extents in file */
3697 int new_size; /* size of extents after removal */
3698
3699 ASSERT(ext_diff > 0);
3700 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3701 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3702
3703 if (new_size == 0) {
3704 xfs_iext_destroy(ifp);
0293ce3a
MK
3705 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3706 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3707 } else if (ifp->if_real_bytes) {
3708 xfs_iext_remove_direct(ifp, idx, ext_diff);
3709 } else {
3710 xfs_iext_remove_inline(ifp, idx, ext_diff);
3711 }
3712 ifp->if_bytes = new_size;
3713}
3714
3715/*
3716 * This removes ext_diff extents from the inline buffer, beginning
3717 * at extent index idx.
3718 */
3719void
3720xfs_iext_remove_inline(
3721 xfs_ifork_t *ifp, /* inode fork pointer */
3722 xfs_extnum_t idx, /* index to begin removing exts */
3723 int ext_diff) /* number of extents to remove */
3724{
3725 int nextents; /* number of extents in file */
3726
0293ce3a 3727 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3728 ASSERT(idx < XFS_INLINE_EXTS);
3729 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3730 ASSERT(((nextents - ext_diff) > 0) &&
3731 (nextents - ext_diff) < XFS_INLINE_EXTS);
3732
3733 if (idx + ext_diff < nextents) {
3734 memmove(&ifp->if_u2.if_inline_ext[idx],
3735 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3736 (nextents - (idx + ext_diff)) *
3737 sizeof(xfs_bmbt_rec_t));
3738 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3739 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3740 } else {
3741 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3742 ext_diff * sizeof(xfs_bmbt_rec_t));
3743 }
3744}
3745
3746/*
3747 * This removes ext_diff extents from a linear (direct) extent list,
3748 * beginning at extent index idx. If the extents are being removed
3749 * from the end of the list (ie. truncate) then we just need to re-
3750 * allocate the list to remove the extra space. Otherwise, if the
3751 * extents are being removed from the middle of the existing extent
3752 * entries, then we first need to move the extent records beginning
3753 * at idx + ext_diff up in the list to overwrite the records being
3754 * removed, then remove the extra space via kmem_realloc.
3755 */
3756void
3757xfs_iext_remove_direct(
3758 xfs_ifork_t *ifp, /* inode fork pointer */
3759 xfs_extnum_t idx, /* index to begin removing exts */
3760 int ext_diff) /* number of extents to remove */
3761{
3762 xfs_extnum_t nextents; /* number of extents in file */
3763 int new_size; /* size of extents after removal */
3764
0293ce3a 3765 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3766 new_size = ifp->if_bytes -
3767 (ext_diff * sizeof(xfs_bmbt_rec_t));
3768 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3769
3770 if (new_size == 0) {
3771 xfs_iext_destroy(ifp);
3772 return;
3773 }
3774 /* Move extents up in the list (if needed) */
3775 if (idx + ext_diff < nextents) {
3776 memmove(&ifp->if_u1.if_extents[idx],
3777 &ifp->if_u1.if_extents[idx + ext_diff],
3778 (nextents - (idx + ext_diff)) *
3779 sizeof(xfs_bmbt_rec_t));
3780 }
3781 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3782 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3783 /*
3784 * Reallocate the direct extent list. If the extents
3785 * will fit inside the inode then xfs_iext_realloc_direct
3786 * will switch from direct to inline extent allocation
3787 * mode for us.
3788 */
3789 xfs_iext_realloc_direct(ifp, new_size);
3790 ifp->if_bytes = new_size;
3791}
3792
0293ce3a
MK
3793/*
3794 * This is called when incore extents are being removed from the
3795 * indirection array and the extents being removed span multiple extent
3796 * buffers. The idx parameter contains the file extent index where we
3797 * want to begin removing extents, and the count parameter contains
3798 * how many extents need to be removed.
3799 *
3800 * |-------| |-------|
3801 * | nex1 | | | nex1 - number of extents before idx
3802 * |-------| | count |
3803 * | | | | count - number of extents being removed at idx
3804 * | count | |-------|
3805 * | | | nex2 | nex2 - number of extents after idx + count
3806 * |-------| |-------|
3807 */
3808void
3809xfs_iext_remove_indirect(
3810 xfs_ifork_t *ifp, /* inode fork pointer */
3811 xfs_extnum_t idx, /* index to begin removing extents */
3812 int count) /* number of extents to remove */
3813{
3814 xfs_ext_irec_t *erp; /* indirection array pointer */
3815 int erp_idx = 0; /* indirection array index */
3816 xfs_extnum_t ext_cnt; /* extents left to remove */
3817 xfs_extnum_t ext_diff; /* extents to remove in current list */
3818 xfs_extnum_t nex1; /* number of extents before idx */
3819 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 3820 int nlists; /* entries in indirection array */
0293ce3a
MK
3821 int page_idx = idx; /* index in target extent list */
3822
3823 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3824 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3825 ASSERT(erp != NULL);
3826 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3827 nex1 = page_idx;
3828 ext_cnt = count;
3829 while (ext_cnt) {
3830 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3831 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3832 /*
3833 * Check for deletion of entire list;
3834 * xfs_iext_irec_remove() updates extent offsets.
3835 */
3836 if (ext_diff == erp->er_extcount) {
3837 xfs_iext_irec_remove(ifp, erp_idx);
3838 ext_cnt -= ext_diff;
3839 nex1 = 0;
3840 if (ext_cnt) {
3841 ASSERT(erp_idx < ifp->if_real_bytes /
3842 XFS_IEXT_BUFSZ);
3843 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3844 nex1 = 0;
3845 continue;
3846 } else {
3847 break;
3848 }
3849 }
3850 /* Move extents up (if needed) */
3851 if (nex2) {
3852 memmove(&erp->er_extbuf[nex1],
3853 &erp->er_extbuf[nex1 + ext_diff],
3854 nex2 * sizeof(xfs_bmbt_rec_t));
3855 }
3856 /* Zero out rest of page */
3857 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3858 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3859 /* Update remaining counters */
3860 erp->er_extcount -= ext_diff;
3861 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3862 ext_cnt -= ext_diff;
3863 nex1 = 0;
3864 erp_idx++;
3865 erp++;
3866 }
3867 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3868 xfs_iext_irec_compact(ifp);
3869}
3870
4eea22f0
MK
3871/*
3872 * Create, destroy, or resize a linear (direct) block of extents.
3873 */
3874void
3875xfs_iext_realloc_direct(
3876 xfs_ifork_t *ifp, /* inode fork pointer */
3877 int new_size) /* new size of extents */
3878{
3879 int rnew_size; /* real new size of extents */
3880
3881 rnew_size = new_size;
3882
0293ce3a
MK
3883 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3884 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3885 (new_size != ifp->if_real_bytes)));
3886
4eea22f0
MK
3887 /* Free extent records */
3888 if (new_size == 0) {
3889 xfs_iext_destroy(ifp);
3890 }
3891 /* Resize direct extent list and zero any new bytes */
3892 else if (ifp->if_real_bytes) {
3893 /* Check if extents will fit inside the inode */
3894 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3895 xfs_iext_direct_to_inline(ifp, new_size /
3896 (uint)sizeof(xfs_bmbt_rec_t));
3897 ifp->if_bytes = new_size;
3898 return;
3899 }
16a087d8 3900 if (!is_power_of_2(new_size)){
40ebd81d 3901 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3902 }
3903 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3904 ifp->if_u1.if_extents =
4eea22f0
MK
3905 kmem_realloc(ifp->if_u1.if_extents,
3906 rnew_size,
6785073b 3907 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3908 }
3909 if (rnew_size > ifp->if_real_bytes) {
3910 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3911 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3912 rnew_size - ifp->if_real_bytes);
3913 }
3914 }
3915 /*
3916 * Switch from the inline extent buffer to a direct
3917 * extent list. Be sure to include the inline extent
3918 * bytes in new_size.
3919 */
3920 else {
3921 new_size += ifp->if_bytes;
16a087d8 3922 if (!is_power_of_2(new_size)) {
40ebd81d 3923 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3924 }
3925 xfs_iext_inline_to_direct(ifp, rnew_size);
3926 }
3927 ifp->if_real_bytes = rnew_size;
3928 ifp->if_bytes = new_size;
3929}
3930
3931/*
3932 * Switch from linear (direct) extent records to inline buffer.
3933 */
3934void
3935xfs_iext_direct_to_inline(
3936 xfs_ifork_t *ifp, /* inode fork pointer */
3937 xfs_extnum_t nextents) /* number of extents in file */
3938{
3939 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3940 ASSERT(nextents <= XFS_INLINE_EXTS);
3941 /*
3942 * The inline buffer was zeroed when we switched
3943 * from inline to direct extent allocation mode,
3944 * so we don't need to clear it here.
3945 */
3946 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3947 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3948 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3949 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3950 ifp->if_real_bytes = 0;
3951}
3952
3953/*
3954 * Switch from inline buffer to linear (direct) extent records.
3955 * new_size should already be rounded up to the next power of 2
3956 * by the caller (when appropriate), so use new_size as it is.
3957 * However, since new_size may be rounded up, we can't update
3958 * if_bytes here. It is the caller's responsibility to update
3959 * if_bytes upon return.
3960 */
3961void
3962xfs_iext_inline_to_direct(
3963 xfs_ifork_t *ifp, /* inode fork pointer */
3964 int new_size) /* number of extents in file */
3965{
6785073b 3966 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3967 memset(ifp->if_u1.if_extents, 0, new_size);
3968 if (ifp->if_bytes) {
3969 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3970 ifp->if_bytes);
3971 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3972 sizeof(xfs_bmbt_rec_t));
3973 }
3974 ifp->if_real_bytes = new_size;
3975}
3976
0293ce3a
MK
3977/*
3978 * Resize an extent indirection array to new_size bytes.
3979 */
3980void
3981xfs_iext_realloc_indirect(
3982 xfs_ifork_t *ifp, /* inode fork pointer */
3983 int new_size) /* new indirection array size */
3984{
3985 int nlists; /* number of irec's (ex lists) */
3986 int size; /* current indirection array size */
3987
3988 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3989 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3990 size = nlists * sizeof(xfs_ext_irec_t);
3991 ASSERT(ifp->if_real_bytes);
3992 ASSERT((new_size >= 0) && (new_size != size));
3993 if (new_size == 0) {
3994 xfs_iext_destroy(ifp);
3995 } else {
3996 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3997 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3998 new_size, size, KM_NOFS);
0293ce3a
MK
3999 }
4000}
4001
4002/*
4003 * Switch from indirection array to linear (direct) extent allocations.
4004 */
4005void
4006xfs_iext_indirect_to_direct(
4007 xfs_ifork_t *ifp) /* inode fork pointer */
4008{
a6f64d4a 4009 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4010 xfs_extnum_t nextents; /* number of extents in file */
4011 int size; /* size of file extents */
4012
4013 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4014 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4015 ASSERT(nextents <= XFS_LINEAR_EXTS);
4016 size = nextents * sizeof(xfs_bmbt_rec_t);
4017
71a8c87f 4018 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
4019 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4020
4021 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 4022 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4023 ifp->if_flags &= ~XFS_IFEXTIREC;
4024 ifp->if_u1.if_extents = ep;
4025 ifp->if_bytes = size;
4026 if (nextents < XFS_LINEAR_EXTS) {
4027 xfs_iext_realloc_direct(ifp, size);
4028 }
4029}
4030
4eea22f0
MK
4031/*
4032 * Free incore file extents.
4033 */
4034void
4035xfs_iext_destroy(
4036 xfs_ifork_t *ifp) /* inode fork pointer */
4037{
0293ce3a
MK
4038 if (ifp->if_flags & XFS_IFEXTIREC) {
4039 int erp_idx;
4040 int nlists;
4041
4042 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4043 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4044 xfs_iext_irec_remove(ifp, erp_idx);
4045 }
4046 ifp->if_flags &= ~XFS_IFEXTIREC;
4047 } else if (ifp->if_real_bytes) {
f0e2d93c 4048 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4049 } else if (ifp->if_bytes) {
4050 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4051 sizeof(xfs_bmbt_rec_t));
4052 }
4053 ifp->if_u1.if_extents = NULL;
4054 ifp->if_real_bytes = 0;
4055 ifp->if_bytes = 0;
4056}
0293ce3a 4057
8867bc9b
MK
4058/*
4059 * Return a pointer to the extent record for file system block bno.
4060 */
a6f64d4a 4061xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4062xfs_iext_bno_to_ext(
4063 xfs_ifork_t *ifp, /* inode fork pointer */
4064 xfs_fileoff_t bno, /* block number to search for */
4065 xfs_extnum_t *idxp) /* index of target extent */
4066{
a6f64d4a 4067 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4068 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4069 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4070 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4071 int high; /* upper boundary in search */
8867bc9b 4072 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4073 int low; /* lower boundary in search */
8867bc9b
MK
4074 xfs_extnum_t nextents; /* number of file extents */
4075 xfs_fileoff_t startoff = 0; /* start offset of extent */
4076
4077 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4078 if (nextents == 0) {
4079 *idxp = 0;
4080 return NULL;
4081 }
4082 low = 0;
4083 if (ifp->if_flags & XFS_IFEXTIREC) {
4084 /* Find target extent list */
4085 int erp_idx = 0;
4086 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4087 base = erp->er_extbuf;
4088 high = erp->er_extcount - 1;
4089 } else {
4090 base = ifp->if_u1.if_extents;
4091 high = nextents - 1;
4092 }
4093 /* Binary search extent records */
4094 while (low <= high) {
4095 idx = (low + high) >> 1;
4096 ep = base + idx;
4097 startoff = xfs_bmbt_get_startoff(ep);
4098 blockcount = xfs_bmbt_get_blockcount(ep);
4099 if (bno < startoff) {
4100 high = idx - 1;
4101 } else if (bno >= startoff + blockcount) {
4102 low = idx + 1;
4103 } else {
4104 /* Convert back to file-based extent index */
4105 if (ifp->if_flags & XFS_IFEXTIREC) {
4106 idx += erp->er_extoff;
4107 }
4108 *idxp = idx;
4109 return ep;
4110 }
4111 }
4112 /* Convert back to file-based extent index */
4113 if (ifp->if_flags & XFS_IFEXTIREC) {
4114 idx += erp->er_extoff;
4115 }
4116 if (bno >= startoff + blockcount) {
4117 if (++idx == nextents) {
4118 ep = NULL;
4119 } else {
4120 ep = xfs_iext_get_ext(ifp, idx);
4121 }
4122 }
4123 *idxp = idx;
4124 return ep;
4125}
4126
0293ce3a
MK
4127/*
4128 * Return a pointer to the indirection array entry containing the
4129 * extent record for filesystem block bno. Store the index of the
4130 * target irec in *erp_idxp.
4131 */
8867bc9b 4132xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4133xfs_iext_bno_to_irec(
4134 xfs_ifork_t *ifp, /* inode fork pointer */
4135 xfs_fileoff_t bno, /* block number to search for */
4136 int *erp_idxp) /* irec index of target ext list */
4137{
4138 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4139 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4140 int erp_idx; /* indirection array index */
0293ce3a
MK
4141 int nlists; /* number of extent irec's (lists) */
4142 int high; /* binary search upper limit */
4143 int low; /* binary search lower limit */
4144
4145 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4146 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4147 erp_idx = 0;
4148 low = 0;
4149 high = nlists - 1;
4150 while (low <= high) {
4151 erp_idx = (low + high) >> 1;
4152 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4153 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4154 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4155 high = erp_idx - 1;
4156 } else if (erp_next && bno >=
4157 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4158 low = erp_idx + 1;
4159 } else {
4160 break;
4161 }
4162 }
4163 *erp_idxp = erp_idx;
4164 return erp;
4165}
4166
4167/*
4168 * Return a pointer to the indirection array entry containing the
4169 * extent record at file extent index *idxp. Store the index of the
4170 * target irec in *erp_idxp and store the page index of the target
4171 * extent record in *idxp.
4172 */
4173xfs_ext_irec_t *
4174xfs_iext_idx_to_irec(
4175 xfs_ifork_t *ifp, /* inode fork pointer */
4176 xfs_extnum_t *idxp, /* extent index (file -> page) */
4177 int *erp_idxp, /* pointer to target irec */
4178 int realloc) /* new bytes were just added */
4179{
4180 xfs_ext_irec_t *prev; /* pointer to previous irec */
4181 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4182 int erp_idx; /* indirection array index */
4183 int nlists; /* number of irec's (ex lists) */
4184 int high; /* binary search upper limit */
4185 int low; /* binary search lower limit */
4186 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4187
4188 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4189 ASSERT(page_idx >= 0 && page_idx <=
4190 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4191 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4192 erp_idx = 0;
4193 low = 0;
4194 high = nlists - 1;
4195
4196 /* Binary search extent irec's */
4197 while (low <= high) {
4198 erp_idx = (low + high) >> 1;
4199 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4200 prev = erp_idx > 0 ? erp - 1 : NULL;
4201 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4202 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4203 high = erp_idx - 1;
4204 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4205 (page_idx == erp->er_extoff + erp->er_extcount &&
4206 !realloc)) {
4207 low = erp_idx + 1;
4208 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4209 erp->er_extcount == XFS_LINEAR_EXTS) {
4210 ASSERT(realloc);
4211 page_idx = 0;
4212 erp_idx++;
4213 erp = erp_idx < nlists ? erp + 1 : NULL;
4214 break;
4215 } else {
4216 page_idx -= erp->er_extoff;
4217 break;
4218 }
4219 }
4220 *idxp = page_idx;
4221 *erp_idxp = erp_idx;
4222 return(erp);
4223}
4224
4225/*
4226 * Allocate and initialize an indirection array once the space needed
4227 * for incore extents increases above XFS_IEXT_BUFSZ.
4228 */
4229void
4230xfs_iext_irec_init(
4231 xfs_ifork_t *ifp) /* inode fork pointer */
4232{
4233 xfs_ext_irec_t *erp; /* indirection array pointer */
4234 xfs_extnum_t nextents; /* number of extents in file */
4235
4236 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4237 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4238 ASSERT(nextents <= XFS_LINEAR_EXTS);
4239
6785073b 4240 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
4241
4242 if (nextents == 0) {
6785073b 4243 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4244 } else if (!ifp->if_real_bytes) {
4245 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4246 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4247 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4248 }
4249 erp->er_extbuf = ifp->if_u1.if_extents;
4250 erp->er_extcount = nextents;
4251 erp->er_extoff = 0;
4252
4253 ifp->if_flags |= XFS_IFEXTIREC;
4254 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4255 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4256 ifp->if_u1.if_ext_irec = erp;
4257
4258 return;
4259}
4260
4261/*
4262 * Allocate and initialize a new entry in the indirection array.
4263 */
4264xfs_ext_irec_t *
4265xfs_iext_irec_new(
4266 xfs_ifork_t *ifp, /* inode fork pointer */
4267 int erp_idx) /* index for new irec */
4268{
4269 xfs_ext_irec_t *erp; /* indirection array pointer */
4270 int i; /* loop counter */
4271 int nlists; /* number of irec's (ex lists) */
4272
4273 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4274 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4275
4276 /* Resize indirection array */
4277 xfs_iext_realloc_indirect(ifp, ++nlists *
4278 sizeof(xfs_ext_irec_t));
4279 /*
4280 * Move records down in the array so the
4281 * new page can use erp_idx.
4282 */
4283 erp = ifp->if_u1.if_ext_irec;
4284 for (i = nlists - 1; i > erp_idx; i--) {
4285 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4286 }
4287 ASSERT(i == erp_idx);
4288
4289 /* Initialize new extent record */
4290 erp = ifp->if_u1.if_ext_irec;
6785073b 4291 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4292 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4293 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4294 erp[erp_idx].er_extcount = 0;
4295 erp[erp_idx].er_extoff = erp_idx > 0 ?
4296 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4297 return (&erp[erp_idx]);
4298}
4299
4300/*
4301 * Remove a record from the indirection array.
4302 */
4303void
4304xfs_iext_irec_remove(
4305 xfs_ifork_t *ifp, /* inode fork pointer */
4306 int erp_idx) /* irec index to remove */
4307{
4308 xfs_ext_irec_t *erp; /* indirection array pointer */
4309 int i; /* loop counter */
4310 int nlists; /* number of irec's (ex lists) */
4311
4312 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4313 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4314 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4315 if (erp->er_extbuf) {
4316 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4317 -erp->er_extcount);
f0e2d93c 4318 kmem_free(erp->er_extbuf);
0293ce3a
MK
4319 }
4320 /* Compact extent records */
4321 erp = ifp->if_u1.if_ext_irec;
4322 for (i = erp_idx; i < nlists - 1; i++) {
4323 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4324 }
4325 /*
4326 * Manually free the last extent record from the indirection
4327 * array. A call to xfs_iext_realloc_indirect() with a size
4328 * of zero would result in a call to xfs_iext_destroy() which
4329 * would in turn call this function again, creating a nasty
4330 * infinite loop.
4331 */
4332 if (--nlists) {
4333 xfs_iext_realloc_indirect(ifp,
4334 nlists * sizeof(xfs_ext_irec_t));
4335 } else {
f0e2d93c 4336 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4337 }
4338 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4339}
4340
4341/*
4342 * This is called to clean up large amounts of unused memory allocated
4343 * by the indirection array. Before compacting anything though, verify
4344 * that the indirection array is still needed and switch back to the
4345 * linear extent list (or even the inline buffer) if possible. The
4346 * compaction policy is as follows:
4347 *
4348 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 4349 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
4350 * No Compaction: Extents occupy at least 50% of allocated space
4351 */
4352void
4353xfs_iext_irec_compact(
4354 xfs_ifork_t *ifp) /* inode fork pointer */
4355{
4356 xfs_extnum_t nextents; /* number of extents in file */
4357 int nlists; /* number of irec's (ex lists) */
4358
4359 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4360 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4361 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4362
4363 if (nextents == 0) {
4364 xfs_iext_destroy(ifp);
4365 } else if (nextents <= XFS_INLINE_EXTS) {
4366 xfs_iext_indirect_to_direct(ifp);
4367 xfs_iext_direct_to_inline(ifp, nextents);
4368 } else if (nextents <= XFS_LINEAR_EXTS) {
4369 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
4370 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4371 xfs_iext_irec_compact_pages(ifp);
4372 }
4373}
4374
4375/*
4376 * Combine extents from neighboring extent pages.
4377 */
4378void
4379xfs_iext_irec_compact_pages(
4380 xfs_ifork_t *ifp) /* inode fork pointer */
4381{
4382 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4383 int erp_idx = 0; /* indirection array index */
4384 int nlists; /* number of irec's (ex lists) */
4385
4386 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4387 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4388 while (erp_idx < nlists - 1) {
4389 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4390 erp_next = erp + 1;
4391 if (erp_next->er_extcount <=
4392 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 4393 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
4394 erp_next->er_extbuf, erp_next->er_extcount *
4395 sizeof(xfs_bmbt_rec_t));
4396 erp->er_extcount += erp_next->er_extcount;
4397 /*
4398 * Free page before removing extent record
4399 * so er_extoffs don't get modified in
4400 * xfs_iext_irec_remove.
4401 */
f0e2d93c 4402 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
4403 erp_next->er_extbuf = NULL;
4404 xfs_iext_irec_remove(ifp, erp_idx + 1);
4405 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4406 } else {
4407 erp_idx++;
4408 }
4409 }
4410}
4411
0293ce3a
MK
4412/*
4413 * This is called to update the er_extoff field in the indirection
4414 * array when extents have been added or removed from one of the
4415 * extent lists. erp_idx contains the irec index to begin updating
4416 * at and ext_diff contains the number of extents that were added
4417 * or removed.
4418 */
4419void
4420xfs_iext_irec_update_extoffs(
4421 xfs_ifork_t *ifp, /* inode fork pointer */
4422 int erp_idx, /* irec index to update */
4423 int ext_diff) /* number of new extents */
4424{
4425 int i; /* loop counter */
4426 int nlists; /* number of irec's (ex lists */
4427
4428 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4429 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4430 for (i = erp_idx; i < nlists; i++) {
4431 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4432 }
4433}
This page took 0.678818 seconds and 5 git commands to generate.