xfs: Fix uninitialized return value in xfs_alloc_fix_freelist()
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
a4fbe6ab 28#include "xfs_inode.h"
57062787 29#include "xfs_da_format.h"
c24b5dfa 30#include "xfs_da_btree.h"
c24b5dfa 31#include "xfs_dir2.h"
a844f451 32#include "xfs_attr_sf.h"
c24b5dfa 33#include "xfs_attr.h"
239880ef
DC
34#include "xfs_trans_space.h"
35#include "xfs_trans.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451 37#include "xfs_inode_item.h"
a844f451
NS
38#include "xfs_ialloc.h"
39#include "xfs_bmap.h"
68988114 40#include "xfs_bmap_util.h"
1da177e4 41#include "xfs_error.h"
1da177e4 42#include "xfs_quota.h"
2a82b8be 43#include "xfs_filestream.h"
93848a99 44#include "xfs_cksum.h"
0b1b213f 45#include "xfs_trace.h"
33479e05 46#include "xfs_icache.h"
c24b5dfa 47#include "xfs_symlink.h"
239880ef
DC
48#include "xfs_trans_priv.h"
49#include "xfs_log.h"
a4fbe6ab 50#include "xfs_bmap_btree.h"
1da177e4 51
1da177e4 52kmem_zone_t *xfs_inode_zone;
1da177e4
LT
53
54/*
8f04c47a 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 61
ab297431
ZYW
62STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63
2a0ec1d9
DC
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
fa96acad 78/*
efa70be1
CH
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
fa96acad 89 *
efa70be1 90 * The functions return a value which should be given to the corresponding
01f4f327 91 * xfs_iunlock() call.
fa96acad
DC
92 */
93uint
309ecac8
CH
94xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
fa96acad 96{
309ecac8 97 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 98
309ecac8
CH
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 101 lock_mode = XFS_ILOCK_EXCL;
fa96acad 102 xfs_ilock(ip, lock_mode);
fa96acad
DC
103 return lock_mode;
104}
105
efa70be1
CH
106uint
107xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
fa96acad 109{
efa70be1
CH
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
fa96acad
DC
117}
118
119/*
653c60b6
DC
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
fa96acad 123 *
653c60b6
DC
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 126 *
653c60b6
DC
127 * Basic locking order:
128 *
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130 *
131 * mmap_sem locking order:
132 *
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
135 *
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
142 *
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
fa96acad
DC
148 */
149void
150xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
153{
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155
156 /*
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 */
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
168
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173
653c60b6
DC
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178
fa96acad
DC
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183}
184
185/*
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
191 *
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
196 */
197int
198xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
201{
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203
204 /*
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 */
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
216
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
223 }
653c60b6
DC
224
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
231 }
232
fa96acad
DC
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
653c60b6 235 goto out_undo_mmaplock;
fa96acad
DC
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
653c60b6 238 goto out_undo_mmaplock;
fa96acad
DC
239 }
240 return 1;
241
653c60b6
DC
242out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247out_undo_iolock:
fa96acad
DC
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
653c60b6 252out:
fa96acad
DC
253 return 0;
254}
255
256/*
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
261 *
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
266 *
267 */
268void
269xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
272{
273 /*
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 */
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
285 ASSERT(lock_flags != 0);
286
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
291
653c60b6
DC
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
296
fa96acad
DC
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
301
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303}
304
305/*
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
308 */
309void
310xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
313{
653c60b6
DC
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
317
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
653c60b6
DC
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
fa96acad
DC
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
324
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326}
327
742ae1e3 328#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
329int
330xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
333{
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
338 }
339
653c60b6
DC
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 }
345
fa96acad
DC
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 }
351
352 ASSERT(0);
353 return 0;
354}
355#endif
356
c24b5dfa
DC
357#ifdef DEBUG
358int xfs_locked_n;
359int xfs_small_retries;
360int xfs_middle_retries;
361int xfs_lots_retries;
362int xfs_lock_delays;
363#endif
364
3403ccc0
DC
365#ifdef CONFIG_LOCKDEP
366static bool
367xfs_lockdep_subclass_ok(
368 int subclass)
369{
370 return subclass < MAX_LOCKDEP_SUBCLASSES;
371}
372#else
373#define xfs_lockdep_subclass_ok(subclass) (true)
374#endif
375
c24b5dfa 376/*
653c60b6 377 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
378 * value. This can be called for any type of inode lock combination, including
379 * parent locking. Care must be taken to ensure we don't overrun the subclass
380 * storage fields in the class mask we build.
c24b5dfa
DC
381 */
382static inline int
383xfs_lock_inumorder(int lock_mode, int subclass)
384{
0952c818
DC
385 int class = 0;
386
387 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
388 XFS_ILOCK_RTSUM)));
3403ccc0 389 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 390
653c60b6 391 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 392 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
3403ccc0
DC
393 ASSERT(xfs_lockdep_subclass_ok(subclass +
394 XFS_IOLOCK_PARENT_VAL));
0952c818
DC
395 class += subclass << XFS_IOLOCK_SHIFT;
396 if (lock_mode & XFS_IOLOCK_PARENT)
397 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
653c60b6
DC
398 }
399
400 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
401 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
402 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
403 }
404
0952c818
DC
405 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
406 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
407 class += subclass << XFS_ILOCK_SHIFT;
408 }
c24b5dfa 409
0952c818 410 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
411}
412
413/*
95afcf5c
DC
414 * The following routine will lock n inodes in exclusive mode. We assume the
415 * caller calls us with the inodes in i_ino order.
c24b5dfa 416 *
95afcf5c
DC
417 * We need to detect deadlock where an inode that we lock is in the AIL and we
418 * start waiting for another inode that is locked by a thread in a long running
419 * transaction (such as truncate). This can result in deadlock since the long
420 * running trans might need to wait for the inode we just locked in order to
421 * push the tail and free space in the log.
0952c818
DC
422 *
423 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
424 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
425 * lock more than one at a time, lockdep will report false positives saying we
426 * have violated locking orders.
c24b5dfa
DC
427 */
428void
429xfs_lock_inodes(
430 xfs_inode_t **ips,
431 int inodes,
432 uint lock_mode)
433{
434 int attempts = 0, i, j, try_lock;
435 xfs_log_item_t *lp;
436
0952c818
DC
437 /*
438 * Currently supports between 2 and 5 inodes with exclusive locking. We
439 * support an arbitrary depth of locking here, but absolute limits on
440 * inodes depend on the the type of locking and the limits placed by
441 * lockdep annotations in xfs_lock_inumorder. These are all checked by
442 * the asserts.
443 */
95afcf5c 444 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
445 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
446 XFS_ILOCK_EXCL));
447 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
448 XFS_ILOCK_SHARED)));
449 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
450 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
451 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
452 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
453 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
454 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
455
456 if (lock_mode & XFS_IOLOCK_EXCL) {
457 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
458 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
460
461 try_lock = 0;
462 i = 0;
c24b5dfa
DC
463again:
464 for (; i < inodes; i++) {
465 ASSERT(ips[i]);
466
95afcf5c 467 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
468 continue;
469
470 /*
95afcf5c
DC
471 * If try_lock is not set yet, make sure all locked inodes are
472 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 473 */
c24b5dfa
DC
474 if (!try_lock) {
475 for (j = (i - 1); j >= 0 && !try_lock; j--) {
476 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 477 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 478 try_lock++;
c24b5dfa
DC
479 }
480 }
481
482 /*
483 * If any of the previous locks we have locked is in the AIL,
484 * we must TRY to get the second and subsequent locks. If
485 * we can't get any, we must release all we have
486 * and try again.
487 */
95afcf5c
DC
488 if (!try_lock) {
489 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
490 continue;
491 }
492
493 /* try_lock means we have an inode locked that is in the AIL. */
494 ASSERT(i != 0);
495 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
496 continue;
c24b5dfa 497
95afcf5c
DC
498 /*
499 * Unlock all previous guys and try again. xfs_iunlock will try
500 * to push the tail if the inode is in the AIL.
501 */
502 attempts++;
503 for (j = i - 1; j >= 0; j--) {
c24b5dfa 504 /*
95afcf5c
DC
505 * Check to see if we've already unlocked this one. Not
506 * the first one going back, and the inode ptr is the
507 * same.
c24b5dfa 508 */
95afcf5c
DC
509 if (j != (i - 1) && ips[j] == ips[j + 1])
510 continue;
c24b5dfa 511
95afcf5c
DC
512 xfs_iunlock(ips[j], lock_mode);
513 }
c24b5dfa 514
95afcf5c
DC
515 if ((attempts % 5) == 0) {
516 delay(1); /* Don't just spin the CPU */
c24b5dfa 517#ifdef DEBUG
95afcf5c 518 xfs_lock_delays++;
c24b5dfa 519#endif
c24b5dfa 520 }
95afcf5c
DC
521 i = 0;
522 try_lock = 0;
523 goto again;
c24b5dfa
DC
524 }
525
526#ifdef DEBUG
527 if (attempts) {
528 if (attempts < 5) xfs_small_retries++;
529 else if (attempts < 100) xfs_middle_retries++;
530 else xfs_lots_retries++;
531 } else {
532 xfs_locked_n++;
533 }
534#endif
535}
536
537/*
653c60b6
DC
538 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
539 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
540 * lock more than one at a time, lockdep will report false positives saying we
541 * have violated locking orders.
c24b5dfa
DC
542 */
543void
544xfs_lock_two_inodes(
545 xfs_inode_t *ip0,
546 xfs_inode_t *ip1,
547 uint lock_mode)
548{
549 xfs_inode_t *temp;
550 int attempts = 0;
551 xfs_log_item_t *lp;
552
653c60b6
DC
553 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
554 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
555 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
556 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
557 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
558
c24b5dfa
DC
559 ASSERT(ip0->i_ino != ip1->i_ino);
560
561 if (ip0->i_ino > ip1->i_ino) {
562 temp = ip0;
563 ip0 = ip1;
564 ip1 = temp;
565 }
566
567 again:
568 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
569
570 /*
571 * If the first lock we have locked is in the AIL, we must TRY to get
572 * the second lock. If we can't get it, we must release the first one
573 * and try again.
574 */
575 lp = (xfs_log_item_t *)ip0->i_itemp;
576 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
577 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
578 xfs_iunlock(ip0, lock_mode);
579 if ((++attempts % 5) == 0)
580 delay(1); /* Don't just spin the CPU */
581 goto again;
582 }
583 } else {
584 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
585 }
586}
587
588
fa96acad
DC
589void
590__xfs_iflock(
591 struct xfs_inode *ip)
592{
593 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
594 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
595
596 do {
597 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
598 if (xfs_isiflocked(ip))
599 io_schedule();
600 } while (!xfs_iflock_nowait(ip));
601
602 finish_wait(wq, &wait.wait);
603}
604
1da177e4
LT
605STATIC uint
606_xfs_dic2xflags(
1da177e4
LT
607 __uint16_t di_flags)
608{
609 uint flags = 0;
610
611 if (di_flags & XFS_DIFLAG_ANY) {
612 if (di_flags & XFS_DIFLAG_REALTIME)
613 flags |= XFS_XFLAG_REALTIME;
614 if (di_flags & XFS_DIFLAG_PREALLOC)
615 flags |= XFS_XFLAG_PREALLOC;
616 if (di_flags & XFS_DIFLAG_IMMUTABLE)
617 flags |= XFS_XFLAG_IMMUTABLE;
618 if (di_flags & XFS_DIFLAG_APPEND)
619 flags |= XFS_XFLAG_APPEND;
620 if (di_flags & XFS_DIFLAG_SYNC)
621 flags |= XFS_XFLAG_SYNC;
622 if (di_flags & XFS_DIFLAG_NOATIME)
623 flags |= XFS_XFLAG_NOATIME;
624 if (di_flags & XFS_DIFLAG_NODUMP)
625 flags |= XFS_XFLAG_NODUMP;
626 if (di_flags & XFS_DIFLAG_RTINHERIT)
627 flags |= XFS_XFLAG_RTINHERIT;
628 if (di_flags & XFS_DIFLAG_PROJINHERIT)
629 flags |= XFS_XFLAG_PROJINHERIT;
630 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
631 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
632 if (di_flags & XFS_DIFLAG_EXTSIZE)
633 flags |= XFS_XFLAG_EXTSIZE;
634 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
635 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
636 if (di_flags & XFS_DIFLAG_NODEFRAG)
637 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
638 if (di_flags & XFS_DIFLAG_FILESTREAM)
639 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
640 }
641
642 return flags;
643}
644
645uint
646xfs_ip2xflags(
647 xfs_inode_t *ip)
648{
347d1c01 649 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 650
a916e2bd 651 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 652 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
653}
654
655uint
656xfs_dic2xflags(
45ba598e 657 xfs_dinode_t *dip)
1da177e4 658{
81591fe2 659 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 660 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
661}
662
c24b5dfa
DC
663/*
664 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
665 * is allowed, otherwise it has to be an exact match. If a CI match is found,
666 * ci_name->name will point to a the actual name (caller must free) or
667 * will be set to NULL if an exact match is found.
668 */
669int
670xfs_lookup(
671 xfs_inode_t *dp,
672 struct xfs_name *name,
673 xfs_inode_t **ipp,
674 struct xfs_name *ci_name)
675{
676 xfs_ino_t inum;
677 int error;
c24b5dfa
DC
678
679 trace_xfs_lookup(dp, name);
680
681 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 682 return -EIO;
c24b5dfa 683
dbad7c99 684 xfs_ilock(dp, XFS_IOLOCK_SHARED);
c24b5dfa 685 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 686 if (error)
dbad7c99 687 goto out_unlock;
c24b5dfa
DC
688
689 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
690 if (error)
691 goto out_free_name;
692
dbad7c99 693 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
c24b5dfa
DC
694 return 0;
695
696out_free_name:
697 if (ci_name)
698 kmem_free(ci_name->name);
dbad7c99
DC
699out_unlock:
700 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
c24b5dfa
DC
701 *ipp = NULL;
702 return error;
703}
704
1da177e4
LT
705/*
706 * Allocate an inode on disk and return a copy of its in-core version.
707 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
708 * appropriately within the inode. The uid and gid for the inode are
709 * set according to the contents of the given cred structure.
710 *
711 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
712 * has a free inode available, call xfs_iget() to obtain the in-core
713 * version of the allocated inode. Finally, fill in the inode and
714 * log its initial contents. In this case, ialloc_context would be
715 * set to NULL.
1da177e4 716 *
cd856db6
CM
717 * If xfs_dialloc() does not have an available inode, it will replenish
718 * its supply by doing an allocation. Since we can only do one
719 * allocation within a transaction without deadlocks, we must commit
720 * the current transaction before returning the inode itself.
721 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
722 * The caller should then commit the current transaction, start a new
723 * transaction, and call xfs_ialloc() again to actually get the inode.
724 *
725 * To ensure that some other process does not grab the inode that
726 * was allocated during the first call to xfs_ialloc(), this routine
727 * also returns the [locked] bp pointing to the head of the freelist
728 * as ialloc_context. The caller should hold this buffer across
729 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
730 *
731 * If we are allocating quota inodes, we do not have a parent inode
732 * to attach to or associate with (i.e. pip == NULL) because they
733 * are not linked into the directory structure - they are attached
734 * directly to the superblock - and so have no parent.
1da177e4
LT
735 */
736int
737xfs_ialloc(
738 xfs_trans_t *tp,
739 xfs_inode_t *pip,
576b1d67 740 umode_t mode,
31b084ae 741 xfs_nlink_t nlink,
1da177e4 742 xfs_dev_t rdev,
6743099c 743 prid_t prid,
1da177e4
LT
744 int okalloc,
745 xfs_buf_t **ialloc_context,
1da177e4
LT
746 xfs_inode_t **ipp)
747{
93848a99 748 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
749 xfs_ino_t ino;
750 xfs_inode_t *ip;
1da177e4
LT
751 uint flags;
752 int error;
e076b0f3 753 struct timespec tv;
1da177e4
LT
754
755 /*
756 * Call the space management code to pick
757 * the on-disk inode to be allocated.
758 */
b11f94d5 759 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 760 ialloc_context, &ino);
bf904248 761 if (error)
1da177e4 762 return error;
08358906 763 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
764 *ipp = NULL;
765 return 0;
766 }
767 ASSERT(*ialloc_context == NULL);
768
769 /*
770 * Get the in-core inode with the lock held exclusively.
771 * This is because we're setting fields here we need
772 * to prevent others from looking at until we're done.
773 */
93848a99 774 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 775 XFS_ILOCK_EXCL, &ip);
bf904248 776 if (error)
1da177e4 777 return error;
1da177e4
LT
778 ASSERT(ip != NULL);
779
263997a6
DC
780 /*
781 * We always convert v1 inodes to v2 now - we only support filesystems
782 * with >= v2 inode capability, so there is no reason for ever leaving
783 * an inode in v1 format.
784 */
785 if (ip->i_d.di_version == 1)
786 ip->i_d.di_version = 2;
787
576b1d67 788 ip->i_d.di_mode = mode;
1da177e4
LT
789 ip->i_d.di_onlink = 0;
790 ip->i_d.di_nlink = nlink;
791 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
792 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
793 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 794 xfs_set_projid(ip, prid);
1da177e4
LT
795 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
796
bd186aa9 797 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 798 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 799 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
800 ip->i_d.di_mode |= S_ISGID;
801 }
802 }
803
804 /*
805 * If the group ID of the new file does not match the effective group
806 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
807 * (and only if the irix_sgid_inherit compatibility variable is set).
808 */
809 if ((irix_sgid_inherit) &&
810 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 811 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
812 ip->i_d.di_mode &= ~S_ISGID;
813 }
814
815 ip->i_d.di_size = 0;
816 ip->i_d.di_nextents = 0;
817 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 818
e076b0f3 819 tv = current_fs_time(mp->m_super);
dff35fd4
CH
820 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
821 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
822 ip->i_d.di_atime = ip->i_d.di_mtime;
823 ip->i_d.di_ctime = ip->i_d.di_mtime;
824
1da177e4
LT
825 /*
826 * di_gen will have been taken care of in xfs_iread.
827 */
828 ip->i_d.di_extsize = 0;
829 ip->i_d.di_dmevmask = 0;
830 ip->i_d.di_dmstate = 0;
831 ip->i_d.di_flags = 0;
93848a99
CH
832
833 if (ip->i_d.di_version == 3) {
834 ASSERT(ip->i_d.di_ino == ino);
bbf155ad 835 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_meta_uuid));
93848a99
CH
836 ip->i_d.di_crc = 0;
837 ip->i_d.di_changecount = 1;
838 ip->i_d.di_lsn = 0;
839 ip->i_d.di_flags2 = 0;
840 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
841 ip->i_d.di_crtime = ip->i_d.di_mtime;
842 }
843
844
1da177e4
LT
845 flags = XFS_ILOG_CORE;
846 switch (mode & S_IFMT) {
847 case S_IFIFO:
848 case S_IFCHR:
849 case S_IFBLK:
850 case S_IFSOCK:
851 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
852 ip->i_df.if_u2.if_rdev = rdev;
853 ip->i_df.if_flags = 0;
854 flags |= XFS_ILOG_DEV;
855 break;
856 case S_IFREG:
857 case S_IFDIR:
b11f94d5 858 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
859 uint di_flags = 0;
860
abbede1b 861 if (S_ISDIR(mode)) {
365ca83d
NS
862 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
863 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
864 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
865 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
866 ip->i_d.di_extsize = pip->i_d.di_extsize;
867 }
9336e3a7
DC
868 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
869 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 870 } else if (S_ISREG(mode)) {
613d7043 871 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 872 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
873 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
874 di_flags |= XFS_DIFLAG_EXTSIZE;
875 ip->i_d.di_extsize = pip->i_d.di_extsize;
876 }
1da177e4
LT
877 }
878 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
879 xfs_inherit_noatime)
365ca83d 880 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
881 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
882 xfs_inherit_nodump)
365ca83d 883 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
884 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
885 xfs_inherit_sync)
365ca83d 886 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
887 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
888 xfs_inherit_nosymlinks)
365ca83d 889 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
890 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
891 xfs_inherit_nodefrag)
892 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
893 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
894 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 895 ip->i_d.di_flags |= di_flags;
1da177e4
LT
896 }
897 /* FALLTHROUGH */
898 case S_IFLNK:
899 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
900 ip->i_df.if_flags = XFS_IFEXTENTS;
901 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
902 ip->i_df.if_u1.if_extents = NULL;
903 break;
904 default:
905 ASSERT(0);
906 }
907 /*
908 * Attribute fork settings for new inode.
909 */
910 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
911 ip->i_d.di_anextents = 0;
912
913 /*
914 * Log the new values stuffed into the inode.
915 */
ddc3415a 916 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
917 xfs_trans_log_inode(tp, ip, flags);
918
58c90473 919 /* now that we have an i_mode we can setup the inode structure */
41be8bed 920 xfs_setup_inode(ip);
1da177e4
LT
921
922 *ipp = ip;
923 return 0;
924}
925
e546cb79
DC
926/*
927 * Allocates a new inode from disk and return a pointer to the
928 * incore copy. This routine will internally commit the current
929 * transaction and allocate a new one if the Space Manager needed
930 * to do an allocation to replenish the inode free-list.
931 *
932 * This routine is designed to be called from xfs_create and
933 * xfs_create_dir.
934 *
935 */
936int
937xfs_dir_ialloc(
938 xfs_trans_t **tpp, /* input: current transaction;
939 output: may be a new transaction. */
940 xfs_inode_t *dp, /* directory within whose allocate
941 the inode. */
942 umode_t mode,
943 xfs_nlink_t nlink,
944 xfs_dev_t rdev,
945 prid_t prid, /* project id */
946 int okalloc, /* ok to allocate new space */
947 xfs_inode_t **ipp, /* pointer to inode; it will be
948 locked. */
949 int *committed)
950
951{
952 xfs_trans_t *tp;
e546cb79
DC
953 xfs_inode_t *ip;
954 xfs_buf_t *ialloc_context = NULL;
955 int code;
e546cb79
DC
956 void *dqinfo;
957 uint tflags;
958
959 tp = *tpp;
960 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
961
962 /*
963 * xfs_ialloc will return a pointer to an incore inode if
964 * the Space Manager has an available inode on the free
965 * list. Otherwise, it will do an allocation and replenish
966 * the freelist. Since we can only do one allocation per
967 * transaction without deadlocks, we will need to commit the
968 * current transaction and start a new one. We will then
969 * need to call xfs_ialloc again to get the inode.
970 *
971 * If xfs_ialloc did an allocation to replenish the freelist,
972 * it returns the bp containing the head of the freelist as
973 * ialloc_context. We will hold a lock on it across the
974 * transaction commit so that no other process can steal
975 * the inode(s) that we've just allocated.
976 */
977 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
978 &ialloc_context, &ip);
979
980 /*
981 * Return an error if we were unable to allocate a new inode.
982 * This should only happen if we run out of space on disk or
983 * encounter a disk error.
984 */
985 if (code) {
986 *ipp = NULL;
987 return code;
988 }
989 if (!ialloc_context && !ip) {
990 *ipp = NULL;
2451337d 991 return -ENOSPC;
e546cb79
DC
992 }
993
994 /*
995 * If the AGI buffer is non-NULL, then we were unable to get an
996 * inode in one operation. We need to commit the current
997 * transaction and call xfs_ialloc() again. It is guaranteed
998 * to succeed the second time.
999 */
1000 if (ialloc_context) {
1001 /*
1002 * Normally, xfs_trans_commit releases all the locks.
1003 * We call bhold to hang on to the ialloc_context across
1004 * the commit. Holding this buffer prevents any other
1005 * processes from doing any allocations in this
1006 * allocation group.
1007 */
1008 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1009
1010 /*
1011 * We want the quota changes to be associated with the next
1012 * transaction, NOT this one. So, detach the dqinfo from this
1013 * and attach it to the next transaction.
1014 */
1015 dqinfo = NULL;
1016 tflags = 0;
1017 if (tp->t_dqinfo) {
1018 dqinfo = (void *)tp->t_dqinfo;
1019 tp->t_dqinfo = NULL;
1020 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1021 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1022 }
1023
2e6db6c4
CH
1024 code = xfs_trans_roll(&tp, 0);
1025 if (committed != NULL)
e546cb79 1026 *committed = 1;
3d3c8b52 1027
e546cb79
DC
1028 /*
1029 * Re-attach the quota info that we detached from prev trx.
1030 */
1031 if (dqinfo) {
1032 tp->t_dqinfo = dqinfo;
1033 tp->t_flags |= tflags;
1034 }
1035
1036 if (code) {
1037 xfs_buf_relse(ialloc_context);
2e6db6c4 1038 *tpp = tp;
e546cb79
DC
1039 *ipp = NULL;
1040 return code;
1041 }
1042 xfs_trans_bjoin(tp, ialloc_context);
1043
1044 /*
1045 * Call ialloc again. Since we've locked out all
1046 * other allocations in this allocation group,
1047 * this call should always succeed.
1048 */
1049 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1050 okalloc, &ialloc_context, &ip);
1051
1052 /*
1053 * If we get an error at this point, return to the caller
1054 * so that the current transaction can be aborted.
1055 */
1056 if (code) {
1057 *tpp = tp;
1058 *ipp = NULL;
1059 return code;
1060 }
1061 ASSERT(!ialloc_context && ip);
1062
1063 } else {
1064 if (committed != NULL)
1065 *committed = 0;
1066 }
1067
1068 *ipp = ip;
1069 *tpp = tp;
1070
1071 return 0;
1072}
1073
1074/*
1075 * Decrement the link count on an inode & log the change.
1076 * If this causes the link count to go to zero, initiate the
1077 * logging activity required to truncate a file.
1078 */
1079int /* error */
1080xfs_droplink(
1081 xfs_trans_t *tp,
1082 xfs_inode_t *ip)
1083{
1084 int error;
1085
1086 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1087
1088 ASSERT (ip->i_d.di_nlink > 0);
1089 ip->i_d.di_nlink--;
1090 drop_nlink(VFS_I(ip));
1091 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1092
1093 error = 0;
1094 if (ip->i_d.di_nlink == 0) {
1095 /*
1096 * We're dropping the last link to this file.
1097 * Move the on-disk inode to the AGI unlinked list.
1098 * From xfs_inactive() we will pull the inode from
1099 * the list and free it.
1100 */
1101 error = xfs_iunlink(tp, ip);
1102 }
1103 return error;
1104}
1105
e546cb79
DC
1106/*
1107 * Increment the link count on an inode & log the change.
1108 */
1109int
1110xfs_bumplink(
1111 xfs_trans_t *tp,
1112 xfs_inode_t *ip)
1113{
1114 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1115
263997a6 1116 ASSERT(ip->i_d.di_version > 1);
ab297431 1117 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
e546cb79
DC
1118 ip->i_d.di_nlink++;
1119 inc_nlink(VFS_I(ip));
e546cb79
DC
1120 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1121 return 0;
1122}
1123
c24b5dfa
DC
1124int
1125xfs_create(
1126 xfs_inode_t *dp,
1127 struct xfs_name *name,
1128 umode_t mode,
1129 xfs_dev_t rdev,
1130 xfs_inode_t **ipp)
1131{
1132 int is_dir = S_ISDIR(mode);
1133 struct xfs_mount *mp = dp->i_mount;
1134 struct xfs_inode *ip = NULL;
1135 struct xfs_trans *tp = NULL;
1136 int error;
1137 xfs_bmap_free_t free_list;
1138 xfs_fsblock_t first_block;
1139 bool unlock_dp_on_error = false;
c24b5dfa
DC
1140 int committed;
1141 prid_t prid;
1142 struct xfs_dquot *udqp = NULL;
1143 struct xfs_dquot *gdqp = NULL;
1144 struct xfs_dquot *pdqp = NULL;
062647a8 1145 struct xfs_trans_res *tres;
c24b5dfa 1146 uint resblks;
c24b5dfa
DC
1147
1148 trace_xfs_create(dp, name);
1149
1150 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1151 return -EIO;
c24b5dfa 1152
163467d3 1153 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1154
1155 /*
1156 * Make sure that we have allocated dquot(s) on disk.
1157 */
7aab1b28
DE
1158 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1159 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1160 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1161 &udqp, &gdqp, &pdqp);
1162 if (error)
1163 return error;
1164
1165 if (is_dir) {
1166 rdev = 0;
1167 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1168 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1169 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1170 } else {
1171 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1172 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1173 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1174 }
1175
c24b5dfa
DC
1176 /*
1177 * Initially assume that the file does not exist and
1178 * reserve the resources for that case. If that is not
1179 * the case we'll drop the one we have and get a more
1180 * appropriate transaction later.
1181 */
062647a8 1182 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1183 if (error == -ENOSPC) {
c24b5dfa
DC
1184 /* flush outstanding delalloc blocks and retry */
1185 xfs_flush_inodes(mp);
062647a8 1186 error = xfs_trans_reserve(tp, tres, resblks, 0);
c24b5dfa 1187 }
2451337d 1188 if (error == -ENOSPC) {
c24b5dfa
DC
1189 /* No space at all so try a "no-allocation" reservation */
1190 resblks = 0;
062647a8 1191 error = xfs_trans_reserve(tp, tres, 0, 0);
c24b5dfa 1192 }
4906e215 1193 if (error)
c24b5dfa 1194 goto out_trans_cancel;
4906e215 1195
c24b5dfa 1196
dbad7c99
DC
1197 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1198 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
c24b5dfa
DC
1199 unlock_dp_on_error = true;
1200
1201 xfs_bmap_init(&free_list, &first_block);
1202
1203 /*
1204 * Reserve disk quota and the inode.
1205 */
1206 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1207 pdqp, resblks, 1, 0);
1208 if (error)
1209 goto out_trans_cancel;
1210
94f3cad5
ES
1211 if (!resblks) {
1212 error = xfs_dir_canenter(tp, dp, name);
1213 if (error)
1214 goto out_trans_cancel;
1215 }
c24b5dfa
DC
1216
1217 /*
1218 * A newly created regular or special file just has one directory
1219 * entry pointing to them, but a directory also the "." entry
1220 * pointing to itself.
1221 */
1222 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1223 prid, resblks > 0, &ip, &committed);
1224 if (error) {
2451337d 1225 if (error == -ENOSPC)
c24b5dfa 1226 goto out_trans_cancel;
4906e215 1227 goto out_trans_cancel;
c24b5dfa
DC
1228 }
1229
1230 /*
1231 * Now we join the directory inode to the transaction. We do not do it
1232 * earlier because xfs_dir_ialloc might commit the previous transaction
1233 * (and release all the locks). An error from here on will result in
1234 * the transaction cancel unlocking dp so don't do it explicitly in the
1235 * error path.
1236 */
dbad7c99 1237 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1238 unlock_dp_on_error = false;
1239
1240 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1241 &first_block, &free_list, resblks ?
1242 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1243 if (error) {
2451337d 1244 ASSERT(error != -ENOSPC);
4906e215 1245 goto out_trans_cancel;
c24b5dfa
DC
1246 }
1247 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1248 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1249
1250 if (is_dir) {
1251 error = xfs_dir_init(tp, ip, dp);
1252 if (error)
1253 goto out_bmap_cancel;
1254
1255 error = xfs_bumplink(tp, dp);
1256 if (error)
1257 goto out_bmap_cancel;
1258 }
1259
1260 /*
1261 * If this is a synchronous mount, make sure that the
1262 * create transaction goes to disk before returning to
1263 * the user.
1264 */
1265 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1266 xfs_trans_set_sync(tp);
1267
1268 /*
1269 * Attach the dquot(s) to the inodes and modify them incore.
1270 * These ids of the inode couldn't have changed since the new
1271 * inode has been locked ever since it was created.
1272 */
1273 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1274
1275 error = xfs_bmap_finish(&tp, &free_list, &committed);
1276 if (error)
1277 goto out_bmap_cancel;
1278
70393313 1279 error = xfs_trans_commit(tp);
c24b5dfa
DC
1280 if (error)
1281 goto out_release_inode;
1282
1283 xfs_qm_dqrele(udqp);
1284 xfs_qm_dqrele(gdqp);
1285 xfs_qm_dqrele(pdqp);
1286
1287 *ipp = ip;
1288 return 0;
1289
1290 out_bmap_cancel:
1291 xfs_bmap_cancel(&free_list);
c24b5dfa 1292 out_trans_cancel:
4906e215 1293 xfs_trans_cancel(tp);
c24b5dfa
DC
1294 out_release_inode:
1295 /*
58c90473
DC
1296 * Wait until after the current transaction is aborted to finish the
1297 * setup of the inode and release the inode. This prevents recursive
1298 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1299 */
58c90473
DC
1300 if (ip) {
1301 xfs_finish_inode_setup(ip);
c24b5dfa 1302 IRELE(ip);
58c90473 1303 }
c24b5dfa
DC
1304
1305 xfs_qm_dqrele(udqp);
1306 xfs_qm_dqrele(gdqp);
1307 xfs_qm_dqrele(pdqp);
1308
1309 if (unlock_dp_on_error)
dbad7c99 1310 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1311 return error;
1312}
1313
99b6436b
ZYW
1314int
1315xfs_create_tmpfile(
1316 struct xfs_inode *dp,
1317 struct dentry *dentry,
330033d6
BF
1318 umode_t mode,
1319 struct xfs_inode **ipp)
99b6436b
ZYW
1320{
1321 struct xfs_mount *mp = dp->i_mount;
1322 struct xfs_inode *ip = NULL;
1323 struct xfs_trans *tp = NULL;
1324 int error;
99b6436b
ZYW
1325 prid_t prid;
1326 struct xfs_dquot *udqp = NULL;
1327 struct xfs_dquot *gdqp = NULL;
1328 struct xfs_dquot *pdqp = NULL;
1329 struct xfs_trans_res *tres;
1330 uint resblks;
1331
1332 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1333 return -EIO;
99b6436b
ZYW
1334
1335 prid = xfs_get_initial_prid(dp);
1336
1337 /*
1338 * Make sure that we have allocated dquot(s) on disk.
1339 */
1340 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1341 xfs_kgid_to_gid(current_fsgid()), prid,
1342 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1343 &udqp, &gdqp, &pdqp);
1344 if (error)
1345 return error;
1346
1347 resblks = XFS_IALLOC_SPACE_RES(mp);
1348 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1349
1350 tres = &M_RES(mp)->tr_create_tmpfile;
1351 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1352 if (error == -ENOSPC) {
99b6436b
ZYW
1353 /* No space at all so try a "no-allocation" reservation */
1354 resblks = 0;
1355 error = xfs_trans_reserve(tp, tres, 0, 0);
1356 }
4906e215 1357 if (error)
99b6436b 1358 goto out_trans_cancel;
99b6436b
ZYW
1359
1360 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1361 pdqp, resblks, 1, 0);
1362 if (error)
1363 goto out_trans_cancel;
1364
1365 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1366 prid, resblks > 0, &ip, NULL);
1367 if (error) {
2451337d 1368 if (error == -ENOSPC)
99b6436b 1369 goto out_trans_cancel;
4906e215 1370 goto out_trans_cancel;
99b6436b
ZYW
1371 }
1372
1373 if (mp->m_flags & XFS_MOUNT_WSYNC)
1374 xfs_trans_set_sync(tp);
1375
1376 /*
1377 * Attach the dquot(s) to the inodes and modify them incore.
1378 * These ids of the inode couldn't have changed since the new
1379 * inode has been locked ever since it was created.
1380 */
1381 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1382
1383 ip->i_d.di_nlink--;
99b6436b
ZYW
1384 error = xfs_iunlink(tp, ip);
1385 if (error)
4906e215 1386 goto out_trans_cancel;
99b6436b 1387
70393313 1388 error = xfs_trans_commit(tp);
99b6436b
ZYW
1389 if (error)
1390 goto out_release_inode;
1391
1392 xfs_qm_dqrele(udqp);
1393 xfs_qm_dqrele(gdqp);
1394 xfs_qm_dqrele(pdqp);
1395
330033d6 1396 *ipp = ip;
99b6436b
ZYW
1397 return 0;
1398
99b6436b 1399 out_trans_cancel:
4906e215 1400 xfs_trans_cancel(tp);
99b6436b
ZYW
1401 out_release_inode:
1402 /*
58c90473
DC
1403 * Wait until after the current transaction is aborted to finish the
1404 * setup of the inode and release the inode. This prevents recursive
1405 * transactions and deadlocks from xfs_inactive.
99b6436b 1406 */
58c90473
DC
1407 if (ip) {
1408 xfs_finish_inode_setup(ip);
99b6436b 1409 IRELE(ip);
58c90473 1410 }
99b6436b
ZYW
1411
1412 xfs_qm_dqrele(udqp);
1413 xfs_qm_dqrele(gdqp);
1414 xfs_qm_dqrele(pdqp);
1415
1416 return error;
1417}
1418
c24b5dfa
DC
1419int
1420xfs_link(
1421 xfs_inode_t *tdp,
1422 xfs_inode_t *sip,
1423 struct xfs_name *target_name)
1424{
1425 xfs_mount_t *mp = tdp->i_mount;
1426 xfs_trans_t *tp;
1427 int error;
1428 xfs_bmap_free_t free_list;
1429 xfs_fsblock_t first_block;
c24b5dfa
DC
1430 int committed;
1431 int resblks;
1432
1433 trace_xfs_link(tdp, target_name);
1434
1435 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1436
1437 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1438 return -EIO;
c24b5dfa
DC
1439
1440 error = xfs_qm_dqattach(sip, 0);
1441 if (error)
1442 goto std_return;
1443
1444 error = xfs_qm_dqattach(tdp, 0);
1445 if (error)
1446 goto std_return;
1447
1448 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
c24b5dfa 1449 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1450 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
2451337d 1451 if (error == -ENOSPC) {
c24b5dfa 1452 resblks = 0;
3d3c8b52 1453 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa 1454 }
4906e215 1455 if (error)
c24b5dfa 1456 goto error_return;
c24b5dfa 1457
dbad7c99 1458 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
c24b5dfa
DC
1459 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1460
1461 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
dbad7c99 1462 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1463
1464 /*
1465 * If we are using project inheritance, we only allow hard link
1466 * creation in our tree when the project IDs are the same; else
1467 * the tree quota mechanism could be circumvented.
1468 */
1469 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1470 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1471 error = -EXDEV;
c24b5dfa
DC
1472 goto error_return;
1473 }
1474
94f3cad5
ES
1475 if (!resblks) {
1476 error = xfs_dir_canenter(tp, tdp, target_name);
1477 if (error)
1478 goto error_return;
1479 }
c24b5dfa
DC
1480
1481 xfs_bmap_init(&free_list, &first_block);
1482
ab297431
ZYW
1483 if (sip->i_d.di_nlink == 0) {
1484 error = xfs_iunlink_remove(tp, sip);
1485 if (error)
4906e215 1486 goto error_return;
ab297431
ZYW
1487 }
1488
c24b5dfa
DC
1489 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1490 &first_block, &free_list, resblks);
1491 if (error)
4906e215 1492 goto error_return;
c24b5dfa
DC
1493 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1494 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1495
1496 error = xfs_bumplink(tp, sip);
1497 if (error)
4906e215 1498 goto error_return;
c24b5dfa
DC
1499
1500 /*
1501 * If this is a synchronous mount, make sure that the
1502 * link transaction goes to disk before returning to
1503 * the user.
1504 */
1505 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1506 xfs_trans_set_sync(tp);
1507 }
1508
1509 error = xfs_bmap_finish (&tp, &free_list, &committed);
1510 if (error) {
1511 xfs_bmap_cancel(&free_list);
4906e215 1512 goto error_return;
c24b5dfa
DC
1513 }
1514
70393313 1515 return xfs_trans_commit(tp);
c24b5dfa 1516
c24b5dfa 1517 error_return:
4906e215 1518 xfs_trans_cancel(tp);
c24b5dfa
DC
1519 std_return:
1520 return error;
1521}
1522
1da177e4 1523/*
8f04c47a
CH
1524 * Free up the underlying blocks past new_size. The new size must be smaller
1525 * than the current size. This routine can be used both for the attribute and
1526 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1527 *
f6485057
DC
1528 * The transaction passed to this routine must have made a permanent log
1529 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1530 * given transaction and start new ones, so make sure everything involved in
1531 * the transaction is tidy before calling here. Some transaction will be
1532 * returned to the caller to be committed. The incoming transaction must
1533 * already include the inode, and both inode locks must be held exclusively.
1534 * The inode must also be "held" within the transaction. On return the inode
1535 * will be "held" within the returned transaction. This routine does NOT
1536 * require any disk space to be reserved for it within the transaction.
1da177e4 1537 *
f6485057
DC
1538 * If we get an error, we must return with the inode locked and linked into the
1539 * current transaction. This keeps things simple for the higher level code,
1540 * because it always knows that the inode is locked and held in the transaction
1541 * that returns to it whether errors occur or not. We don't mark the inode
1542 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1543 */
1544int
8f04c47a
CH
1545xfs_itruncate_extents(
1546 struct xfs_trans **tpp,
1547 struct xfs_inode *ip,
1548 int whichfork,
1549 xfs_fsize_t new_size)
1da177e4 1550{
8f04c47a
CH
1551 struct xfs_mount *mp = ip->i_mount;
1552 struct xfs_trans *tp = *tpp;
8f04c47a
CH
1553 xfs_bmap_free_t free_list;
1554 xfs_fsblock_t first_block;
1555 xfs_fileoff_t first_unmap_block;
1556 xfs_fileoff_t last_block;
1557 xfs_filblks_t unmap_len;
1558 int committed;
1559 int error = 0;
1560 int done = 0;
1da177e4 1561
0b56185b
CH
1562 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1563 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1564 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1565 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1566 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1567 ASSERT(ip->i_itemp != NULL);
898621d5 1568 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1569 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1570
673e8e59
CH
1571 trace_xfs_itruncate_extents_start(ip, new_size);
1572
1da177e4
LT
1573 /*
1574 * Since it is possible for space to become allocated beyond
1575 * the end of the file (in a crash where the space is allocated
1576 * but the inode size is not yet updated), simply remove any
1577 * blocks which show up between the new EOF and the maximum
1578 * possible file size. If the first block to be removed is
1579 * beyond the maximum file size (ie it is the same as last_block),
1580 * then there is nothing to do.
1581 */
8f04c47a 1582 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1583 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1584 if (first_unmap_block == last_block)
1585 return 0;
1586
1587 ASSERT(first_unmap_block < last_block);
1588 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1589 while (!done) {
9d87c319 1590 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1591 error = xfs_bunmapi(tp, ip,
3e57ecf6 1592 first_unmap_block, unmap_len,
8f04c47a 1593 xfs_bmapi_aflag(whichfork),
1da177e4 1594 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1595 &first_block, &free_list,
b4e9181e 1596 &done);
8f04c47a
CH
1597 if (error)
1598 goto out_bmap_cancel;
1da177e4
LT
1599
1600 /*
1601 * Duplicate the transaction that has the permanent
1602 * reservation and commit the old transaction.
1603 */
8f04c47a 1604 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1605 if (committed)
ddc3415a 1606 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1607 if (error)
1608 goto out_bmap_cancel;
1da177e4 1609
2e6db6c4 1610 error = xfs_trans_roll(&tp, ip);
f6485057 1611 if (error)
8f04c47a 1612 goto out;
1da177e4 1613 }
8f04c47a 1614
673e8e59
CH
1615 /*
1616 * Always re-log the inode so that our permanent transaction can keep
1617 * on rolling it forward in the log.
1618 */
1619 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1620
1621 trace_xfs_itruncate_extents_end(ip, new_size);
1622
8f04c47a
CH
1623out:
1624 *tpp = tp;
1625 return error;
1626out_bmap_cancel:
1da177e4 1627 /*
8f04c47a
CH
1628 * If the bunmapi call encounters an error, return to the caller where
1629 * the transaction can be properly aborted. We just need to make sure
1630 * we're not holding any resources that we were not when we came in.
1da177e4 1631 */
8f04c47a
CH
1632 xfs_bmap_cancel(&free_list);
1633 goto out;
1634}
1635
c24b5dfa
DC
1636int
1637xfs_release(
1638 xfs_inode_t *ip)
1639{
1640 xfs_mount_t *mp = ip->i_mount;
1641 int error;
1642
1643 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1644 return 0;
1645
1646 /* If this is a read-only mount, don't do this (would generate I/O) */
1647 if (mp->m_flags & XFS_MOUNT_RDONLY)
1648 return 0;
1649
1650 if (!XFS_FORCED_SHUTDOWN(mp)) {
1651 int truncated;
1652
c24b5dfa
DC
1653 /*
1654 * If we previously truncated this file and removed old data
1655 * in the process, we want to initiate "early" writeout on
1656 * the last close. This is an attempt to combat the notorious
1657 * NULL files problem which is particularly noticeable from a
1658 * truncate down, buffered (re-)write (delalloc), followed by
1659 * a crash. What we are effectively doing here is
1660 * significantly reducing the time window where we'd otherwise
1661 * be exposed to that problem.
1662 */
1663 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1664 if (truncated) {
1665 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1666 if (ip->i_delayed_blks > 0) {
2451337d 1667 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1668 if (error)
1669 return error;
1670 }
1671 }
1672 }
1673
1674 if (ip->i_d.di_nlink == 0)
1675 return 0;
1676
1677 if (xfs_can_free_eofblocks(ip, false)) {
1678
1679 /*
1680 * If we can't get the iolock just skip truncating the blocks
1681 * past EOF because we could deadlock with the mmap_sem
1682 * otherwise. We'll get another chance to drop them once the
1683 * last reference to the inode is dropped, so we'll never leak
1684 * blocks permanently.
1685 *
1686 * Further, check if the inode is being opened, written and
1687 * closed frequently and we have delayed allocation blocks
1688 * outstanding (e.g. streaming writes from the NFS server),
1689 * truncating the blocks past EOF will cause fragmentation to
1690 * occur.
1691 *
1692 * In this case don't do the truncation, either, but we have to
1693 * be careful how we detect this case. Blocks beyond EOF show
1694 * up as i_delayed_blks even when the inode is clean, so we
1695 * need to truncate them away first before checking for a dirty
1696 * release. Hence on the first dirty close we will still remove
1697 * the speculative allocation, but after that we will leave it
1698 * in place.
1699 */
1700 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1701 return 0;
1702
1703 error = xfs_free_eofblocks(mp, ip, true);
2451337d 1704 if (error && error != -EAGAIN)
c24b5dfa
DC
1705 return error;
1706
1707 /* delalloc blocks after truncation means it really is dirty */
1708 if (ip->i_delayed_blks)
1709 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1710 }
1711 return 0;
1712}
1713
f7be2d7f
BF
1714/*
1715 * xfs_inactive_truncate
1716 *
1717 * Called to perform a truncate when an inode becomes unlinked.
1718 */
1719STATIC int
1720xfs_inactive_truncate(
1721 struct xfs_inode *ip)
1722{
1723 struct xfs_mount *mp = ip->i_mount;
1724 struct xfs_trans *tp;
1725 int error;
1726
1727 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1728 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1729 if (error) {
1730 ASSERT(XFS_FORCED_SHUTDOWN(mp));
4906e215 1731 xfs_trans_cancel(tp);
f7be2d7f
BF
1732 return error;
1733 }
1734
1735 xfs_ilock(ip, XFS_ILOCK_EXCL);
1736 xfs_trans_ijoin(tp, ip, 0);
1737
1738 /*
1739 * Log the inode size first to prevent stale data exposure in the event
1740 * of a system crash before the truncate completes. See the related
1741 * comment in xfs_setattr_size() for details.
1742 */
1743 ip->i_d.di_size = 0;
1744 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1745
1746 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1747 if (error)
1748 goto error_trans_cancel;
1749
1750 ASSERT(ip->i_d.di_nextents == 0);
1751
70393313 1752 error = xfs_trans_commit(tp);
f7be2d7f
BF
1753 if (error)
1754 goto error_unlock;
1755
1756 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1757 return 0;
1758
1759error_trans_cancel:
4906e215 1760 xfs_trans_cancel(tp);
f7be2d7f
BF
1761error_unlock:
1762 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763 return error;
1764}
1765
88877d2b
BF
1766/*
1767 * xfs_inactive_ifree()
1768 *
1769 * Perform the inode free when an inode is unlinked.
1770 */
1771STATIC int
1772xfs_inactive_ifree(
1773 struct xfs_inode *ip)
1774{
1775 xfs_bmap_free_t free_list;
1776 xfs_fsblock_t first_block;
1777 int committed;
1778 struct xfs_mount *mp = ip->i_mount;
1779 struct xfs_trans *tp;
1780 int error;
1781
1782 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
9d43b180
BF
1783
1784 /*
1785 * The ifree transaction might need to allocate blocks for record
1786 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1787 * allow ifree to dip into the reserved block pool if necessary.
1788 *
1789 * Freeing large sets of inodes generally means freeing inode chunks,
1790 * directory and file data blocks, so this should be relatively safe.
1791 * Only under severe circumstances should it be possible to free enough
1792 * inodes to exhaust the reserve block pool via finobt expansion while
1793 * at the same time not creating free space in the filesystem.
1794 *
1795 * Send a warning if the reservation does happen to fail, as the inode
1796 * now remains allocated and sits on the unlinked list until the fs is
1797 * repaired.
1798 */
1799 tp->t_flags |= XFS_TRANS_RESERVE;
1800 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1801 XFS_IFREE_SPACE_RES(mp), 0);
88877d2b 1802 if (error) {
2451337d 1803 if (error == -ENOSPC) {
9d43b180
BF
1804 xfs_warn_ratelimited(mp,
1805 "Failed to remove inode(s) from unlinked list. "
1806 "Please free space, unmount and run xfs_repair.");
1807 } else {
1808 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1809 }
4906e215 1810 xfs_trans_cancel(tp);
88877d2b
BF
1811 return error;
1812 }
1813
1814 xfs_ilock(ip, XFS_ILOCK_EXCL);
1815 xfs_trans_ijoin(tp, ip, 0);
1816
1817 xfs_bmap_init(&free_list, &first_block);
1818 error = xfs_ifree(tp, ip, &free_list);
1819 if (error) {
1820 /*
1821 * If we fail to free the inode, shut down. The cancel
1822 * might do that, we need to make sure. Otherwise the
1823 * inode might be lost for a long time or forever.
1824 */
1825 if (!XFS_FORCED_SHUTDOWN(mp)) {
1826 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1827 __func__, error);
1828 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1829 }
4906e215 1830 xfs_trans_cancel(tp);
88877d2b
BF
1831 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1832 return error;
1833 }
1834
1835 /*
1836 * Credit the quota account(s). The inode is gone.
1837 */
1838 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1839
1840 /*
1841 * Just ignore errors at this point. There is nothing we can
1842 * do except to try to keep going. Make sure it's not a silent
1843 * error.
1844 */
1845 error = xfs_bmap_finish(&tp, &free_list, &committed);
1846 if (error)
1847 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1848 __func__, error);
70393313 1849 error = xfs_trans_commit(tp);
88877d2b
BF
1850 if (error)
1851 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1852 __func__, error);
1853
1854 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1855 return 0;
1856}
1857
c24b5dfa
DC
1858/*
1859 * xfs_inactive
1860 *
1861 * This is called when the vnode reference count for the vnode
1862 * goes to zero. If the file has been unlinked, then it must
1863 * now be truncated. Also, we clear all of the read-ahead state
1864 * kept for the inode here since the file is now closed.
1865 */
74564fb4 1866void
c24b5dfa
DC
1867xfs_inactive(
1868 xfs_inode_t *ip)
1869{
3d3c8b52 1870 struct xfs_mount *mp;
3d3c8b52
JL
1871 int error;
1872 int truncate = 0;
c24b5dfa
DC
1873
1874 /*
1875 * If the inode is already free, then there can be nothing
1876 * to clean up here.
1877 */
d948709b 1878 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1879 ASSERT(ip->i_df.if_real_bytes == 0);
1880 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1881 return;
c24b5dfa
DC
1882 }
1883
1884 mp = ip->i_mount;
1885
c24b5dfa
DC
1886 /* If this is a read-only mount, don't do this (would generate I/O) */
1887 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1888 return;
c24b5dfa
DC
1889
1890 if (ip->i_d.di_nlink != 0) {
1891 /*
1892 * force is true because we are evicting an inode from the
1893 * cache. Post-eof blocks must be freed, lest we end up with
1894 * broken free space accounting.
1895 */
74564fb4
BF
1896 if (xfs_can_free_eofblocks(ip, true))
1897 xfs_free_eofblocks(mp, ip, false);
1898
1899 return;
c24b5dfa
DC
1900 }
1901
1902 if (S_ISREG(ip->i_d.di_mode) &&
1903 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1904 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1905 truncate = 1;
1906
1907 error = xfs_qm_dqattach(ip, 0);
1908 if (error)
74564fb4 1909 return;
c24b5dfa 1910
f7be2d7f 1911 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1912 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1913 else if (truncate)
1914 error = xfs_inactive_truncate(ip);
1915 if (error)
74564fb4 1916 return;
c24b5dfa
DC
1917
1918 /*
1919 * If there are attributes associated with the file then blow them away
1920 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1921 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1922 */
6dfe5a04 1923 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1924 error = xfs_attr_inactive(ip);
1925 if (error)
74564fb4 1926 return;
c24b5dfa
DC
1927 }
1928
6dfe5a04 1929 ASSERT(!ip->i_afp);
c24b5dfa 1930 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1931 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1932
1933 /*
1934 * Free the inode.
1935 */
88877d2b
BF
1936 error = xfs_inactive_ifree(ip);
1937 if (error)
74564fb4 1938 return;
c24b5dfa
DC
1939
1940 /*
1941 * Release the dquots held by inode, if any.
1942 */
1943 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1944}
1945
1da177e4
LT
1946/*
1947 * This is called when the inode's link count goes to 0.
1948 * We place the on-disk inode on a list in the AGI. It
1949 * will be pulled from this list when the inode is freed.
1950 */
1951int
1952xfs_iunlink(
1953 xfs_trans_t *tp,
1954 xfs_inode_t *ip)
1955{
1956 xfs_mount_t *mp;
1957 xfs_agi_t *agi;
1958 xfs_dinode_t *dip;
1959 xfs_buf_t *agibp;
1960 xfs_buf_t *ibp;
1da177e4
LT
1961 xfs_agino_t agino;
1962 short bucket_index;
1963 int offset;
1964 int error;
1da177e4
LT
1965
1966 ASSERT(ip->i_d.di_nlink == 0);
1967 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1968
1969 mp = tp->t_mountp;
1970
1da177e4
LT
1971 /*
1972 * Get the agi buffer first. It ensures lock ordering
1973 * on the list.
1974 */
5e1be0fb 1975 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1976 if (error)
1da177e4 1977 return error;
1da177e4 1978 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1979
1da177e4
LT
1980 /*
1981 * Get the index into the agi hash table for the
1982 * list this inode will go on.
1983 */
1984 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1985 ASSERT(agino != 0);
1986 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1987 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1988 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1989
69ef921b 1990 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1991 /*
1992 * There is already another inode in the bucket we need
1993 * to add ourselves to. Add us at the front of the list.
1994 * Here we put the head pointer into our next pointer,
1995 * and then we fall through to point the head at us.
1996 */
475ee413
CH
1997 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1998 0, 0);
c319b58b
VA
1999 if (error)
2000 return error;
2001
69ef921b 2002 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2003 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2004 offset = ip->i_imap.im_boffset +
1da177e4 2005 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2006
2007 /* need to recalc the inode CRC if appropriate */
2008 xfs_dinode_calc_crc(mp, dip);
2009
1da177e4
LT
2010 xfs_trans_inode_buf(tp, ibp);
2011 xfs_trans_log_buf(tp, ibp, offset,
2012 (offset + sizeof(xfs_agino_t) - 1));
2013 xfs_inobp_check(mp, ibp);
2014 }
2015
2016 /*
2017 * Point the bucket head pointer at the inode being inserted.
2018 */
2019 ASSERT(agino != 0);
16259e7d 2020 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2021 offset = offsetof(xfs_agi_t, agi_unlinked) +
2022 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2023 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2024 xfs_trans_log_buf(tp, agibp, offset,
2025 (offset + sizeof(xfs_agino_t) - 1));
2026 return 0;
2027}
2028
2029/*
2030 * Pull the on-disk inode from the AGI unlinked list.
2031 */
2032STATIC int
2033xfs_iunlink_remove(
2034 xfs_trans_t *tp,
2035 xfs_inode_t *ip)
2036{
2037 xfs_ino_t next_ino;
2038 xfs_mount_t *mp;
2039 xfs_agi_t *agi;
2040 xfs_dinode_t *dip;
2041 xfs_buf_t *agibp;
2042 xfs_buf_t *ibp;
2043 xfs_agnumber_t agno;
1da177e4
LT
2044 xfs_agino_t agino;
2045 xfs_agino_t next_agino;
2046 xfs_buf_t *last_ibp;
6fdf8ccc 2047 xfs_dinode_t *last_dip = NULL;
1da177e4 2048 short bucket_index;
6fdf8ccc 2049 int offset, last_offset = 0;
1da177e4 2050 int error;
1da177e4 2051
1da177e4 2052 mp = tp->t_mountp;
1da177e4 2053 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2054
2055 /*
2056 * Get the agi buffer first. It ensures lock ordering
2057 * on the list.
2058 */
5e1be0fb
CH
2059 error = xfs_read_agi(mp, tp, agno, &agibp);
2060 if (error)
1da177e4 2061 return error;
5e1be0fb 2062
1da177e4 2063 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2064
1da177e4
LT
2065 /*
2066 * Get the index into the agi hash table for the
2067 * list this inode will go on.
2068 */
2069 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2070 ASSERT(agino != 0);
2071 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2072 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2073 ASSERT(agi->agi_unlinked[bucket_index]);
2074
16259e7d 2075 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2076 /*
475ee413
CH
2077 * We're at the head of the list. Get the inode's on-disk
2078 * buffer to see if there is anyone after us on the list.
2079 * Only modify our next pointer if it is not already NULLAGINO.
2080 * This saves us the overhead of dealing with the buffer when
2081 * there is no need to change it.
1da177e4 2082 */
475ee413
CH
2083 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2084 0, 0);
1da177e4 2085 if (error) {
475ee413 2086 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2087 __func__, error);
1da177e4
LT
2088 return error;
2089 }
347d1c01 2090 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2091 ASSERT(next_agino != 0);
2092 if (next_agino != NULLAGINO) {
347d1c01 2093 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2094 offset = ip->i_imap.im_boffset +
1da177e4 2095 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2096
2097 /* need to recalc the inode CRC if appropriate */
2098 xfs_dinode_calc_crc(mp, dip);
2099
1da177e4
LT
2100 xfs_trans_inode_buf(tp, ibp);
2101 xfs_trans_log_buf(tp, ibp, offset,
2102 (offset + sizeof(xfs_agino_t) - 1));
2103 xfs_inobp_check(mp, ibp);
2104 } else {
2105 xfs_trans_brelse(tp, ibp);
2106 }
2107 /*
2108 * Point the bucket head pointer at the next inode.
2109 */
2110 ASSERT(next_agino != 0);
2111 ASSERT(next_agino != agino);
16259e7d 2112 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2113 offset = offsetof(xfs_agi_t, agi_unlinked) +
2114 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2115 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2116 xfs_trans_log_buf(tp, agibp, offset,
2117 (offset + sizeof(xfs_agino_t) - 1));
2118 } else {
2119 /*
2120 * We need to search the list for the inode being freed.
2121 */
16259e7d 2122 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2123 last_ibp = NULL;
2124 while (next_agino != agino) {
129dbc9a
CH
2125 struct xfs_imap imap;
2126
2127 if (last_ibp)
1da177e4 2128 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2129
2130 imap.im_blkno = 0;
1da177e4 2131 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2132
2133 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2134 if (error) {
2135 xfs_warn(mp,
2136 "%s: xfs_imap returned error %d.",
2137 __func__, error);
2138 return error;
2139 }
2140
2141 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2142 &last_ibp, 0, 0);
1da177e4 2143 if (error) {
0b932ccc 2144 xfs_warn(mp,
129dbc9a 2145 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2146 __func__, error);
1da177e4
LT
2147 return error;
2148 }
129dbc9a
CH
2149
2150 last_offset = imap.im_boffset;
347d1c01 2151 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2152 ASSERT(next_agino != NULLAGINO);
2153 ASSERT(next_agino != 0);
2154 }
475ee413 2155
1da177e4 2156 /*
475ee413
CH
2157 * Now last_ibp points to the buffer previous to us on the
2158 * unlinked list. Pull us from the list.
1da177e4 2159 */
475ee413
CH
2160 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2161 0, 0);
1da177e4 2162 if (error) {
475ee413 2163 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2164 __func__, error);
1da177e4
LT
2165 return error;
2166 }
347d1c01 2167 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2168 ASSERT(next_agino != 0);
2169 ASSERT(next_agino != agino);
2170 if (next_agino != NULLAGINO) {
347d1c01 2171 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2172 offset = ip->i_imap.im_boffset +
1da177e4 2173 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2174
2175 /* need to recalc the inode CRC if appropriate */
2176 xfs_dinode_calc_crc(mp, dip);
2177
1da177e4
LT
2178 xfs_trans_inode_buf(tp, ibp);
2179 xfs_trans_log_buf(tp, ibp, offset,
2180 (offset + sizeof(xfs_agino_t) - 1));
2181 xfs_inobp_check(mp, ibp);
2182 } else {
2183 xfs_trans_brelse(tp, ibp);
2184 }
2185 /*
2186 * Point the previous inode on the list to the next inode.
2187 */
347d1c01 2188 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2189 ASSERT(next_agino != 0);
2190 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2191
2192 /* need to recalc the inode CRC if appropriate */
2193 xfs_dinode_calc_crc(mp, last_dip);
2194
1da177e4
LT
2195 xfs_trans_inode_buf(tp, last_ibp);
2196 xfs_trans_log_buf(tp, last_ibp, offset,
2197 (offset + sizeof(xfs_agino_t) - 1));
2198 xfs_inobp_check(mp, last_ibp);
2199 }
2200 return 0;
2201}
2202
5b3eed75 2203/*
0b8182db 2204 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2205 * inodes that are in memory - they all must be marked stale and attached to
2206 * the cluster buffer.
2207 */
2a30f36d 2208STATIC int
1da177e4 2209xfs_ifree_cluster(
09b56604
BF
2210 xfs_inode_t *free_ip,
2211 xfs_trans_t *tp,
2212 struct xfs_icluster *xic)
1da177e4
LT
2213{
2214 xfs_mount_t *mp = free_ip->i_mount;
2215 int blks_per_cluster;
982e939e 2216 int inodes_per_cluster;
1da177e4 2217 int nbufs;
5b257b4a 2218 int i, j;
3cdaa189 2219 int ioffset;
1da177e4
LT
2220 xfs_daddr_t blkno;
2221 xfs_buf_t *bp;
5b257b4a 2222 xfs_inode_t *ip;
1da177e4
LT
2223 xfs_inode_log_item_t *iip;
2224 xfs_log_item_t *lip;
5017e97d 2225 struct xfs_perag *pag;
09b56604 2226 xfs_ino_t inum;
1da177e4 2227
09b56604 2228 inum = xic->first_ino;
5017e97d 2229 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2230 blks_per_cluster = xfs_icluster_size_fsb(mp);
2231 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2232 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2233
982e939e 2234 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2235 /*
2236 * The allocation bitmap tells us which inodes of the chunk were
2237 * physically allocated. Skip the cluster if an inode falls into
2238 * a sparse region.
2239 */
3cdaa189
BF
2240 ioffset = inum - xic->first_ino;
2241 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2242 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2243 continue;
2244 }
2245
1da177e4
LT
2246 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2247 XFS_INO_TO_AGBNO(mp, inum));
2248
5b257b4a
DC
2249 /*
2250 * We obtain and lock the backing buffer first in the process
2251 * here, as we have to ensure that any dirty inode that we
2252 * can't get the flush lock on is attached to the buffer.
2253 * If we scan the in-memory inodes first, then buffer IO can
2254 * complete before we get a lock on it, and hence we may fail
2255 * to mark all the active inodes on the buffer stale.
2256 */
2257 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2258 mp->m_bsize * blks_per_cluster,
2259 XBF_UNMAPPED);
5b257b4a 2260
2a30f36d 2261 if (!bp)
2451337d 2262 return -ENOMEM;
b0f539de
DC
2263
2264 /*
2265 * This buffer may not have been correctly initialised as we
2266 * didn't read it from disk. That's not important because we are
2267 * only using to mark the buffer as stale in the log, and to
2268 * attach stale cached inodes on it. That means it will never be
2269 * dispatched for IO. If it is, we want to know about it, and we
2270 * want it to fail. We can acheive this by adding a write
2271 * verifier to the buffer.
2272 */
1813dd64 2273 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2274
5b257b4a
DC
2275 /*
2276 * Walk the inodes already attached to the buffer and mark them
2277 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2278 * in-memory inode walk can't lock them. By marking them all
2279 * stale first, we will not attempt to lock them in the loop
2280 * below as the XFS_ISTALE flag will be set.
5b257b4a 2281 */
adadbeef 2282 lip = bp->b_fspriv;
5b257b4a
DC
2283 while (lip) {
2284 if (lip->li_type == XFS_LI_INODE) {
2285 iip = (xfs_inode_log_item_t *)lip;
2286 ASSERT(iip->ili_logged == 1);
ca30b2a7 2287 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2288 xfs_trans_ail_copy_lsn(mp->m_ail,
2289 &iip->ili_flush_lsn,
2290 &iip->ili_item.li_lsn);
2291 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2292 }
2293 lip = lip->li_bio_list;
2294 }
1da177e4 2295
5b3eed75 2296
1da177e4 2297 /*
5b257b4a
DC
2298 * For each inode in memory attempt to add it to the inode
2299 * buffer and set it up for being staled on buffer IO
2300 * completion. This is safe as we've locked out tail pushing
2301 * and flushing by locking the buffer.
1da177e4 2302 *
5b257b4a
DC
2303 * We have already marked every inode that was part of a
2304 * transaction stale above, which means there is no point in
2305 * even trying to lock them.
1da177e4 2306 */
982e939e 2307 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2308retry:
1a3e8f3d 2309 rcu_read_lock();
da353b0d
DC
2310 ip = radix_tree_lookup(&pag->pag_ici_root,
2311 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2312
1a3e8f3d
DC
2313 /* Inode not in memory, nothing to do */
2314 if (!ip) {
2315 rcu_read_unlock();
1da177e4
LT
2316 continue;
2317 }
2318
1a3e8f3d
DC
2319 /*
2320 * because this is an RCU protected lookup, we could
2321 * find a recently freed or even reallocated inode
2322 * during the lookup. We need to check under the
2323 * i_flags_lock for a valid inode here. Skip it if it
2324 * is not valid, the wrong inode or stale.
2325 */
2326 spin_lock(&ip->i_flags_lock);
2327 if (ip->i_ino != inum + i ||
2328 __xfs_iflags_test(ip, XFS_ISTALE)) {
2329 spin_unlock(&ip->i_flags_lock);
2330 rcu_read_unlock();
2331 continue;
2332 }
2333 spin_unlock(&ip->i_flags_lock);
2334
5b3eed75
DC
2335 /*
2336 * Don't try to lock/unlock the current inode, but we
2337 * _cannot_ skip the other inodes that we did not find
2338 * in the list attached to the buffer and are not
2339 * already marked stale. If we can't lock it, back off
2340 * and retry.
2341 */
5b257b4a
DC
2342 if (ip != free_ip &&
2343 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2344 rcu_read_unlock();
5b3eed75
DC
2345 delay(1);
2346 goto retry;
1da177e4 2347 }
1a3e8f3d 2348 rcu_read_unlock();
1da177e4 2349
5b3eed75 2350 xfs_iflock(ip);
5b257b4a 2351 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2352
5b3eed75
DC
2353 /*
2354 * we don't need to attach clean inodes or those only
2355 * with unlogged changes (which we throw away, anyway).
2356 */
1da177e4 2357 iip = ip->i_itemp;
5b3eed75 2358 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2359 ASSERT(ip != free_ip);
1da177e4
LT
2360 xfs_ifunlock(ip);
2361 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2362 continue;
2363 }
2364
f5d8d5c4
CH
2365 iip->ili_last_fields = iip->ili_fields;
2366 iip->ili_fields = 0;
1da177e4 2367 iip->ili_logged = 1;
7b2e2a31
DC
2368 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2369 &iip->ili_item.li_lsn);
1da177e4 2370
ca30b2a7
CH
2371 xfs_buf_attach_iodone(bp, xfs_istale_done,
2372 &iip->ili_item);
5b257b4a
DC
2373
2374 if (ip != free_ip)
1da177e4 2375 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2376 }
2377
5b3eed75 2378 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2379 xfs_trans_binval(tp, bp);
2380 }
2381
5017e97d 2382 xfs_perag_put(pag);
2a30f36d 2383 return 0;
1da177e4
LT
2384}
2385
2386/*
2387 * This is called to return an inode to the inode free list.
2388 * The inode should already be truncated to 0 length and have
2389 * no pages associated with it. This routine also assumes that
2390 * the inode is already a part of the transaction.
2391 *
2392 * The on-disk copy of the inode will have been added to the list
2393 * of unlinked inodes in the AGI. We need to remove the inode from
2394 * that list atomically with respect to freeing it here.
2395 */
2396int
2397xfs_ifree(
2398 xfs_trans_t *tp,
2399 xfs_inode_t *ip,
2400 xfs_bmap_free_t *flist)
2401{
2402 int error;
09b56604 2403 struct xfs_icluster xic = { 0 };
1da177e4 2404
579aa9ca 2405 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2406 ASSERT(ip->i_d.di_nlink == 0);
2407 ASSERT(ip->i_d.di_nextents == 0);
2408 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2409 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2410 ASSERT(ip->i_d.di_nblocks == 0);
2411
2412 /*
2413 * Pull the on-disk inode from the AGI unlinked list.
2414 */
2415 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2416 if (error)
1da177e4 2417 return error;
1da177e4 2418
09b56604 2419 error = xfs_difree(tp, ip->i_ino, flist, &xic);
1baaed8f 2420 if (error)
1da177e4 2421 return error;
1baaed8f 2422
1da177e4
LT
2423 ip->i_d.di_mode = 0; /* mark incore inode as free */
2424 ip->i_d.di_flags = 0;
2425 ip->i_d.di_dmevmask = 0;
2426 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2427 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2428 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2429 /*
2430 * Bump the generation count so no one will be confused
2431 * by reincarnations of this inode.
2432 */
2433 ip->i_d.di_gen++;
2434 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2435
09b56604
BF
2436 if (xic.deleted)
2437 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2438
2a30f36d 2439 return error;
1da177e4
LT
2440}
2441
1da177e4 2442/*
60ec6783
CH
2443 * This is called to unpin an inode. The caller must have the inode locked
2444 * in at least shared mode so that the buffer cannot be subsequently pinned
2445 * once someone is waiting for it to be unpinned.
1da177e4 2446 */
60ec6783 2447static void
f392e631 2448xfs_iunpin(
60ec6783 2449 struct xfs_inode *ip)
1da177e4 2450{
579aa9ca 2451 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2452
4aaf15d1
DC
2453 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2454
a3f74ffb 2455 /* Give the log a push to start the unpinning I/O */
60ec6783 2456 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2457
a3f74ffb 2458}
1da177e4 2459
f392e631
CH
2460static void
2461__xfs_iunpin_wait(
2462 struct xfs_inode *ip)
2463{
2464 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2465 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2466
2467 xfs_iunpin(ip);
2468
2469 do {
2470 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2471 if (xfs_ipincount(ip))
2472 io_schedule();
2473 } while (xfs_ipincount(ip));
2474 finish_wait(wq, &wait.wait);
2475}
2476
777df5af 2477void
a3f74ffb 2478xfs_iunpin_wait(
60ec6783 2479 struct xfs_inode *ip)
a3f74ffb 2480{
f392e631
CH
2481 if (xfs_ipincount(ip))
2482 __xfs_iunpin_wait(ip);
1da177e4
LT
2483}
2484
27320369
DC
2485/*
2486 * Removing an inode from the namespace involves removing the directory entry
2487 * and dropping the link count on the inode. Removing the directory entry can
2488 * result in locking an AGF (directory blocks were freed) and removing a link
2489 * count can result in placing the inode on an unlinked list which results in
2490 * locking an AGI.
2491 *
2492 * The big problem here is that we have an ordering constraint on AGF and AGI
2493 * locking - inode allocation locks the AGI, then can allocate a new extent for
2494 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2495 * removes the inode from the unlinked list, requiring that we lock the AGI
2496 * first, and then freeing the inode can result in an inode chunk being freed
2497 * and hence freeing disk space requiring that we lock an AGF.
2498 *
2499 * Hence the ordering that is imposed by other parts of the code is AGI before
2500 * AGF. This means we cannot remove the directory entry before we drop the inode
2501 * reference count and put it on the unlinked list as this results in a lock
2502 * order of AGF then AGI, and this can deadlock against inode allocation and
2503 * freeing. Therefore we must drop the link counts before we remove the
2504 * directory entry.
2505 *
2506 * This is still safe from a transactional point of view - it is not until we
2507 * get to xfs_bmap_finish() that we have the possibility of multiple
2508 * transactions in this operation. Hence as long as we remove the directory
2509 * entry and drop the link count in the first transaction of the remove
2510 * operation, there are no transactional constraints on the ordering here.
2511 */
c24b5dfa
DC
2512int
2513xfs_remove(
2514 xfs_inode_t *dp,
2515 struct xfs_name *name,
2516 xfs_inode_t *ip)
2517{
2518 xfs_mount_t *mp = dp->i_mount;
2519 xfs_trans_t *tp = NULL;
2520 int is_dir = S_ISDIR(ip->i_d.di_mode);
2521 int error = 0;
2522 xfs_bmap_free_t free_list;
2523 xfs_fsblock_t first_block;
c24b5dfa 2524 int committed;
c24b5dfa 2525 uint resblks;
c24b5dfa
DC
2526
2527 trace_xfs_remove(dp, name);
2528
2529 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2530 return -EIO;
c24b5dfa
DC
2531
2532 error = xfs_qm_dqattach(dp, 0);
2533 if (error)
2534 goto std_return;
2535
2536 error = xfs_qm_dqattach(ip, 0);
2537 if (error)
2538 goto std_return;
2539
32296f86 2540 if (is_dir)
c24b5dfa 2541 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
32296f86 2542 else
c24b5dfa 2543 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
c24b5dfa
DC
2544
2545 /*
2546 * We try to get the real space reservation first,
2547 * allowing for directory btree deletion(s) implying
2548 * possible bmap insert(s). If we can't get the space
2549 * reservation then we use 0 instead, and avoid the bmap
2550 * btree insert(s) in the directory code by, if the bmap
2551 * insert tries to happen, instead trimming the LAST
2552 * block from the directory.
2553 */
2554 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2555 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2451337d 2556 if (error == -ENOSPC) {
c24b5dfa 2557 resblks = 0;
3d3c8b52 2558 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2559 }
2560 if (error) {
2451337d 2561 ASSERT(error != -ENOSPC);
c24b5dfa
DC
2562 goto out_trans_cancel;
2563 }
2564
dbad7c99 2565 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
c24b5dfa
DC
2566 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2567
dbad7c99 2568 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
2569 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2570
2571 /*
2572 * If we're removing a directory perform some additional validation.
2573 */
2574 if (is_dir) {
2575 ASSERT(ip->i_d.di_nlink >= 2);
2576 if (ip->i_d.di_nlink != 2) {
2451337d 2577 error = -ENOTEMPTY;
c24b5dfa
DC
2578 goto out_trans_cancel;
2579 }
2580 if (!xfs_dir_isempty(ip)) {
2451337d 2581 error = -ENOTEMPTY;
c24b5dfa
DC
2582 goto out_trans_cancel;
2583 }
c24b5dfa 2584
27320369 2585 /* Drop the link from ip's "..". */
c24b5dfa
DC
2586 error = xfs_droplink(tp, dp);
2587 if (error)
27320369 2588 goto out_trans_cancel;
c24b5dfa 2589
27320369 2590 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2591 error = xfs_droplink(tp, ip);
2592 if (error)
27320369 2593 goto out_trans_cancel;
c24b5dfa
DC
2594 } else {
2595 /*
2596 * When removing a non-directory we need to log the parent
2597 * inode here. For a directory this is done implicitly
2598 * by the xfs_droplink call for the ".." entry.
2599 */
2600 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2601 }
27320369 2602 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2603
27320369 2604 /* Drop the link from dp to ip. */
c24b5dfa
DC
2605 error = xfs_droplink(tp, ip);
2606 if (error)
27320369 2607 goto out_trans_cancel;
c24b5dfa 2608
27320369
DC
2609 xfs_bmap_init(&free_list, &first_block);
2610 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2611 &first_block, &free_list, resblks);
2612 if (error) {
2451337d 2613 ASSERT(error != -ENOENT);
27320369
DC
2614 goto out_bmap_cancel;
2615 }
2616
c24b5dfa
DC
2617 /*
2618 * If this is a synchronous mount, make sure that the
2619 * remove transaction goes to disk before returning to
2620 * the user.
2621 */
2622 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2623 xfs_trans_set_sync(tp);
2624
2625 error = xfs_bmap_finish(&tp, &free_list, &committed);
2626 if (error)
2627 goto out_bmap_cancel;
2628
70393313 2629 error = xfs_trans_commit(tp);
c24b5dfa
DC
2630 if (error)
2631 goto std_return;
2632
2cd2ef6a 2633 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2634 xfs_filestream_deassociate(ip);
2635
2636 return 0;
2637
2638 out_bmap_cancel:
2639 xfs_bmap_cancel(&free_list);
c24b5dfa 2640 out_trans_cancel:
4906e215 2641 xfs_trans_cancel(tp);
c24b5dfa
DC
2642 std_return:
2643 return error;
2644}
2645
f6bba201
DC
2646/*
2647 * Enter all inodes for a rename transaction into a sorted array.
2648 */
95afcf5c 2649#define __XFS_SORT_INODES 5
f6bba201
DC
2650STATIC void
2651xfs_sort_for_rename(
95afcf5c
DC
2652 struct xfs_inode *dp1, /* in: old (source) directory inode */
2653 struct xfs_inode *dp2, /* in: new (target) directory inode */
2654 struct xfs_inode *ip1, /* in: inode of old entry */
2655 struct xfs_inode *ip2, /* in: inode of new entry */
2656 struct xfs_inode *wip, /* in: whiteout inode */
2657 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2658 int *num_inodes) /* in/out: inodes in array */
f6bba201 2659{
f6bba201
DC
2660 int i, j;
2661
95afcf5c
DC
2662 ASSERT(*num_inodes == __XFS_SORT_INODES);
2663 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2664
f6bba201
DC
2665 /*
2666 * i_tab contains a list of pointers to inodes. We initialize
2667 * the table here & we'll sort it. We will then use it to
2668 * order the acquisition of the inode locks.
2669 *
2670 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2671 */
95afcf5c
DC
2672 i = 0;
2673 i_tab[i++] = dp1;
2674 i_tab[i++] = dp2;
2675 i_tab[i++] = ip1;
2676 if (ip2)
2677 i_tab[i++] = ip2;
2678 if (wip)
2679 i_tab[i++] = wip;
2680 *num_inodes = i;
f6bba201
DC
2681
2682 /*
2683 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2684 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2685 */
2686 for (i = 0; i < *num_inodes; i++) {
2687 for (j = 1; j < *num_inodes; j++) {
2688 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2689 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2690 i_tab[j] = i_tab[j-1];
2691 i_tab[j-1] = temp;
2692 }
2693 }
2694 }
2695}
2696
310606b0
DC
2697static int
2698xfs_finish_rename(
2699 struct xfs_trans *tp,
2700 struct xfs_bmap_free *free_list)
2701{
2702 int committed = 0;
2703 int error;
2704
2705 /*
2706 * If this is a synchronous mount, make sure that the rename transaction
2707 * goes to disk before returning to the user.
2708 */
2709 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2710 xfs_trans_set_sync(tp);
2711
2712 error = xfs_bmap_finish(&tp, free_list, &committed);
2713 if (error) {
2714 xfs_bmap_cancel(free_list);
4906e215 2715 xfs_trans_cancel(tp);
310606b0
DC
2716 return error;
2717 }
2718
70393313 2719 return xfs_trans_commit(tp);
310606b0
DC
2720}
2721
d31a1825
CM
2722/*
2723 * xfs_cross_rename()
2724 *
2725 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2726 */
2727STATIC int
2728xfs_cross_rename(
2729 struct xfs_trans *tp,
2730 struct xfs_inode *dp1,
2731 struct xfs_name *name1,
2732 struct xfs_inode *ip1,
2733 struct xfs_inode *dp2,
2734 struct xfs_name *name2,
2735 struct xfs_inode *ip2,
2736 struct xfs_bmap_free *free_list,
2737 xfs_fsblock_t *first_block,
2738 int spaceres)
2739{
2740 int error = 0;
2741 int ip1_flags = 0;
2742 int ip2_flags = 0;
2743 int dp2_flags = 0;
2744
2745 /* Swap inode number for dirent in first parent */
2746 error = xfs_dir_replace(tp, dp1, name1,
2747 ip2->i_ino,
2748 first_block, free_list, spaceres);
2749 if (error)
eeacd321 2750 goto out_trans_abort;
d31a1825
CM
2751
2752 /* Swap inode number for dirent in second parent */
2753 error = xfs_dir_replace(tp, dp2, name2,
2754 ip1->i_ino,
2755 first_block, free_list, spaceres);
2756 if (error)
eeacd321 2757 goto out_trans_abort;
d31a1825
CM
2758
2759 /*
2760 * If we're renaming one or more directories across different parents,
2761 * update the respective ".." entries (and link counts) to match the new
2762 * parents.
2763 */
2764 if (dp1 != dp2) {
2765 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2766
2767 if (S_ISDIR(ip2->i_d.di_mode)) {
2768 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2769 dp1->i_ino, first_block,
2770 free_list, spaceres);
2771 if (error)
eeacd321 2772 goto out_trans_abort;
d31a1825
CM
2773
2774 /* transfer ip2 ".." reference to dp1 */
2775 if (!S_ISDIR(ip1->i_d.di_mode)) {
2776 error = xfs_droplink(tp, dp2);
2777 if (error)
eeacd321 2778 goto out_trans_abort;
d31a1825
CM
2779 error = xfs_bumplink(tp, dp1);
2780 if (error)
eeacd321 2781 goto out_trans_abort;
d31a1825
CM
2782 }
2783
2784 /*
2785 * Although ip1 isn't changed here, userspace needs
2786 * to be warned about the change, so that applications
2787 * relying on it (like backup ones), will properly
2788 * notify the change
2789 */
2790 ip1_flags |= XFS_ICHGTIME_CHG;
2791 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2792 }
2793
2794 if (S_ISDIR(ip1->i_d.di_mode)) {
2795 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2796 dp2->i_ino, first_block,
2797 free_list, spaceres);
2798 if (error)
eeacd321 2799 goto out_trans_abort;
d31a1825
CM
2800
2801 /* transfer ip1 ".." reference to dp2 */
2802 if (!S_ISDIR(ip2->i_d.di_mode)) {
2803 error = xfs_droplink(tp, dp1);
2804 if (error)
eeacd321 2805 goto out_trans_abort;
d31a1825
CM
2806 error = xfs_bumplink(tp, dp2);
2807 if (error)
eeacd321 2808 goto out_trans_abort;
d31a1825
CM
2809 }
2810
2811 /*
2812 * Although ip2 isn't changed here, userspace needs
2813 * to be warned about the change, so that applications
2814 * relying on it (like backup ones), will properly
2815 * notify the change
2816 */
2817 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2818 ip2_flags |= XFS_ICHGTIME_CHG;
2819 }
2820 }
2821
2822 if (ip1_flags) {
2823 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2824 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2825 }
2826 if (ip2_flags) {
2827 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2828 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2829 }
2830 if (dp2_flags) {
2831 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2832 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2833 }
2834 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2835 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
eeacd321
DC
2836 return xfs_finish_rename(tp, free_list);
2837
2838out_trans_abort:
2839 xfs_bmap_cancel(free_list);
4906e215 2840 xfs_trans_cancel(tp);
d31a1825
CM
2841 return error;
2842}
2843
7dcf5c3e
DC
2844/*
2845 * xfs_rename_alloc_whiteout()
2846 *
2847 * Return a referenced, unlinked, unlocked inode that that can be used as a
2848 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2849 * crash between allocating the inode and linking it into the rename transaction
2850 * recovery will free the inode and we won't leak it.
2851 */
2852static int
2853xfs_rename_alloc_whiteout(
2854 struct xfs_inode *dp,
2855 struct xfs_inode **wip)
2856{
2857 struct xfs_inode *tmpfile;
2858 int error;
2859
2860 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2861 if (error)
2862 return error;
2863
22419ac9
BF
2864 /*
2865 * Prepare the tmpfile inode as if it were created through the VFS.
2866 * Otherwise, the link increment paths will complain about nlink 0->1.
2867 * Drop the link count as done by d_tmpfile(), complete the inode setup
2868 * and flag it as linkable.
2869 */
2870 drop_nlink(VFS_I(tmpfile));
7dcf5c3e
DC
2871 xfs_finish_inode_setup(tmpfile);
2872 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2873
2874 *wip = tmpfile;
2875 return 0;
2876}
2877
f6bba201
DC
2878/*
2879 * xfs_rename
2880 */
2881int
2882xfs_rename(
7dcf5c3e
DC
2883 struct xfs_inode *src_dp,
2884 struct xfs_name *src_name,
2885 struct xfs_inode *src_ip,
2886 struct xfs_inode *target_dp,
2887 struct xfs_name *target_name,
2888 struct xfs_inode *target_ip,
2889 unsigned int flags)
f6bba201 2890{
7dcf5c3e
DC
2891 struct xfs_mount *mp = src_dp->i_mount;
2892 struct xfs_trans *tp;
2893 struct xfs_bmap_free free_list;
2894 xfs_fsblock_t first_block;
2895 struct xfs_inode *wip = NULL; /* whiteout inode */
2896 struct xfs_inode *inodes[__XFS_SORT_INODES];
2897 int num_inodes = __XFS_SORT_INODES;
2b93681f
DC
2898 bool new_parent = (src_dp != target_dp);
2899 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
7dcf5c3e
DC
2900 int spaceres;
2901 int error;
f6bba201
DC
2902
2903 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2904
eeacd321
DC
2905 if ((flags & RENAME_EXCHANGE) && !target_ip)
2906 return -EINVAL;
2907
7dcf5c3e
DC
2908 /*
2909 * If we are doing a whiteout operation, allocate the whiteout inode
2910 * we will be placing at the target and ensure the type is set
2911 * appropriately.
2912 */
2913 if (flags & RENAME_WHITEOUT) {
2914 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2915 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2916 if (error)
2917 return error;
2918
2919 /* setup target dirent info as whiteout */
2920 src_name->type = XFS_DIR3_FT_CHRDEV;
2921 }
f6bba201 2922
7dcf5c3e 2923 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2924 inodes, &num_inodes);
2925
f6bba201 2926 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
f6bba201 2927 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2928 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2451337d 2929 if (error == -ENOSPC) {
f6bba201 2930 spaceres = 0;
3d3c8b52 2931 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201 2932 }
445883e8
DC
2933 if (error)
2934 goto out_trans_cancel;
f6bba201
DC
2935
2936 /*
2937 * Attach the dquots to the inodes
2938 */
2939 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2940 if (error)
2941 goto out_trans_cancel;
f6bba201
DC
2942
2943 /*
2944 * Lock all the participating inodes. Depending upon whether
2945 * the target_name exists in the target directory, and
2946 * whether the target directory is the same as the source
2947 * directory, we can lock from 2 to 4 inodes.
2948 */
dbad7c99
DC
2949 if (!new_parent)
2950 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2951 else
2952 xfs_lock_two_inodes(src_dp, target_dp,
2953 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2954
f6bba201
DC
2955 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2956
2957 /*
2958 * Join all the inodes to the transaction. From this point on,
2959 * we can rely on either trans_commit or trans_cancel to unlock
2960 * them.
2961 */
dbad7c99 2962 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
f6bba201 2963 if (new_parent)
dbad7c99 2964 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
f6bba201
DC
2965 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2966 if (target_ip)
2967 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2968 if (wip)
2969 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2970
2971 /*
2972 * If we are using project inheritance, we only allow renames
2973 * into our tree when the project IDs are the same; else the
2974 * tree quota mechanism would be circumvented.
2975 */
2976 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2977 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2978 error = -EXDEV;
445883e8 2979 goto out_trans_cancel;
f6bba201
DC
2980 }
2981
445883e8
DC
2982 xfs_bmap_init(&free_list, &first_block);
2983
eeacd321
DC
2984 /* RENAME_EXCHANGE is unique from here on. */
2985 if (flags & RENAME_EXCHANGE)
2986 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2987 target_dp, target_name, target_ip,
2988 &free_list, &first_block, spaceres);
d31a1825 2989
f6bba201
DC
2990 /*
2991 * Set up the target.
2992 */
2993 if (target_ip == NULL) {
2994 /*
2995 * If there's no space reservation, check the entry will
2996 * fit before actually inserting it.
2997 */
94f3cad5
ES
2998 if (!spaceres) {
2999 error = xfs_dir_canenter(tp, target_dp, target_name);
3000 if (error)
445883e8 3001 goto out_trans_cancel;
94f3cad5 3002 }
f6bba201
DC
3003 /*
3004 * If target does not exist and the rename crosses
3005 * directories, adjust the target directory link count
3006 * to account for the ".." reference from the new entry.
3007 */
3008 error = xfs_dir_createname(tp, target_dp, target_name,
3009 src_ip->i_ino, &first_block,
3010 &free_list, spaceres);
f6bba201 3011 if (error)
4906e215 3012 goto out_bmap_cancel;
f6bba201
DC
3013
3014 xfs_trans_ichgtime(tp, target_dp,
3015 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3016
3017 if (new_parent && src_is_directory) {
3018 error = xfs_bumplink(tp, target_dp);
3019 if (error)
4906e215 3020 goto out_bmap_cancel;
f6bba201
DC
3021 }
3022 } else { /* target_ip != NULL */
3023 /*
3024 * If target exists and it's a directory, check that both
3025 * target and source are directories and that target can be
3026 * destroyed, or that neither is a directory.
3027 */
3028 if (S_ISDIR(target_ip->i_d.di_mode)) {
3029 /*
3030 * Make sure target dir is empty.
3031 */
3032 if (!(xfs_dir_isempty(target_ip)) ||
3033 (target_ip->i_d.di_nlink > 2)) {
2451337d 3034 error = -EEXIST;
445883e8 3035 goto out_trans_cancel;
f6bba201
DC
3036 }
3037 }
3038
3039 /*
3040 * Link the source inode under the target name.
3041 * If the source inode is a directory and we are moving
3042 * it across directories, its ".." entry will be
3043 * inconsistent until we replace that down below.
3044 *
3045 * In case there is already an entry with the same
3046 * name at the destination directory, remove it first.
3047 */
3048 error = xfs_dir_replace(tp, target_dp, target_name,
3049 src_ip->i_ino,
3050 &first_block, &free_list, spaceres);
3051 if (error)
4906e215 3052 goto out_bmap_cancel;
f6bba201
DC
3053
3054 xfs_trans_ichgtime(tp, target_dp,
3055 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3056
3057 /*
3058 * Decrement the link count on the target since the target
3059 * dir no longer points to it.
3060 */
3061 error = xfs_droplink(tp, target_ip);
3062 if (error)
4906e215 3063 goto out_bmap_cancel;
f6bba201
DC
3064
3065 if (src_is_directory) {
3066 /*
3067 * Drop the link from the old "." entry.
3068 */
3069 error = xfs_droplink(tp, target_ip);
3070 if (error)
4906e215 3071 goto out_bmap_cancel;
f6bba201
DC
3072 }
3073 } /* target_ip != NULL */
3074
3075 /*
3076 * Remove the source.
3077 */
3078 if (new_parent && src_is_directory) {
3079 /*
3080 * Rewrite the ".." entry to point to the new
3081 * directory.
3082 */
3083 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3084 target_dp->i_ino,
3085 &first_block, &free_list, spaceres);
2451337d 3086 ASSERT(error != -EEXIST);
f6bba201 3087 if (error)
4906e215 3088 goto out_bmap_cancel;
f6bba201
DC
3089 }
3090
3091 /*
3092 * We always want to hit the ctime on the source inode.
3093 *
3094 * This isn't strictly required by the standards since the source
3095 * inode isn't really being changed, but old unix file systems did
3096 * it and some incremental backup programs won't work without it.
3097 */
3098 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3099 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3100
3101 /*
3102 * Adjust the link count on src_dp. This is necessary when
3103 * renaming a directory, either within one parent when
3104 * the target existed, or across two parent directories.
3105 */
3106 if (src_is_directory && (new_parent || target_ip != NULL)) {
3107
3108 /*
3109 * Decrement link count on src_directory since the
3110 * entry that's moved no longer points to it.
3111 */
3112 error = xfs_droplink(tp, src_dp);
3113 if (error)
4906e215 3114 goto out_bmap_cancel;
f6bba201
DC
3115 }
3116
7dcf5c3e
DC
3117 /*
3118 * For whiteouts, we only need to update the source dirent with the
3119 * inode number of the whiteout inode rather than removing it
3120 * altogether.
3121 */
3122 if (wip) {
3123 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
f6bba201 3124 &first_block, &free_list, spaceres);
7dcf5c3e
DC
3125 } else
3126 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3127 &first_block, &free_list, spaceres);
f6bba201 3128 if (error)
4906e215 3129 goto out_bmap_cancel;
f6bba201
DC
3130
3131 /*
7dcf5c3e
DC
3132 * For whiteouts, we need to bump the link count on the whiteout inode.
3133 * This means that failures all the way up to this point leave the inode
3134 * on the unlinked list and so cleanup is a simple matter of dropping
3135 * the remaining reference to it. If we fail here after bumping the link
3136 * count, we're shutting down the filesystem so we'll never see the
3137 * intermediate state on disk.
f6bba201 3138 */
7dcf5c3e 3139 if (wip) {
22419ac9 3140 ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
7dcf5c3e
DC
3141 error = xfs_bumplink(tp, wip);
3142 if (error)
4906e215 3143 goto out_bmap_cancel;
7dcf5c3e
DC
3144 error = xfs_iunlink_remove(tp, wip);
3145 if (error)
4906e215 3146 goto out_bmap_cancel;
7dcf5c3e 3147 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3148
7dcf5c3e
DC
3149 /*
3150 * Now we have a real link, clear the "I'm a tmpfile" state
3151 * flag from the inode so it doesn't accidentally get misused in
3152 * future.
3153 */
3154 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3155 }
3156
f6bba201
DC
3157 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3158 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3159 if (new_parent)
3160 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3161
7dcf5c3e
DC
3162 error = xfs_finish_rename(tp, &free_list);
3163 if (wip)
3164 IRELE(wip);
3165 return error;
f6bba201 3166
445883e8 3167out_bmap_cancel:
f6bba201 3168 xfs_bmap_cancel(&free_list);
445883e8 3169out_trans_cancel:
4906e215 3170 xfs_trans_cancel(tp);
7dcf5c3e
DC
3171 if (wip)
3172 IRELE(wip);
f6bba201
DC
3173 return error;
3174}
3175
5c4d97d0
DC
3176STATIC int
3177xfs_iflush_cluster(
3178 xfs_inode_t *ip,
3179 xfs_buf_t *bp)
1da177e4 3180{
5c4d97d0
DC
3181 xfs_mount_t *mp = ip->i_mount;
3182 struct xfs_perag *pag;
3183 unsigned long first_index, mask;
3184 unsigned long inodes_per_cluster;
3185 int ilist_size;
3186 xfs_inode_t **ilist;
3187 xfs_inode_t *iq;
3188 int nr_found;
3189 int clcount = 0;
3190 int bufwasdelwri;
1da177e4 3191 int i;
1da177e4 3192
5c4d97d0 3193 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3194
0f49efd8 3195 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
5c4d97d0
DC
3196 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3197 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3198 if (!ilist)
3199 goto out_put;
1da177e4 3200
0f49efd8 3201 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3202 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3203 rcu_read_lock();
3204 /* really need a gang lookup range call here */
3205 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3206 first_index, inodes_per_cluster);
3207 if (nr_found == 0)
3208 goto out_free;
3209
3210 for (i = 0; i < nr_found; i++) {
3211 iq = ilist[i];
3212 if (iq == ip)
bad55843 3213 continue;
1a3e8f3d
DC
3214
3215 /*
3216 * because this is an RCU protected lookup, we could find a
3217 * recently freed or even reallocated inode during the lookup.
3218 * We need to check under the i_flags_lock for a valid inode
3219 * here. Skip it if it is not valid or the wrong inode.
3220 */
3221 spin_lock(&ip->i_flags_lock);
3222 if (!ip->i_ino ||
3223 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3224 spin_unlock(&ip->i_flags_lock);
3225 continue;
3226 }
3227 spin_unlock(&ip->i_flags_lock);
3228
bad55843
DC
3229 /*
3230 * Do an un-protected check to see if the inode is dirty and
3231 * is a candidate for flushing. These checks will be repeated
3232 * later after the appropriate locks are acquired.
3233 */
33540408 3234 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3235 continue;
bad55843
DC
3236
3237 /*
3238 * Try to get locks. If any are unavailable or it is pinned,
3239 * then this inode cannot be flushed and is skipped.
3240 */
3241
3242 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3243 continue;
3244 if (!xfs_iflock_nowait(iq)) {
3245 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3246 continue;
3247 }
3248 if (xfs_ipincount(iq)) {
3249 xfs_ifunlock(iq);
3250 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3251 continue;
3252 }
3253
3254 /*
3255 * arriving here means that this inode can be flushed. First
3256 * re-check that it's dirty before flushing.
3257 */
33540408
DC
3258 if (!xfs_inode_clean(iq)) {
3259 int error;
bad55843
DC
3260 error = xfs_iflush_int(iq, bp);
3261 if (error) {
3262 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3263 goto cluster_corrupt_out;
3264 }
3265 clcount++;
3266 } else {
3267 xfs_ifunlock(iq);
3268 }
3269 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3270 }
3271
3272 if (clcount) {
3273 XFS_STATS_INC(xs_icluster_flushcnt);
3274 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3275 }
3276
3277out_free:
1a3e8f3d 3278 rcu_read_unlock();
f0e2d93c 3279 kmem_free(ilist);
44b56e0a
DC
3280out_put:
3281 xfs_perag_put(pag);
bad55843
DC
3282 return 0;
3283
3284
3285cluster_corrupt_out:
3286 /*
3287 * Corruption detected in the clustering loop. Invalidate the
3288 * inode buffer and shut down the filesystem.
3289 */
1a3e8f3d 3290 rcu_read_unlock();
bad55843 3291 /*
43ff2122 3292 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3293 * brelse can handle it with no problems. If not, shut down the
3294 * filesystem before releasing the buffer.
3295 */
43ff2122 3296 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3297 if (bufwasdelwri)
3298 xfs_buf_relse(bp);
3299
3300 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3301
3302 if (!bufwasdelwri) {
3303 /*
3304 * Just like incore_relse: if we have b_iodone functions,
3305 * mark the buffer as an error and call them. Otherwise
3306 * mark it as stale and brelse.
3307 */
cb669ca5 3308 if (bp->b_iodone) {
bad55843 3309 XFS_BUF_UNDONE(bp);
c867cb61 3310 xfs_buf_stale(bp);
2451337d 3311 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3312 xfs_buf_ioend(bp);
bad55843 3313 } else {
c867cb61 3314 xfs_buf_stale(bp);
bad55843
DC
3315 xfs_buf_relse(bp);
3316 }
3317 }
3318
3319 /*
3320 * Unlocks the flush lock
3321 */
04913fdd 3322 xfs_iflush_abort(iq, false);
f0e2d93c 3323 kmem_free(ilist);
44b56e0a 3324 xfs_perag_put(pag);
2451337d 3325 return -EFSCORRUPTED;
bad55843
DC
3326}
3327
1da177e4 3328/*
4c46819a
CH
3329 * Flush dirty inode metadata into the backing buffer.
3330 *
3331 * The caller must have the inode lock and the inode flush lock held. The
3332 * inode lock will still be held upon return to the caller, and the inode
3333 * flush lock will be released after the inode has reached the disk.
3334 *
3335 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3336 */
3337int
3338xfs_iflush(
4c46819a
CH
3339 struct xfs_inode *ip,
3340 struct xfs_buf **bpp)
1da177e4 3341{
4c46819a
CH
3342 struct xfs_mount *mp = ip->i_mount;
3343 struct xfs_buf *bp;
3344 struct xfs_dinode *dip;
1da177e4 3345 int error;
1da177e4
LT
3346
3347 XFS_STATS_INC(xs_iflush_count);
3348
579aa9ca 3349 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3350 ASSERT(xfs_isiflocked(ip));
1da177e4 3351 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3352 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3353
4c46819a 3354 *bpp = NULL;
1da177e4 3355
1da177e4
LT
3356 xfs_iunpin_wait(ip);
3357
4b6a4688
DC
3358 /*
3359 * For stale inodes we cannot rely on the backing buffer remaining
3360 * stale in cache for the remaining life of the stale inode and so
475ee413 3361 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3362 * inodes below. We have to check this after ensuring the inode is
3363 * unpinned so that it is safe to reclaim the stale inode after the
3364 * flush call.
3365 */
3366 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3367 xfs_ifunlock(ip);
3368 return 0;
3369 }
3370
1da177e4
LT
3371 /*
3372 * This may have been unpinned because the filesystem is shutting
3373 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3374 * to disk, because the log record didn't make it to disk.
3375 *
3376 * We also have to remove the log item from the AIL in this case,
3377 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3378 */
3379 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3380 error = -EIO;
32ce90a4 3381 goto abort_out;
1da177e4
LT
3382 }
3383
a3f74ffb
DC
3384 /*
3385 * Get the buffer containing the on-disk inode.
3386 */
475ee413
CH
3387 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3388 0);
a3f74ffb
DC
3389 if (error || !bp) {
3390 xfs_ifunlock(ip);
3391 return error;
3392 }
3393
1da177e4
LT
3394 /*
3395 * First flush out the inode that xfs_iflush was called with.
3396 */
3397 error = xfs_iflush_int(ip, bp);
bad55843 3398 if (error)
1da177e4 3399 goto corrupt_out;
1da177e4 3400
a3f74ffb
DC
3401 /*
3402 * If the buffer is pinned then push on the log now so we won't
3403 * get stuck waiting in the write for too long.
3404 */
811e64c7 3405 if (xfs_buf_ispinned(bp))
a14a348b 3406 xfs_log_force(mp, 0);
a3f74ffb 3407
1da177e4
LT
3408 /*
3409 * inode clustering:
3410 * see if other inodes can be gathered into this write
3411 */
bad55843
DC
3412 error = xfs_iflush_cluster(ip, bp);
3413 if (error)
3414 goto cluster_corrupt_out;
1da177e4 3415
4c46819a
CH
3416 *bpp = bp;
3417 return 0;
1da177e4
LT
3418
3419corrupt_out:
3420 xfs_buf_relse(bp);
7d04a335 3421 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3422cluster_corrupt_out:
2451337d 3423 error = -EFSCORRUPTED;
32ce90a4 3424abort_out:
1da177e4
LT
3425 /*
3426 * Unlocks the flush lock
3427 */
04913fdd 3428 xfs_iflush_abort(ip, false);
32ce90a4 3429 return error;
1da177e4
LT
3430}
3431
1da177e4
LT
3432STATIC int
3433xfs_iflush_int(
93848a99
CH
3434 struct xfs_inode *ip,
3435 struct xfs_buf *bp)
1da177e4 3436{
93848a99
CH
3437 struct xfs_inode_log_item *iip = ip->i_itemp;
3438 struct xfs_dinode *dip;
3439 struct xfs_mount *mp = ip->i_mount;
1da177e4 3440
579aa9ca 3441 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3442 ASSERT(xfs_isiflocked(ip));
1da177e4 3443 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3444 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3445 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3446 ASSERT(ip->i_d.di_version > 1);
1da177e4 3447
1da177e4 3448 /* set *dip = inode's place in the buffer */
88ee2df7 3449 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3450
69ef921b 3451 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3452 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3453 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3454 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3455 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3456 goto corrupt_out;
3457 }
3458 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3459 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3460 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3461 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3462 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3463 goto corrupt_out;
3464 }
abbede1b 3465 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3466 if (XFS_TEST_ERROR(
3467 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3468 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3469 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3470 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3471 "%s: Bad regular inode %Lu, ptr 0x%p",
3472 __func__, ip->i_ino, ip);
1da177e4
LT
3473 goto corrupt_out;
3474 }
abbede1b 3475 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3476 if (XFS_TEST_ERROR(
3477 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3478 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3479 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3480 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3481 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3482 "%s: Bad directory inode %Lu, ptr 0x%p",
3483 __func__, ip->i_ino, ip);
1da177e4
LT
3484 goto corrupt_out;
3485 }
3486 }
3487 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3488 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3489 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3490 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3491 "%s: detected corrupt incore inode %Lu, "
3492 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3493 __func__, ip->i_ino,
1da177e4 3494 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3495 ip->i_d.di_nblocks, ip);
1da177e4
LT
3496 goto corrupt_out;
3497 }
3498 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3499 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3500 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3501 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3502 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3503 goto corrupt_out;
3504 }
e60896d8 3505
1da177e4 3506 /*
263997a6 3507 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3508 * di_flushiter count for correct sequencing. We bump the flush
3509 * iteration count so we can detect flushes which postdate a log record
3510 * during recovery. This is redundant as we now log every change and
3511 * hence this can't happen but we need to still do it to ensure
3512 * backwards compatibility with old kernels that predate logging all
3513 * inode changes.
1da177e4 3514 */
e60896d8
DC
3515 if (ip->i_d.di_version < 3)
3516 ip->i_d.di_flushiter++;
1da177e4
LT
3517
3518 /*
3519 * Copy the dirty parts of the inode into the on-disk
3520 * inode. We always copy out the core of the inode,
3521 * because if the inode is dirty at all the core must
3522 * be.
3523 */
81591fe2 3524 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3525
3526 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3527 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3528 ip->i_d.di_flushiter = 0;
3529
fd9fdba6 3530 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
e4ac967b 3531 if (XFS_IFORK_Q(ip))
fd9fdba6 3532 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3533 xfs_inobp_check(mp, bp);
3534
3535 /*
f5d8d5c4
CH
3536 * We've recorded everything logged in the inode, so we'd like to clear
3537 * the ili_fields bits so we don't log and flush things unnecessarily.
3538 * However, we can't stop logging all this information until the data
3539 * we've copied into the disk buffer is written to disk. If we did we
3540 * might overwrite the copy of the inode in the log with all the data
3541 * after re-logging only part of it, and in the face of a crash we
3542 * wouldn't have all the data we need to recover.
1da177e4 3543 *
f5d8d5c4
CH
3544 * What we do is move the bits to the ili_last_fields field. When
3545 * logging the inode, these bits are moved back to the ili_fields field.
3546 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3547 * know that the information those bits represent is permanently on
3548 * disk. As long as the flush completes before the inode is logged
3549 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3550 *
f5d8d5c4
CH
3551 * We can play with the ili_fields bits here, because the inode lock
3552 * must be held exclusively in order to set bits there and the flush
3553 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3554 * done routine can tell whether or not to look in the AIL. Also, store
3555 * the current LSN of the inode so that we can tell whether the item has
3556 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3557 * need the AIL lock, because it is a 64 bit value that cannot be read
3558 * atomically.
1da177e4 3559 */
93848a99
CH
3560 iip->ili_last_fields = iip->ili_fields;
3561 iip->ili_fields = 0;
3562 iip->ili_logged = 1;
1da177e4 3563
93848a99
CH
3564 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3565 &iip->ili_item.li_lsn);
1da177e4 3566
93848a99
CH
3567 /*
3568 * Attach the function xfs_iflush_done to the inode's
3569 * buffer. This will remove the inode from the AIL
3570 * and unlock the inode's flush lock when the inode is
3571 * completely written to disk.
3572 */
3573 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3574
93848a99
CH
3575 /* update the lsn in the on disk inode if required */
3576 if (ip->i_d.di_version == 3)
3577 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3578
3579 /* generate the checksum. */
3580 xfs_dinode_calc_crc(mp, dip);
1da177e4 3581
93848a99
CH
3582 ASSERT(bp->b_fspriv != NULL);
3583 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3584 return 0;
3585
3586corrupt_out:
2451337d 3587 return -EFSCORRUPTED;
1da177e4 3588}
This page took 1.126707 seconds and 5 git commands to generate.