Linux 4.0-rc1
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
a4fbe6ab 28#include "xfs_inode.h"
57062787 29#include "xfs_da_format.h"
c24b5dfa 30#include "xfs_da_btree.h"
c24b5dfa 31#include "xfs_dir2.h"
a844f451 32#include "xfs_attr_sf.h"
c24b5dfa 33#include "xfs_attr.h"
239880ef
DC
34#include "xfs_trans_space.h"
35#include "xfs_trans.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451 37#include "xfs_inode_item.h"
a844f451
NS
38#include "xfs_ialloc.h"
39#include "xfs_bmap.h"
68988114 40#include "xfs_bmap_util.h"
1da177e4 41#include "xfs_error.h"
1da177e4 42#include "xfs_quota.h"
2a82b8be 43#include "xfs_filestream.h"
93848a99 44#include "xfs_cksum.h"
0b1b213f 45#include "xfs_trace.h"
33479e05 46#include "xfs_icache.h"
c24b5dfa 47#include "xfs_symlink.h"
239880ef
DC
48#include "xfs_trans_priv.h"
49#include "xfs_log.h"
a4fbe6ab 50#include "xfs_bmap_btree.h"
1da177e4 51
1da177e4 52kmem_zone_t *xfs_inode_zone;
1da177e4
LT
53
54/*
8f04c47a 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 61
ab297431
ZYW
62STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63
2a0ec1d9
DC
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
fa96acad 78/*
efa70be1
CH
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
fa96acad 89 *
efa70be1 90 * The functions return a value which should be given to the corresponding
01f4f327 91 * xfs_iunlock() call.
fa96acad
DC
92 */
93uint
309ecac8
CH
94xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
fa96acad 96{
309ecac8 97 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 98
309ecac8
CH
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 101 lock_mode = XFS_ILOCK_EXCL;
fa96acad 102 xfs_ilock(ip, lock_mode);
fa96acad
DC
103 return lock_mode;
104}
105
efa70be1
CH
106uint
107xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
fa96acad 109{
efa70be1
CH
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
fa96acad
DC
117}
118
119/*
120 * The xfs inode contains 2 locks: a multi-reader lock called the
121 * i_iolock and a multi-reader lock called the i_lock. This routine
122 * allows either or both of the locks to be obtained.
123 *
124 * The 2 locks should always be ordered so that the IO lock is
125 * obtained first in order to prevent deadlock.
126 *
127 * ip -- the inode being locked
128 * lock_flags -- this parameter indicates the inode's locks
129 * to be locked. It can be:
130 * XFS_IOLOCK_SHARED,
131 * XFS_IOLOCK_EXCL,
132 * XFS_ILOCK_SHARED,
133 * XFS_ILOCK_EXCL,
134 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
135 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
136 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
137 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
138 */
139void
140xfs_ilock(
141 xfs_inode_t *ip,
142 uint lock_flags)
143{
144 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
145
146 /*
147 * You can't set both SHARED and EXCL for the same lock,
148 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
149 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
150 */
151 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
152 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
153 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
154 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
155 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
156
157 if (lock_flags & XFS_IOLOCK_EXCL)
158 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
159 else if (lock_flags & XFS_IOLOCK_SHARED)
160 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
161
162 if (lock_flags & XFS_ILOCK_EXCL)
163 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
164 else if (lock_flags & XFS_ILOCK_SHARED)
165 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166}
167
168/*
169 * This is just like xfs_ilock(), except that the caller
170 * is guaranteed not to sleep. It returns 1 if it gets
171 * the requested locks and 0 otherwise. If the IO lock is
172 * obtained but the inode lock cannot be, then the IO lock
173 * is dropped before returning.
174 *
175 * ip -- the inode being locked
176 * lock_flags -- this parameter indicates the inode's locks to be
177 * to be locked. See the comment for xfs_ilock() for a list
178 * of valid values.
179 */
180int
181xfs_ilock_nowait(
182 xfs_inode_t *ip,
183 uint lock_flags)
184{
185 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
186
187 /*
188 * You can't set both SHARED and EXCL for the same lock,
189 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
190 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
191 */
192 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
193 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
194 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
195 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
196 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
197
198 if (lock_flags & XFS_IOLOCK_EXCL) {
199 if (!mrtryupdate(&ip->i_iolock))
200 goto out;
201 } else if (lock_flags & XFS_IOLOCK_SHARED) {
202 if (!mrtryaccess(&ip->i_iolock))
203 goto out;
204 }
205 if (lock_flags & XFS_ILOCK_EXCL) {
206 if (!mrtryupdate(&ip->i_lock))
207 goto out_undo_iolock;
208 } else if (lock_flags & XFS_ILOCK_SHARED) {
209 if (!mrtryaccess(&ip->i_lock))
210 goto out_undo_iolock;
211 }
212 return 1;
213
214 out_undo_iolock:
215 if (lock_flags & XFS_IOLOCK_EXCL)
216 mrunlock_excl(&ip->i_iolock);
217 else if (lock_flags & XFS_IOLOCK_SHARED)
218 mrunlock_shared(&ip->i_iolock);
219 out:
220 return 0;
221}
222
223/*
224 * xfs_iunlock() is used to drop the inode locks acquired with
225 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
226 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
227 * that we know which locks to drop.
228 *
229 * ip -- the inode being unlocked
230 * lock_flags -- this parameter indicates the inode's locks to be
231 * to be unlocked. See the comment for xfs_ilock() for a list
232 * of valid values for this parameter.
233 *
234 */
235void
236xfs_iunlock(
237 xfs_inode_t *ip,
238 uint lock_flags)
239{
240 /*
241 * You can't set both SHARED and EXCL for the same lock,
242 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
243 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
244 */
245 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
246 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
247 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
248 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
249 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
250 ASSERT(lock_flags != 0);
251
252 if (lock_flags & XFS_IOLOCK_EXCL)
253 mrunlock_excl(&ip->i_iolock);
254 else if (lock_flags & XFS_IOLOCK_SHARED)
255 mrunlock_shared(&ip->i_iolock);
256
257 if (lock_flags & XFS_ILOCK_EXCL)
258 mrunlock_excl(&ip->i_lock);
259 else if (lock_flags & XFS_ILOCK_SHARED)
260 mrunlock_shared(&ip->i_lock);
261
262 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
263}
264
265/*
266 * give up write locks. the i/o lock cannot be held nested
267 * if it is being demoted.
268 */
269void
270xfs_ilock_demote(
271 xfs_inode_t *ip,
272 uint lock_flags)
273{
274 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
275 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
276
277 if (lock_flags & XFS_ILOCK_EXCL)
278 mrdemote(&ip->i_lock);
279 if (lock_flags & XFS_IOLOCK_EXCL)
280 mrdemote(&ip->i_iolock);
281
282 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
283}
284
742ae1e3 285#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
286int
287xfs_isilocked(
288 xfs_inode_t *ip,
289 uint lock_flags)
290{
291 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
292 if (!(lock_flags & XFS_ILOCK_SHARED))
293 return !!ip->i_lock.mr_writer;
294 return rwsem_is_locked(&ip->i_lock.mr_lock);
295 }
296
297 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
298 if (!(lock_flags & XFS_IOLOCK_SHARED))
299 return !!ip->i_iolock.mr_writer;
300 return rwsem_is_locked(&ip->i_iolock.mr_lock);
301 }
302
303 ASSERT(0);
304 return 0;
305}
306#endif
307
c24b5dfa
DC
308#ifdef DEBUG
309int xfs_locked_n;
310int xfs_small_retries;
311int xfs_middle_retries;
312int xfs_lots_retries;
313int xfs_lock_delays;
314#endif
315
316/*
317 * Bump the subclass so xfs_lock_inodes() acquires each lock with
318 * a different value
319 */
320static inline int
321xfs_lock_inumorder(int lock_mode, int subclass)
322{
323 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
324 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
325 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
327
328 return lock_mode;
329}
330
331/*
332 * The following routine will lock n inodes in exclusive mode.
333 * We assume the caller calls us with the inodes in i_ino order.
334 *
335 * We need to detect deadlock where an inode that we lock
336 * is in the AIL and we start waiting for another inode that is locked
337 * by a thread in a long running transaction (such as truncate). This can
338 * result in deadlock since the long running trans might need to wait
339 * for the inode we just locked in order to push the tail and free space
340 * in the log.
341 */
342void
343xfs_lock_inodes(
344 xfs_inode_t **ips,
345 int inodes,
346 uint lock_mode)
347{
348 int attempts = 0, i, j, try_lock;
349 xfs_log_item_t *lp;
350
351 ASSERT(ips && (inodes >= 2)); /* we need at least two */
352
353 try_lock = 0;
354 i = 0;
355
356again:
357 for (; i < inodes; i++) {
358 ASSERT(ips[i]);
359
360 if (i && (ips[i] == ips[i-1])) /* Already locked */
361 continue;
362
363 /*
364 * If try_lock is not set yet, make sure all locked inodes
365 * are not in the AIL.
366 * If any are, set try_lock to be used later.
367 */
368
369 if (!try_lock) {
370 for (j = (i - 1); j >= 0 && !try_lock; j--) {
371 lp = (xfs_log_item_t *)ips[j]->i_itemp;
372 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
373 try_lock++;
374 }
375 }
376 }
377
378 /*
379 * If any of the previous locks we have locked is in the AIL,
380 * we must TRY to get the second and subsequent locks. If
381 * we can't get any, we must release all we have
382 * and try again.
383 */
384
385 if (try_lock) {
386 /* try_lock must be 0 if i is 0. */
387 /*
388 * try_lock means we have an inode locked
389 * that is in the AIL.
390 */
391 ASSERT(i != 0);
392 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
393 attempts++;
394
395 /*
396 * Unlock all previous guys and try again.
397 * xfs_iunlock will try to push the tail
398 * if the inode is in the AIL.
399 */
400
401 for(j = i - 1; j >= 0; j--) {
402
403 /*
404 * Check to see if we've already
405 * unlocked this one.
406 * Not the first one going back,
407 * and the inode ptr is the same.
408 */
409 if ((j != (i - 1)) && ips[j] ==
410 ips[j+1])
411 continue;
412
413 xfs_iunlock(ips[j], lock_mode);
414 }
415
416 if ((attempts % 5) == 0) {
417 delay(1); /* Don't just spin the CPU */
418#ifdef DEBUG
419 xfs_lock_delays++;
420#endif
421 }
422 i = 0;
423 try_lock = 0;
424 goto again;
425 }
426 } else {
427 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
428 }
429 }
430
431#ifdef DEBUG
432 if (attempts) {
433 if (attempts < 5) xfs_small_retries++;
434 else if (attempts < 100) xfs_middle_retries++;
435 else xfs_lots_retries++;
436 } else {
437 xfs_locked_n++;
438 }
439#endif
440}
441
442/*
443 * xfs_lock_two_inodes() can only be used to lock one type of lock
444 * at a time - the iolock or the ilock, but not both at once. If
445 * we lock both at once, lockdep will report false positives saying
446 * we have violated locking orders.
447 */
448void
449xfs_lock_two_inodes(
450 xfs_inode_t *ip0,
451 xfs_inode_t *ip1,
452 uint lock_mode)
453{
454 xfs_inode_t *temp;
455 int attempts = 0;
456 xfs_log_item_t *lp;
457
458 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
459 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
460 ASSERT(ip0->i_ino != ip1->i_ino);
461
462 if (ip0->i_ino > ip1->i_ino) {
463 temp = ip0;
464 ip0 = ip1;
465 ip1 = temp;
466 }
467
468 again:
469 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
470
471 /*
472 * If the first lock we have locked is in the AIL, we must TRY to get
473 * the second lock. If we can't get it, we must release the first one
474 * and try again.
475 */
476 lp = (xfs_log_item_t *)ip0->i_itemp;
477 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
478 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
479 xfs_iunlock(ip0, lock_mode);
480 if ((++attempts % 5) == 0)
481 delay(1); /* Don't just spin the CPU */
482 goto again;
483 }
484 } else {
485 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
486 }
487}
488
489
fa96acad
DC
490void
491__xfs_iflock(
492 struct xfs_inode *ip)
493{
494 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
495 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
496
497 do {
498 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
499 if (xfs_isiflocked(ip))
500 io_schedule();
501 } while (!xfs_iflock_nowait(ip));
502
503 finish_wait(wq, &wait.wait);
504}
505
1da177e4
LT
506STATIC uint
507_xfs_dic2xflags(
1da177e4
LT
508 __uint16_t di_flags)
509{
510 uint flags = 0;
511
512 if (di_flags & XFS_DIFLAG_ANY) {
513 if (di_flags & XFS_DIFLAG_REALTIME)
514 flags |= XFS_XFLAG_REALTIME;
515 if (di_flags & XFS_DIFLAG_PREALLOC)
516 flags |= XFS_XFLAG_PREALLOC;
517 if (di_flags & XFS_DIFLAG_IMMUTABLE)
518 flags |= XFS_XFLAG_IMMUTABLE;
519 if (di_flags & XFS_DIFLAG_APPEND)
520 flags |= XFS_XFLAG_APPEND;
521 if (di_flags & XFS_DIFLAG_SYNC)
522 flags |= XFS_XFLAG_SYNC;
523 if (di_flags & XFS_DIFLAG_NOATIME)
524 flags |= XFS_XFLAG_NOATIME;
525 if (di_flags & XFS_DIFLAG_NODUMP)
526 flags |= XFS_XFLAG_NODUMP;
527 if (di_flags & XFS_DIFLAG_RTINHERIT)
528 flags |= XFS_XFLAG_RTINHERIT;
529 if (di_flags & XFS_DIFLAG_PROJINHERIT)
530 flags |= XFS_XFLAG_PROJINHERIT;
531 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
532 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
533 if (di_flags & XFS_DIFLAG_EXTSIZE)
534 flags |= XFS_XFLAG_EXTSIZE;
535 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
536 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
537 if (di_flags & XFS_DIFLAG_NODEFRAG)
538 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
539 if (di_flags & XFS_DIFLAG_FILESTREAM)
540 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
541 }
542
543 return flags;
544}
545
546uint
547xfs_ip2xflags(
548 xfs_inode_t *ip)
549{
347d1c01 550 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 551
a916e2bd 552 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 553 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
554}
555
556uint
557xfs_dic2xflags(
45ba598e 558 xfs_dinode_t *dip)
1da177e4 559{
81591fe2 560 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 561 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
562}
563
c24b5dfa
DC
564/*
565 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
566 * is allowed, otherwise it has to be an exact match. If a CI match is found,
567 * ci_name->name will point to a the actual name (caller must free) or
568 * will be set to NULL if an exact match is found.
569 */
570int
571xfs_lookup(
572 xfs_inode_t *dp,
573 struct xfs_name *name,
574 xfs_inode_t **ipp,
575 struct xfs_name *ci_name)
576{
577 xfs_ino_t inum;
578 int error;
579 uint lock_mode;
580
581 trace_xfs_lookup(dp, name);
582
583 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 584 return -EIO;
c24b5dfa 585
309ecac8 586 lock_mode = xfs_ilock_data_map_shared(dp);
c24b5dfa 587 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
01f4f327 588 xfs_iunlock(dp, lock_mode);
c24b5dfa
DC
589
590 if (error)
591 goto out;
592
593 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
594 if (error)
595 goto out_free_name;
596
597 return 0;
598
599out_free_name:
600 if (ci_name)
601 kmem_free(ci_name->name);
602out:
603 *ipp = NULL;
604 return error;
605}
606
1da177e4
LT
607/*
608 * Allocate an inode on disk and return a copy of its in-core version.
609 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
610 * appropriately within the inode. The uid and gid for the inode are
611 * set according to the contents of the given cred structure.
612 *
613 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
614 * has a free inode available, call xfs_iget() to obtain the in-core
615 * version of the allocated inode. Finally, fill in the inode and
616 * log its initial contents. In this case, ialloc_context would be
617 * set to NULL.
1da177e4 618 *
cd856db6
CM
619 * If xfs_dialloc() does not have an available inode, it will replenish
620 * its supply by doing an allocation. Since we can only do one
621 * allocation within a transaction without deadlocks, we must commit
622 * the current transaction before returning the inode itself.
623 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
624 * The caller should then commit the current transaction, start a new
625 * transaction, and call xfs_ialloc() again to actually get the inode.
626 *
627 * To ensure that some other process does not grab the inode that
628 * was allocated during the first call to xfs_ialloc(), this routine
629 * also returns the [locked] bp pointing to the head of the freelist
630 * as ialloc_context. The caller should hold this buffer across
631 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
632 *
633 * If we are allocating quota inodes, we do not have a parent inode
634 * to attach to or associate with (i.e. pip == NULL) because they
635 * are not linked into the directory structure - they are attached
636 * directly to the superblock - and so have no parent.
1da177e4
LT
637 */
638int
639xfs_ialloc(
640 xfs_trans_t *tp,
641 xfs_inode_t *pip,
576b1d67 642 umode_t mode,
31b084ae 643 xfs_nlink_t nlink,
1da177e4 644 xfs_dev_t rdev,
6743099c 645 prid_t prid,
1da177e4
LT
646 int okalloc,
647 xfs_buf_t **ialloc_context,
1da177e4
LT
648 xfs_inode_t **ipp)
649{
93848a99 650 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
651 xfs_ino_t ino;
652 xfs_inode_t *ip;
1da177e4
LT
653 uint flags;
654 int error;
e076b0f3 655 struct timespec tv;
1da177e4
LT
656
657 /*
658 * Call the space management code to pick
659 * the on-disk inode to be allocated.
660 */
b11f94d5 661 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 662 ialloc_context, &ino);
bf904248 663 if (error)
1da177e4 664 return error;
08358906 665 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
666 *ipp = NULL;
667 return 0;
668 }
669 ASSERT(*ialloc_context == NULL);
670
671 /*
672 * Get the in-core inode with the lock held exclusively.
673 * This is because we're setting fields here we need
674 * to prevent others from looking at until we're done.
675 */
93848a99 676 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 677 XFS_ILOCK_EXCL, &ip);
bf904248 678 if (error)
1da177e4 679 return error;
1da177e4
LT
680 ASSERT(ip != NULL);
681
263997a6
DC
682 /*
683 * We always convert v1 inodes to v2 now - we only support filesystems
684 * with >= v2 inode capability, so there is no reason for ever leaving
685 * an inode in v1 format.
686 */
687 if (ip->i_d.di_version == 1)
688 ip->i_d.di_version = 2;
689
576b1d67 690 ip->i_d.di_mode = mode;
1da177e4
LT
691 ip->i_d.di_onlink = 0;
692 ip->i_d.di_nlink = nlink;
693 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
694 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
695 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 696 xfs_set_projid(ip, prid);
1da177e4
LT
697 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
698
bd186aa9 699 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 700 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 701 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
702 ip->i_d.di_mode |= S_ISGID;
703 }
704 }
705
706 /*
707 * If the group ID of the new file does not match the effective group
708 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
709 * (and only if the irix_sgid_inherit compatibility variable is set).
710 */
711 if ((irix_sgid_inherit) &&
712 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 713 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
714 ip->i_d.di_mode &= ~S_ISGID;
715 }
716
717 ip->i_d.di_size = 0;
718 ip->i_d.di_nextents = 0;
719 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 720
e076b0f3 721 tv = current_fs_time(mp->m_super);
dff35fd4
CH
722 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
723 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
724 ip->i_d.di_atime = ip->i_d.di_mtime;
725 ip->i_d.di_ctime = ip->i_d.di_mtime;
726
1da177e4
LT
727 /*
728 * di_gen will have been taken care of in xfs_iread.
729 */
730 ip->i_d.di_extsize = 0;
731 ip->i_d.di_dmevmask = 0;
732 ip->i_d.di_dmstate = 0;
733 ip->i_d.di_flags = 0;
93848a99
CH
734
735 if (ip->i_d.di_version == 3) {
736 ASSERT(ip->i_d.di_ino == ino);
737 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
738 ip->i_d.di_crc = 0;
739 ip->i_d.di_changecount = 1;
740 ip->i_d.di_lsn = 0;
741 ip->i_d.di_flags2 = 0;
742 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
743 ip->i_d.di_crtime = ip->i_d.di_mtime;
744 }
745
746
1da177e4
LT
747 flags = XFS_ILOG_CORE;
748 switch (mode & S_IFMT) {
749 case S_IFIFO:
750 case S_IFCHR:
751 case S_IFBLK:
752 case S_IFSOCK:
753 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
754 ip->i_df.if_u2.if_rdev = rdev;
755 ip->i_df.if_flags = 0;
756 flags |= XFS_ILOG_DEV;
757 break;
758 case S_IFREG:
759 case S_IFDIR:
b11f94d5 760 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
761 uint di_flags = 0;
762
abbede1b 763 if (S_ISDIR(mode)) {
365ca83d
NS
764 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
765 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
766 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
767 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
768 ip->i_d.di_extsize = pip->i_d.di_extsize;
769 }
9336e3a7
DC
770 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
771 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 772 } else if (S_ISREG(mode)) {
613d7043 773 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 774 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
775 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
776 di_flags |= XFS_DIFLAG_EXTSIZE;
777 ip->i_d.di_extsize = pip->i_d.di_extsize;
778 }
1da177e4
LT
779 }
780 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
781 xfs_inherit_noatime)
365ca83d 782 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
783 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
784 xfs_inherit_nodump)
365ca83d 785 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
786 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
787 xfs_inherit_sync)
365ca83d 788 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
789 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
790 xfs_inherit_nosymlinks)
365ca83d 791 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
792 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
793 xfs_inherit_nodefrag)
794 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
795 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
796 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 797 ip->i_d.di_flags |= di_flags;
1da177e4
LT
798 }
799 /* FALLTHROUGH */
800 case S_IFLNK:
801 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
802 ip->i_df.if_flags = XFS_IFEXTENTS;
803 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
804 ip->i_df.if_u1.if_extents = NULL;
805 break;
806 default:
807 ASSERT(0);
808 }
809 /*
810 * Attribute fork settings for new inode.
811 */
812 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
813 ip->i_d.di_anextents = 0;
814
815 /*
816 * Log the new values stuffed into the inode.
817 */
ddc3415a 818 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
819 xfs_trans_log_inode(tp, ip, flags);
820
b83bd138 821 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 822 xfs_setup_inode(ip);
1da177e4
LT
823
824 *ipp = ip;
825 return 0;
826}
827
e546cb79
DC
828/*
829 * Allocates a new inode from disk and return a pointer to the
830 * incore copy. This routine will internally commit the current
831 * transaction and allocate a new one if the Space Manager needed
832 * to do an allocation to replenish the inode free-list.
833 *
834 * This routine is designed to be called from xfs_create and
835 * xfs_create_dir.
836 *
837 */
838int
839xfs_dir_ialloc(
840 xfs_trans_t **tpp, /* input: current transaction;
841 output: may be a new transaction. */
842 xfs_inode_t *dp, /* directory within whose allocate
843 the inode. */
844 umode_t mode,
845 xfs_nlink_t nlink,
846 xfs_dev_t rdev,
847 prid_t prid, /* project id */
848 int okalloc, /* ok to allocate new space */
849 xfs_inode_t **ipp, /* pointer to inode; it will be
850 locked. */
851 int *committed)
852
853{
854 xfs_trans_t *tp;
855 xfs_trans_t *ntp;
856 xfs_inode_t *ip;
857 xfs_buf_t *ialloc_context = NULL;
858 int code;
e546cb79
DC
859 void *dqinfo;
860 uint tflags;
861
862 tp = *tpp;
863 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
864
865 /*
866 * xfs_ialloc will return a pointer to an incore inode if
867 * the Space Manager has an available inode on the free
868 * list. Otherwise, it will do an allocation and replenish
869 * the freelist. Since we can only do one allocation per
870 * transaction without deadlocks, we will need to commit the
871 * current transaction and start a new one. We will then
872 * need to call xfs_ialloc again to get the inode.
873 *
874 * If xfs_ialloc did an allocation to replenish the freelist,
875 * it returns the bp containing the head of the freelist as
876 * ialloc_context. We will hold a lock on it across the
877 * transaction commit so that no other process can steal
878 * the inode(s) that we've just allocated.
879 */
880 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
881 &ialloc_context, &ip);
882
883 /*
884 * Return an error if we were unable to allocate a new inode.
885 * This should only happen if we run out of space on disk or
886 * encounter a disk error.
887 */
888 if (code) {
889 *ipp = NULL;
890 return code;
891 }
892 if (!ialloc_context && !ip) {
893 *ipp = NULL;
2451337d 894 return -ENOSPC;
e546cb79
DC
895 }
896
897 /*
898 * If the AGI buffer is non-NULL, then we were unable to get an
899 * inode in one operation. We need to commit the current
900 * transaction and call xfs_ialloc() again. It is guaranteed
901 * to succeed the second time.
902 */
903 if (ialloc_context) {
3d3c8b52
JL
904 struct xfs_trans_res tres;
905
e546cb79
DC
906 /*
907 * Normally, xfs_trans_commit releases all the locks.
908 * We call bhold to hang on to the ialloc_context across
909 * the commit. Holding this buffer prevents any other
910 * processes from doing any allocations in this
911 * allocation group.
912 */
913 xfs_trans_bhold(tp, ialloc_context);
914 /*
915 * Save the log reservation so we can use
916 * them in the next transaction.
917 */
3d3c8b52
JL
918 tres.tr_logres = xfs_trans_get_log_res(tp);
919 tres.tr_logcount = xfs_trans_get_log_count(tp);
e546cb79
DC
920
921 /*
922 * We want the quota changes to be associated with the next
923 * transaction, NOT this one. So, detach the dqinfo from this
924 * and attach it to the next transaction.
925 */
926 dqinfo = NULL;
927 tflags = 0;
928 if (tp->t_dqinfo) {
929 dqinfo = (void *)tp->t_dqinfo;
930 tp->t_dqinfo = NULL;
931 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
932 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
933 }
934
935 ntp = xfs_trans_dup(tp);
936 code = xfs_trans_commit(tp, 0);
937 tp = ntp;
938 if (committed != NULL) {
939 *committed = 1;
940 }
941 /*
942 * If we get an error during the commit processing,
943 * release the buffer that is still held and return
944 * to the caller.
945 */
946 if (code) {
947 xfs_buf_relse(ialloc_context);
948 if (dqinfo) {
949 tp->t_dqinfo = dqinfo;
950 xfs_trans_free_dqinfo(tp);
951 }
952 *tpp = ntp;
953 *ipp = NULL;
954 return code;
955 }
956
957 /*
958 * transaction commit worked ok so we can drop the extra ticket
959 * reference that we gained in xfs_trans_dup()
960 */
961 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52
JL
962 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
963 code = xfs_trans_reserve(tp, &tres, 0, 0);
964
e546cb79
DC
965 /*
966 * Re-attach the quota info that we detached from prev trx.
967 */
968 if (dqinfo) {
969 tp->t_dqinfo = dqinfo;
970 tp->t_flags |= tflags;
971 }
972
973 if (code) {
974 xfs_buf_relse(ialloc_context);
975 *tpp = ntp;
976 *ipp = NULL;
977 return code;
978 }
979 xfs_trans_bjoin(tp, ialloc_context);
980
981 /*
982 * Call ialloc again. Since we've locked out all
983 * other allocations in this allocation group,
984 * this call should always succeed.
985 */
986 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
987 okalloc, &ialloc_context, &ip);
988
989 /*
990 * If we get an error at this point, return to the caller
991 * so that the current transaction can be aborted.
992 */
993 if (code) {
994 *tpp = tp;
995 *ipp = NULL;
996 return code;
997 }
998 ASSERT(!ialloc_context && ip);
999
1000 } else {
1001 if (committed != NULL)
1002 *committed = 0;
1003 }
1004
1005 *ipp = ip;
1006 *tpp = tp;
1007
1008 return 0;
1009}
1010
1011/*
1012 * Decrement the link count on an inode & log the change.
1013 * If this causes the link count to go to zero, initiate the
1014 * logging activity required to truncate a file.
1015 */
1016int /* error */
1017xfs_droplink(
1018 xfs_trans_t *tp,
1019 xfs_inode_t *ip)
1020{
1021 int error;
1022
1023 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1024
1025 ASSERT (ip->i_d.di_nlink > 0);
1026 ip->i_d.di_nlink--;
1027 drop_nlink(VFS_I(ip));
1028 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1029
1030 error = 0;
1031 if (ip->i_d.di_nlink == 0) {
1032 /*
1033 * We're dropping the last link to this file.
1034 * Move the on-disk inode to the AGI unlinked list.
1035 * From xfs_inactive() we will pull the inode from
1036 * the list and free it.
1037 */
1038 error = xfs_iunlink(tp, ip);
1039 }
1040 return error;
1041}
1042
e546cb79
DC
1043/*
1044 * Increment the link count on an inode & log the change.
1045 */
1046int
1047xfs_bumplink(
1048 xfs_trans_t *tp,
1049 xfs_inode_t *ip)
1050{
1051 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1052
263997a6 1053 ASSERT(ip->i_d.di_version > 1);
ab297431 1054 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
e546cb79
DC
1055 ip->i_d.di_nlink++;
1056 inc_nlink(VFS_I(ip));
e546cb79
DC
1057 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1058 return 0;
1059}
1060
c24b5dfa
DC
1061int
1062xfs_create(
1063 xfs_inode_t *dp,
1064 struct xfs_name *name,
1065 umode_t mode,
1066 xfs_dev_t rdev,
1067 xfs_inode_t **ipp)
1068{
1069 int is_dir = S_ISDIR(mode);
1070 struct xfs_mount *mp = dp->i_mount;
1071 struct xfs_inode *ip = NULL;
1072 struct xfs_trans *tp = NULL;
1073 int error;
1074 xfs_bmap_free_t free_list;
1075 xfs_fsblock_t first_block;
1076 bool unlock_dp_on_error = false;
1077 uint cancel_flags;
1078 int committed;
1079 prid_t prid;
1080 struct xfs_dquot *udqp = NULL;
1081 struct xfs_dquot *gdqp = NULL;
1082 struct xfs_dquot *pdqp = NULL;
062647a8 1083 struct xfs_trans_res *tres;
c24b5dfa 1084 uint resblks;
c24b5dfa
DC
1085
1086 trace_xfs_create(dp, name);
1087
1088 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1089 return -EIO;
c24b5dfa 1090
163467d3 1091 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1092
1093 /*
1094 * Make sure that we have allocated dquot(s) on disk.
1095 */
7aab1b28
DE
1096 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1097 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1098 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1099 &udqp, &gdqp, &pdqp);
1100 if (error)
1101 return error;
1102
1103 if (is_dir) {
1104 rdev = 0;
1105 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1106 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1107 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1108 } else {
1109 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1110 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1111 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1112 }
1113
1114 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1115
1116 /*
1117 * Initially assume that the file does not exist and
1118 * reserve the resources for that case. If that is not
1119 * the case we'll drop the one we have and get a more
1120 * appropriate transaction later.
1121 */
062647a8 1122 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1123 if (error == -ENOSPC) {
c24b5dfa
DC
1124 /* flush outstanding delalloc blocks and retry */
1125 xfs_flush_inodes(mp);
062647a8 1126 error = xfs_trans_reserve(tp, tres, resblks, 0);
c24b5dfa 1127 }
2451337d 1128 if (error == -ENOSPC) {
c24b5dfa
DC
1129 /* No space at all so try a "no-allocation" reservation */
1130 resblks = 0;
062647a8 1131 error = xfs_trans_reserve(tp, tres, 0, 0);
c24b5dfa
DC
1132 }
1133 if (error) {
1134 cancel_flags = 0;
1135 goto out_trans_cancel;
1136 }
1137
1138 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1139 unlock_dp_on_error = true;
1140
1141 xfs_bmap_init(&free_list, &first_block);
1142
1143 /*
1144 * Reserve disk quota and the inode.
1145 */
1146 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1147 pdqp, resblks, 1, 0);
1148 if (error)
1149 goto out_trans_cancel;
1150
94f3cad5
ES
1151 if (!resblks) {
1152 error = xfs_dir_canenter(tp, dp, name);
1153 if (error)
1154 goto out_trans_cancel;
1155 }
c24b5dfa
DC
1156
1157 /*
1158 * A newly created regular or special file just has one directory
1159 * entry pointing to them, but a directory also the "." entry
1160 * pointing to itself.
1161 */
1162 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1163 prid, resblks > 0, &ip, &committed);
1164 if (error) {
2451337d 1165 if (error == -ENOSPC)
c24b5dfa
DC
1166 goto out_trans_cancel;
1167 goto out_trans_abort;
1168 }
1169
1170 /*
1171 * Now we join the directory inode to the transaction. We do not do it
1172 * earlier because xfs_dir_ialloc might commit the previous transaction
1173 * (and release all the locks). An error from here on will result in
1174 * the transaction cancel unlocking dp so don't do it explicitly in the
1175 * error path.
1176 */
1177 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1178 unlock_dp_on_error = false;
1179
1180 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1181 &first_block, &free_list, resblks ?
1182 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1183 if (error) {
2451337d 1184 ASSERT(error != -ENOSPC);
c24b5dfa
DC
1185 goto out_trans_abort;
1186 }
1187 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1188 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1189
1190 if (is_dir) {
1191 error = xfs_dir_init(tp, ip, dp);
1192 if (error)
1193 goto out_bmap_cancel;
1194
1195 error = xfs_bumplink(tp, dp);
1196 if (error)
1197 goto out_bmap_cancel;
1198 }
1199
1200 /*
1201 * If this is a synchronous mount, make sure that the
1202 * create transaction goes to disk before returning to
1203 * the user.
1204 */
1205 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1206 xfs_trans_set_sync(tp);
1207
1208 /*
1209 * Attach the dquot(s) to the inodes and modify them incore.
1210 * These ids of the inode couldn't have changed since the new
1211 * inode has been locked ever since it was created.
1212 */
1213 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1214
1215 error = xfs_bmap_finish(&tp, &free_list, &committed);
1216 if (error)
1217 goto out_bmap_cancel;
1218
1219 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1220 if (error)
1221 goto out_release_inode;
1222
1223 xfs_qm_dqrele(udqp);
1224 xfs_qm_dqrele(gdqp);
1225 xfs_qm_dqrele(pdqp);
1226
1227 *ipp = ip;
1228 return 0;
1229
1230 out_bmap_cancel:
1231 xfs_bmap_cancel(&free_list);
1232 out_trans_abort:
1233 cancel_flags |= XFS_TRANS_ABORT;
1234 out_trans_cancel:
1235 xfs_trans_cancel(tp, cancel_flags);
1236 out_release_inode:
1237 /*
1238 * Wait until after the current transaction is aborted to
1239 * release the inode. This prevents recursive transactions
1240 * and deadlocks from xfs_inactive.
1241 */
1242 if (ip)
1243 IRELE(ip);
1244
1245 xfs_qm_dqrele(udqp);
1246 xfs_qm_dqrele(gdqp);
1247 xfs_qm_dqrele(pdqp);
1248
1249 if (unlock_dp_on_error)
1250 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1251 return error;
1252}
1253
99b6436b
ZYW
1254int
1255xfs_create_tmpfile(
1256 struct xfs_inode *dp,
1257 struct dentry *dentry,
330033d6
BF
1258 umode_t mode,
1259 struct xfs_inode **ipp)
99b6436b
ZYW
1260{
1261 struct xfs_mount *mp = dp->i_mount;
1262 struct xfs_inode *ip = NULL;
1263 struct xfs_trans *tp = NULL;
1264 int error;
1265 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1266 prid_t prid;
1267 struct xfs_dquot *udqp = NULL;
1268 struct xfs_dquot *gdqp = NULL;
1269 struct xfs_dquot *pdqp = NULL;
1270 struct xfs_trans_res *tres;
1271 uint resblks;
1272
1273 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1274 return -EIO;
99b6436b
ZYW
1275
1276 prid = xfs_get_initial_prid(dp);
1277
1278 /*
1279 * Make sure that we have allocated dquot(s) on disk.
1280 */
1281 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1282 xfs_kgid_to_gid(current_fsgid()), prid,
1283 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1284 &udqp, &gdqp, &pdqp);
1285 if (error)
1286 return error;
1287
1288 resblks = XFS_IALLOC_SPACE_RES(mp);
1289 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1290
1291 tres = &M_RES(mp)->tr_create_tmpfile;
1292 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1293 if (error == -ENOSPC) {
99b6436b
ZYW
1294 /* No space at all so try a "no-allocation" reservation */
1295 resblks = 0;
1296 error = xfs_trans_reserve(tp, tres, 0, 0);
1297 }
1298 if (error) {
1299 cancel_flags = 0;
1300 goto out_trans_cancel;
1301 }
1302
1303 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1304 pdqp, resblks, 1, 0);
1305 if (error)
1306 goto out_trans_cancel;
1307
1308 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1309 prid, resblks > 0, &ip, NULL);
1310 if (error) {
2451337d 1311 if (error == -ENOSPC)
99b6436b
ZYW
1312 goto out_trans_cancel;
1313 goto out_trans_abort;
1314 }
1315
1316 if (mp->m_flags & XFS_MOUNT_WSYNC)
1317 xfs_trans_set_sync(tp);
1318
1319 /*
1320 * Attach the dquot(s) to the inodes and modify them incore.
1321 * These ids of the inode couldn't have changed since the new
1322 * inode has been locked ever since it was created.
1323 */
1324 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1325
1326 ip->i_d.di_nlink--;
99b6436b
ZYW
1327 error = xfs_iunlink(tp, ip);
1328 if (error)
1329 goto out_trans_abort;
1330
1331 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1332 if (error)
1333 goto out_release_inode;
1334
1335 xfs_qm_dqrele(udqp);
1336 xfs_qm_dqrele(gdqp);
1337 xfs_qm_dqrele(pdqp);
1338
330033d6 1339 *ipp = ip;
99b6436b
ZYW
1340 return 0;
1341
1342 out_trans_abort:
1343 cancel_flags |= XFS_TRANS_ABORT;
1344 out_trans_cancel:
1345 xfs_trans_cancel(tp, cancel_flags);
1346 out_release_inode:
1347 /*
1348 * Wait until after the current transaction is aborted to
1349 * release the inode. This prevents recursive transactions
1350 * and deadlocks from xfs_inactive.
1351 */
1352 if (ip)
1353 IRELE(ip);
1354
1355 xfs_qm_dqrele(udqp);
1356 xfs_qm_dqrele(gdqp);
1357 xfs_qm_dqrele(pdqp);
1358
1359 return error;
1360}
1361
c24b5dfa
DC
1362int
1363xfs_link(
1364 xfs_inode_t *tdp,
1365 xfs_inode_t *sip,
1366 struct xfs_name *target_name)
1367{
1368 xfs_mount_t *mp = tdp->i_mount;
1369 xfs_trans_t *tp;
1370 int error;
1371 xfs_bmap_free_t free_list;
1372 xfs_fsblock_t first_block;
1373 int cancel_flags;
1374 int committed;
1375 int resblks;
1376
1377 trace_xfs_link(tdp, target_name);
1378
1379 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1380
1381 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1382 return -EIO;
c24b5dfa
DC
1383
1384 error = xfs_qm_dqattach(sip, 0);
1385 if (error)
1386 goto std_return;
1387
1388 error = xfs_qm_dqattach(tdp, 0);
1389 if (error)
1390 goto std_return;
1391
1392 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1393 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1394 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1395 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
2451337d 1396 if (error == -ENOSPC) {
c24b5dfa 1397 resblks = 0;
3d3c8b52 1398 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa
DC
1399 }
1400 if (error) {
1401 cancel_flags = 0;
1402 goto error_return;
1403 }
1404
1405 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1406
1407 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1408 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1409
1410 /*
1411 * If we are using project inheritance, we only allow hard link
1412 * creation in our tree when the project IDs are the same; else
1413 * the tree quota mechanism could be circumvented.
1414 */
1415 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1416 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1417 error = -EXDEV;
c24b5dfa
DC
1418 goto error_return;
1419 }
1420
94f3cad5
ES
1421 if (!resblks) {
1422 error = xfs_dir_canenter(tp, tdp, target_name);
1423 if (error)
1424 goto error_return;
1425 }
c24b5dfa
DC
1426
1427 xfs_bmap_init(&free_list, &first_block);
1428
ab297431
ZYW
1429 if (sip->i_d.di_nlink == 0) {
1430 error = xfs_iunlink_remove(tp, sip);
1431 if (error)
1432 goto abort_return;
1433 }
1434
c24b5dfa
DC
1435 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1436 &first_block, &free_list, resblks);
1437 if (error)
1438 goto abort_return;
1439 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1440 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1441
1442 error = xfs_bumplink(tp, sip);
1443 if (error)
1444 goto abort_return;
1445
1446 /*
1447 * If this is a synchronous mount, make sure that the
1448 * link transaction goes to disk before returning to
1449 * the user.
1450 */
1451 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1452 xfs_trans_set_sync(tp);
1453 }
1454
1455 error = xfs_bmap_finish (&tp, &free_list, &committed);
1456 if (error) {
1457 xfs_bmap_cancel(&free_list);
1458 goto abort_return;
1459 }
1460
1461 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1462
1463 abort_return:
1464 cancel_flags |= XFS_TRANS_ABORT;
1465 error_return:
1466 xfs_trans_cancel(tp, cancel_flags);
1467 std_return:
1468 return error;
1469}
1470
1da177e4 1471/*
8f04c47a
CH
1472 * Free up the underlying blocks past new_size. The new size must be smaller
1473 * than the current size. This routine can be used both for the attribute and
1474 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1475 *
f6485057
DC
1476 * The transaction passed to this routine must have made a permanent log
1477 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1478 * given transaction and start new ones, so make sure everything involved in
1479 * the transaction is tidy before calling here. Some transaction will be
1480 * returned to the caller to be committed. The incoming transaction must
1481 * already include the inode, and both inode locks must be held exclusively.
1482 * The inode must also be "held" within the transaction. On return the inode
1483 * will be "held" within the returned transaction. This routine does NOT
1484 * require any disk space to be reserved for it within the transaction.
1da177e4 1485 *
f6485057
DC
1486 * If we get an error, we must return with the inode locked and linked into the
1487 * current transaction. This keeps things simple for the higher level code,
1488 * because it always knows that the inode is locked and held in the transaction
1489 * that returns to it whether errors occur or not. We don't mark the inode
1490 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1491 */
1492int
8f04c47a
CH
1493xfs_itruncate_extents(
1494 struct xfs_trans **tpp,
1495 struct xfs_inode *ip,
1496 int whichfork,
1497 xfs_fsize_t new_size)
1da177e4 1498{
8f04c47a
CH
1499 struct xfs_mount *mp = ip->i_mount;
1500 struct xfs_trans *tp = *tpp;
1501 struct xfs_trans *ntp;
1502 xfs_bmap_free_t free_list;
1503 xfs_fsblock_t first_block;
1504 xfs_fileoff_t first_unmap_block;
1505 xfs_fileoff_t last_block;
1506 xfs_filblks_t unmap_len;
1507 int committed;
1508 int error = 0;
1509 int done = 0;
1da177e4 1510
0b56185b
CH
1511 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1512 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1513 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1514 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1515 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1516 ASSERT(ip->i_itemp != NULL);
898621d5 1517 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1518 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1519
673e8e59
CH
1520 trace_xfs_itruncate_extents_start(ip, new_size);
1521
1da177e4
LT
1522 /*
1523 * Since it is possible for space to become allocated beyond
1524 * the end of the file (in a crash where the space is allocated
1525 * but the inode size is not yet updated), simply remove any
1526 * blocks which show up between the new EOF and the maximum
1527 * possible file size. If the first block to be removed is
1528 * beyond the maximum file size (ie it is the same as last_block),
1529 * then there is nothing to do.
1530 */
8f04c47a 1531 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1532 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1533 if (first_unmap_block == last_block)
1534 return 0;
1535
1536 ASSERT(first_unmap_block < last_block);
1537 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1538 while (!done) {
9d87c319 1539 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1540 error = xfs_bunmapi(tp, ip,
3e57ecf6 1541 first_unmap_block, unmap_len,
8f04c47a 1542 xfs_bmapi_aflag(whichfork),
1da177e4 1543 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1544 &first_block, &free_list,
b4e9181e 1545 &done);
8f04c47a
CH
1546 if (error)
1547 goto out_bmap_cancel;
1da177e4
LT
1548
1549 /*
1550 * Duplicate the transaction that has the permanent
1551 * reservation and commit the old transaction.
1552 */
8f04c47a 1553 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1554 if (committed)
ddc3415a 1555 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1556 if (error)
1557 goto out_bmap_cancel;
1da177e4
LT
1558
1559 if (committed) {
1560 /*
f6485057 1561 * Mark the inode dirty so it will be logged and
e5720eec 1562 * moved forward in the log as part of every commit.
1da177e4 1563 */
8f04c47a 1564 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1565 }
f6485057 1566
8f04c47a
CH
1567 ntp = xfs_trans_dup(tp);
1568 error = xfs_trans_commit(tp, 0);
1569 tp = ntp;
e5720eec 1570
ddc3415a 1571 xfs_trans_ijoin(tp, ip, 0);
f6485057 1572
cc09c0dc 1573 if (error)
8f04c47a
CH
1574 goto out;
1575
cc09c0dc 1576 /*
8f04c47a 1577 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1578 * reference that we gained in xfs_trans_dup()
1579 */
8f04c47a 1580 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52 1581 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
f6485057 1582 if (error)
8f04c47a 1583 goto out;
1da177e4 1584 }
8f04c47a 1585
673e8e59
CH
1586 /*
1587 * Always re-log the inode so that our permanent transaction can keep
1588 * on rolling it forward in the log.
1589 */
1590 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1591
1592 trace_xfs_itruncate_extents_end(ip, new_size);
1593
8f04c47a
CH
1594out:
1595 *tpp = tp;
1596 return error;
1597out_bmap_cancel:
1da177e4 1598 /*
8f04c47a
CH
1599 * If the bunmapi call encounters an error, return to the caller where
1600 * the transaction can be properly aborted. We just need to make sure
1601 * we're not holding any resources that we were not when we came in.
1da177e4 1602 */
8f04c47a
CH
1603 xfs_bmap_cancel(&free_list);
1604 goto out;
1605}
1606
c24b5dfa
DC
1607int
1608xfs_release(
1609 xfs_inode_t *ip)
1610{
1611 xfs_mount_t *mp = ip->i_mount;
1612 int error;
1613
1614 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1615 return 0;
1616
1617 /* If this is a read-only mount, don't do this (would generate I/O) */
1618 if (mp->m_flags & XFS_MOUNT_RDONLY)
1619 return 0;
1620
1621 if (!XFS_FORCED_SHUTDOWN(mp)) {
1622 int truncated;
1623
c24b5dfa
DC
1624 /*
1625 * If we previously truncated this file and removed old data
1626 * in the process, we want to initiate "early" writeout on
1627 * the last close. This is an attempt to combat the notorious
1628 * NULL files problem which is particularly noticeable from a
1629 * truncate down, buffered (re-)write (delalloc), followed by
1630 * a crash. What we are effectively doing here is
1631 * significantly reducing the time window where we'd otherwise
1632 * be exposed to that problem.
1633 */
1634 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1635 if (truncated) {
1636 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1637 if (ip->i_delayed_blks > 0) {
2451337d 1638 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1639 if (error)
1640 return error;
1641 }
1642 }
1643 }
1644
1645 if (ip->i_d.di_nlink == 0)
1646 return 0;
1647
1648 if (xfs_can_free_eofblocks(ip, false)) {
1649
1650 /*
1651 * If we can't get the iolock just skip truncating the blocks
1652 * past EOF because we could deadlock with the mmap_sem
1653 * otherwise. We'll get another chance to drop them once the
1654 * last reference to the inode is dropped, so we'll never leak
1655 * blocks permanently.
1656 *
1657 * Further, check if the inode is being opened, written and
1658 * closed frequently and we have delayed allocation blocks
1659 * outstanding (e.g. streaming writes from the NFS server),
1660 * truncating the blocks past EOF will cause fragmentation to
1661 * occur.
1662 *
1663 * In this case don't do the truncation, either, but we have to
1664 * be careful how we detect this case. Blocks beyond EOF show
1665 * up as i_delayed_blks even when the inode is clean, so we
1666 * need to truncate them away first before checking for a dirty
1667 * release. Hence on the first dirty close we will still remove
1668 * the speculative allocation, but after that we will leave it
1669 * in place.
1670 */
1671 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1672 return 0;
1673
1674 error = xfs_free_eofblocks(mp, ip, true);
2451337d 1675 if (error && error != -EAGAIN)
c24b5dfa
DC
1676 return error;
1677
1678 /* delalloc blocks after truncation means it really is dirty */
1679 if (ip->i_delayed_blks)
1680 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1681 }
1682 return 0;
1683}
1684
f7be2d7f
BF
1685/*
1686 * xfs_inactive_truncate
1687 *
1688 * Called to perform a truncate when an inode becomes unlinked.
1689 */
1690STATIC int
1691xfs_inactive_truncate(
1692 struct xfs_inode *ip)
1693{
1694 struct xfs_mount *mp = ip->i_mount;
1695 struct xfs_trans *tp;
1696 int error;
1697
1698 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1699 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1700 if (error) {
1701 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1702 xfs_trans_cancel(tp, 0);
1703 return error;
1704 }
1705
1706 xfs_ilock(ip, XFS_ILOCK_EXCL);
1707 xfs_trans_ijoin(tp, ip, 0);
1708
1709 /*
1710 * Log the inode size first to prevent stale data exposure in the event
1711 * of a system crash before the truncate completes. See the related
1712 * comment in xfs_setattr_size() for details.
1713 */
1714 ip->i_d.di_size = 0;
1715 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1716
1717 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1718 if (error)
1719 goto error_trans_cancel;
1720
1721 ASSERT(ip->i_d.di_nextents == 0);
1722
1723 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1724 if (error)
1725 goto error_unlock;
1726
1727 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1728 return 0;
1729
1730error_trans_cancel:
1731 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1732error_unlock:
1733 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1734 return error;
1735}
1736
88877d2b
BF
1737/*
1738 * xfs_inactive_ifree()
1739 *
1740 * Perform the inode free when an inode is unlinked.
1741 */
1742STATIC int
1743xfs_inactive_ifree(
1744 struct xfs_inode *ip)
1745{
1746 xfs_bmap_free_t free_list;
1747 xfs_fsblock_t first_block;
1748 int committed;
1749 struct xfs_mount *mp = ip->i_mount;
1750 struct xfs_trans *tp;
1751 int error;
1752
1753 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
9d43b180
BF
1754
1755 /*
1756 * The ifree transaction might need to allocate blocks for record
1757 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1758 * allow ifree to dip into the reserved block pool if necessary.
1759 *
1760 * Freeing large sets of inodes generally means freeing inode chunks,
1761 * directory and file data blocks, so this should be relatively safe.
1762 * Only under severe circumstances should it be possible to free enough
1763 * inodes to exhaust the reserve block pool via finobt expansion while
1764 * at the same time not creating free space in the filesystem.
1765 *
1766 * Send a warning if the reservation does happen to fail, as the inode
1767 * now remains allocated and sits on the unlinked list until the fs is
1768 * repaired.
1769 */
1770 tp->t_flags |= XFS_TRANS_RESERVE;
1771 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1772 XFS_IFREE_SPACE_RES(mp), 0);
88877d2b 1773 if (error) {
2451337d 1774 if (error == -ENOSPC) {
9d43b180
BF
1775 xfs_warn_ratelimited(mp,
1776 "Failed to remove inode(s) from unlinked list. "
1777 "Please free space, unmount and run xfs_repair.");
1778 } else {
1779 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1780 }
88877d2b
BF
1781 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1782 return error;
1783 }
1784
1785 xfs_ilock(ip, XFS_ILOCK_EXCL);
1786 xfs_trans_ijoin(tp, ip, 0);
1787
1788 xfs_bmap_init(&free_list, &first_block);
1789 error = xfs_ifree(tp, ip, &free_list);
1790 if (error) {
1791 /*
1792 * If we fail to free the inode, shut down. The cancel
1793 * might do that, we need to make sure. Otherwise the
1794 * inode might be lost for a long time or forever.
1795 */
1796 if (!XFS_FORCED_SHUTDOWN(mp)) {
1797 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1798 __func__, error);
1799 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1800 }
1801 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1802 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1803 return error;
1804 }
1805
1806 /*
1807 * Credit the quota account(s). The inode is gone.
1808 */
1809 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1810
1811 /*
1812 * Just ignore errors at this point. There is nothing we can
1813 * do except to try to keep going. Make sure it's not a silent
1814 * error.
1815 */
1816 error = xfs_bmap_finish(&tp, &free_list, &committed);
1817 if (error)
1818 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1819 __func__, error);
1820 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1821 if (error)
1822 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1823 __func__, error);
1824
1825 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1826 return 0;
1827}
1828
c24b5dfa
DC
1829/*
1830 * xfs_inactive
1831 *
1832 * This is called when the vnode reference count for the vnode
1833 * goes to zero. If the file has been unlinked, then it must
1834 * now be truncated. Also, we clear all of the read-ahead state
1835 * kept for the inode here since the file is now closed.
1836 */
74564fb4 1837void
c24b5dfa
DC
1838xfs_inactive(
1839 xfs_inode_t *ip)
1840{
3d3c8b52 1841 struct xfs_mount *mp;
3d3c8b52
JL
1842 int error;
1843 int truncate = 0;
c24b5dfa
DC
1844
1845 /*
1846 * If the inode is already free, then there can be nothing
1847 * to clean up here.
1848 */
d948709b 1849 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1850 ASSERT(ip->i_df.if_real_bytes == 0);
1851 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1852 return;
c24b5dfa
DC
1853 }
1854
1855 mp = ip->i_mount;
1856
c24b5dfa
DC
1857 /* If this is a read-only mount, don't do this (would generate I/O) */
1858 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1859 return;
c24b5dfa
DC
1860
1861 if (ip->i_d.di_nlink != 0) {
1862 /*
1863 * force is true because we are evicting an inode from the
1864 * cache. Post-eof blocks must be freed, lest we end up with
1865 * broken free space accounting.
1866 */
74564fb4
BF
1867 if (xfs_can_free_eofblocks(ip, true))
1868 xfs_free_eofblocks(mp, ip, false);
1869
1870 return;
c24b5dfa
DC
1871 }
1872
1873 if (S_ISREG(ip->i_d.di_mode) &&
1874 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1875 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1876 truncate = 1;
1877
1878 error = xfs_qm_dqattach(ip, 0);
1879 if (error)
74564fb4 1880 return;
c24b5dfa 1881
f7be2d7f 1882 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1883 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1884 else if (truncate)
1885 error = xfs_inactive_truncate(ip);
1886 if (error)
74564fb4 1887 return;
c24b5dfa
DC
1888
1889 /*
1890 * If there are attributes associated with the file then blow them away
1891 * now. The code calls a routine that recursively deconstructs the
1892 * attribute fork. We need to just commit the current transaction
1893 * because we can't use it for xfs_attr_inactive().
1894 */
1895 if (ip->i_d.di_anextents > 0) {
1896 ASSERT(ip->i_d.di_forkoff != 0);
1897
c24b5dfa
DC
1898 error = xfs_attr_inactive(ip);
1899 if (error)
74564fb4 1900 return;
c24b5dfa
DC
1901 }
1902
1903 if (ip->i_afp)
1904 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1905
1906 ASSERT(ip->i_d.di_anextents == 0);
1907
1908 /*
1909 * Free the inode.
1910 */
88877d2b
BF
1911 error = xfs_inactive_ifree(ip);
1912 if (error)
74564fb4 1913 return;
c24b5dfa
DC
1914
1915 /*
1916 * Release the dquots held by inode, if any.
1917 */
1918 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1919}
1920
1da177e4
LT
1921/*
1922 * This is called when the inode's link count goes to 0.
1923 * We place the on-disk inode on a list in the AGI. It
1924 * will be pulled from this list when the inode is freed.
1925 */
1926int
1927xfs_iunlink(
1928 xfs_trans_t *tp,
1929 xfs_inode_t *ip)
1930{
1931 xfs_mount_t *mp;
1932 xfs_agi_t *agi;
1933 xfs_dinode_t *dip;
1934 xfs_buf_t *agibp;
1935 xfs_buf_t *ibp;
1da177e4
LT
1936 xfs_agino_t agino;
1937 short bucket_index;
1938 int offset;
1939 int error;
1da177e4
LT
1940
1941 ASSERT(ip->i_d.di_nlink == 0);
1942 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1943
1944 mp = tp->t_mountp;
1945
1da177e4
LT
1946 /*
1947 * Get the agi buffer first. It ensures lock ordering
1948 * on the list.
1949 */
5e1be0fb 1950 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1951 if (error)
1da177e4 1952 return error;
1da177e4 1953 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1954
1da177e4
LT
1955 /*
1956 * Get the index into the agi hash table for the
1957 * list this inode will go on.
1958 */
1959 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1960 ASSERT(agino != 0);
1961 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1962 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1963 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1964
69ef921b 1965 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1966 /*
1967 * There is already another inode in the bucket we need
1968 * to add ourselves to. Add us at the front of the list.
1969 * Here we put the head pointer into our next pointer,
1970 * and then we fall through to point the head at us.
1971 */
475ee413
CH
1972 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1973 0, 0);
c319b58b
VA
1974 if (error)
1975 return error;
1976
69ef921b 1977 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1978 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1979 offset = ip->i_imap.im_boffset +
1da177e4 1980 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
1981
1982 /* need to recalc the inode CRC if appropriate */
1983 xfs_dinode_calc_crc(mp, dip);
1984
1da177e4
LT
1985 xfs_trans_inode_buf(tp, ibp);
1986 xfs_trans_log_buf(tp, ibp, offset,
1987 (offset + sizeof(xfs_agino_t) - 1));
1988 xfs_inobp_check(mp, ibp);
1989 }
1990
1991 /*
1992 * Point the bucket head pointer at the inode being inserted.
1993 */
1994 ASSERT(agino != 0);
16259e7d 1995 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1996 offset = offsetof(xfs_agi_t, agi_unlinked) +
1997 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 1998 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
1999 xfs_trans_log_buf(tp, agibp, offset,
2000 (offset + sizeof(xfs_agino_t) - 1));
2001 return 0;
2002}
2003
2004/*
2005 * Pull the on-disk inode from the AGI unlinked list.
2006 */
2007STATIC int
2008xfs_iunlink_remove(
2009 xfs_trans_t *tp,
2010 xfs_inode_t *ip)
2011{
2012 xfs_ino_t next_ino;
2013 xfs_mount_t *mp;
2014 xfs_agi_t *agi;
2015 xfs_dinode_t *dip;
2016 xfs_buf_t *agibp;
2017 xfs_buf_t *ibp;
2018 xfs_agnumber_t agno;
1da177e4
LT
2019 xfs_agino_t agino;
2020 xfs_agino_t next_agino;
2021 xfs_buf_t *last_ibp;
6fdf8ccc 2022 xfs_dinode_t *last_dip = NULL;
1da177e4 2023 short bucket_index;
6fdf8ccc 2024 int offset, last_offset = 0;
1da177e4 2025 int error;
1da177e4 2026
1da177e4 2027 mp = tp->t_mountp;
1da177e4 2028 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2029
2030 /*
2031 * Get the agi buffer first. It ensures lock ordering
2032 * on the list.
2033 */
5e1be0fb
CH
2034 error = xfs_read_agi(mp, tp, agno, &agibp);
2035 if (error)
1da177e4 2036 return error;
5e1be0fb 2037
1da177e4 2038 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2039
1da177e4
LT
2040 /*
2041 * Get the index into the agi hash table for the
2042 * list this inode will go on.
2043 */
2044 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2045 ASSERT(agino != 0);
2046 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2047 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2048 ASSERT(agi->agi_unlinked[bucket_index]);
2049
16259e7d 2050 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2051 /*
475ee413
CH
2052 * We're at the head of the list. Get the inode's on-disk
2053 * buffer to see if there is anyone after us on the list.
2054 * Only modify our next pointer if it is not already NULLAGINO.
2055 * This saves us the overhead of dealing with the buffer when
2056 * there is no need to change it.
1da177e4 2057 */
475ee413
CH
2058 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2059 0, 0);
1da177e4 2060 if (error) {
475ee413 2061 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2062 __func__, error);
1da177e4
LT
2063 return error;
2064 }
347d1c01 2065 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2066 ASSERT(next_agino != 0);
2067 if (next_agino != NULLAGINO) {
347d1c01 2068 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2069 offset = ip->i_imap.im_boffset +
1da177e4 2070 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2071
2072 /* need to recalc the inode CRC if appropriate */
2073 xfs_dinode_calc_crc(mp, dip);
2074
1da177e4
LT
2075 xfs_trans_inode_buf(tp, ibp);
2076 xfs_trans_log_buf(tp, ibp, offset,
2077 (offset + sizeof(xfs_agino_t) - 1));
2078 xfs_inobp_check(mp, ibp);
2079 } else {
2080 xfs_trans_brelse(tp, ibp);
2081 }
2082 /*
2083 * Point the bucket head pointer at the next inode.
2084 */
2085 ASSERT(next_agino != 0);
2086 ASSERT(next_agino != agino);
16259e7d 2087 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2088 offset = offsetof(xfs_agi_t, agi_unlinked) +
2089 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2090 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2091 xfs_trans_log_buf(tp, agibp, offset,
2092 (offset + sizeof(xfs_agino_t) - 1));
2093 } else {
2094 /*
2095 * We need to search the list for the inode being freed.
2096 */
16259e7d 2097 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2098 last_ibp = NULL;
2099 while (next_agino != agino) {
129dbc9a
CH
2100 struct xfs_imap imap;
2101
2102 if (last_ibp)
1da177e4 2103 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2104
2105 imap.im_blkno = 0;
1da177e4 2106 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2107
2108 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2109 if (error) {
2110 xfs_warn(mp,
2111 "%s: xfs_imap returned error %d.",
2112 __func__, error);
2113 return error;
2114 }
2115
2116 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2117 &last_ibp, 0, 0);
1da177e4 2118 if (error) {
0b932ccc 2119 xfs_warn(mp,
129dbc9a 2120 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2121 __func__, error);
1da177e4
LT
2122 return error;
2123 }
129dbc9a
CH
2124
2125 last_offset = imap.im_boffset;
347d1c01 2126 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2127 ASSERT(next_agino != NULLAGINO);
2128 ASSERT(next_agino != 0);
2129 }
475ee413 2130
1da177e4 2131 /*
475ee413
CH
2132 * Now last_ibp points to the buffer previous to us on the
2133 * unlinked list. Pull us from the list.
1da177e4 2134 */
475ee413
CH
2135 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2136 0, 0);
1da177e4 2137 if (error) {
475ee413 2138 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2139 __func__, error);
1da177e4
LT
2140 return error;
2141 }
347d1c01 2142 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2143 ASSERT(next_agino != 0);
2144 ASSERT(next_agino != agino);
2145 if (next_agino != NULLAGINO) {
347d1c01 2146 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2147 offset = ip->i_imap.im_boffset +
1da177e4 2148 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2149
2150 /* need to recalc the inode CRC if appropriate */
2151 xfs_dinode_calc_crc(mp, dip);
2152
1da177e4
LT
2153 xfs_trans_inode_buf(tp, ibp);
2154 xfs_trans_log_buf(tp, ibp, offset,
2155 (offset + sizeof(xfs_agino_t) - 1));
2156 xfs_inobp_check(mp, ibp);
2157 } else {
2158 xfs_trans_brelse(tp, ibp);
2159 }
2160 /*
2161 * Point the previous inode on the list to the next inode.
2162 */
347d1c01 2163 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2164 ASSERT(next_agino != 0);
2165 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2166
2167 /* need to recalc the inode CRC if appropriate */
2168 xfs_dinode_calc_crc(mp, last_dip);
2169
1da177e4
LT
2170 xfs_trans_inode_buf(tp, last_ibp);
2171 xfs_trans_log_buf(tp, last_ibp, offset,
2172 (offset + sizeof(xfs_agino_t) - 1));
2173 xfs_inobp_check(mp, last_ibp);
2174 }
2175 return 0;
2176}
2177
5b3eed75 2178/*
0b8182db 2179 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2180 * inodes that are in memory - they all must be marked stale and attached to
2181 * the cluster buffer.
2182 */
2a30f36d 2183STATIC int
1da177e4
LT
2184xfs_ifree_cluster(
2185 xfs_inode_t *free_ip,
2186 xfs_trans_t *tp,
2187 xfs_ino_t inum)
2188{
2189 xfs_mount_t *mp = free_ip->i_mount;
2190 int blks_per_cluster;
982e939e 2191 int inodes_per_cluster;
1da177e4 2192 int nbufs;
5b257b4a 2193 int i, j;
1da177e4
LT
2194 xfs_daddr_t blkno;
2195 xfs_buf_t *bp;
5b257b4a 2196 xfs_inode_t *ip;
1da177e4
LT
2197 xfs_inode_log_item_t *iip;
2198 xfs_log_item_t *lip;
5017e97d 2199 struct xfs_perag *pag;
1da177e4 2200
5017e97d 2201 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2202 blks_per_cluster = xfs_icluster_size_fsb(mp);
2203 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2204 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2205
982e939e 2206 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
1da177e4
LT
2207 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2208 XFS_INO_TO_AGBNO(mp, inum));
2209
5b257b4a
DC
2210 /*
2211 * We obtain and lock the backing buffer first in the process
2212 * here, as we have to ensure that any dirty inode that we
2213 * can't get the flush lock on is attached to the buffer.
2214 * If we scan the in-memory inodes first, then buffer IO can
2215 * complete before we get a lock on it, and hence we may fail
2216 * to mark all the active inodes on the buffer stale.
2217 */
2218 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2219 mp->m_bsize * blks_per_cluster,
2220 XBF_UNMAPPED);
5b257b4a 2221
2a30f36d 2222 if (!bp)
2451337d 2223 return -ENOMEM;
b0f539de
DC
2224
2225 /*
2226 * This buffer may not have been correctly initialised as we
2227 * didn't read it from disk. That's not important because we are
2228 * only using to mark the buffer as stale in the log, and to
2229 * attach stale cached inodes on it. That means it will never be
2230 * dispatched for IO. If it is, we want to know about it, and we
2231 * want it to fail. We can acheive this by adding a write
2232 * verifier to the buffer.
2233 */
1813dd64 2234 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2235
5b257b4a
DC
2236 /*
2237 * Walk the inodes already attached to the buffer and mark them
2238 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2239 * in-memory inode walk can't lock them. By marking them all
2240 * stale first, we will not attempt to lock them in the loop
2241 * below as the XFS_ISTALE flag will be set.
5b257b4a 2242 */
adadbeef 2243 lip = bp->b_fspriv;
5b257b4a
DC
2244 while (lip) {
2245 if (lip->li_type == XFS_LI_INODE) {
2246 iip = (xfs_inode_log_item_t *)lip;
2247 ASSERT(iip->ili_logged == 1);
ca30b2a7 2248 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2249 xfs_trans_ail_copy_lsn(mp->m_ail,
2250 &iip->ili_flush_lsn,
2251 &iip->ili_item.li_lsn);
2252 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2253 }
2254 lip = lip->li_bio_list;
2255 }
1da177e4 2256
5b3eed75 2257
1da177e4 2258 /*
5b257b4a
DC
2259 * For each inode in memory attempt to add it to the inode
2260 * buffer and set it up for being staled on buffer IO
2261 * completion. This is safe as we've locked out tail pushing
2262 * and flushing by locking the buffer.
1da177e4 2263 *
5b257b4a
DC
2264 * We have already marked every inode that was part of a
2265 * transaction stale above, which means there is no point in
2266 * even trying to lock them.
1da177e4 2267 */
982e939e 2268 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2269retry:
1a3e8f3d 2270 rcu_read_lock();
da353b0d
DC
2271 ip = radix_tree_lookup(&pag->pag_ici_root,
2272 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2273
1a3e8f3d
DC
2274 /* Inode not in memory, nothing to do */
2275 if (!ip) {
2276 rcu_read_unlock();
1da177e4
LT
2277 continue;
2278 }
2279
1a3e8f3d
DC
2280 /*
2281 * because this is an RCU protected lookup, we could
2282 * find a recently freed or even reallocated inode
2283 * during the lookup. We need to check under the
2284 * i_flags_lock for a valid inode here. Skip it if it
2285 * is not valid, the wrong inode or stale.
2286 */
2287 spin_lock(&ip->i_flags_lock);
2288 if (ip->i_ino != inum + i ||
2289 __xfs_iflags_test(ip, XFS_ISTALE)) {
2290 spin_unlock(&ip->i_flags_lock);
2291 rcu_read_unlock();
2292 continue;
2293 }
2294 spin_unlock(&ip->i_flags_lock);
2295
5b3eed75
DC
2296 /*
2297 * Don't try to lock/unlock the current inode, but we
2298 * _cannot_ skip the other inodes that we did not find
2299 * in the list attached to the buffer and are not
2300 * already marked stale. If we can't lock it, back off
2301 * and retry.
2302 */
5b257b4a
DC
2303 if (ip != free_ip &&
2304 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2305 rcu_read_unlock();
5b3eed75
DC
2306 delay(1);
2307 goto retry;
1da177e4 2308 }
1a3e8f3d 2309 rcu_read_unlock();
1da177e4 2310
5b3eed75 2311 xfs_iflock(ip);
5b257b4a 2312 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2313
5b3eed75
DC
2314 /*
2315 * we don't need to attach clean inodes or those only
2316 * with unlogged changes (which we throw away, anyway).
2317 */
1da177e4 2318 iip = ip->i_itemp;
5b3eed75 2319 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2320 ASSERT(ip != free_ip);
1da177e4
LT
2321 xfs_ifunlock(ip);
2322 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2323 continue;
2324 }
2325
f5d8d5c4
CH
2326 iip->ili_last_fields = iip->ili_fields;
2327 iip->ili_fields = 0;
1da177e4 2328 iip->ili_logged = 1;
7b2e2a31
DC
2329 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2330 &iip->ili_item.li_lsn);
1da177e4 2331
ca30b2a7
CH
2332 xfs_buf_attach_iodone(bp, xfs_istale_done,
2333 &iip->ili_item);
5b257b4a
DC
2334
2335 if (ip != free_ip)
1da177e4 2336 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2337 }
2338
5b3eed75 2339 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2340 xfs_trans_binval(tp, bp);
2341 }
2342
5017e97d 2343 xfs_perag_put(pag);
2a30f36d 2344 return 0;
1da177e4
LT
2345}
2346
2347/*
2348 * This is called to return an inode to the inode free list.
2349 * The inode should already be truncated to 0 length and have
2350 * no pages associated with it. This routine also assumes that
2351 * the inode is already a part of the transaction.
2352 *
2353 * The on-disk copy of the inode will have been added to the list
2354 * of unlinked inodes in the AGI. We need to remove the inode from
2355 * that list atomically with respect to freeing it here.
2356 */
2357int
2358xfs_ifree(
2359 xfs_trans_t *tp,
2360 xfs_inode_t *ip,
2361 xfs_bmap_free_t *flist)
2362{
2363 int error;
2364 int delete;
2365 xfs_ino_t first_ino;
2366
579aa9ca 2367 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2368 ASSERT(ip->i_d.di_nlink == 0);
2369 ASSERT(ip->i_d.di_nextents == 0);
2370 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2371 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2372 ASSERT(ip->i_d.di_nblocks == 0);
2373
2374 /*
2375 * Pull the on-disk inode from the AGI unlinked list.
2376 */
2377 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2378 if (error)
1da177e4 2379 return error;
1da177e4
LT
2380
2381 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1baaed8f 2382 if (error)
1da177e4 2383 return error;
1baaed8f 2384
1da177e4
LT
2385 ip->i_d.di_mode = 0; /* mark incore inode as free */
2386 ip->i_d.di_flags = 0;
2387 ip->i_d.di_dmevmask = 0;
2388 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2389 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2390 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2391 /*
2392 * Bump the generation count so no one will be confused
2393 * by reincarnations of this inode.
2394 */
2395 ip->i_d.di_gen++;
2396 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2397
1baaed8f 2398 if (delete)
2a30f36d 2399 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4 2400
2a30f36d 2401 return error;
1da177e4
LT
2402}
2403
1da177e4 2404/*
60ec6783
CH
2405 * This is called to unpin an inode. The caller must have the inode locked
2406 * in at least shared mode so that the buffer cannot be subsequently pinned
2407 * once someone is waiting for it to be unpinned.
1da177e4 2408 */
60ec6783 2409static void
f392e631 2410xfs_iunpin(
60ec6783 2411 struct xfs_inode *ip)
1da177e4 2412{
579aa9ca 2413 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2414
4aaf15d1
DC
2415 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2416
a3f74ffb 2417 /* Give the log a push to start the unpinning I/O */
60ec6783 2418 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2419
a3f74ffb 2420}
1da177e4 2421
f392e631
CH
2422static void
2423__xfs_iunpin_wait(
2424 struct xfs_inode *ip)
2425{
2426 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2427 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2428
2429 xfs_iunpin(ip);
2430
2431 do {
2432 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2433 if (xfs_ipincount(ip))
2434 io_schedule();
2435 } while (xfs_ipincount(ip));
2436 finish_wait(wq, &wait.wait);
2437}
2438
777df5af 2439void
a3f74ffb 2440xfs_iunpin_wait(
60ec6783 2441 struct xfs_inode *ip)
a3f74ffb 2442{
f392e631
CH
2443 if (xfs_ipincount(ip))
2444 __xfs_iunpin_wait(ip);
1da177e4
LT
2445}
2446
27320369
DC
2447/*
2448 * Removing an inode from the namespace involves removing the directory entry
2449 * and dropping the link count on the inode. Removing the directory entry can
2450 * result in locking an AGF (directory blocks were freed) and removing a link
2451 * count can result in placing the inode on an unlinked list which results in
2452 * locking an AGI.
2453 *
2454 * The big problem here is that we have an ordering constraint on AGF and AGI
2455 * locking - inode allocation locks the AGI, then can allocate a new extent for
2456 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2457 * removes the inode from the unlinked list, requiring that we lock the AGI
2458 * first, and then freeing the inode can result in an inode chunk being freed
2459 * and hence freeing disk space requiring that we lock an AGF.
2460 *
2461 * Hence the ordering that is imposed by other parts of the code is AGI before
2462 * AGF. This means we cannot remove the directory entry before we drop the inode
2463 * reference count and put it on the unlinked list as this results in a lock
2464 * order of AGF then AGI, and this can deadlock against inode allocation and
2465 * freeing. Therefore we must drop the link counts before we remove the
2466 * directory entry.
2467 *
2468 * This is still safe from a transactional point of view - it is not until we
2469 * get to xfs_bmap_finish() that we have the possibility of multiple
2470 * transactions in this operation. Hence as long as we remove the directory
2471 * entry and drop the link count in the first transaction of the remove
2472 * operation, there are no transactional constraints on the ordering here.
2473 */
c24b5dfa
DC
2474int
2475xfs_remove(
2476 xfs_inode_t *dp,
2477 struct xfs_name *name,
2478 xfs_inode_t *ip)
2479{
2480 xfs_mount_t *mp = dp->i_mount;
2481 xfs_trans_t *tp = NULL;
2482 int is_dir = S_ISDIR(ip->i_d.di_mode);
2483 int error = 0;
2484 xfs_bmap_free_t free_list;
2485 xfs_fsblock_t first_block;
2486 int cancel_flags;
2487 int committed;
c24b5dfa 2488 uint resblks;
c24b5dfa
DC
2489
2490 trace_xfs_remove(dp, name);
2491
2492 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2493 return -EIO;
c24b5dfa
DC
2494
2495 error = xfs_qm_dqattach(dp, 0);
2496 if (error)
2497 goto std_return;
2498
2499 error = xfs_qm_dqattach(ip, 0);
2500 if (error)
2501 goto std_return;
2502
32296f86 2503 if (is_dir)
c24b5dfa 2504 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
32296f86 2505 else
c24b5dfa 2506 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
c24b5dfa
DC
2507 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2508
2509 /*
2510 * We try to get the real space reservation first,
2511 * allowing for directory btree deletion(s) implying
2512 * possible bmap insert(s). If we can't get the space
2513 * reservation then we use 0 instead, and avoid the bmap
2514 * btree insert(s) in the directory code by, if the bmap
2515 * insert tries to happen, instead trimming the LAST
2516 * block from the directory.
2517 */
2518 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2519 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2451337d 2520 if (error == -ENOSPC) {
c24b5dfa 2521 resblks = 0;
3d3c8b52 2522 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2523 }
2524 if (error) {
2451337d 2525 ASSERT(error != -ENOSPC);
c24b5dfa
DC
2526 cancel_flags = 0;
2527 goto out_trans_cancel;
2528 }
2529
2530 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2531
2532 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2533 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2534
2535 /*
2536 * If we're removing a directory perform some additional validation.
2537 */
27320369 2538 cancel_flags |= XFS_TRANS_ABORT;
c24b5dfa
DC
2539 if (is_dir) {
2540 ASSERT(ip->i_d.di_nlink >= 2);
2541 if (ip->i_d.di_nlink != 2) {
2451337d 2542 error = -ENOTEMPTY;
c24b5dfa
DC
2543 goto out_trans_cancel;
2544 }
2545 if (!xfs_dir_isempty(ip)) {
2451337d 2546 error = -ENOTEMPTY;
c24b5dfa
DC
2547 goto out_trans_cancel;
2548 }
c24b5dfa 2549
27320369 2550 /* Drop the link from ip's "..". */
c24b5dfa
DC
2551 error = xfs_droplink(tp, dp);
2552 if (error)
27320369 2553 goto out_trans_cancel;
c24b5dfa 2554
27320369 2555 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2556 error = xfs_droplink(tp, ip);
2557 if (error)
27320369 2558 goto out_trans_cancel;
c24b5dfa
DC
2559 } else {
2560 /*
2561 * When removing a non-directory we need to log the parent
2562 * inode here. For a directory this is done implicitly
2563 * by the xfs_droplink call for the ".." entry.
2564 */
2565 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2566 }
27320369 2567 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2568
27320369 2569 /* Drop the link from dp to ip. */
c24b5dfa
DC
2570 error = xfs_droplink(tp, ip);
2571 if (error)
27320369 2572 goto out_trans_cancel;
c24b5dfa 2573
27320369
DC
2574 xfs_bmap_init(&free_list, &first_block);
2575 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2576 &first_block, &free_list, resblks);
2577 if (error) {
2451337d 2578 ASSERT(error != -ENOENT);
27320369
DC
2579 goto out_bmap_cancel;
2580 }
2581
c24b5dfa
DC
2582 /*
2583 * If this is a synchronous mount, make sure that the
2584 * remove transaction goes to disk before returning to
2585 * the user.
2586 */
2587 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2588 xfs_trans_set_sync(tp);
2589
2590 error = xfs_bmap_finish(&tp, &free_list, &committed);
2591 if (error)
2592 goto out_bmap_cancel;
2593
2594 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2595 if (error)
2596 goto std_return;
2597
2cd2ef6a 2598 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2599 xfs_filestream_deassociate(ip);
2600
2601 return 0;
2602
2603 out_bmap_cancel:
2604 xfs_bmap_cancel(&free_list);
c24b5dfa
DC
2605 out_trans_cancel:
2606 xfs_trans_cancel(tp, cancel_flags);
2607 std_return:
2608 return error;
2609}
2610
f6bba201
DC
2611/*
2612 * Enter all inodes for a rename transaction into a sorted array.
2613 */
2614STATIC void
2615xfs_sort_for_rename(
2616 xfs_inode_t *dp1, /* in: old (source) directory inode */
2617 xfs_inode_t *dp2, /* in: new (target) directory inode */
2618 xfs_inode_t *ip1, /* in: inode of old entry */
2619 xfs_inode_t *ip2, /* in: inode of new entry, if it
2620 already exists, NULL otherwise. */
2621 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2622 int *num_inodes) /* out: number of inodes in array */
2623{
2624 xfs_inode_t *temp;
2625 int i, j;
2626
2627 /*
2628 * i_tab contains a list of pointers to inodes. We initialize
2629 * the table here & we'll sort it. We will then use it to
2630 * order the acquisition of the inode locks.
2631 *
2632 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2633 */
2634 i_tab[0] = dp1;
2635 i_tab[1] = dp2;
2636 i_tab[2] = ip1;
2637 if (ip2) {
2638 *num_inodes = 4;
2639 i_tab[3] = ip2;
2640 } else {
2641 *num_inodes = 3;
2642 i_tab[3] = NULL;
2643 }
2644
2645 /*
2646 * Sort the elements via bubble sort. (Remember, there are at
2647 * most 4 elements to sort, so this is adequate.)
2648 */
2649 for (i = 0; i < *num_inodes; i++) {
2650 for (j = 1; j < *num_inodes; j++) {
2651 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2652 temp = i_tab[j];
2653 i_tab[j] = i_tab[j-1];
2654 i_tab[j-1] = temp;
2655 }
2656 }
2657 }
2658}
2659
d31a1825
CM
2660/*
2661 * xfs_cross_rename()
2662 *
2663 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2664 */
2665STATIC int
2666xfs_cross_rename(
2667 struct xfs_trans *tp,
2668 struct xfs_inode *dp1,
2669 struct xfs_name *name1,
2670 struct xfs_inode *ip1,
2671 struct xfs_inode *dp2,
2672 struct xfs_name *name2,
2673 struct xfs_inode *ip2,
2674 struct xfs_bmap_free *free_list,
2675 xfs_fsblock_t *first_block,
2676 int spaceres)
2677{
2678 int error = 0;
2679 int ip1_flags = 0;
2680 int ip2_flags = 0;
2681 int dp2_flags = 0;
2682
2683 /* Swap inode number for dirent in first parent */
2684 error = xfs_dir_replace(tp, dp1, name1,
2685 ip2->i_ino,
2686 first_block, free_list, spaceres);
2687 if (error)
2688 goto out;
2689
2690 /* Swap inode number for dirent in second parent */
2691 error = xfs_dir_replace(tp, dp2, name2,
2692 ip1->i_ino,
2693 first_block, free_list, spaceres);
2694 if (error)
2695 goto out;
2696
2697 /*
2698 * If we're renaming one or more directories across different parents,
2699 * update the respective ".." entries (and link counts) to match the new
2700 * parents.
2701 */
2702 if (dp1 != dp2) {
2703 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2704
2705 if (S_ISDIR(ip2->i_d.di_mode)) {
2706 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2707 dp1->i_ino, first_block,
2708 free_list, spaceres);
2709 if (error)
2710 goto out;
2711
2712 /* transfer ip2 ".." reference to dp1 */
2713 if (!S_ISDIR(ip1->i_d.di_mode)) {
2714 error = xfs_droplink(tp, dp2);
2715 if (error)
2716 goto out;
2717 error = xfs_bumplink(tp, dp1);
2718 if (error)
2719 goto out;
2720 }
2721
2722 /*
2723 * Although ip1 isn't changed here, userspace needs
2724 * to be warned about the change, so that applications
2725 * relying on it (like backup ones), will properly
2726 * notify the change
2727 */
2728 ip1_flags |= XFS_ICHGTIME_CHG;
2729 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2730 }
2731
2732 if (S_ISDIR(ip1->i_d.di_mode)) {
2733 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2734 dp2->i_ino, first_block,
2735 free_list, spaceres);
2736 if (error)
2737 goto out;
2738
2739 /* transfer ip1 ".." reference to dp2 */
2740 if (!S_ISDIR(ip2->i_d.di_mode)) {
2741 error = xfs_droplink(tp, dp1);
2742 if (error)
2743 goto out;
2744 error = xfs_bumplink(tp, dp2);
2745 if (error)
2746 goto out;
2747 }
2748
2749 /*
2750 * Although ip2 isn't changed here, userspace needs
2751 * to be warned about the change, so that applications
2752 * relying on it (like backup ones), will properly
2753 * notify the change
2754 */
2755 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2756 ip2_flags |= XFS_ICHGTIME_CHG;
2757 }
2758 }
2759
2760 if (ip1_flags) {
2761 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2762 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2763 }
2764 if (ip2_flags) {
2765 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2766 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2767 }
2768 if (dp2_flags) {
2769 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2770 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2771 }
2772 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2773 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2774out:
2775 return error;
2776}
2777
f6bba201
DC
2778/*
2779 * xfs_rename
2780 */
2781int
2782xfs_rename(
2783 xfs_inode_t *src_dp,
2784 struct xfs_name *src_name,
2785 xfs_inode_t *src_ip,
2786 xfs_inode_t *target_dp,
2787 struct xfs_name *target_name,
d31a1825
CM
2788 xfs_inode_t *target_ip,
2789 unsigned int flags)
f6bba201
DC
2790{
2791 xfs_trans_t *tp = NULL;
2792 xfs_mount_t *mp = src_dp->i_mount;
2793 int new_parent; /* moving to a new dir */
2794 int src_is_directory; /* src_name is a directory */
2795 int error;
2796 xfs_bmap_free_t free_list;
2797 xfs_fsblock_t first_block;
2798 int cancel_flags;
2799 int committed;
2800 xfs_inode_t *inodes[4];
2801 int spaceres;
2802 int num_inodes;
2803
2804 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2805
2806 new_parent = (src_dp != target_dp);
2807 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2808
2809 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2810 inodes, &num_inodes);
2811
2812 xfs_bmap_init(&free_list, &first_block);
2813 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2814 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2815 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2816 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2451337d 2817 if (error == -ENOSPC) {
f6bba201 2818 spaceres = 0;
3d3c8b52 2819 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201
DC
2820 }
2821 if (error) {
2822 xfs_trans_cancel(tp, 0);
2823 goto std_return;
2824 }
2825
2826 /*
2827 * Attach the dquots to the inodes
2828 */
2829 error = xfs_qm_vop_rename_dqattach(inodes);
2830 if (error) {
2831 xfs_trans_cancel(tp, cancel_flags);
2832 goto std_return;
2833 }
2834
2835 /*
2836 * Lock all the participating inodes. Depending upon whether
2837 * the target_name exists in the target directory, and
2838 * whether the target directory is the same as the source
2839 * directory, we can lock from 2 to 4 inodes.
2840 */
2841 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2842
2843 /*
2844 * Join all the inodes to the transaction. From this point on,
2845 * we can rely on either trans_commit or trans_cancel to unlock
2846 * them.
2847 */
2848 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2849 if (new_parent)
2850 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2851 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2852 if (target_ip)
2853 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2854
2855 /*
2856 * If we are using project inheritance, we only allow renames
2857 * into our tree when the project IDs are the same; else the
2858 * tree quota mechanism would be circumvented.
2859 */
2860 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2861 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2862 error = -EXDEV;
f6bba201
DC
2863 goto error_return;
2864 }
2865
d31a1825
CM
2866 /*
2867 * Handle RENAME_EXCHANGE flags
2868 */
2869 if (flags & RENAME_EXCHANGE) {
2870 error = xfs_cross_rename(tp, src_dp, src_name, src_ip,
2871 target_dp, target_name, target_ip,
2872 &free_list, &first_block, spaceres);
2873 if (error)
2874 goto abort_return;
2875 goto finish_rename;
2876 }
2877
f6bba201
DC
2878 /*
2879 * Set up the target.
2880 */
2881 if (target_ip == NULL) {
2882 /*
2883 * If there's no space reservation, check the entry will
2884 * fit before actually inserting it.
2885 */
94f3cad5
ES
2886 if (!spaceres) {
2887 error = xfs_dir_canenter(tp, target_dp, target_name);
2888 if (error)
2889 goto error_return;
2890 }
f6bba201
DC
2891 /*
2892 * If target does not exist and the rename crosses
2893 * directories, adjust the target directory link count
2894 * to account for the ".." reference from the new entry.
2895 */
2896 error = xfs_dir_createname(tp, target_dp, target_name,
2897 src_ip->i_ino, &first_block,
2898 &free_list, spaceres);
2451337d 2899 if (error == -ENOSPC)
f6bba201
DC
2900 goto error_return;
2901 if (error)
2902 goto abort_return;
2903
2904 xfs_trans_ichgtime(tp, target_dp,
2905 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2906
2907 if (new_parent && src_is_directory) {
2908 error = xfs_bumplink(tp, target_dp);
2909 if (error)
2910 goto abort_return;
2911 }
2912 } else { /* target_ip != NULL */
2913 /*
2914 * If target exists and it's a directory, check that both
2915 * target and source are directories and that target can be
2916 * destroyed, or that neither is a directory.
2917 */
2918 if (S_ISDIR(target_ip->i_d.di_mode)) {
2919 /*
2920 * Make sure target dir is empty.
2921 */
2922 if (!(xfs_dir_isempty(target_ip)) ||
2923 (target_ip->i_d.di_nlink > 2)) {
2451337d 2924 error = -EEXIST;
f6bba201
DC
2925 goto error_return;
2926 }
2927 }
2928
2929 /*
2930 * Link the source inode under the target name.
2931 * If the source inode is a directory and we are moving
2932 * it across directories, its ".." entry will be
2933 * inconsistent until we replace that down below.
2934 *
2935 * In case there is already an entry with the same
2936 * name at the destination directory, remove it first.
2937 */
2938 error = xfs_dir_replace(tp, target_dp, target_name,
2939 src_ip->i_ino,
2940 &first_block, &free_list, spaceres);
2941 if (error)
2942 goto abort_return;
2943
2944 xfs_trans_ichgtime(tp, target_dp,
2945 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2946
2947 /*
2948 * Decrement the link count on the target since the target
2949 * dir no longer points to it.
2950 */
2951 error = xfs_droplink(tp, target_ip);
2952 if (error)
2953 goto abort_return;
2954
2955 if (src_is_directory) {
2956 /*
2957 * Drop the link from the old "." entry.
2958 */
2959 error = xfs_droplink(tp, target_ip);
2960 if (error)
2961 goto abort_return;
2962 }
2963 } /* target_ip != NULL */
2964
2965 /*
2966 * Remove the source.
2967 */
2968 if (new_parent && src_is_directory) {
2969 /*
2970 * Rewrite the ".." entry to point to the new
2971 * directory.
2972 */
2973 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2974 target_dp->i_ino,
2975 &first_block, &free_list, spaceres);
2451337d 2976 ASSERT(error != -EEXIST);
f6bba201
DC
2977 if (error)
2978 goto abort_return;
2979 }
2980
2981 /*
2982 * We always want to hit the ctime on the source inode.
2983 *
2984 * This isn't strictly required by the standards since the source
2985 * inode isn't really being changed, but old unix file systems did
2986 * it and some incremental backup programs won't work without it.
2987 */
2988 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2989 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2990
2991 /*
2992 * Adjust the link count on src_dp. This is necessary when
2993 * renaming a directory, either within one parent when
2994 * the target existed, or across two parent directories.
2995 */
2996 if (src_is_directory && (new_parent || target_ip != NULL)) {
2997
2998 /*
2999 * Decrement link count on src_directory since the
3000 * entry that's moved no longer points to it.
3001 */
3002 error = xfs_droplink(tp, src_dp);
3003 if (error)
3004 goto abort_return;
3005 }
3006
3007 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3008 &first_block, &free_list, spaceres);
3009 if (error)
3010 goto abort_return;
3011
3012 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3013 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3014 if (new_parent)
3015 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3016
d31a1825 3017finish_rename:
f6bba201
DC
3018 /*
3019 * If this is a synchronous mount, make sure that the
3020 * rename transaction goes to disk before returning to
3021 * the user.
3022 */
3023 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
3024 xfs_trans_set_sync(tp);
3025 }
3026
3027 error = xfs_bmap_finish(&tp, &free_list, &committed);
3028 if (error) {
3029 xfs_bmap_cancel(&free_list);
3030 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
3031 XFS_TRANS_ABORT));
3032 goto std_return;
3033 }
3034
3035 /*
3036 * trans_commit will unlock src_ip, target_ip & decrement
3037 * the vnode references.
3038 */
3039 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
3040
3041 abort_return:
3042 cancel_flags |= XFS_TRANS_ABORT;
3043 error_return:
3044 xfs_bmap_cancel(&free_list);
3045 xfs_trans_cancel(tp, cancel_flags);
3046 std_return:
3047 return error;
3048}
3049
5c4d97d0
DC
3050STATIC int
3051xfs_iflush_cluster(
3052 xfs_inode_t *ip,
3053 xfs_buf_t *bp)
1da177e4 3054{
5c4d97d0
DC
3055 xfs_mount_t *mp = ip->i_mount;
3056 struct xfs_perag *pag;
3057 unsigned long first_index, mask;
3058 unsigned long inodes_per_cluster;
3059 int ilist_size;
3060 xfs_inode_t **ilist;
3061 xfs_inode_t *iq;
3062 int nr_found;
3063 int clcount = 0;
3064 int bufwasdelwri;
1da177e4 3065 int i;
1da177e4 3066
5c4d97d0 3067 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3068
0f49efd8 3069 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
5c4d97d0
DC
3070 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3071 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3072 if (!ilist)
3073 goto out_put;
1da177e4 3074
0f49efd8 3075 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3076 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3077 rcu_read_lock();
3078 /* really need a gang lookup range call here */
3079 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3080 first_index, inodes_per_cluster);
3081 if (nr_found == 0)
3082 goto out_free;
3083
3084 for (i = 0; i < nr_found; i++) {
3085 iq = ilist[i];
3086 if (iq == ip)
bad55843 3087 continue;
1a3e8f3d
DC
3088
3089 /*
3090 * because this is an RCU protected lookup, we could find a
3091 * recently freed or even reallocated inode during the lookup.
3092 * We need to check under the i_flags_lock for a valid inode
3093 * here. Skip it if it is not valid or the wrong inode.
3094 */
3095 spin_lock(&ip->i_flags_lock);
3096 if (!ip->i_ino ||
3097 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3098 spin_unlock(&ip->i_flags_lock);
3099 continue;
3100 }
3101 spin_unlock(&ip->i_flags_lock);
3102
bad55843
DC
3103 /*
3104 * Do an un-protected check to see if the inode is dirty and
3105 * is a candidate for flushing. These checks will be repeated
3106 * later after the appropriate locks are acquired.
3107 */
33540408 3108 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3109 continue;
bad55843
DC
3110
3111 /*
3112 * Try to get locks. If any are unavailable or it is pinned,
3113 * then this inode cannot be flushed and is skipped.
3114 */
3115
3116 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3117 continue;
3118 if (!xfs_iflock_nowait(iq)) {
3119 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3120 continue;
3121 }
3122 if (xfs_ipincount(iq)) {
3123 xfs_ifunlock(iq);
3124 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3125 continue;
3126 }
3127
3128 /*
3129 * arriving here means that this inode can be flushed. First
3130 * re-check that it's dirty before flushing.
3131 */
33540408
DC
3132 if (!xfs_inode_clean(iq)) {
3133 int error;
bad55843
DC
3134 error = xfs_iflush_int(iq, bp);
3135 if (error) {
3136 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3137 goto cluster_corrupt_out;
3138 }
3139 clcount++;
3140 } else {
3141 xfs_ifunlock(iq);
3142 }
3143 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3144 }
3145
3146 if (clcount) {
3147 XFS_STATS_INC(xs_icluster_flushcnt);
3148 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3149 }
3150
3151out_free:
1a3e8f3d 3152 rcu_read_unlock();
f0e2d93c 3153 kmem_free(ilist);
44b56e0a
DC
3154out_put:
3155 xfs_perag_put(pag);
bad55843
DC
3156 return 0;
3157
3158
3159cluster_corrupt_out:
3160 /*
3161 * Corruption detected in the clustering loop. Invalidate the
3162 * inode buffer and shut down the filesystem.
3163 */
1a3e8f3d 3164 rcu_read_unlock();
bad55843 3165 /*
43ff2122 3166 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3167 * brelse can handle it with no problems. If not, shut down the
3168 * filesystem before releasing the buffer.
3169 */
43ff2122 3170 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3171 if (bufwasdelwri)
3172 xfs_buf_relse(bp);
3173
3174 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3175
3176 if (!bufwasdelwri) {
3177 /*
3178 * Just like incore_relse: if we have b_iodone functions,
3179 * mark the buffer as an error and call them. Otherwise
3180 * mark it as stale and brelse.
3181 */
cb669ca5 3182 if (bp->b_iodone) {
bad55843 3183 XFS_BUF_UNDONE(bp);
c867cb61 3184 xfs_buf_stale(bp);
2451337d 3185 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3186 xfs_buf_ioend(bp);
bad55843 3187 } else {
c867cb61 3188 xfs_buf_stale(bp);
bad55843
DC
3189 xfs_buf_relse(bp);
3190 }
3191 }
3192
3193 /*
3194 * Unlocks the flush lock
3195 */
04913fdd 3196 xfs_iflush_abort(iq, false);
f0e2d93c 3197 kmem_free(ilist);
44b56e0a 3198 xfs_perag_put(pag);
2451337d 3199 return -EFSCORRUPTED;
bad55843
DC
3200}
3201
1da177e4 3202/*
4c46819a
CH
3203 * Flush dirty inode metadata into the backing buffer.
3204 *
3205 * The caller must have the inode lock and the inode flush lock held. The
3206 * inode lock will still be held upon return to the caller, and the inode
3207 * flush lock will be released after the inode has reached the disk.
3208 *
3209 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3210 */
3211int
3212xfs_iflush(
4c46819a
CH
3213 struct xfs_inode *ip,
3214 struct xfs_buf **bpp)
1da177e4 3215{
4c46819a
CH
3216 struct xfs_mount *mp = ip->i_mount;
3217 struct xfs_buf *bp;
3218 struct xfs_dinode *dip;
1da177e4 3219 int error;
1da177e4
LT
3220
3221 XFS_STATS_INC(xs_iflush_count);
3222
579aa9ca 3223 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3224 ASSERT(xfs_isiflocked(ip));
1da177e4 3225 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3226 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3227
4c46819a 3228 *bpp = NULL;
1da177e4 3229
1da177e4
LT
3230 xfs_iunpin_wait(ip);
3231
4b6a4688
DC
3232 /*
3233 * For stale inodes we cannot rely on the backing buffer remaining
3234 * stale in cache for the remaining life of the stale inode and so
475ee413 3235 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3236 * inodes below. We have to check this after ensuring the inode is
3237 * unpinned so that it is safe to reclaim the stale inode after the
3238 * flush call.
3239 */
3240 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3241 xfs_ifunlock(ip);
3242 return 0;
3243 }
3244
1da177e4
LT
3245 /*
3246 * This may have been unpinned because the filesystem is shutting
3247 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3248 * to disk, because the log record didn't make it to disk.
3249 *
3250 * We also have to remove the log item from the AIL in this case,
3251 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3252 */
3253 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3254 error = -EIO;
32ce90a4 3255 goto abort_out;
1da177e4
LT
3256 }
3257
a3f74ffb
DC
3258 /*
3259 * Get the buffer containing the on-disk inode.
3260 */
475ee413
CH
3261 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3262 0);
a3f74ffb
DC
3263 if (error || !bp) {
3264 xfs_ifunlock(ip);
3265 return error;
3266 }
3267
1da177e4
LT
3268 /*
3269 * First flush out the inode that xfs_iflush was called with.
3270 */
3271 error = xfs_iflush_int(ip, bp);
bad55843 3272 if (error)
1da177e4 3273 goto corrupt_out;
1da177e4 3274
a3f74ffb
DC
3275 /*
3276 * If the buffer is pinned then push on the log now so we won't
3277 * get stuck waiting in the write for too long.
3278 */
811e64c7 3279 if (xfs_buf_ispinned(bp))
a14a348b 3280 xfs_log_force(mp, 0);
a3f74ffb 3281
1da177e4
LT
3282 /*
3283 * inode clustering:
3284 * see if other inodes can be gathered into this write
3285 */
bad55843
DC
3286 error = xfs_iflush_cluster(ip, bp);
3287 if (error)
3288 goto cluster_corrupt_out;
1da177e4 3289
4c46819a
CH
3290 *bpp = bp;
3291 return 0;
1da177e4
LT
3292
3293corrupt_out:
3294 xfs_buf_relse(bp);
7d04a335 3295 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3296cluster_corrupt_out:
2451337d 3297 error = -EFSCORRUPTED;
32ce90a4 3298abort_out:
1da177e4
LT
3299 /*
3300 * Unlocks the flush lock
3301 */
04913fdd 3302 xfs_iflush_abort(ip, false);
32ce90a4 3303 return error;
1da177e4
LT
3304}
3305
1da177e4
LT
3306STATIC int
3307xfs_iflush_int(
93848a99
CH
3308 struct xfs_inode *ip,
3309 struct xfs_buf *bp)
1da177e4 3310{
93848a99
CH
3311 struct xfs_inode_log_item *iip = ip->i_itemp;
3312 struct xfs_dinode *dip;
3313 struct xfs_mount *mp = ip->i_mount;
1da177e4 3314
579aa9ca 3315 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3316 ASSERT(xfs_isiflocked(ip));
1da177e4 3317 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3318 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3319 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3320 ASSERT(ip->i_d.di_version > 1);
1da177e4 3321
1da177e4 3322 /* set *dip = inode's place in the buffer */
92bfc6e7 3323 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3324
69ef921b 3325 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3326 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3327 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3328 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3329 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3330 goto corrupt_out;
3331 }
3332 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3333 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3334 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3335 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3336 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3337 goto corrupt_out;
3338 }
abbede1b 3339 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3340 if (XFS_TEST_ERROR(
3341 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3342 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3343 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3344 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3345 "%s: Bad regular inode %Lu, ptr 0x%p",
3346 __func__, ip->i_ino, ip);
1da177e4
LT
3347 goto corrupt_out;
3348 }
abbede1b 3349 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3350 if (XFS_TEST_ERROR(
3351 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3352 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3353 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3354 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3355 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3356 "%s: Bad directory inode %Lu, ptr 0x%p",
3357 __func__, ip->i_ino, ip);
1da177e4
LT
3358 goto corrupt_out;
3359 }
3360 }
3361 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3362 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3363 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3364 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3365 "%s: detected corrupt incore inode %Lu, "
3366 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3367 __func__, ip->i_ino,
1da177e4 3368 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3369 ip->i_d.di_nblocks, ip);
1da177e4
LT
3370 goto corrupt_out;
3371 }
3372 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3373 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3374 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3375 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3376 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3377 goto corrupt_out;
3378 }
e60896d8 3379
1da177e4 3380 /*
263997a6 3381 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3382 * di_flushiter count for correct sequencing. We bump the flush
3383 * iteration count so we can detect flushes which postdate a log record
3384 * during recovery. This is redundant as we now log every change and
3385 * hence this can't happen but we need to still do it to ensure
3386 * backwards compatibility with old kernels that predate logging all
3387 * inode changes.
1da177e4 3388 */
e60896d8
DC
3389 if (ip->i_d.di_version < 3)
3390 ip->i_d.di_flushiter++;
1da177e4
LT
3391
3392 /*
3393 * Copy the dirty parts of the inode into the on-disk
3394 * inode. We always copy out the core of the inode,
3395 * because if the inode is dirty at all the core must
3396 * be.
3397 */
81591fe2 3398 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3399
3400 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3401 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3402 ip->i_d.di_flushiter = 0;
3403
fd9fdba6 3404 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
e4ac967b 3405 if (XFS_IFORK_Q(ip))
fd9fdba6 3406 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3407 xfs_inobp_check(mp, bp);
3408
3409 /*
f5d8d5c4
CH
3410 * We've recorded everything logged in the inode, so we'd like to clear
3411 * the ili_fields bits so we don't log and flush things unnecessarily.
3412 * However, we can't stop logging all this information until the data
3413 * we've copied into the disk buffer is written to disk. If we did we
3414 * might overwrite the copy of the inode in the log with all the data
3415 * after re-logging only part of it, and in the face of a crash we
3416 * wouldn't have all the data we need to recover.
1da177e4 3417 *
f5d8d5c4
CH
3418 * What we do is move the bits to the ili_last_fields field. When
3419 * logging the inode, these bits are moved back to the ili_fields field.
3420 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3421 * know that the information those bits represent is permanently on
3422 * disk. As long as the flush completes before the inode is logged
3423 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3424 *
f5d8d5c4
CH
3425 * We can play with the ili_fields bits here, because the inode lock
3426 * must be held exclusively in order to set bits there and the flush
3427 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3428 * done routine can tell whether or not to look in the AIL. Also, store
3429 * the current LSN of the inode so that we can tell whether the item has
3430 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3431 * need the AIL lock, because it is a 64 bit value that cannot be read
3432 * atomically.
1da177e4 3433 */
93848a99
CH
3434 iip->ili_last_fields = iip->ili_fields;
3435 iip->ili_fields = 0;
3436 iip->ili_logged = 1;
1da177e4 3437
93848a99
CH
3438 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3439 &iip->ili_item.li_lsn);
1da177e4 3440
93848a99
CH
3441 /*
3442 * Attach the function xfs_iflush_done to the inode's
3443 * buffer. This will remove the inode from the AIL
3444 * and unlock the inode's flush lock when the inode is
3445 * completely written to disk.
3446 */
3447 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3448
93848a99
CH
3449 /* update the lsn in the on disk inode if required */
3450 if (ip->i_d.di_version == 3)
3451 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3452
3453 /* generate the checksum. */
3454 xfs_dinode_calc_crc(mp, dip);
1da177e4 3455
93848a99
CH
3456 ASSERT(bp->b_fspriv != NULL);
3457 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3458 return 0;
3459
3460corrupt_out:
2451337d 3461 return -EFSCORRUPTED;
1da177e4 3462}
This page took 0.863233 seconds and 5 git commands to generate.