xfs: m_maxioffset is redundant
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
1da177e4 23#include "xfs_log.h"
a844f451 24#include "xfs_inum.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4 29#include "xfs_mount.h"
1da177e4 30#include "xfs_bmap_btree.h"
a844f451 31#include "xfs_alloc_btree.h"
1da177e4 32#include "xfs_ialloc_btree.h"
a844f451 33#include "xfs_attr_sf.h"
1da177e4 34#include "xfs_dinode.h"
1da177e4 35#include "xfs_inode.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451
NS
37#include "xfs_inode_item.h"
38#include "xfs_btree.h"
39#include "xfs_alloc.h"
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
1da177e4 42#include "xfs_error.h"
1da177e4 43#include "xfs_utils.h"
1da177e4 44#include "xfs_quota.h"
2a82b8be 45#include "xfs_filestream.h"
739bfb2a 46#include "xfs_vnodeops.h"
0b1b213f 47#include "xfs_trace.h"
1da177e4 48
1da177e4
LT
49kmem_zone_t *xfs_ifork_zone;
50kmem_zone_t *xfs_inode_zone;
1da177e4
LT
51
52/*
8f04c47a 53 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
54 * freed from a file in a single transaction.
55 */
56#define XFS_ITRUNC_MAX_EXTENTS 2
57
58STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
59STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
60STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
61STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
62
2a0ec1d9
DC
63/*
64 * helper function to extract extent size hint from inode
65 */
66xfs_extlen_t
67xfs_get_extsz_hint(
68 struct xfs_inode *ip)
69{
70 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
71 return ip->i_d.di_extsize;
72 if (XFS_IS_REALTIME_INODE(ip))
73 return ip->i_mount->m_sb.sb_rextsize;
74 return 0;
75}
76
1da177e4
LT
77#ifdef DEBUG
78/*
79 * Make sure that the extents in the given memory buffer
80 * are valid.
81 */
82STATIC void
83xfs_validate_extents(
4eea22f0 84 xfs_ifork_t *ifp,
1da177e4 85 int nrecs,
1da177e4
LT
86 xfs_exntfmt_t fmt)
87{
88 xfs_bmbt_irec_t irec;
a6f64d4a 89 xfs_bmbt_rec_host_t rec;
1da177e4
LT
90 int i;
91
92 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
93 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
94 rec.l0 = get_unaligned(&ep->l0);
95 rec.l1 = get_unaligned(&ep->l1);
96 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
97 if (fmt == XFS_EXTFMT_NOSTATE)
98 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
99 }
100}
101#else /* DEBUG */
a6f64d4a 102#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
103#endif /* DEBUG */
104
105/*
106 * Check that none of the inode's in the buffer have a next
107 * unlinked field of 0.
108 */
109#if defined(DEBUG)
110void
111xfs_inobp_check(
112 xfs_mount_t *mp,
113 xfs_buf_t *bp)
114{
115 int i;
116 int j;
117 xfs_dinode_t *dip;
118
119 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120
121 for (i = 0; i < j; i++) {
122 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
123 i * mp->m_sb.sb_inodesize);
124 if (!dip->di_next_unlinked) {
53487786
DC
125 xfs_alert(mp,
126 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
1da177e4
LT
127 bp);
128 ASSERT(dip->di_next_unlinked);
129 }
130 }
131}
132#endif
133
4ae29b43
DC
134/*
135 * Find the buffer associated with the given inode map
136 * We do basic validation checks on the buffer once it has been
137 * retrieved from disk.
138 */
139STATIC int
140xfs_imap_to_bp(
141 xfs_mount_t *mp,
142 xfs_trans_t *tp,
92bfc6e7 143 struct xfs_imap *imap,
4ae29b43
DC
144 xfs_buf_t **bpp,
145 uint buf_flags,
b48d8d64 146 uint iget_flags)
4ae29b43
DC
147{
148 int error;
149 int i;
150 int ni;
151 xfs_buf_t *bp;
152
611c9946 153 buf_flags |= XBF_UNMAPPED;
4ae29b43 154 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 155 (int)imap->im_len, buf_flags, &bp);
4ae29b43 156 if (error) {
a3f74ffb 157 if (error != EAGAIN) {
0b932ccc
DC
158 xfs_warn(mp,
159 "%s: xfs_trans_read_buf() returned error %d.",
160 __func__, error);
a3f74ffb 161 } else {
0cadda1c 162 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb 163 }
4ae29b43
DC
164 return error;
165 }
166
167 /*
168 * Validate the magic number and version of every inode in the buffer
169 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
170 */
171#ifdef DEBUG
172 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
173#else /* usual case */
174 ni = 1;
175#endif
176
177 for (i = 0; i < ni; i++) {
178 int di_ok;
179 xfs_dinode_t *dip;
180
181 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
182 (i << mp->m_sb.sb_inodelog));
69ef921b 183 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
81591fe2 184 XFS_DINODE_GOOD_VERSION(dip->di_version);
4ae29b43
DC
185 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
186 XFS_ERRTAG_ITOBP_INOTOBP,
187 XFS_RANDOM_ITOBP_INOTOBP))) {
1920779e 188 if (iget_flags & XFS_IGET_UNTRUSTED) {
4ae29b43
DC
189 xfs_trans_brelse(tp, bp);
190 return XFS_ERROR(EINVAL);
191 }
192 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
193 XFS_ERRLEVEL_HIGH, mp, dip);
194#ifdef DEBUG
0b932ccc
DC
195 xfs_emerg(mp,
196 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
4ae29b43 197 (unsigned long long)imap->im_blkno, i,
81591fe2 198 be16_to_cpu(dip->di_magic));
0b932ccc 199 ASSERT(0);
4ae29b43
DC
200#endif
201 xfs_trans_brelse(tp, bp);
202 return XFS_ERROR(EFSCORRUPTED);
203 }
204 }
205
206 xfs_inobp_check(mp, bp);
4ae29b43
DC
207 *bpp = bp;
208 return 0;
209}
210
1da177e4
LT
211/*
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
217 *
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
220 *
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
223 */
c679eef0 224int
1da177e4
LT
225xfs_inotobp(
226 xfs_mount_t *mp,
227 xfs_trans_t *tp,
228 xfs_ino_t ino,
229 xfs_dinode_t **dipp,
230 xfs_buf_t **bpp,
c679eef0
CH
231 int *offset,
232 uint imap_flags)
1da177e4 233{
92bfc6e7 234 struct xfs_imap imap;
1da177e4
LT
235 xfs_buf_t *bp;
236 int error;
1da177e4 237
1da177e4 238 imap.im_blkno = 0;
a1941895 239 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
4ae29b43 240 if (error)
1da177e4 241 return error;
1da177e4 242
a8acad70 243 error = xfs_imap_to_bp(mp, tp, &imap, &bp, 0, imap_flags);
4ae29b43 244 if (error)
1da177e4 245 return error;
1da177e4 246
1da177e4
LT
247 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
248 *bpp = bp;
249 *offset = imap.im_boffset;
250 return 0;
251}
252
253
254/*
255 * This routine is called to map an inode to the buffer containing
256 * the on-disk version of the inode. It returns a pointer to the
257 * buffer containing the on-disk inode in the bpp parameter, and in
258 * the dip parameter it returns a pointer to the on-disk inode within
259 * that buffer.
260 *
261 * If a non-zero error is returned, then the contents of bpp and
262 * dipp are undefined.
263 *
76d8b277
CH
264 * The inode is expected to already been mapped to its buffer and read
265 * in once, thus we can use the mapping information stored in the inode
266 * rather than calling xfs_imap(). This allows us to avoid the overhead
267 * of looking at the inode btree for small block file systems
94e1b69d 268 * (see xfs_imap()).
1da177e4
LT
269 */
270int
271xfs_itobp(
272 xfs_mount_t *mp,
273 xfs_trans_t *tp,
274 xfs_inode_t *ip,
275 xfs_dinode_t **dipp,
276 xfs_buf_t **bpp,
a3f74ffb 277 uint buf_flags)
1da177e4
LT
278{
279 xfs_buf_t *bp;
280 int error;
1da177e4 281
92bfc6e7 282 ASSERT(ip->i_imap.im_blkno != 0);
1da177e4 283
92bfc6e7 284 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
4ae29b43 285 if (error)
1da177e4 286 return error;
1da177e4 287
a3f74ffb 288 if (!bp) {
0cadda1c 289 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb
DC
290 ASSERT(tp == NULL);
291 *bpp = NULL;
292 return EAGAIN;
293 }
294
92bfc6e7 295 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
296 *bpp = bp;
297 return 0;
298}
299
300/*
301 * Move inode type and inode format specific information from the
302 * on-disk inode to the in-core inode. For fifos, devs, and sockets
303 * this means set if_rdev to the proper value. For files, directories,
304 * and symlinks this means to bring in the in-line data or extent
305 * pointers. For a file in B-tree format, only the root is immediately
306 * brought in-core. The rest will be in-lined in if_extents when it
307 * is first referenced (see xfs_iread_extents()).
308 */
309STATIC int
310xfs_iformat(
311 xfs_inode_t *ip,
312 xfs_dinode_t *dip)
313{
314 xfs_attr_shortform_t *atp;
315 int size;
8096b1eb 316 int error = 0;
1da177e4 317 xfs_fsize_t di_size;
1da177e4 318
81591fe2
CH
319 if (unlikely(be32_to_cpu(dip->di_nextents) +
320 be16_to_cpu(dip->di_anextents) >
321 be64_to_cpu(dip->di_nblocks))) {
65333b4c 322 xfs_warn(ip->i_mount,
3762ec6b 323 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 324 (unsigned long long)ip->i_ino,
81591fe2
CH
325 (int)(be32_to_cpu(dip->di_nextents) +
326 be16_to_cpu(dip->di_anextents)),
1da177e4 327 (unsigned long long)
81591fe2 328 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
329 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
330 ip->i_mount, dip);
331 return XFS_ERROR(EFSCORRUPTED);
332 }
333
81591fe2 334 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
65333b4c 335 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 336 (unsigned long long)ip->i_ino,
81591fe2 337 dip->di_forkoff);
1da177e4
LT
338 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
339 ip->i_mount, dip);
340 return XFS_ERROR(EFSCORRUPTED);
341 }
342
b89d4208
CH
343 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
344 !ip->i_mount->m_rtdev_targp)) {
65333b4c 345 xfs_warn(ip->i_mount,
b89d4208
CH
346 "corrupt dinode %Lu, has realtime flag set.",
347 ip->i_ino);
348 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
349 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
350 return XFS_ERROR(EFSCORRUPTED);
351 }
352
1da177e4
LT
353 switch (ip->i_d.di_mode & S_IFMT) {
354 case S_IFIFO:
355 case S_IFCHR:
356 case S_IFBLK:
357 case S_IFSOCK:
81591fe2 358 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
359 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
360 ip->i_mount, dip);
361 return XFS_ERROR(EFSCORRUPTED);
362 }
363 ip->i_d.di_size = 0;
81591fe2 364 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
365 break;
366
367 case S_IFREG:
368 case S_IFLNK:
369 case S_IFDIR:
81591fe2 370 switch (dip->di_format) {
1da177e4
LT
371 case XFS_DINODE_FMT_LOCAL:
372 /*
373 * no local regular files yet
374 */
abbede1b 375 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
65333b4c
DC
376 xfs_warn(ip->i_mount,
377 "corrupt inode %Lu (local format for regular file).",
1da177e4
LT
378 (unsigned long long) ip->i_ino);
379 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
380 XFS_ERRLEVEL_LOW,
381 ip->i_mount, dip);
382 return XFS_ERROR(EFSCORRUPTED);
383 }
384
81591fe2 385 di_size = be64_to_cpu(dip->di_size);
1da177e4 386 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
65333b4c
DC
387 xfs_warn(ip->i_mount,
388 "corrupt inode %Lu (bad size %Ld for local inode).",
1da177e4
LT
389 (unsigned long long) ip->i_ino,
390 (long long) di_size);
391 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
392 XFS_ERRLEVEL_LOW,
393 ip->i_mount, dip);
394 return XFS_ERROR(EFSCORRUPTED);
395 }
396
397 size = (int)di_size;
398 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
399 break;
400 case XFS_DINODE_FMT_EXTENTS:
401 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
402 break;
403 case XFS_DINODE_FMT_BTREE:
404 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
405 break;
406 default:
407 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
408 ip->i_mount);
409 return XFS_ERROR(EFSCORRUPTED);
410 }
411 break;
412
413 default:
414 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
415 return XFS_ERROR(EFSCORRUPTED);
416 }
417 if (error) {
418 return error;
419 }
420 if (!XFS_DFORK_Q(dip))
421 return 0;
8096b1eb 422
1da177e4 423 ASSERT(ip->i_afp == NULL);
4a7edddc 424 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
8096b1eb 425
81591fe2 426 switch (dip->di_aformat) {
1da177e4
LT
427 case XFS_DINODE_FMT_LOCAL:
428 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 429 size = be16_to_cpu(atp->hdr.totsize);
2809f76a
CH
430
431 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
65333b4c
DC
432 xfs_warn(ip->i_mount,
433 "corrupt inode %Lu (bad attr fork size %Ld).",
2809f76a
CH
434 (unsigned long long) ip->i_ino,
435 (long long) size);
436 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
437 XFS_ERRLEVEL_LOW,
438 ip->i_mount, dip);
439 return XFS_ERROR(EFSCORRUPTED);
440 }
441
1da177e4
LT
442 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
443 break;
444 case XFS_DINODE_FMT_EXTENTS:
445 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
446 break;
447 case XFS_DINODE_FMT_BTREE:
448 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
449 break;
450 default:
451 error = XFS_ERROR(EFSCORRUPTED);
452 break;
453 }
454 if (error) {
455 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
456 ip->i_afp = NULL;
457 xfs_idestroy_fork(ip, XFS_DATA_FORK);
458 }
459 return error;
460}
461
462/*
463 * The file is in-lined in the on-disk inode.
464 * If it fits into if_inline_data, then copy
465 * it there, otherwise allocate a buffer for it
466 * and copy the data there. Either way, set
467 * if_data to point at the data.
468 * If we allocate a buffer for the data, make
469 * sure that its size is a multiple of 4 and
470 * record the real size in i_real_bytes.
471 */
472STATIC int
473xfs_iformat_local(
474 xfs_inode_t *ip,
475 xfs_dinode_t *dip,
476 int whichfork,
477 int size)
478{
479 xfs_ifork_t *ifp;
480 int real_size;
481
482 /*
483 * If the size is unreasonable, then something
484 * is wrong and we just bail out rather than crash in
485 * kmem_alloc() or memcpy() below.
486 */
487 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c
DC
488 xfs_warn(ip->i_mount,
489 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
1da177e4
LT
490 (unsigned long long) ip->i_ino, size,
491 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
492 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
493 ip->i_mount, dip);
494 return XFS_ERROR(EFSCORRUPTED);
495 }
496 ifp = XFS_IFORK_PTR(ip, whichfork);
497 real_size = 0;
498 if (size == 0)
499 ifp->if_u1.if_data = NULL;
500 else if (size <= sizeof(ifp->if_u2.if_inline_data))
501 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
502 else {
503 real_size = roundup(size, 4);
4a7edddc 504 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
505 }
506 ifp->if_bytes = size;
507 ifp->if_real_bytes = real_size;
508 if (size)
509 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
510 ifp->if_flags &= ~XFS_IFEXTENTS;
511 ifp->if_flags |= XFS_IFINLINE;
512 return 0;
513}
514
515/*
516 * The file consists of a set of extents all
517 * of which fit into the on-disk inode.
518 * If there are few enough extents to fit into
519 * the if_inline_ext, then copy them there.
520 * Otherwise allocate a buffer for them and copy
521 * them into it. Either way, set if_extents
522 * to point at the extents.
523 */
524STATIC int
525xfs_iformat_extents(
526 xfs_inode_t *ip,
527 xfs_dinode_t *dip,
528 int whichfork)
529{
a6f64d4a 530 xfs_bmbt_rec_t *dp;
1da177e4
LT
531 xfs_ifork_t *ifp;
532 int nex;
1da177e4
LT
533 int size;
534 int i;
535
536 ifp = XFS_IFORK_PTR(ip, whichfork);
537 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
538 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
539
540 /*
541 * If the number of extents is unreasonable, then something
542 * is wrong and we just bail out rather than crash in
543 * kmem_alloc() or memcpy() below.
544 */
545 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c 546 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
547 (unsigned long long) ip->i_ino, nex);
548 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
549 ip->i_mount, dip);
550 return XFS_ERROR(EFSCORRUPTED);
551 }
552
4eea22f0 553 ifp->if_real_bytes = 0;
1da177e4
LT
554 if (nex == 0)
555 ifp->if_u1.if_extents = NULL;
556 else if (nex <= XFS_INLINE_EXTS)
557 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
558 else
559 xfs_iext_add(ifp, 0, nex);
560
1da177e4 561 ifp->if_bytes = size;
1da177e4
LT
562 if (size) {
563 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 564 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 565 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 566 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
567 ep->l0 = get_unaligned_be64(&dp->l0);
568 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 569 }
3a59c94c 570 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
571 if (whichfork != XFS_DATA_FORK ||
572 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
573 if (unlikely(xfs_check_nostate_extents(
4eea22f0 574 ifp, 0, nex))) {
1da177e4
LT
575 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
576 XFS_ERRLEVEL_LOW,
577 ip->i_mount);
578 return XFS_ERROR(EFSCORRUPTED);
579 }
580 }
581 ifp->if_flags |= XFS_IFEXTENTS;
582 return 0;
583}
584
585/*
586 * The file has too many extents to fit into
587 * the inode, so they are in B-tree format.
588 * Allocate a buffer for the root of the B-tree
589 * and copy the root into it. The i_extents
590 * field will remain NULL until all of the
591 * extents are read in (when they are needed).
592 */
593STATIC int
594xfs_iformat_btree(
595 xfs_inode_t *ip,
596 xfs_dinode_t *dip,
597 int whichfork)
598{
599 xfs_bmdr_block_t *dfp;
600 xfs_ifork_t *ifp;
601 /* REFERENCED */
602 int nrecs;
603 int size;
604
605 ifp = XFS_IFORK_PTR(ip, whichfork);
606 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
607 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 608 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
609
610 /*
611 * blow out if -- fork has less extents than can fit in
612 * fork (fork shouldn't be a btree format), root btree
613 * block has more records than can fit into the fork,
614 * or the number of extents is greater than the number of
615 * blocks.
616 */
8096b1eb
CH
617 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
618 XFS_IFORK_MAXEXT(ip, whichfork) ||
619 XFS_BMDR_SPACE_CALC(nrecs) >
620 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
621 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
65333b4c 622 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
1da177e4 623 (unsigned long long) ip->i_ino);
65333b4c
DC
624 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
625 ip->i_mount, dip);
1da177e4
LT
626 return XFS_ERROR(EFSCORRUPTED);
627 }
628
629 ifp->if_broot_bytes = size;
4a7edddc 630 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
1da177e4
LT
631 ASSERT(ifp->if_broot != NULL);
632 /*
633 * Copy and convert from the on-disk structure
634 * to the in-memory structure.
635 */
60197e8d
CH
636 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
637 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
638 ifp->if_broot, size);
1da177e4
LT
639 ifp->if_flags &= ~XFS_IFEXTENTS;
640 ifp->if_flags |= XFS_IFBROOT;
641
642 return 0;
643}
644
d96f8f89 645STATIC void
347d1c01
CH
646xfs_dinode_from_disk(
647 xfs_icdinode_t *to,
81591fe2 648 xfs_dinode_t *from)
1da177e4 649{
347d1c01
CH
650 to->di_magic = be16_to_cpu(from->di_magic);
651 to->di_mode = be16_to_cpu(from->di_mode);
652 to->di_version = from ->di_version;
653 to->di_format = from->di_format;
654 to->di_onlink = be16_to_cpu(from->di_onlink);
655 to->di_uid = be32_to_cpu(from->di_uid);
656 to->di_gid = be32_to_cpu(from->di_gid);
657 to->di_nlink = be32_to_cpu(from->di_nlink);
6743099c
AM
658 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
659 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
347d1c01
CH
660 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
661 to->di_flushiter = be16_to_cpu(from->di_flushiter);
662 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
663 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
664 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
665 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
666 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
667 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
668 to->di_size = be64_to_cpu(from->di_size);
669 to->di_nblocks = be64_to_cpu(from->di_nblocks);
670 to->di_extsize = be32_to_cpu(from->di_extsize);
671 to->di_nextents = be32_to_cpu(from->di_nextents);
672 to->di_anextents = be16_to_cpu(from->di_anextents);
673 to->di_forkoff = from->di_forkoff;
674 to->di_aformat = from->di_aformat;
675 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
676 to->di_dmstate = be16_to_cpu(from->di_dmstate);
677 to->di_flags = be16_to_cpu(from->di_flags);
678 to->di_gen = be32_to_cpu(from->di_gen);
679}
680
681void
682xfs_dinode_to_disk(
81591fe2 683 xfs_dinode_t *to,
347d1c01
CH
684 xfs_icdinode_t *from)
685{
686 to->di_magic = cpu_to_be16(from->di_magic);
687 to->di_mode = cpu_to_be16(from->di_mode);
688 to->di_version = from ->di_version;
689 to->di_format = from->di_format;
690 to->di_onlink = cpu_to_be16(from->di_onlink);
691 to->di_uid = cpu_to_be32(from->di_uid);
692 to->di_gid = cpu_to_be32(from->di_gid);
693 to->di_nlink = cpu_to_be32(from->di_nlink);
6743099c
AM
694 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
695 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
347d1c01
CH
696 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
697 to->di_flushiter = cpu_to_be16(from->di_flushiter);
698 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
699 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
700 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
701 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
702 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
703 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
704 to->di_size = cpu_to_be64(from->di_size);
705 to->di_nblocks = cpu_to_be64(from->di_nblocks);
706 to->di_extsize = cpu_to_be32(from->di_extsize);
707 to->di_nextents = cpu_to_be32(from->di_nextents);
708 to->di_anextents = cpu_to_be16(from->di_anextents);
709 to->di_forkoff = from->di_forkoff;
710 to->di_aformat = from->di_aformat;
711 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
712 to->di_dmstate = cpu_to_be16(from->di_dmstate);
713 to->di_flags = cpu_to_be16(from->di_flags);
714 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
715}
716
717STATIC uint
718_xfs_dic2xflags(
1da177e4
LT
719 __uint16_t di_flags)
720{
721 uint flags = 0;
722
723 if (di_flags & XFS_DIFLAG_ANY) {
724 if (di_flags & XFS_DIFLAG_REALTIME)
725 flags |= XFS_XFLAG_REALTIME;
726 if (di_flags & XFS_DIFLAG_PREALLOC)
727 flags |= XFS_XFLAG_PREALLOC;
728 if (di_flags & XFS_DIFLAG_IMMUTABLE)
729 flags |= XFS_XFLAG_IMMUTABLE;
730 if (di_flags & XFS_DIFLAG_APPEND)
731 flags |= XFS_XFLAG_APPEND;
732 if (di_flags & XFS_DIFLAG_SYNC)
733 flags |= XFS_XFLAG_SYNC;
734 if (di_flags & XFS_DIFLAG_NOATIME)
735 flags |= XFS_XFLAG_NOATIME;
736 if (di_flags & XFS_DIFLAG_NODUMP)
737 flags |= XFS_XFLAG_NODUMP;
738 if (di_flags & XFS_DIFLAG_RTINHERIT)
739 flags |= XFS_XFLAG_RTINHERIT;
740 if (di_flags & XFS_DIFLAG_PROJINHERIT)
741 flags |= XFS_XFLAG_PROJINHERIT;
742 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
743 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
744 if (di_flags & XFS_DIFLAG_EXTSIZE)
745 flags |= XFS_XFLAG_EXTSIZE;
746 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
747 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
748 if (di_flags & XFS_DIFLAG_NODEFRAG)
749 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
750 if (di_flags & XFS_DIFLAG_FILESTREAM)
751 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
752 }
753
754 return flags;
755}
756
757uint
758xfs_ip2xflags(
759 xfs_inode_t *ip)
760{
347d1c01 761 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 762
a916e2bd 763 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 764 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
765}
766
767uint
768xfs_dic2xflags(
45ba598e 769 xfs_dinode_t *dip)
1da177e4 770{
81591fe2 771 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 772 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
773}
774
07c8f675 775/*
24f211ba 776 * Read the disk inode attributes into the in-core inode structure.
1da177e4
LT
777 */
778int
779xfs_iread(
780 xfs_mount_t *mp,
781 xfs_trans_t *tp,
24f211ba 782 xfs_inode_t *ip,
24f211ba 783 uint iget_flags)
1da177e4
LT
784{
785 xfs_buf_t *bp;
786 xfs_dinode_t *dip;
1da177e4
LT
787 int error;
788
1da177e4 789 /*
92bfc6e7 790 * Fill in the location information in the in-core inode.
1da177e4 791 */
24f211ba 792 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
76d8b277 793 if (error)
24f211ba 794 return error;
76d8b277
CH
795
796 /*
92bfc6e7 797 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 798 */
a8acad70 799 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 0, iget_flags);
9ed0451e 800 if (error)
24f211ba 801 return error;
92bfc6e7 802 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 803
1da177e4
LT
804 /*
805 * If we got something that isn't an inode it means someone
806 * (nfs or dmi) has a stale handle.
807 */
69ef921b 808 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
1da177e4 809#ifdef DEBUG
53487786
DC
810 xfs_alert(mp,
811 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
812 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
1da177e4 813#endif /* DEBUG */
9ed0451e
CH
814 error = XFS_ERROR(EINVAL);
815 goto out_brelse;
1da177e4
LT
816 }
817
818 /*
819 * If the on-disk inode is already linked to a directory
820 * entry, copy all of the inode into the in-core inode.
821 * xfs_iformat() handles copying in the inode format
822 * specific information.
823 * Otherwise, just get the truly permanent information.
824 */
81591fe2
CH
825 if (dip->di_mode) {
826 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
827 error = xfs_iformat(ip, dip);
828 if (error) {
1da177e4 829#ifdef DEBUG
53487786
DC
830 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
831 __func__, error);
1da177e4 832#endif /* DEBUG */
9ed0451e 833 goto out_brelse;
1da177e4
LT
834 }
835 } else {
81591fe2
CH
836 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
837 ip->i_d.di_version = dip->di_version;
838 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
839 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
840 /*
841 * Make sure to pull in the mode here as well in
842 * case the inode is released without being used.
843 * This ensures that xfs_inactive() will see that
844 * the inode is already free and not try to mess
845 * with the uninitialized part of it.
846 */
847 ip->i_d.di_mode = 0;
1da177e4
LT
848 }
849
1da177e4
LT
850 /*
851 * The inode format changed when we moved the link count and
852 * made it 32 bits long. If this is an old format inode,
853 * convert it in memory to look like a new one. If it gets
854 * flushed to disk we will convert back before flushing or
855 * logging it. We zero out the new projid field and the old link
856 * count field. We'll handle clearing the pad field (the remains
857 * of the old uuid field) when we actually convert the inode to
858 * the new format. We don't change the version number so that we
859 * can distinguish this from a real new format inode.
860 */
51ce16d5 861 if (ip->i_d.di_version == 1) {
1da177e4
LT
862 ip->i_d.di_nlink = ip->i_d.di_onlink;
863 ip->i_d.di_onlink = 0;
6743099c 864 xfs_set_projid(ip, 0);
1da177e4
LT
865 }
866
867 ip->i_delayed_blks = 0;
868
869 /*
870 * Mark the buffer containing the inode as something to keep
871 * around for a while. This helps to keep recently accessed
872 * meta-data in-core longer.
873 */
821eb21d 874 xfs_buf_set_ref(bp, XFS_INO_REF);
1da177e4
LT
875
876 /*
877 * Use xfs_trans_brelse() to release the buffer containing the
878 * on-disk inode, because it was acquired with xfs_trans_read_buf()
879 * in xfs_itobp() above. If tp is NULL, this is just a normal
880 * brelse(). If we're within a transaction, then xfs_trans_brelse()
881 * will only release the buffer if it is not dirty within the
882 * transaction. It will be OK to release the buffer in this case,
883 * because inodes on disk are never destroyed and we will be
884 * locking the new in-core inode before putting it in the hash
885 * table where other processes can find it. Thus we don't have
886 * to worry about the inode being changed just because we released
887 * the buffer.
888 */
9ed0451e
CH
889 out_brelse:
890 xfs_trans_brelse(tp, bp);
9ed0451e 891 return error;
1da177e4
LT
892}
893
894/*
895 * Read in extents from a btree-format inode.
896 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
897 */
898int
899xfs_iread_extents(
900 xfs_trans_t *tp,
901 xfs_inode_t *ip,
902 int whichfork)
903{
904 int error;
905 xfs_ifork_t *ifp;
4eea22f0 906 xfs_extnum_t nextents;
1da177e4
LT
907
908 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
909 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
910 ip->i_mount);
911 return XFS_ERROR(EFSCORRUPTED);
912 }
4eea22f0 913 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1da177e4 914 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 915
1da177e4
LT
916 /*
917 * We know that the size is valid (it's checked in iformat_btree)
918 */
4eea22f0 919 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 920 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 921 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
922 error = xfs_bmap_read_extents(tp, ip, whichfork);
923 if (error) {
4eea22f0 924 xfs_iext_destroy(ifp);
1da177e4
LT
925 ifp->if_flags &= ~XFS_IFEXTENTS;
926 return error;
927 }
a6f64d4a 928 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
929 return 0;
930}
931
932/*
933 * Allocate an inode on disk and return a copy of its in-core version.
934 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
935 * appropriately within the inode. The uid and gid for the inode are
936 * set according to the contents of the given cred structure.
937 *
938 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
939 * has a free inode available, call xfs_iget()
940 * to obtain the in-core version of the allocated inode. Finally,
941 * fill in the inode and log its initial contents. In this case,
942 * ialloc_context would be set to NULL and call_again set to false.
943 *
944 * If xfs_dialloc() does not have an available inode,
945 * it will replenish its supply by doing an allocation. Since we can
946 * only do one allocation within a transaction without deadlocks, we
947 * must commit the current transaction before returning the inode itself.
948 * In this case, therefore, we will set call_again to true and return.
949 * The caller should then commit the current transaction, start a new
950 * transaction, and call xfs_ialloc() again to actually get the inode.
951 *
952 * To ensure that some other process does not grab the inode that
953 * was allocated during the first call to xfs_ialloc(), this routine
954 * also returns the [locked] bp pointing to the head of the freelist
955 * as ialloc_context. The caller should hold this buffer across
956 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
957 *
958 * If we are allocating quota inodes, we do not have a parent inode
959 * to attach to or associate with (i.e. pip == NULL) because they
960 * are not linked into the directory structure - they are attached
961 * directly to the superblock - and so have no parent.
1da177e4
LT
962 */
963int
964xfs_ialloc(
965 xfs_trans_t *tp,
966 xfs_inode_t *pip,
576b1d67 967 umode_t mode,
31b084ae 968 xfs_nlink_t nlink,
1da177e4 969 xfs_dev_t rdev,
6743099c 970 prid_t prid,
1da177e4
LT
971 int okalloc,
972 xfs_buf_t **ialloc_context,
973 boolean_t *call_again,
974 xfs_inode_t **ipp)
975{
976 xfs_ino_t ino;
977 xfs_inode_t *ip;
1da177e4
LT
978 uint flags;
979 int error;
dff35fd4 980 timespec_t tv;
bf904248 981 int filestreams = 0;
1da177e4
LT
982
983 /*
984 * Call the space management code to pick
985 * the on-disk inode to be allocated.
986 */
b11f94d5 987 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 988 ialloc_context, call_again, &ino);
bf904248 989 if (error)
1da177e4 990 return error;
1da177e4
LT
991 if (*call_again || ino == NULLFSINO) {
992 *ipp = NULL;
993 return 0;
994 }
995 ASSERT(*ialloc_context == NULL);
996
997 /*
998 * Get the in-core inode with the lock held exclusively.
999 * This is because we're setting fields here we need
1000 * to prevent others from looking at until we're done.
1001 */
ec3ba85f
CH
1002 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1003 XFS_ILOCK_EXCL, &ip);
bf904248 1004 if (error)
1da177e4 1005 return error;
1da177e4
LT
1006 ASSERT(ip != NULL);
1007
576b1d67 1008 ip->i_d.di_mode = mode;
1da177e4
LT
1009 ip->i_d.di_onlink = 0;
1010 ip->i_d.di_nlink = nlink;
1011 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1012 ip->i_d.di_uid = current_fsuid();
1013 ip->i_d.di_gid = current_fsgid();
6743099c 1014 xfs_set_projid(ip, prid);
1da177e4
LT
1015 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1016
1017 /*
1018 * If the superblock version is up to where we support new format
1019 * inodes and this is currently an old format inode, then change
1020 * the inode version number now. This way we only do the conversion
1021 * here rather than here and in the flush/logging code.
1022 */
62118709 1023 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1024 ip->i_d.di_version == 1) {
1025 ip->i_d.di_version = 2;
1da177e4
LT
1026 /*
1027 * We've already zeroed the old link count, the projid field,
1028 * and the pad field.
1029 */
1030 }
1031
1032 /*
1033 * Project ids won't be stored on disk if we are using a version 1 inode.
1034 */
51ce16d5 1035 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1036 xfs_bump_ino_vers2(tp, ip);
1037
bd186aa9 1038 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 1039 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 1040 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
1041 ip->i_d.di_mode |= S_ISGID;
1042 }
1043 }
1044
1045 /*
1046 * If the group ID of the new file does not match the effective group
1047 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1048 * (and only if the irix_sgid_inherit compatibility variable is set).
1049 */
1050 if ((irix_sgid_inherit) &&
1051 (ip->i_d.di_mode & S_ISGID) &&
1052 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1053 ip->i_d.di_mode &= ~S_ISGID;
1054 }
1055
1056 ip->i_d.di_size = 0;
1057 ip->i_d.di_nextents = 0;
1058 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1059
1060 nanotime(&tv);
1061 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1062 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1063 ip->i_d.di_atime = ip->i_d.di_mtime;
1064 ip->i_d.di_ctime = ip->i_d.di_mtime;
1065
1da177e4
LT
1066 /*
1067 * di_gen will have been taken care of in xfs_iread.
1068 */
1069 ip->i_d.di_extsize = 0;
1070 ip->i_d.di_dmevmask = 0;
1071 ip->i_d.di_dmstate = 0;
1072 ip->i_d.di_flags = 0;
1073 flags = XFS_ILOG_CORE;
1074 switch (mode & S_IFMT) {
1075 case S_IFIFO:
1076 case S_IFCHR:
1077 case S_IFBLK:
1078 case S_IFSOCK:
1079 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1080 ip->i_df.if_u2.if_rdev = rdev;
1081 ip->i_df.if_flags = 0;
1082 flags |= XFS_ILOG_DEV;
1083 break;
1084 case S_IFREG:
bf904248
DC
1085 /*
1086 * we can't set up filestreams until after the VFS inode
1087 * is set up properly.
1088 */
1089 if (pip && xfs_inode_is_filestream(pip))
1090 filestreams = 1;
2a82b8be 1091 /* fall through */
1da177e4 1092 case S_IFDIR:
b11f94d5 1093 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1094 uint di_flags = 0;
1095
abbede1b 1096 if (S_ISDIR(mode)) {
365ca83d
NS
1097 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1098 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1099 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1100 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1101 ip->i_d.di_extsize = pip->i_d.di_extsize;
1102 }
abbede1b 1103 } else if (S_ISREG(mode)) {
613d7043 1104 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1105 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1106 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1107 di_flags |= XFS_DIFLAG_EXTSIZE;
1108 ip->i_d.di_extsize = pip->i_d.di_extsize;
1109 }
1da177e4
LT
1110 }
1111 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1112 xfs_inherit_noatime)
365ca83d 1113 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1114 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1115 xfs_inherit_nodump)
365ca83d 1116 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1117 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1118 xfs_inherit_sync)
365ca83d 1119 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1120 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1121 xfs_inherit_nosymlinks)
365ca83d
NS
1122 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1123 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1124 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1125 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1126 xfs_inherit_nodefrag)
1127 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1128 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1129 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1130 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1131 }
1132 /* FALLTHROUGH */
1133 case S_IFLNK:
1134 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1135 ip->i_df.if_flags = XFS_IFEXTENTS;
1136 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1137 ip->i_df.if_u1.if_extents = NULL;
1138 break;
1139 default:
1140 ASSERT(0);
1141 }
1142 /*
1143 * Attribute fork settings for new inode.
1144 */
1145 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1146 ip->i_d.di_anextents = 0;
1147
1148 /*
1149 * Log the new values stuffed into the inode.
1150 */
ddc3415a 1151 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
1152 xfs_trans_log_inode(tp, ip, flags);
1153
b83bd138 1154 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1155 xfs_setup_inode(ip);
1da177e4 1156
bf904248
DC
1157 /* now we have set up the vfs inode we can associate the filestream */
1158 if (filestreams) {
1159 error = xfs_filestream_associate(pip, ip);
1160 if (error < 0)
1161 return -error;
1162 if (!error)
1163 xfs_iflags_set(ip, XFS_IFILESTREAM);
1164 }
1165
1da177e4
LT
1166 *ipp = ip;
1167 return 0;
1168}
1169
1da177e4 1170/*
8f04c47a
CH
1171 * Free up the underlying blocks past new_size. The new size must be smaller
1172 * than the current size. This routine can be used both for the attribute and
1173 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1174 *
f6485057
DC
1175 * The transaction passed to this routine must have made a permanent log
1176 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1177 * given transaction and start new ones, so make sure everything involved in
1178 * the transaction is tidy before calling here. Some transaction will be
1179 * returned to the caller to be committed. The incoming transaction must
1180 * already include the inode, and both inode locks must be held exclusively.
1181 * The inode must also be "held" within the transaction. On return the inode
1182 * will be "held" within the returned transaction. This routine does NOT
1183 * require any disk space to be reserved for it within the transaction.
1da177e4 1184 *
f6485057
DC
1185 * If we get an error, we must return with the inode locked and linked into the
1186 * current transaction. This keeps things simple for the higher level code,
1187 * because it always knows that the inode is locked and held in the transaction
1188 * that returns to it whether errors occur or not. We don't mark the inode
1189 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1190 */
1191int
8f04c47a
CH
1192xfs_itruncate_extents(
1193 struct xfs_trans **tpp,
1194 struct xfs_inode *ip,
1195 int whichfork,
1196 xfs_fsize_t new_size)
1da177e4 1197{
8f04c47a
CH
1198 struct xfs_mount *mp = ip->i_mount;
1199 struct xfs_trans *tp = *tpp;
1200 struct xfs_trans *ntp;
1201 xfs_bmap_free_t free_list;
1202 xfs_fsblock_t first_block;
1203 xfs_fileoff_t first_unmap_block;
1204 xfs_fileoff_t last_block;
1205 xfs_filblks_t unmap_len;
1206 int committed;
1207 int error = 0;
1208 int done = 0;
1da177e4 1209
579aa9ca 1210 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ce7ae151 1211 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1212 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1213 ASSERT(ip->i_itemp != NULL);
898621d5 1214 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1215 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1216
673e8e59
CH
1217 trace_xfs_itruncate_extents_start(ip, new_size);
1218
1da177e4
LT
1219 /*
1220 * Since it is possible for space to become allocated beyond
1221 * the end of the file (in a crash where the space is allocated
1222 * but the inode size is not yet updated), simply remove any
1223 * blocks which show up between the new EOF and the maximum
1224 * possible file size. If the first block to be removed is
1225 * beyond the maximum file size (ie it is the same as last_block),
1226 * then there is nothing to do.
1227 */
8f04c47a 1228 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1da177e4 1229 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
8f04c47a
CH
1230 if (first_unmap_block == last_block)
1231 return 0;
1232
1233 ASSERT(first_unmap_block < last_block);
1234 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1235 while (!done) {
9d87c319 1236 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1237 error = xfs_bunmapi(tp, ip,
3e57ecf6 1238 first_unmap_block, unmap_len,
8f04c47a 1239 xfs_bmapi_aflag(whichfork),
1da177e4 1240 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1241 &first_block, &free_list,
b4e9181e 1242 &done);
8f04c47a
CH
1243 if (error)
1244 goto out_bmap_cancel;
1da177e4
LT
1245
1246 /*
1247 * Duplicate the transaction that has the permanent
1248 * reservation and commit the old transaction.
1249 */
8f04c47a 1250 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1251 if (committed)
ddc3415a 1252 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1253 if (error)
1254 goto out_bmap_cancel;
1da177e4
LT
1255
1256 if (committed) {
1257 /*
f6485057 1258 * Mark the inode dirty so it will be logged and
e5720eec 1259 * moved forward in the log as part of every commit.
1da177e4 1260 */
8f04c47a 1261 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1262 }
f6485057 1263
8f04c47a
CH
1264 ntp = xfs_trans_dup(tp);
1265 error = xfs_trans_commit(tp, 0);
1266 tp = ntp;
e5720eec 1267
ddc3415a 1268 xfs_trans_ijoin(tp, ip, 0);
f6485057 1269
cc09c0dc 1270 if (error)
8f04c47a
CH
1271 goto out;
1272
cc09c0dc 1273 /*
8f04c47a 1274 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1275 * reference that we gained in xfs_trans_dup()
1276 */
8f04c47a
CH
1277 xfs_log_ticket_put(tp->t_ticket);
1278 error = xfs_trans_reserve(tp, 0,
f6485057
DC
1279 XFS_ITRUNCATE_LOG_RES(mp), 0,
1280 XFS_TRANS_PERM_LOG_RES,
1281 XFS_ITRUNCATE_LOG_COUNT);
1282 if (error)
8f04c47a 1283 goto out;
1da177e4 1284 }
8f04c47a 1285
673e8e59
CH
1286 /*
1287 * Always re-log the inode so that our permanent transaction can keep
1288 * on rolling it forward in the log.
1289 */
1290 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1291
1292 trace_xfs_itruncate_extents_end(ip, new_size);
1293
8f04c47a
CH
1294out:
1295 *tpp = tp;
1296 return error;
1297out_bmap_cancel:
1da177e4 1298 /*
8f04c47a
CH
1299 * If the bunmapi call encounters an error, return to the caller where
1300 * the transaction can be properly aborted. We just need to make sure
1301 * we're not holding any resources that we were not when we came in.
1da177e4 1302 */
8f04c47a
CH
1303 xfs_bmap_cancel(&free_list);
1304 goto out;
1305}
1306
1da177e4
LT
1307/*
1308 * This is called when the inode's link count goes to 0.
1309 * We place the on-disk inode on a list in the AGI. It
1310 * will be pulled from this list when the inode is freed.
1311 */
1312int
1313xfs_iunlink(
1314 xfs_trans_t *tp,
1315 xfs_inode_t *ip)
1316{
1317 xfs_mount_t *mp;
1318 xfs_agi_t *agi;
1319 xfs_dinode_t *dip;
1320 xfs_buf_t *agibp;
1321 xfs_buf_t *ibp;
1da177e4
LT
1322 xfs_agino_t agino;
1323 short bucket_index;
1324 int offset;
1325 int error;
1da177e4
LT
1326
1327 ASSERT(ip->i_d.di_nlink == 0);
1328 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1329
1330 mp = tp->t_mountp;
1331
1da177e4
LT
1332 /*
1333 * Get the agi buffer first. It ensures lock ordering
1334 * on the list.
1335 */
5e1be0fb 1336 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1337 if (error)
1da177e4 1338 return error;
1da177e4 1339 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1340
1da177e4
LT
1341 /*
1342 * Get the index into the agi hash table for the
1343 * list this inode will go on.
1344 */
1345 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1346 ASSERT(agino != 0);
1347 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1348 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1349 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1350
69ef921b 1351 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1352 /*
1353 * There is already another inode in the bucket we need
1354 * to add ourselves to. Add us at the front of the list.
1355 * Here we put the head pointer into our next pointer,
1356 * and then we fall through to point the head at us.
1357 */
a8acad70 1358 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
c319b58b
VA
1359 if (error)
1360 return error;
1361
69ef921b 1362 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1363 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1364 offset = ip->i_imap.im_boffset +
1da177e4
LT
1365 offsetof(xfs_dinode_t, di_next_unlinked);
1366 xfs_trans_inode_buf(tp, ibp);
1367 xfs_trans_log_buf(tp, ibp, offset,
1368 (offset + sizeof(xfs_agino_t) - 1));
1369 xfs_inobp_check(mp, ibp);
1370 }
1371
1372 /*
1373 * Point the bucket head pointer at the inode being inserted.
1374 */
1375 ASSERT(agino != 0);
16259e7d 1376 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1377 offset = offsetof(xfs_agi_t, agi_unlinked) +
1378 (sizeof(xfs_agino_t) * bucket_index);
1379 xfs_trans_log_buf(tp, agibp, offset,
1380 (offset + sizeof(xfs_agino_t) - 1));
1381 return 0;
1382}
1383
1384/*
1385 * Pull the on-disk inode from the AGI unlinked list.
1386 */
1387STATIC int
1388xfs_iunlink_remove(
1389 xfs_trans_t *tp,
1390 xfs_inode_t *ip)
1391{
1392 xfs_ino_t next_ino;
1393 xfs_mount_t *mp;
1394 xfs_agi_t *agi;
1395 xfs_dinode_t *dip;
1396 xfs_buf_t *agibp;
1397 xfs_buf_t *ibp;
1398 xfs_agnumber_t agno;
1da177e4
LT
1399 xfs_agino_t agino;
1400 xfs_agino_t next_agino;
1401 xfs_buf_t *last_ibp;
6fdf8ccc 1402 xfs_dinode_t *last_dip = NULL;
1da177e4 1403 short bucket_index;
6fdf8ccc 1404 int offset, last_offset = 0;
1da177e4 1405 int error;
1da177e4 1406
1da177e4 1407 mp = tp->t_mountp;
1da177e4 1408 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1409
1410 /*
1411 * Get the agi buffer first. It ensures lock ordering
1412 * on the list.
1413 */
5e1be0fb
CH
1414 error = xfs_read_agi(mp, tp, agno, &agibp);
1415 if (error)
1da177e4 1416 return error;
5e1be0fb 1417
1da177e4 1418 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1419
1da177e4
LT
1420 /*
1421 * Get the index into the agi hash table for the
1422 * list this inode will go on.
1423 */
1424 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1425 ASSERT(agino != 0);
1426 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 1427 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
1428 ASSERT(agi->agi_unlinked[bucket_index]);
1429
16259e7d 1430 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1431 /*
1432 * We're at the head of the list. Get the inode's
1433 * on-disk buffer to see if there is anyone after us
1434 * on the list. Only modify our next pointer if it
1435 * is not already NULLAGINO. This saves us the overhead
1436 * of dealing with the buffer when there is no need to
1437 * change it.
1438 */
a8acad70 1439 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1da177e4 1440 if (error) {
0b932ccc
DC
1441 xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1442 __func__, error);
1da177e4
LT
1443 return error;
1444 }
347d1c01 1445 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1446 ASSERT(next_agino != 0);
1447 if (next_agino != NULLAGINO) {
347d1c01 1448 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1449 offset = ip->i_imap.im_boffset +
1da177e4
LT
1450 offsetof(xfs_dinode_t, di_next_unlinked);
1451 xfs_trans_inode_buf(tp, ibp);
1452 xfs_trans_log_buf(tp, ibp, offset,
1453 (offset + sizeof(xfs_agino_t) - 1));
1454 xfs_inobp_check(mp, ibp);
1455 } else {
1456 xfs_trans_brelse(tp, ibp);
1457 }
1458 /*
1459 * Point the bucket head pointer at the next inode.
1460 */
1461 ASSERT(next_agino != 0);
1462 ASSERT(next_agino != agino);
16259e7d 1463 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1464 offset = offsetof(xfs_agi_t, agi_unlinked) +
1465 (sizeof(xfs_agino_t) * bucket_index);
1466 xfs_trans_log_buf(tp, agibp, offset,
1467 (offset + sizeof(xfs_agino_t) - 1));
1468 } else {
1469 /*
1470 * We need to search the list for the inode being freed.
1471 */
16259e7d 1472 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1473 last_ibp = NULL;
1474 while (next_agino != agino) {
1475 /*
1476 * If the last inode wasn't the one pointing to
1477 * us, then release its buffer since we're not
1478 * going to do anything with it.
1479 */
1480 if (last_ibp != NULL) {
1481 xfs_trans_brelse(tp, last_ibp);
1482 }
1483 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1484 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
c679eef0 1485 &last_ibp, &last_offset, 0);
1da177e4 1486 if (error) {
0b932ccc
DC
1487 xfs_warn(mp,
1488 "%s: xfs_inotobp() returned error %d.",
1489 __func__, error);
1da177e4
LT
1490 return error;
1491 }
347d1c01 1492 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1493 ASSERT(next_agino != NULLAGINO);
1494 ASSERT(next_agino != 0);
1495 }
1496 /*
1497 * Now last_ibp points to the buffer previous to us on
1498 * the unlinked list. Pull us from the list.
1499 */
a8acad70 1500 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1da177e4 1501 if (error) {
0b932ccc
DC
1502 xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1503 __func__, error);
1da177e4
LT
1504 return error;
1505 }
347d1c01 1506 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1507 ASSERT(next_agino != 0);
1508 ASSERT(next_agino != agino);
1509 if (next_agino != NULLAGINO) {
347d1c01 1510 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1511 offset = ip->i_imap.im_boffset +
1da177e4
LT
1512 offsetof(xfs_dinode_t, di_next_unlinked);
1513 xfs_trans_inode_buf(tp, ibp);
1514 xfs_trans_log_buf(tp, ibp, offset,
1515 (offset + sizeof(xfs_agino_t) - 1));
1516 xfs_inobp_check(mp, ibp);
1517 } else {
1518 xfs_trans_brelse(tp, ibp);
1519 }
1520 /*
1521 * Point the previous inode on the list to the next inode.
1522 */
347d1c01 1523 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
1524 ASSERT(next_agino != 0);
1525 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1526 xfs_trans_inode_buf(tp, last_ibp);
1527 xfs_trans_log_buf(tp, last_ibp, offset,
1528 (offset + sizeof(xfs_agino_t) - 1));
1529 xfs_inobp_check(mp, last_ibp);
1530 }
1531 return 0;
1532}
1533
5b3eed75
DC
1534/*
1535 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1536 * inodes that are in memory - they all must be marked stale and attached to
1537 * the cluster buffer.
1538 */
2a30f36d 1539STATIC int
1da177e4
LT
1540xfs_ifree_cluster(
1541 xfs_inode_t *free_ip,
1542 xfs_trans_t *tp,
1543 xfs_ino_t inum)
1544{
1545 xfs_mount_t *mp = free_ip->i_mount;
1546 int blks_per_cluster;
1547 int nbufs;
1548 int ninodes;
5b257b4a 1549 int i, j;
1da177e4
LT
1550 xfs_daddr_t blkno;
1551 xfs_buf_t *bp;
5b257b4a 1552 xfs_inode_t *ip;
1da177e4
LT
1553 xfs_inode_log_item_t *iip;
1554 xfs_log_item_t *lip;
5017e97d 1555 struct xfs_perag *pag;
1da177e4 1556
5017e97d 1557 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
1558 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1559 blks_per_cluster = 1;
1560 ninodes = mp->m_sb.sb_inopblock;
1561 nbufs = XFS_IALLOC_BLOCKS(mp);
1562 } else {
1563 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1564 mp->m_sb.sb_blocksize;
1565 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1566 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1567 }
1568
1da177e4
LT
1569 for (j = 0; j < nbufs; j++, inum += ninodes) {
1570 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1571 XFS_INO_TO_AGBNO(mp, inum));
1572
5b257b4a
DC
1573 /*
1574 * We obtain and lock the backing buffer first in the process
1575 * here, as we have to ensure that any dirty inode that we
1576 * can't get the flush lock on is attached to the buffer.
1577 * If we scan the in-memory inodes first, then buffer IO can
1578 * complete before we get a lock on it, and hence we may fail
1579 * to mark all the active inodes on the buffer stale.
1580 */
1581 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
a8acad70 1582 mp->m_bsize * blks_per_cluster, 0);
5b257b4a 1583
2a30f36d
CS
1584 if (!bp)
1585 return ENOMEM;
5b257b4a
DC
1586 /*
1587 * Walk the inodes already attached to the buffer and mark them
1588 * stale. These will all have the flush locks held, so an
5b3eed75
DC
1589 * in-memory inode walk can't lock them. By marking them all
1590 * stale first, we will not attempt to lock them in the loop
1591 * below as the XFS_ISTALE flag will be set.
5b257b4a 1592 */
adadbeef 1593 lip = bp->b_fspriv;
5b257b4a
DC
1594 while (lip) {
1595 if (lip->li_type == XFS_LI_INODE) {
1596 iip = (xfs_inode_log_item_t *)lip;
1597 ASSERT(iip->ili_logged == 1);
ca30b2a7 1598 lip->li_cb = xfs_istale_done;
5b257b4a
DC
1599 xfs_trans_ail_copy_lsn(mp->m_ail,
1600 &iip->ili_flush_lsn,
1601 &iip->ili_item.li_lsn);
1602 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
1603 }
1604 lip = lip->li_bio_list;
1605 }
1da177e4 1606
5b3eed75 1607
1da177e4 1608 /*
5b257b4a
DC
1609 * For each inode in memory attempt to add it to the inode
1610 * buffer and set it up for being staled on buffer IO
1611 * completion. This is safe as we've locked out tail pushing
1612 * and flushing by locking the buffer.
1da177e4 1613 *
5b257b4a
DC
1614 * We have already marked every inode that was part of a
1615 * transaction stale above, which means there is no point in
1616 * even trying to lock them.
1da177e4 1617 */
1da177e4 1618 for (i = 0; i < ninodes; i++) {
5b3eed75 1619retry:
1a3e8f3d 1620 rcu_read_lock();
da353b0d
DC
1621 ip = radix_tree_lookup(&pag->pag_ici_root,
1622 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 1623
1a3e8f3d
DC
1624 /* Inode not in memory, nothing to do */
1625 if (!ip) {
1626 rcu_read_unlock();
1da177e4
LT
1627 continue;
1628 }
1629
1a3e8f3d
DC
1630 /*
1631 * because this is an RCU protected lookup, we could
1632 * find a recently freed or even reallocated inode
1633 * during the lookup. We need to check under the
1634 * i_flags_lock for a valid inode here. Skip it if it
1635 * is not valid, the wrong inode or stale.
1636 */
1637 spin_lock(&ip->i_flags_lock);
1638 if (ip->i_ino != inum + i ||
1639 __xfs_iflags_test(ip, XFS_ISTALE)) {
1640 spin_unlock(&ip->i_flags_lock);
1641 rcu_read_unlock();
1642 continue;
1643 }
1644 spin_unlock(&ip->i_flags_lock);
1645
5b3eed75
DC
1646 /*
1647 * Don't try to lock/unlock the current inode, but we
1648 * _cannot_ skip the other inodes that we did not find
1649 * in the list attached to the buffer and are not
1650 * already marked stale. If we can't lock it, back off
1651 * and retry.
1652 */
5b257b4a
DC
1653 if (ip != free_ip &&
1654 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 1655 rcu_read_unlock();
5b3eed75
DC
1656 delay(1);
1657 goto retry;
1da177e4 1658 }
1a3e8f3d 1659 rcu_read_unlock();
1da177e4 1660
5b3eed75 1661 xfs_iflock(ip);
5b257b4a 1662 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 1663
5b3eed75
DC
1664 /*
1665 * we don't need to attach clean inodes or those only
1666 * with unlogged changes (which we throw away, anyway).
1667 */
1da177e4 1668 iip = ip->i_itemp;
5b3eed75 1669 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 1670 ASSERT(ip != free_ip);
1da177e4
LT
1671 xfs_ifunlock(ip);
1672 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1673 continue;
1674 }
1675
f5d8d5c4
CH
1676 iip->ili_last_fields = iip->ili_fields;
1677 iip->ili_fields = 0;
1da177e4 1678 iip->ili_logged = 1;
7b2e2a31
DC
1679 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1680 &iip->ili_item.li_lsn);
1da177e4 1681
ca30b2a7
CH
1682 xfs_buf_attach_iodone(bp, xfs_istale_done,
1683 &iip->ili_item);
5b257b4a
DC
1684
1685 if (ip != free_ip)
1da177e4 1686 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
1687 }
1688
5b3eed75 1689 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
1690 xfs_trans_binval(tp, bp);
1691 }
1692
5017e97d 1693 xfs_perag_put(pag);
2a30f36d 1694 return 0;
1da177e4
LT
1695}
1696
1697/*
1698 * This is called to return an inode to the inode free list.
1699 * The inode should already be truncated to 0 length and have
1700 * no pages associated with it. This routine also assumes that
1701 * the inode is already a part of the transaction.
1702 *
1703 * The on-disk copy of the inode will have been added to the list
1704 * of unlinked inodes in the AGI. We need to remove the inode from
1705 * that list atomically with respect to freeing it here.
1706 */
1707int
1708xfs_ifree(
1709 xfs_trans_t *tp,
1710 xfs_inode_t *ip,
1711 xfs_bmap_free_t *flist)
1712{
1713 int error;
1714 int delete;
1715 xfs_ino_t first_ino;
c319b58b
VA
1716 xfs_dinode_t *dip;
1717 xfs_buf_t *ibp;
1da177e4 1718
579aa9ca 1719 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
1720 ASSERT(ip->i_d.di_nlink == 0);
1721 ASSERT(ip->i_d.di_nextents == 0);
1722 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 1723 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
1724 ASSERT(ip->i_d.di_nblocks == 0);
1725
1726 /*
1727 * Pull the on-disk inode from the AGI unlinked list.
1728 */
1729 error = xfs_iunlink_remove(tp, ip);
1730 if (error != 0) {
1731 return error;
1732 }
1733
1734 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1735 if (error != 0) {
1736 return error;
1737 }
1738 ip->i_d.di_mode = 0; /* mark incore inode as free */
1739 ip->i_d.di_flags = 0;
1740 ip->i_d.di_dmevmask = 0;
1741 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
1742 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1743 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1744 /*
1745 * Bump the generation count so no one will be confused
1746 * by reincarnations of this inode.
1747 */
1748 ip->i_d.di_gen++;
c319b58b 1749
1da177e4
LT
1750 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1751
a8acad70 1752 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0);
c319b58b
VA
1753 if (error)
1754 return error;
1755
1756 /*
1757 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1758 * from picking up this inode when it is reclaimed (its incore state
1759 * initialzed but not flushed to disk yet). The in-core di_mode is
1760 * already cleared and a corresponding transaction logged.
1761 * The hack here just synchronizes the in-core to on-disk
1762 * di_mode value in advance before the actual inode sync to disk.
1763 * This is OK because the inode is already unlinked and would never
1764 * change its di_mode again for this inode generation.
1765 * This is a temporary hack that would require a proper fix
1766 * in the future.
1767 */
81591fe2 1768 dip->di_mode = 0;
c319b58b 1769
1da177e4 1770 if (delete) {
2a30f36d 1771 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4
LT
1772 }
1773
2a30f36d 1774 return error;
1da177e4
LT
1775}
1776
1777/*
1778 * Reallocate the space for if_broot based on the number of records
1779 * being added or deleted as indicated in rec_diff. Move the records
1780 * and pointers in if_broot to fit the new size. When shrinking this
1781 * will eliminate holes between the records and pointers created by
1782 * the caller. When growing this will create holes to be filled in
1783 * by the caller.
1784 *
1785 * The caller must not request to add more records than would fit in
1786 * the on-disk inode root. If the if_broot is currently NULL, then
1787 * if we adding records one will be allocated. The caller must also
1788 * not request that the number of records go below zero, although
1789 * it can go to zero.
1790 *
1791 * ip -- the inode whose if_broot area is changing
1792 * ext_diff -- the change in the number of records, positive or negative,
1793 * requested for the if_broot array.
1794 */
1795void
1796xfs_iroot_realloc(
1797 xfs_inode_t *ip,
1798 int rec_diff,
1799 int whichfork)
1800{
60197e8d 1801 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
1802 int cur_max;
1803 xfs_ifork_t *ifp;
7cc95a82 1804 struct xfs_btree_block *new_broot;
1da177e4
LT
1805 int new_max;
1806 size_t new_size;
1807 char *np;
1808 char *op;
1809
1810 /*
1811 * Handle the degenerate case quietly.
1812 */
1813 if (rec_diff == 0) {
1814 return;
1815 }
1816
1817 ifp = XFS_IFORK_PTR(ip, whichfork);
1818 if (rec_diff > 0) {
1819 /*
1820 * If there wasn't any memory allocated before, just
1821 * allocate it now and get out.
1822 */
1823 if (ifp->if_broot_bytes == 0) {
1824 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
4a7edddc 1825 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
1826 ifp->if_broot_bytes = (int)new_size;
1827 return;
1828 }
1829
1830 /*
1831 * If there is already an existing if_broot, then we need
1832 * to realloc() it and shift the pointers to their new
1833 * location. The records don't change location because
1834 * they are kept butted up against the btree block header.
1835 */
60197e8d 1836 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
1837 new_max = cur_max + rec_diff;
1838 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 1839 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4 1840 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
4a7edddc 1841 KM_SLEEP | KM_NOFS);
60197e8d
CH
1842 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1843 ifp->if_broot_bytes);
1844 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1845 (int)new_size);
1da177e4
LT
1846 ifp->if_broot_bytes = (int)new_size;
1847 ASSERT(ifp->if_broot_bytes <=
1848 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1849 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1850 return;
1851 }
1852
1853 /*
1854 * rec_diff is less than 0. In this case, we are shrinking the
1855 * if_broot buffer. It must already exist. If we go to zero
1856 * records, just get rid of the root and clear the status bit.
1857 */
1858 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 1859 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
1860 new_max = cur_max + rec_diff;
1861 ASSERT(new_max >= 0);
1862 if (new_max > 0)
1863 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1864 else
1865 new_size = 0;
1866 if (new_size > 0) {
4a7edddc 1867 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
1868 /*
1869 * First copy over the btree block header.
1870 */
7cc95a82 1871 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
1872 } else {
1873 new_broot = NULL;
1874 ifp->if_flags &= ~XFS_IFBROOT;
1875 }
1876
1877 /*
1878 * Only copy the records and pointers if there are any.
1879 */
1880 if (new_max > 0) {
1881 /*
1882 * First copy the records.
1883 */
136341b4
CH
1884 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1885 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
1886 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1887
1888 /*
1889 * Then copy the pointers.
1890 */
60197e8d 1891 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 1892 ifp->if_broot_bytes);
60197e8d 1893 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
1894 (int)new_size);
1895 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1896 }
f0e2d93c 1897 kmem_free(ifp->if_broot);
1da177e4
LT
1898 ifp->if_broot = new_broot;
1899 ifp->if_broot_bytes = (int)new_size;
1900 ASSERT(ifp->if_broot_bytes <=
1901 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1902 return;
1903}
1904
1905
1da177e4
LT
1906/*
1907 * This is called when the amount of space needed for if_data
1908 * is increased or decreased. The change in size is indicated by
1909 * the number of bytes that need to be added or deleted in the
1910 * byte_diff parameter.
1911 *
1912 * If the amount of space needed has decreased below the size of the
1913 * inline buffer, then switch to using the inline buffer. Otherwise,
1914 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1915 * to what is needed.
1916 *
1917 * ip -- the inode whose if_data area is changing
1918 * byte_diff -- the change in the number of bytes, positive or negative,
1919 * requested for the if_data array.
1920 */
1921void
1922xfs_idata_realloc(
1923 xfs_inode_t *ip,
1924 int byte_diff,
1925 int whichfork)
1926{
1927 xfs_ifork_t *ifp;
1928 int new_size;
1929 int real_size;
1930
1931 if (byte_diff == 0) {
1932 return;
1933 }
1934
1935 ifp = XFS_IFORK_PTR(ip, whichfork);
1936 new_size = (int)ifp->if_bytes + byte_diff;
1937 ASSERT(new_size >= 0);
1938
1939 if (new_size == 0) {
1940 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 1941 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
1942 }
1943 ifp->if_u1.if_data = NULL;
1944 real_size = 0;
1945 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1946 /*
1947 * If the valid extents/data can fit in if_inline_ext/data,
1948 * copy them from the malloc'd vector and free it.
1949 */
1950 if (ifp->if_u1.if_data == NULL) {
1951 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1952 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1953 ASSERT(ifp->if_real_bytes != 0);
1954 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
1955 new_size);
f0e2d93c 1956 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
1957 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1958 }
1959 real_size = 0;
1960 } else {
1961 /*
1962 * Stuck with malloc/realloc.
1963 * For inline data, the underlying buffer must be
1964 * a multiple of 4 bytes in size so that it can be
1965 * logged and stay on word boundaries. We enforce
1966 * that here.
1967 */
1968 real_size = roundup(new_size, 4);
1969 if (ifp->if_u1.if_data == NULL) {
1970 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
1971 ifp->if_u1.if_data = kmem_alloc(real_size,
1972 KM_SLEEP | KM_NOFS);
1da177e4
LT
1973 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1974 /*
1975 * Only do the realloc if the underlying size
1976 * is really changing.
1977 */
1978 if (ifp->if_real_bytes != real_size) {
1979 ifp->if_u1.if_data =
1980 kmem_realloc(ifp->if_u1.if_data,
1981 real_size,
1982 ifp->if_real_bytes,
4a7edddc 1983 KM_SLEEP | KM_NOFS);
1da177e4
LT
1984 }
1985 } else {
1986 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
1987 ifp->if_u1.if_data = kmem_alloc(real_size,
1988 KM_SLEEP | KM_NOFS);
1da177e4
LT
1989 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
1990 ifp->if_bytes);
1991 }
1992 }
1993 ifp->if_real_bytes = real_size;
1994 ifp->if_bytes = new_size;
1995 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1996}
1997
1da177e4
LT
1998void
1999xfs_idestroy_fork(
2000 xfs_inode_t *ip,
2001 int whichfork)
2002{
2003 xfs_ifork_t *ifp;
2004
2005 ifp = XFS_IFORK_PTR(ip, whichfork);
2006 if (ifp->if_broot != NULL) {
f0e2d93c 2007 kmem_free(ifp->if_broot);
1da177e4
LT
2008 ifp->if_broot = NULL;
2009 }
2010
2011 /*
2012 * If the format is local, then we can't have an extents
2013 * array so just look for an inline data array. If we're
2014 * not local then we may or may not have an extents list,
2015 * so check and free it up if we do.
2016 */
2017 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2018 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2019 (ifp->if_u1.if_data != NULL)) {
2020 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2021 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2022 ifp->if_u1.if_data = NULL;
2023 ifp->if_real_bytes = 0;
2024 }
2025 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2026 ((ifp->if_flags & XFS_IFEXTIREC) ||
2027 ((ifp->if_u1.if_extents != NULL) &&
2028 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2029 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2030 xfs_iext_destroy(ifp);
1da177e4
LT
2031 }
2032 ASSERT(ifp->if_u1.if_extents == NULL ||
2033 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2034 ASSERT(ifp->if_real_bytes == 0);
2035 if (whichfork == XFS_ATTR_FORK) {
2036 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2037 ip->i_afp = NULL;
2038 }
2039}
2040
1da177e4 2041/*
60ec6783
CH
2042 * This is called to unpin an inode. The caller must have the inode locked
2043 * in at least shared mode so that the buffer cannot be subsequently pinned
2044 * once someone is waiting for it to be unpinned.
1da177e4 2045 */
60ec6783 2046static void
f392e631 2047xfs_iunpin(
60ec6783 2048 struct xfs_inode *ip)
1da177e4 2049{
579aa9ca 2050 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2051
4aaf15d1
DC
2052 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2053
a3f74ffb 2054 /* Give the log a push to start the unpinning I/O */
60ec6783 2055 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2056
a3f74ffb 2057}
1da177e4 2058
f392e631
CH
2059static void
2060__xfs_iunpin_wait(
2061 struct xfs_inode *ip)
2062{
2063 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2064 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2065
2066 xfs_iunpin(ip);
2067
2068 do {
2069 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2070 if (xfs_ipincount(ip))
2071 io_schedule();
2072 } while (xfs_ipincount(ip));
2073 finish_wait(wq, &wait.wait);
2074}
2075
777df5af 2076void
a3f74ffb 2077xfs_iunpin_wait(
60ec6783 2078 struct xfs_inode *ip)
a3f74ffb 2079{
f392e631
CH
2080 if (xfs_ipincount(ip))
2081 __xfs_iunpin_wait(ip);
1da177e4
LT
2082}
2083
1da177e4
LT
2084/*
2085 * xfs_iextents_copy()
2086 *
2087 * This is called to copy the REAL extents (as opposed to the delayed
2088 * allocation extents) from the inode into the given buffer. It
2089 * returns the number of bytes copied into the buffer.
2090 *
2091 * If there are no delayed allocation extents, then we can just
2092 * memcpy() the extents into the buffer. Otherwise, we need to
2093 * examine each extent in turn and skip those which are delayed.
2094 */
2095int
2096xfs_iextents_copy(
2097 xfs_inode_t *ip,
a6f64d4a 2098 xfs_bmbt_rec_t *dp,
1da177e4
LT
2099 int whichfork)
2100{
2101 int copied;
1da177e4
LT
2102 int i;
2103 xfs_ifork_t *ifp;
2104 int nrecs;
2105 xfs_fsblock_t start_block;
2106
2107 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2108 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2109 ASSERT(ifp->if_bytes > 0);
2110
2111 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2112 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2113 ASSERT(nrecs > 0);
2114
2115 /*
2116 * There are some delayed allocation extents in the
2117 * inode, so copy the extents one at a time and skip
2118 * the delayed ones. There must be at least one
2119 * non-delayed extent.
2120 */
1da177e4
LT
2121 copied = 0;
2122 for (i = 0; i < nrecs; i++) {
a6f64d4a 2123 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4 2124 start_block = xfs_bmbt_get_startblock(ep);
9d87c319 2125 if (isnullstartblock(start_block)) {
1da177e4
LT
2126 /*
2127 * It's a delayed allocation extent, so skip it.
2128 */
1da177e4
LT
2129 continue;
2130 }
2131
2132 /* Translate to on disk format */
cd8b0a97
CH
2133 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2134 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2135 dp++;
1da177e4
LT
2136 copied++;
2137 }
2138 ASSERT(copied != 0);
a6f64d4a 2139 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2140
2141 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2142}
2143
2144/*
2145 * Each of the following cases stores data into the same region
2146 * of the on-disk inode, so only one of them can be valid at
2147 * any given time. While it is possible to have conflicting formats
2148 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2149 * in EXTENTS format, this can only happen when the fork has
2150 * changed formats after being modified but before being flushed.
2151 * In these cases, the format always takes precedence, because the
2152 * format indicates the current state of the fork.
2153 */
2154/*ARGSUSED*/
e4ac967b 2155STATIC void
1da177e4
LT
2156xfs_iflush_fork(
2157 xfs_inode_t *ip,
2158 xfs_dinode_t *dip,
2159 xfs_inode_log_item_t *iip,
2160 int whichfork,
2161 xfs_buf_t *bp)
2162{
2163 char *cp;
2164 xfs_ifork_t *ifp;
2165 xfs_mount_t *mp;
2166#ifdef XFS_TRANS_DEBUG
2167 int first;
2168#endif
2169 static const short brootflag[2] =
2170 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2171 static const short dataflag[2] =
2172 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2173 static const short extflag[2] =
2174 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2175
e4ac967b
DC
2176 if (!iip)
2177 return;
1da177e4
LT
2178 ifp = XFS_IFORK_PTR(ip, whichfork);
2179 /*
2180 * This can happen if we gave up in iformat in an error path,
2181 * for the attribute fork.
2182 */
e4ac967b 2183 if (!ifp) {
1da177e4 2184 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2185 return;
1da177e4
LT
2186 }
2187 cp = XFS_DFORK_PTR(dip, whichfork);
2188 mp = ip->i_mount;
2189 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2190 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 2191 if ((iip->ili_fields & dataflag[whichfork]) &&
1da177e4
LT
2192 (ifp->if_bytes > 0)) {
2193 ASSERT(ifp->if_u1.if_data != NULL);
2194 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2195 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2196 }
1da177e4
LT
2197 break;
2198
2199 case XFS_DINODE_FMT_EXTENTS:
2200 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
f5d8d5c4
CH
2201 !(iip->ili_fields & extflag[whichfork]));
2202 if ((iip->ili_fields & extflag[whichfork]) &&
1da177e4 2203 (ifp->if_bytes > 0)) {
ab1908a5 2204 ASSERT(xfs_iext_get_ext(ifp, 0));
1da177e4
LT
2205 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2206 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2207 whichfork);
2208 }
2209 break;
2210
2211 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 2212 if ((iip->ili_fields & brootflag[whichfork]) &&
1da177e4
LT
2213 (ifp->if_broot_bytes > 0)) {
2214 ASSERT(ifp->if_broot != NULL);
2215 ASSERT(ifp->if_broot_bytes <=
2216 (XFS_IFORK_SIZE(ip, whichfork) +
2217 XFS_BROOT_SIZE_ADJ));
60197e8d 2218 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2219 (xfs_bmdr_block_t *)cp,
2220 XFS_DFORK_SIZE(dip, mp, whichfork));
2221 }
2222 break;
2223
2224 case XFS_DINODE_FMT_DEV:
f5d8d5c4 2225 if (iip->ili_fields & XFS_ILOG_DEV) {
1da177e4 2226 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2227 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2228 }
2229 break;
2230
2231 case XFS_DINODE_FMT_UUID:
f5d8d5c4 2232 if (iip->ili_fields & XFS_ILOG_UUID) {
1da177e4 2233 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2234 memcpy(XFS_DFORK_DPTR(dip),
2235 &ip->i_df.if_u2.if_uuid,
2236 sizeof(uuid_t));
1da177e4
LT
2237 }
2238 break;
2239
2240 default:
2241 ASSERT(0);
2242 break;
2243 }
1da177e4
LT
2244}
2245
bad55843
DC
2246STATIC int
2247xfs_iflush_cluster(
2248 xfs_inode_t *ip,
2249 xfs_buf_t *bp)
2250{
2251 xfs_mount_t *mp = ip->i_mount;
5017e97d 2252 struct xfs_perag *pag;
bad55843 2253 unsigned long first_index, mask;
c8f5f12e 2254 unsigned long inodes_per_cluster;
bad55843
DC
2255 int ilist_size;
2256 xfs_inode_t **ilist;
2257 xfs_inode_t *iq;
bad55843
DC
2258 int nr_found;
2259 int clcount = 0;
2260 int bufwasdelwri;
2261 int i;
2262
5017e97d 2263 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
bad55843 2264
c8f5f12e
DC
2265 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2266 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2267 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843 2268 if (!ilist)
44b56e0a 2269 goto out_put;
bad55843
DC
2270
2271 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2272 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
1a3e8f3d 2273 rcu_read_lock();
bad55843
DC
2274 /* really need a gang lookup range call here */
2275 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2276 first_index, inodes_per_cluster);
bad55843
DC
2277 if (nr_found == 0)
2278 goto out_free;
2279
2280 for (i = 0; i < nr_found; i++) {
2281 iq = ilist[i];
2282 if (iq == ip)
2283 continue;
1a3e8f3d
DC
2284
2285 /*
2286 * because this is an RCU protected lookup, we could find a
2287 * recently freed or even reallocated inode during the lookup.
2288 * We need to check under the i_flags_lock for a valid inode
2289 * here. Skip it if it is not valid or the wrong inode.
2290 */
2291 spin_lock(&ip->i_flags_lock);
2292 if (!ip->i_ino ||
2293 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2294 spin_unlock(&ip->i_flags_lock);
2295 continue;
2296 }
2297 spin_unlock(&ip->i_flags_lock);
2298
bad55843
DC
2299 /*
2300 * Do an un-protected check to see if the inode is dirty and
2301 * is a candidate for flushing. These checks will be repeated
2302 * later after the appropriate locks are acquired.
2303 */
33540408 2304 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2305 continue;
bad55843
DC
2306
2307 /*
2308 * Try to get locks. If any are unavailable or it is pinned,
2309 * then this inode cannot be flushed and is skipped.
2310 */
2311
2312 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2313 continue;
2314 if (!xfs_iflock_nowait(iq)) {
2315 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2316 continue;
2317 }
2318 if (xfs_ipincount(iq)) {
2319 xfs_ifunlock(iq);
2320 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2321 continue;
2322 }
2323
2324 /*
2325 * arriving here means that this inode can be flushed. First
2326 * re-check that it's dirty before flushing.
2327 */
33540408
DC
2328 if (!xfs_inode_clean(iq)) {
2329 int error;
bad55843
DC
2330 error = xfs_iflush_int(iq, bp);
2331 if (error) {
2332 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2333 goto cluster_corrupt_out;
2334 }
2335 clcount++;
2336 } else {
2337 xfs_ifunlock(iq);
2338 }
2339 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2340 }
2341
2342 if (clcount) {
2343 XFS_STATS_INC(xs_icluster_flushcnt);
2344 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2345 }
2346
2347out_free:
1a3e8f3d 2348 rcu_read_unlock();
f0e2d93c 2349 kmem_free(ilist);
44b56e0a
DC
2350out_put:
2351 xfs_perag_put(pag);
bad55843
DC
2352 return 0;
2353
2354
2355cluster_corrupt_out:
2356 /*
2357 * Corruption detected in the clustering loop. Invalidate the
2358 * inode buffer and shut down the filesystem.
2359 */
1a3e8f3d 2360 rcu_read_unlock();
bad55843 2361 /*
43ff2122 2362 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
2363 * brelse can handle it with no problems. If not, shut down the
2364 * filesystem before releasing the buffer.
2365 */
43ff2122 2366 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
2367 if (bufwasdelwri)
2368 xfs_buf_relse(bp);
2369
2370 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2371
2372 if (!bufwasdelwri) {
2373 /*
2374 * Just like incore_relse: if we have b_iodone functions,
2375 * mark the buffer as an error and call them. Otherwise
2376 * mark it as stale and brelse.
2377 */
cb669ca5 2378 if (bp->b_iodone) {
bad55843 2379 XFS_BUF_UNDONE(bp);
c867cb61 2380 xfs_buf_stale(bp);
5a52c2a5 2381 xfs_buf_ioerror(bp, EIO);
1a1a3e97 2382 xfs_buf_ioend(bp, 0);
bad55843 2383 } else {
c867cb61 2384 xfs_buf_stale(bp);
bad55843
DC
2385 xfs_buf_relse(bp);
2386 }
2387 }
2388
2389 /*
2390 * Unlocks the flush lock
2391 */
04913fdd 2392 xfs_iflush_abort(iq, false);
f0e2d93c 2393 kmem_free(ilist);
44b56e0a 2394 xfs_perag_put(pag);
bad55843
DC
2395 return XFS_ERROR(EFSCORRUPTED);
2396}
2397
1da177e4 2398/*
4c46819a
CH
2399 * Flush dirty inode metadata into the backing buffer.
2400 *
2401 * The caller must have the inode lock and the inode flush lock held. The
2402 * inode lock will still be held upon return to the caller, and the inode
2403 * flush lock will be released after the inode has reached the disk.
2404 *
2405 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
2406 */
2407int
2408xfs_iflush(
4c46819a
CH
2409 struct xfs_inode *ip,
2410 struct xfs_buf **bpp)
1da177e4 2411{
4c46819a
CH
2412 struct xfs_mount *mp = ip->i_mount;
2413 struct xfs_buf *bp;
2414 struct xfs_dinode *dip;
1da177e4 2415 int error;
1da177e4
LT
2416
2417 XFS_STATS_INC(xs_iflush_count);
2418
579aa9ca 2419 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 2420 ASSERT(xfs_isiflocked(ip));
1da177e4 2421 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2422 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 2423
4c46819a 2424 *bpp = NULL;
1da177e4 2425
1da177e4
LT
2426 xfs_iunpin_wait(ip);
2427
4b6a4688
DC
2428 /*
2429 * For stale inodes we cannot rely on the backing buffer remaining
2430 * stale in cache for the remaining life of the stale inode and so
2431 * xfs_itobp() below may give us a buffer that no longer contains
2432 * inodes below. We have to check this after ensuring the inode is
2433 * unpinned so that it is safe to reclaim the stale inode after the
2434 * flush call.
2435 */
2436 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2437 xfs_ifunlock(ip);
2438 return 0;
2439 }
2440
1da177e4
LT
2441 /*
2442 * This may have been unpinned because the filesystem is shutting
2443 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
2444 * to disk, because the log record didn't make it to disk.
2445 *
2446 * We also have to remove the log item from the AIL in this case,
2447 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
2448 */
2449 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
2450 error = XFS_ERROR(EIO);
2451 goto abort_out;
1da177e4
LT
2452 }
2453
a3f74ffb
DC
2454 /*
2455 * Get the buffer containing the on-disk inode.
2456 */
4c46819a 2457 error = xfs_itobp(mp, NULL, ip, &dip, &bp, XBF_TRYLOCK);
a3f74ffb
DC
2458 if (error || !bp) {
2459 xfs_ifunlock(ip);
2460 return error;
2461 }
2462
1da177e4
LT
2463 /*
2464 * First flush out the inode that xfs_iflush was called with.
2465 */
2466 error = xfs_iflush_int(ip, bp);
bad55843 2467 if (error)
1da177e4 2468 goto corrupt_out;
1da177e4 2469
a3f74ffb
DC
2470 /*
2471 * If the buffer is pinned then push on the log now so we won't
2472 * get stuck waiting in the write for too long.
2473 */
811e64c7 2474 if (xfs_buf_ispinned(bp))
a14a348b 2475 xfs_log_force(mp, 0);
a3f74ffb 2476
1da177e4
LT
2477 /*
2478 * inode clustering:
2479 * see if other inodes can be gathered into this write
2480 */
bad55843
DC
2481 error = xfs_iflush_cluster(ip, bp);
2482 if (error)
2483 goto cluster_corrupt_out;
1da177e4 2484
4c46819a
CH
2485 *bpp = bp;
2486 return 0;
1da177e4
LT
2487
2488corrupt_out:
2489 xfs_buf_relse(bp);
7d04a335 2490 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 2491cluster_corrupt_out:
32ce90a4
CH
2492 error = XFS_ERROR(EFSCORRUPTED);
2493abort_out:
1da177e4
LT
2494 /*
2495 * Unlocks the flush lock
2496 */
04913fdd 2497 xfs_iflush_abort(ip, false);
32ce90a4 2498 return error;
1da177e4
LT
2499}
2500
2501
2502STATIC int
2503xfs_iflush_int(
2504 xfs_inode_t *ip,
2505 xfs_buf_t *bp)
2506{
2507 xfs_inode_log_item_t *iip;
2508 xfs_dinode_t *dip;
2509 xfs_mount_t *mp;
2510#ifdef XFS_TRANS_DEBUG
2511 int first;
2512#endif
1da177e4 2513
579aa9ca 2514 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 2515 ASSERT(xfs_isiflocked(ip));
1da177e4 2516 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2517 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4
LT
2518
2519 iip = ip->i_itemp;
2520 mp = ip->i_mount;
2521
1da177e4 2522 /* set *dip = inode's place in the buffer */
92bfc6e7 2523 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 2524
69ef921b 2525 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 2526 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
2527 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2528 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2529 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
2530 goto corrupt_out;
2531 }
2532 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2533 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
2534 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2535 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2536 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
2537 goto corrupt_out;
2538 }
abbede1b 2539 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
2540 if (XFS_TEST_ERROR(
2541 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2542 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2543 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
2544 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2545 "%s: Bad regular inode %Lu, ptr 0x%p",
2546 __func__, ip->i_ino, ip);
1da177e4
LT
2547 goto corrupt_out;
2548 }
abbede1b 2549 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
2550 if (XFS_TEST_ERROR(
2551 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2552 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2553 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2554 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
2555 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2556 "%s: Bad directory inode %Lu, ptr 0x%p",
2557 __func__, ip->i_ino, ip);
1da177e4
LT
2558 goto corrupt_out;
2559 }
2560 }
2561 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2562 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2563 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
2564 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2565 "%s: detected corrupt incore inode %Lu, "
2566 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2567 __func__, ip->i_ino,
1da177e4 2568 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 2569 ip->i_d.di_nblocks, ip);
1da177e4
LT
2570 goto corrupt_out;
2571 }
2572 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2573 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
2574 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2575 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2576 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
2577 goto corrupt_out;
2578 }
2579 /*
2580 * bump the flush iteration count, used to detect flushes which
2581 * postdate a log record during recovery.
2582 */
2583
2584 ip->i_d.di_flushiter++;
2585
2586 /*
2587 * Copy the dirty parts of the inode into the on-disk
2588 * inode. We always copy out the core of the inode,
2589 * because if the inode is dirty at all the core must
2590 * be.
2591 */
81591fe2 2592 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
2593
2594 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2595 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2596 ip->i_d.di_flushiter = 0;
2597
2598 /*
2599 * If this is really an old format inode and the superblock version
2600 * has not been updated to support only new format inodes, then
2601 * convert back to the old inode format. If the superblock version
2602 * has been updated, then make the conversion permanent.
2603 */
51ce16d5
CH
2604 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2605 if (ip->i_d.di_version == 1) {
62118709 2606 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
2607 /*
2608 * Convert it back.
2609 */
2610 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 2611 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
2612 } else {
2613 /*
2614 * The superblock version has already been bumped,
2615 * so just make the conversion to the new inode
2616 * format permanent.
2617 */
51ce16d5
CH
2618 ip->i_d.di_version = 2;
2619 dip->di_version = 2;
1da177e4 2620 ip->i_d.di_onlink = 0;
81591fe2 2621 dip->di_onlink = 0;
1da177e4 2622 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
2623 memset(&(dip->di_pad[0]), 0,
2624 sizeof(dip->di_pad));
6743099c 2625 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
2626 }
2627 }
2628
e4ac967b
DC
2629 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2630 if (XFS_IFORK_Q(ip))
2631 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
2632 xfs_inobp_check(mp, bp);
2633
2634 /*
f5d8d5c4
CH
2635 * We've recorded everything logged in the inode, so we'd like to clear
2636 * the ili_fields bits so we don't log and flush things unnecessarily.
2637 * However, we can't stop logging all this information until the data
2638 * we've copied into the disk buffer is written to disk. If we did we
2639 * might overwrite the copy of the inode in the log with all the data
2640 * after re-logging only part of it, and in the face of a crash we
2641 * wouldn't have all the data we need to recover.
1da177e4 2642 *
f5d8d5c4
CH
2643 * What we do is move the bits to the ili_last_fields field. When
2644 * logging the inode, these bits are moved back to the ili_fields field.
2645 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2646 * know that the information those bits represent is permanently on
2647 * disk. As long as the flush completes before the inode is logged
2648 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 2649 *
f5d8d5c4
CH
2650 * We can play with the ili_fields bits here, because the inode lock
2651 * must be held exclusively in order to set bits there and the flush
2652 * lock protects the ili_last_fields bits. Set ili_logged so the flush
2653 * done routine can tell whether or not to look in the AIL. Also, store
2654 * the current LSN of the inode so that we can tell whether the item has
2655 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
2656 * need the AIL lock, because it is a 64 bit value that cannot be read
2657 * atomically.
1da177e4 2658 */
f5d8d5c4
CH
2659 if (iip != NULL && iip->ili_fields != 0) {
2660 iip->ili_last_fields = iip->ili_fields;
2661 iip->ili_fields = 0;
1da177e4
LT
2662 iip->ili_logged = 1;
2663
7b2e2a31
DC
2664 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2665 &iip->ili_item.li_lsn);
1da177e4
LT
2666
2667 /*
2668 * Attach the function xfs_iflush_done to the inode's
2669 * buffer. This will remove the inode from the AIL
2670 * and unlock the inode's flush lock when the inode is
2671 * completely written to disk.
2672 */
ca30b2a7 2673 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 2674
adadbeef 2675 ASSERT(bp->b_fspriv != NULL);
cb669ca5 2676 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
2677 } else {
2678 /*
2679 * We're flushing an inode which is not in the AIL and has
8a9c9980 2680 * not been logged. For this case we can immediately drop
1da177e4
LT
2681 * the inode flush lock because we can avoid the whole
2682 * AIL state thing. It's OK to drop the flush lock now,
2683 * because we've already locked the buffer and to do anything
2684 * you really need both.
2685 */
2686 if (iip != NULL) {
2687 ASSERT(iip->ili_logged == 0);
2688 ASSERT(iip->ili_last_fields == 0);
2689 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2690 }
2691 xfs_ifunlock(ip);
2692 }
2693
2694 return 0;
2695
2696corrupt_out:
2697 return XFS_ERROR(EFSCORRUPTED);
2698}
2699
4eea22f0
MK
2700/*
2701 * Return a pointer to the extent record at file index idx.
2702 */
a6f64d4a 2703xfs_bmbt_rec_host_t *
4eea22f0
MK
2704xfs_iext_get_ext(
2705 xfs_ifork_t *ifp, /* inode fork pointer */
2706 xfs_extnum_t idx) /* index of target extent */
2707{
2708 ASSERT(idx >= 0);
87bef181
CH
2709 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2710
0293ce3a
MK
2711 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2712 return ifp->if_u1.if_ext_irec->er_extbuf;
2713 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2714 xfs_ext_irec_t *erp; /* irec pointer */
2715 int erp_idx = 0; /* irec index */
2716 xfs_extnum_t page_idx = idx; /* ext index in target list */
2717
2718 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2719 return &erp->er_extbuf[page_idx];
2720 } else if (ifp->if_bytes) {
4eea22f0
MK
2721 return &ifp->if_u1.if_extents[idx];
2722 } else {
2723 return NULL;
2724 }
2725}
2726
2727/*
2728 * Insert new item(s) into the extent records for incore inode
2729 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2730 */
2731void
2732xfs_iext_insert(
6ef35544 2733 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0
MK
2734 xfs_extnum_t idx, /* starting index of new items */
2735 xfs_extnum_t count, /* number of inserted items */
6ef35544
CH
2736 xfs_bmbt_irec_t *new, /* items to insert */
2737 int state) /* type of extent conversion */
4eea22f0 2738{
6ef35544 2739 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
2740 xfs_extnum_t i; /* extent record index */
2741
0b1b213f
CH
2742 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2743
4eea22f0
MK
2744 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2745 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
2746 for (i = idx; i < idx + count; i++, new++)
2747 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
2748}
2749
2750/*
2751 * This is called when the amount of space required for incore file
2752 * extents needs to be increased. The ext_diff parameter stores the
2753 * number of new extents being added and the idx parameter contains
2754 * the extent index where the new extents will be added. If the new
2755 * extents are being appended, then we just need to (re)allocate and
2756 * initialize the space. Otherwise, if the new extents are being
2757 * inserted into the middle of the existing entries, a bit more work
2758 * is required to make room for the new extents to be inserted. The
2759 * caller is responsible for filling in the new extent entries upon
2760 * return.
2761 */
2762void
2763xfs_iext_add(
2764 xfs_ifork_t *ifp, /* inode fork pointer */
2765 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 2766 int ext_diff) /* number of extents to add */
4eea22f0
MK
2767{
2768 int byte_diff; /* new bytes being added */
2769 int new_size; /* size of extents after adding */
2770 xfs_extnum_t nextents; /* number of extents in file */
2771
2772 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2773 ASSERT((idx >= 0) && (idx <= nextents));
2774 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2775 new_size = ifp->if_bytes + byte_diff;
2776 /*
2777 * If the new number of extents (nextents + ext_diff)
2778 * fits inside the inode, then continue to use the inline
2779 * extent buffer.
2780 */
2781 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2782 if (idx < nextents) {
2783 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2784 &ifp->if_u2.if_inline_ext[idx],
2785 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2786 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2787 }
2788 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2789 ifp->if_real_bytes = 0;
2790 }
2791 /*
2792 * Otherwise use a linear (direct) extent list.
2793 * If the extents are currently inside the inode,
2794 * xfs_iext_realloc_direct will switch us from
2795 * inline to direct extent allocation mode.
2796 */
0293ce3a 2797 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
2798 xfs_iext_realloc_direct(ifp, new_size);
2799 if (idx < nextents) {
2800 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2801 &ifp->if_u1.if_extents[idx],
2802 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2803 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2804 }
2805 }
0293ce3a
MK
2806 /* Indirection array */
2807 else {
2808 xfs_ext_irec_t *erp;
2809 int erp_idx = 0;
2810 int page_idx = idx;
2811
2812 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2813 if (ifp->if_flags & XFS_IFEXTIREC) {
2814 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2815 } else {
2816 xfs_iext_irec_init(ifp);
2817 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2818 erp = ifp->if_u1.if_ext_irec;
2819 }
2820 /* Extents fit in target extent page */
2821 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2822 if (page_idx < erp->er_extcount) {
2823 memmove(&erp->er_extbuf[page_idx + ext_diff],
2824 &erp->er_extbuf[page_idx],
2825 (erp->er_extcount - page_idx) *
2826 sizeof(xfs_bmbt_rec_t));
2827 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2828 }
2829 erp->er_extcount += ext_diff;
2830 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2831 }
2832 /* Insert a new extent page */
2833 else if (erp) {
2834 xfs_iext_add_indirect_multi(ifp,
2835 erp_idx, page_idx, ext_diff);
2836 }
2837 /*
2838 * If extent(s) are being appended to the last page in
2839 * the indirection array and the new extent(s) don't fit
2840 * in the page, then erp is NULL and erp_idx is set to
2841 * the next index needed in the indirection array.
2842 */
2843 else {
2844 int count = ext_diff;
2845
2846 while (count) {
2847 erp = xfs_iext_irec_new(ifp, erp_idx);
2848 erp->er_extcount = count;
2849 count -= MIN(count, (int)XFS_LINEAR_EXTS);
2850 if (count) {
2851 erp_idx++;
2852 }
2853 }
2854 }
2855 }
4eea22f0
MK
2856 ifp->if_bytes = new_size;
2857}
2858
0293ce3a
MK
2859/*
2860 * This is called when incore extents are being added to the indirection
2861 * array and the new extents do not fit in the target extent list. The
2862 * erp_idx parameter contains the irec index for the target extent list
2863 * in the indirection array, and the idx parameter contains the extent
2864 * index within the list. The number of extents being added is stored
2865 * in the count parameter.
2866 *
2867 * |-------| |-------|
2868 * | | | | idx - number of extents before idx
2869 * | idx | | count |
2870 * | | | | count - number of extents being inserted at idx
2871 * |-------| |-------|
2872 * | count | | nex2 | nex2 - number of extents after idx + count
2873 * |-------| |-------|
2874 */
2875void
2876xfs_iext_add_indirect_multi(
2877 xfs_ifork_t *ifp, /* inode fork pointer */
2878 int erp_idx, /* target extent irec index */
2879 xfs_extnum_t idx, /* index within target list */
2880 int count) /* new extents being added */
2881{
2882 int byte_diff; /* new bytes being added */
2883 xfs_ext_irec_t *erp; /* pointer to irec entry */
2884 xfs_extnum_t ext_diff; /* number of extents to add */
2885 xfs_extnum_t ext_cnt; /* new extents still needed */
2886 xfs_extnum_t nex2; /* extents after idx + count */
2887 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
2888 int nlists; /* number of irec's (lists) */
2889
2890 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2891 erp = &ifp->if_u1.if_ext_irec[erp_idx];
2892 nex2 = erp->er_extcount - idx;
2893 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2894
2895 /*
2896 * Save second part of target extent list
2897 * (all extents past */
2898 if (nex2) {
2899 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 2900 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
2901 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2902 erp->er_extcount -= nex2;
2903 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2904 memset(&erp->er_extbuf[idx], 0, byte_diff);
2905 }
2906
2907 /*
2908 * Add the new extents to the end of the target
2909 * list, then allocate new irec record(s) and
2910 * extent buffer(s) as needed to store the rest
2911 * of the new extents.
2912 */
2913 ext_cnt = count;
2914 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2915 if (ext_diff) {
2916 erp->er_extcount += ext_diff;
2917 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2918 ext_cnt -= ext_diff;
2919 }
2920 while (ext_cnt) {
2921 erp_idx++;
2922 erp = xfs_iext_irec_new(ifp, erp_idx);
2923 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2924 erp->er_extcount = ext_diff;
2925 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2926 ext_cnt -= ext_diff;
2927 }
2928
2929 /* Add nex2 extents back to indirection array */
2930 if (nex2) {
2931 xfs_extnum_t ext_avail;
2932 int i;
2933
2934 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2935 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2936 i = 0;
2937 /*
2938 * If nex2 extents fit in the current page, append
2939 * nex2_ep after the new extents.
2940 */
2941 if (nex2 <= ext_avail) {
2942 i = erp->er_extcount;
2943 }
2944 /*
2945 * Otherwise, check if space is available in the
2946 * next page.
2947 */
2948 else if ((erp_idx < nlists - 1) &&
2949 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
2950 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
2951 erp_idx++;
2952 erp++;
2953 /* Create a hole for nex2 extents */
2954 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
2955 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
2956 }
2957 /*
2958 * Final choice, create a new extent page for
2959 * nex2 extents.
2960 */
2961 else {
2962 erp_idx++;
2963 erp = xfs_iext_irec_new(ifp, erp_idx);
2964 }
2965 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 2966 kmem_free(nex2_ep);
0293ce3a
MK
2967 erp->er_extcount += nex2;
2968 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
2969 }
2970}
2971
4eea22f0
MK
2972/*
2973 * This is called when the amount of space required for incore file
2974 * extents needs to be decreased. The ext_diff parameter stores the
2975 * number of extents to be removed and the idx parameter contains
2976 * the extent index where the extents will be removed from.
0293ce3a
MK
2977 *
2978 * If the amount of space needed has decreased below the linear
2979 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
2980 * extent array. Otherwise, use kmem_realloc() to adjust the
2981 * size to what is needed.
4eea22f0
MK
2982 */
2983void
2984xfs_iext_remove(
6ef35544 2985 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0 2986 xfs_extnum_t idx, /* index to begin removing exts */
6ef35544
CH
2987 int ext_diff, /* number of extents to remove */
2988 int state) /* type of extent conversion */
4eea22f0 2989{
6ef35544 2990 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
2991 xfs_extnum_t nextents; /* number of extents in file */
2992 int new_size; /* size of extents after removal */
2993
0b1b213f
CH
2994 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
2995
4eea22f0
MK
2996 ASSERT(ext_diff > 0);
2997 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2998 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
2999
3000 if (new_size == 0) {
3001 xfs_iext_destroy(ifp);
0293ce3a
MK
3002 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3003 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3004 } else if (ifp->if_real_bytes) {
3005 xfs_iext_remove_direct(ifp, idx, ext_diff);
3006 } else {
3007 xfs_iext_remove_inline(ifp, idx, ext_diff);
3008 }
3009 ifp->if_bytes = new_size;
3010}
3011
3012/*
3013 * This removes ext_diff extents from the inline buffer, beginning
3014 * at extent index idx.
3015 */
3016void
3017xfs_iext_remove_inline(
3018 xfs_ifork_t *ifp, /* inode fork pointer */
3019 xfs_extnum_t idx, /* index to begin removing exts */
3020 int ext_diff) /* number of extents to remove */
3021{
3022 int nextents; /* number of extents in file */
3023
0293ce3a 3024 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3025 ASSERT(idx < XFS_INLINE_EXTS);
3026 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3027 ASSERT(((nextents - ext_diff) > 0) &&
3028 (nextents - ext_diff) < XFS_INLINE_EXTS);
3029
3030 if (idx + ext_diff < nextents) {
3031 memmove(&ifp->if_u2.if_inline_ext[idx],
3032 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3033 (nextents - (idx + ext_diff)) *
3034 sizeof(xfs_bmbt_rec_t));
3035 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3036 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3037 } else {
3038 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3039 ext_diff * sizeof(xfs_bmbt_rec_t));
3040 }
3041}
3042
3043/*
3044 * This removes ext_diff extents from a linear (direct) extent list,
3045 * beginning at extent index idx. If the extents are being removed
3046 * from the end of the list (ie. truncate) then we just need to re-
3047 * allocate the list to remove the extra space. Otherwise, if the
3048 * extents are being removed from the middle of the existing extent
3049 * entries, then we first need to move the extent records beginning
3050 * at idx + ext_diff up in the list to overwrite the records being
3051 * removed, then remove the extra space via kmem_realloc.
3052 */
3053void
3054xfs_iext_remove_direct(
3055 xfs_ifork_t *ifp, /* inode fork pointer */
3056 xfs_extnum_t idx, /* index to begin removing exts */
3057 int ext_diff) /* number of extents to remove */
3058{
3059 xfs_extnum_t nextents; /* number of extents in file */
3060 int new_size; /* size of extents after removal */
3061
0293ce3a 3062 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3063 new_size = ifp->if_bytes -
3064 (ext_diff * sizeof(xfs_bmbt_rec_t));
3065 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3066
3067 if (new_size == 0) {
3068 xfs_iext_destroy(ifp);
3069 return;
3070 }
3071 /* Move extents up in the list (if needed) */
3072 if (idx + ext_diff < nextents) {
3073 memmove(&ifp->if_u1.if_extents[idx],
3074 &ifp->if_u1.if_extents[idx + ext_diff],
3075 (nextents - (idx + ext_diff)) *
3076 sizeof(xfs_bmbt_rec_t));
3077 }
3078 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3079 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3080 /*
3081 * Reallocate the direct extent list. If the extents
3082 * will fit inside the inode then xfs_iext_realloc_direct
3083 * will switch from direct to inline extent allocation
3084 * mode for us.
3085 */
3086 xfs_iext_realloc_direct(ifp, new_size);
3087 ifp->if_bytes = new_size;
3088}
3089
0293ce3a
MK
3090/*
3091 * This is called when incore extents are being removed from the
3092 * indirection array and the extents being removed span multiple extent
3093 * buffers. The idx parameter contains the file extent index where we
3094 * want to begin removing extents, and the count parameter contains
3095 * how many extents need to be removed.
3096 *
3097 * |-------| |-------|
3098 * | nex1 | | | nex1 - number of extents before idx
3099 * |-------| | count |
3100 * | | | | count - number of extents being removed at idx
3101 * | count | |-------|
3102 * | | | nex2 | nex2 - number of extents after idx + count
3103 * |-------| |-------|
3104 */
3105void
3106xfs_iext_remove_indirect(
3107 xfs_ifork_t *ifp, /* inode fork pointer */
3108 xfs_extnum_t idx, /* index to begin removing extents */
3109 int count) /* number of extents to remove */
3110{
3111 xfs_ext_irec_t *erp; /* indirection array pointer */
3112 int erp_idx = 0; /* indirection array index */
3113 xfs_extnum_t ext_cnt; /* extents left to remove */
3114 xfs_extnum_t ext_diff; /* extents to remove in current list */
3115 xfs_extnum_t nex1; /* number of extents before idx */
3116 xfs_extnum_t nex2; /* extents after idx + count */
0293ce3a
MK
3117 int page_idx = idx; /* index in target extent list */
3118
3119 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3120 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3121 ASSERT(erp != NULL);
0293ce3a
MK
3122 nex1 = page_idx;
3123 ext_cnt = count;
3124 while (ext_cnt) {
3125 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3126 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3127 /*
3128 * Check for deletion of entire list;
3129 * xfs_iext_irec_remove() updates extent offsets.
3130 */
3131 if (ext_diff == erp->er_extcount) {
3132 xfs_iext_irec_remove(ifp, erp_idx);
3133 ext_cnt -= ext_diff;
3134 nex1 = 0;
3135 if (ext_cnt) {
3136 ASSERT(erp_idx < ifp->if_real_bytes /
3137 XFS_IEXT_BUFSZ);
3138 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3139 nex1 = 0;
3140 continue;
3141 } else {
3142 break;
3143 }
3144 }
3145 /* Move extents up (if needed) */
3146 if (nex2) {
3147 memmove(&erp->er_extbuf[nex1],
3148 &erp->er_extbuf[nex1 + ext_diff],
3149 nex2 * sizeof(xfs_bmbt_rec_t));
3150 }
3151 /* Zero out rest of page */
3152 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3153 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3154 /* Update remaining counters */
3155 erp->er_extcount -= ext_diff;
3156 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3157 ext_cnt -= ext_diff;
3158 nex1 = 0;
3159 erp_idx++;
3160 erp++;
3161 }
3162 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3163 xfs_iext_irec_compact(ifp);
3164}
3165
4eea22f0
MK
3166/*
3167 * Create, destroy, or resize a linear (direct) block of extents.
3168 */
3169void
3170xfs_iext_realloc_direct(
3171 xfs_ifork_t *ifp, /* inode fork pointer */
3172 int new_size) /* new size of extents */
3173{
3174 int rnew_size; /* real new size of extents */
3175
3176 rnew_size = new_size;
3177
0293ce3a
MK
3178 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3179 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3180 (new_size != ifp->if_real_bytes)));
3181
4eea22f0
MK
3182 /* Free extent records */
3183 if (new_size == 0) {
3184 xfs_iext_destroy(ifp);
3185 }
3186 /* Resize direct extent list and zero any new bytes */
3187 else if (ifp->if_real_bytes) {
3188 /* Check if extents will fit inside the inode */
3189 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3190 xfs_iext_direct_to_inline(ifp, new_size /
3191 (uint)sizeof(xfs_bmbt_rec_t));
3192 ifp->if_bytes = new_size;
3193 return;
3194 }
16a087d8 3195 if (!is_power_of_2(new_size)){
40ebd81d 3196 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3197 }
3198 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3199 ifp->if_u1.if_extents =
4eea22f0
MK
3200 kmem_realloc(ifp->if_u1.if_extents,
3201 rnew_size,
6785073b 3202 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3203 }
3204 if (rnew_size > ifp->if_real_bytes) {
3205 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3206 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3207 rnew_size - ifp->if_real_bytes);
3208 }
3209 }
3210 /*
3211 * Switch from the inline extent buffer to a direct
3212 * extent list. Be sure to include the inline extent
3213 * bytes in new_size.
3214 */
3215 else {
3216 new_size += ifp->if_bytes;
16a087d8 3217 if (!is_power_of_2(new_size)) {
40ebd81d 3218 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3219 }
3220 xfs_iext_inline_to_direct(ifp, rnew_size);
3221 }
3222 ifp->if_real_bytes = rnew_size;
3223 ifp->if_bytes = new_size;
3224}
3225
3226/*
3227 * Switch from linear (direct) extent records to inline buffer.
3228 */
3229void
3230xfs_iext_direct_to_inline(
3231 xfs_ifork_t *ifp, /* inode fork pointer */
3232 xfs_extnum_t nextents) /* number of extents in file */
3233{
3234 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3235 ASSERT(nextents <= XFS_INLINE_EXTS);
3236 /*
3237 * The inline buffer was zeroed when we switched
3238 * from inline to direct extent allocation mode,
3239 * so we don't need to clear it here.
3240 */
3241 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3242 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3243 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3244 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3245 ifp->if_real_bytes = 0;
3246}
3247
3248/*
3249 * Switch from inline buffer to linear (direct) extent records.
3250 * new_size should already be rounded up to the next power of 2
3251 * by the caller (when appropriate), so use new_size as it is.
3252 * However, since new_size may be rounded up, we can't update
3253 * if_bytes here. It is the caller's responsibility to update
3254 * if_bytes upon return.
3255 */
3256void
3257xfs_iext_inline_to_direct(
3258 xfs_ifork_t *ifp, /* inode fork pointer */
3259 int new_size) /* number of extents in file */
3260{
6785073b 3261 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3262 memset(ifp->if_u1.if_extents, 0, new_size);
3263 if (ifp->if_bytes) {
3264 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3265 ifp->if_bytes);
3266 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3267 sizeof(xfs_bmbt_rec_t));
3268 }
3269 ifp->if_real_bytes = new_size;
3270}
3271
0293ce3a
MK
3272/*
3273 * Resize an extent indirection array to new_size bytes.
3274 */
d96f8f89 3275STATIC void
0293ce3a
MK
3276xfs_iext_realloc_indirect(
3277 xfs_ifork_t *ifp, /* inode fork pointer */
3278 int new_size) /* new indirection array size */
3279{
3280 int nlists; /* number of irec's (ex lists) */
3281 int size; /* current indirection array size */
3282
3283 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3284 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3285 size = nlists * sizeof(xfs_ext_irec_t);
3286 ASSERT(ifp->if_real_bytes);
3287 ASSERT((new_size >= 0) && (new_size != size));
3288 if (new_size == 0) {
3289 xfs_iext_destroy(ifp);
3290 } else {
3291 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3292 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3293 new_size, size, KM_NOFS);
0293ce3a
MK
3294 }
3295}
3296
3297/*
3298 * Switch from indirection array to linear (direct) extent allocations.
3299 */
d96f8f89 3300STATIC void
0293ce3a
MK
3301xfs_iext_indirect_to_direct(
3302 xfs_ifork_t *ifp) /* inode fork pointer */
3303{
a6f64d4a 3304 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
3305 xfs_extnum_t nextents; /* number of extents in file */
3306 int size; /* size of file extents */
3307
3308 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3309 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3310 ASSERT(nextents <= XFS_LINEAR_EXTS);
3311 size = nextents * sizeof(xfs_bmbt_rec_t);
3312
71a8c87f 3313 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
3314 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3315
3316 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 3317 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3318 ifp->if_flags &= ~XFS_IFEXTIREC;
3319 ifp->if_u1.if_extents = ep;
3320 ifp->if_bytes = size;
3321 if (nextents < XFS_LINEAR_EXTS) {
3322 xfs_iext_realloc_direct(ifp, size);
3323 }
3324}
3325
4eea22f0
MK
3326/*
3327 * Free incore file extents.
3328 */
3329void
3330xfs_iext_destroy(
3331 xfs_ifork_t *ifp) /* inode fork pointer */
3332{
0293ce3a
MK
3333 if (ifp->if_flags & XFS_IFEXTIREC) {
3334 int erp_idx;
3335 int nlists;
3336
3337 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3338 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3339 xfs_iext_irec_remove(ifp, erp_idx);
3340 }
3341 ifp->if_flags &= ~XFS_IFEXTIREC;
3342 } else if (ifp->if_real_bytes) {
f0e2d93c 3343 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3344 } else if (ifp->if_bytes) {
3345 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3346 sizeof(xfs_bmbt_rec_t));
3347 }
3348 ifp->if_u1.if_extents = NULL;
3349 ifp->if_real_bytes = 0;
3350 ifp->if_bytes = 0;
3351}
0293ce3a 3352
8867bc9b
MK
3353/*
3354 * Return a pointer to the extent record for file system block bno.
3355 */
a6f64d4a 3356xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
3357xfs_iext_bno_to_ext(
3358 xfs_ifork_t *ifp, /* inode fork pointer */
3359 xfs_fileoff_t bno, /* block number to search for */
3360 xfs_extnum_t *idxp) /* index of target extent */
3361{
a6f64d4a 3362 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 3363 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 3364 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 3365 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 3366 int high; /* upper boundary in search */
8867bc9b 3367 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 3368 int low; /* lower boundary in search */
8867bc9b
MK
3369 xfs_extnum_t nextents; /* number of file extents */
3370 xfs_fileoff_t startoff = 0; /* start offset of extent */
3371
3372 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3373 if (nextents == 0) {
3374 *idxp = 0;
3375 return NULL;
3376 }
3377 low = 0;
3378 if (ifp->if_flags & XFS_IFEXTIREC) {
3379 /* Find target extent list */
3380 int erp_idx = 0;
3381 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3382 base = erp->er_extbuf;
3383 high = erp->er_extcount - 1;
3384 } else {
3385 base = ifp->if_u1.if_extents;
3386 high = nextents - 1;
3387 }
3388 /* Binary search extent records */
3389 while (low <= high) {
3390 idx = (low + high) >> 1;
3391 ep = base + idx;
3392 startoff = xfs_bmbt_get_startoff(ep);
3393 blockcount = xfs_bmbt_get_blockcount(ep);
3394 if (bno < startoff) {
3395 high = idx - 1;
3396 } else if (bno >= startoff + blockcount) {
3397 low = idx + 1;
3398 } else {
3399 /* Convert back to file-based extent index */
3400 if (ifp->if_flags & XFS_IFEXTIREC) {
3401 idx += erp->er_extoff;
3402 }
3403 *idxp = idx;
3404 return ep;
3405 }
3406 }
3407 /* Convert back to file-based extent index */
3408 if (ifp->if_flags & XFS_IFEXTIREC) {
3409 idx += erp->er_extoff;
3410 }
3411 if (bno >= startoff + blockcount) {
3412 if (++idx == nextents) {
3413 ep = NULL;
3414 } else {
3415 ep = xfs_iext_get_ext(ifp, idx);
3416 }
3417 }
3418 *idxp = idx;
3419 return ep;
3420}
3421
0293ce3a
MK
3422/*
3423 * Return a pointer to the indirection array entry containing the
3424 * extent record for filesystem block bno. Store the index of the
3425 * target irec in *erp_idxp.
3426 */
8867bc9b 3427xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
3428xfs_iext_bno_to_irec(
3429 xfs_ifork_t *ifp, /* inode fork pointer */
3430 xfs_fileoff_t bno, /* block number to search for */
3431 int *erp_idxp) /* irec index of target ext list */
3432{
3433 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3434 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 3435 int erp_idx; /* indirection array index */
0293ce3a
MK
3436 int nlists; /* number of extent irec's (lists) */
3437 int high; /* binary search upper limit */
3438 int low; /* binary search lower limit */
3439
3440 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3441 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3442 erp_idx = 0;
3443 low = 0;
3444 high = nlists - 1;
3445 while (low <= high) {
3446 erp_idx = (low + high) >> 1;
3447 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3448 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3449 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3450 high = erp_idx - 1;
3451 } else if (erp_next && bno >=
3452 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3453 low = erp_idx + 1;
3454 } else {
3455 break;
3456 }
3457 }
3458 *erp_idxp = erp_idx;
3459 return erp;
3460}
3461
3462/*
3463 * Return a pointer to the indirection array entry containing the
3464 * extent record at file extent index *idxp. Store the index of the
3465 * target irec in *erp_idxp and store the page index of the target
3466 * extent record in *idxp.
3467 */
3468xfs_ext_irec_t *
3469xfs_iext_idx_to_irec(
3470 xfs_ifork_t *ifp, /* inode fork pointer */
3471 xfs_extnum_t *idxp, /* extent index (file -> page) */
3472 int *erp_idxp, /* pointer to target irec */
3473 int realloc) /* new bytes were just added */
3474{
3475 xfs_ext_irec_t *prev; /* pointer to previous irec */
3476 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3477 int erp_idx; /* indirection array index */
3478 int nlists; /* number of irec's (ex lists) */
3479 int high; /* binary search upper limit */
3480 int low; /* binary search lower limit */
3481 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3482
3483 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
87bef181
CH
3484 ASSERT(page_idx >= 0);
3485 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3486 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3487
0293ce3a
MK
3488 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3489 erp_idx = 0;
3490 low = 0;
3491 high = nlists - 1;
3492
3493 /* Binary search extent irec's */
3494 while (low <= high) {
3495 erp_idx = (low + high) >> 1;
3496 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3497 prev = erp_idx > 0 ? erp - 1 : NULL;
3498 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3499 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3500 high = erp_idx - 1;
3501 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3502 (page_idx == erp->er_extoff + erp->er_extcount &&
3503 !realloc)) {
3504 low = erp_idx + 1;
3505 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3506 erp->er_extcount == XFS_LINEAR_EXTS) {
3507 ASSERT(realloc);
3508 page_idx = 0;
3509 erp_idx++;
3510 erp = erp_idx < nlists ? erp + 1 : NULL;
3511 break;
3512 } else {
3513 page_idx -= erp->er_extoff;
3514 break;
3515 }
3516 }
3517 *idxp = page_idx;
3518 *erp_idxp = erp_idx;
3519 return(erp);
3520}
3521
3522/*
3523 * Allocate and initialize an indirection array once the space needed
3524 * for incore extents increases above XFS_IEXT_BUFSZ.
3525 */
3526void
3527xfs_iext_irec_init(
3528 xfs_ifork_t *ifp) /* inode fork pointer */
3529{
3530 xfs_ext_irec_t *erp; /* indirection array pointer */
3531 xfs_extnum_t nextents; /* number of extents in file */
3532
3533 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3534 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3535 ASSERT(nextents <= XFS_LINEAR_EXTS);
3536
6785073b 3537 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
3538
3539 if (nextents == 0) {
6785073b 3540 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3541 } else if (!ifp->if_real_bytes) {
3542 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3543 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3544 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3545 }
3546 erp->er_extbuf = ifp->if_u1.if_extents;
3547 erp->er_extcount = nextents;
3548 erp->er_extoff = 0;
3549
3550 ifp->if_flags |= XFS_IFEXTIREC;
3551 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3552 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3553 ifp->if_u1.if_ext_irec = erp;
3554
3555 return;
3556}
3557
3558/*
3559 * Allocate and initialize a new entry in the indirection array.
3560 */
3561xfs_ext_irec_t *
3562xfs_iext_irec_new(
3563 xfs_ifork_t *ifp, /* inode fork pointer */
3564 int erp_idx) /* index for new irec */
3565{
3566 xfs_ext_irec_t *erp; /* indirection array pointer */
3567 int i; /* loop counter */
3568 int nlists; /* number of irec's (ex lists) */
3569
3570 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3571 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3572
3573 /* Resize indirection array */
3574 xfs_iext_realloc_indirect(ifp, ++nlists *
3575 sizeof(xfs_ext_irec_t));
3576 /*
3577 * Move records down in the array so the
3578 * new page can use erp_idx.
3579 */
3580 erp = ifp->if_u1.if_ext_irec;
3581 for (i = nlists - 1; i > erp_idx; i--) {
3582 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3583 }
3584 ASSERT(i == erp_idx);
3585
3586 /* Initialize new extent record */
3587 erp = ifp->if_u1.if_ext_irec;
6785073b 3588 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3589 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3590 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3591 erp[erp_idx].er_extcount = 0;
3592 erp[erp_idx].er_extoff = erp_idx > 0 ?
3593 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3594 return (&erp[erp_idx]);
3595}
3596
3597/*
3598 * Remove a record from the indirection array.
3599 */
3600void
3601xfs_iext_irec_remove(
3602 xfs_ifork_t *ifp, /* inode fork pointer */
3603 int erp_idx) /* irec index to remove */
3604{
3605 xfs_ext_irec_t *erp; /* indirection array pointer */
3606 int i; /* loop counter */
3607 int nlists; /* number of irec's (ex lists) */
3608
3609 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3610 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3611 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3612 if (erp->er_extbuf) {
3613 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3614 -erp->er_extcount);
f0e2d93c 3615 kmem_free(erp->er_extbuf);
0293ce3a
MK
3616 }
3617 /* Compact extent records */
3618 erp = ifp->if_u1.if_ext_irec;
3619 for (i = erp_idx; i < nlists - 1; i++) {
3620 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3621 }
3622 /*
3623 * Manually free the last extent record from the indirection
3624 * array. A call to xfs_iext_realloc_indirect() with a size
3625 * of zero would result in a call to xfs_iext_destroy() which
3626 * would in turn call this function again, creating a nasty
3627 * infinite loop.
3628 */
3629 if (--nlists) {
3630 xfs_iext_realloc_indirect(ifp,
3631 nlists * sizeof(xfs_ext_irec_t));
3632 } else {
f0e2d93c 3633 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3634 }
3635 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3636}
3637
3638/*
3639 * This is called to clean up large amounts of unused memory allocated
3640 * by the indirection array. Before compacting anything though, verify
3641 * that the indirection array is still needed and switch back to the
3642 * linear extent list (or even the inline buffer) if possible. The
3643 * compaction policy is as follows:
3644 *
3645 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 3646 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
3647 * No Compaction: Extents occupy at least 50% of allocated space
3648 */
3649void
3650xfs_iext_irec_compact(
3651 xfs_ifork_t *ifp) /* inode fork pointer */
3652{
3653 xfs_extnum_t nextents; /* number of extents in file */
3654 int nlists; /* number of irec's (ex lists) */
3655
3656 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3657 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3658 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3659
3660 if (nextents == 0) {
3661 xfs_iext_destroy(ifp);
3662 } else if (nextents <= XFS_INLINE_EXTS) {
3663 xfs_iext_indirect_to_direct(ifp);
3664 xfs_iext_direct_to_inline(ifp, nextents);
3665 } else if (nextents <= XFS_LINEAR_EXTS) {
3666 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
3667 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3668 xfs_iext_irec_compact_pages(ifp);
3669 }
3670}
3671
3672/*
3673 * Combine extents from neighboring extent pages.
3674 */
3675void
3676xfs_iext_irec_compact_pages(
3677 xfs_ifork_t *ifp) /* inode fork pointer */
3678{
3679 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3680 int erp_idx = 0; /* indirection array index */
3681 int nlists; /* number of irec's (ex lists) */
3682
3683 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3684 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3685 while (erp_idx < nlists - 1) {
3686 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3687 erp_next = erp + 1;
3688 if (erp_next->er_extcount <=
3689 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 3690 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
3691 erp_next->er_extbuf, erp_next->er_extcount *
3692 sizeof(xfs_bmbt_rec_t));
3693 erp->er_extcount += erp_next->er_extcount;
3694 /*
3695 * Free page before removing extent record
3696 * so er_extoffs don't get modified in
3697 * xfs_iext_irec_remove.
3698 */
f0e2d93c 3699 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
3700 erp_next->er_extbuf = NULL;
3701 xfs_iext_irec_remove(ifp, erp_idx + 1);
3702 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3703 } else {
3704 erp_idx++;
3705 }
3706 }
3707}
3708
0293ce3a
MK
3709/*
3710 * This is called to update the er_extoff field in the indirection
3711 * array when extents have been added or removed from one of the
3712 * extent lists. erp_idx contains the irec index to begin updating
3713 * at and ext_diff contains the number of extents that were added
3714 * or removed.
3715 */
3716void
3717xfs_iext_irec_update_extoffs(
3718 xfs_ifork_t *ifp, /* inode fork pointer */
3719 int erp_idx, /* irec index to update */
3720 int ext_diff) /* number of new extents */
3721{
3722 int i; /* loop counter */
3723 int nlists; /* number of irec's (ex lists */
3724
3725 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3726 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3727 for (i = erp_idx; i < nlists; i++) {
3728 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3729 }
3730}
This page took 0.774401 seconds and 5 git commands to generate.