[XFS] kill xfs_ialloc_log_di
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451
NS
25#include "xfs_inum.h"
26#include "xfs_imap.h"
1da177e4
LT
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
29#include "xfs_sb.h"
30#include "xfs_ag.h"
1da177e4
LT
31#include "xfs_dir2.h"
32#include "xfs_dmapi.h"
33#include "xfs_mount.h"
1da177e4 34#include "xfs_bmap_btree.h"
a844f451 35#include "xfs_alloc_btree.h"
1da177e4 36#include "xfs_ialloc_btree.h"
1da177e4 37#include "xfs_dir2_sf.h"
a844f451 38#include "xfs_attr_sf.h"
1da177e4 39#include "xfs_dinode.h"
1da177e4 40#include "xfs_inode.h"
1da177e4 41#include "xfs_buf_item.h"
a844f451
NS
42#include "xfs_inode_item.h"
43#include "xfs_btree.h"
8c4ed633 44#include "xfs_btree_trace.h"
a844f451
NS
45#include "xfs_alloc.h"
46#include "xfs_ialloc.h"
47#include "xfs_bmap.h"
1da177e4
LT
48#include "xfs_rw.h"
49#include "xfs_error.h"
1da177e4
LT
50#include "xfs_utils.h"
51#include "xfs_dir2_trace.h"
52#include "xfs_quota.h"
1da177e4 53#include "xfs_acl.h"
2a82b8be 54#include "xfs_filestream.h"
739bfb2a 55#include "xfs_vnodeops.h"
1da177e4 56
1da177e4
LT
57kmem_zone_t *xfs_ifork_zone;
58kmem_zone_t *xfs_inode_zone;
1da177e4
LT
59
60/*
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define XFS_ITRUNC_MAX_EXTENTS 2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
1da177e4
LT
71#ifdef DEBUG
72/*
73 * Make sure that the extents in the given memory buffer
74 * are valid.
75 */
76STATIC void
77xfs_validate_extents(
4eea22f0 78 xfs_ifork_t *ifp,
1da177e4 79 int nrecs,
1da177e4
LT
80 xfs_exntfmt_t fmt)
81{
82 xfs_bmbt_irec_t irec;
a6f64d4a 83 xfs_bmbt_rec_host_t rec;
1da177e4
LT
84 int i;
85
86 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
87 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
88 rec.l0 = get_unaligned(&ep->l0);
89 rec.l1 = get_unaligned(&ep->l1);
90 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
91 if (fmt == XFS_EXTFMT_NOSTATE)
92 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
93 }
94}
95#else /* DEBUG */
a6f64d4a 96#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
97#endif /* DEBUG */
98
99/*
100 * Check that none of the inode's in the buffer have a next
101 * unlinked field of 0.
102 */
103#if defined(DEBUG)
104void
105xfs_inobp_check(
106 xfs_mount_t *mp,
107 xfs_buf_t *bp)
108{
109 int i;
110 int j;
111 xfs_dinode_t *dip;
112
113 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
114
115 for (i = 0; i < j; i++) {
116 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
117 i * mp->m_sb.sb_inodesize);
118 if (!dip->di_next_unlinked) {
119 xfs_fs_cmn_err(CE_ALERT, mp,
120 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 bp);
122 ASSERT(dip->di_next_unlinked);
123 }
124 }
125}
126#endif
127
4ae29b43
DC
128/*
129 * Find the buffer associated with the given inode map
130 * We do basic validation checks on the buffer once it has been
131 * retrieved from disk.
132 */
133STATIC int
134xfs_imap_to_bp(
135 xfs_mount_t *mp,
136 xfs_trans_t *tp,
137 xfs_imap_t *imap,
138 xfs_buf_t **bpp,
139 uint buf_flags,
140 uint imap_flags)
141{
142 int error;
143 int i;
144 int ni;
145 xfs_buf_t *bp;
146
147 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 148 (int)imap->im_len, buf_flags, &bp);
4ae29b43 149 if (error) {
a3f74ffb
DC
150 if (error != EAGAIN) {
151 cmn_err(CE_WARN,
152 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
4ae29b43
DC
153 "an error %d on %s. Returning error.",
154 error, mp->m_fsname);
a3f74ffb
DC
155 } else {
156 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
157 }
4ae29b43
DC
158 return error;
159 }
160
161 /*
162 * Validate the magic number and version of every inode in the buffer
163 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
164 */
165#ifdef DEBUG
166 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
167#else /* usual case */
168 ni = 1;
169#endif
170
171 for (i = 0; i < ni; i++) {
172 int di_ok;
173 xfs_dinode_t *dip;
174
175 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
176 (i << mp->m_sb.sb_inodelog));
177 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
178 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
179 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
180 XFS_ERRTAG_ITOBP_INOTOBP,
181 XFS_RANDOM_ITOBP_INOTOBP))) {
182 if (imap_flags & XFS_IMAP_BULKSTAT) {
183 xfs_trans_brelse(tp, bp);
184 return XFS_ERROR(EINVAL);
185 }
186 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
187 XFS_ERRLEVEL_HIGH, mp, dip);
188#ifdef DEBUG
189 cmn_err(CE_PANIC,
190 "Device %s - bad inode magic/vsn "
191 "daddr %lld #%d (magic=%x)",
192 XFS_BUFTARG_NAME(mp->m_ddev_targp),
193 (unsigned long long)imap->im_blkno, i,
194 be16_to_cpu(dip->di_core.di_magic));
195#endif
196 xfs_trans_brelse(tp, bp);
197 return XFS_ERROR(EFSCORRUPTED);
198 }
199 }
200
201 xfs_inobp_check(mp, bp);
202
203 /*
204 * Mark the buffer as an inode buffer now that it looks good
205 */
206 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
207
208 *bpp = bp;
209 return 0;
210}
211
1da177e4
LT
212/*
213 * This routine is called to map an inode number within a file
214 * system to the buffer containing the on-disk version of the
215 * inode. It returns a pointer to the buffer containing the
216 * on-disk inode in the bpp parameter, and in the dip parameter
217 * it returns a pointer to the on-disk inode within that buffer.
218 *
219 * If a non-zero error is returned, then the contents of bpp and
220 * dipp are undefined.
221 *
222 * Use xfs_imap() to determine the size and location of the
223 * buffer to read from disk.
224 */
c679eef0 225int
1da177e4
LT
226xfs_inotobp(
227 xfs_mount_t *mp,
228 xfs_trans_t *tp,
229 xfs_ino_t ino,
230 xfs_dinode_t **dipp,
231 xfs_buf_t **bpp,
c679eef0
CH
232 int *offset,
233 uint imap_flags)
1da177e4 234{
1da177e4
LT
235 xfs_imap_t imap;
236 xfs_buf_t *bp;
237 int error;
1da177e4 238
1da177e4 239 imap.im_blkno = 0;
c679eef0 240 error = xfs_imap(mp, tp, ino, &imap, imap_flags | XFS_IMAP_LOOKUP);
4ae29b43 241 if (error)
1da177e4 242 return error;
1da177e4 243
c679eef0 244 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
4ae29b43 245 if (error)
1da177e4 246 return error;
1da177e4 247
1da177e4
LT
248 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
249 *bpp = bp;
250 *offset = imap.im_boffset;
251 return 0;
252}
253
254
255/*
256 * This routine is called to map an inode to the buffer containing
257 * the on-disk version of the inode. It returns a pointer to the
258 * buffer containing the on-disk inode in the bpp parameter, and in
259 * the dip parameter it returns a pointer to the on-disk inode within
260 * that buffer.
261 *
262 * If a non-zero error is returned, then the contents of bpp and
263 * dipp are undefined.
264 *
265 * If the inode is new and has not yet been initialized, use xfs_imap()
266 * to determine the size and location of the buffer to read from disk.
267 * If the inode has already been mapped to its buffer and read in once,
268 * then use the mapping information stored in the inode rather than
269 * calling xfs_imap(). This allows us to avoid the overhead of looking
270 * at the inode btree for small block file systems (see xfs_dilocate()).
271 * We can tell whether the inode has been mapped in before by comparing
272 * its disk block address to 0. Only uninitialized inodes will have
273 * 0 for the disk block address.
274 */
275int
276xfs_itobp(
277 xfs_mount_t *mp,
278 xfs_trans_t *tp,
279 xfs_inode_t *ip,
280 xfs_dinode_t **dipp,
281 xfs_buf_t **bpp,
b12dd342 282 xfs_daddr_t bno,
a3f74ffb
DC
283 uint imap_flags,
284 uint buf_flags)
1da177e4 285{
4d1a2ed3 286 xfs_imap_t imap;
1da177e4
LT
287 xfs_buf_t *bp;
288 int error;
1da177e4
LT
289
290 if (ip->i_blkno == (xfs_daddr_t)0) {
1da177e4 291 imap.im_blkno = bno;
4ae29b43
DC
292 error = xfs_imap(mp, tp, ip->i_ino, &imap,
293 XFS_IMAP_LOOKUP | imap_flags);
294 if (error)
1da177e4 295 return error;
1da177e4 296
1da177e4
LT
297 /*
298 * Fill in the fields in the inode that will be used to
299 * map the inode to its buffer from now on.
300 */
301 ip->i_blkno = imap.im_blkno;
302 ip->i_len = imap.im_len;
303 ip->i_boffset = imap.im_boffset;
304 } else {
305 /*
306 * We've already mapped the inode once, so just use the
307 * mapping that we saved the first time.
308 */
309 imap.im_blkno = ip->i_blkno;
310 imap.im_len = ip->i_len;
311 imap.im_boffset = ip->i_boffset;
312 }
313 ASSERT(bno == 0 || bno == imap.im_blkno);
314
a3f74ffb 315 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
4ae29b43 316 if (error)
1da177e4 317 return error;
1da177e4 318
a3f74ffb
DC
319 if (!bp) {
320 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
321 ASSERT(tp == NULL);
322 *bpp = NULL;
323 return EAGAIN;
324 }
325
1da177e4
LT
326 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
327 *bpp = bp;
328 return 0;
329}
330
331/*
332 * Move inode type and inode format specific information from the
333 * on-disk inode to the in-core inode. For fifos, devs, and sockets
334 * this means set if_rdev to the proper value. For files, directories,
335 * and symlinks this means to bring in the in-line data or extent
336 * pointers. For a file in B-tree format, only the root is immediately
337 * brought in-core. The rest will be in-lined in if_extents when it
338 * is first referenced (see xfs_iread_extents()).
339 */
340STATIC int
341xfs_iformat(
342 xfs_inode_t *ip,
343 xfs_dinode_t *dip)
344{
345 xfs_attr_shortform_t *atp;
346 int size;
347 int error;
348 xfs_fsize_t di_size;
349 ip->i_df.if_ext_max =
350 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
351 error = 0;
352
347d1c01
CH
353 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
354 be16_to_cpu(dip->di_core.di_anextents) >
355 be64_to_cpu(dip->di_core.di_nblocks))) {
3762ec6b
NS
356 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
357 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 358 (unsigned long long)ip->i_ino,
347d1c01
CH
359 (int)(be32_to_cpu(dip->di_core.di_nextents) +
360 be16_to_cpu(dip->di_core.di_anextents)),
1da177e4 361 (unsigned long long)
347d1c01 362 be64_to_cpu(dip->di_core.di_nblocks));
1da177e4
LT
363 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
364 ip->i_mount, dip);
365 return XFS_ERROR(EFSCORRUPTED);
366 }
367
347d1c01 368 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
369 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
370 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 371 (unsigned long long)ip->i_ino,
347d1c01 372 dip->di_core.di_forkoff);
1da177e4
LT
373 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
374 ip->i_mount, dip);
375 return XFS_ERROR(EFSCORRUPTED);
376 }
377
378 switch (ip->i_d.di_mode & S_IFMT) {
379 case S_IFIFO:
380 case S_IFCHR:
381 case S_IFBLK:
382 case S_IFSOCK:
347d1c01 383 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
384 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
385 ip->i_mount, dip);
386 return XFS_ERROR(EFSCORRUPTED);
387 }
388 ip->i_d.di_size = 0;
ba87ea69 389 ip->i_size = 0;
347d1c01 390 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
1da177e4
LT
391 break;
392
393 case S_IFREG:
394 case S_IFLNK:
395 case S_IFDIR:
347d1c01 396 switch (dip->di_core.di_format) {
1da177e4
LT
397 case XFS_DINODE_FMT_LOCAL:
398 /*
399 * no local regular files yet
400 */
347d1c01 401 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
402 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
403 "corrupt inode %Lu "
404 "(local format for regular file).",
1da177e4
LT
405 (unsigned long long) ip->i_ino);
406 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
407 XFS_ERRLEVEL_LOW,
408 ip->i_mount, dip);
409 return XFS_ERROR(EFSCORRUPTED);
410 }
411
347d1c01 412 di_size = be64_to_cpu(dip->di_core.di_size);
1da177e4 413 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
414 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
415 "corrupt inode %Lu "
416 "(bad size %Ld for local inode).",
1da177e4
LT
417 (unsigned long long) ip->i_ino,
418 (long long) di_size);
419 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
420 XFS_ERRLEVEL_LOW,
421 ip->i_mount, dip);
422 return XFS_ERROR(EFSCORRUPTED);
423 }
424
425 size = (int)di_size;
426 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
427 break;
428 case XFS_DINODE_FMT_EXTENTS:
429 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
430 break;
431 case XFS_DINODE_FMT_BTREE:
432 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
433 break;
434 default:
435 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
436 ip->i_mount);
437 return XFS_ERROR(EFSCORRUPTED);
438 }
439 break;
440
441 default:
442 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
443 return XFS_ERROR(EFSCORRUPTED);
444 }
445 if (error) {
446 return error;
447 }
448 if (!XFS_DFORK_Q(dip))
449 return 0;
450 ASSERT(ip->i_afp == NULL);
451 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
452 ip->i_afp->if_ext_max =
453 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
347d1c01 454 switch (dip->di_core.di_aformat) {
1da177e4
LT
455 case XFS_DINODE_FMT_LOCAL:
456 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 457 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
458 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
459 break;
460 case XFS_DINODE_FMT_EXTENTS:
461 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
462 break;
463 case XFS_DINODE_FMT_BTREE:
464 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
465 break;
466 default:
467 error = XFS_ERROR(EFSCORRUPTED);
468 break;
469 }
470 if (error) {
471 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
472 ip->i_afp = NULL;
473 xfs_idestroy_fork(ip, XFS_DATA_FORK);
474 }
475 return error;
476}
477
478/*
479 * The file is in-lined in the on-disk inode.
480 * If it fits into if_inline_data, then copy
481 * it there, otherwise allocate a buffer for it
482 * and copy the data there. Either way, set
483 * if_data to point at the data.
484 * If we allocate a buffer for the data, make
485 * sure that its size is a multiple of 4 and
486 * record the real size in i_real_bytes.
487 */
488STATIC int
489xfs_iformat_local(
490 xfs_inode_t *ip,
491 xfs_dinode_t *dip,
492 int whichfork,
493 int size)
494{
495 xfs_ifork_t *ifp;
496 int real_size;
497
498 /*
499 * If the size is unreasonable, then something
500 * is wrong and we just bail out rather than crash in
501 * kmem_alloc() or memcpy() below.
502 */
503 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
504 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
505 "corrupt inode %Lu "
506 "(bad size %d for local fork, size = %d).",
1da177e4
LT
507 (unsigned long long) ip->i_ino, size,
508 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
509 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
510 ip->i_mount, dip);
511 return XFS_ERROR(EFSCORRUPTED);
512 }
513 ifp = XFS_IFORK_PTR(ip, whichfork);
514 real_size = 0;
515 if (size == 0)
516 ifp->if_u1.if_data = NULL;
517 else if (size <= sizeof(ifp->if_u2.if_inline_data))
518 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
519 else {
520 real_size = roundup(size, 4);
521 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
522 }
523 ifp->if_bytes = size;
524 ifp->if_real_bytes = real_size;
525 if (size)
526 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
527 ifp->if_flags &= ~XFS_IFEXTENTS;
528 ifp->if_flags |= XFS_IFINLINE;
529 return 0;
530}
531
532/*
533 * The file consists of a set of extents all
534 * of which fit into the on-disk inode.
535 * If there are few enough extents to fit into
536 * the if_inline_ext, then copy them there.
537 * Otherwise allocate a buffer for them and copy
538 * them into it. Either way, set if_extents
539 * to point at the extents.
540 */
541STATIC int
542xfs_iformat_extents(
543 xfs_inode_t *ip,
544 xfs_dinode_t *dip,
545 int whichfork)
546{
a6f64d4a 547 xfs_bmbt_rec_t *dp;
1da177e4
LT
548 xfs_ifork_t *ifp;
549 int nex;
1da177e4
LT
550 int size;
551 int i;
552
553 ifp = XFS_IFORK_PTR(ip, whichfork);
554 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
555 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
556
557 /*
558 * If the number of extents is unreasonable, then something
559 * is wrong and we just bail out rather than crash in
560 * kmem_alloc() or memcpy() below.
561 */
562 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
563 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
564 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
565 (unsigned long long) ip->i_ino, nex);
566 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
567 ip->i_mount, dip);
568 return XFS_ERROR(EFSCORRUPTED);
569 }
570
4eea22f0 571 ifp->if_real_bytes = 0;
1da177e4
LT
572 if (nex == 0)
573 ifp->if_u1.if_extents = NULL;
574 else if (nex <= XFS_INLINE_EXTS)
575 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
576 else
577 xfs_iext_add(ifp, 0, nex);
578
1da177e4 579 ifp->if_bytes = size;
1da177e4
LT
580 if (size) {
581 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 582 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 583 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 584 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
585 ep->l0 = get_unaligned_be64(&dp->l0);
586 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 587 }
3a59c94c 588 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
589 if (whichfork != XFS_DATA_FORK ||
590 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
591 if (unlikely(xfs_check_nostate_extents(
4eea22f0 592 ifp, 0, nex))) {
1da177e4
LT
593 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
594 XFS_ERRLEVEL_LOW,
595 ip->i_mount);
596 return XFS_ERROR(EFSCORRUPTED);
597 }
598 }
599 ifp->if_flags |= XFS_IFEXTENTS;
600 return 0;
601}
602
603/*
604 * The file has too many extents to fit into
605 * the inode, so they are in B-tree format.
606 * Allocate a buffer for the root of the B-tree
607 * and copy the root into it. The i_extents
608 * field will remain NULL until all of the
609 * extents are read in (when they are needed).
610 */
611STATIC int
612xfs_iformat_btree(
613 xfs_inode_t *ip,
614 xfs_dinode_t *dip,
615 int whichfork)
616{
617 xfs_bmdr_block_t *dfp;
618 xfs_ifork_t *ifp;
619 /* REFERENCED */
620 int nrecs;
621 int size;
622
623 ifp = XFS_IFORK_PTR(ip, whichfork);
624 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
625 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 626 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
627
628 /*
629 * blow out if -- fork has less extents than can fit in
630 * fork (fork shouldn't be a btree format), root btree
631 * block has more records than can fit into the fork,
632 * or the number of extents is greater than the number of
633 * blocks.
634 */
635 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
636 || XFS_BMDR_SPACE_CALC(nrecs) >
637 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
638 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
639 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
640 "corrupt inode %Lu (btree).",
1da177e4
LT
641 (unsigned long long) ip->i_ino);
642 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
643 ip->i_mount);
644 return XFS_ERROR(EFSCORRUPTED);
645 }
646
647 ifp->if_broot_bytes = size;
648 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
649 ASSERT(ifp->if_broot != NULL);
650 /*
651 * Copy and convert from the on-disk structure
652 * to the in-memory structure.
653 */
60197e8d
CH
654 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
655 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
656 ifp->if_broot, size);
1da177e4
LT
657 ifp->if_flags &= ~XFS_IFEXTENTS;
658 ifp->if_flags |= XFS_IFBROOT;
659
660 return 0;
661}
662
1da177e4 663void
347d1c01
CH
664xfs_dinode_from_disk(
665 xfs_icdinode_t *to,
666 xfs_dinode_core_t *from)
1da177e4 667{
347d1c01
CH
668 to->di_magic = be16_to_cpu(from->di_magic);
669 to->di_mode = be16_to_cpu(from->di_mode);
670 to->di_version = from ->di_version;
671 to->di_format = from->di_format;
672 to->di_onlink = be16_to_cpu(from->di_onlink);
673 to->di_uid = be32_to_cpu(from->di_uid);
674 to->di_gid = be32_to_cpu(from->di_gid);
675 to->di_nlink = be32_to_cpu(from->di_nlink);
676 to->di_projid = be16_to_cpu(from->di_projid);
677 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
678 to->di_flushiter = be16_to_cpu(from->di_flushiter);
679 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
680 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
681 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
682 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
683 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
684 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
685 to->di_size = be64_to_cpu(from->di_size);
686 to->di_nblocks = be64_to_cpu(from->di_nblocks);
687 to->di_extsize = be32_to_cpu(from->di_extsize);
688 to->di_nextents = be32_to_cpu(from->di_nextents);
689 to->di_anextents = be16_to_cpu(from->di_anextents);
690 to->di_forkoff = from->di_forkoff;
691 to->di_aformat = from->di_aformat;
692 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
693 to->di_dmstate = be16_to_cpu(from->di_dmstate);
694 to->di_flags = be16_to_cpu(from->di_flags);
695 to->di_gen = be32_to_cpu(from->di_gen);
696}
697
698void
699xfs_dinode_to_disk(
700 xfs_dinode_core_t *to,
701 xfs_icdinode_t *from)
702{
703 to->di_magic = cpu_to_be16(from->di_magic);
704 to->di_mode = cpu_to_be16(from->di_mode);
705 to->di_version = from ->di_version;
706 to->di_format = from->di_format;
707 to->di_onlink = cpu_to_be16(from->di_onlink);
708 to->di_uid = cpu_to_be32(from->di_uid);
709 to->di_gid = cpu_to_be32(from->di_gid);
710 to->di_nlink = cpu_to_be32(from->di_nlink);
711 to->di_projid = cpu_to_be16(from->di_projid);
712 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
713 to->di_flushiter = cpu_to_be16(from->di_flushiter);
714 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
715 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
716 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
717 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
718 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
719 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
720 to->di_size = cpu_to_be64(from->di_size);
721 to->di_nblocks = cpu_to_be64(from->di_nblocks);
722 to->di_extsize = cpu_to_be32(from->di_extsize);
723 to->di_nextents = cpu_to_be32(from->di_nextents);
724 to->di_anextents = cpu_to_be16(from->di_anextents);
725 to->di_forkoff = from->di_forkoff;
726 to->di_aformat = from->di_aformat;
727 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
728 to->di_dmstate = cpu_to_be16(from->di_dmstate);
729 to->di_flags = cpu_to_be16(from->di_flags);
730 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
731}
732
733STATIC uint
734_xfs_dic2xflags(
1da177e4
LT
735 __uint16_t di_flags)
736{
737 uint flags = 0;
738
739 if (di_flags & XFS_DIFLAG_ANY) {
740 if (di_flags & XFS_DIFLAG_REALTIME)
741 flags |= XFS_XFLAG_REALTIME;
742 if (di_flags & XFS_DIFLAG_PREALLOC)
743 flags |= XFS_XFLAG_PREALLOC;
744 if (di_flags & XFS_DIFLAG_IMMUTABLE)
745 flags |= XFS_XFLAG_IMMUTABLE;
746 if (di_flags & XFS_DIFLAG_APPEND)
747 flags |= XFS_XFLAG_APPEND;
748 if (di_flags & XFS_DIFLAG_SYNC)
749 flags |= XFS_XFLAG_SYNC;
750 if (di_flags & XFS_DIFLAG_NOATIME)
751 flags |= XFS_XFLAG_NOATIME;
752 if (di_flags & XFS_DIFLAG_NODUMP)
753 flags |= XFS_XFLAG_NODUMP;
754 if (di_flags & XFS_DIFLAG_RTINHERIT)
755 flags |= XFS_XFLAG_RTINHERIT;
756 if (di_flags & XFS_DIFLAG_PROJINHERIT)
757 flags |= XFS_XFLAG_PROJINHERIT;
758 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
759 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
760 if (di_flags & XFS_DIFLAG_EXTSIZE)
761 flags |= XFS_XFLAG_EXTSIZE;
762 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
763 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
764 if (di_flags & XFS_DIFLAG_NODEFRAG)
765 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
766 if (di_flags & XFS_DIFLAG_FILESTREAM)
767 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
768 }
769
770 return flags;
771}
772
773uint
774xfs_ip2xflags(
775 xfs_inode_t *ip)
776{
347d1c01 777 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 778
a916e2bd 779 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 780 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
781}
782
783uint
784xfs_dic2xflags(
45ba598e 785 xfs_dinode_t *dip)
1da177e4 786{
45ba598e
CH
787 xfs_dinode_core_t *dic = &dip->di_core;
788
347d1c01 789 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
45ba598e 790 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
791}
792
07c8f675
DC
793/*
794 * Allocate and initialise an xfs_inode.
795 */
c679eef0 796STATIC struct xfs_inode *
07c8f675
DC
797xfs_inode_alloc(
798 struct xfs_mount *mp,
799 xfs_ino_t ino)
800{
801 struct xfs_inode *ip;
802
803 /*
804 * if this didn't occur in transactions, we could use
805 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
806 * code up to do this anyway.
807 */
808 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
809 if (!ip)
810 return NULL;
811
812 ASSERT(atomic_read(&ip->i_iocount) == 0);
813 ASSERT(atomic_read(&ip->i_pincount) == 0);
814 ASSERT(!spin_is_locked(&ip->i_flags_lock));
11654513 815 ASSERT(completion_done(&ip->i_flush));
07c8f675 816
bf904248
DC
817 /*
818 * initialise the VFS inode here to get failures
819 * out of the way early.
820 */
821 if (!inode_init_always(mp->m_super, VFS_I(ip))) {
822 kmem_zone_free(xfs_inode_zone, ip);
823 return NULL;
824 }
825
826 /* initialise the xfs inode */
07c8f675
DC
827 ip->i_ino = ino;
828 ip->i_mount = mp;
829 ip->i_blkno = 0;
830 ip->i_len = 0;
831 ip->i_boffset =0;
832 ip->i_afp = NULL;
833 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
834 ip->i_flags = 0;
835 ip->i_update_core = 0;
836 ip->i_update_size = 0;
837 ip->i_delayed_blks = 0;
838 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
839 ip->i_size = 0;
840 ip->i_new_size = 0;
841
842 /*
843 * Initialize inode's trace buffers.
844 */
845#ifdef XFS_INODE_TRACE
846 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
847#endif
848#ifdef XFS_BMAP_TRACE
849 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
850#endif
8c4ed633 851#ifdef XFS_BTREE_TRACE
07c8f675
DC
852 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
853#endif
854#ifdef XFS_RW_TRACE
855 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
856#endif
857#ifdef XFS_ILOCK_TRACE
858 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
859#endif
860#ifdef XFS_DIR2_TRACE
861 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
862#endif
863
864 return ip;
865}
866
1da177e4
LT
867/*
868 * Given a mount structure and an inode number, return a pointer
c41564b5 869 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
870 * inode number.
871 *
872 * Initialize the inode's attributes and extent pointers if it
873 * already has them (it will not if the inode has no links).
874 */
875int
876xfs_iread(
877 xfs_mount_t *mp,
878 xfs_trans_t *tp,
879 xfs_ino_t ino,
880 xfs_inode_t **ipp,
745b1f47
NS
881 xfs_daddr_t bno,
882 uint imap_flags)
1da177e4
LT
883{
884 xfs_buf_t *bp;
885 xfs_dinode_t *dip;
886 xfs_inode_t *ip;
887 int error;
888
07c8f675
DC
889 ip = xfs_inode_alloc(mp, ino);
890 if (!ip)
891 return ENOMEM;
1da177e4
LT
892
893 /*
894 * Get pointer's to the on-disk inode and the buffer containing it.
895 * If the inode number refers to a block outside the file system
896 * then xfs_itobp() will return NULL. In this case we should
897 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
898 * know that this is a new incore inode.
899 */
a3f74ffb 900 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
9ed0451e
CH
901 if (error)
902 goto out_destroy_inode;
1da177e4 903
1da177e4
LT
904 /*
905 * If we got something that isn't an inode it means someone
906 * (nfs or dmi) has a stale handle.
907 */
347d1c01 908 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
1da177e4
LT
909#ifdef DEBUG
910 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
911 "dip->di_core.di_magic (0x%x) != "
912 "XFS_DINODE_MAGIC (0x%x)",
347d1c01 913 be16_to_cpu(dip->di_core.di_magic),
1da177e4
LT
914 XFS_DINODE_MAGIC);
915#endif /* DEBUG */
9ed0451e
CH
916 error = XFS_ERROR(EINVAL);
917 goto out_brelse;
1da177e4
LT
918 }
919
920 /*
921 * If the on-disk inode is already linked to a directory
922 * entry, copy all of the inode into the in-core inode.
923 * xfs_iformat() handles copying in the inode format
924 * specific information.
925 * Otherwise, just get the truly permanent information.
926 */
927 if (dip->di_core.di_mode) {
347d1c01 928 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
1da177e4
LT
929 error = xfs_iformat(ip, dip);
930 if (error) {
1da177e4
LT
931#ifdef DEBUG
932 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
933 "xfs_iformat() returned error %d",
934 error);
935#endif /* DEBUG */
9ed0451e 936 goto out_brelse;
1da177e4
LT
937 }
938 } else {
347d1c01
CH
939 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
940 ip->i_d.di_version = dip->di_core.di_version;
941 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
942 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
1da177e4
LT
943 /*
944 * Make sure to pull in the mode here as well in
945 * case the inode is released without being used.
946 * This ensures that xfs_inactive() will see that
947 * the inode is already free and not try to mess
948 * with the uninitialized part of it.
949 */
950 ip->i_d.di_mode = 0;
951 /*
952 * Initialize the per-fork minima and maxima for a new
953 * inode here. xfs_iformat will do it for old inodes.
954 */
955 ip->i_df.if_ext_max =
956 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
957 }
958
1da177e4
LT
959 /*
960 * The inode format changed when we moved the link count and
961 * made it 32 bits long. If this is an old format inode,
962 * convert it in memory to look like a new one. If it gets
963 * flushed to disk we will convert back before flushing or
964 * logging it. We zero out the new projid field and the old link
965 * count field. We'll handle clearing the pad field (the remains
966 * of the old uuid field) when we actually convert the inode to
967 * the new format. We don't change the version number so that we
968 * can distinguish this from a real new format inode.
969 */
970 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
971 ip->i_d.di_nlink = ip->i_d.di_onlink;
972 ip->i_d.di_onlink = 0;
973 ip->i_d.di_projid = 0;
974 }
975
976 ip->i_delayed_blks = 0;
ba87ea69 977 ip->i_size = ip->i_d.di_size;
1da177e4
LT
978
979 /*
980 * Mark the buffer containing the inode as something to keep
981 * around for a while. This helps to keep recently accessed
982 * meta-data in-core longer.
983 */
984 XFS_BUF_SET_REF(bp, XFS_INO_REF);
985
986 /*
987 * Use xfs_trans_brelse() to release the buffer containing the
988 * on-disk inode, because it was acquired with xfs_trans_read_buf()
989 * in xfs_itobp() above. If tp is NULL, this is just a normal
990 * brelse(). If we're within a transaction, then xfs_trans_brelse()
991 * will only release the buffer if it is not dirty within the
992 * transaction. It will be OK to release the buffer in this case,
993 * because inodes on disk are never destroyed and we will be
994 * locking the new in-core inode before putting it in the hash
995 * table where other processes can find it. Thus we don't have
996 * to worry about the inode being changed just because we released
997 * the buffer.
998 */
999 xfs_trans_brelse(tp, bp);
1000 *ipp = ip;
1001 return 0;
9ed0451e
CH
1002
1003 out_brelse:
1004 xfs_trans_brelse(tp, bp);
1005 out_destroy_inode:
1006 xfs_destroy_inode(ip);
1007 return error;
1da177e4
LT
1008}
1009
1010/*
1011 * Read in extents from a btree-format inode.
1012 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1013 */
1014int
1015xfs_iread_extents(
1016 xfs_trans_t *tp,
1017 xfs_inode_t *ip,
1018 int whichfork)
1019{
1020 int error;
1021 xfs_ifork_t *ifp;
4eea22f0 1022 xfs_extnum_t nextents;
1da177e4
LT
1023 size_t size;
1024
1025 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1026 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1027 ip->i_mount);
1028 return XFS_ERROR(EFSCORRUPTED);
1029 }
4eea22f0
MK
1030 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1031 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1032 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1033
1da177e4
LT
1034 /*
1035 * We know that the size is valid (it's checked in iformat_btree)
1036 */
1da177e4 1037 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1038 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1039 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1040 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1041 error = xfs_bmap_read_extents(tp, ip, whichfork);
1042 if (error) {
4eea22f0 1043 xfs_iext_destroy(ifp);
1da177e4
LT
1044 ifp->if_flags &= ~XFS_IFEXTENTS;
1045 return error;
1046 }
a6f64d4a 1047 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1048 return 0;
1049}
1050
1051/*
1052 * Allocate an inode on disk and return a copy of its in-core version.
1053 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1054 * appropriately within the inode. The uid and gid for the inode are
1055 * set according to the contents of the given cred structure.
1056 *
1057 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1058 * has a free inode available, call xfs_iget()
1059 * to obtain the in-core version of the allocated inode. Finally,
1060 * fill in the inode and log its initial contents. In this case,
1061 * ialloc_context would be set to NULL and call_again set to false.
1062 *
1063 * If xfs_dialloc() does not have an available inode,
1064 * it will replenish its supply by doing an allocation. Since we can
1065 * only do one allocation within a transaction without deadlocks, we
1066 * must commit the current transaction before returning the inode itself.
1067 * In this case, therefore, we will set call_again to true and return.
1068 * The caller should then commit the current transaction, start a new
1069 * transaction, and call xfs_ialloc() again to actually get the inode.
1070 *
1071 * To ensure that some other process does not grab the inode that
1072 * was allocated during the first call to xfs_ialloc(), this routine
1073 * also returns the [locked] bp pointing to the head of the freelist
1074 * as ialloc_context. The caller should hold this buffer across
1075 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1076 *
1077 * If we are allocating quota inodes, we do not have a parent inode
1078 * to attach to or associate with (i.e. pip == NULL) because they
1079 * are not linked into the directory structure - they are attached
1080 * directly to the superblock - and so have no parent.
1da177e4
LT
1081 */
1082int
1083xfs_ialloc(
1084 xfs_trans_t *tp,
1085 xfs_inode_t *pip,
1086 mode_t mode,
31b084ae 1087 xfs_nlink_t nlink,
1da177e4
LT
1088 xfs_dev_t rdev,
1089 cred_t *cr,
1090 xfs_prid_t prid,
1091 int okalloc,
1092 xfs_buf_t **ialloc_context,
1093 boolean_t *call_again,
1094 xfs_inode_t **ipp)
1095{
1096 xfs_ino_t ino;
1097 xfs_inode_t *ip;
1da177e4
LT
1098 uint flags;
1099 int error;
dff35fd4 1100 timespec_t tv;
bf904248 1101 int filestreams = 0;
1da177e4
LT
1102
1103 /*
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1106 */
b11f94d5 1107 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 1108 ialloc_context, call_again, &ino);
bf904248 1109 if (error)
1da177e4 1110 return error;
1da177e4
LT
1111 if (*call_again || ino == NULLFSINO) {
1112 *ipp = NULL;
1113 return 0;
1114 }
1115 ASSERT(*ialloc_context == NULL);
1116
1117 /*
1118 * Get the in-core inode with the lock held exclusively.
1119 * This is because we're setting fields here we need
1120 * to prevent others from looking at until we're done.
1121 */
1122 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1123 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
bf904248 1124 if (error)
1da177e4 1125 return error;
1da177e4
LT
1126 ASSERT(ip != NULL);
1127
1da177e4
LT
1128 ip->i_d.di_mode = (__uint16_t)mode;
1129 ip->i_d.di_onlink = 0;
1130 ip->i_d.di_nlink = nlink;
1131 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1132 ip->i_d.di_uid = current_fsuid();
1133 ip->i_d.di_gid = current_fsgid();
1da177e4
LT
1134 ip->i_d.di_projid = prid;
1135 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1136
1137 /*
1138 * If the superblock version is up to where we support new format
1139 * inodes and this is currently an old format inode, then change
1140 * the inode version number now. This way we only do the conversion
1141 * here rather than here and in the flush/logging code.
1142 */
62118709 1143 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1da177e4
LT
1144 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1145 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1146 /*
1147 * We've already zeroed the old link count, the projid field,
1148 * and the pad field.
1149 */
1150 }
1151
1152 /*
1153 * Project ids won't be stored on disk if we are using a version 1 inode.
1154 */
2a82b8be 1155 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1da177e4
LT
1156 xfs_bump_ino_vers2(tp, ip);
1157
bd186aa9 1158 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1159 ip->i_d.di_gid = pip->i_d.di_gid;
1160 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1161 ip->i_d.di_mode |= S_ISGID;
1162 }
1163 }
1164
1165 /*
1166 * If the group ID of the new file does not match the effective group
1167 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1168 * (and only if the irix_sgid_inherit compatibility variable is set).
1169 */
1170 if ((irix_sgid_inherit) &&
1171 (ip->i_d.di_mode & S_ISGID) &&
1172 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1173 ip->i_d.di_mode &= ~S_ISGID;
1174 }
1175
1176 ip->i_d.di_size = 0;
ba87ea69 1177 ip->i_size = 0;
1da177e4
LT
1178 ip->i_d.di_nextents = 0;
1179 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1180
1181 nanotime(&tv);
1182 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1183 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1184 ip->i_d.di_atime = ip->i_d.di_mtime;
1185 ip->i_d.di_ctime = ip->i_d.di_mtime;
1186
1da177e4
LT
1187 /*
1188 * di_gen will have been taken care of in xfs_iread.
1189 */
1190 ip->i_d.di_extsize = 0;
1191 ip->i_d.di_dmevmask = 0;
1192 ip->i_d.di_dmstate = 0;
1193 ip->i_d.di_flags = 0;
1194 flags = XFS_ILOG_CORE;
1195 switch (mode & S_IFMT) {
1196 case S_IFIFO:
1197 case S_IFCHR:
1198 case S_IFBLK:
1199 case S_IFSOCK:
1200 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1201 ip->i_df.if_u2.if_rdev = rdev;
1202 ip->i_df.if_flags = 0;
1203 flags |= XFS_ILOG_DEV;
1204 break;
1205 case S_IFREG:
bf904248
DC
1206 /*
1207 * we can't set up filestreams until after the VFS inode
1208 * is set up properly.
1209 */
1210 if (pip && xfs_inode_is_filestream(pip))
1211 filestreams = 1;
2a82b8be 1212 /* fall through */
1da177e4 1213 case S_IFDIR:
b11f94d5 1214 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1215 uint di_flags = 0;
1216
1217 if ((mode & S_IFMT) == S_IFDIR) {
1218 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1219 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1220 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1221 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1222 ip->i_d.di_extsize = pip->i_d.di_extsize;
1223 }
1224 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1225 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1226 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1227 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1228 di_flags |= XFS_DIFLAG_EXTSIZE;
1229 ip->i_d.di_extsize = pip->i_d.di_extsize;
1230 }
1da177e4
LT
1231 }
1232 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1233 xfs_inherit_noatime)
365ca83d 1234 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1235 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1236 xfs_inherit_nodump)
365ca83d 1237 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1238 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1239 xfs_inherit_sync)
365ca83d 1240 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1241 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1242 xfs_inherit_nosymlinks)
365ca83d
NS
1243 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1244 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1245 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1246 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1247 xfs_inherit_nodefrag)
1248 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1249 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1250 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1251 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1252 }
1253 /* FALLTHROUGH */
1254 case S_IFLNK:
1255 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1256 ip->i_df.if_flags = XFS_IFEXTENTS;
1257 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1258 ip->i_df.if_u1.if_extents = NULL;
1259 break;
1260 default:
1261 ASSERT(0);
1262 }
1263 /*
1264 * Attribute fork settings for new inode.
1265 */
1266 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1267 ip->i_d.di_anextents = 0;
1268
1269 /*
1270 * Log the new values stuffed into the inode.
1271 */
1272 xfs_trans_log_inode(tp, ip, flags);
1273
b83bd138 1274 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1275 xfs_setup_inode(ip);
1da177e4 1276
bf904248
DC
1277 /* now we have set up the vfs inode we can associate the filestream */
1278 if (filestreams) {
1279 error = xfs_filestream_associate(pip, ip);
1280 if (error < 0)
1281 return -error;
1282 if (!error)
1283 xfs_iflags_set(ip, XFS_IFILESTREAM);
1284 }
1285
1da177e4
LT
1286 *ipp = ip;
1287 return 0;
1288}
1289
1290/*
1291 * Check to make sure that there are no blocks allocated to the
1292 * file beyond the size of the file. We don't check this for
1293 * files with fixed size extents or real time extents, but we
1294 * at least do it for regular files.
1295 */
1296#ifdef DEBUG
1297void
1298xfs_isize_check(
1299 xfs_mount_t *mp,
1300 xfs_inode_t *ip,
1301 xfs_fsize_t isize)
1302{
1303 xfs_fileoff_t map_first;
1304 int nimaps;
1305 xfs_bmbt_irec_t imaps[2];
1306
1307 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1308 return;
1309
71ddabb9
ES
1310 if (XFS_IS_REALTIME_INODE(ip))
1311 return;
1312
1313 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1314 return;
1315
1316 nimaps = 2;
1317 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1318 /*
1319 * The filesystem could be shutting down, so bmapi may return
1320 * an error.
1321 */
1322 if (xfs_bmapi(NULL, ip, map_first,
1323 (XFS_B_TO_FSB(mp,
1324 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1325 map_first),
1326 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1327 NULL, NULL))
1da177e4
LT
1328 return;
1329 ASSERT(nimaps == 1);
1330 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1331}
1332#endif /* DEBUG */
1333
1334/*
1335 * Calculate the last possible buffered byte in a file. This must
1336 * include data that was buffered beyond the EOF by the write code.
1337 * This also needs to deal with overflowing the xfs_fsize_t type
1338 * which can happen for sizes near the limit.
1339 *
1340 * We also need to take into account any blocks beyond the EOF. It
1341 * may be the case that they were buffered by a write which failed.
1342 * In that case the pages will still be in memory, but the inode size
1343 * will never have been updated.
1344 */
1345xfs_fsize_t
1346xfs_file_last_byte(
1347 xfs_inode_t *ip)
1348{
1349 xfs_mount_t *mp;
1350 xfs_fsize_t last_byte;
1351 xfs_fileoff_t last_block;
1352 xfs_fileoff_t size_last_block;
1353 int error;
1354
579aa9ca 1355 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1da177e4
LT
1356
1357 mp = ip->i_mount;
1358 /*
1359 * Only check for blocks beyond the EOF if the extents have
1360 * been read in. This eliminates the need for the inode lock,
1361 * and it also saves us from looking when it really isn't
1362 * necessary.
1363 */
1364 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1365 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1366 XFS_DATA_FORK);
1367 if (error) {
1368 last_block = 0;
1369 }
1370 } else {
1371 last_block = 0;
1372 }
ba87ea69 1373 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1374 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1375
1376 last_byte = XFS_FSB_TO_B(mp, last_block);
1377 if (last_byte < 0) {
1378 return XFS_MAXIOFFSET(mp);
1379 }
1380 last_byte += (1 << mp->m_writeio_log);
1381 if (last_byte < 0) {
1382 return XFS_MAXIOFFSET(mp);
1383 }
1384 return last_byte;
1385}
1386
1387#if defined(XFS_RW_TRACE)
1388STATIC void
1389xfs_itrunc_trace(
1390 int tag,
1391 xfs_inode_t *ip,
1392 int flag,
1393 xfs_fsize_t new_size,
1394 xfs_off_t toss_start,
1395 xfs_off_t toss_finish)
1396{
1397 if (ip->i_rwtrace == NULL) {
1398 return;
1399 }
1400
1401 ktrace_enter(ip->i_rwtrace,
1402 (void*)((long)tag),
1403 (void*)ip,
1404 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1405 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1406 (void*)((long)flag),
1407 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1408 (void*)(unsigned long)(new_size & 0xffffffff),
1409 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1410 (void*)(unsigned long)(toss_start & 0xffffffff),
1411 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1412 (void*)(unsigned long)(toss_finish & 0xffffffff),
1413 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1414 (void*)(unsigned long)current_pid(),
1415 (void*)NULL,
1416 (void*)NULL,
1417 (void*)NULL);
1da177e4
LT
1418}
1419#else
1420#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1421#endif
1422
1423/*
1424 * Start the truncation of the file to new_size. The new size
1425 * must be smaller than the current size. This routine will
1426 * clear the buffer and page caches of file data in the removed
1427 * range, and xfs_itruncate_finish() will remove the underlying
1428 * disk blocks.
1429 *
1430 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1431 * must NOT have the inode lock held at all. This is because we're
1432 * calling into the buffer/page cache code and we can't hold the
1433 * inode lock when we do so.
1434 *
38e2299a
DC
1435 * We need to wait for any direct I/Os in flight to complete before we
1436 * proceed with the truncate. This is needed to prevent the extents
1437 * being read or written by the direct I/Os from being removed while the
1438 * I/O is in flight as there is no other method of synchronising
1439 * direct I/O with the truncate operation. Also, because we hold
1440 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1441 * started until the truncate completes and drops the lock. Essentially,
1442 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1443 * between direct I/Os and the truncate operation.
1444 *
1da177e4
LT
1445 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1446 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1447 * in the case that the caller is locking things out of order and
1448 * may not be able to call xfs_itruncate_finish() with the inode lock
1449 * held without dropping the I/O lock. If the caller must drop the
1450 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1451 * must be called again with all the same restrictions as the initial
1452 * call.
1453 */
d3cf2094 1454int
1da177e4
LT
1455xfs_itruncate_start(
1456 xfs_inode_t *ip,
1457 uint flags,
1458 xfs_fsize_t new_size)
1459{
1460 xfs_fsize_t last_byte;
1461 xfs_off_t toss_start;
1462 xfs_mount_t *mp;
d3cf2094 1463 int error = 0;
1da177e4 1464
579aa9ca 1465 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ba87ea69 1466 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1467 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1468 (flags == XFS_ITRUNC_MAYBE));
1469
1470 mp = ip->i_mount;
9fa8046f 1471
c734c79b 1472 /* wait for the completion of any pending DIOs */
d112f298 1473 if (new_size == 0 || new_size < ip->i_size)
c734c79b
LM
1474 vn_iowait(ip);
1475
1da177e4 1476 /*
67fcaa73 1477 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1478 * overlapping the region being removed. We have to use
67fcaa73 1479 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1480 * caller may not be able to finish the truncate without
1481 * dropping the inode's I/O lock. Make sure
1482 * to catch any pages brought in by buffers overlapping
1483 * the EOF by searching out beyond the isize by our
1484 * block size. We round new_size up to a block boundary
1485 * so that we don't toss things on the same block as
1486 * new_size but before it.
1487 *
67fcaa73 1488 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1489 * call remapf() over the same region if the file is mapped.
1490 * This frees up mapped file references to the pages in the
67fcaa73 1491 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1492 * that we get the latest mapped changes flushed out.
1493 */
1494 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1495 toss_start = XFS_FSB_TO_B(mp, toss_start);
1496 if (toss_start < 0) {
1497 /*
1498 * The place to start tossing is beyond our maximum
1499 * file size, so there is no way that the data extended
1500 * out there.
1501 */
d3cf2094 1502 return 0;
1da177e4
LT
1503 }
1504 last_byte = xfs_file_last_byte(ip);
1505 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1506 last_byte);
1507 if (last_byte > toss_start) {
1508 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1509 xfs_tosspages(ip, toss_start,
1510 -1, FI_REMAPF_LOCKED);
1da177e4 1511 } else {
739bfb2a
CH
1512 error = xfs_flushinval_pages(ip, toss_start,
1513 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1514 }
1515 }
1516
1517#ifdef DEBUG
1518 if (new_size == 0) {
df80c933 1519 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1da177e4
LT
1520 }
1521#endif
d3cf2094 1522 return error;
1da177e4
LT
1523}
1524
1525/*
f6485057
DC
1526 * Shrink the file to the given new_size. The new size must be smaller than
1527 * the current size. This will free up the underlying blocks in the removed
1528 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1da177e4 1529 *
f6485057
DC
1530 * The transaction passed to this routine must have made a permanent log
1531 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1532 * given transaction and start new ones, so make sure everything involved in
1533 * the transaction is tidy before calling here. Some transaction will be
1534 * returned to the caller to be committed. The incoming transaction must
1535 * already include the inode, and both inode locks must be held exclusively.
1536 * The inode must also be "held" within the transaction. On return the inode
1537 * will be "held" within the returned transaction. This routine does NOT
1538 * require any disk space to be reserved for it within the transaction.
1da177e4 1539 *
f6485057
DC
1540 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1541 * indicates the fork which is to be truncated. For the attribute fork we only
1542 * support truncation to size 0.
1da177e4 1543 *
f6485057
DC
1544 * We use the sync parameter to indicate whether or not the first transaction
1545 * we perform might have to be synchronous. For the attr fork, it needs to be
1546 * so if the unlink of the inode is not yet known to be permanent in the log.
1547 * This keeps us from freeing and reusing the blocks of the attribute fork
1548 * before the unlink of the inode becomes permanent.
1da177e4 1549 *
f6485057
DC
1550 * For the data fork, we normally have to run synchronously if we're being
1551 * called out of the inactive path or we're being called out of the create path
1552 * where we're truncating an existing file. Either way, the truncate needs to
1553 * be sync so blocks don't reappear in the file with altered data in case of a
1554 * crash. wsync filesystems can run the first case async because anything that
1555 * shrinks the inode has to run sync so by the time we're called here from
1556 * inactive, the inode size is permanently set to 0.
1da177e4 1557 *
f6485057
DC
1558 * Calls from the truncate path always need to be sync unless we're in a wsync
1559 * filesystem and the file has already been unlinked.
1da177e4 1560 *
f6485057
DC
1561 * The caller is responsible for correctly setting the sync parameter. It gets
1562 * too hard for us to guess here which path we're being called out of just
1563 * based on inode state.
1564 *
1565 * If we get an error, we must return with the inode locked and linked into the
1566 * current transaction. This keeps things simple for the higher level code,
1567 * because it always knows that the inode is locked and held in the transaction
1568 * that returns to it whether errors occur or not. We don't mark the inode
1569 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1570 */
1571int
1572xfs_itruncate_finish(
1573 xfs_trans_t **tp,
1574 xfs_inode_t *ip,
1575 xfs_fsize_t new_size,
1576 int fork,
1577 int sync)
1578{
1579 xfs_fsblock_t first_block;
1580 xfs_fileoff_t first_unmap_block;
1581 xfs_fileoff_t last_block;
1582 xfs_filblks_t unmap_len=0;
1583 xfs_mount_t *mp;
1584 xfs_trans_t *ntp;
1585 int done;
1586 int committed;
1587 xfs_bmap_free_t free_list;
1588 int error;
1589
579aa9ca 1590 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ba87ea69 1591 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1592 ASSERT(*tp != NULL);
1593 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1594 ASSERT(ip->i_transp == *tp);
1595 ASSERT(ip->i_itemp != NULL);
1596 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1597
1598
1599 ntp = *tp;
1600 mp = (ntp)->t_mountp;
1601 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1602
1603 /*
1604 * We only support truncating the entire attribute fork.
1605 */
1606 if (fork == XFS_ATTR_FORK) {
1607 new_size = 0LL;
1608 }
1609 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1610 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1611 /*
1612 * The first thing we do is set the size to new_size permanently
1613 * on disk. This way we don't have to worry about anyone ever
1614 * being able to look at the data being freed even in the face
1615 * of a crash. What we're getting around here is the case where
1616 * we free a block, it is allocated to another file, it is written
1617 * to, and then we crash. If the new data gets written to the
1618 * file but the log buffers containing the free and reallocation
1619 * don't, then we'd end up with garbage in the blocks being freed.
1620 * As long as we make the new_size permanent before actually
1621 * freeing any blocks it doesn't matter if they get writtten to.
1622 *
1623 * The callers must signal into us whether or not the size
1624 * setting here must be synchronous. There are a few cases
1625 * where it doesn't have to be synchronous. Those cases
1626 * occur if the file is unlinked and we know the unlink is
1627 * permanent or if the blocks being truncated are guaranteed
1628 * to be beyond the inode eof (regardless of the link count)
1629 * and the eof value is permanent. Both of these cases occur
1630 * only on wsync-mounted filesystems. In those cases, we're
1631 * guaranteed that no user will ever see the data in the blocks
1632 * that are being truncated so the truncate can run async.
1633 * In the free beyond eof case, the file may wind up with
1634 * more blocks allocated to it than it needs if we crash
1635 * and that won't get fixed until the next time the file
1636 * is re-opened and closed but that's ok as that shouldn't
1637 * be too many blocks.
1638 *
1639 * However, we can't just make all wsync xactions run async
1640 * because there's one call out of the create path that needs
1641 * to run sync where it's truncating an existing file to size
1642 * 0 whose size is > 0.
1643 *
1644 * It's probably possible to come up with a test in this
1645 * routine that would correctly distinguish all the above
1646 * cases from the values of the function parameters and the
1647 * inode state but for sanity's sake, I've decided to let the
1648 * layers above just tell us. It's simpler to correctly figure
1649 * out in the layer above exactly under what conditions we
1650 * can run async and I think it's easier for others read and
1651 * follow the logic in case something has to be changed.
1652 * cscope is your friend -- rcc.
1653 *
1654 * The attribute fork is much simpler.
1655 *
1656 * For the attribute fork we allow the caller to tell us whether
1657 * the unlink of the inode that led to this call is yet permanent
1658 * in the on disk log. If it is not and we will be freeing extents
1659 * in this inode then we make the first transaction synchronous
1660 * to make sure that the unlink is permanent by the time we free
1661 * the blocks.
1662 */
1663 if (fork == XFS_DATA_FORK) {
1664 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1665 /*
1666 * If we are not changing the file size then do
1667 * not update the on-disk file size - we may be
1668 * called from xfs_inactive_free_eofblocks(). If we
1669 * update the on-disk file size and then the system
1670 * crashes before the contents of the file are
1671 * flushed to disk then the files may be full of
1672 * holes (ie NULL files bug).
1673 */
1674 if (ip->i_size != new_size) {
1675 ip->i_d.di_size = new_size;
1676 ip->i_size = new_size;
1677 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1678 }
1da177e4
LT
1679 }
1680 } else if (sync) {
1681 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1682 if (ip->i_d.di_anextents > 0)
1683 xfs_trans_set_sync(ntp);
1684 }
1685 ASSERT(fork == XFS_DATA_FORK ||
1686 (fork == XFS_ATTR_FORK &&
1687 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1688 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1689
1690 /*
1691 * Since it is possible for space to become allocated beyond
1692 * the end of the file (in a crash where the space is allocated
1693 * but the inode size is not yet updated), simply remove any
1694 * blocks which show up between the new EOF and the maximum
1695 * possible file size. If the first block to be removed is
1696 * beyond the maximum file size (ie it is the same as last_block),
1697 * then there is nothing to do.
1698 */
1699 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1700 ASSERT(first_unmap_block <= last_block);
1701 done = 0;
1702 if (last_block == first_unmap_block) {
1703 done = 1;
1704 } else {
1705 unmap_len = last_block - first_unmap_block + 1;
1706 }
1707 while (!done) {
1708 /*
1709 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1710 * will tell us whether it freed the entire range or
1711 * not. If this is a synchronous mount (wsync),
1712 * then we can tell bunmapi to keep all the
1713 * transactions asynchronous since the unlink
1714 * transaction that made this inode inactive has
1715 * already hit the disk. There's no danger of
1716 * the freed blocks being reused, there being a
1717 * crash, and the reused blocks suddenly reappearing
1718 * in this file with garbage in them once recovery
1719 * runs.
1720 */
1721 XFS_BMAP_INIT(&free_list, &first_block);
541d7d3c 1722 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1723 first_unmap_block, unmap_len,
1da177e4
LT
1724 XFS_BMAPI_AFLAG(fork) |
1725 (sync ? 0 : XFS_BMAPI_ASYNC),
1726 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1727 &first_block, &free_list,
1728 NULL, &done);
1da177e4
LT
1729 if (error) {
1730 /*
1731 * If the bunmapi call encounters an error,
1732 * return to the caller where the transaction
1733 * can be properly aborted. We just need to
1734 * make sure we're not holding any resources
1735 * that we were not when we came in.
1736 */
1737 xfs_bmap_cancel(&free_list);
1738 return error;
1739 }
1740
1741 /*
1742 * Duplicate the transaction that has the permanent
1743 * reservation and commit the old transaction.
1744 */
f7c99b6f 1745 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4 1746 ntp = *tp;
f6485057
DC
1747 if (committed) {
1748 /* link the inode into the next xact in the chain */
1749 xfs_trans_ijoin(ntp, ip,
1750 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1751 xfs_trans_ihold(ntp, ip);
1752 }
1753
1da177e4
LT
1754 if (error) {
1755 /*
f6485057
DC
1756 * If the bmap finish call encounters an error, return
1757 * to the caller where the transaction can be properly
1758 * aborted. We just need to make sure we're not
1759 * holding any resources that we were not when we came
1760 * in.
1da177e4 1761 *
f6485057
DC
1762 * Aborting from this point might lose some blocks in
1763 * the file system, but oh well.
1da177e4
LT
1764 */
1765 xfs_bmap_cancel(&free_list);
1da177e4
LT
1766 return error;
1767 }
1768
1769 if (committed) {
1770 /*
f6485057 1771 * Mark the inode dirty so it will be logged and
e5720eec 1772 * moved forward in the log as part of every commit.
1da177e4 1773 */
1da177e4
LT
1774 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1775 }
f6485057 1776
1da177e4 1777 ntp = xfs_trans_dup(ntp);
e5720eec 1778 error = xfs_trans_commit(*tp, 0);
1da177e4 1779 *tp = ntp;
e5720eec 1780
f6485057
DC
1781 /* link the inode into the next transaction in the chain */
1782 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1783 xfs_trans_ihold(ntp, ip);
1784
cc09c0dc
DC
1785 if (error)
1786 return error;
1787 /*
1788 * transaction commit worked ok so we can drop the extra ticket
1789 * reference that we gained in xfs_trans_dup()
1790 */
1791 xfs_log_ticket_put(ntp->t_ticket);
1792 error = xfs_trans_reserve(ntp, 0,
f6485057
DC
1793 XFS_ITRUNCATE_LOG_RES(mp), 0,
1794 XFS_TRANS_PERM_LOG_RES,
1795 XFS_ITRUNCATE_LOG_COUNT);
1796 if (error)
1797 return error;
1da177e4
LT
1798 }
1799 /*
1800 * Only update the size in the case of the data fork, but
1801 * always re-log the inode so that our permanent transaction
1802 * can keep on rolling it forward in the log.
1803 */
1804 if (fork == XFS_DATA_FORK) {
1805 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1806 /*
1807 * If we are not changing the file size then do
1808 * not update the on-disk file size - we may be
1809 * called from xfs_inactive_free_eofblocks(). If we
1810 * update the on-disk file size and then the system
1811 * crashes before the contents of the file are
1812 * flushed to disk then the files may be full of
1813 * holes (ie NULL files bug).
1814 */
1815 if (ip->i_size != new_size) {
1816 ip->i_d.di_size = new_size;
1817 ip->i_size = new_size;
1818 }
1da177e4
LT
1819 }
1820 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1821 ASSERT((new_size != 0) ||
1822 (fork == XFS_ATTR_FORK) ||
1823 (ip->i_delayed_blks == 0));
1824 ASSERT((new_size != 0) ||
1825 (fork == XFS_ATTR_FORK) ||
1826 (ip->i_d.di_nextents == 0));
1827 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1828 return 0;
1829}
1830
1da177e4
LT
1831/*
1832 * This is called when the inode's link count goes to 0.
1833 * We place the on-disk inode on a list in the AGI. It
1834 * will be pulled from this list when the inode is freed.
1835 */
1836int
1837xfs_iunlink(
1838 xfs_trans_t *tp,
1839 xfs_inode_t *ip)
1840{
1841 xfs_mount_t *mp;
1842 xfs_agi_t *agi;
1843 xfs_dinode_t *dip;
1844 xfs_buf_t *agibp;
1845 xfs_buf_t *ibp;
1da177e4
LT
1846 xfs_agino_t agino;
1847 short bucket_index;
1848 int offset;
1849 int error;
1da177e4
LT
1850
1851 ASSERT(ip->i_d.di_nlink == 0);
1852 ASSERT(ip->i_d.di_mode != 0);
1853 ASSERT(ip->i_transp == tp);
1854
1855 mp = tp->t_mountp;
1856
1da177e4
LT
1857 /*
1858 * Get the agi buffer first. It ensures lock ordering
1859 * on the list.
1860 */
5e1be0fb 1861 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1862 if (error)
1da177e4 1863 return error;
1da177e4 1864 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1865
1da177e4
LT
1866 /*
1867 * Get the index into the agi hash table for the
1868 * list this inode will go on.
1869 */
1870 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1871 ASSERT(agino != 0);
1872 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1873 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1874 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1875
16259e7d 1876 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1877 /*
1878 * There is already another inode in the bucket we need
1879 * to add ourselves to. Add us at the front of the list.
1880 * Here we put the head pointer into our next pointer,
1881 * and then we fall through to point the head at us.
1882 */
a3f74ffb 1883 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
1884 if (error)
1885 return error;
1886
347d1c01 1887 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1888 /* both on-disk, don't endian flip twice */
1889 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1890 offset = ip->i_boffset +
1891 offsetof(xfs_dinode_t, di_next_unlinked);
1892 xfs_trans_inode_buf(tp, ibp);
1893 xfs_trans_log_buf(tp, ibp, offset,
1894 (offset + sizeof(xfs_agino_t) - 1));
1895 xfs_inobp_check(mp, ibp);
1896 }
1897
1898 /*
1899 * Point the bucket head pointer at the inode being inserted.
1900 */
1901 ASSERT(agino != 0);
16259e7d 1902 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1903 offset = offsetof(xfs_agi_t, agi_unlinked) +
1904 (sizeof(xfs_agino_t) * bucket_index);
1905 xfs_trans_log_buf(tp, agibp, offset,
1906 (offset + sizeof(xfs_agino_t) - 1));
1907 return 0;
1908}
1909
1910/*
1911 * Pull the on-disk inode from the AGI unlinked list.
1912 */
1913STATIC int
1914xfs_iunlink_remove(
1915 xfs_trans_t *tp,
1916 xfs_inode_t *ip)
1917{
1918 xfs_ino_t next_ino;
1919 xfs_mount_t *mp;
1920 xfs_agi_t *agi;
1921 xfs_dinode_t *dip;
1922 xfs_buf_t *agibp;
1923 xfs_buf_t *ibp;
1924 xfs_agnumber_t agno;
1da177e4
LT
1925 xfs_agino_t agino;
1926 xfs_agino_t next_agino;
1927 xfs_buf_t *last_ibp;
6fdf8ccc 1928 xfs_dinode_t *last_dip = NULL;
1da177e4 1929 short bucket_index;
6fdf8ccc 1930 int offset, last_offset = 0;
1da177e4 1931 int error;
1da177e4 1932
1da177e4 1933 mp = tp->t_mountp;
1da177e4 1934 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1935
1936 /*
1937 * Get the agi buffer first. It ensures lock ordering
1938 * on the list.
1939 */
5e1be0fb
CH
1940 error = xfs_read_agi(mp, tp, agno, &agibp);
1941 if (error)
1da177e4 1942 return error;
5e1be0fb 1943
1da177e4 1944 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1945
1da177e4
LT
1946 /*
1947 * Get the index into the agi hash table for the
1948 * list this inode will go on.
1949 */
1950 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1951 ASSERT(agino != 0);
1952 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 1953 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
1954 ASSERT(agi->agi_unlinked[bucket_index]);
1955
16259e7d 1956 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1957 /*
1958 * We're at the head of the list. Get the inode's
1959 * on-disk buffer to see if there is anyone after us
1960 * on the list. Only modify our next pointer if it
1961 * is not already NULLAGINO. This saves us the overhead
1962 * of dealing with the buffer when there is no need to
1963 * change it.
1964 */
a3f74ffb 1965 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
1966 if (error) {
1967 cmn_err(CE_WARN,
1968 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1969 error, mp->m_fsname);
1970 return error;
1971 }
347d1c01 1972 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1973 ASSERT(next_agino != 0);
1974 if (next_agino != NULLAGINO) {
347d1c01 1975 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
1976 offset = ip->i_boffset +
1977 offsetof(xfs_dinode_t, di_next_unlinked);
1978 xfs_trans_inode_buf(tp, ibp);
1979 xfs_trans_log_buf(tp, ibp, offset,
1980 (offset + sizeof(xfs_agino_t) - 1));
1981 xfs_inobp_check(mp, ibp);
1982 } else {
1983 xfs_trans_brelse(tp, ibp);
1984 }
1985 /*
1986 * Point the bucket head pointer at the next inode.
1987 */
1988 ASSERT(next_agino != 0);
1989 ASSERT(next_agino != agino);
16259e7d 1990 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1991 offset = offsetof(xfs_agi_t, agi_unlinked) +
1992 (sizeof(xfs_agino_t) * bucket_index);
1993 xfs_trans_log_buf(tp, agibp, offset,
1994 (offset + sizeof(xfs_agino_t) - 1));
1995 } else {
1996 /*
1997 * We need to search the list for the inode being freed.
1998 */
16259e7d 1999 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2000 last_ibp = NULL;
2001 while (next_agino != agino) {
2002 /*
2003 * If the last inode wasn't the one pointing to
2004 * us, then release its buffer since we're not
2005 * going to do anything with it.
2006 */
2007 if (last_ibp != NULL) {
2008 xfs_trans_brelse(tp, last_ibp);
2009 }
2010 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2011 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
c679eef0 2012 &last_ibp, &last_offset, 0);
1da177e4
LT
2013 if (error) {
2014 cmn_err(CE_WARN,
2015 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2016 error, mp->m_fsname);
2017 return error;
2018 }
347d1c01 2019 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2020 ASSERT(next_agino != NULLAGINO);
2021 ASSERT(next_agino != 0);
2022 }
2023 /*
2024 * Now last_ibp points to the buffer previous to us on
2025 * the unlinked list. Pull us from the list.
2026 */
a3f74ffb 2027 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
2028 if (error) {
2029 cmn_err(CE_WARN,
2030 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2031 error, mp->m_fsname);
2032 return error;
2033 }
347d1c01 2034 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2035 ASSERT(next_agino != 0);
2036 ASSERT(next_agino != agino);
2037 if (next_agino != NULLAGINO) {
347d1c01 2038 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2039 offset = ip->i_boffset +
2040 offsetof(xfs_dinode_t, di_next_unlinked);
2041 xfs_trans_inode_buf(tp, ibp);
2042 xfs_trans_log_buf(tp, ibp, offset,
2043 (offset + sizeof(xfs_agino_t) - 1));
2044 xfs_inobp_check(mp, ibp);
2045 } else {
2046 xfs_trans_brelse(tp, ibp);
2047 }
2048 /*
2049 * Point the previous inode on the list to the next inode.
2050 */
347d1c01 2051 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2052 ASSERT(next_agino != 0);
2053 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2054 xfs_trans_inode_buf(tp, last_ibp);
2055 xfs_trans_log_buf(tp, last_ibp, offset,
2056 (offset + sizeof(xfs_agino_t) - 1));
2057 xfs_inobp_check(mp, last_ibp);
2058 }
2059 return 0;
2060}
2061
ba0f32d4 2062STATIC void
1da177e4
LT
2063xfs_ifree_cluster(
2064 xfs_inode_t *free_ip,
2065 xfs_trans_t *tp,
2066 xfs_ino_t inum)
2067{
2068 xfs_mount_t *mp = free_ip->i_mount;
2069 int blks_per_cluster;
2070 int nbufs;
2071 int ninodes;
2072 int i, j, found, pre_flushed;
2073 xfs_daddr_t blkno;
2074 xfs_buf_t *bp;
1da177e4
LT
2075 xfs_inode_t *ip, **ip_found;
2076 xfs_inode_log_item_t *iip;
2077 xfs_log_item_t *lip;
da353b0d 2078 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2079
2080 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2081 blks_per_cluster = 1;
2082 ninodes = mp->m_sb.sb_inopblock;
2083 nbufs = XFS_IALLOC_BLOCKS(mp);
2084 } else {
2085 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2086 mp->m_sb.sb_blocksize;
2087 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2088 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2089 }
2090
2091 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2092
2093 for (j = 0; j < nbufs; j++, inum += ninodes) {
2094 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2095 XFS_INO_TO_AGBNO(mp, inum));
2096
2097
2098 /*
2099 * Look for each inode in memory and attempt to lock it,
2100 * we can be racing with flush and tail pushing here.
2101 * any inode we get the locks on, add to an array of
2102 * inode items to process later.
2103 *
2104 * The get the buffer lock, we could beat a flush
2105 * or tail pushing thread to the lock here, in which
2106 * case they will go looking for the inode buffer
2107 * and fail, we need some other form of interlock
2108 * here.
2109 */
2110 found = 0;
2111 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2112 read_lock(&pag->pag_ici_lock);
2113 ip = radix_tree_lookup(&pag->pag_ici_root,
2114 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2115
2116 /* Inode not in memory or we found it already,
2117 * nothing to do
2118 */
7a18c386 2119 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2120 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2121 continue;
2122 }
2123
2124 if (xfs_inode_clean(ip)) {
da353b0d 2125 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2126 continue;
2127 }
2128
2129 /* If we can get the locks then add it to the
2130 * list, otherwise by the time we get the bp lock
2131 * below it will already be attached to the
2132 * inode buffer.
2133 */
2134
2135 /* This inode will already be locked - by us, lets
2136 * keep it that way.
2137 */
2138
2139 if (ip == free_ip) {
2140 if (xfs_iflock_nowait(ip)) {
7a18c386 2141 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2142 if (xfs_inode_clean(ip)) {
2143 xfs_ifunlock(ip);
2144 } else {
2145 ip_found[found++] = ip;
2146 }
2147 }
da353b0d 2148 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2149 continue;
2150 }
2151
2152 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2153 if (xfs_iflock_nowait(ip)) {
7a18c386 2154 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2155
2156 if (xfs_inode_clean(ip)) {
2157 xfs_ifunlock(ip);
2158 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2159 } else {
2160 ip_found[found++] = ip;
2161 }
2162 } else {
2163 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2164 }
2165 }
da353b0d 2166 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2167 }
2168
2169 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2170 mp->m_bsize * blks_per_cluster,
2171 XFS_BUF_LOCK);
2172
2173 pre_flushed = 0;
2174 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2175 while (lip) {
2176 if (lip->li_type == XFS_LI_INODE) {
2177 iip = (xfs_inode_log_item_t *)lip;
2178 ASSERT(iip->ili_logged == 1);
2179 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
7b2e2a31
DC
2180 xfs_trans_ail_copy_lsn(mp->m_ail,
2181 &iip->ili_flush_lsn,
2182 &iip->ili_item.li_lsn);
e5ffd2bb 2183 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2184 pre_flushed++;
2185 }
2186 lip = lip->li_bio_list;
2187 }
2188
2189 for (i = 0; i < found; i++) {
2190 ip = ip_found[i];
2191 iip = ip->i_itemp;
2192
2193 if (!iip) {
2194 ip->i_update_core = 0;
2195 xfs_ifunlock(ip);
2196 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2197 continue;
2198 }
2199
2200 iip->ili_last_fields = iip->ili_format.ilf_fields;
2201 iip->ili_format.ilf_fields = 0;
2202 iip->ili_logged = 1;
7b2e2a31
DC
2203 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2204 &iip->ili_item.li_lsn);
1da177e4
LT
2205
2206 xfs_buf_attach_iodone(bp,
2207 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2208 xfs_istale_done, (xfs_log_item_t *)iip);
2209 if (ip != free_ip) {
2210 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2211 }
2212 }
2213
2214 if (found || pre_flushed)
2215 xfs_trans_stale_inode_buf(tp, bp);
2216 xfs_trans_binval(tp, bp);
2217 }
2218
f0e2d93c 2219 kmem_free(ip_found);
da353b0d 2220 xfs_put_perag(mp, pag);
1da177e4
LT
2221}
2222
2223/*
2224 * This is called to return an inode to the inode free list.
2225 * The inode should already be truncated to 0 length and have
2226 * no pages associated with it. This routine also assumes that
2227 * the inode is already a part of the transaction.
2228 *
2229 * The on-disk copy of the inode will have been added to the list
2230 * of unlinked inodes in the AGI. We need to remove the inode from
2231 * that list atomically with respect to freeing it here.
2232 */
2233int
2234xfs_ifree(
2235 xfs_trans_t *tp,
2236 xfs_inode_t *ip,
2237 xfs_bmap_free_t *flist)
2238{
2239 int error;
2240 int delete;
2241 xfs_ino_t first_ino;
c319b58b
VA
2242 xfs_dinode_t *dip;
2243 xfs_buf_t *ibp;
1da177e4 2244
579aa9ca 2245 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2246 ASSERT(ip->i_transp == tp);
2247 ASSERT(ip->i_d.di_nlink == 0);
2248 ASSERT(ip->i_d.di_nextents == 0);
2249 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2250 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2251 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2252 ASSERT(ip->i_d.di_nblocks == 0);
2253
2254 /*
2255 * Pull the on-disk inode from the AGI unlinked list.
2256 */
2257 error = xfs_iunlink_remove(tp, ip);
2258 if (error != 0) {
2259 return error;
2260 }
2261
2262 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2263 if (error != 0) {
2264 return error;
2265 }
2266 ip->i_d.di_mode = 0; /* mark incore inode as free */
2267 ip->i_d.di_flags = 0;
2268 ip->i_d.di_dmevmask = 0;
2269 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2270 ip->i_df.if_ext_max =
2271 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2272 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2273 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2274 /*
2275 * Bump the generation count so no one will be confused
2276 * by reincarnations of this inode.
2277 */
2278 ip->i_d.di_gen++;
c319b58b 2279
1da177e4
LT
2280 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2281
a3f74ffb 2282 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
2283 if (error)
2284 return error;
2285
2286 /*
2287 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2288 * from picking up this inode when it is reclaimed (its incore state
2289 * initialzed but not flushed to disk yet). The in-core di_mode is
2290 * already cleared and a corresponding transaction logged.
2291 * The hack here just synchronizes the in-core to on-disk
2292 * di_mode value in advance before the actual inode sync to disk.
2293 * This is OK because the inode is already unlinked and would never
2294 * change its di_mode again for this inode generation.
2295 * This is a temporary hack that would require a proper fix
2296 * in the future.
2297 */
2298 dip->di_core.di_mode = 0;
2299
1da177e4
LT
2300 if (delete) {
2301 xfs_ifree_cluster(ip, tp, first_ino);
2302 }
2303
2304 return 0;
2305}
2306
2307/*
2308 * Reallocate the space for if_broot based on the number of records
2309 * being added or deleted as indicated in rec_diff. Move the records
2310 * and pointers in if_broot to fit the new size. When shrinking this
2311 * will eliminate holes between the records and pointers created by
2312 * the caller. When growing this will create holes to be filled in
2313 * by the caller.
2314 *
2315 * The caller must not request to add more records than would fit in
2316 * the on-disk inode root. If the if_broot is currently NULL, then
2317 * if we adding records one will be allocated. The caller must also
2318 * not request that the number of records go below zero, although
2319 * it can go to zero.
2320 *
2321 * ip -- the inode whose if_broot area is changing
2322 * ext_diff -- the change in the number of records, positive or negative,
2323 * requested for the if_broot array.
2324 */
2325void
2326xfs_iroot_realloc(
2327 xfs_inode_t *ip,
2328 int rec_diff,
2329 int whichfork)
2330{
60197e8d 2331 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
2332 int cur_max;
2333 xfs_ifork_t *ifp;
7cc95a82 2334 struct xfs_btree_block *new_broot;
1da177e4
LT
2335 int new_max;
2336 size_t new_size;
2337 char *np;
2338 char *op;
2339
2340 /*
2341 * Handle the degenerate case quietly.
2342 */
2343 if (rec_diff == 0) {
2344 return;
2345 }
2346
2347 ifp = XFS_IFORK_PTR(ip, whichfork);
2348 if (rec_diff > 0) {
2349 /*
2350 * If there wasn't any memory allocated before, just
2351 * allocate it now and get out.
2352 */
2353 if (ifp->if_broot_bytes == 0) {
2354 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
7cc95a82 2355 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
1da177e4
LT
2356 ifp->if_broot_bytes = (int)new_size;
2357 return;
2358 }
2359
2360 /*
2361 * If there is already an existing if_broot, then we need
2362 * to realloc() it and shift the pointers to their new
2363 * location. The records don't change location because
2364 * they are kept butted up against the btree block header.
2365 */
60197e8d 2366 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2367 new_max = cur_max + rec_diff;
2368 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 2369 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4
LT
2370 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2371 KM_SLEEP);
60197e8d
CH
2372 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2373 ifp->if_broot_bytes);
2374 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2375 (int)new_size);
1da177e4
LT
2376 ifp->if_broot_bytes = (int)new_size;
2377 ASSERT(ifp->if_broot_bytes <=
2378 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2379 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2380 return;
2381 }
2382
2383 /*
2384 * rec_diff is less than 0. In this case, we are shrinking the
2385 * if_broot buffer. It must already exist. If we go to zero
2386 * records, just get rid of the root and clear the status bit.
2387 */
2388 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2389 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2390 new_max = cur_max + rec_diff;
2391 ASSERT(new_max >= 0);
2392 if (new_max > 0)
2393 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2394 else
2395 new_size = 0;
2396 if (new_size > 0) {
7cc95a82 2397 new_broot = kmem_alloc(new_size, KM_SLEEP);
1da177e4
LT
2398 /*
2399 * First copy over the btree block header.
2400 */
7cc95a82 2401 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
2402 } else {
2403 new_broot = NULL;
2404 ifp->if_flags &= ~XFS_IFBROOT;
2405 }
2406
2407 /*
2408 * Only copy the records and pointers if there are any.
2409 */
2410 if (new_max > 0) {
2411 /*
2412 * First copy the records.
2413 */
136341b4
CH
2414 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2415 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2416 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2417
2418 /*
2419 * Then copy the pointers.
2420 */
60197e8d 2421 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2422 ifp->if_broot_bytes);
60197e8d 2423 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2424 (int)new_size);
2425 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2426 }
f0e2d93c 2427 kmem_free(ifp->if_broot);
1da177e4
LT
2428 ifp->if_broot = new_broot;
2429 ifp->if_broot_bytes = (int)new_size;
2430 ASSERT(ifp->if_broot_bytes <=
2431 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2432 return;
2433}
2434
2435
1da177e4
LT
2436/*
2437 * This is called when the amount of space needed for if_data
2438 * is increased or decreased. The change in size is indicated by
2439 * the number of bytes that need to be added or deleted in the
2440 * byte_diff parameter.
2441 *
2442 * If the amount of space needed has decreased below the size of the
2443 * inline buffer, then switch to using the inline buffer. Otherwise,
2444 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2445 * to what is needed.
2446 *
2447 * ip -- the inode whose if_data area is changing
2448 * byte_diff -- the change in the number of bytes, positive or negative,
2449 * requested for the if_data array.
2450 */
2451void
2452xfs_idata_realloc(
2453 xfs_inode_t *ip,
2454 int byte_diff,
2455 int whichfork)
2456{
2457 xfs_ifork_t *ifp;
2458 int new_size;
2459 int real_size;
2460
2461 if (byte_diff == 0) {
2462 return;
2463 }
2464
2465 ifp = XFS_IFORK_PTR(ip, whichfork);
2466 new_size = (int)ifp->if_bytes + byte_diff;
2467 ASSERT(new_size >= 0);
2468
2469 if (new_size == 0) {
2470 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2471 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2472 }
2473 ifp->if_u1.if_data = NULL;
2474 real_size = 0;
2475 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2476 /*
2477 * If the valid extents/data can fit in if_inline_ext/data,
2478 * copy them from the malloc'd vector and free it.
2479 */
2480 if (ifp->if_u1.if_data == NULL) {
2481 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2482 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2483 ASSERT(ifp->if_real_bytes != 0);
2484 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2485 new_size);
f0e2d93c 2486 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2487 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2488 }
2489 real_size = 0;
2490 } else {
2491 /*
2492 * Stuck with malloc/realloc.
2493 * For inline data, the underlying buffer must be
2494 * a multiple of 4 bytes in size so that it can be
2495 * logged and stay on word boundaries. We enforce
2496 * that here.
2497 */
2498 real_size = roundup(new_size, 4);
2499 if (ifp->if_u1.if_data == NULL) {
2500 ASSERT(ifp->if_real_bytes == 0);
2501 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2502 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2503 /*
2504 * Only do the realloc if the underlying size
2505 * is really changing.
2506 */
2507 if (ifp->if_real_bytes != real_size) {
2508 ifp->if_u1.if_data =
2509 kmem_realloc(ifp->if_u1.if_data,
2510 real_size,
2511 ifp->if_real_bytes,
2512 KM_SLEEP);
2513 }
2514 } else {
2515 ASSERT(ifp->if_real_bytes == 0);
2516 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2517 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2518 ifp->if_bytes);
2519 }
2520 }
2521 ifp->if_real_bytes = real_size;
2522 ifp->if_bytes = new_size;
2523 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2524}
2525
2526
2527
2528
2529/*
2530 * Map inode to disk block and offset.
2531 *
2532 * mp -- the mount point structure for the current file system
2533 * tp -- the current transaction
2534 * ino -- the inode number of the inode to be located
2535 * imap -- this structure is filled in with the information necessary
2536 * to retrieve the given inode from disk
2537 * flags -- flags to pass to xfs_dilocate indicating whether or not
2538 * lookups in the inode btree were OK or not
2539 */
2540int
2541xfs_imap(
2542 xfs_mount_t *mp,
2543 xfs_trans_t *tp,
2544 xfs_ino_t ino,
2545 xfs_imap_t *imap,
2546 uint flags)
2547{
2548 xfs_fsblock_t fsbno;
2549 int len;
2550 int off;
2551 int error;
2552
2553 fsbno = imap->im_blkno ?
2554 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2555 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
4ae29b43 2556 if (error)
1da177e4 2557 return error;
4ae29b43 2558
1da177e4
LT
2559 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2560 imap->im_len = XFS_FSB_TO_BB(mp, len);
2561 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2562 imap->im_ioffset = (ushort)off;
2563 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
4ae29b43
DC
2564
2565 /*
2566 * If the inode number maps to a block outside the bounds
2567 * of the file system then return NULL rather than calling
2568 * read_buf and panicing when we get an error from the
2569 * driver.
2570 */
2571 if ((imap->im_blkno + imap->im_len) >
2572 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2573 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2574 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2575 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2576 (unsigned long long) imap->im_blkno,
2577 (unsigned long long) imap->im_len,
2578 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2579 return EINVAL;
2580 }
1da177e4
LT
2581 return 0;
2582}
2583
2584void
2585xfs_idestroy_fork(
2586 xfs_inode_t *ip,
2587 int whichfork)
2588{
2589 xfs_ifork_t *ifp;
2590
2591 ifp = XFS_IFORK_PTR(ip, whichfork);
2592 if (ifp->if_broot != NULL) {
f0e2d93c 2593 kmem_free(ifp->if_broot);
1da177e4
LT
2594 ifp->if_broot = NULL;
2595 }
2596
2597 /*
2598 * If the format is local, then we can't have an extents
2599 * array so just look for an inline data array. If we're
2600 * not local then we may or may not have an extents list,
2601 * so check and free it up if we do.
2602 */
2603 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2604 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2605 (ifp->if_u1.if_data != NULL)) {
2606 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2607 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2608 ifp->if_u1.if_data = NULL;
2609 ifp->if_real_bytes = 0;
2610 }
2611 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2612 ((ifp->if_flags & XFS_IFEXTIREC) ||
2613 ((ifp->if_u1.if_extents != NULL) &&
2614 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2615 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2616 xfs_iext_destroy(ifp);
1da177e4
LT
2617 }
2618 ASSERT(ifp->if_u1.if_extents == NULL ||
2619 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2620 ASSERT(ifp->if_real_bytes == 0);
2621 if (whichfork == XFS_ATTR_FORK) {
2622 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2623 ip->i_afp = NULL;
2624 }
2625}
2626
2627/*
2628 * This is called free all the memory associated with an inode.
2629 * It must free the inode itself and any buffers allocated for
2630 * if_extents/if_data and if_broot. It must also free the lock
2631 * associated with the inode.
bf904248
DC
2632 *
2633 * Note: because we don't initialise everything on reallocation out
2634 * of the zone, we must ensure we nullify everything correctly before
2635 * freeing the structure.
1da177e4
LT
2636 */
2637void
2638xfs_idestroy(
2639 xfs_inode_t *ip)
2640{
1da177e4
LT
2641 switch (ip->i_d.di_mode & S_IFMT) {
2642 case S_IFREG:
2643 case S_IFDIR:
2644 case S_IFLNK:
2645 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2646 break;
2647 }
2648 if (ip->i_afp)
2649 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1543d79c 2650
cf441eeb 2651#ifdef XFS_INODE_TRACE
1543d79c
CH
2652 ktrace_free(ip->i_trace);
2653#endif
1da177e4
LT
2654#ifdef XFS_BMAP_TRACE
2655 ktrace_free(ip->i_xtrace);
2656#endif
8c4ed633 2657#ifdef XFS_BTREE_TRACE
1da177e4
LT
2658 ktrace_free(ip->i_btrace);
2659#endif
2660#ifdef XFS_RW_TRACE
2661 ktrace_free(ip->i_rwtrace);
2662#endif
2663#ifdef XFS_ILOCK_TRACE
2664 ktrace_free(ip->i_lock_trace);
2665#endif
2666#ifdef XFS_DIR2_TRACE
2667 ktrace_free(ip->i_dir_trace);
2668#endif
2669 if (ip->i_itemp) {
f74eaf59
DC
2670 /*
2671 * Only if we are shutting down the fs will we see an
2672 * inode still in the AIL. If it is there, we should remove
2673 * it to prevent a use-after-free from occurring.
2674 */
f74eaf59 2675 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
783a2f65 2676 struct xfs_ail *ailp = lip->li_ailp;
f74eaf59
DC
2677
2678 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2679 XFS_FORCED_SHUTDOWN(ip->i_mount));
2680 if (lip->li_flags & XFS_LI_IN_AIL) {
783a2f65 2681 spin_lock(&ailp->xa_lock);
f74eaf59 2682 if (lip->li_flags & XFS_LI_IN_AIL)
783a2f65 2683 xfs_trans_ail_delete(ailp, lip);
f74eaf59 2684 else
783a2f65 2685 spin_unlock(&ailp->xa_lock);
f74eaf59 2686 }
1da177e4 2687 xfs_inode_item_destroy(ip);
07c8f675 2688 ip->i_itemp = NULL;
1da177e4 2689 }
07c8f675
DC
2690 /* asserts to verify all state is correct here */
2691 ASSERT(atomic_read(&ip->i_iocount) == 0);
2692 ASSERT(atomic_read(&ip->i_pincount) == 0);
2693 ASSERT(!spin_is_locked(&ip->i_flags_lock));
11654513 2694 ASSERT(completion_done(&ip->i_flush));
1da177e4
LT
2695 kmem_zone_free(xfs_inode_zone, ip);
2696}
2697
2698
2699/*
2700 * Increment the pin count of the given buffer.
2701 * This value is protected by ipinlock spinlock in the mount structure.
2702 */
2703void
2704xfs_ipin(
2705 xfs_inode_t *ip)
2706{
579aa9ca 2707 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2708
2709 atomic_inc(&ip->i_pincount);
2710}
2711
2712/*
2713 * Decrement the pin count of the given inode, and wake up
2714 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2715 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2716 */
2717void
2718xfs_iunpin(
2719 xfs_inode_t *ip)
2720{
2721 ASSERT(atomic_read(&ip->i_pincount) > 0);
2722
5d51eff4 2723 if (atomic_dec_and_test(&ip->i_pincount))
1da177e4 2724 wake_up(&ip->i_ipin_wait);
1da177e4
LT
2725}
2726
2727/*
a3f74ffb
DC
2728 * This is called to unpin an inode. It can be directed to wait or to return
2729 * immediately without waiting for the inode to be unpinned. The caller must
2730 * have the inode locked in at least shared mode so that the buffer cannot be
2731 * subsequently pinned once someone is waiting for it to be unpinned.
1da177e4 2732 */
ba0f32d4 2733STATIC void
a3f74ffb
DC
2734__xfs_iunpin_wait(
2735 xfs_inode_t *ip,
2736 int wait)
1da177e4 2737{
a3f74ffb 2738 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 2739
579aa9ca 2740 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
a3f74ffb 2741 if (atomic_read(&ip->i_pincount) == 0)
1da177e4 2742 return;
1da177e4 2743
a3f74ffb
DC
2744 /* Give the log a push to start the unpinning I/O */
2745 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2746 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2747 if (wait)
2748 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2749}
1da177e4 2750
a3f74ffb
DC
2751static inline void
2752xfs_iunpin_wait(
2753 xfs_inode_t *ip)
2754{
2755 __xfs_iunpin_wait(ip, 1);
2756}
1da177e4 2757
a3f74ffb
DC
2758static inline void
2759xfs_iunpin_nowait(
2760 xfs_inode_t *ip)
2761{
2762 __xfs_iunpin_wait(ip, 0);
1da177e4
LT
2763}
2764
2765
2766/*
2767 * xfs_iextents_copy()
2768 *
2769 * This is called to copy the REAL extents (as opposed to the delayed
2770 * allocation extents) from the inode into the given buffer. It
2771 * returns the number of bytes copied into the buffer.
2772 *
2773 * If there are no delayed allocation extents, then we can just
2774 * memcpy() the extents into the buffer. Otherwise, we need to
2775 * examine each extent in turn and skip those which are delayed.
2776 */
2777int
2778xfs_iextents_copy(
2779 xfs_inode_t *ip,
a6f64d4a 2780 xfs_bmbt_rec_t *dp,
1da177e4
LT
2781 int whichfork)
2782{
2783 int copied;
1da177e4
LT
2784 int i;
2785 xfs_ifork_t *ifp;
2786 int nrecs;
2787 xfs_fsblock_t start_block;
2788
2789 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2790 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2791 ASSERT(ifp->if_bytes > 0);
2792
2793 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2794 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2795 ASSERT(nrecs > 0);
2796
2797 /*
2798 * There are some delayed allocation extents in the
2799 * inode, so copy the extents one at a time and skip
2800 * the delayed ones. There must be at least one
2801 * non-delayed extent.
2802 */
1da177e4
LT
2803 copied = 0;
2804 for (i = 0; i < nrecs; i++) {
a6f64d4a 2805 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2806 start_block = xfs_bmbt_get_startblock(ep);
2807 if (ISNULLSTARTBLOCK(start_block)) {
2808 /*
2809 * It's a delayed allocation extent, so skip it.
2810 */
1da177e4
LT
2811 continue;
2812 }
2813
2814 /* Translate to on disk format */
cd8b0a97
CH
2815 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2816 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2817 dp++;
1da177e4
LT
2818 copied++;
2819 }
2820 ASSERT(copied != 0);
a6f64d4a 2821 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2822
2823 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2824}
2825
2826/*
2827 * Each of the following cases stores data into the same region
2828 * of the on-disk inode, so only one of them can be valid at
2829 * any given time. While it is possible to have conflicting formats
2830 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2831 * in EXTENTS format, this can only happen when the fork has
2832 * changed formats after being modified but before being flushed.
2833 * In these cases, the format always takes precedence, because the
2834 * format indicates the current state of the fork.
2835 */
2836/*ARGSUSED*/
e4ac967b 2837STATIC void
1da177e4
LT
2838xfs_iflush_fork(
2839 xfs_inode_t *ip,
2840 xfs_dinode_t *dip,
2841 xfs_inode_log_item_t *iip,
2842 int whichfork,
2843 xfs_buf_t *bp)
2844{
2845 char *cp;
2846 xfs_ifork_t *ifp;
2847 xfs_mount_t *mp;
2848#ifdef XFS_TRANS_DEBUG
2849 int first;
2850#endif
2851 static const short brootflag[2] =
2852 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2853 static const short dataflag[2] =
2854 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2855 static const short extflag[2] =
2856 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2857
e4ac967b
DC
2858 if (!iip)
2859 return;
1da177e4
LT
2860 ifp = XFS_IFORK_PTR(ip, whichfork);
2861 /*
2862 * This can happen if we gave up in iformat in an error path,
2863 * for the attribute fork.
2864 */
e4ac967b 2865 if (!ifp) {
1da177e4 2866 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2867 return;
1da177e4
LT
2868 }
2869 cp = XFS_DFORK_PTR(dip, whichfork);
2870 mp = ip->i_mount;
2871 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2872 case XFS_DINODE_FMT_LOCAL:
2873 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2874 (ifp->if_bytes > 0)) {
2875 ASSERT(ifp->if_u1.if_data != NULL);
2876 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2877 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2878 }
1da177e4
LT
2879 break;
2880
2881 case XFS_DINODE_FMT_EXTENTS:
2882 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2883 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2884 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2885 (ifp->if_bytes == 0));
2886 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2887 (ifp->if_bytes > 0));
1da177e4
LT
2888 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2889 (ifp->if_bytes > 0)) {
2890 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2891 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2892 whichfork);
2893 }
2894 break;
2895
2896 case XFS_DINODE_FMT_BTREE:
2897 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2898 (ifp->if_broot_bytes > 0)) {
2899 ASSERT(ifp->if_broot != NULL);
2900 ASSERT(ifp->if_broot_bytes <=
2901 (XFS_IFORK_SIZE(ip, whichfork) +
2902 XFS_BROOT_SIZE_ADJ));
60197e8d 2903 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2904 (xfs_bmdr_block_t *)cp,
2905 XFS_DFORK_SIZE(dip, mp, whichfork));
2906 }
2907 break;
2908
2909 case XFS_DINODE_FMT_DEV:
2910 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2911 ASSERT(whichfork == XFS_DATA_FORK);
347d1c01 2912 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
1da177e4
LT
2913 }
2914 break;
2915
2916 case XFS_DINODE_FMT_UUID:
2917 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2918 ASSERT(whichfork == XFS_DATA_FORK);
2919 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2920 sizeof(uuid_t));
2921 }
2922 break;
2923
2924 default:
2925 ASSERT(0);
2926 break;
2927 }
1da177e4
LT
2928}
2929
bad55843
DC
2930STATIC int
2931xfs_iflush_cluster(
2932 xfs_inode_t *ip,
2933 xfs_buf_t *bp)
2934{
2935 xfs_mount_t *mp = ip->i_mount;
2936 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2937 unsigned long first_index, mask;
c8f5f12e 2938 unsigned long inodes_per_cluster;
bad55843
DC
2939 int ilist_size;
2940 xfs_inode_t **ilist;
2941 xfs_inode_t *iq;
bad55843
DC
2942 int nr_found;
2943 int clcount = 0;
2944 int bufwasdelwri;
2945 int i;
2946
2947 ASSERT(pag->pagi_inodeok);
2948 ASSERT(pag->pag_ici_init);
2949
c8f5f12e
DC
2950 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2951 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2952 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843
DC
2953 if (!ilist)
2954 return 0;
2955
2956 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2957 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2958 read_lock(&pag->pag_ici_lock);
2959 /* really need a gang lookup range call here */
2960 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2961 first_index, inodes_per_cluster);
bad55843
DC
2962 if (nr_found == 0)
2963 goto out_free;
2964
2965 for (i = 0; i < nr_found; i++) {
2966 iq = ilist[i];
2967 if (iq == ip)
2968 continue;
2969 /* if the inode lies outside this cluster, we're done. */
2970 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2971 break;
2972 /*
2973 * Do an un-protected check to see if the inode is dirty and
2974 * is a candidate for flushing. These checks will be repeated
2975 * later after the appropriate locks are acquired.
2976 */
33540408 2977 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2978 continue;
bad55843
DC
2979
2980 /*
2981 * Try to get locks. If any are unavailable or it is pinned,
2982 * then this inode cannot be flushed and is skipped.
2983 */
2984
2985 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2986 continue;
2987 if (!xfs_iflock_nowait(iq)) {
2988 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2989 continue;
2990 }
2991 if (xfs_ipincount(iq)) {
2992 xfs_ifunlock(iq);
2993 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2994 continue;
2995 }
2996
2997 /*
2998 * arriving here means that this inode can be flushed. First
2999 * re-check that it's dirty before flushing.
3000 */
33540408
DC
3001 if (!xfs_inode_clean(iq)) {
3002 int error;
bad55843
DC
3003 error = xfs_iflush_int(iq, bp);
3004 if (error) {
3005 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3006 goto cluster_corrupt_out;
3007 }
3008 clcount++;
3009 } else {
3010 xfs_ifunlock(iq);
3011 }
3012 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3013 }
3014
3015 if (clcount) {
3016 XFS_STATS_INC(xs_icluster_flushcnt);
3017 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3018 }
3019
3020out_free:
3021 read_unlock(&pag->pag_ici_lock);
f0e2d93c 3022 kmem_free(ilist);
bad55843
DC
3023 return 0;
3024
3025
3026cluster_corrupt_out:
3027 /*
3028 * Corruption detected in the clustering loop. Invalidate the
3029 * inode buffer and shut down the filesystem.
3030 */
3031 read_unlock(&pag->pag_ici_lock);
3032 /*
3033 * Clean up the buffer. If it was B_DELWRI, just release it --
3034 * brelse can handle it with no problems. If not, shut down the
3035 * filesystem before releasing the buffer.
3036 */
3037 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3038 if (bufwasdelwri)
3039 xfs_buf_relse(bp);
3040
3041 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3042
3043 if (!bufwasdelwri) {
3044 /*
3045 * Just like incore_relse: if we have b_iodone functions,
3046 * mark the buffer as an error and call them. Otherwise
3047 * mark it as stale and brelse.
3048 */
3049 if (XFS_BUF_IODONE_FUNC(bp)) {
3050 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3051 XFS_BUF_UNDONE(bp);
3052 XFS_BUF_STALE(bp);
3053 XFS_BUF_SHUT(bp);
3054 XFS_BUF_ERROR(bp,EIO);
3055 xfs_biodone(bp);
3056 } else {
3057 XFS_BUF_STALE(bp);
3058 xfs_buf_relse(bp);
3059 }
3060 }
3061
3062 /*
3063 * Unlocks the flush lock
3064 */
3065 xfs_iflush_abort(iq);
f0e2d93c 3066 kmem_free(ilist);
bad55843
DC
3067 return XFS_ERROR(EFSCORRUPTED);
3068}
3069
1da177e4
LT
3070/*
3071 * xfs_iflush() will write a modified inode's changes out to the
3072 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
3073 * in at least shared mode and the inode flush completion must be
3074 * active as well. The inode lock will still be held upon return from
1da177e4 3075 * the call and the caller is free to unlock it.
c63942d3 3076 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
3077 * The flags indicate how the inode's buffer should be written out.
3078 */
3079int
3080xfs_iflush(
3081 xfs_inode_t *ip,
3082 uint flags)
3083{
3084 xfs_inode_log_item_t *iip;
3085 xfs_buf_t *bp;
3086 xfs_dinode_t *dip;
3087 xfs_mount_t *mp;
3088 int error;
a3f74ffb 3089 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
bad55843 3090 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3091
3092 XFS_STATS_INC(xs_iflush_count);
3093
579aa9ca 3094 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3095 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3096 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3097 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3098
3099 iip = ip->i_itemp;
3100 mp = ip->i_mount;
3101
3102 /*
3103 * If the inode isn't dirty, then just release the inode
3104 * flush lock and do nothing.
3105 */
33540408 3106 if (xfs_inode_clean(ip)) {
1da177e4
LT
3107 xfs_ifunlock(ip);
3108 return 0;
3109 }
3110
3111 /*
a3f74ffb
DC
3112 * We can't flush the inode until it is unpinned, so wait for it if we
3113 * are allowed to block. We know noone new can pin it, because we are
3114 * holding the inode lock shared and you need to hold it exclusively to
3115 * pin the inode.
3116 *
3117 * If we are not allowed to block, force the log out asynchronously so
3118 * that when we come back the inode will be unpinned. If other inodes
3119 * in the same cluster are dirty, they will probably write the inode
3120 * out for us if they occur after the log force completes.
1da177e4 3121 */
a3f74ffb
DC
3122 if (noblock && xfs_ipincount(ip)) {
3123 xfs_iunpin_nowait(ip);
3124 xfs_ifunlock(ip);
3125 return EAGAIN;
3126 }
1da177e4
LT
3127 xfs_iunpin_wait(ip);
3128
3129 /*
3130 * This may have been unpinned because the filesystem is shutting
3131 * down forcibly. If that's the case we must not write this inode
3132 * to disk, because the log record didn't make it to disk!
3133 */
3134 if (XFS_FORCED_SHUTDOWN(mp)) {
3135 ip->i_update_core = 0;
3136 if (iip)
3137 iip->ili_format.ilf_fields = 0;
3138 xfs_ifunlock(ip);
3139 return XFS_ERROR(EIO);
3140 }
3141
1da177e4
LT
3142 /*
3143 * Decide how buffer will be flushed out. This is done before
3144 * the call to xfs_iflush_int because this field is zeroed by it.
3145 */
3146 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3147 /*
3148 * Flush out the inode buffer according to the directions
3149 * of the caller. In the cases where the caller has given
3150 * us a choice choose the non-delwri case. This is because
3151 * the inode is in the AIL and we need to get it out soon.
3152 */
3153 switch (flags) {
3154 case XFS_IFLUSH_SYNC:
3155 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3156 flags = 0;
3157 break;
a3f74ffb 3158 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3159 case XFS_IFLUSH_ASYNC:
3160 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3161 flags = INT_ASYNC;
3162 break;
3163 case XFS_IFLUSH_DELWRI:
3164 flags = INT_DELWRI;
3165 break;
3166 default:
3167 ASSERT(0);
3168 flags = 0;
3169 break;
3170 }
3171 } else {
3172 switch (flags) {
3173 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3174 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3175 case XFS_IFLUSH_DELWRI:
3176 flags = INT_DELWRI;
3177 break;
a3f74ffb 3178 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3179 case XFS_IFLUSH_ASYNC:
3180 flags = INT_ASYNC;
3181 break;
3182 case XFS_IFLUSH_SYNC:
3183 flags = 0;
3184 break;
3185 default:
3186 ASSERT(0);
3187 flags = 0;
3188 break;
3189 }
3190 }
3191
a3f74ffb
DC
3192 /*
3193 * Get the buffer containing the on-disk inode.
3194 */
3195 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3196 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3197 if (error || !bp) {
3198 xfs_ifunlock(ip);
3199 return error;
3200 }
3201
1da177e4
LT
3202 /*
3203 * First flush out the inode that xfs_iflush was called with.
3204 */
3205 error = xfs_iflush_int(ip, bp);
bad55843 3206 if (error)
1da177e4 3207 goto corrupt_out;
1da177e4 3208
a3f74ffb
DC
3209 /*
3210 * If the buffer is pinned then push on the log now so we won't
3211 * get stuck waiting in the write for too long.
3212 */
3213 if (XFS_BUF_ISPINNED(bp))
3214 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3215
1da177e4
LT
3216 /*
3217 * inode clustering:
3218 * see if other inodes can be gathered into this write
3219 */
bad55843
DC
3220 error = xfs_iflush_cluster(ip, bp);
3221 if (error)
3222 goto cluster_corrupt_out;
1da177e4 3223
1da177e4
LT
3224 if (flags & INT_DELWRI) {
3225 xfs_bdwrite(mp, bp);
3226 } else if (flags & INT_ASYNC) {
db7a19f2 3227 error = xfs_bawrite(mp, bp);
1da177e4
LT
3228 } else {
3229 error = xfs_bwrite(mp, bp);
3230 }
3231 return error;
3232
3233corrupt_out:
3234 xfs_buf_relse(bp);
7d04a335 3235 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3236cluster_corrupt_out:
1da177e4
LT
3237 /*
3238 * Unlocks the flush lock
3239 */
bad55843 3240 xfs_iflush_abort(ip);
1da177e4
LT
3241 return XFS_ERROR(EFSCORRUPTED);
3242}
3243
3244
3245STATIC int
3246xfs_iflush_int(
3247 xfs_inode_t *ip,
3248 xfs_buf_t *bp)
3249{
3250 xfs_inode_log_item_t *iip;
3251 xfs_dinode_t *dip;
3252 xfs_mount_t *mp;
3253#ifdef XFS_TRANS_DEBUG
3254 int first;
3255#endif
1da177e4 3256
579aa9ca 3257 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3258 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3259 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3260 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3261
3262 iip = ip->i_itemp;
3263 mp = ip->i_mount;
3264
3265
3266 /*
3267 * If the inode isn't dirty, then just release the inode
3268 * flush lock and do nothing.
3269 */
33540408 3270 if (xfs_inode_clean(ip)) {
1da177e4
LT
3271 xfs_ifunlock(ip);
3272 return 0;
3273 }
3274
3275 /* set *dip = inode's place in the buffer */
3276 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3277
3278 /*
3279 * Clear i_update_core before copying out the data.
3280 * This is for coordination with our timestamp updates
3281 * that don't hold the inode lock. They will always
3282 * update the timestamps BEFORE setting i_update_core,
3283 * so if we clear i_update_core after they set it we
3284 * are guaranteed to see their updates to the timestamps.
3285 * I believe that this depends on strongly ordered memory
3286 * semantics, but we have that. We use the SYNCHRONIZE
3287 * macro to make sure that the compiler does not reorder
3288 * the i_update_core access below the data copy below.
3289 */
3290 ip->i_update_core = 0;
3291 SYNCHRONIZE();
3292
42fe2b1f
CH
3293 /*
3294 * Make sure to get the latest atime from the Linux inode.
3295 */
3296 xfs_synchronize_atime(ip);
3297
347d1c01 3298 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3299 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3300 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3301 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
347d1c01 3302 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
1da177e4
LT
3303 goto corrupt_out;
3304 }
3305 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3306 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3307 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3308 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3309 ip->i_ino, ip, ip->i_d.di_magic);
3310 goto corrupt_out;
3311 }
3312 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3313 if (XFS_TEST_ERROR(
3314 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3315 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3316 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3317 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3318 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3319 ip->i_ino, ip);
3320 goto corrupt_out;
3321 }
3322 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3323 if (XFS_TEST_ERROR(
3324 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3325 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3326 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3327 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3328 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3329 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3330 ip->i_ino, ip);
3331 goto corrupt_out;
3332 }
3333 }
3334 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3335 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3336 XFS_RANDOM_IFLUSH_5)) {
3337 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3338 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3339 ip->i_ino,
3340 ip->i_d.di_nextents + ip->i_d.di_anextents,
3341 ip->i_d.di_nblocks,
3342 ip);
3343 goto corrupt_out;
3344 }
3345 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3346 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3347 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3348 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3349 ip->i_ino, ip->i_d.di_forkoff, ip);
3350 goto corrupt_out;
3351 }
3352 /*
3353 * bump the flush iteration count, used to detect flushes which
3354 * postdate a log record during recovery.
3355 */
3356
3357 ip->i_d.di_flushiter++;
3358
3359 /*
3360 * Copy the dirty parts of the inode into the on-disk
3361 * inode. We always copy out the core of the inode,
3362 * because if the inode is dirty at all the core must
3363 * be.
3364 */
347d1c01 3365 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
1da177e4
LT
3366
3367 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3368 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3369 ip->i_d.di_flushiter = 0;
3370
3371 /*
3372 * If this is really an old format inode and the superblock version
3373 * has not been updated to support only new format inodes, then
3374 * convert back to the old inode format. If the superblock version
3375 * has been updated, then make the conversion permanent.
3376 */
3377 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
62118709 3378 xfs_sb_version_hasnlink(&mp->m_sb));
1da177e4 3379 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
62118709 3380 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3381 /*
3382 * Convert it back.
3383 */
3384 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
347d1c01 3385 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3386 } else {
3387 /*
3388 * The superblock version has already been bumped,
3389 * so just make the conversion to the new inode
3390 * format permanent.
3391 */
3392 ip->i_d.di_version = XFS_DINODE_VERSION_2;
347d1c01 3393 dip->di_core.di_version = XFS_DINODE_VERSION_2;
1da177e4
LT
3394 ip->i_d.di_onlink = 0;
3395 dip->di_core.di_onlink = 0;
3396 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3397 memset(&(dip->di_core.di_pad[0]), 0,
3398 sizeof(dip->di_core.di_pad));
3399 ASSERT(ip->i_d.di_projid == 0);
3400 }
3401 }
3402
e4ac967b
DC
3403 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3404 if (XFS_IFORK_Q(ip))
3405 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3406 xfs_inobp_check(mp, bp);
3407
3408 /*
3409 * We've recorded everything logged in the inode, so we'd
3410 * like to clear the ilf_fields bits so we don't log and
3411 * flush things unnecessarily. However, we can't stop
3412 * logging all this information until the data we've copied
3413 * into the disk buffer is written to disk. If we did we might
3414 * overwrite the copy of the inode in the log with all the
3415 * data after re-logging only part of it, and in the face of
3416 * a crash we wouldn't have all the data we need to recover.
3417 *
3418 * What we do is move the bits to the ili_last_fields field.
3419 * When logging the inode, these bits are moved back to the
3420 * ilf_fields field. In the xfs_iflush_done() routine we
3421 * clear ili_last_fields, since we know that the information
3422 * those bits represent is permanently on disk. As long as
3423 * the flush completes before the inode is logged again, then
3424 * both ilf_fields and ili_last_fields will be cleared.
3425 *
3426 * We can play with the ilf_fields bits here, because the inode
3427 * lock must be held exclusively in order to set bits there
3428 * and the flush lock protects the ili_last_fields bits.
3429 * Set ili_logged so the flush done
3430 * routine can tell whether or not to look in the AIL.
3431 * Also, store the current LSN of the inode so that we can tell
3432 * whether the item has moved in the AIL from xfs_iflush_done().
3433 * In order to read the lsn we need the AIL lock, because
3434 * it is a 64 bit value that cannot be read atomically.
3435 */
3436 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3437 iip->ili_last_fields = iip->ili_format.ilf_fields;
3438 iip->ili_format.ilf_fields = 0;
3439 iip->ili_logged = 1;
3440
7b2e2a31
DC
3441 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3442 &iip->ili_item.li_lsn);
1da177e4
LT
3443
3444 /*
3445 * Attach the function xfs_iflush_done to the inode's
3446 * buffer. This will remove the inode from the AIL
3447 * and unlock the inode's flush lock when the inode is
3448 * completely written to disk.
3449 */
3450 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3451 xfs_iflush_done, (xfs_log_item_t *)iip);
3452
3453 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3454 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3455 } else {
3456 /*
3457 * We're flushing an inode which is not in the AIL and has
3458 * not been logged but has i_update_core set. For this
3459 * case we can use a B_DELWRI flush and immediately drop
3460 * the inode flush lock because we can avoid the whole
3461 * AIL state thing. It's OK to drop the flush lock now,
3462 * because we've already locked the buffer and to do anything
3463 * you really need both.
3464 */
3465 if (iip != NULL) {
3466 ASSERT(iip->ili_logged == 0);
3467 ASSERT(iip->ili_last_fields == 0);
3468 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3469 }
3470 xfs_ifunlock(ip);
3471 }
3472
3473 return 0;
3474
3475corrupt_out:
3476 return XFS_ERROR(EFSCORRUPTED);
3477}
3478
3479
1da177e4 3480
1da177e4
LT
3481#ifdef XFS_ILOCK_TRACE
3482ktrace_t *xfs_ilock_trace_buf;
3483
3484void
3485xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3486{
3487 ktrace_enter(ip->i_lock_trace,
3488 (void *)ip,
3489 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3490 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3491 (void *)ra, /* caller of ilock */
3492 (void *)(unsigned long)current_cpu(),
3493 (void *)(unsigned long)current_pid(),
3494 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3495}
3496#endif
4eea22f0
MK
3497
3498/*
3499 * Return a pointer to the extent record at file index idx.
3500 */
a6f64d4a 3501xfs_bmbt_rec_host_t *
4eea22f0
MK
3502xfs_iext_get_ext(
3503 xfs_ifork_t *ifp, /* inode fork pointer */
3504 xfs_extnum_t idx) /* index of target extent */
3505{
3506 ASSERT(idx >= 0);
0293ce3a
MK
3507 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3508 return ifp->if_u1.if_ext_irec->er_extbuf;
3509 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3510 xfs_ext_irec_t *erp; /* irec pointer */
3511 int erp_idx = 0; /* irec index */
3512 xfs_extnum_t page_idx = idx; /* ext index in target list */
3513
3514 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3515 return &erp->er_extbuf[page_idx];
3516 } else if (ifp->if_bytes) {
4eea22f0
MK
3517 return &ifp->if_u1.if_extents[idx];
3518 } else {
3519 return NULL;
3520 }
3521}
3522
3523/*
3524 * Insert new item(s) into the extent records for incore inode
3525 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3526 */
3527void
3528xfs_iext_insert(
3529 xfs_ifork_t *ifp, /* inode fork pointer */
3530 xfs_extnum_t idx, /* starting index of new items */
3531 xfs_extnum_t count, /* number of inserted items */
3532 xfs_bmbt_irec_t *new) /* items to insert */
3533{
4eea22f0
MK
3534 xfs_extnum_t i; /* extent record index */
3535
3536 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3537 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3538 for (i = idx; i < idx + count; i++, new++)
3539 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3540}
3541
3542/*
3543 * This is called when the amount of space required for incore file
3544 * extents needs to be increased. The ext_diff parameter stores the
3545 * number of new extents being added and the idx parameter contains
3546 * the extent index where the new extents will be added. If the new
3547 * extents are being appended, then we just need to (re)allocate and
3548 * initialize the space. Otherwise, if the new extents are being
3549 * inserted into the middle of the existing entries, a bit more work
3550 * is required to make room for the new extents to be inserted. The
3551 * caller is responsible for filling in the new extent entries upon
3552 * return.
3553 */
3554void
3555xfs_iext_add(
3556 xfs_ifork_t *ifp, /* inode fork pointer */
3557 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3558 int ext_diff) /* number of extents to add */
4eea22f0
MK
3559{
3560 int byte_diff; /* new bytes being added */
3561 int new_size; /* size of extents after adding */
3562 xfs_extnum_t nextents; /* number of extents in file */
3563
3564 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3565 ASSERT((idx >= 0) && (idx <= nextents));
3566 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3567 new_size = ifp->if_bytes + byte_diff;
3568 /*
3569 * If the new number of extents (nextents + ext_diff)
3570 * fits inside the inode, then continue to use the inline
3571 * extent buffer.
3572 */
3573 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3574 if (idx < nextents) {
3575 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3576 &ifp->if_u2.if_inline_ext[idx],
3577 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3578 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3579 }
3580 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3581 ifp->if_real_bytes = 0;
0293ce3a 3582 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3583 }
3584 /*
3585 * Otherwise use a linear (direct) extent list.
3586 * If the extents are currently inside the inode,
3587 * xfs_iext_realloc_direct will switch us from
3588 * inline to direct extent allocation mode.
3589 */
0293ce3a 3590 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3591 xfs_iext_realloc_direct(ifp, new_size);
3592 if (idx < nextents) {
3593 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3594 &ifp->if_u1.if_extents[idx],
3595 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3596 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3597 }
3598 }
0293ce3a
MK
3599 /* Indirection array */
3600 else {
3601 xfs_ext_irec_t *erp;
3602 int erp_idx = 0;
3603 int page_idx = idx;
3604
3605 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3606 if (ifp->if_flags & XFS_IFEXTIREC) {
3607 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3608 } else {
3609 xfs_iext_irec_init(ifp);
3610 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3611 erp = ifp->if_u1.if_ext_irec;
3612 }
3613 /* Extents fit in target extent page */
3614 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3615 if (page_idx < erp->er_extcount) {
3616 memmove(&erp->er_extbuf[page_idx + ext_diff],
3617 &erp->er_extbuf[page_idx],
3618 (erp->er_extcount - page_idx) *
3619 sizeof(xfs_bmbt_rec_t));
3620 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3621 }
3622 erp->er_extcount += ext_diff;
3623 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3624 }
3625 /* Insert a new extent page */
3626 else if (erp) {
3627 xfs_iext_add_indirect_multi(ifp,
3628 erp_idx, page_idx, ext_diff);
3629 }
3630 /*
3631 * If extent(s) are being appended to the last page in
3632 * the indirection array and the new extent(s) don't fit
3633 * in the page, then erp is NULL and erp_idx is set to
3634 * the next index needed in the indirection array.
3635 */
3636 else {
3637 int count = ext_diff;
3638
3639 while (count) {
3640 erp = xfs_iext_irec_new(ifp, erp_idx);
3641 erp->er_extcount = count;
3642 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3643 if (count) {
3644 erp_idx++;
3645 }
3646 }
3647 }
3648 }
4eea22f0
MK
3649 ifp->if_bytes = new_size;
3650}
3651
0293ce3a
MK
3652/*
3653 * This is called when incore extents are being added to the indirection
3654 * array and the new extents do not fit in the target extent list. The
3655 * erp_idx parameter contains the irec index for the target extent list
3656 * in the indirection array, and the idx parameter contains the extent
3657 * index within the list. The number of extents being added is stored
3658 * in the count parameter.
3659 *
3660 * |-------| |-------|
3661 * | | | | idx - number of extents before idx
3662 * | idx | | count |
3663 * | | | | count - number of extents being inserted at idx
3664 * |-------| |-------|
3665 * | count | | nex2 | nex2 - number of extents after idx + count
3666 * |-------| |-------|
3667 */
3668void
3669xfs_iext_add_indirect_multi(
3670 xfs_ifork_t *ifp, /* inode fork pointer */
3671 int erp_idx, /* target extent irec index */
3672 xfs_extnum_t idx, /* index within target list */
3673 int count) /* new extents being added */
3674{
3675 int byte_diff; /* new bytes being added */
3676 xfs_ext_irec_t *erp; /* pointer to irec entry */
3677 xfs_extnum_t ext_diff; /* number of extents to add */
3678 xfs_extnum_t ext_cnt; /* new extents still needed */
3679 xfs_extnum_t nex2; /* extents after idx + count */
3680 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3681 int nlists; /* number of irec's (lists) */
3682
3683 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3684 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3685 nex2 = erp->er_extcount - idx;
3686 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3687
3688 /*
3689 * Save second part of target extent list
3690 * (all extents past */
3691 if (nex2) {
3692 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3693 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3694 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3695 erp->er_extcount -= nex2;
3696 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3697 memset(&erp->er_extbuf[idx], 0, byte_diff);
3698 }
3699
3700 /*
3701 * Add the new extents to the end of the target
3702 * list, then allocate new irec record(s) and
3703 * extent buffer(s) as needed to store the rest
3704 * of the new extents.
3705 */
3706 ext_cnt = count;
3707 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3708 if (ext_diff) {
3709 erp->er_extcount += ext_diff;
3710 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3711 ext_cnt -= ext_diff;
3712 }
3713 while (ext_cnt) {
3714 erp_idx++;
3715 erp = xfs_iext_irec_new(ifp, erp_idx);
3716 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3717 erp->er_extcount = ext_diff;
3718 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3719 ext_cnt -= ext_diff;
3720 }
3721
3722 /* Add nex2 extents back to indirection array */
3723 if (nex2) {
3724 xfs_extnum_t ext_avail;
3725 int i;
3726
3727 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3728 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3729 i = 0;
3730 /*
3731 * If nex2 extents fit in the current page, append
3732 * nex2_ep after the new extents.
3733 */
3734 if (nex2 <= ext_avail) {
3735 i = erp->er_extcount;
3736 }
3737 /*
3738 * Otherwise, check if space is available in the
3739 * next page.
3740 */
3741 else if ((erp_idx < nlists - 1) &&
3742 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3743 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3744 erp_idx++;
3745 erp++;
3746 /* Create a hole for nex2 extents */
3747 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3748 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3749 }
3750 /*
3751 * Final choice, create a new extent page for
3752 * nex2 extents.
3753 */
3754 else {
3755 erp_idx++;
3756 erp = xfs_iext_irec_new(ifp, erp_idx);
3757 }
3758 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3759 kmem_free(nex2_ep);
0293ce3a
MK
3760 erp->er_extcount += nex2;
3761 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3762 }
3763}
3764
4eea22f0
MK
3765/*
3766 * This is called when the amount of space required for incore file
3767 * extents needs to be decreased. The ext_diff parameter stores the
3768 * number of extents to be removed and the idx parameter contains
3769 * the extent index where the extents will be removed from.
0293ce3a
MK
3770 *
3771 * If the amount of space needed has decreased below the linear
3772 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3773 * extent array. Otherwise, use kmem_realloc() to adjust the
3774 * size to what is needed.
4eea22f0
MK
3775 */
3776void
3777xfs_iext_remove(
3778 xfs_ifork_t *ifp, /* inode fork pointer */
3779 xfs_extnum_t idx, /* index to begin removing exts */
3780 int ext_diff) /* number of extents to remove */
3781{
3782 xfs_extnum_t nextents; /* number of extents in file */
3783 int new_size; /* size of extents after removal */
3784
3785 ASSERT(ext_diff > 0);
3786 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3787 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3788
3789 if (new_size == 0) {
3790 xfs_iext_destroy(ifp);
0293ce3a
MK
3791 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3792 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3793 } else if (ifp->if_real_bytes) {
3794 xfs_iext_remove_direct(ifp, idx, ext_diff);
3795 } else {
3796 xfs_iext_remove_inline(ifp, idx, ext_diff);
3797 }
3798 ifp->if_bytes = new_size;
3799}
3800
3801/*
3802 * This removes ext_diff extents from the inline buffer, beginning
3803 * at extent index idx.
3804 */
3805void
3806xfs_iext_remove_inline(
3807 xfs_ifork_t *ifp, /* inode fork pointer */
3808 xfs_extnum_t idx, /* index to begin removing exts */
3809 int ext_diff) /* number of extents to remove */
3810{
3811 int nextents; /* number of extents in file */
3812
0293ce3a 3813 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3814 ASSERT(idx < XFS_INLINE_EXTS);
3815 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3816 ASSERT(((nextents - ext_diff) > 0) &&
3817 (nextents - ext_diff) < XFS_INLINE_EXTS);
3818
3819 if (idx + ext_diff < nextents) {
3820 memmove(&ifp->if_u2.if_inline_ext[idx],
3821 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3822 (nextents - (idx + ext_diff)) *
3823 sizeof(xfs_bmbt_rec_t));
3824 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3825 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3826 } else {
3827 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3828 ext_diff * sizeof(xfs_bmbt_rec_t));
3829 }
3830}
3831
3832/*
3833 * This removes ext_diff extents from a linear (direct) extent list,
3834 * beginning at extent index idx. If the extents are being removed
3835 * from the end of the list (ie. truncate) then we just need to re-
3836 * allocate the list to remove the extra space. Otherwise, if the
3837 * extents are being removed from the middle of the existing extent
3838 * entries, then we first need to move the extent records beginning
3839 * at idx + ext_diff up in the list to overwrite the records being
3840 * removed, then remove the extra space via kmem_realloc.
3841 */
3842void
3843xfs_iext_remove_direct(
3844 xfs_ifork_t *ifp, /* inode fork pointer */
3845 xfs_extnum_t idx, /* index to begin removing exts */
3846 int ext_diff) /* number of extents to remove */
3847{
3848 xfs_extnum_t nextents; /* number of extents in file */
3849 int new_size; /* size of extents after removal */
3850
0293ce3a 3851 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3852 new_size = ifp->if_bytes -
3853 (ext_diff * sizeof(xfs_bmbt_rec_t));
3854 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3855
3856 if (new_size == 0) {
3857 xfs_iext_destroy(ifp);
3858 return;
3859 }
3860 /* Move extents up in the list (if needed) */
3861 if (idx + ext_diff < nextents) {
3862 memmove(&ifp->if_u1.if_extents[idx],
3863 &ifp->if_u1.if_extents[idx + ext_diff],
3864 (nextents - (idx + ext_diff)) *
3865 sizeof(xfs_bmbt_rec_t));
3866 }
3867 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3868 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3869 /*
3870 * Reallocate the direct extent list. If the extents
3871 * will fit inside the inode then xfs_iext_realloc_direct
3872 * will switch from direct to inline extent allocation
3873 * mode for us.
3874 */
3875 xfs_iext_realloc_direct(ifp, new_size);
3876 ifp->if_bytes = new_size;
3877}
3878
0293ce3a
MK
3879/*
3880 * This is called when incore extents are being removed from the
3881 * indirection array and the extents being removed span multiple extent
3882 * buffers. The idx parameter contains the file extent index where we
3883 * want to begin removing extents, and the count parameter contains
3884 * how many extents need to be removed.
3885 *
3886 * |-------| |-------|
3887 * | nex1 | | | nex1 - number of extents before idx
3888 * |-------| | count |
3889 * | | | | count - number of extents being removed at idx
3890 * | count | |-------|
3891 * | | | nex2 | nex2 - number of extents after idx + count
3892 * |-------| |-------|
3893 */
3894void
3895xfs_iext_remove_indirect(
3896 xfs_ifork_t *ifp, /* inode fork pointer */
3897 xfs_extnum_t idx, /* index to begin removing extents */
3898 int count) /* number of extents to remove */
3899{
3900 xfs_ext_irec_t *erp; /* indirection array pointer */
3901 int erp_idx = 0; /* indirection array index */
3902 xfs_extnum_t ext_cnt; /* extents left to remove */
3903 xfs_extnum_t ext_diff; /* extents to remove in current list */
3904 xfs_extnum_t nex1; /* number of extents before idx */
3905 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 3906 int nlists; /* entries in indirection array */
0293ce3a
MK
3907 int page_idx = idx; /* index in target extent list */
3908
3909 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3910 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3911 ASSERT(erp != NULL);
3912 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3913 nex1 = page_idx;
3914 ext_cnt = count;
3915 while (ext_cnt) {
3916 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3917 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3918 /*
3919 * Check for deletion of entire list;
3920 * xfs_iext_irec_remove() updates extent offsets.
3921 */
3922 if (ext_diff == erp->er_extcount) {
3923 xfs_iext_irec_remove(ifp, erp_idx);
3924 ext_cnt -= ext_diff;
3925 nex1 = 0;
3926 if (ext_cnt) {
3927 ASSERT(erp_idx < ifp->if_real_bytes /
3928 XFS_IEXT_BUFSZ);
3929 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3930 nex1 = 0;
3931 continue;
3932 } else {
3933 break;
3934 }
3935 }
3936 /* Move extents up (if needed) */
3937 if (nex2) {
3938 memmove(&erp->er_extbuf[nex1],
3939 &erp->er_extbuf[nex1 + ext_diff],
3940 nex2 * sizeof(xfs_bmbt_rec_t));
3941 }
3942 /* Zero out rest of page */
3943 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3944 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3945 /* Update remaining counters */
3946 erp->er_extcount -= ext_diff;
3947 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3948 ext_cnt -= ext_diff;
3949 nex1 = 0;
3950 erp_idx++;
3951 erp++;
3952 }
3953 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3954 xfs_iext_irec_compact(ifp);
3955}
3956
4eea22f0
MK
3957/*
3958 * Create, destroy, or resize a linear (direct) block of extents.
3959 */
3960void
3961xfs_iext_realloc_direct(
3962 xfs_ifork_t *ifp, /* inode fork pointer */
3963 int new_size) /* new size of extents */
3964{
3965 int rnew_size; /* real new size of extents */
3966
3967 rnew_size = new_size;
3968
0293ce3a
MK
3969 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3970 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3971 (new_size != ifp->if_real_bytes)));
3972
4eea22f0
MK
3973 /* Free extent records */
3974 if (new_size == 0) {
3975 xfs_iext_destroy(ifp);
3976 }
3977 /* Resize direct extent list and zero any new bytes */
3978 else if (ifp->if_real_bytes) {
3979 /* Check if extents will fit inside the inode */
3980 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3981 xfs_iext_direct_to_inline(ifp, new_size /
3982 (uint)sizeof(xfs_bmbt_rec_t));
3983 ifp->if_bytes = new_size;
3984 return;
3985 }
16a087d8 3986 if (!is_power_of_2(new_size)){
40ebd81d 3987 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3988 }
3989 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3990 ifp->if_u1.if_extents =
4eea22f0
MK
3991 kmem_realloc(ifp->if_u1.if_extents,
3992 rnew_size,
6785073b 3993 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3994 }
3995 if (rnew_size > ifp->if_real_bytes) {
3996 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3997 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3998 rnew_size - ifp->if_real_bytes);
3999 }
4000 }
4001 /*
4002 * Switch from the inline extent buffer to a direct
4003 * extent list. Be sure to include the inline extent
4004 * bytes in new_size.
4005 */
4006 else {
4007 new_size += ifp->if_bytes;
16a087d8 4008 if (!is_power_of_2(new_size)) {
40ebd81d 4009 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4010 }
4011 xfs_iext_inline_to_direct(ifp, rnew_size);
4012 }
4013 ifp->if_real_bytes = rnew_size;
4014 ifp->if_bytes = new_size;
4015}
4016
4017/*
4018 * Switch from linear (direct) extent records to inline buffer.
4019 */
4020void
4021xfs_iext_direct_to_inline(
4022 xfs_ifork_t *ifp, /* inode fork pointer */
4023 xfs_extnum_t nextents) /* number of extents in file */
4024{
4025 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4026 ASSERT(nextents <= XFS_INLINE_EXTS);
4027 /*
4028 * The inline buffer was zeroed when we switched
4029 * from inline to direct extent allocation mode,
4030 * so we don't need to clear it here.
4031 */
4032 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4033 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 4034 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4035 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4036 ifp->if_real_bytes = 0;
4037}
4038
4039/*
4040 * Switch from inline buffer to linear (direct) extent records.
4041 * new_size should already be rounded up to the next power of 2
4042 * by the caller (when appropriate), so use new_size as it is.
4043 * However, since new_size may be rounded up, we can't update
4044 * if_bytes here. It is the caller's responsibility to update
4045 * if_bytes upon return.
4046 */
4047void
4048xfs_iext_inline_to_direct(
4049 xfs_ifork_t *ifp, /* inode fork pointer */
4050 int new_size) /* number of extents in file */
4051{
6785073b 4052 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
4053 memset(ifp->if_u1.if_extents, 0, new_size);
4054 if (ifp->if_bytes) {
4055 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4056 ifp->if_bytes);
4057 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4058 sizeof(xfs_bmbt_rec_t));
4059 }
4060 ifp->if_real_bytes = new_size;
4061}
4062
0293ce3a
MK
4063/*
4064 * Resize an extent indirection array to new_size bytes.
4065 */
4066void
4067xfs_iext_realloc_indirect(
4068 xfs_ifork_t *ifp, /* inode fork pointer */
4069 int new_size) /* new indirection array size */
4070{
4071 int nlists; /* number of irec's (ex lists) */
4072 int size; /* current indirection array size */
4073
4074 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4075 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4076 size = nlists * sizeof(xfs_ext_irec_t);
4077 ASSERT(ifp->if_real_bytes);
4078 ASSERT((new_size >= 0) && (new_size != size));
4079 if (new_size == 0) {
4080 xfs_iext_destroy(ifp);
4081 } else {
4082 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4083 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 4084 new_size, size, KM_NOFS);
0293ce3a
MK
4085 }
4086}
4087
4088/*
4089 * Switch from indirection array to linear (direct) extent allocations.
4090 */
4091void
4092xfs_iext_indirect_to_direct(
4093 xfs_ifork_t *ifp) /* inode fork pointer */
4094{
a6f64d4a 4095 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4096 xfs_extnum_t nextents; /* number of extents in file */
4097 int size; /* size of file extents */
4098
4099 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4100 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4101 ASSERT(nextents <= XFS_LINEAR_EXTS);
4102 size = nextents * sizeof(xfs_bmbt_rec_t);
4103
71a8c87f 4104 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
4105 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4106
4107 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 4108 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4109 ifp->if_flags &= ~XFS_IFEXTIREC;
4110 ifp->if_u1.if_extents = ep;
4111 ifp->if_bytes = size;
4112 if (nextents < XFS_LINEAR_EXTS) {
4113 xfs_iext_realloc_direct(ifp, size);
4114 }
4115}
4116
4eea22f0
MK
4117/*
4118 * Free incore file extents.
4119 */
4120void
4121xfs_iext_destroy(
4122 xfs_ifork_t *ifp) /* inode fork pointer */
4123{
0293ce3a
MK
4124 if (ifp->if_flags & XFS_IFEXTIREC) {
4125 int erp_idx;
4126 int nlists;
4127
4128 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4129 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4130 xfs_iext_irec_remove(ifp, erp_idx);
4131 }
4132 ifp->if_flags &= ~XFS_IFEXTIREC;
4133 } else if (ifp->if_real_bytes) {
f0e2d93c 4134 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4135 } else if (ifp->if_bytes) {
4136 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4137 sizeof(xfs_bmbt_rec_t));
4138 }
4139 ifp->if_u1.if_extents = NULL;
4140 ifp->if_real_bytes = 0;
4141 ifp->if_bytes = 0;
4142}
0293ce3a 4143
8867bc9b
MK
4144/*
4145 * Return a pointer to the extent record for file system block bno.
4146 */
a6f64d4a 4147xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4148xfs_iext_bno_to_ext(
4149 xfs_ifork_t *ifp, /* inode fork pointer */
4150 xfs_fileoff_t bno, /* block number to search for */
4151 xfs_extnum_t *idxp) /* index of target extent */
4152{
a6f64d4a 4153 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4154 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4155 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4156 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4157 int high; /* upper boundary in search */
8867bc9b 4158 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4159 int low; /* lower boundary in search */
8867bc9b
MK
4160 xfs_extnum_t nextents; /* number of file extents */
4161 xfs_fileoff_t startoff = 0; /* start offset of extent */
4162
4163 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4164 if (nextents == 0) {
4165 *idxp = 0;
4166 return NULL;
4167 }
4168 low = 0;
4169 if (ifp->if_flags & XFS_IFEXTIREC) {
4170 /* Find target extent list */
4171 int erp_idx = 0;
4172 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4173 base = erp->er_extbuf;
4174 high = erp->er_extcount - 1;
4175 } else {
4176 base = ifp->if_u1.if_extents;
4177 high = nextents - 1;
4178 }
4179 /* Binary search extent records */
4180 while (low <= high) {
4181 idx = (low + high) >> 1;
4182 ep = base + idx;
4183 startoff = xfs_bmbt_get_startoff(ep);
4184 blockcount = xfs_bmbt_get_blockcount(ep);
4185 if (bno < startoff) {
4186 high = idx - 1;
4187 } else if (bno >= startoff + blockcount) {
4188 low = idx + 1;
4189 } else {
4190 /* Convert back to file-based extent index */
4191 if (ifp->if_flags & XFS_IFEXTIREC) {
4192 idx += erp->er_extoff;
4193 }
4194 *idxp = idx;
4195 return ep;
4196 }
4197 }
4198 /* Convert back to file-based extent index */
4199 if (ifp->if_flags & XFS_IFEXTIREC) {
4200 idx += erp->er_extoff;
4201 }
4202 if (bno >= startoff + blockcount) {
4203 if (++idx == nextents) {
4204 ep = NULL;
4205 } else {
4206 ep = xfs_iext_get_ext(ifp, idx);
4207 }
4208 }
4209 *idxp = idx;
4210 return ep;
4211}
4212
0293ce3a
MK
4213/*
4214 * Return a pointer to the indirection array entry containing the
4215 * extent record for filesystem block bno. Store the index of the
4216 * target irec in *erp_idxp.
4217 */
8867bc9b 4218xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4219xfs_iext_bno_to_irec(
4220 xfs_ifork_t *ifp, /* inode fork pointer */
4221 xfs_fileoff_t bno, /* block number to search for */
4222 int *erp_idxp) /* irec index of target ext list */
4223{
4224 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4225 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4226 int erp_idx; /* indirection array index */
0293ce3a
MK
4227 int nlists; /* number of extent irec's (lists) */
4228 int high; /* binary search upper limit */
4229 int low; /* binary search lower limit */
4230
4231 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4232 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4233 erp_idx = 0;
4234 low = 0;
4235 high = nlists - 1;
4236 while (low <= high) {
4237 erp_idx = (low + high) >> 1;
4238 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4239 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4240 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4241 high = erp_idx - 1;
4242 } else if (erp_next && bno >=
4243 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4244 low = erp_idx + 1;
4245 } else {
4246 break;
4247 }
4248 }
4249 *erp_idxp = erp_idx;
4250 return erp;
4251}
4252
4253/*
4254 * Return a pointer to the indirection array entry containing the
4255 * extent record at file extent index *idxp. Store the index of the
4256 * target irec in *erp_idxp and store the page index of the target
4257 * extent record in *idxp.
4258 */
4259xfs_ext_irec_t *
4260xfs_iext_idx_to_irec(
4261 xfs_ifork_t *ifp, /* inode fork pointer */
4262 xfs_extnum_t *idxp, /* extent index (file -> page) */
4263 int *erp_idxp, /* pointer to target irec */
4264 int realloc) /* new bytes were just added */
4265{
4266 xfs_ext_irec_t *prev; /* pointer to previous irec */
4267 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4268 int erp_idx; /* indirection array index */
4269 int nlists; /* number of irec's (ex lists) */
4270 int high; /* binary search upper limit */
4271 int low; /* binary search lower limit */
4272 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4273
4274 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4275 ASSERT(page_idx >= 0 && page_idx <=
4276 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4277 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4278 erp_idx = 0;
4279 low = 0;
4280 high = nlists - 1;
4281
4282 /* Binary search extent irec's */
4283 while (low <= high) {
4284 erp_idx = (low + high) >> 1;
4285 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4286 prev = erp_idx > 0 ? erp - 1 : NULL;
4287 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4288 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4289 high = erp_idx - 1;
4290 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4291 (page_idx == erp->er_extoff + erp->er_extcount &&
4292 !realloc)) {
4293 low = erp_idx + 1;
4294 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4295 erp->er_extcount == XFS_LINEAR_EXTS) {
4296 ASSERT(realloc);
4297 page_idx = 0;
4298 erp_idx++;
4299 erp = erp_idx < nlists ? erp + 1 : NULL;
4300 break;
4301 } else {
4302 page_idx -= erp->er_extoff;
4303 break;
4304 }
4305 }
4306 *idxp = page_idx;
4307 *erp_idxp = erp_idx;
4308 return(erp);
4309}
4310
4311/*
4312 * Allocate and initialize an indirection array once the space needed
4313 * for incore extents increases above XFS_IEXT_BUFSZ.
4314 */
4315void
4316xfs_iext_irec_init(
4317 xfs_ifork_t *ifp) /* inode fork pointer */
4318{
4319 xfs_ext_irec_t *erp; /* indirection array pointer */
4320 xfs_extnum_t nextents; /* number of extents in file */
4321
4322 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4323 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4324 ASSERT(nextents <= XFS_LINEAR_EXTS);
4325
6785073b 4326 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
4327
4328 if (nextents == 0) {
6785073b 4329 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4330 } else if (!ifp->if_real_bytes) {
4331 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4332 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4333 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4334 }
4335 erp->er_extbuf = ifp->if_u1.if_extents;
4336 erp->er_extcount = nextents;
4337 erp->er_extoff = 0;
4338
4339 ifp->if_flags |= XFS_IFEXTIREC;
4340 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4341 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4342 ifp->if_u1.if_ext_irec = erp;
4343
4344 return;
4345}
4346
4347/*
4348 * Allocate and initialize a new entry in the indirection array.
4349 */
4350xfs_ext_irec_t *
4351xfs_iext_irec_new(
4352 xfs_ifork_t *ifp, /* inode fork pointer */
4353 int erp_idx) /* index for new irec */
4354{
4355 xfs_ext_irec_t *erp; /* indirection array pointer */
4356 int i; /* loop counter */
4357 int nlists; /* number of irec's (ex lists) */
4358
4359 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4360 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4361
4362 /* Resize indirection array */
4363 xfs_iext_realloc_indirect(ifp, ++nlists *
4364 sizeof(xfs_ext_irec_t));
4365 /*
4366 * Move records down in the array so the
4367 * new page can use erp_idx.
4368 */
4369 erp = ifp->if_u1.if_ext_irec;
4370 for (i = nlists - 1; i > erp_idx; i--) {
4371 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4372 }
4373 ASSERT(i == erp_idx);
4374
4375 /* Initialize new extent record */
4376 erp = ifp->if_u1.if_ext_irec;
6785073b 4377 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4378 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4379 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4380 erp[erp_idx].er_extcount = 0;
4381 erp[erp_idx].er_extoff = erp_idx > 0 ?
4382 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4383 return (&erp[erp_idx]);
4384}
4385
4386/*
4387 * Remove a record from the indirection array.
4388 */
4389void
4390xfs_iext_irec_remove(
4391 xfs_ifork_t *ifp, /* inode fork pointer */
4392 int erp_idx) /* irec index to remove */
4393{
4394 xfs_ext_irec_t *erp; /* indirection array pointer */
4395 int i; /* loop counter */
4396 int nlists; /* number of irec's (ex lists) */
4397
4398 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4399 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4400 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4401 if (erp->er_extbuf) {
4402 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4403 -erp->er_extcount);
f0e2d93c 4404 kmem_free(erp->er_extbuf);
0293ce3a
MK
4405 }
4406 /* Compact extent records */
4407 erp = ifp->if_u1.if_ext_irec;
4408 for (i = erp_idx; i < nlists - 1; i++) {
4409 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4410 }
4411 /*
4412 * Manually free the last extent record from the indirection
4413 * array. A call to xfs_iext_realloc_indirect() with a size
4414 * of zero would result in a call to xfs_iext_destroy() which
4415 * would in turn call this function again, creating a nasty
4416 * infinite loop.
4417 */
4418 if (--nlists) {
4419 xfs_iext_realloc_indirect(ifp,
4420 nlists * sizeof(xfs_ext_irec_t));
4421 } else {
f0e2d93c 4422 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4423 }
4424 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4425}
4426
4427/*
4428 * This is called to clean up large amounts of unused memory allocated
4429 * by the indirection array. Before compacting anything though, verify
4430 * that the indirection array is still needed and switch back to the
4431 * linear extent list (or even the inline buffer) if possible. The
4432 * compaction policy is as follows:
4433 *
4434 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 4435 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
4436 * No Compaction: Extents occupy at least 50% of allocated space
4437 */
4438void
4439xfs_iext_irec_compact(
4440 xfs_ifork_t *ifp) /* inode fork pointer */
4441{
4442 xfs_extnum_t nextents; /* number of extents in file */
4443 int nlists; /* number of irec's (ex lists) */
4444
4445 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4446 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4447 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4448
4449 if (nextents == 0) {
4450 xfs_iext_destroy(ifp);
4451 } else if (nextents <= XFS_INLINE_EXTS) {
4452 xfs_iext_indirect_to_direct(ifp);
4453 xfs_iext_direct_to_inline(ifp, nextents);
4454 } else if (nextents <= XFS_LINEAR_EXTS) {
4455 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
4456 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4457 xfs_iext_irec_compact_pages(ifp);
4458 }
4459}
4460
4461/*
4462 * Combine extents from neighboring extent pages.
4463 */
4464void
4465xfs_iext_irec_compact_pages(
4466 xfs_ifork_t *ifp) /* inode fork pointer */
4467{
4468 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4469 int erp_idx = 0; /* indirection array index */
4470 int nlists; /* number of irec's (ex lists) */
4471
4472 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4473 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4474 while (erp_idx < nlists - 1) {
4475 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4476 erp_next = erp + 1;
4477 if (erp_next->er_extcount <=
4478 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 4479 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
4480 erp_next->er_extbuf, erp_next->er_extcount *
4481 sizeof(xfs_bmbt_rec_t));
4482 erp->er_extcount += erp_next->er_extcount;
4483 /*
4484 * Free page before removing extent record
4485 * so er_extoffs don't get modified in
4486 * xfs_iext_irec_remove.
4487 */
f0e2d93c 4488 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
4489 erp_next->er_extbuf = NULL;
4490 xfs_iext_irec_remove(ifp, erp_idx + 1);
4491 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4492 } else {
4493 erp_idx++;
4494 }
4495 }
4496}
4497
0293ce3a
MK
4498/*
4499 * This is called to update the er_extoff field in the indirection
4500 * array when extents have been added or removed from one of the
4501 * extent lists. erp_idx contains the irec index to begin updating
4502 * at and ext_diff contains the number of extents that were added
4503 * or removed.
4504 */
4505void
4506xfs_iext_irec_update_extoffs(
4507 xfs_ifork_t *ifp, /* inode fork pointer */
4508 int erp_idx, /* irec index to update */
4509 int ext_diff) /* number of new extents */
4510{
4511 int i; /* loop counter */
4512 int nlists; /* number of irec's (ex lists */
4513
4514 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4515 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4516 for (i = erp_idx; i < nlists; i++) {
4517 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4518 }
4519}
This page took 0.843149 seconds and 5 git commands to generate.