xfs: pass a boolean flag to xfs_trans_free_items
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
a4fbe6ab 28#include "xfs_inode.h"
57062787 29#include "xfs_da_format.h"
c24b5dfa 30#include "xfs_da_btree.h"
c24b5dfa 31#include "xfs_dir2.h"
a844f451 32#include "xfs_attr_sf.h"
c24b5dfa 33#include "xfs_attr.h"
239880ef
DC
34#include "xfs_trans_space.h"
35#include "xfs_trans.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451 37#include "xfs_inode_item.h"
a844f451
NS
38#include "xfs_ialloc.h"
39#include "xfs_bmap.h"
68988114 40#include "xfs_bmap_util.h"
1da177e4 41#include "xfs_error.h"
1da177e4 42#include "xfs_quota.h"
2a82b8be 43#include "xfs_filestream.h"
93848a99 44#include "xfs_cksum.h"
0b1b213f 45#include "xfs_trace.h"
33479e05 46#include "xfs_icache.h"
c24b5dfa 47#include "xfs_symlink.h"
239880ef
DC
48#include "xfs_trans_priv.h"
49#include "xfs_log.h"
a4fbe6ab 50#include "xfs_bmap_btree.h"
1da177e4 51
1da177e4 52kmem_zone_t *xfs_inode_zone;
1da177e4
LT
53
54/*
8f04c47a 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 61
ab297431
ZYW
62STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63
2a0ec1d9
DC
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
fa96acad 78/*
efa70be1
CH
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
fa96acad 89 *
efa70be1 90 * The functions return a value which should be given to the corresponding
01f4f327 91 * xfs_iunlock() call.
fa96acad
DC
92 */
93uint
309ecac8
CH
94xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
fa96acad 96{
309ecac8 97 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 98
309ecac8
CH
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 101 lock_mode = XFS_ILOCK_EXCL;
fa96acad 102 xfs_ilock(ip, lock_mode);
fa96acad
DC
103 return lock_mode;
104}
105
efa70be1
CH
106uint
107xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
fa96acad 109{
efa70be1
CH
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
fa96acad
DC
117}
118
119/*
653c60b6
DC
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
fa96acad 123 *
653c60b6
DC
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 126 *
653c60b6
DC
127 * Basic locking order:
128 *
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130 *
131 * mmap_sem locking order:
132 *
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
135 *
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
142 *
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
fa96acad
DC
148 */
149void
150xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
153{
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155
156 /*
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 */
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
168
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173
653c60b6
DC
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178
fa96acad
DC
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183}
184
185/*
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
191 *
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
196 */
197int
198xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
201{
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203
204 /*
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 */
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
216
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
223 }
653c60b6
DC
224
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
231 }
232
fa96acad
DC
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
653c60b6 235 goto out_undo_mmaplock;
fa96acad
DC
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
653c60b6 238 goto out_undo_mmaplock;
fa96acad
DC
239 }
240 return 1;
241
653c60b6
DC
242out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247out_undo_iolock:
fa96acad
DC
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
653c60b6 252out:
fa96acad
DC
253 return 0;
254}
255
256/*
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
261 *
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
266 *
267 */
268void
269xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
272{
273 /*
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 */
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
285 ASSERT(lock_flags != 0);
286
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
291
653c60b6
DC
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
296
fa96acad
DC
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
301
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303}
304
305/*
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
308 */
309void
310xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
313{
653c60b6
DC
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
317
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
653c60b6
DC
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
fa96acad
DC
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
324
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326}
327
742ae1e3 328#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
329int
330xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
333{
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
338 }
339
653c60b6
DC
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 }
345
fa96acad
DC
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 }
351
352 ASSERT(0);
353 return 0;
354}
355#endif
356
c24b5dfa
DC
357#ifdef DEBUG
358int xfs_locked_n;
359int xfs_small_retries;
360int xfs_middle_retries;
361int xfs_lots_retries;
362int xfs_lock_delays;
363#endif
364
365/*
653c60b6
DC
366 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
367 * value. This shouldn't be called for page fault locking, but we also need to
368 * ensure we don't overrun the number of lockdep subclasses for the iolock or
369 * mmaplock as that is limited to 12 by the mmap lock lockdep annotations.
c24b5dfa
DC
370 */
371static inline int
372xfs_lock_inumorder(int lock_mode, int subclass)
373{
653c60b6
DC
374 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
375 ASSERT(subclass + XFS_LOCK_INUMORDER <
376 (1 << (XFS_MMAPLOCK_SHIFT - XFS_IOLOCK_SHIFT)));
c24b5dfa 377 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
653c60b6
DC
378 }
379
380 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
381 ASSERT(subclass + XFS_LOCK_INUMORDER <
382 (1 << (XFS_ILOCK_SHIFT - XFS_MMAPLOCK_SHIFT)));
383 lock_mode |= (subclass + XFS_LOCK_INUMORDER) <<
384 XFS_MMAPLOCK_SHIFT;
385 }
386
c24b5dfa
DC
387 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
388 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
389
390 return lock_mode;
391}
392
393/*
95afcf5c
DC
394 * The following routine will lock n inodes in exclusive mode. We assume the
395 * caller calls us with the inodes in i_ino order.
c24b5dfa 396 *
95afcf5c
DC
397 * We need to detect deadlock where an inode that we lock is in the AIL and we
398 * start waiting for another inode that is locked by a thread in a long running
399 * transaction (such as truncate). This can result in deadlock since the long
400 * running trans might need to wait for the inode we just locked in order to
401 * push the tail and free space in the log.
c24b5dfa
DC
402 */
403void
404xfs_lock_inodes(
405 xfs_inode_t **ips,
406 int inodes,
407 uint lock_mode)
408{
409 int attempts = 0, i, j, try_lock;
410 xfs_log_item_t *lp;
411
95afcf5c
DC
412 /* currently supports between 2 and 5 inodes */
413 ASSERT(ips && inodes >= 2 && inodes <= 5);
c24b5dfa
DC
414
415 try_lock = 0;
416 i = 0;
c24b5dfa
DC
417again:
418 for (; i < inodes; i++) {
419 ASSERT(ips[i]);
420
95afcf5c 421 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
422 continue;
423
424 /*
95afcf5c
DC
425 * If try_lock is not set yet, make sure all locked inodes are
426 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 427 */
c24b5dfa
DC
428 if (!try_lock) {
429 for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 431 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 432 try_lock++;
c24b5dfa
DC
433 }
434 }
435
436 /*
437 * If any of the previous locks we have locked is in the AIL,
438 * we must TRY to get the second and subsequent locks. If
439 * we can't get any, we must release all we have
440 * and try again.
441 */
95afcf5c
DC
442 if (!try_lock) {
443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 continue;
445 }
446
447 /* try_lock means we have an inode locked that is in the AIL. */
448 ASSERT(i != 0);
449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 continue;
c24b5dfa 451
95afcf5c
DC
452 /*
453 * Unlock all previous guys and try again. xfs_iunlock will try
454 * to push the tail if the inode is in the AIL.
455 */
456 attempts++;
457 for (j = i - 1; j >= 0; j--) {
c24b5dfa 458 /*
95afcf5c
DC
459 * Check to see if we've already unlocked this one. Not
460 * the first one going back, and the inode ptr is the
461 * same.
c24b5dfa 462 */
95afcf5c
DC
463 if (j != (i - 1) && ips[j] == ips[j + 1])
464 continue;
c24b5dfa 465
95afcf5c
DC
466 xfs_iunlock(ips[j], lock_mode);
467 }
c24b5dfa 468
95afcf5c
DC
469 if ((attempts % 5) == 0) {
470 delay(1); /* Don't just spin the CPU */
c24b5dfa 471#ifdef DEBUG
95afcf5c 472 xfs_lock_delays++;
c24b5dfa 473#endif
c24b5dfa 474 }
95afcf5c
DC
475 i = 0;
476 try_lock = 0;
477 goto again;
c24b5dfa
DC
478 }
479
480#ifdef DEBUG
481 if (attempts) {
482 if (attempts < 5) xfs_small_retries++;
483 else if (attempts < 100) xfs_middle_retries++;
484 else xfs_lots_retries++;
485 } else {
486 xfs_locked_n++;
487 }
488#endif
489}
490
491/*
653c60b6
DC
492 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
493 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
494 * lock more than one at a time, lockdep will report false positives saying we
495 * have violated locking orders.
c24b5dfa
DC
496 */
497void
498xfs_lock_two_inodes(
499 xfs_inode_t *ip0,
500 xfs_inode_t *ip1,
501 uint lock_mode)
502{
503 xfs_inode_t *temp;
504 int attempts = 0;
505 xfs_log_item_t *lp;
506
653c60b6
DC
507 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
508 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
509 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
510 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
511 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
512
c24b5dfa
DC
513 ASSERT(ip0->i_ino != ip1->i_ino);
514
515 if (ip0->i_ino > ip1->i_ino) {
516 temp = ip0;
517 ip0 = ip1;
518 ip1 = temp;
519 }
520
521 again:
522 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
523
524 /*
525 * If the first lock we have locked is in the AIL, we must TRY to get
526 * the second lock. If we can't get it, we must release the first one
527 * and try again.
528 */
529 lp = (xfs_log_item_t *)ip0->i_itemp;
530 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
531 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
532 xfs_iunlock(ip0, lock_mode);
533 if ((++attempts % 5) == 0)
534 delay(1); /* Don't just spin the CPU */
535 goto again;
536 }
537 } else {
538 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
539 }
540}
541
542
fa96acad
DC
543void
544__xfs_iflock(
545 struct xfs_inode *ip)
546{
547 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
548 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
549
550 do {
551 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
552 if (xfs_isiflocked(ip))
553 io_schedule();
554 } while (!xfs_iflock_nowait(ip));
555
556 finish_wait(wq, &wait.wait);
557}
558
1da177e4
LT
559STATIC uint
560_xfs_dic2xflags(
1da177e4
LT
561 __uint16_t di_flags)
562{
563 uint flags = 0;
564
565 if (di_flags & XFS_DIFLAG_ANY) {
566 if (di_flags & XFS_DIFLAG_REALTIME)
567 flags |= XFS_XFLAG_REALTIME;
568 if (di_flags & XFS_DIFLAG_PREALLOC)
569 flags |= XFS_XFLAG_PREALLOC;
570 if (di_flags & XFS_DIFLAG_IMMUTABLE)
571 flags |= XFS_XFLAG_IMMUTABLE;
572 if (di_flags & XFS_DIFLAG_APPEND)
573 flags |= XFS_XFLAG_APPEND;
574 if (di_flags & XFS_DIFLAG_SYNC)
575 flags |= XFS_XFLAG_SYNC;
576 if (di_flags & XFS_DIFLAG_NOATIME)
577 flags |= XFS_XFLAG_NOATIME;
578 if (di_flags & XFS_DIFLAG_NODUMP)
579 flags |= XFS_XFLAG_NODUMP;
580 if (di_flags & XFS_DIFLAG_RTINHERIT)
581 flags |= XFS_XFLAG_RTINHERIT;
582 if (di_flags & XFS_DIFLAG_PROJINHERIT)
583 flags |= XFS_XFLAG_PROJINHERIT;
584 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
585 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
586 if (di_flags & XFS_DIFLAG_EXTSIZE)
587 flags |= XFS_XFLAG_EXTSIZE;
588 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
589 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
590 if (di_flags & XFS_DIFLAG_NODEFRAG)
591 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
592 if (di_flags & XFS_DIFLAG_FILESTREAM)
593 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
594 }
595
596 return flags;
597}
598
599uint
600xfs_ip2xflags(
601 xfs_inode_t *ip)
602{
347d1c01 603 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 604
a916e2bd 605 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 606 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
607}
608
609uint
610xfs_dic2xflags(
45ba598e 611 xfs_dinode_t *dip)
1da177e4 612{
81591fe2 613 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 614 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
615}
616
c24b5dfa
DC
617/*
618 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
619 * is allowed, otherwise it has to be an exact match. If a CI match is found,
620 * ci_name->name will point to a the actual name (caller must free) or
621 * will be set to NULL if an exact match is found.
622 */
623int
624xfs_lookup(
625 xfs_inode_t *dp,
626 struct xfs_name *name,
627 xfs_inode_t **ipp,
628 struct xfs_name *ci_name)
629{
630 xfs_ino_t inum;
631 int error;
632 uint lock_mode;
633
634 trace_xfs_lookup(dp, name);
635
636 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 637 return -EIO;
c24b5dfa 638
309ecac8 639 lock_mode = xfs_ilock_data_map_shared(dp);
c24b5dfa 640 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
01f4f327 641 xfs_iunlock(dp, lock_mode);
c24b5dfa
DC
642
643 if (error)
644 goto out;
645
646 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
647 if (error)
648 goto out_free_name;
649
650 return 0;
651
652out_free_name:
653 if (ci_name)
654 kmem_free(ci_name->name);
655out:
656 *ipp = NULL;
657 return error;
658}
659
1da177e4
LT
660/*
661 * Allocate an inode on disk and return a copy of its in-core version.
662 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
663 * appropriately within the inode. The uid and gid for the inode are
664 * set according to the contents of the given cred structure.
665 *
666 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
667 * has a free inode available, call xfs_iget() to obtain the in-core
668 * version of the allocated inode. Finally, fill in the inode and
669 * log its initial contents. In this case, ialloc_context would be
670 * set to NULL.
1da177e4 671 *
cd856db6
CM
672 * If xfs_dialloc() does not have an available inode, it will replenish
673 * its supply by doing an allocation. Since we can only do one
674 * allocation within a transaction without deadlocks, we must commit
675 * the current transaction before returning the inode itself.
676 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
677 * The caller should then commit the current transaction, start a new
678 * transaction, and call xfs_ialloc() again to actually get the inode.
679 *
680 * To ensure that some other process does not grab the inode that
681 * was allocated during the first call to xfs_ialloc(), this routine
682 * also returns the [locked] bp pointing to the head of the freelist
683 * as ialloc_context. The caller should hold this buffer across
684 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
685 *
686 * If we are allocating quota inodes, we do not have a parent inode
687 * to attach to or associate with (i.e. pip == NULL) because they
688 * are not linked into the directory structure - they are attached
689 * directly to the superblock - and so have no parent.
1da177e4
LT
690 */
691int
692xfs_ialloc(
693 xfs_trans_t *tp,
694 xfs_inode_t *pip,
576b1d67 695 umode_t mode,
31b084ae 696 xfs_nlink_t nlink,
1da177e4 697 xfs_dev_t rdev,
6743099c 698 prid_t prid,
1da177e4
LT
699 int okalloc,
700 xfs_buf_t **ialloc_context,
1da177e4
LT
701 xfs_inode_t **ipp)
702{
93848a99 703 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
704 xfs_ino_t ino;
705 xfs_inode_t *ip;
1da177e4
LT
706 uint flags;
707 int error;
e076b0f3 708 struct timespec tv;
1da177e4
LT
709
710 /*
711 * Call the space management code to pick
712 * the on-disk inode to be allocated.
713 */
b11f94d5 714 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 715 ialloc_context, &ino);
bf904248 716 if (error)
1da177e4 717 return error;
08358906 718 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
719 *ipp = NULL;
720 return 0;
721 }
722 ASSERT(*ialloc_context == NULL);
723
724 /*
725 * Get the in-core inode with the lock held exclusively.
726 * This is because we're setting fields here we need
727 * to prevent others from looking at until we're done.
728 */
93848a99 729 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 730 XFS_ILOCK_EXCL, &ip);
bf904248 731 if (error)
1da177e4 732 return error;
1da177e4
LT
733 ASSERT(ip != NULL);
734
263997a6
DC
735 /*
736 * We always convert v1 inodes to v2 now - we only support filesystems
737 * with >= v2 inode capability, so there is no reason for ever leaving
738 * an inode in v1 format.
739 */
740 if (ip->i_d.di_version == 1)
741 ip->i_d.di_version = 2;
742
576b1d67 743 ip->i_d.di_mode = mode;
1da177e4
LT
744 ip->i_d.di_onlink = 0;
745 ip->i_d.di_nlink = nlink;
746 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
747 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
748 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 749 xfs_set_projid(ip, prid);
1da177e4
LT
750 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
751
bd186aa9 752 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 753 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 754 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
755 ip->i_d.di_mode |= S_ISGID;
756 }
757 }
758
759 /*
760 * If the group ID of the new file does not match the effective group
761 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
762 * (and only if the irix_sgid_inherit compatibility variable is set).
763 */
764 if ((irix_sgid_inherit) &&
765 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 766 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
767 ip->i_d.di_mode &= ~S_ISGID;
768 }
769
770 ip->i_d.di_size = 0;
771 ip->i_d.di_nextents = 0;
772 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 773
e076b0f3 774 tv = current_fs_time(mp->m_super);
dff35fd4
CH
775 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
776 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
777 ip->i_d.di_atime = ip->i_d.di_mtime;
778 ip->i_d.di_ctime = ip->i_d.di_mtime;
779
1da177e4
LT
780 /*
781 * di_gen will have been taken care of in xfs_iread.
782 */
783 ip->i_d.di_extsize = 0;
784 ip->i_d.di_dmevmask = 0;
785 ip->i_d.di_dmstate = 0;
786 ip->i_d.di_flags = 0;
93848a99
CH
787
788 if (ip->i_d.di_version == 3) {
789 ASSERT(ip->i_d.di_ino == ino);
790 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
791 ip->i_d.di_crc = 0;
792 ip->i_d.di_changecount = 1;
793 ip->i_d.di_lsn = 0;
794 ip->i_d.di_flags2 = 0;
795 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
796 ip->i_d.di_crtime = ip->i_d.di_mtime;
797 }
798
799
1da177e4
LT
800 flags = XFS_ILOG_CORE;
801 switch (mode & S_IFMT) {
802 case S_IFIFO:
803 case S_IFCHR:
804 case S_IFBLK:
805 case S_IFSOCK:
806 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
807 ip->i_df.if_u2.if_rdev = rdev;
808 ip->i_df.if_flags = 0;
809 flags |= XFS_ILOG_DEV;
810 break;
811 case S_IFREG:
812 case S_IFDIR:
b11f94d5 813 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
814 uint di_flags = 0;
815
abbede1b 816 if (S_ISDIR(mode)) {
365ca83d
NS
817 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
818 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
819 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
820 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
821 ip->i_d.di_extsize = pip->i_d.di_extsize;
822 }
9336e3a7
DC
823 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
824 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 825 } else if (S_ISREG(mode)) {
613d7043 826 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 827 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
828 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
829 di_flags |= XFS_DIFLAG_EXTSIZE;
830 ip->i_d.di_extsize = pip->i_d.di_extsize;
831 }
1da177e4
LT
832 }
833 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
834 xfs_inherit_noatime)
365ca83d 835 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
836 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
837 xfs_inherit_nodump)
365ca83d 838 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
839 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
840 xfs_inherit_sync)
365ca83d 841 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
842 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
843 xfs_inherit_nosymlinks)
365ca83d 844 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
845 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
846 xfs_inherit_nodefrag)
847 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
848 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
849 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 850 ip->i_d.di_flags |= di_flags;
1da177e4
LT
851 }
852 /* FALLTHROUGH */
853 case S_IFLNK:
854 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
855 ip->i_df.if_flags = XFS_IFEXTENTS;
856 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
857 ip->i_df.if_u1.if_extents = NULL;
858 break;
859 default:
860 ASSERT(0);
861 }
862 /*
863 * Attribute fork settings for new inode.
864 */
865 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
866 ip->i_d.di_anextents = 0;
867
868 /*
869 * Log the new values stuffed into the inode.
870 */
ddc3415a 871 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
872 xfs_trans_log_inode(tp, ip, flags);
873
58c90473 874 /* now that we have an i_mode we can setup the inode structure */
41be8bed 875 xfs_setup_inode(ip);
1da177e4
LT
876
877 *ipp = ip;
878 return 0;
879}
880
e546cb79
DC
881/*
882 * Allocates a new inode from disk and return a pointer to the
883 * incore copy. This routine will internally commit the current
884 * transaction and allocate a new one if the Space Manager needed
885 * to do an allocation to replenish the inode free-list.
886 *
887 * This routine is designed to be called from xfs_create and
888 * xfs_create_dir.
889 *
890 */
891int
892xfs_dir_ialloc(
893 xfs_trans_t **tpp, /* input: current transaction;
894 output: may be a new transaction. */
895 xfs_inode_t *dp, /* directory within whose allocate
896 the inode. */
897 umode_t mode,
898 xfs_nlink_t nlink,
899 xfs_dev_t rdev,
900 prid_t prid, /* project id */
901 int okalloc, /* ok to allocate new space */
902 xfs_inode_t **ipp, /* pointer to inode; it will be
903 locked. */
904 int *committed)
905
906{
907 xfs_trans_t *tp;
e546cb79
DC
908 xfs_inode_t *ip;
909 xfs_buf_t *ialloc_context = NULL;
910 int code;
e546cb79
DC
911 void *dqinfo;
912 uint tflags;
913
914 tp = *tpp;
915 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
916
917 /*
918 * xfs_ialloc will return a pointer to an incore inode if
919 * the Space Manager has an available inode on the free
920 * list. Otherwise, it will do an allocation and replenish
921 * the freelist. Since we can only do one allocation per
922 * transaction without deadlocks, we will need to commit the
923 * current transaction and start a new one. We will then
924 * need to call xfs_ialloc again to get the inode.
925 *
926 * If xfs_ialloc did an allocation to replenish the freelist,
927 * it returns the bp containing the head of the freelist as
928 * ialloc_context. We will hold a lock on it across the
929 * transaction commit so that no other process can steal
930 * the inode(s) that we've just allocated.
931 */
932 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
933 &ialloc_context, &ip);
934
935 /*
936 * Return an error if we were unable to allocate a new inode.
937 * This should only happen if we run out of space on disk or
938 * encounter a disk error.
939 */
940 if (code) {
941 *ipp = NULL;
942 return code;
943 }
944 if (!ialloc_context && !ip) {
945 *ipp = NULL;
2451337d 946 return -ENOSPC;
e546cb79
DC
947 }
948
949 /*
950 * If the AGI buffer is non-NULL, then we were unable to get an
951 * inode in one operation. We need to commit the current
952 * transaction and call xfs_ialloc() again. It is guaranteed
953 * to succeed the second time.
954 */
955 if (ialloc_context) {
956 /*
957 * Normally, xfs_trans_commit releases all the locks.
958 * We call bhold to hang on to the ialloc_context across
959 * the commit. Holding this buffer prevents any other
960 * processes from doing any allocations in this
961 * allocation group.
962 */
963 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
964
965 /*
966 * We want the quota changes to be associated with the next
967 * transaction, NOT this one. So, detach the dqinfo from this
968 * and attach it to the next transaction.
969 */
970 dqinfo = NULL;
971 tflags = 0;
972 if (tp->t_dqinfo) {
973 dqinfo = (void *)tp->t_dqinfo;
974 tp->t_dqinfo = NULL;
975 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
976 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
977 }
978
2e6db6c4
CH
979 code = xfs_trans_roll(&tp, 0);
980 if (committed != NULL)
e546cb79 981 *committed = 1;
3d3c8b52 982
e546cb79
DC
983 /*
984 * Re-attach the quota info that we detached from prev trx.
985 */
986 if (dqinfo) {
987 tp->t_dqinfo = dqinfo;
988 tp->t_flags |= tflags;
989 }
990
991 if (code) {
992 xfs_buf_relse(ialloc_context);
2e6db6c4 993 *tpp = tp;
e546cb79
DC
994 *ipp = NULL;
995 return code;
996 }
997 xfs_trans_bjoin(tp, ialloc_context);
998
999 /*
1000 * Call ialloc again. Since we've locked out all
1001 * other allocations in this allocation group,
1002 * this call should always succeed.
1003 */
1004 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1005 okalloc, &ialloc_context, &ip);
1006
1007 /*
1008 * If we get an error at this point, return to the caller
1009 * so that the current transaction can be aborted.
1010 */
1011 if (code) {
1012 *tpp = tp;
1013 *ipp = NULL;
1014 return code;
1015 }
1016 ASSERT(!ialloc_context && ip);
1017
1018 } else {
1019 if (committed != NULL)
1020 *committed = 0;
1021 }
1022
1023 *ipp = ip;
1024 *tpp = tp;
1025
1026 return 0;
1027}
1028
1029/*
1030 * Decrement the link count on an inode & log the change.
1031 * If this causes the link count to go to zero, initiate the
1032 * logging activity required to truncate a file.
1033 */
1034int /* error */
1035xfs_droplink(
1036 xfs_trans_t *tp,
1037 xfs_inode_t *ip)
1038{
1039 int error;
1040
1041 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1042
1043 ASSERT (ip->i_d.di_nlink > 0);
1044 ip->i_d.di_nlink--;
1045 drop_nlink(VFS_I(ip));
1046 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1047
1048 error = 0;
1049 if (ip->i_d.di_nlink == 0) {
1050 /*
1051 * We're dropping the last link to this file.
1052 * Move the on-disk inode to the AGI unlinked list.
1053 * From xfs_inactive() we will pull the inode from
1054 * the list and free it.
1055 */
1056 error = xfs_iunlink(tp, ip);
1057 }
1058 return error;
1059}
1060
e546cb79
DC
1061/*
1062 * Increment the link count on an inode & log the change.
1063 */
1064int
1065xfs_bumplink(
1066 xfs_trans_t *tp,
1067 xfs_inode_t *ip)
1068{
1069 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1070
263997a6 1071 ASSERT(ip->i_d.di_version > 1);
ab297431 1072 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
e546cb79
DC
1073 ip->i_d.di_nlink++;
1074 inc_nlink(VFS_I(ip));
e546cb79
DC
1075 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1076 return 0;
1077}
1078
c24b5dfa
DC
1079int
1080xfs_create(
1081 xfs_inode_t *dp,
1082 struct xfs_name *name,
1083 umode_t mode,
1084 xfs_dev_t rdev,
1085 xfs_inode_t **ipp)
1086{
1087 int is_dir = S_ISDIR(mode);
1088 struct xfs_mount *mp = dp->i_mount;
1089 struct xfs_inode *ip = NULL;
1090 struct xfs_trans *tp = NULL;
1091 int error;
1092 xfs_bmap_free_t free_list;
1093 xfs_fsblock_t first_block;
1094 bool unlock_dp_on_error = false;
1095 uint cancel_flags;
1096 int committed;
1097 prid_t prid;
1098 struct xfs_dquot *udqp = NULL;
1099 struct xfs_dquot *gdqp = NULL;
1100 struct xfs_dquot *pdqp = NULL;
062647a8 1101 struct xfs_trans_res *tres;
c24b5dfa 1102 uint resblks;
c24b5dfa
DC
1103
1104 trace_xfs_create(dp, name);
1105
1106 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1107 return -EIO;
c24b5dfa 1108
163467d3 1109 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1110
1111 /*
1112 * Make sure that we have allocated dquot(s) on disk.
1113 */
7aab1b28
DE
1114 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1115 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1116 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1117 &udqp, &gdqp, &pdqp);
1118 if (error)
1119 return error;
1120
1121 if (is_dir) {
1122 rdev = 0;
1123 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1124 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1125 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1126 } else {
1127 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1128 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1129 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1130 }
1131
1132 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1133
1134 /*
1135 * Initially assume that the file does not exist and
1136 * reserve the resources for that case. If that is not
1137 * the case we'll drop the one we have and get a more
1138 * appropriate transaction later.
1139 */
062647a8 1140 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1141 if (error == -ENOSPC) {
c24b5dfa
DC
1142 /* flush outstanding delalloc blocks and retry */
1143 xfs_flush_inodes(mp);
062647a8 1144 error = xfs_trans_reserve(tp, tres, resblks, 0);
c24b5dfa 1145 }
2451337d 1146 if (error == -ENOSPC) {
c24b5dfa
DC
1147 /* No space at all so try a "no-allocation" reservation */
1148 resblks = 0;
062647a8 1149 error = xfs_trans_reserve(tp, tres, 0, 0);
c24b5dfa
DC
1150 }
1151 if (error) {
1152 cancel_flags = 0;
1153 goto out_trans_cancel;
1154 }
1155
1156 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1157 unlock_dp_on_error = true;
1158
1159 xfs_bmap_init(&free_list, &first_block);
1160
1161 /*
1162 * Reserve disk quota and the inode.
1163 */
1164 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1165 pdqp, resblks, 1, 0);
1166 if (error)
1167 goto out_trans_cancel;
1168
94f3cad5
ES
1169 if (!resblks) {
1170 error = xfs_dir_canenter(tp, dp, name);
1171 if (error)
1172 goto out_trans_cancel;
1173 }
c24b5dfa
DC
1174
1175 /*
1176 * A newly created regular or special file just has one directory
1177 * entry pointing to them, but a directory also the "." entry
1178 * pointing to itself.
1179 */
1180 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1181 prid, resblks > 0, &ip, &committed);
1182 if (error) {
2451337d 1183 if (error == -ENOSPC)
c24b5dfa
DC
1184 goto out_trans_cancel;
1185 goto out_trans_abort;
1186 }
1187
1188 /*
1189 * Now we join the directory inode to the transaction. We do not do it
1190 * earlier because xfs_dir_ialloc might commit the previous transaction
1191 * (and release all the locks). An error from here on will result in
1192 * the transaction cancel unlocking dp so don't do it explicitly in the
1193 * error path.
1194 */
1195 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1196 unlock_dp_on_error = false;
1197
1198 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1199 &first_block, &free_list, resblks ?
1200 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1201 if (error) {
2451337d 1202 ASSERT(error != -ENOSPC);
c24b5dfa
DC
1203 goto out_trans_abort;
1204 }
1205 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1206 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1207
1208 if (is_dir) {
1209 error = xfs_dir_init(tp, ip, dp);
1210 if (error)
1211 goto out_bmap_cancel;
1212
1213 error = xfs_bumplink(tp, dp);
1214 if (error)
1215 goto out_bmap_cancel;
1216 }
1217
1218 /*
1219 * If this is a synchronous mount, make sure that the
1220 * create transaction goes to disk before returning to
1221 * the user.
1222 */
1223 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1224 xfs_trans_set_sync(tp);
1225
1226 /*
1227 * Attach the dquot(s) to the inodes and modify them incore.
1228 * These ids of the inode couldn't have changed since the new
1229 * inode has been locked ever since it was created.
1230 */
1231 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1232
1233 error = xfs_bmap_finish(&tp, &free_list, &committed);
1234 if (error)
1235 goto out_bmap_cancel;
1236
1237 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1238 if (error)
1239 goto out_release_inode;
1240
1241 xfs_qm_dqrele(udqp);
1242 xfs_qm_dqrele(gdqp);
1243 xfs_qm_dqrele(pdqp);
1244
1245 *ipp = ip;
1246 return 0;
1247
1248 out_bmap_cancel:
1249 xfs_bmap_cancel(&free_list);
1250 out_trans_abort:
1251 cancel_flags |= XFS_TRANS_ABORT;
1252 out_trans_cancel:
1253 xfs_trans_cancel(tp, cancel_flags);
1254 out_release_inode:
1255 /*
58c90473
DC
1256 * Wait until after the current transaction is aborted to finish the
1257 * setup of the inode and release the inode. This prevents recursive
1258 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1259 */
58c90473
DC
1260 if (ip) {
1261 xfs_finish_inode_setup(ip);
c24b5dfa 1262 IRELE(ip);
58c90473 1263 }
c24b5dfa
DC
1264
1265 xfs_qm_dqrele(udqp);
1266 xfs_qm_dqrele(gdqp);
1267 xfs_qm_dqrele(pdqp);
1268
1269 if (unlock_dp_on_error)
1270 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1271 return error;
1272}
1273
99b6436b
ZYW
1274int
1275xfs_create_tmpfile(
1276 struct xfs_inode *dp,
1277 struct dentry *dentry,
330033d6
BF
1278 umode_t mode,
1279 struct xfs_inode **ipp)
99b6436b
ZYW
1280{
1281 struct xfs_mount *mp = dp->i_mount;
1282 struct xfs_inode *ip = NULL;
1283 struct xfs_trans *tp = NULL;
1284 int error;
1285 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1286 prid_t prid;
1287 struct xfs_dquot *udqp = NULL;
1288 struct xfs_dquot *gdqp = NULL;
1289 struct xfs_dquot *pdqp = NULL;
1290 struct xfs_trans_res *tres;
1291 uint resblks;
1292
1293 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1294 return -EIO;
99b6436b
ZYW
1295
1296 prid = xfs_get_initial_prid(dp);
1297
1298 /*
1299 * Make sure that we have allocated dquot(s) on disk.
1300 */
1301 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1302 xfs_kgid_to_gid(current_fsgid()), prid,
1303 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1304 &udqp, &gdqp, &pdqp);
1305 if (error)
1306 return error;
1307
1308 resblks = XFS_IALLOC_SPACE_RES(mp);
1309 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1310
1311 tres = &M_RES(mp)->tr_create_tmpfile;
1312 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1313 if (error == -ENOSPC) {
99b6436b
ZYW
1314 /* No space at all so try a "no-allocation" reservation */
1315 resblks = 0;
1316 error = xfs_trans_reserve(tp, tres, 0, 0);
1317 }
1318 if (error) {
1319 cancel_flags = 0;
1320 goto out_trans_cancel;
1321 }
1322
1323 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1324 pdqp, resblks, 1, 0);
1325 if (error)
1326 goto out_trans_cancel;
1327
1328 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1329 prid, resblks > 0, &ip, NULL);
1330 if (error) {
2451337d 1331 if (error == -ENOSPC)
99b6436b
ZYW
1332 goto out_trans_cancel;
1333 goto out_trans_abort;
1334 }
1335
1336 if (mp->m_flags & XFS_MOUNT_WSYNC)
1337 xfs_trans_set_sync(tp);
1338
1339 /*
1340 * Attach the dquot(s) to the inodes and modify them incore.
1341 * These ids of the inode couldn't have changed since the new
1342 * inode has been locked ever since it was created.
1343 */
1344 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1345
1346 ip->i_d.di_nlink--;
99b6436b
ZYW
1347 error = xfs_iunlink(tp, ip);
1348 if (error)
1349 goto out_trans_abort;
1350
1351 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1352 if (error)
1353 goto out_release_inode;
1354
1355 xfs_qm_dqrele(udqp);
1356 xfs_qm_dqrele(gdqp);
1357 xfs_qm_dqrele(pdqp);
1358
330033d6 1359 *ipp = ip;
99b6436b
ZYW
1360 return 0;
1361
1362 out_trans_abort:
1363 cancel_flags |= XFS_TRANS_ABORT;
1364 out_trans_cancel:
1365 xfs_trans_cancel(tp, cancel_flags);
1366 out_release_inode:
1367 /*
58c90473
DC
1368 * Wait until after the current transaction is aborted to finish the
1369 * setup of the inode and release the inode. This prevents recursive
1370 * transactions and deadlocks from xfs_inactive.
99b6436b 1371 */
58c90473
DC
1372 if (ip) {
1373 xfs_finish_inode_setup(ip);
99b6436b 1374 IRELE(ip);
58c90473 1375 }
99b6436b
ZYW
1376
1377 xfs_qm_dqrele(udqp);
1378 xfs_qm_dqrele(gdqp);
1379 xfs_qm_dqrele(pdqp);
1380
1381 return error;
1382}
1383
c24b5dfa
DC
1384int
1385xfs_link(
1386 xfs_inode_t *tdp,
1387 xfs_inode_t *sip,
1388 struct xfs_name *target_name)
1389{
1390 xfs_mount_t *mp = tdp->i_mount;
1391 xfs_trans_t *tp;
1392 int error;
1393 xfs_bmap_free_t free_list;
1394 xfs_fsblock_t first_block;
1395 int cancel_flags;
1396 int committed;
1397 int resblks;
1398
1399 trace_xfs_link(tdp, target_name);
1400
1401 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1402
1403 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1404 return -EIO;
c24b5dfa
DC
1405
1406 error = xfs_qm_dqattach(sip, 0);
1407 if (error)
1408 goto std_return;
1409
1410 error = xfs_qm_dqattach(tdp, 0);
1411 if (error)
1412 goto std_return;
1413
1414 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1415 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1416 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1417 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
2451337d 1418 if (error == -ENOSPC) {
c24b5dfa 1419 resblks = 0;
3d3c8b52 1420 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa
DC
1421 }
1422 if (error) {
1423 cancel_flags = 0;
1424 goto error_return;
1425 }
1426
1427 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1428
1429 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1430 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1431
1432 /*
1433 * If we are using project inheritance, we only allow hard link
1434 * creation in our tree when the project IDs are the same; else
1435 * the tree quota mechanism could be circumvented.
1436 */
1437 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1438 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1439 error = -EXDEV;
c24b5dfa
DC
1440 goto error_return;
1441 }
1442
94f3cad5
ES
1443 if (!resblks) {
1444 error = xfs_dir_canenter(tp, tdp, target_name);
1445 if (error)
1446 goto error_return;
1447 }
c24b5dfa
DC
1448
1449 xfs_bmap_init(&free_list, &first_block);
1450
ab297431
ZYW
1451 if (sip->i_d.di_nlink == 0) {
1452 error = xfs_iunlink_remove(tp, sip);
1453 if (error)
1454 goto abort_return;
1455 }
1456
c24b5dfa
DC
1457 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1458 &first_block, &free_list, resblks);
1459 if (error)
1460 goto abort_return;
1461 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1462 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1463
1464 error = xfs_bumplink(tp, sip);
1465 if (error)
1466 goto abort_return;
1467
1468 /*
1469 * If this is a synchronous mount, make sure that the
1470 * link transaction goes to disk before returning to
1471 * the user.
1472 */
1473 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1474 xfs_trans_set_sync(tp);
1475 }
1476
1477 error = xfs_bmap_finish (&tp, &free_list, &committed);
1478 if (error) {
1479 xfs_bmap_cancel(&free_list);
1480 goto abort_return;
1481 }
1482
1483 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1484
1485 abort_return:
1486 cancel_flags |= XFS_TRANS_ABORT;
1487 error_return:
1488 xfs_trans_cancel(tp, cancel_flags);
1489 std_return:
1490 return error;
1491}
1492
1da177e4 1493/*
8f04c47a
CH
1494 * Free up the underlying blocks past new_size. The new size must be smaller
1495 * than the current size. This routine can be used both for the attribute and
1496 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1497 *
f6485057
DC
1498 * The transaction passed to this routine must have made a permanent log
1499 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1500 * given transaction and start new ones, so make sure everything involved in
1501 * the transaction is tidy before calling here. Some transaction will be
1502 * returned to the caller to be committed. The incoming transaction must
1503 * already include the inode, and both inode locks must be held exclusively.
1504 * The inode must also be "held" within the transaction. On return the inode
1505 * will be "held" within the returned transaction. This routine does NOT
1506 * require any disk space to be reserved for it within the transaction.
1da177e4 1507 *
f6485057
DC
1508 * If we get an error, we must return with the inode locked and linked into the
1509 * current transaction. This keeps things simple for the higher level code,
1510 * because it always knows that the inode is locked and held in the transaction
1511 * that returns to it whether errors occur or not. We don't mark the inode
1512 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1513 */
1514int
8f04c47a
CH
1515xfs_itruncate_extents(
1516 struct xfs_trans **tpp,
1517 struct xfs_inode *ip,
1518 int whichfork,
1519 xfs_fsize_t new_size)
1da177e4 1520{
8f04c47a
CH
1521 struct xfs_mount *mp = ip->i_mount;
1522 struct xfs_trans *tp = *tpp;
8f04c47a
CH
1523 xfs_bmap_free_t free_list;
1524 xfs_fsblock_t first_block;
1525 xfs_fileoff_t first_unmap_block;
1526 xfs_fileoff_t last_block;
1527 xfs_filblks_t unmap_len;
1528 int committed;
1529 int error = 0;
1530 int done = 0;
1da177e4 1531
0b56185b
CH
1532 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1533 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1534 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1535 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1536 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1537 ASSERT(ip->i_itemp != NULL);
898621d5 1538 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1539 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1540
673e8e59
CH
1541 trace_xfs_itruncate_extents_start(ip, new_size);
1542
1da177e4
LT
1543 /*
1544 * Since it is possible for space to become allocated beyond
1545 * the end of the file (in a crash where the space is allocated
1546 * but the inode size is not yet updated), simply remove any
1547 * blocks which show up between the new EOF and the maximum
1548 * possible file size. If the first block to be removed is
1549 * beyond the maximum file size (ie it is the same as last_block),
1550 * then there is nothing to do.
1551 */
8f04c47a 1552 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1553 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1554 if (first_unmap_block == last_block)
1555 return 0;
1556
1557 ASSERT(first_unmap_block < last_block);
1558 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1559 while (!done) {
9d87c319 1560 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1561 error = xfs_bunmapi(tp, ip,
3e57ecf6 1562 first_unmap_block, unmap_len,
8f04c47a 1563 xfs_bmapi_aflag(whichfork),
1da177e4 1564 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1565 &first_block, &free_list,
b4e9181e 1566 &done);
8f04c47a
CH
1567 if (error)
1568 goto out_bmap_cancel;
1da177e4
LT
1569
1570 /*
1571 * Duplicate the transaction that has the permanent
1572 * reservation and commit the old transaction.
1573 */
8f04c47a 1574 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1575 if (committed)
ddc3415a 1576 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1577 if (error)
1578 goto out_bmap_cancel;
1da177e4 1579
2e6db6c4 1580 error = xfs_trans_roll(&tp, ip);
f6485057 1581 if (error)
8f04c47a 1582 goto out;
1da177e4 1583 }
8f04c47a 1584
673e8e59
CH
1585 /*
1586 * Always re-log the inode so that our permanent transaction can keep
1587 * on rolling it forward in the log.
1588 */
1589 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1590
1591 trace_xfs_itruncate_extents_end(ip, new_size);
1592
8f04c47a
CH
1593out:
1594 *tpp = tp;
1595 return error;
1596out_bmap_cancel:
1da177e4 1597 /*
8f04c47a
CH
1598 * If the bunmapi call encounters an error, return to the caller where
1599 * the transaction can be properly aborted. We just need to make sure
1600 * we're not holding any resources that we were not when we came in.
1da177e4 1601 */
8f04c47a
CH
1602 xfs_bmap_cancel(&free_list);
1603 goto out;
1604}
1605
c24b5dfa
DC
1606int
1607xfs_release(
1608 xfs_inode_t *ip)
1609{
1610 xfs_mount_t *mp = ip->i_mount;
1611 int error;
1612
1613 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1614 return 0;
1615
1616 /* If this is a read-only mount, don't do this (would generate I/O) */
1617 if (mp->m_flags & XFS_MOUNT_RDONLY)
1618 return 0;
1619
1620 if (!XFS_FORCED_SHUTDOWN(mp)) {
1621 int truncated;
1622
c24b5dfa
DC
1623 /*
1624 * If we previously truncated this file and removed old data
1625 * in the process, we want to initiate "early" writeout on
1626 * the last close. This is an attempt to combat the notorious
1627 * NULL files problem which is particularly noticeable from a
1628 * truncate down, buffered (re-)write (delalloc), followed by
1629 * a crash. What we are effectively doing here is
1630 * significantly reducing the time window where we'd otherwise
1631 * be exposed to that problem.
1632 */
1633 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1634 if (truncated) {
1635 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1636 if (ip->i_delayed_blks > 0) {
2451337d 1637 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1638 if (error)
1639 return error;
1640 }
1641 }
1642 }
1643
1644 if (ip->i_d.di_nlink == 0)
1645 return 0;
1646
1647 if (xfs_can_free_eofblocks(ip, false)) {
1648
1649 /*
1650 * If we can't get the iolock just skip truncating the blocks
1651 * past EOF because we could deadlock with the mmap_sem
1652 * otherwise. We'll get another chance to drop them once the
1653 * last reference to the inode is dropped, so we'll never leak
1654 * blocks permanently.
1655 *
1656 * Further, check if the inode is being opened, written and
1657 * closed frequently and we have delayed allocation blocks
1658 * outstanding (e.g. streaming writes from the NFS server),
1659 * truncating the blocks past EOF will cause fragmentation to
1660 * occur.
1661 *
1662 * In this case don't do the truncation, either, but we have to
1663 * be careful how we detect this case. Blocks beyond EOF show
1664 * up as i_delayed_blks even when the inode is clean, so we
1665 * need to truncate them away first before checking for a dirty
1666 * release. Hence on the first dirty close we will still remove
1667 * the speculative allocation, but after that we will leave it
1668 * in place.
1669 */
1670 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1671 return 0;
1672
1673 error = xfs_free_eofblocks(mp, ip, true);
2451337d 1674 if (error && error != -EAGAIN)
c24b5dfa
DC
1675 return error;
1676
1677 /* delalloc blocks after truncation means it really is dirty */
1678 if (ip->i_delayed_blks)
1679 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1680 }
1681 return 0;
1682}
1683
f7be2d7f
BF
1684/*
1685 * xfs_inactive_truncate
1686 *
1687 * Called to perform a truncate when an inode becomes unlinked.
1688 */
1689STATIC int
1690xfs_inactive_truncate(
1691 struct xfs_inode *ip)
1692{
1693 struct xfs_mount *mp = ip->i_mount;
1694 struct xfs_trans *tp;
1695 int error;
1696
1697 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1698 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1699 if (error) {
1700 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1701 xfs_trans_cancel(tp, 0);
1702 return error;
1703 }
1704
1705 xfs_ilock(ip, XFS_ILOCK_EXCL);
1706 xfs_trans_ijoin(tp, ip, 0);
1707
1708 /*
1709 * Log the inode size first to prevent stale data exposure in the event
1710 * of a system crash before the truncate completes. See the related
1711 * comment in xfs_setattr_size() for details.
1712 */
1713 ip->i_d.di_size = 0;
1714 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1715
1716 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1717 if (error)
1718 goto error_trans_cancel;
1719
1720 ASSERT(ip->i_d.di_nextents == 0);
1721
1722 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1723 if (error)
1724 goto error_unlock;
1725
1726 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1727 return 0;
1728
1729error_trans_cancel:
1730 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1731error_unlock:
1732 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1733 return error;
1734}
1735
88877d2b
BF
1736/*
1737 * xfs_inactive_ifree()
1738 *
1739 * Perform the inode free when an inode is unlinked.
1740 */
1741STATIC int
1742xfs_inactive_ifree(
1743 struct xfs_inode *ip)
1744{
1745 xfs_bmap_free_t free_list;
1746 xfs_fsblock_t first_block;
1747 int committed;
1748 struct xfs_mount *mp = ip->i_mount;
1749 struct xfs_trans *tp;
1750 int error;
1751
1752 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
9d43b180
BF
1753
1754 /*
1755 * The ifree transaction might need to allocate blocks for record
1756 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1757 * allow ifree to dip into the reserved block pool if necessary.
1758 *
1759 * Freeing large sets of inodes generally means freeing inode chunks,
1760 * directory and file data blocks, so this should be relatively safe.
1761 * Only under severe circumstances should it be possible to free enough
1762 * inodes to exhaust the reserve block pool via finobt expansion while
1763 * at the same time not creating free space in the filesystem.
1764 *
1765 * Send a warning if the reservation does happen to fail, as the inode
1766 * now remains allocated and sits on the unlinked list until the fs is
1767 * repaired.
1768 */
1769 tp->t_flags |= XFS_TRANS_RESERVE;
1770 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1771 XFS_IFREE_SPACE_RES(mp), 0);
88877d2b 1772 if (error) {
2451337d 1773 if (error == -ENOSPC) {
9d43b180
BF
1774 xfs_warn_ratelimited(mp,
1775 "Failed to remove inode(s) from unlinked list. "
1776 "Please free space, unmount and run xfs_repair.");
1777 } else {
1778 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1779 }
88877d2b
BF
1780 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1781 return error;
1782 }
1783
1784 xfs_ilock(ip, XFS_ILOCK_EXCL);
1785 xfs_trans_ijoin(tp, ip, 0);
1786
1787 xfs_bmap_init(&free_list, &first_block);
1788 error = xfs_ifree(tp, ip, &free_list);
1789 if (error) {
1790 /*
1791 * If we fail to free the inode, shut down. The cancel
1792 * might do that, we need to make sure. Otherwise the
1793 * inode might be lost for a long time or forever.
1794 */
1795 if (!XFS_FORCED_SHUTDOWN(mp)) {
1796 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1797 __func__, error);
1798 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1799 }
1800 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1801 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1802 return error;
1803 }
1804
1805 /*
1806 * Credit the quota account(s). The inode is gone.
1807 */
1808 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1809
1810 /*
1811 * Just ignore errors at this point. There is nothing we can
1812 * do except to try to keep going. Make sure it's not a silent
1813 * error.
1814 */
1815 error = xfs_bmap_finish(&tp, &free_list, &committed);
1816 if (error)
1817 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1818 __func__, error);
1819 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1820 if (error)
1821 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1822 __func__, error);
1823
1824 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1825 return 0;
1826}
1827
c24b5dfa
DC
1828/*
1829 * xfs_inactive
1830 *
1831 * This is called when the vnode reference count for the vnode
1832 * goes to zero. If the file has been unlinked, then it must
1833 * now be truncated. Also, we clear all of the read-ahead state
1834 * kept for the inode here since the file is now closed.
1835 */
74564fb4 1836void
c24b5dfa
DC
1837xfs_inactive(
1838 xfs_inode_t *ip)
1839{
3d3c8b52 1840 struct xfs_mount *mp;
3d3c8b52
JL
1841 int error;
1842 int truncate = 0;
c24b5dfa
DC
1843
1844 /*
1845 * If the inode is already free, then there can be nothing
1846 * to clean up here.
1847 */
d948709b 1848 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1849 ASSERT(ip->i_df.if_real_bytes == 0);
1850 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1851 return;
c24b5dfa
DC
1852 }
1853
1854 mp = ip->i_mount;
1855
c24b5dfa
DC
1856 /* If this is a read-only mount, don't do this (would generate I/O) */
1857 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1858 return;
c24b5dfa
DC
1859
1860 if (ip->i_d.di_nlink != 0) {
1861 /*
1862 * force is true because we are evicting an inode from the
1863 * cache. Post-eof blocks must be freed, lest we end up with
1864 * broken free space accounting.
1865 */
74564fb4
BF
1866 if (xfs_can_free_eofblocks(ip, true))
1867 xfs_free_eofblocks(mp, ip, false);
1868
1869 return;
c24b5dfa
DC
1870 }
1871
1872 if (S_ISREG(ip->i_d.di_mode) &&
1873 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1874 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1875 truncate = 1;
1876
1877 error = xfs_qm_dqattach(ip, 0);
1878 if (error)
74564fb4 1879 return;
c24b5dfa 1880
f7be2d7f 1881 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1882 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1883 else if (truncate)
1884 error = xfs_inactive_truncate(ip);
1885 if (error)
74564fb4 1886 return;
c24b5dfa
DC
1887
1888 /*
1889 * If there are attributes associated with the file then blow them away
1890 * now. The code calls a routine that recursively deconstructs the
1891 * attribute fork. We need to just commit the current transaction
1892 * because we can't use it for xfs_attr_inactive().
1893 */
1894 if (ip->i_d.di_anextents > 0) {
1895 ASSERT(ip->i_d.di_forkoff != 0);
1896
c24b5dfa
DC
1897 error = xfs_attr_inactive(ip);
1898 if (error)
74564fb4 1899 return;
c24b5dfa
DC
1900 }
1901
1902 if (ip->i_afp)
1903 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1904
1905 ASSERT(ip->i_d.di_anextents == 0);
1906
1907 /*
1908 * Free the inode.
1909 */
88877d2b
BF
1910 error = xfs_inactive_ifree(ip);
1911 if (error)
74564fb4 1912 return;
c24b5dfa
DC
1913
1914 /*
1915 * Release the dquots held by inode, if any.
1916 */
1917 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1918}
1919
1da177e4
LT
1920/*
1921 * This is called when the inode's link count goes to 0.
1922 * We place the on-disk inode on a list in the AGI. It
1923 * will be pulled from this list when the inode is freed.
1924 */
1925int
1926xfs_iunlink(
1927 xfs_trans_t *tp,
1928 xfs_inode_t *ip)
1929{
1930 xfs_mount_t *mp;
1931 xfs_agi_t *agi;
1932 xfs_dinode_t *dip;
1933 xfs_buf_t *agibp;
1934 xfs_buf_t *ibp;
1da177e4
LT
1935 xfs_agino_t agino;
1936 short bucket_index;
1937 int offset;
1938 int error;
1da177e4
LT
1939
1940 ASSERT(ip->i_d.di_nlink == 0);
1941 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1942
1943 mp = tp->t_mountp;
1944
1da177e4
LT
1945 /*
1946 * Get the agi buffer first. It ensures lock ordering
1947 * on the list.
1948 */
5e1be0fb 1949 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1950 if (error)
1da177e4 1951 return error;
1da177e4 1952 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1953
1da177e4
LT
1954 /*
1955 * Get the index into the agi hash table for the
1956 * list this inode will go on.
1957 */
1958 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1959 ASSERT(agino != 0);
1960 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1961 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1962 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1963
69ef921b 1964 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1965 /*
1966 * There is already another inode in the bucket we need
1967 * to add ourselves to. Add us at the front of the list.
1968 * Here we put the head pointer into our next pointer,
1969 * and then we fall through to point the head at us.
1970 */
475ee413
CH
1971 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1972 0, 0);
c319b58b
VA
1973 if (error)
1974 return error;
1975
69ef921b 1976 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1977 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1978 offset = ip->i_imap.im_boffset +
1da177e4 1979 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
1980
1981 /* need to recalc the inode CRC if appropriate */
1982 xfs_dinode_calc_crc(mp, dip);
1983
1da177e4
LT
1984 xfs_trans_inode_buf(tp, ibp);
1985 xfs_trans_log_buf(tp, ibp, offset,
1986 (offset + sizeof(xfs_agino_t) - 1));
1987 xfs_inobp_check(mp, ibp);
1988 }
1989
1990 /*
1991 * Point the bucket head pointer at the inode being inserted.
1992 */
1993 ASSERT(agino != 0);
16259e7d 1994 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1995 offset = offsetof(xfs_agi_t, agi_unlinked) +
1996 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 1997 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
1998 xfs_trans_log_buf(tp, agibp, offset,
1999 (offset + sizeof(xfs_agino_t) - 1));
2000 return 0;
2001}
2002
2003/*
2004 * Pull the on-disk inode from the AGI unlinked list.
2005 */
2006STATIC int
2007xfs_iunlink_remove(
2008 xfs_trans_t *tp,
2009 xfs_inode_t *ip)
2010{
2011 xfs_ino_t next_ino;
2012 xfs_mount_t *mp;
2013 xfs_agi_t *agi;
2014 xfs_dinode_t *dip;
2015 xfs_buf_t *agibp;
2016 xfs_buf_t *ibp;
2017 xfs_agnumber_t agno;
1da177e4
LT
2018 xfs_agino_t agino;
2019 xfs_agino_t next_agino;
2020 xfs_buf_t *last_ibp;
6fdf8ccc 2021 xfs_dinode_t *last_dip = NULL;
1da177e4 2022 short bucket_index;
6fdf8ccc 2023 int offset, last_offset = 0;
1da177e4 2024 int error;
1da177e4 2025
1da177e4 2026 mp = tp->t_mountp;
1da177e4 2027 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2028
2029 /*
2030 * Get the agi buffer first. It ensures lock ordering
2031 * on the list.
2032 */
5e1be0fb
CH
2033 error = xfs_read_agi(mp, tp, agno, &agibp);
2034 if (error)
1da177e4 2035 return error;
5e1be0fb 2036
1da177e4 2037 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2038
1da177e4
LT
2039 /*
2040 * Get the index into the agi hash table for the
2041 * list this inode will go on.
2042 */
2043 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2044 ASSERT(agino != 0);
2045 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2046 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2047 ASSERT(agi->agi_unlinked[bucket_index]);
2048
16259e7d 2049 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2050 /*
475ee413
CH
2051 * We're at the head of the list. Get the inode's on-disk
2052 * buffer to see if there is anyone after us on the list.
2053 * Only modify our next pointer if it is not already NULLAGINO.
2054 * This saves us the overhead of dealing with the buffer when
2055 * there is no need to change it.
1da177e4 2056 */
475ee413
CH
2057 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2058 0, 0);
1da177e4 2059 if (error) {
475ee413 2060 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2061 __func__, error);
1da177e4
LT
2062 return error;
2063 }
347d1c01 2064 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2065 ASSERT(next_agino != 0);
2066 if (next_agino != NULLAGINO) {
347d1c01 2067 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2068 offset = ip->i_imap.im_boffset +
1da177e4 2069 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2070
2071 /* need to recalc the inode CRC if appropriate */
2072 xfs_dinode_calc_crc(mp, dip);
2073
1da177e4
LT
2074 xfs_trans_inode_buf(tp, ibp);
2075 xfs_trans_log_buf(tp, ibp, offset,
2076 (offset + sizeof(xfs_agino_t) - 1));
2077 xfs_inobp_check(mp, ibp);
2078 } else {
2079 xfs_trans_brelse(tp, ibp);
2080 }
2081 /*
2082 * Point the bucket head pointer at the next inode.
2083 */
2084 ASSERT(next_agino != 0);
2085 ASSERT(next_agino != agino);
16259e7d 2086 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2087 offset = offsetof(xfs_agi_t, agi_unlinked) +
2088 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2089 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2090 xfs_trans_log_buf(tp, agibp, offset,
2091 (offset + sizeof(xfs_agino_t) - 1));
2092 } else {
2093 /*
2094 * We need to search the list for the inode being freed.
2095 */
16259e7d 2096 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2097 last_ibp = NULL;
2098 while (next_agino != agino) {
129dbc9a
CH
2099 struct xfs_imap imap;
2100
2101 if (last_ibp)
1da177e4 2102 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2103
2104 imap.im_blkno = 0;
1da177e4 2105 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2106
2107 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2108 if (error) {
2109 xfs_warn(mp,
2110 "%s: xfs_imap returned error %d.",
2111 __func__, error);
2112 return error;
2113 }
2114
2115 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2116 &last_ibp, 0, 0);
1da177e4 2117 if (error) {
0b932ccc 2118 xfs_warn(mp,
129dbc9a 2119 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2120 __func__, error);
1da177e4
LT
2121 return error;
2122 }
129dbc9a
CH
2123
2124 last_offset = imap.im_boffset;
347d1c01 2125 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2126 ASSERT(next_agino != NULLAGINO);
2127 ASSERT(next_agino != 0);
2128 }
475ee413 2129
1da177e4 2130 /*
475ee413
CH
2131 * Now last_ibp points to the buffer previous to us on the
2132 * unlinked list. Pull us from the list.
1da177e4 2133 */
475ee413
CH
2134 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2135 0, 0);
1da177e4 2136 if (error) {
475ee413 2137 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2138 __func__, error);
1da177e4
LT
2139 return error;
2140 }
347d1c01 2141 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2142 ASSERT(next_agino != 0);
2143 ASSERT(next_agino != agino);
2144 if (next_agino != NULLAGINO) {
347d1c01 2145 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2146 offset = ip->i_imap.im_boffset +
1da177e4 2147 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2148
2149 /* need to recalc the inode CRC if appropriate */
2150 xfs_dinode_calc_crc(mp, dip);
2151
1da177e4
LT
2152 xfs_trans_inode_buf(tp, ibp);
2153 xfs_trans_log_buf(tp, ibp, offset,
2154 (offset + sizeof(xfs_agino_t) - 1));
2155 xfs_inobp_check(mp, ibp);
2156 } else {
2157 xfs_trans_brelse(tp, ibp);
2158 }
2159 /*
2160 * Point the previous inode on the list to the next inode.
2161 */
347d1c01 2162 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2163 ASSERT(next_agino != 0);
2164 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2165
2166 /* need to recalc the inode CRC if appropriate */
2167 xfs_dinode_calc_crc(mp, last_dip);
2168
1da177e4
LT
2169 xfs_trans_inode_buf(tp, last_ibp);
2170 xfs_trans_log_buf(tp, last_ibp, offset,
2171 (offset + sizeof(xfs_agino_t) - 1));
2172 xfs_inobp_check(mp, last_ibp);
2173 }
2174 return 0;
2175}
2176
5b3eed75 2177/*
0b8182db 2178 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2179 * inodes that are in memory - they all must be marked stale and attached to
2180 * the cluster buffer.
2181 */
2a30f36d 2182STATIC int
1da177e4
LT
2183xfs_ifree_cluster(
2184 xfs_inode_t *free_ip,
2185 xfs_trans_t *tp,
2186 xfs_ino_t inum)
2187{
2188 xfs_mount_t *mp = free_ip->i_mount;
2189 int blks_per_cluster;
982e939e 2190 int inodes_per_cluster;
1da177e4 2191 int nbufs;
5b257b4a 2192 int i, j;
1da177e4
LT
2193 xfs_daddr_t blkno;
2194 xfs_buf_t *bp;
5b257b4a 2195 xfs_inode_t *ip;
1da177e4
LT
2196 xfs_inode_log_item_t *iip;
2197 xfs_log_item_t *lip;
5017e97d 2198 struct xfs_perag *pag;
1da177e4 2199
5017e97d 2200 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2201 blks_per_cluster = xfs_icluster_size_fsb(mp);
2202 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2203 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2204
982e939e 2205 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
1da177e4
LT
2206 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2207 XFS_INO_TO_AGBNO(mp, inum));
2208
5b257b4a
DC
2209 /*
2210 * We obtain and lock the backing buffer first in the process
2211 * here, as we have to ensure that any dirty inode that we
2212 * can't get the flush lock on is attached to the buffer.
2213 * If we scan the in-memory inodes first, then buffer IO can
2214 * complete before we get a lock on it, and hence we may fail
2215 * to mark all the active inodes on the buffer stale.
2216 */
2217 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2218 mp->m_bsize * blks_per_cluster,
2219 XBF_UNMAPPED);
5b257b4a 2220
2a30f36d 2221 if (!bp)
2451337d 2222 return -ENOMEM;
b0f539de
DC
2223
2224 /*
2225 * This buffer may not have been correctly initialised as we
2226 * didn't read it from disk. That's not important because we are
2227 * only using to mark the buffer as stale in the log, and to
2228 * attach stale cached inodes on it. That means it will never be
2229 * dispatched for IO. If it is, we want to know about it, and we
2230 * want it to fail. We can acheive this by adding a write
2231 * verifier to the buffer.
2232 */
1813dd64 2233 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2234
5b257b4a
DC
2235 /*
2236 * Walk the inodes already attached to the buffer and mark them
2237 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2238 * in-memory inode walk can't lock them. By marking them all
2239 * stale first, we will not attempt to lock them in the loop
2240 * below as the XFS_ISTALE flag will be set.
5b257b4a 2241 */
adadbeef 2242 lip = bp->b_fspriv;
5b257b4a
DC
2243 while (lip) {
2244 if (lip->li_type == XFS_LI_INODE) {
2245 iip = (xfs_inode_log_item_t *)lip;
2246 ASSERT(iip->ili_logged == 1);
ca30b2a7 2247 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2248 xfs_trans_ail_copy_lsn(mp->m_ail,
2249 &iip->ili_flush_lsn,
2250 &iip->ili_item.li_lsn);
2251 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2252 }
2253 lip = lip->li_bio_list;
2254 }
1da177e4 2255
5b3eed75 2256
1da177e4 2257 /*
5b257b4a
DC
2258 * For each inode in memory attempt to add it to the inode
2259 * buffer and set it up for being staled on buffer IO
2260 * completion. This is safe as we've locked out tail pushing
2261 * and flushing by locking the buffer.
1da177e4 2262 *
5b257b4a
DC
2263 * We have already marked every inode that was part of a
2264 * transaction stale above, which means there is no point in
2265 * even trying to lock them.
1da177e4 2266 */
982e939e 2267 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2268retry:
1a3e8f3d 2269 rcu_read_lock();
da353b0d
DC
2270 ip = radix_tree_lookup(&pag->pag_ici_root,
2271 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2272
1a3e8f3d
DC
2273 /* Inode not in memory, nothing to do */
2274 if (!ip) {
2275 rcu_read_unlock();
1da177e4
LT
2276 continue;
2277 }
2278
1a3e8f3d
DC
2279 /*
2280 * because this is an RCU protected lookup, we could
2281 * find a recently freed or even reallocated inode
2282 * during the lookup. We need to check under the
2283 * i_flags_lock for a valid inode here. Skip it if it
2284 * is not valid, the wrong inode or stale.
2285 */
2286 spin_lock(&ip->i_flags_lock);
2287 if (ip->i_ino != inum + i ||
2288 __xfs_iflags_test(ip, XFS_ISTALE)) {
2289 spin_unlock(&ip->i_flags_lock);
2290 rcu_read_unlock();
2291 continue;
2292 }
2293 spin_unlock(&ip->i_flags_lock);
2294
5b3eed75
DC
2295 /*
2296 * Don't try to lock/unlock the current inode, but we
2297 * _cannot_ skip the other inodes that we did not find
2298 * in the list attached to the buffer and are not
2299 * already marked stale. If we can't lock it, back off
2300 * and retry.
2301 */
5b257b4a
DC
2302 if (ip != free_ip &&
2303 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2304 rcu_read_unlock();
5b3eed75
DC
2305 delay(1);
2306 goto retry;
1da177e4 2307 }
1a3e8f3d 2308 rcu_read_unlock();
1da177e4 2309
5b3eed75 2310 xfs_iflock(ip);
5b257b4a 2311 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2312
5b3eed75
DC
2313 /*
2314 * we don't need to attach clean inodes or those only
2315 * with unlogged changes (which we throw away, anyway).
2316 */
1da177e4 2317 iip = ip->i_itemp;
5b3eed75 2318 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2319 ASSERT(ip != free_ip);
1da177e4
LT
2320 xfs_ifunlock(ip);
2321 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2322 continue;
2323 }
2324
f5d8d5c4
CH
2325 iip->ili_last_fields = iip->ili_fields;
2326 iip->ili_fields = 0;
1da177e4 2327 iip->ili_logged = 1;
7b2e2a31
DC
2328 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2329 &iip->ili_item.li_lsn);
1da177e4 2330
ca30b2a7
CH
2331 xfs_buf_attach_iodone(bp, xfs_istale_done,
2332 &iip->ili_item);
5b257b4a
DC
2333
2334 if (ip != free_ip)
1da177e4 2335 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2336 }
2337
5b3eed75 2338 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2339 xfs_trans_binval(tp, bp);
2340 }
2341
5017e97d 2342 xfs_perag_put(pag);
2a30f36d 2343 return 0;
1da177e4
LT
2344}
2345
2346/*
2347 * This is called to return an inode to the inode free list.
2348 * The inode should already be truncated to 0 length and have
2349 * no pages associated with it. This routine also assumes that
2350 * the inode is already a part of the transaction.
2351 *
2352 * The on-disk copy of the inode will have been added to the list
2353 * of unlinked inodes in the AGI. We need to remove the inode from
2354 * that list atomically with respect to freeing it here.
2355 */
2356int
2357xfs_ifree(
2358 xfs_trans_t *tp,
2359 xfs_inode_t *ip,
2360 xfs_bmap_free_t *flist)
2361{
2362 int error;
2363 int delete;
2364 xfs_ino_t first_ino;
2365
579aa9ca 2366 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2367 ASSERT(ip->i_d.di_nlink == 0);
2368 ASSERT(ip->i_d.di_nextents == 0);
2369 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2370 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2371 ASSERT(ip->i_d.di_nblocks == 0);
2372
2373 /*
2374 * Pull the on-disk inode from the AGI unlinked list.
2375 */
2376 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2377 if (error)
1da177e4 2378 return error;
1da177e4
LT
2379
2380 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1baaed8f 2381 if (error)
1da177e4 2382 return error;
1baaed8f 2383
1da177e4
LT
2384 ip->i_d.di_mode = 0; /* mark incore inode as free */
2385 ip->i_d.di_flags = 0;
2386 ip->i_d.di_dmevmask = 0;
2387 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2388 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2389 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2390 /*
2391 * Bump the generation count so no one will be confused
2392 * by reincarnations of this inode.
2393 */
2394 ip->i_d.di_gen++;
2395 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2396
1baaed8f 2397 if (delete)
2a30f36d 2398 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4 2399
2a30f36d 2400 return error;
1da177e4
LT
2401}
2402
1da177e4 2403/*
60ec6783
CH
2404 * This is called to unpin an inode. The caller must have the inode locked
2405 * in at least shared mode so that the buffer cannot be subsequently pinned
2406 * once someone is waiting for it to be unpinned.
1da177e4 2407 */
60ec6783 2408static void
f392e631 2409xfs_iunpin(
60ec6783 2410 struct xfs_inode *ip)
1da177e4 2411{
579aa9ca 2412 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2413
4aaf15d1
DC
2414 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2415
a3f74ffb 2416 /* Give the log a push to start the unpinning I/O */
60ec6783 2417 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2418
a3f74ffb 2419}
1da177e4 2420
f392e631
CH
2421static void
2422__xfs_iunpin_wait(
2423 struct xfs_inode *ip)
2424{
2425 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2426 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2427
2428 xfs_iunpin(ip);
2429
2430 do {
2431 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2432 if (xfs_ipincount(ip))
2433 io_schedule();
2434 } while (xfs_ipincount(ip));
2435 finish_wait(wq, &wait.wait);
2436}
2437
777df5af 2438void
a3f74ffb 2439xfs_iunpin_wait(
60ec6783 2440 struct xfs_inode *ip)
a3f74ffb 2441{
f392e631
CH
2442 if (xfs_ipincount(ip))
2443 __xfs_iunpin_wait(ip);
1da177e4
LT
2444}
2445
27320369
DC
2446/*
2447 * Removing an inode from the namespace involves removing the directory entry
2448 * and dropping the link count on the inode. Removing the directory entry can
2449 * result in locking an AGF (directory blocks were freed) and removing a link
2450 * count can result in placing the inode on an unlinked list which results in
2451 * locking an AGI.
2452 *
2453 * The big problem here is that we have an ordering constraint on AGF and AGI
2454 * locking - inode allocation locks the AGI, then can allocate a new extent for
2455 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2456 * removes the inode from the unlinked list, requiring that we lock the AGI
2457 * first, and then freeing the inode can result in an inode chunk being freed
2458 * and hence freeing disk space requiring that we lock an AGF.
2459 *
2460 * Hence the ordering that is imposed by other parts of the code is AGI before
2461 * AGF. This means we cannot remove the directory entry before we drop the inode
2462 * reference count and put it on the unlinked list as this results in a lock
2463 * order of AGF then AGI, and this can deadlock against inode allocation and
2464 * freeing. Therefore we must drop the link counts before we remove the
2465 * directory entry.
2466 *
2467 * This is still safe from a transactional point of view - it is not until we
2468 * get to xfs_bmap_finish() that we have the possibility of multiple
2469 * transactions in this operation. Hence as long as we remove the directory
2470 * entry and drop the link count in the first transaction of the remove
2471 * operation, there are no transactional constraints on the ordering here.
2472 */
c24b5dfa
DC
2473int
2474xfs_remove(
2475 xfs_inode_t *dp,
2476 struct xfs_name *name,
2477 xfs_inode_t *ip)
2478{
2479 xfs_mount_t *mp = dp->i_mount;
2480 xfs_trans_t *tp = NULL;
2481 int is_dir = S_ISDIR(ip->i_d.di_mode);
2482 int error = 0;
2483 xfs_bmap_free_t free_list;
2484 xfs_fsblock_t first_block;
2485 int cancel_flags;
2486 int committed;
c24b5dfa 2487 uint resblks;
c24b5dfa
DC
2488
2489 trace_xfs_remove(dp, name);
2490
2491 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2492 return -EIO;
c24b5dfa
DC
2493
2494 error = xfs_qm_dqattach(dp, 0);
2495 if (error)
2496 goto std_return;
2497
2498 error = xfs_qm_dqattach(ip, 0);
2499 if (error)
2500 goto std_return;
2501
32296f86 2502 if (is_dir)
c24b5dfa 2503 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
32296f86 2504 else
c24b5dfa 2505 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
c24b5dfa
DC
2506 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2507
2508 /*
2509 * We try to get the real space reservation first,
2510 * allowing for directory btree deletion(s) implying
2511 * possible bmap insert(s). If we can't get the space
2512 * reservation then we use 0 instead, and avoid the bmap
2513 * btree insert(s) in the directory code by, if the bmap
2514 * insert tries to happen, instead trimming the LAST
2515 * block from the directory.
2516 */
2517 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2518 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2451337d 2519 if (error == -ENOSPC) {
c24b5dfa 2520 resblks = 0;
3d3c8b52 2521 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2522 }
2523 if (error) {
2451337d 2524 ASSERT(error != -ENOSPC);
c24b5dfa
DC
2525 cancel_flags = 0;
2526 goto out_trans_cancel;
2527 }
2528
2529 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2530
2531 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2532 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2533
2534 /*
2535 * If we're removing a directory perform some additional validation.
2536 */
27320369 2537 cancel_flags |= XFS_TRANS_ABORT;
c24b5dfa
DC
2538 if (is_dir) {
2539 ASSERT(ip->i_d.di_nlink >= 2);
2540 if (ip->i_d.di_nlink != 2) {
2451337d 2541 error = -ENOTEMPTY;
c24b5dfa
DC
2542 goto out_trans_cancel;
2543 }
2544 if (!xfs_dir_isempty(ip)) {
2451337d 2545 error = -ENOTEMPTY;
c24b5dfa
DC
2546 goto out_trans_cancel;
2547 }
c24b5dfa 2548
27320369 2549 /* Drop the link from ip's "..". */
c24b5dfa
DC
2550 error = xfs_droplink(tp, dp);
2551 if (error)
27320369 2552 goto out_trans_cancel;
c24b5dfa 2553
27320369 2554 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2555 error = xfs_droplink(tp, ip);
2556 if (error)
27320369 2557 goto out_trans_cancel;
c24b5dfa
DC
2558 } else {
2559 /*
2560 * When removing a non-directory we need to log the parent
2561 * inode here. For a directory this is done implicitly
2562 * by the xfs_droplink call for the ".." entry.
2563 */
2564 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2565 }
27320369 2566 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2567
27320369 2568 /* Drop the link from dp to ip. */
c24b5dfa
DC
2569 error = xfs_droplink(tp, ip);
2570 if (error)
27320369 2571 goto out_trans_cancel;
c24b5dfa 2572
27320369
DC
2573 xfs_bmap_init(&free_list, &first_block);
2574 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2575 &first_block, &free_list, resblks);
2576 if (error) {
2451337d 2577 ASSERT(error != -ENOENT);
27320369
DC
2578 goto out_bmap_cancel;
2579 }
2580
c24b5dfa
DC
2581 /*
2582 * If this is a synchronous mount, make sure that the
2583 * remove transaction goes to disk before returning to
2584 * the user.
2585 */
2586 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2587 xfs_trans_set_sync(tp);
2588
2589 error = xfs_bmap_finish(&tp, &free_list, &committed);
2590 if (error)
2591 goto out_bmap_cancel;
2592
2593 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2594 if (error)
2595 goto std_return;
2596
2cd2ef6a 2597 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2598 xfs_filestream_deassociate(ip);
2599
2600 return 0;
2601
2602 out_bmap_cancel:
2603 xfs_bmap_cancel(&free_list);
c24b5dfa
DC
2604 out_trans_cancel:
2605 xfs_trans_cancel(tp, cancel_flags);
2606 std_return:
2607 return error;
2608}
2609
f6bba201
DC
2610/*
2611 * Enter all inodes for a rename transaction into a sorted array.
2612 */
95afcf5c 2613#define __XFS_SORT_INODES 5
f6bba201
DC
2614STATIC void
2615xfs_sort_for_rename(
95afcf5c
DC
2616 struct xfs_inode *dp1, /* in: old (source) directory inode */
2617 struct xfs_inode *dp2, /* in: new (target) directory inode */
2618 struct xfs_inode *ip1, /* in: inode of old entry */
2619 struct xfs_inode *ip2, /* in: inode of new entry */
2620 struct xfs_inode *wip, /* in: whiteout inode */
2621 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2622 int *num_inodes) /* in/out: inodes in array */
f6bba201 2623{
f6bba201
DC
2624 int i, j;
2625
95afcf5c
DC
2626 ASSERT(*num_inodes == __XFS_SORT_INODES);
2627 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2628
f6bba201
DC
2629 /*
2630 * i_tab contains a list of pointers to inodes. We initialize
2631 * the table here & we'll sort it. We will then use it to
2632 * order the acquisition of the inode locks.
2633 *
2634 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2635 */
95afcf5c
DC
2636 i = 0;
2637 i_tab[i++] = dp1;
2638 i_tab[i++] = dp2;
2639 i_tab[i++] = ip1;
2640 if (ip2)
2641 i_tab[i++] = ip2;
2642 if (wip)
2643 i_tab[i++] = wip;
2644 *num_inodes = i;
f6bba201
DC
2645
2646 /*
2647 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2648 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2649 */
2650 for (i = 0; i < *num_inodes; i++) {
2651 for (j = 1; j < *num_inodes; j++) {
2652 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2653 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2654 i_tab[j] = i_tab[j-1];
2655 i_tab[j-1] = temp;
2656 }
2657 }
2658 }
2659}
2660
310606b0
DC
2661static int
2662xfs_finish_rename(
2663 struct xfs_trans *tp,
2664 struct xfs_bmap_free *free_list)
2665{
2666 int committed = 0;
2667 int error;
2668
2669 /*
2670 * If this is a synchronous mount, make sure that the rename transaction
2671 * goes to disk before returning to the user.
2672 */
2673 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2674 xfs_trans_set_sync(tp);
2675
2676 error = xfs_bmap_finish(&tp, free_list, &committed);
2677 if (error) {
2678 xfs_bmap_cancel(free_list);
2679 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
2680 return error;
2681 }
2682
2683 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2684}
2685
d31a1825
CM
2686/*
2687 * xfs_cross_rename()
2688 *
2689 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2690 */
2691STATIC int
2692xfs_cross_rename(
2693 struct xfs_trans *tp,
2694 struct xfs_inode *dp1,
2695 struct xfs_name *name1,
2696 struct xfs_inode *ip1,
2697 struct xfs_inode *dp2,
2698 struct xfs_name *name2,
2699 struct xfs_inode *ip2,
2700 struct xfs_bmap_free *free_list,
2701 xfs_fsblock_t *first_block,
2702 int spaceres)
2703{
2704 int error = 0;
2705 int ip1_flags = 0;
2706 int ip2_flags = 0;
2707 int dp2_flags = 0;
2708
2709 /* Swap inode number for dirent in first parent */
2710 error = xfs_dir_replace(tp, dp1, name1,
2711 ip2->i_ino,
2712 first_block, free_list, spaceres);
2713 if (error)
eeacd321 2714 goto out_trans_abort;
d31a1825
CM
2715
2716 /* Swap inode number for dirent in second parent */
2717 error = xfs_dir_replace(tp, dp2, name2,
2718 ip1->i_ino,
2719 first_block, free_list, spaceres);
2720 if (error)
eeacd321 2721 goto out_trans_abort;
d31a1825
CM
2722
2723 /*
2724 * If we're renaming one or more directories across different parents,
2725 * update the respective ".." entries (and link counts) to match the new
2726 * parents.
2727 */
2728 if (dp1 != dp2) {
2729 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2730
2731 if (S_ISDIR(ip2->i_d.di_mode)) {
2732 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2733 dp1->i_ino, first_block,
2734 free_list, spaceres);
2735 if (error)
eeacd321 2736 goto out_trans_abort;
d31a1825
CM
2737
2738 /* transfer ip2 ".." reference to dp1 */
2739 if (!S_ISDIR(ip1->i_d.di_mode)) {
2740 error = xfs_droplink(tp, dp2);
2741 if (error)
eeacd321 2742 goto out_trans_abort;
d31a1825
CM
2743 error = xfs_bumplink(tp, dp1);
2744 if (error)
eeacd321 2745 goto out_trans_abort;
d31a1825
CM
2746 }
2747
2748 /*
2749 * Although ip1 isn't changed here, userspace needs
2750 * to be warned about the change, so that applications
2751 * relying on it (like backup ones), will properly
2752 * notify the change
2753 */
2754 ip1_flags |= XFS_ICHGTIME_CHG;
2755 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2756 }
2757
2758 if (S_ISDIR(ip1->i_d.di_mode)) {
2759 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2760 dp2->i_ino, first_block,
2761 free_list, spaceres);
2762 if (error)
eeacd321 2763 goto out_trans_abort;
d31a1825
CM
2764
2765 /* transfer ip1 ".." reference to dp2 */
2766 if (!S_ISDIR(ip2->i_d.di_mode)) {
2767 error = xfs_droplink(tp, dp1);
2768 if (error)
eeacd321 2769 goto out_trans_abort;
d31a1825
CM
2770 error = xfs_bumplink(tp, dp2);
2771 if (error)
eeacd321 2772 goto out_trans_abort;
d31a1825
CM
2773 }
2774
2775 /*
2776 * Although ip2 isn't changed here, userspace needs
2777 * to be warned about the change, so that applications
2778 * relying on it (like backup ones), will properly
2779 * notify the change
2780 */
2781 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2782 ip2_flags |= XFS_ICHGTIME_CHG;
2783 }
2784 }
2785
2786 if (ip1_flags) {
2787 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2788 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2789 }
2790 if (ip2_flags) {
2791 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2792 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2793 }
2794 if (dp2_flags) {
2795 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2796 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2797 }
2798 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2799 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
eeacd321
DC
2800 return xfs_finish_rename(tp, free_list);
2801
2802out_trans_abort:
2803 xfs_bmap_cancel(free_list);
2804 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
d31a1825
CM
2805 return error;
2806}
2807
7dcf5c3e
DC
2808/*
2809 * xfs_rename_alloc_whiteout()
2810 *
2811 * Return a referenced, unlinked, unlocked inode that that can be used as a
2812 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2813 * crash between allocating the inode and linking it into the rename transaction
2814 * recovery will free the inode and we won't leak it.
2815 */
2816static int
2817xfs_rename_alloc_whiteout(
2818 struct xfs_inode *dp,
2819 struct xfs_inode **wip)
2820{
2821 struct xfs_inode *tmpfile;
2822 int error;
2823
2824 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2825 if (error)
2826 return error;
2827
2828 /* Satisfy xfs_bumplink that this is a real tmpfile */
2829 xfs_finish_inode_setup(tmpfile);
2830 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2831
2832 *wip = tmpfile;
2833 return 0;
2834}
2835
f6bba201
DC
2836/*
2837 * xfs_rename
2838 */
2839int
2840xfs_rename(
7dcf5c3e
DC
2841 struct xfs_inode *src_dp,
2842 struct xfs_name *src_name,
2843 struct xfs_inode *src_ip,
2844 struct xfs_inode *target_dp,
2845 struct xfs_name *target_name,
2846 struct xfs_inode *target_ip,
2847 unsigned int flags)
f6bba201 2848{
7dcf5c3e
DC
2849 struct xfs_mount *mp = src_dp->i_mount;
2850 struct xfs_trans *tp;
2851 struct xfs_bmap_free free_list;
2852 xfs_fsblock_t first_block;
2853 struct xfs_inode *wip = NULL; /* whiteout inode */
2854 struct xfs_inode *inodes[__XFS_SORT_INODES];
2855 int num_inodes = __XFS_SORT_INODES;
2b93681f
DC
2856 bool new_parent = (src_dp != target_dp);
2857 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
7dcf5c3e
DC
2858 int cancel_flags = 0;
2859 int spaceres;
2860 int error;
f6bba201
DC
2861
2862 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2863
eeacd321
DC
2864 if ((flags & RENAME_EXCHANGE) && !target_ip)
2865 return -EINVAL;
2866
7dcf5c3e
DC
2867 /*
2868 * If we are doing a whiteout operation, allocate the whiteout inode
2869 * we will be placing at the target and ensure the type is set
2870 * appropriately.
2871 */
2872 if (flags & RENAME_WHITEOUT) {
2873 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2874 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2875 if (error)
2876 return error;
2877
2878 /* setup target dirent info as whiteout */
2879 src_name->type = XFS_DIR3_FT_CHRDEV;
2880 }
f6bba201 2881
7dcf5c3e 2882 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2883 inodes, &num_inodes);
2884
f6bba201 2885 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
f6bba201 2886 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2887 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2451337d 2888 if (error == -ENOSPC) {
f6bba201 2889 spaceres = 0;
3d3c8b52 2890 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201 2891 }
445883e8
DC
2892 if (error)
2893 goto out_trans_cancel;
2894 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
f6bba201
DC
2895
2896 /*
2897 * Attach the dquots to the inodes
2898 */
2899 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2900 if (error)
2901 goto out_trans_cancel;
f6bba201
DC
2902
2903 /*
2904 * Lock all the participating inodes. Depending upon whether
2905 * the target_name exists in the target directory, and
2906 * whether the target directory is the same as the source
2907 * directory, we can lock from 2 to 4 inodes.
2908 */
2909 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2910
2911 /*
2912 * Join all the inodes to the transaction. From this point on,
2913 * we can rely on either trans_commit or trans_cancel to unlock
2914 * them.
2915 */
2916 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2917 if (new_parent)
2918 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2919 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2920 if (target_ip)
2921 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2922 if (wip)
2923 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2924
2925 /*
2926 * If we are using project inheritance, we only allow renames
2927 * into our tree when the project IDs are the same; else the
2928 * tree quota mechanism would be circumvented.
2929 */
2930 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2931 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2932 error = -EXDEV;
445883e8 2933 goto out_trans_cancel;
f6bba201
DC
2934 }
2935
445883e8
DC
2936 xfs_bmap_init(&free_list, &first_block);
2937
eeacd321
DC
2938 /* RENAME_EXCHANGE is unique from here on. */
2939 if (flags & RENAME_EXCHANGE)
2940 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2941 target_dp, target_name, target_ip,
2942 &free_list, &first_block, spaceres);
d31a1825 2943
f6bba201
DC
2944 /*
2945 * Set up the target.
2946 */
2947 if (target_ip == NULL) {
2948 /*
2949 * If there's no space reservation, check the entry will
2950 * fit before actually inserting it.
2951 */
94f3cad5
ES
2952 if (!spaceres) {
2953 error = xfs_dir_canenter(tp, target_dp, target_name);
2954 if (error)
445883e8 2955 goto out_trans_cancel;
94f3cad5 2956 }
f6bba201
DC
2957 /*
2958 * If target does not exist and the rename crosses
2959 * directories, adjust the target directory link count
2960 * to account for the ".." reference from the new entry.
2961 */
2962 error = xfs_dir_createname(tp, target_dp, target_name,
2963 src_ip->i_ino, &first_block,
2964 &free_list, spaceres);
2451337d 2965 if (error == -ENOSPC)
445883e8 2966 goto out_bmap_cancel;
f6bba201 2967 if (error)
445883e8 2968 goto out_trans_abort;
f6bba201
DC
2969
2970 xfs_trans_ichgtime(tp, target_dp,
2971 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2972
2973 if (new_parent && src_is_directory) {
2974 error = xfs_bumplink(tp, target_dp);
2975 if (error)
445883e8 2976 goto out_trans_abort;
f6bba201
DC
2977 }
2978 } else { /* target_ip != NULL */
2979 /*
2980 * If target exists and it's a directory, check that both
2981 * target and source are directories and that target can be
2982 * destroyed, or that neither is a directory.
2983 */
2984 if (S_ISDIR(target_ip->i_d.di_mode)) {
2985 /*
2986 * Make sure target dir is empty.
2987 */
2988 if (!(xfs_dir_isempty(target_ip)) ||
2989 (target_ip->i_d.di_nlink > 2)) {
2451337d 2990 error = -EEXIST;
445883e8 2991 goto out_trans_cancel;
f6bba201
DC
2992 }
2993 }
2994
2995 /*
2996 * Link the source inode under the target name.
2997 * If the source inode is a directory and we are moving
2998 * it across directories, its ".." entry will be
2999 * inconsistent until we replace that down below.
3000 *
3001 * In case there is already an entry with the same
3002 * name at the destination directory, remove it first.
3003 */
3004 error = xfs_dir_replace(tp, target_dp, target_name,
3005 src_ip->i_ino,
3006 &first_block, &free_list, spaceres);
3007 if (error)
445883e8 3008 goto out_trans_abort;
f6bba201
DC
3009
3010 xfs_trans_ichgtime(tp, target_dp,
3011 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3012
3013 /*
3014 * Decrement the link count on the target since the target
3015 * dir no longer points to it.
3016 */
3017 error = xfs_droplink(tp, target_ip);
3018 if (error)
445883e8 3019 goto out_trans_abort;
f6bba201
DC
3020
3021 if (src_is_directory) {
3022 /*
3023 * Drop the link from the old "." entry.
3024 */
3025 error = xfs_droplink(tp, target_ip);
3026 if (error)
445883e8 3027 goto out_trans_abort;
f6bba201
DC
3028 }
3029 } /* target_ip != NULL */
3030
3031 /*
3032 * Remove the source.
3033 */
3034 if (new_parent && src_is_directory) {
3035 /*
3036 * Rewrite the ".." entry to point to the new
3037 * directory.
3038 */
3039 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3040 target_dp->i_ino,
3041 &first_block, &free_list, spaceres);
2451337d 3042 ASSERT(error != -EEXIST);
f6bba201 3043 if (error)
445883e8 3044 goto out_trans_abort;
f6bba201
DC
3045 }
3046
3047 /*
3048 * We always want to hit the ctime on the source inode.
3049 *
3050 * This isn't strictly required by the standards since the source
3051 * inode isn't really being changed, but old unix file systems did
3052 * it and some incremental backup programs won't work without it.
3053 */
3054 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3055 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3056
3057 /*
3058 * Adjust the link count on src_dp. This is necessary when
3059 * renaming a directory, either within one parent when
3060 * the target existed, or across two parent directories.
3061 */
3062 if (src_is_directory && (new_parent || target_ip != NULL)) {
3063
3064 /*
3065 * Decrement link count on src_directory since the
3066 * entry that's moved no longer points to it.
3067 */
3068 error = xfs_droplink(tp, src_dp);
3069 if (error)
445883e8 3070 goto out_trans_abort;
f6bba201
DC
3071 }
3072
7dcf5c3e
DC
3073 /*
3074 * For whiteouts, we only need to update the source dirent with the
3075 * inode number of the whiteout inode rather than removing it
3076 * altogether.
3077 */
3078 if (wip) {
3079 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
f6bba201 3080 &first_block, &free_list, spaceres);
7dcf5c3e
DC
3081 } else
3082 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3083 &first_block, &free_list, spaceres);
f6bba201 3084 if (error)
445883e8 3085 goto out_trans_abort;
f6bba201
DC
3086
3087 /*
7dcf5c3e
DC
3088 * For whiteouts, we need to bump the link count on the whiteout inode.
3089 * This means that failures all the way up to this point leave the inode
3090 * on the unlinked list and so cleanup is a simple matter of dropping
3091 * the remaining reference to it. If we fail here after bumping the link
3092 * count, we're shutting down the filesystem so we'll never see the
3093 * intermediate state on disk.
f6bba201 3094 */
7dcf5c3e
DC
3095 if (wip) {
3096 ASSERT(wip->i_d.di_nlink == 0);
3097 error = xfs_bumplink(tp, wip);
3098 if (error)
3099 goto out_trans_abort;
3100 error = xfs_iunlink_remove(tp, wip);
3101 if (error)
3102 goto out_trans_abort;
3103 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3104
7dcf5c3e
DC
3105 /*
3106 * Now we have a real link, clear the "I'm a tmpfile" state
3107 * flag from the inode so it doesn't accidentally get misused in
3108 * future.
3109 */
3110 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3111 }
3112
f6bba201
DC
3113 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3114 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3115 if (new_parent)
3116 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3117
7dcf5c3e
DC
3118 error = xfs_finish_rename(tp, &free_list);
3119 if (wip)
3120 IRELE(wip);
3121 return error;
f6bba201 3122
445883e8 3123out_trans_abort:
f6bba201 3124 cancel_flags |= XFS_TRANS_ABORT;
445883e8 3125out_bmap_cancel:
f6bba201 3126 xfs_bmap_cancel(&free_list);
445883e8 3127out_trans_cancel:
f6bba201 3128 xfs_trans_cancel(tp, cancel_flags);
7dcf5c3e
DC
3129 if (wip)
3130 IRELE(wip);
f6bba201
DC
3131 return error;
3132}
3133
5c4d97d0
DC
3134STATIC int
3135xfs_iflush_cluster(
3136 xfs_inode_t *ip,
3137 xfs_buf_t *bp)
1da177e4 3138{
5c4d97d0
DC
3139 xfs_mount_t *mp = ip->i_mount;
3140 struct xfs_perag *pag;
3141 unsigned long first_index, mask;
3142 unsigned long inodes_per_cluster;
3143 int ilist_size;
3144 xfs_inode_t **ilist;
3145 xfs_inode_t *iq;
3146 int nr_found;
3147 int clcount = 0;
3148 int bufwasdelwri;
1da177e4 3149 int i;
1da177e4 3150
5c4d97d0 3151 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3152
0f49efd8 3153 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
5c4d97d0
DC
3154 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3155 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3156 if (!ilist)
3157 goto out_put;
1da177e4 3158
0f49efd8 3159 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3160 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3161 rcu_read_lock();
3162 /* really need a gang lookup range call here */
3163 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3164 first_index, inodes_per_cluster);
3165 if (nr_found == 0)
3166 goto out_free;
3167
3168 for (i = 0; i < nr_found; i++) {
3169 iq = ilist[i];
3170 if (iq == ip)
bad55843 3171 continue;
1a3e8f3d
DC
3172
3173 /*
3174 * because this is an RCU protected lookup, we could find a
3175 * recently freed or even reallocated inode during the lookup.
3176 * We need to check under the i_flags_lock for a valid inode
3177 * here. Skip it if it is not valid or the wrong inode.
3178 */
3179 spin_lock(&ip->i_flags_lock);
3180 if (!ip->i_ino ||
3181 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3182 spin_unlock(&ip->i_flags_lock);
3183 continue;
3184 }
3185 spin_unlock(&ip->i_flags_lock);
3186
bad55843
DC
3187 /*
3188 * Do an un-protected check to see if the inode is dirty and
3189 * is a candidate for flushing. These checks will be repeated
3190 * later after the appropriate locks are acquired.
3191 */
33540408 3192 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3193 continue;
bad55843
DC
3194
3195 /*
3196 * Try to get locks. If any are unavailable or it is pinned,
3197 * then this inode cannot be flushed and is skipped.
3198 */
3199
3200 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3201 continue;
3202 if (!xfs_iflock_nowait(iq)) {
3203 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3204 continue;
3205 }
3206 if (xfs_ipincount(iq)) {
3207 xfs_ifunlock(iq);
3208 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3209 continue;
3210 }
3211
3212 /*
3213 * arriving here means that this inode can be flushed. First
3214 * re-check that it's dirty before flushing.
3215 */
33540408
DC
3216 if (!xfs_inode_clean(iq)) {
3217 int error;
bad55843
DC
3218 error = xfs_iflush_int(iq, bp);
3219 if (error) {
3220 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3221 goto cluster_corrupt_out;
3222 }
3223 clcount++;
3224 } else {
3225 xfs_ifunlock(iq);
3226 }
3227 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3228 }
3229
3230 if (clcount) {
3231 XFS_STATS_INC(xs_icluster_flushcnt);
3232 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3233 }
3234
3235out_free:
1a3e8f3d 3236 rcu_read_unlock();
f0e2d93c 3237 kmem_free(ilist);
44b56e0a
DC
3238out_put:
3239 xfs_perag_put(pag);
bad55843
DC
3240 return 0;
3241
3242
3243cluster_corrupt_out:
3244 /*
3245 * Corruption detected in the clustering loop. Invalidate the
3246 * inode buffer and shut down the filesystem.
3247 */
1a3e8f3d 3248 rcu_read_unlock();
bad55843 3249 /*
43ff2122 3250 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3251 * brelse can handle it with no problems. If not, shut down the
3252 * filesystem before releasing the buffer.
3253 */
43ff2122 3254 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3255 if (bufwasdelwri)
3256 xfs_buf_relse(bp);
3257
3258 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3259
3260 if (!bufwasdelwri) {
3261 /*
3262 * Just like incore_relse: if we have b_iodone functions,
3263 * mark the buffer as an error and call them. Otherwise
3264 * mark it as stale and brelse.
3265 */
cb669ca5 3266 if (bp->b_iodone) {
bad55843 3267 XFS_BUF_UNDONE(bp);
c867cb61 3268 xfs_buf_stale(bp);
2451337d 3269 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3270 xfs_buf_ioend(bp);
bad55843 3271 } else {
c867cb61 3272 xfs_buf_stale(bp);
bad55843
DC
3273 xfs_buf_relse(bp);
3274 }
3275 }
3276
3277 /*
3278 * Unlocks the flush lock
3279 */
04913fdd 3280 xfs_iflush_abort(iq, false);
f0e2d93c 3281 kmem_free(ilist);
44b56e0a 3282 xfs_perag_put(pag);
2451337d 3283 return -EFSCORRUPTED;
bad55843
DC
3284}
3285
1da177e4 3286/*
4c46819a
CH
3287 * Flush dirty inode metadata into the backing buffer.
3288 *
3289 * The caller must have the inode lock and the inode flush lock held. The
3290 * inode lock will still be held upon return to the caller, and the inode
3291 * flush lock will be released after the inode has reached the disk.
3292 *
3293 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3294 */
3295int
3296xfs_iflush(
4c46819a
CH
3297 struct xfs_inode *ip,
3298 struct xfs_buf **bpp)
1da177e4 3299{
4c46819a
CH
3300 struct xfs_mount *mp = ip->i_mount;
3301 struct xfs_buf *bp;
3302 struct xfs_dinode *dip;
1da177e4 3303 int error;
1da177e4
LT
3304
3305 XFS_STATS_INC(xs_iflush_count);
3306
579aa9ca 3307 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3308 ASSERT(xfs_isiflocked(ip));
1da177e4 3309 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3310 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3311
4c46819a 3312 *bpp = NULL;
1da177e4 3313
1da177e4
LT
3314 xfs_iunpin_wait(ip);
3315
4b6a4688
DC
3316 /*
3317 * For stale inodes we cannot rely on the backing buffer remaining
3318 * stale in cache for the remaining life of the stale inode and so
475ee413 3319 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3320 * inodes below. We have to check this after ensuring the inode is
3321 * unpinned so that it is safe to reclaim the stale inode after the
3322 * flush call.
3323 */
3324 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3325 xfs_ifunlock(ip);
3326 return 0;
3327 }
3328
1da177e4
LT
3329 /*
3330 * This may have been unpinned because the filesystem is shutting
3331 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3332 * to disk, because the log record didn't make it to disk.
3333 *
3334 * We also have to remove the log item from the AIL in this case,
3335 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3336 */
3337 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3338 error = -EIO;
32ce90a4 3339 goto abort_out;
1da177e4
LT
3340 }
3341
a3f74ffb
DC
3342 /*
3343 * Get the buffer containing the on-disk inode.
3344 */
475ee413
CH
3345 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3346 0);
a3f74ffb
DC
3347 if (error || !bp) {
3348 xfs_ifunlock(ip);
3349 return error;
3350 }
3351
1da177e4
LT
3352 /*
3353 * First flush out the inode that xfs_iflush was called with.
3354 */
3355 error = xfs_iflush_int(ip, bp);
bad55843 3356 if (error)
1da177e4 3357 goto corrupt_out;
1da177e4 3358
a3f74ffb
DC
3359 /*
3360 * If the buffer is pinned then push on the log now so we won't
3361 * get stuck waiting in the write for too long.
3362 */
811e64c7 3363 if (xfs_buf_ispinned(bp))
a14a348b 3364 xfs_log_force(mp, 0);
a3f74ffb 3365
1da177e4
LT
3366 /*
3367 * inode clustering:
3368 * see if other inodes can be gathered into this write
3369 */
bad55843
DC
3370 error = xfs_iflush_cluster(ip, bp);
3371 if (error)
3372 goto cluster_corrupt_out;
1da177e4 3373
4c46819a
CH
3374 *bpp = bp;
3375 return 0;
1da177e4
LT
3376
3377corrupt_out:
3378 xfs_buf_relse(bp);
7d04a335 3379 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3380cluster_corrupt_out:
2451337d 3381 error = -EFSCORRUPTED;
32ce90a4 3382abort_out:
1da177e4
LT
3383 /*
3384 * Unlocks the flush lock
3385 */
04913fdd 3386 xfs_iflush_abort(ip, false);
32ce90a4 3387 return error;
1da177e4
LT
3388}
3389
1da177e4
LT
3390STATIC int
3391xfs_iflush_int(
93848a99
CH
3392 struct xfs_inode *ip,
3393 struct xfs_buf *bp)
1da177e4 3394{
93848a99
CH
3395 struct xfs_inode_log_item *iip = ip->i_itemp;
3396 struct xfs_dinode *dip;
3397 struct xfs_mount *mp = ip->i_mount;
1da177e4 3398
579aa9ca 3399 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3400 ASSERT(xfs_isiflocked(ip));
1da177e4 3401 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3402 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3403 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3404 ASSERT(ip->i_d.di_version > 1);
1da177e4 3405
1da177e4 3406 /* set *dip = inode's place in the buffer */
92bfc6e7 3407 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3408
69ef921b 3409 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3410 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3411 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3412 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3413 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3414 goto corrupt_out;
3415 }
3416 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3417 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3418 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3419 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3420 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3421 goto corrupt_out;
3422 }
abbede1b 3423 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3424 if (XFS_TEST_ERROR(
3425 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3426 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3427 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3428 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3429 "%s: Bad regular inode %Lu, ptr 0x%p",
3430 __func__, ip->i_ino, ip);
1da177e4
LT
3431 goto corrupt_out;
3432 }
abbede1b 3433 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3434 if (XFS_TEST_ERROR(
3435 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3436 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3437 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3438 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3439 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3440 "%s: Bad directory inode %Lu, ptr 0x%p",
3441 __func__, ip->i_ino, ip);
1da177e4
LT
3442 goto corrupt_out;
3443 }
3444 }
3445 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3446 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3447 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3448 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3449 "%s: detected corrupt incore inode %Lu, "
3450 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3451 __func__, ip->i_ino,
1da177e4 3452 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3453 ip->i_d.di_nblocks, ip);
1da177e4
LT
3454 goto corrupt_out;
3455 }
3456 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3457 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3458 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3459 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3460 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3461 goto corrupt_out;
3462 }
e60896d8 3463
1da177e4 3464 /*
263997a6 3465 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3466 * di_flushiter count for correct sequencing. We bump the flush
3467 * iteration count so we can detect flushes which postdate a log record
3468 * during recovery. This is redundant as we now log every change and
3469 * hence this can't happen but we need to still do it to ensure
3470 * backwards compatibility with old kernels that predate logging all
3471 * inode changes.
1da177e4 3472 */
e60896d8
DC
3473 if (ip->i_d.di_version < 3)
3474 ip->i_d.di_flushiter++;
1da177e4
LT
3475
3476 /*
3477 * Copy the dirty parts of the inode into the on-disk
3478 * inode. We always copy out the core of the inode,
3479 * because if the inode is dirty at all the core must
3480 * be.
3481 */
81591fe2 3482 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3483
3484 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3485 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3486 ip->i_d.di_flushiter = 0;
3487
fd9fdba6 3488 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
e4ac967b 3489 if (XFS_IFORK_Q(ip))
fd9fdba6 3490 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3491 xfs_inobp_check(mp, bp);
3492
3493 /*
f5d8d5c4
CH
3494 * We've recorded everything logged in the inode, so we'd like to clear
3495 * the ili_fields bits so we don't log and flush things unnecessarily.
3496 * However, we can't stop logging all this information until the data
3497 * we've copied into the disk buffer is written to disk. If we did we
3498 * might overwrite the copy of the inode in the log with all the data
3499 * after re-logging only part of it, and in the face of a crash we
3500 * wouldn't have all the data we need to recover.
1da177e4 3501 *
f5d8d5c4
CH
3502 * What we do is move the bits to the ili_last_fields field. When
3503 * logging the inode, these bits are moved back to the ili_fields field.
3504 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3505 * know that the information those bits represent is permanently on
3506 * disk. As long as the flush completes before the inode is logged
3507 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3508 *
f5d8d5c4
CH
3509 * We can play with the ili_fields bits here, because the inode lock
3510 * must be held exclusively in order to set bits there and the flush
3511 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3512 * done routine can tell whether or not to look in the AIL. Also, store
3513 * the current LSN of the inode so that we can tell whether the item has
3514 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3515 * need the AIL lock, because it is a 64 bit value that cannot be read
3516 * atomically.
1da177e4 3517 */
93848a99
CH
3518 iip->ili_last_fields = iip->ili_fields;
3519 iip->ili_fields = 0;
3520 iip->ili_logged = 1;
1da177e4 3521
93848a99
CH
3522 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3523 &iip->ili_item.li_lsn);
1da177e4 3524
93848a99
CH
3525 /*
3526 * Attach the function xfs_iflush_done to the inode's
3527 * buffer. This will remove the inode from the AIL
3528 * and unlock the inode's flush lock when the inode is
3529 * completely written to disk.
3530 */
3531 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3532
93848a99
CH
3533 /* update the lsn in the on disk inode if required */
3534 if (ip->i_d.di_version == 3)
3535 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3536
3537 /* generate the checksum. */
3538 xfs_dinode_calc_crc(mp, dip);
1da177e4 3539
93848a99
CH
3540 ASSERT(bp->b_fspriv != NULL);
3541 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3542 return 0;
3543
3544corrupt_out:
2451337d 3545 return -EFSCORRUPTED;
1da177e4 3546}
This page took 0.884408 seconds and 5 git commands to generate.