xfs: introduce xlog_copy_iovec
[deliverable/linux.git] / fs / xfs / xfs_inode_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
a4fbe6ab 20#include "xfs_format.h"
239880ef
DC
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_sb.h"
a844f451 24#include "xfs_ag.h"
1da177e4 25#include "xfs_mount.h"
1da177e4 26#include "xfs_inode.h"
239880ef 27#include "xfs_trans.h"
a844f451 28#include "xfs_inode_item.h"
db7a19f2 29#include "xfs_error.h"
0b1b213f 30#include "xfs_trace.h"
239880ef 31#include "xfs_trans_priv.h"
a4fbe6ab 32#include "xfs_dinode.h"
1234351c 33#include "xfs_log.h"
1da177e4
LT
34
35
36kmem_zone_t *xfs_ili_zone; /* inode log item zone */
37
7bfa31d8
CH
38static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
39{
40 return container_of(lip, struct xfs_inode_log_item, ili_item);
41}
42
166d1368 43STATIC void
ce9641d6
CH
44xfs_inode_item_data_fork_size(
45 struct xfs_inode_log_item *iip,
166d1368
DC
46 int *nvecs,
47 int *nbytes)
1da177e4 48{
7bfa31d8 49 struct xfs_inode *ip = iip->ili_inode;
166d1368 50
1da177e4
LT
51 switch (ip->i_d.di_format) {
52 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 53 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
339a5f5d 54 ip->i_d.di_nextents > 0 &&
166d1368
DC
55 ip->i_df.if_bytes > 0) {
56 /* worst case, doesn't subtract delalloc extents */
57 *nbytes += XFS_IFORK_DSIZE(ip);
58 *nvecs += 1;
59 }
1da177e4 60 break;
1da177e4 61 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 62 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
166d1368
DC
63 ip->i_df.if_broot_bytes > 0) {
64 *nbytes += ip->i_df.if_broot_bytes;
65 *nvecs += 1;
66 }
1da177e4 67 break;
1da177e4 68 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 69 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
166d1368
DC
70 ip->i_df.if_bytes > 0) {
71 *nbytes += roundup(ip->i_df.if_bytes, 4);
72 *nvecs += 1;
73 }
1da177e4
LT
74 break;
75
76 case XFS_DINODE_FMT_DEV:
1da177e4 77 case XFS_DINODE_FMT_UUID:
1da177e4 78 break;
1da177e4
LT
79 default:
80 ASSERT(0);
81 break;
82 }
ce9641d6 83}
1da177e4 84
ce9641d6
CH
85STATIC void
86xfs_inode_item_attr_fork_size(
87 struct xfs_inode_log_item *iip,
88 int *nvecs,
89 int *nbytes)
90{
91 struct xfs_inode *ip = iip->ili_inode;
1da177e4 92
1da177e4
LT
93 switch (ip->i_d.di_aformat) {
94 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 95 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
339a5f5d 96 ip->i_d.di_anextents > 0 &&
166d1368
DC
97 ip->i_afp->if_bytes > 0) {
98 /* worst case, doesn't subtract unused space */
99 *nbytes += XFS_IFORK_ASIZE(ip);
100 *nvecs += 1;
101 }
1da177e4 102 break;
1da177e4 103 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 104 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
166d1368
DC
105 ip->i_afp->if_broot_bytes > 0) {
106 *nbytes += ip->i_afp->if_broot_bytes;
107 *nvecs += 1;
108 }
1da177e4 109 break;
1da177e4 110 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 111 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
166d1368
DC
112 ip->i_afp->if_bytes > 0) {
113 *nbytes += roundup(ip->i_afp->if_bytes, 4);
114 *nvecs += 1;
115 }
1da177e4 116 break;
1da177e4
LT
117 default:
118 ASSERT(0);
119 break;
120 }
1da177e4
LT
121}
122
ce9641d6
CH
123/*
124 * This returns the number of iovecs needed to log the given inode item.
125 *
126 * We need one iovec for the inode log format structure, one for the
127 * inode core, and possibly one for the inode data/extents/b-tree root
128 * and one for the inode attribute data/extents/b-tree root.
129 */
130STATIC void
131xfs_inode_item_size(
132 struct xfs_log_item *lip,
133 int *nvecs,
134 int *nbytes)
135{
136 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
137 struct xfs_inode *ip = iip->ili_inode;
138
139 *nvecs += 2;
140 *nbytes += sizeof(struct xfs_inode_log_format) +
141 xfs_icdinode_size(ip->i_d.di_version);
142
143 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
144 if (XFS_IFORK_Q(ip))
145 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
146}
147
e828776a
DC
148/*
149 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
150 *
151 * For either the data or attr fork in extent format, we need to endian convert
152 * the in-core extent as we place them into the on-disk inode. In this case, we
153 * need to do this conversion before we write the extents into the log. Because
154 * we don't have the disk inode to write into here, we allocate a buffer and
155 * format the extents into it via xfs_iextents_copy(). We free the buffer in
156 * the unlock routine after the copy for the log has been made.
157 *
158 * In the case of the data fork, the in-core and on-disk fork sizes can be
159 * different due to delayed allocation extents. We only log on-disk extents
160 * here, so always use the physical fork size to determine the size of the
161 * buffer we need to allocate.
162 */
1234351c 163STATIC int
e828776a
DC
164xfs_inode_item_format_extents(
165 struct xfs_inode *ip,
1234351c 166 struct xfs_log_iovec **vecp,
e828776a
DC
167 int whichfork,
168 int type)
169{
170 xfs_bmbt_rec_t *ext_buffer;
1234351c 171 int len;
e828776a
DC
172
173 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
174 if (whichfork == XFS_DATA_FORK)
175 ip->i_itemp->ili_extents_buf = ext_buffer;
176 else
177 ip->i_itemp->ili_aextents_buf = ext_buffer;
178
1234351c
CH
179 len = xfs_iextents_copy(ip, ext_buffer, whichfork);
180 xlog_copy_iovec(vecp, type, ext_buffer, len);
181 return len;
e828776a
DC
182}
183
1da177e4 184/*
3de559fb
CH
185 * If this is a v1 format inode, then we need to log it as such. This means
186 * that we have to copy the link count from the new field to the old. We
187 * don't have to worry about the new fields, because nothing trusts them as
188 * long as the old inode version number is there.
1da177e4
LT
189 */
190STATIC void
3de559fb
CH
191xfs_inode_item_format_v1_inode(
192 struct xfs_inode *ip)
193{
194 if (!xfs_sb_version_hasnlink(&ip->i_mount->m_sb)) {
195 /*
196 * Convert it back.
197 */
198 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
199 ip->i_d.di_onlink = ip->i_d.di_nlink;
200 } else {
201 /*
202 * The superblock version has already been bumped,
203 * so just make the conversion to the new inode
204 * format permanent.
205 */
206 ip->i_d.di_version = 2;
207 ip->i_d.di_onlink = 0;
208 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
209 }
210}
211
1234351c 212STATIC void
3de559fb
CH
213xfs_inode_item_format_data_fork(
214 struct xfs_inode_log_item *iip,
1234351c 215 struct xfs_log_iovec **vecp,
3de559fb 216 int *nvecs)
1da177e4 217{
7bfa31d8 218 struct xfs_inode *ip = iip->ili_inode;
1da177e4 219 size_t data_bytes;
1da177e4
LT
220
221 switch (ip->i_d.di_format) {
222 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 223 iip->ili_fields &=
339a5f5d
CH
224 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
225 XFS_ILOG_DEV | XFS_ILOG_UUID);
226
f5d8d5c4 227 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
339a5f5d
CH
228 ip->i_d.di_nextents > 0 &&
229 ip->i_df.if_bytes > 0) {
1da177e4 230 ASSERT(ip->i_df.if_u1.if_extents != NULL);
339a5f5d 231 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
1da177e4 232 ASSERT(iip->ili_extents_buf == NULL);
339a5f5d 233
f016bad6 234#ifdef XFS_NATIVE_HOST
696123fc
DC
235 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
236 (uint)sizeof(xfs_bmbt_rec_t)) {
1da177e4
LT
237 /*
238 * There are no delayed allocation
239 * extents, so just point to the
240 * real extents array.
241 */
1234351c
CH
242 xlog_copy_iovec(vecp, XLOG_REG_TYPE_IEXT,
243 ip->i_df.if_u1.if_extents,
244 ip->i_df.if_bytes);
245 iip->ili_format.ilf_dsize = ip->i_df.if_bytes;
1da177e4
LT
246 } else
247#endif
248 {
1234351c
CH
249 iip->ili_format.ilf_dsize =
250 xfs_inode_item_format_extents(ip, vecp,
251 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
252 ASSERT(iip->ili_format.ilf_dsize <= ip->i_df.if_bytes);
1da177e4 253 }
3de559fb 254 (*nvecs)++;
339a5f5d 255 } else {
f5d8d5c4 256 iip->ili_fields &= ~XFS_ILOG_DEXT;
1da177e4
LT
257 }
258 break;
1da177e4 259 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 260 iip->ili_fields &=
339a5f5d
CH
261 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
262 XFS_ILOG_DEV | XFS_ILOG_UUID);
263
f5d8d5c4 264 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
339a5f5d 265 ip->i_df.if_broot_bytes > 0) {
1da177e4 266 ASSERT(ip->i_df.if_broot != NULL);
1234351c
CH
267 xlog_copy_iovec(vecp, XLOG_REG_TYPE_IBROOT,
268 ip->i_df.if_broot,
269 ip->i_df.if_broot_bytes);
3de559fb 270 (*nvecs)++;
1da177e4 271 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
339a5f5d 272 } else {
f5d8d5c4 273 ASSERT(!(iip->ili_fields &
339a5f5d 274 XFS_ILOG_DBROOT));
f5d8d5c4 275 iip->ili_fields &= ~XFS_ILOG_DBROOT;
1da177e4
LT
276 }
277 break;
1da177e4 278 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 279 iip->ili_fields &=
339a5f5d
CH
280 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
281 XFS_ILOG_DEV | XFS_ILOG_UUID);
f5d8d5c4 282 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
339a5f5d 283 ip->i_df.if_bytes > 0) {
1da177e4
LT
284 /*
285 * Round i_bytes up to a word boundary.
286 * The underlying memory is guaranteed to
287 * to be there by xfs_idata_realloc().
288 */
289 data_bytes = roundup(ip->i_df.if_bytes, 4);
1234351c
CH
290 ASSERT(ip->i_df.if_real_bytes == 0 ||
291 ip->i_df.if_real_bytes == data_bytes);
292 ASSERT(ip->i_df.if_u1.if_data != NULL);
293 ASSERT(ip->i_d.di_size > 0);
294 xlog_copy_iovec(vecp, XLOG_REG_TYPE_ILOCAL,
295 ip->i_df.if_u1.if_data, data_bytes);
3de559fb 296 (*nvecs)++;
1da177e4 297 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
339a5f5d 298 } else {
f5d8d5c4 299 iip->ili_fields &= ~XFS_ILOG_DDATA;
1da177e4
LT
300 }
301 break;
1da177e4 302 case XFS_DINODE_FMT_DEV:
f5d8d5c4 303 iip->ili_fields &=
339a5f5d
CH
304 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
305 XFS_ILOG_DEXT | XFS_ILOG_UUID);
f5d8d5c4 306 if (iip->ili_fields & XFS_ILOG_DEV) {
1da177e4
LT
307 iip->ili_format.ilf_u.ilfu_rdev =
308 ip->i_df.if_u2.if_rdev;
309 }
310 break;
1da177e4 311 case XFS_DINODE_FMT_UUID:
f5d8d5c4 312 iip->ili_fields &=
339a5f5d
CH
313 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
314 XFS_ILOG_DEXT | XFS_ILOG_DEV);
f5d8d5c4 315 if (iip->ili_fields & XFS_ILOG_UUID) {
1da177e4
LT
316 iip->ili_format.ilf_u.ilfu_uuid =
317 ip->i_df.if_u2.if_uuid;
318 }
319 break;
1da177e4
LT
320 default:
321 ASSERT(0);
322 break;
323 }
3de559fb
CH
324}
325
1234351c 326STATIC void
3de559fb
CH
327xfs_inode_item_format_attr_fork(
328 struct xfs_inode_log_item *iip,
1234351c 329 struct xfs_log_iovec **vecp,
3de559fb
CH
330 int *nvecs)
331{
332 struct xfs_inode *ip = iip->ili_inode;
333 size_t data_bytes;
1da177e4
LT
334
335 switch (ip->i_d.di_aformat) {
336 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 337 iip->ili_fields &=
339a5f5d
CH
338 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
339
f5d8d5c4 340 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
339a5f5d
CH
341 ip->i_d.di_anextents > 0 &&
342 ip->i_afp->if_bytes > 0) {
343 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
344 ip->i_d.di_anextents);
73523a2e 345 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
f016bad6 346#ifdef XFS_NATIVE_HOST
1da177e4
LT
347 /*
348 * There are not delayed allocation extents
349 * for attributes, so just point at the array.
350 */
1234351c
CH
351 xlog_copy_iovec(vecp, XLOG_REG_TYPE_IATTR_EXT,
352 ip->i_afp->if_u1.if_extents,
353 ip->i_afp->if_bytes);
354 iip->ili_format.ilf_asize = ip->i_afp->if_bytes;
1da177e4
LT
355#else
356 ASSERT(iip->ili_aextents_buf == NULL);
1234351c
CH
357 iip->ili_format.ilf_asize =
358 xfs_inode_item_format_extents(ip, vecp,
e828776a 359 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
1da177e4 360#endif
3de559fb 361 (*nvecs)++;
339a5f5d 362 } else {
f5d8d5c4 363 iip->ili_fields &= ~XFS_ILOG_AEXT;
1da177e4
LT
364 }
365 break;
1da177e4 366 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 367 iip->ili_fields &=
339a5f5d
CH
368 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
369
f5d8d5c4 370 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
339a5f5d 371 ip->i_afp->if_broot_bytes > 0) {
1da177e4 372 ASSERT(ip->i_afp->if_broot != NULL);
339a5f5d 373
1234351c
CH
374 xlog_copy_iovec(vecp, XLOG_REG_TYPE_IATTR_BROOT,
375 ip->i_afp->if_broot,
376 ip->i_afp->if_broot_bytes);
3de559fb 377 (*nvecs)++;
1da177e4 378 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
339a5f5d 379 } else {
f5d8d5c4 380 iip->ili_fields &= ~XFS_ILOG_ABROOT;
1da177e4
LT
381 }
382 break;
1da177e4 383 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 384 iip->ili_fields &=
339a5f5d
CH
385 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
386
f5d8d5c4 387 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
339a5f5d 388 ip->i_afp->if_bytes > 0) {
1da177e4
LT
389 /*
390 * Round i_bytes up to a word boundary.
391 * The underlying memory is guaranteed to
392 * to be there by xfs_idata_realloc().
393 */
394 data_bytes = roundup(ip->i_afp->if_bytes, 4);
1234351c
CH
395 ASSERT(ip->i_afp->if_real_bytes == 0 ||
396 ip->i_afp->if_real_bytes == data_bytes);
397 ASSERT(ip->i_afp->if_u1.if_data != NULL);
398 xlog_copy_iovec(vecp, XLOG_REG_TYPE_IATTR_LOCAL,
399 ip->i_afp->if_u1.if_data,
400 data_bytes);
3de559fb 401 (*nvecs)++;
1da177e4 402 iip->ili_format.ilf_asize = (unsigned)data_bytes;
339a5f5d 403 } else {
f5d8d5c4 404 iip->ili_fields &= ~XFS_ILOG_ADATA;
1da177e4
LT
405 }
406 break;
1da177e4
LT
407 default:
408 ASSERT(0);
409 break;
410 }
3de559fb
CH
411}
412
413/*
414 * This is called to fill in the vector of log iovecs for the given inode
415 * log item. It fills the first item with an inode log format structure,
416 * the second with the on-disk inode structure, and a possible third and/or
417 * fourth with the inode data/extents/b-tree root and inode attributes
418 * data/extents/b-tree root.
419 */
420STATIC void
421xfs_inode_item_format(
422 struct xfs_log_item *lip,
423 struct xfs_log_iovec *vecp)
424{
425 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
426 struct xfs_inode *ip = iip->ili_inode;
427 uint nvecs;
428
1234351c
CH
429 xlog_copy_iovec(&vecp, XLOG_REG_TYPE_IFORMAT,
430 &iip->ili_format,
431 sizeof(struct xfs_inode_log_format));
432 nvecs = 1;
3de559fb 433
1234351c
CH
434 xlog_copy_iovec(&vecp, XLOG_REG_TYPE_ICORE,
435 &ip->i_d,
436 xfs_icdinode_size(ip->i_d.di_version));
3de559fb
CH
437 nvecs++;
438
439 if (ip->i_d.di_version == 1)
440 xfs_inode_item_format_v1_inode(ip);
441
1234351c 442 xfs_inode_item_format_data_fork(iip, &vecp, &nvecs);
3de559fb 443 if (XFS_IFORK_Q(ip)) {
1234351c 444 xfs_inode_item_format_attr_fork(iip, &vecp, &nvecs);
3de559fb
CH
445 } else {
446 iip->ili_fields &=
447 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
448 }
449
f5d8d5c4
CH
450 /*
451 * Now update the log format that goes out to disk from the in-core
452 * values. We always write the inode core to make the arithmetic
453 * games in recovery easier, which isn't a big deal as just about any
454 * transaction would dirty it anyway.
455 */
8f639dde
CH
456 iip->ili_format.ilf_fields = XFS_ILOG_CORE |
457 (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
1da177e4
LT
458 iip->ili_format.ilf_size = nvecs;
459}
460
1da177e4
LT
461/*
462 * This is called to pin the inode associated with the inode log
a14a5ab5 463 * item in memory so it cannot be written out.
1da177e4
LT
464 */
465STATIC void
466xfs_inode_item_pin(
7bfa31d8 467 struct xfs_log_item *lip)
1da177e4 468{
7bfa31d8 469 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
a14a5ab5 470
7bfa31d8
CH
471 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
472
473 trace_xfs_inode_pin(ip, _RET_IP_);
474 atomic_inc(&ip->i_pincount);
1da177e4
LT
475}
476
477
478/*
479 * This is called to unpin the inode associated with the inode log
480 * item which was previously pinned with a call to xfs_inode_item_pin().
a14a5ab5
CH
481 *
482 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
1da177e4 483 */
1da177e4
LT
484STATIC void
485xfs_inode_item_unpin(
7bfa31d8 486 struct xfs_log_item *lip,
9412e318 487 int remove)
1da177e4 488{
7bfa31d8 489 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
a14a5ab5 490
4aaf15d1 491 trace_xfs_inode_unpin(ip, _RET_IP_);
a14a5ab5
CH
492 ASSERT(atomic_read(&ip->i_pincount) > 0);
493 if (atomic_dec_and_test(&ip->i_pincount))
f392e631 494 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
1da177e4
LT
495}
496
1da177e4 497STATIC uint
43ff2122
CH
498xfs_inode_item_push(
499 struct xfs_log_item *lip,
500 struct list_head *buffer_list)
1da177e4 501{
7bfa31d8
CH
502 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
503 struct xfs_inode *ip = iip->ili_inode;
43ff2122
CH
504 struct xfs_buf *bp = NULL;
505 uint rval = XFS_ITEM_SUCCESS;
506 int error;
1da177e4 507
7bfa31d8 508 if (xfs_ipincount(ip) > 0)
1da177e4 509 return XFS_ITEM_PINNED;
1da177e4 510
7bfa31d8 511 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
1da177e4 512 return XFS_ITEM_LOCKED;
1da177e4 513
4c46819a
CH
514 /*
515 * Re-check the pincount now that we stabilized the value by
516 * taking the ilock.
517 */
518 if (xfs_ipincount(ip) > 0) {
43ff2122
CH
519 rval = XFS_ITEM_PINNED;
520 goto out_unlock;
4c46819a
CH
521 }
522
9a3a5dab
BF
523 /*
524 * Stale inode items should force out the iclog.
525 */
526 if (ip->i_flags & XFS_ISTALE) {
527 rval = XFS_ITEM_PINNED;
528 goto out_unlock;
529 }
530
43ff2122
CH
531 /*
532 * Someone else is already flushing the inode. Nothing we can do
533 * here but wait for the flush to finish and remove the item from
534 * the AIL.
535 */
1da177e4 536 if (!xfs_iflock_nowait(ip)) {
43ff2122
CH
537 rval = XFS_ITEM_FLUSHING;
538 goto out_unlock;
1da177e4
LT
539 }
540
43ff2122
CH
541 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
542 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
543
544 spin_unlock(&lip->li_ailp->xa_lock);
545
546 error = xfs_iflush(ip, &bp);
547 if (!error) {
548 if (!xfs_buf_delwri_queue(bp, buffer_list))
549 rval = XFS_ITEM_FLUSHING;
550 xfs_buf_relse(bp);
1da177e4 551 }
43ff2122
CH
552
553 spin_lock(&lip->li_ailp->xa_lock);
554out_unlock:
555 xfs_iunlock(ip, XFS_ILOCK_SHARED);
556 return rval;
1da177e4
LT
557}
558
559/*
560 * Unlock the inode associated with the inode log item.
561 * Clear the fields of the inode and inode log item that
562 * are specific to the current transaction. If the
563 * hold flags is set, do not unlock the inode.
564 */
565STATIC void
566xfs_inode_item_unlock(
7bfa31d8 567 struct xfs_log_item *lip)
1da177e4 568{
7bfa31d8
CH
569 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
570 struct xfs_inode *ip = iip->ili_inode;
898621d5 571 unsigned short lock_flags;
1da177e4 572
f3ca8738
CH
573 ASSERT(ip->i_itemp != NULL);
574 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
575
576 /*
577 * If the inode needed a separate buffer with which to log
578 * its extents, then free it now.
579 */
580 if (iip->ili_extents_buf != NULL) {
581 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
582 ASSERT(ip->i_d.di_nextents > 0);
f5d8d5c4 583 ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
1da177e4 584 ASSERT(ip->i_df.if_bytes > 0);
f0e2d93c 585 kmem_free(iip->ili_extents_buf);
1da177e4
LT
586 iip->ili_extents_buf = NULL;
587 }
588 if (iip->ili_aextents_buf != NULL) {
589 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
590 ASSERT(ip->i_d.di_anextents > 0);
f5d8d5c4 591 ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
1da177e4 592 ASSERT(ip->i_afp->if_bytes > 0);
f0e2d93c 593 kmem_free(iip->ili_aextents_buf);
1da177e4
LT
594 iip->ili_aextents_buf = NULL;
595 }
596
898621d5
CH
597 lock_flags = iip->ili_lock_flags;
598 iip->ili_lock_flags = 0;
ddc3415a 599 if (lock_flags)
f3ca8738 600 xfs_iunlock(ip, lock_flags);
1da177e4
LT
601}
602
603/*
de25c181
DC
604 * This is called to find out where the oldest active copy of the inode log
605 * item in the on disk log resides now that the last log write of it completed
606 * at the given lsn. Since we always re-log all dirty data in an inode, the
607 * latest copy in the on disk log is the only one that matters. Therefore,
608 * simply return the given lsn.
609 *
610 * If the inode has been marked stale because the cluster is being freed, we
611 * don't want to (re-)insert this inode into the AIL. There is a race condition
612 * where the cluster buffer may be unpinned before the inode is inserted into
613 * the AIL during transaction committed processing. If the buffer is unpinned
614 * before the inode item has been committed and inserted, then it is possible
1316d4da 615 * for the buffer to be written and IO completes before the inode is inserted
de25c181
DC
616 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
617 * AIL which will never get removed. It will, however, get reclaimed which
618 * triggers an assert in xfs_inode_free() complaining about freein an inode
619 * still in the AIL.
620 *
1316d4da
DC
621 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
622 * transaction committed code knows that it does not need to do any further
623 * processing on the item.
1da177e4 624 */
1da177e4
LT
625STATIC xfs_lsn_t
626xfs_inode_item_committed(
7bfa31d8 627 struct xfs_log_item *lip,
1da177e4
LT
628 xfs_lsn_t lsn)
629{
de25c181
DC
630 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
631 struct xfs_inode *ip = iip->ili_inode;
632
1316d4da
DC
633 if (xfs_iflags_test(ip, XFS_ISTALE)) {
634 xfs_inode_item_unpin(lip, 0);
635 return -1;
636 }
7bfa31d8 637 return lsn;
1da177e4
LT
638}
639
1da177e4
LT
640/*
641 * XXX rcc - this one really has to do something. Probably needs
642 * to stamp in a new field in the incore inode.
643 */
1da177e4
LT
644STATIC void
645xfs_inode_item_committing(
7bfa31d8 646 struct xfs_log_item *lip,
1da177e4
LT
647 xfs_lsn_t lsn)
648{
7bfa31d8 649 INODE_ITEM(lip)->ili_last_lsn = lsn;
1da177e4
LT
650}
651
652/*
653 * This is the ops vector shared by all buf log items.
654 */
272e42b2 655static const struct xfs_item_ops xfs_inode_item_ops = {
7bfa31d8
CH
656 .iop_size = xfs_inode_item_size,
657 .iop_format = xfs_inode_item_format,
658 .iop_pin = xfs_inode_item_pin,
659 .iop_unpin = xfs_inode_item_unpin,
7bfa31d8
CH
660 .iop_unlock = xfs_inode_item_unlock,
661 .iop_committed = xfs_inode_item_committed,
662 .iop_push = xfs_inode_item_push,
7bfa31d8 663 .iop_committing = xfs_inode_item_committing
1da177e4
LT
664};
665
666
667/*
668 * Initialize the inode log item for a newly allocated (in-core) inode.
669 */
670void
671xfs_inode_item_init(
7bfa31d8
CH
672 struct xfs_inode *ip,
673 struct xfs_mount *mp)
1da177e4 674{
7bfa31d8 675 struct xfs_inode_log_item *iip;
1da177e4
LT
676
677 ASSERT(ip->i_itemp == NULL);
678 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
679
1da177e4 680 iip->ili_inode = ip;
43f5efc5
DC
681 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
682 &xfs_inode_item_ops);
1da177e4
LT
683 iip->ili_format.ilf_type = XFS_LI_INODE;
684 iip->ili_format.ilf_ino = ip->i_ino;
92bfc6e7
CH
685 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
686 iip->ili_format.ilf_len = ip->i_imap.im_len;
687 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
1da177e4
LT
688}
689
690/*
691 * Free the inode log item and any memory hanging off of it.
692 */
693void
694xfs_inode_item_destroy(
695 xfs_inode_t *ip)
696{
1da177e4
LT
697 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
698}
699
700
701/*
702 * This is the inode flushing I/O completion routine. It is called
703 * from interrupt level when the buffer containing the inode is
704 * flushed to disk. It is responsible for removing the inode item
705 * from the AIL if it has not been re-logged, and unlocking the inode's
706 * flush lock.
30136832
DC
707 *
708 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
709 * list for other inodes that will run this function. We remove them from the
710 * buffer list so we can process all the inode IO completions in one AIL lock
711 * traversal.
1da177e4 712 */
1da177e4
LT
713void
714xfs_iflush_done(
ca30b2a7
CH
715 struct xfs_buf *bp,
716 struct xfs_log_item *lip)
1da177e4 717{
30136832
DC
718 struct xfs_inode_log_item *iip;
719 struct xfs_log_item *blip;
720 struct xfs_log_item *next;
721 struct xfs_log_item *prev;
ca30b2a7 722 struct xfs_ail *ailp = lip->li_ailp;
30136832
DC
723 int need_ail = 0;
724
725 /*
726 * Scan the buffer IO completions for other inodes being completed and
727 * attach them to the current inode log item.
728 */
adadbeef 729 blip = bp->b_fspriv;
30136832
DC
730 prev = NULL;
731 while (blip != NULL) {
732 if (lip->li_cb != xfs_iflush_done) {
733 prev = blip;
734 blip = blip->li_bio_list;
735 continue;
736 }
737
738 /* remove from list */
739 next = blip->li_bio_list;
740 if (!prev) {
adadbeef 741 bp->b_fspriv = next;
30136832
DC
742 } else {
743 prev->li_bio_list = next;
744 }
745
746 /* add to current list */
747 blip->li_bio_list = lip->li_bio_list;
748 lip->li_bio_list = blip;
749
750 /*
751 * while we have the item, do the unlocked check for needing
752 * the AIL lock.
753 */
754 iip = INODE_ITEM(blip);
755 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
756 need_ail++;
757
758 blip = next;
759 }
760
761 /* make sure we capture the state of the initial inode. */
762 iip = INODE_ITEM(lip);
763 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
764 need_ail++;
1da177e4
LT
765
766 /*
767 * We only want to pull the item from the AIL if it is
768 * actually there and its location in the log has not
769 * changed since we started the flush. Thus, we only bother
770 * if the ili_logged flag is set and the inode's lsn has not
771 * changed. First we check the lsn outside
772 * the lock since it's cheaper, and then we recheck while
773 * holding the lock before removing the inode from the AIL.
774 */
30136832
DC
775 if (need_ail) {
776 struct xfs_log_item *log_items[need_ail];
777 int i = 0;
783a2f65 778 spin_lock(&ailp->xa_lock);
30136832
DC
779 for (blip = lip; blip; blip = blip->li_bio_list) {
780 iip = INODE_ITEM(blip);
781 if (iip->ili_logged &&
782 blip->li_lsn == iip->ili_flush_lsn) {
783 log_items[i++] = blip;
784 }
785 ASSERT(i <= need_ail);
1da177e4 786 }
30136832 787 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
04913fdd
DC
788 xfs_trans_ail_delete_bulk(ailp, log_items, i,
789 SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
790 }
791
1da177e4
LT
792
793 /*
30136832
DC
794 * clean up and unlock the flush lock now we are done. We can clear the
795 * ili_last_fields bits now that we know that the data corresponding to
796 * them is safely on disk.
1da177e4 797 */
30136832
DC
798 for (blip = lip; blip; blip = next) {
799 next = blip->li_bio_list;
800 blip->li_bio_list = NULL;
801
802 iip = INODE_ITEM(blip);
803 iip->ili_logged = 0;
804 iip->ili_last_fields = 0;
805 xfs_ifunlock(iip->ili_inode);
806 }
1da177e4
LT
807}
808
809/*
04913fdd
DC
810 * This is the inode flushing abort routine. It is called from xfs_iflush when
811 * the filesystem is shutting down to clean up the inode state. It is
812 * responsible for removing the inode item from the AIL if it has not been
813 * re-logged, and unlocking the inode's flush lock.
1da177e4
LT
814 */
815void
816xfs_iflush_abort(
04913fdd
DC
817 xfs_inode_t *ip,
818 bool stale)
1da177e4 819{
783a2f65 820 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 821
1da177e4 822 if (iip) {
783a2f65 823 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1da177e4 824 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65 825 spin_lock(&ailp->xa_lock);
1da177e4 826 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65 827 /* xfs_trans_ail_delete() drops the AIL lock. */
04913fdd
DC
828 xfs_trans_ail_delete(ailp, &iip->ili_item,
829 stale ?
830 SHUTDOWN_LOG_IO_ERROR :
831 SHUTDOWN_CORRUPT_INCORE);
1da177e4 832 } else
783a2f65 833 spin_unlock(&ailp->xa_lock);
1da177e4
LT
834 }
835 iip->ili_logged = 0;
836 /*
837 * Clear the ili_last_fields bits now that we know that the
838 * data corresponding to them is safely on disk.
839 */
840 iip->ili_last_fields = 0;
841 /*
842 * Clear the inode logging fields so no more flushes are
843 * attempted.
844 */
f5d8d5c4 845 iip->ili_fields = 0;
1da177e4
LT
846 }
847 /*
848 * Release the inode's flush lock since we're done with it.
849 */
850 xfs_ifunlock(ip);
851}
852
853void
854xfs_istale_done(
ca30b2a7
CH
855 struct xfs_buf *bp,
856 struct xfs_log_item *lip)
1da177e4 857{
04913fdd 858 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
1da177e4 859}
6d192a9b
TS
860
861/*
862 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
863 * (which can have different field alignments) to the native version
864 */
865int
866xfs_inode_item_format_convert(
867 xfs_log_iovec_t *buf,
868 xfs_inode_log_format_t *in_f)
869{
870 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
4e0d5f92 871 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
6d192a9b 872
6d192a9b
TS
873 in_f->ilf_type = in_f32->ilf_type;
874 in_f->ilf_size = in_f32->ilf_size;
875 in_f->ilf_fields = in_f32->ilf_fields;
876 in_f->ilf_asize = in_f32->ilf_asize;
877 in_f->ilf_dsize = in_f32->ilf_dsize;
878 in_f->ilf_ino = in_f32->ilf_ino;
879 /* copy biggest field of ilf_u */
880 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
881 in_f32->ilf_u.ilfu_uuid.__u_bits,
882 sizeof(uuid_t));
883 in_f->ilf_blkno = in_f32->ilf_blkno;
884 in_f->ilf_len = in_f32->ilf_len;
885 in_f->ilf_boffset = in_f32->ilf_boffset;
886 return 0;
887 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
4e0d5f92 888 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
6d192a9b 889
6d192a9b
TS
890 in_f->ilf_type = in_f64->ilf_type;
891 in_f->ilf_size = in_f64->ilf_size;
892 in_f->ilf_fields = in_f64->ilf_fields;
893 in_f->ilf_asize = in_f64->ilf_asize;
894 in_f->ilf_dsize = in_f64->ilf_dsize;
895 in_f->ilf_ino = in_f64->ilf_ino;
896 /* copy biggest field of ilf_u */
897 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
898 in_f64->ilf_u.ilfu_uuid.__u_bits,
899 sizeof(uuid_t));
900 in_f->ilf_blkno = in_f64->ilf_blkno;
901 in_f->ilf_len = in_f64->ilf_len;
902 in_f->ilf_boffset = in_f64->ilf_boffset;
903 return 0;
904 }
905 return EFSCORRUPTED;
906}
This page took 0.723984 seconds and 5 git commands to generate.