Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux...
[deliverable/linux.git] / fs / xfs / xfs_inode_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4
LT
24#include "xfs_trans.h"
25#include "xfs_buf_item.h"
26#include "xfs_sb.h"
a844f451 27#include "xfs_ag.h"
1da177e4
LT
28#include "xfs_dir2.h"
29#include "xfs_dmapi.h"
30#include "xfs_mount.h"
31#include "xfs_trans_priv.h"
1da177e4 32#include "xfs_bmap_btree.h"
a844f451 33#include "xfs_alloc_btree.h"
1da177e4 34#include "xfs_ialloc_btree.h"
1da177e4 35#include "xfs_dir2_sf.h"
a844f451 36#include "xfs_attr_sf.h"
1da177e4 37#include "xfs_dinode.h"
1da177e4 38#include "xfs_inode.h"
a844f451
NS
39#include "xfs_inode_item.h"
40#include "xfs_btree.h"
41#include "xfs_ialloc.h"
1da177e4 42#include "xfs_rw.h"
db7a19f2 43#include "xfs_error.h"
1da177e4
LT
44
45
46kmem_zone_t *xfs_ili_zone; /* inode log item zone */
47
48/*
49 * This returns the number of iovecs needed to log the given inode item.
50 *
51 * We need one iovec for the inode log format structure, one for the
52 * inode core, and possibly one for the inode data/extents/b-tree root
53 * and one for the inode attribute data/extents/b-tree root.
54 */
55STATIC uint
56xfs_inode_item_size(
57 xfs_inode_log_item_t *iip)
58{
59 uint nvecs;
60 xfs_inode_t *ip;
61
62 ip = iip->ili_inode;
63 nvecs = 2;
64
65 /*
66 * Only log the data/extents/b-tree root if there is something
67 * left to log.
68 */
69 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
70
71 switch (ip->i_d.di_format) {
72 case XFS_DINODE_FMT_EXTENTS:
73 iip->ili_format.ilf_fields &=
74 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
75 XFS_ILOG_DEV | XFS_ILOG_UUID);
76 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
77 (ip->i_d.di_nextents > 0) &&
78 (ip->i_df.if_bytes > 0)) {
79 ASSERT(ip->i_df.if_u1.if_extents != NULL);
80 nvecs++;
81 } else {
82 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
83 }
84 break;
85
86 case XFS_DINODE_FMT_BTREE:
87 ASSERT(ip->i_df.if_ext_max ==
88 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
89 iip->ili_format.ilf_fields &=
90 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
91 XFS_ILOG_DEV | XFS_ILOG_UUID);
92 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
93 (ip->i_df.if_broot_bytes > 0)) {
94 ASSERT(ip->i_df.if_broot != NULL);
95 nvecs++;
96 } else {
97 ASSERT(!(iip->ili_format.ilf_fields &
98 XFS_ILOG_DBROOT));
99#ifdef XFS_TRANS_DEBUG
100 if (iip->ili_root_size > 0) {
101 ASSERT(iip->ili_root_size ==
102 ip->i_df.if_broot_bytes);
103 ASSERT(memcmp(iip->ili_orig_root,
104 ip->i_df.if_broot,
105 iip->ili_root_size) == 0);
106 } else {
107 ASSERT(ip->i_df.if_broot_bytes == 0);
108 }
109#endif
110 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
111 }
112 break;
113
114 case XFS_DINODE_FMT_LOCAL:
115 iip->ili_format.ilf_fields &=
116 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
117 XFS_ILOG_DEV | XFS_ILOG_UUID);
118 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
119 (ip->i_df.if_bytes > 0)) {
120 ASSERT(ip->i_df.if_u1.if_data != NULL);
121 ASSERT(ip->i_d.di_size > 0);
122 nvecs++;
123 } else {
124 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
125 }
126 break;
127
128 case XFS_DINODE_FMT_DEV:
129 iip->ili_format.ilf_fields &=
130 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
131 XFS_ILOG_DEXT | XFS_ILOG_UUID);
132 break;
133
134 case XFS_DINODE_FMT_UUID:
135 iip->ili_format.ilf_fields &=
136 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
137 XFS_ILOG_DEXT | XFS_ILOG_DEV);
138 break;
139
140 default:
141 ASSERT(0);
142 break;
143 }
144
145 /*
146 * If there are no attributes associated with this file,
147 * then there cannot be anything more to log.
148 * Clear all attribute-related log flags.
149 */
150 if (!XFS_IFORK_Q(ip)) {
151 iip->ili_format.ilf_fields &=
152 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
153 return nvecs;
154 }
155
156 /*
157 * Log any necessary attribute data.
158 */
159 switch (ip->i_d.di_aformat) {
160 case XFS_DINODE_FMT_EXTENTS:
161 iip->ili_format.ilf_fields &=
162 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
163 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
164 (ip->i_d.di_anextents > 0) &&
165 (ip->i_afp->if_bytes > 0)) {
166 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
167 nvecs++;
168 } else {
169 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
170 }
171 break;
172
173 case XFS_DINODE_FMT_BTREE:
174 iip->ili_format.ilf_fields &=
175 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
176 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
177 (ip->i_afp->if_broot_bytes > 0)) {
178 ASSERT(ip->i_afp->if_broot != NULL);
179 nvecs++;
180 } else {
181 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
182 }
183 break;
184
185 case XFS_DINODE_FMT_LOCAL:
186 iip->ili_format.ilf_fields &=
187 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
188 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
189 (ip->i_afp->if_bytes > 0)) {
190 ASSERT(ip->i_afp->if_u1.if_data != NULL);
191 nvecs++;
192 } else {
193 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
194 }
195 break;
196
197 default:
198 ASSERT(0);
199 break;
200 }
201
202 return nvecs;
203}
204
205/*
206 * This is called to fill in the vector of log iovecs for the
207 * given inode log item. It fills the first item with an inode
208 * log format structure, the second with the on-disk inode structure,
209 * and a possible third and/or fourth with the inode data/extents/b-tree
210 * root and inode attributes data/extents/b-tree root.
211 */
212STATIC void
213xfs_inode_item_format(
214 xfs_inode_log_item_t *iip,
215 xfs_log_iovec_t *log_vector)
216{
217 uint nvecs;
218 xfs_log_iovec_t *vecp;
219 xfs_inode_t *ip;
220 size_t data_bytes;
221 xfs_bmbt_rec_t *ext_buffer;
222 int nrecs;
223 xfs_mount_t *mp;
224
225 ip = iip->ili_inode;
226 vecp = log_vector;
227
228 vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
229 vecp->i_len = sizeof(xfs_inode_log_format_t);
7e9c6396 230 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
1da177e4
LT
231 vecp++;
232 nvecs = 1;
233
234 /*
235 * Clear i_update_core if the timestamps (or any other
236 * non-transactional modification) need flushing/logging
237 * and we're about to log them with the rest of the core.
238 *
239 * This is the same logic as xfs_iflush() but this code can't
240 * run at the same time as xfs_iflush because we're in commit
241 * processing here and so we have the inode lock held in
242 * exclusive mode. Although it doesn't really matter
243 * for the timestamps if both routines were to grab the
244 * timestamps or not. That would be ok.
245 *
246 * We clear i_update_core before copying out the data.
247 * This is for coordination with our timestamp updates
248 * that don't hold the inode lock. They will always
249 * update the timestamps BEFORE setting i_update_core,
250 * so if we clear i_update_core after they set it we
251 * are guaranteed to see their updates to the timestamps
252 * either here. Likewise, if they set it after we clear it
253 * here, we'll see it either on the next commit of this
254 * inode or the next time the inode gets flushed via
255 * xfs_iflush(). This depends on strongly ordered memory
256 * semantics, but we have that. We use the SYNCHRONIZE
257 * macro to make sure that the compiler does not reorder
258 * the i_update_core access below the data copy below.
259 */
260 if (ip->i_update_core) {
261 ip->i_update_core = 0;
262 SYNCHRONIZE();
263 }
264
42fe2b1f
CH
265 /*
266 * Make sure to get the latest atime from the Linux inode.
267 */
268 xfs_synchronize_atime(ip);
269
5d51eff4
DC
270 /*
271 * make sure the linux inode is dirty
272 */
273 xfs_mark_inode_dirty_sync(ip);
274
1da177e4 275 vecp->i_addr = (xfs_caddr_t)&ip->i_d;
81591fe2 276 vecp->i_len = sizeof(struct xfs_icdinode);
7e9c6396 277 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
1da177e4
LT
278 vecp++;
279 nvecs++;
280 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
281
282 /*
283 * If this is really an old format inode, then we need to
284 * log it as such. This means that we have to copy the link
285 * count from the new field to the old. We don't have to worry
286 * about the new fields, because nothing trusts them as long as
287 * the old inode version number is there. If the superblock already
288 * has a new version number, then we don't bother converting back.
289 */
290 mp = ip->i_mount;
51ce16d5
CH
291 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
292 if (ip->i_d.di_version == 1) {
62118709 293 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
294 /*
295 * Convert it back.
296 */
297 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
298 ip->i_d.di_onlink = ip->i_d.di_nlink;
299 } else {
300 /*
301 * The superblock version has already been bumped,
302 * so just make the conversion to the new inode
303 * format permanent.
304 */
51ce16d5 305 ip->i_d.di_version = 2;
1da177e4
LT
306 ip->i_d.di_onlink = 0;
307 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
308 }
309 }
310
311 switch (ip->i_d.di_format) {
312 case XFS_DINODE_FMT_EXTENTS:
313 ASSERT(!(iip->ili_format.ilf_fields &
314 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
315 XFS_ILOG_DEV | XFS_ILOG_UUID)));
316 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
317 ASSERT(ip->i_df.if_bytes > 0);
318 ASSERT(ip->i_df.if_u1.if_extents != NULL);
319 ASSERT(ip->i_d.di_nextents > 0);
320 ASSERT(iip->ili_extents_buf == NULL);
321 nrecs = ip->i_df.if_bytes /
322 (uint)sizeof(xfs_bmbt_rec_t);
323 ASSERT(nrecs > 0);
f016bad6 324#ifdef XFS_NATIVE_HOST
1da177e4
LT
325 if (nrecs == ip->i_d.di_nextents) {
326 /*
327 * There are no delayed allocation
328 * extents, so just point to the
329 * real extents array.
330 */
331 vecp->i_addr =
332 (char *)(ip->i_df.if_u1.if_extents);
333 vecp->i_len = ip->i_df.if_bytes;
7e9c6396 334 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
1da177e4
LT
335 } else
336#endif
337 {
338 /*
339 * There are delayed allocation extents
340 * in the inode, or we need to convert
341 * the extents to on disk format.
342 * Use xfs_iextents_copy()
343 * to copy only the real extents into
344 * a separate buffer. We'll free the
345 * buffer in the unlock routine.
346 */
347 ext_buffer = kmem_alloc(ip->i_df.if_bytes,
348 KM_SLEEP);
349 iip->ili_extents_buf = ext_buffer;
350 vecp->i_addr = (xfs_caddr_t)ext_buffer;
351 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
352 XFS_DATA_FORK);
7e9c6396 353 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
1da177e4
LT
354 }
355 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
356 iip->ili_format.ilf_dsize = vecp->i_len;
357 vecp++;
358 nvecs++;
359 }
360 break;
361
362 case XFS_DINODE_FMT_BTREE:
363 ASSERT(!(iip->ili_format.ilf_fields &
364 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
365 XFS_ILOG_DEV | XFS_ILOG_UUID)));
366 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
367 ASSERT(ip->i_df.if_broot_bytes > 0);
368 ASSERT(ip->i_df.if_broot != NULL);
369 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
370 vecp->i_len = ip->i_df.if_broot_bytes;
7e9c6396 371 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
1da177e4
LT
372 vecp++;
373 nvecs++;
374 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
375 }
376 break;
377
378 case XFS_DINODE_FMT_LOCAL:
379 ASSERT(!(iip->ili_format.ilf_fields &
380 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
381 XFS_ILOG_DEV | XFS_ILOG_UUID)));
382 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
383 ASSERT(ip->i_df.if_bytes > 0);
384 ASSERT(ip->i_df.if_u1.if_data != NULL);
385 ASSERT(ip->i_d.di_size > 0);
386
387 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
388 /*
389 * Round i_bytes up to a word boundary.
390 * The underlying memory is guaranteed to
391 * to be there by xfs_idata_realloc().
392 */
393 data_bytes = roundup(ip->i_df.if_bytes, 4);
394 ASSERT((ip->i_df.if_real_bytes == 0) ||
395 (ip->i_df.if_real_bytes == data_bytes));
396 vecp->i_len = (int)data_bytes;
7e9c6396 397 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
1da177e4
LT
398 vecp++;
399 nvecs++;
400 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
401 }
402 break;
403
404 case XFS_DINODE_FMT_DEV:
405 ASSERT(!(iip->ili_format.ilf_fields &
406 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
407 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
408 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
409 iip->ili_format.ilf_u.ilfu_rdev =
410 ip->i_df.if_u2.if_rdev;
411 }
412 break;
413
414 case XFS_DINODE_FMT_UUID:
415 ASSERT(!(iip->ili_format.ilf_fields &
416 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
417 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
418 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
419 iip->ili_format.ilf_u.ilfu_uuid =
420 ip->i_df.if_u2.if_uuid;
421 }
422 break;
423
424 default:
425 ASSERT(0);
426 break;
427 }
428
429 /*
430 * If there are no attributes associated with the file,
431 * then we're done.
432 * Assert that no attribute-related log flags are set.
433 */
434 if (!XFS_IFORK_Q(ip)) {
435 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
436 iip->ili_format.ilf_size = nvecs;
437 ASSERT(!(iip->ili_format.ilf_fields &
438 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
439 return;
440 }
441
442 switch (ip->i_d.di_aformat) {
443 case XFS_DINODE_FMT_EXTENTS:
444 ASSERT(!(iip->ili_format.ilf_fields &
445 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
446 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
447 ASSERT(ip->i_afp->if_bytes > 0);
448 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
449 ASSERT(ip->i_d.di_anextents > 0);
450#ifdef DEBUG
451 nrecs = ip->i_afp->if_bytes /
452 (uint)sizeof(xfs_bmbt_rec_t);
453#endif
454 ASSERT(nrecs > 0);
455 ASSERT(nrecs == ip->i_d.di_anextents);
f016bad6 456#ifdef XFS_NATIVE_HOST
1da177e4
LT
457 /*
458 * There are not delayed allocation extents
459 * for attributes, so just point at the array.
460 */
461 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
462 vecp->i_len = ip->i_afp->if_bytes;
463#else
464 ASSERT(iip->ili_aextents_buf == NULL);
465 /*
466 * Need to endian flip before logging
467 */
468 ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
469 KM_SLEEP);
470 iip->ili_aextents_buf = ext_buffer;
471 vecp->i_addr = (xfs_caddr_t)ext_buffer;
472 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
473 XFS_ATTR_FORK);
474#endif
7e9c6396 475 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
1da177e4
LT
476 iip->ili_format.ilf_asize = vecp->i_len;
477 vecp++;
478 nvecs++;
479 }
480 break;
481
482 case XFS_DINODE_FMT_BTREE:
483 ASSERT(!(iip->ili_format.ilf_fields &
484 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
485 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
486 ASSERT(ip->i_afp->if_broot_bytes > 0);
487 ASSERT(ip->i_afp->if_broot != NULL);
488 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
489 vecp->i_len = ip->i_afp->if_broot_bytes;
7e9c6396 490 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
1da177e4
LT
491 vecp++;
492 nvecs++;
493 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
494 }
495 break;
496
497 case XFS_DINODE_FMT_LOCAL:
498 ASSERT(!(iip->ili_format.ilf_fields &
499 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
500 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
501 ASSERT(ip->i_afp->if_bytes > 0);
502 ASSERT(ip->i_afp->if_u1.if_data != NULL);
503
504 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
505 /*
506 * Round i_bytes up to a word boundary.
507 * The underlying memory is guaranteed to
508 * to be there by xfs_idata_realloc().
509 */
510 data_bytes = roundup(ip->i_afp->if_bytes, 4);
511 ASSERT((ip->i_afp->if_real_bytes == 0) ||
512 (ip->i_afp->if_real_bytes == data_bytes));
513 vecp->i_len = (int)data_bytes;
7e9c6396 514 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
1da177e4
LT
515 vecp++;
516 nvecs++;
517 iip->ili_format.ilf_asize = (unsigned)data_bytes;
518 }
519 break;
520
521 default:
522 ASSERT(0);
523 break;
524 }
525
526 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
527 iip->ili_format.ilf_size = nvecs;
528}
529
530
531/*
532 * This is called to pin the inode associated with the inode log
533 * item in memory so it cannot be written out. Do this by calling
534 * xfs_ipin() to bump the pin count in the inode while holding the
535 * inode pin lock.
536 */
537STATIC void
538xfs_inode_item_pin(
539 xfs_inode_log_item_t *iip)
540{
579aa9ca 541 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
1da177e4
LT
542 xfs_ipin(iip->ili_inode);
543}
544
545
546/*
547 * This is called to unpin the inode associated with the inode log
548 * item which was previously pinned with a call to xfs_inode_item_pin().
549 * Just call xfs_iunpin() on the inode to do this.
550 */
551/* ARGSUSED */
552STATIC void
553xfs_inode_item_unpin(
554 xfs_inode_log_item_t *iip,
555 int stale)
556{
557 xfs_iunpin(iip->ili_inode);
558}
559
560/* ARGSUSED */
561STATIC void
562xfs_inode_item_unpin_remove(
563 xfs_inode_log_item_t *iip,
564 xfs_trans_t *tp)
565{
566 xfs_iunpin(iip->ili_inode);
567}
568
569/*
570 * This is called to attempt to lock the inode associated with this
571 * inode log item, in preparation for the push routine which does the actual
572 * iflush. Don't sleep on the inode lock or the flush lock.
573 *
574 * If the flush lock is already held, indicating that the inode has
575 * been or is in the process of being flushed, then (ideally) we'd like to
576 * see if the inode's buffer is still incore, and if so give it a nudge.
577 * We delay doing so until the pushbuf routine, though, to avoid holding
c41564b5 578 * the AIL lock across a call to the blackhole which is the buffer cache.
1da177e4
LT
579 * Also we don't want to sleep in any device strategy routines, which can happen
580 * if we do the subsequent bawrite in here.
581 */
582STATIC uint
583xfs_inode_item_trylock(
584 xfs_inode_log_item_t *iip)
585{
586 register xfs_inode_t *ip;
587
588 ip = iip->ili_inode;
589
590 if (xfs_ipincount(ip) > 0) {
591 return XFS_ITEM_PINNED;
592 }
593
594 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
595 return XFS_ITEM_LOCKED;
596 }
597
598 if (!xfs_iflock_nowait(ip)) {
599 /*
600 * If someone else isn't already trying to push the inode
601 * buffer, we get to do it.
602 */
603 if (iip->ili_pushbuf_flag == 0) {
604 iip->ili_pushbuf_flag = 1;
605#ifdef DEBUG
3762ec6b 606 iip->ili_push_owner = current_pid();
1da177e4
LT
607#endif
608 /*
609 * Inode is left locked in shared mode.
610 * Pushbuf routine gets to unlock it.
611 */
612 return XFS_ITEM_PUSHBUF;
613 } else {
614 /*
287f3dad 615 * We hold the AIL lock, so we must specify the
1da177e4
LT
616 * NONOTIFY flag so that we won't double trip.
617 */
618 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
619 return XFS_ITEM_FLUSHING;
620 }
621 /* NOTREACHED */
622 }
623
624 /* Stale items should force out the iclog */
625 if (ip->i_flags & XFS_ISTALE) {
626 xfs_ifunlock(ip);
627 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
628 return XFS_ITEM_PINNED;
629 }
630
631#ifdef DEBUG
632 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
633 ASSERT(iip->ili_format.ilf_fields != 0);
634 ASSERT(iip->ili_logged == 0);
635 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
636 }
637#endif
638 return XFS_ITEM_SUCCESS;
639}
640
641/*
642 * Unlock the inode associated with the inode log item.
643 * Clear the fields of the inode and inode log item that
644 * are specific to the current transaction. If the
645 * hold flags is set, do not unlock the inode.
646 */
647STATIC void
648xfs_inode_item_unlock(
649 xfs_inode_log_item_t *iip)
650{
651 uint hold;
652 uint iolocked;
653 uint lock_flags;
654 xfs_inode_t *ip;
655
656 ASSERT(iip != NULL);
657 ASSERT(iip->ili_inode->i_itemp != NULL);
579aa9ca 658 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
1da177e4
LT
659 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
660 XFS_ILI_IOLOCKED_EXCL)) ||
579aa9ca 661 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_EXCL));
1da177e4
LT
662 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
663 XFS_ILI_IOLOCKED_SHARED)) ||
579aa9ca 664 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_SHARED));
1da177e4
LT
665 /*
666 * Clear the transaction pointer in the inode.
667 */
668 ip = iip->ili_inode;
669 ip->i_transp = NULL;
670
671 /*
672 * If the inode needed a separate buffer with which to log
673 * its extents, then free it now.
674 */
675 if (iip->ili_extents_buf != NULL) {
676 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
677 ASSERT(ip->i_d.di_nextents > 0);
678 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
679 ASSERT(ip->i_df.if_bytes > 0);
f0e2d93c 680 kmem_free(iip->ili_extents_buf);
1da177e4
LT
681 iip->ili_extents_buf = NULL;
682 }
683 if (iip->ili_aextents_buf != NULL) {
684 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
685 ASSERT(ip->i_d.di_anextents > 0);
686 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
687 ASSERT(ip->i_afp->if_bytes > 0);
f0e2d93c 688 kmem_free(iip->ili_aextents_buf);
1da177e4
LT
689 iip->ili_aextents_buf = NULL;
690 }
691
692 /*
693 * Figure out if we should unlock the inode or not.
694 */
695 hold = iip->ili_flags & XFS_ILI_HOLD;
696
697 /*
698 * Before clearing out the flags, remember whether we
699 * are holding the inode's IO lock.
700 */
701 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
702
703 /*
704 * Clear out the fields of the inode log item particular
705 * to the current transaction.
706 */
1da177e4
LT
707 iip->ili_flags = 0;
708
709 /*
710 * Unlock the inode if XFS_ILI_HOLD was not set.
711 */
712 if (!hold) {
713 lock_flags = XFS_ILOCK_EXCL;
714 if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
715 lock_flags |= XFS_IOLOCK_EXCL;
716 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
717 lock_flags |= XFS_IOLOCK_SHARED;
718 }
719 xfs_iput(iip->ili_inode, lock_flags);
720 }
721}
722
723/*
724 * This is called to find out where the oldest active copy of the
725 * inode log item in the on disk log resides now that the last log
726 * write of it completed at the given lsn. Since we always re-log
727 * all dirty data in an inode, the latest copy in the on disk log
728 * is the only one that matters. Therefore, simply return the
729 * given lsn.
730 */
731/*ARGSUSED*/
732STATIC xfs_lsn_t
733xfs_inode_item_committed(
734 xfs_inode_log_item_t *iip,
735 xfs_lsn_t lsn)
736{
737 return (lsn);
738}
739
1da177e4
LT
740/*
741 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
742 * failed to get the inode flush lock but did get the inode locked SHARED.
743 * Here we're trying to see if the inode buffer is incore, and if so whether it's
744 * marked delayed write. If that's the case, we'll initiate a bawrite on that
745 * buffer to expedite the process.
746 *
287f3dad 747 * We aren't holding the AIL lock (or the flush lock) when this gets called,
1da177e4
LT
748 * so it is inherently race-y.
749 */
750STATIC void
751xfs_inode_item_pushbuf(
752 xfs_inode_log_item_t *iip)
753{
754 xfs_inode_t *ip;
755 xfs_mount_t *mp;
756 xfs_buf_t *bp;
757 uint dopush;
758
759 ip = iip->ili_inode;
760
579aa9ca 761 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
1da177e4
LT
762
763 /*
764 * The ili_pushbuf_flag keeps others from
765 * trying to duplicate our effort.
766 */
767 ASSERT(iip->ili_pushbuf_flag != 0);
3762ec6b 768 ASSERT(iip->ili_push_owner == current_pid());
1da177e4
LT
769
770 /*
c63942d3
DC
771 * If a flush is not in progress anymore, chances are that the
772 * inode was taken off the AIL. So, just get out.
1da177e4 773 */
c63942d3 774 if (completion_done(&ip->i_flush) ||
1da177e4
LT
775 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
776 iip->ili_pushbuf_flag = 0;
777 xfs_iunlock(ip, XFS_ILOCK_SHARED);
778 return;
779 }
780
781 mp = ip->i_mount;
782 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
783 iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
784
785 if (bp != NULL) {
786 if (XFS_BUF_ISDELAYWRITE(bp)) {
787 /*
788 * We were racing with iflush because we don't hold
287f3dad 789 * the AIL lock or the flush lock. However, at this point,
1da177e4
LT
790 * we have the buffer, and we know that it's dirty.
791 * So, it's possible that iflush raced with us, and
792 * this item is already taken off the AIL.
793 * If not, we can flush it async.
794 */
795 dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
c63942d3 796 !completion_done(&ip->i_flush));
1da177e4
LT
797 iip->ili_pushbuf_flag = 0;
798 xfs_iunlock(ip, XFS_ILOCK_SHARED);
799 xfs_buftrace("INODE ITEM PUSH", bp);
800 if (XFS_BUF_ISPINNED(bp)) {
801 xfs_log_force(mp, (xfs_lsn_t)0,
802 XFS_LOG_FORCE);
803 }
804 if (dopush) {
db7a19f2
DC
805 int error;
806 error = xfs_bawrite(mp, bp);
807 if (error)
808 xfs_fs_cmn_err(CE_WARN, mp,
809 "xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
810 error, iip, bp);
1da177e4
LT
811 } else {
812 xfs_buf_relse(bp);
813 }
814 } else {
815 iip->ili_pushbuf_flag = 0;
816 xfs_iunlock(ip, XFS_ILOCK_SHARED);
817 xfs_buf_relse(bp);
818 }
819 return;
820 }
821 /*
822 * We have to be careful about resetting pushbuf flag too early (above).
823 * Even though in theory we can do it as soon as we have the buflock,
824 * we don't want others to be doing work needlessly. They'll come to
825 * this function thinking that pushing the buffer is their
826 * responsibility only to find that the buffer is still locked by
827 * another doing the same thing
828 */
829 iip->ili_pushbuf_flag = 0;
830 xfs_iunlock(ip, XFS_ILOCK_SHARED);
831 return;
832}
833
834
835/*
836 * This is called to asynchronously write the inode associated with this
837 * inode log item out to disk. The inode will already have been locked by
838 * a successful call to xfs_inode_item_trylock().
839 */
840STATIC void
841xfs_inode_item_push(
842 xfs_inode_log_item_t *iip)
843{
844 xfs_inode_t *ip;
845
846 ip = iip->ili_inode;
847
579aa9ca 848 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
c63942d3 849 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
850 /*
851 * Since we were able to lock the inode's flush lock and
852 * we found it on the AIL, the inode must be dirty. This
853 * is because the inode is removed from the AIL while still
854 * holding the flush lock in xfs_iflush_done(). Thus, if
855 * we found it in the AIL and were able to obtain the flush
856 * lock without sleeping, then there must not have been
857 * anyone in the process of flushing the inode.
858 */
859 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
860 iip->ili_format.ilf_fields != 0);
861
862 /*
863 * Write out the inode. The completion routine ('iflush_done') will
864 * pull it from the AIL, mark it clean, unlock the flush lock.
865 */
866 (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
867 xfs_iunlock(ip, XFS_ILOCK_SHARED);
868
869 return;
870}
871
872/*
873 * XXX rcc - this one really has to do something. Probably needs
874 * to stamp in a new field in the incore inode.
875 */
876/* ARGSUSED */
877STATIC void
878xfs_inode_item_committing(
879 xfs_inode_log_item_t *iip,
880 xfs_lsn_t lsn)
881{
882 iip->ili_last_lsn = lsn;
883 return;
884}
885
886/*
887 * This is the ops vector shared by all buf log items.
888 */
7989cb8e 889static struct xfs_item_ops xfs_inode_item_ops = {
1da177e4
LT
890 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
891 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
892 xfs_inode_item_format,
893 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
894 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
895 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
896 xfs_inode_item_unpin_remove,
897 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
898 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
899 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
900 xfs_inode_item_committed,
901 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push,
1da177e4
LT
902 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
903 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
904 xfs_inode_item_committing
905};
906
907
908/*
909 * Initialize the inode log item for a newly allocated (in-core) inode.
910 */
911void
912xfs_inode_item_init(
913 xfs_inode_t *ip,
914 xfs_mount_t *mp)
915{
916 xfs_inode_log_item_t *iip;
917
918 ASSERT(ip->i_itemp == NULL);
919 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
920
921 iip->ili_item.li_type = XFS_LI_INODE;
922 iip->ili_item.li_ops = &xfs_inode_item_ops;
923 iip->ili_item.li_mountp = mp;
fc1829f3 924 iip->ili_item.li_ailp = mp->m_ail;
1da177e4
LT
925 iip->ili_inode = ip;
926
927 /*
928 We have zeroed memory. No need ...
929 iip->ili_extents_buf = NULL;
930 iip->ili_pushbuf_flag = 0;
931 */
932
933 iip->ili_format.ilf_type = XFS_LI_INODE;
934 iip->ili_format.ilf_ino = ip->i_ino;
92bfc6e7
CH
935 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
936 iip->ili_format.ilf_len = ip->i_imap.im_len;
937 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
1da177e4
LT
938}
939
940/*
941 * Free the inode log item and any memory hanging off of it.
942 */
943void
944xfs_inode_item_destroy(
945 xfs_inode_t *ip)
946{
947#ifdef XFS_TRANS_DEBUG
948 if (ip->i_itemp->ili_root_size != 0) {
f0e2d93c 949 kmem_free(ip->i_itemp->ili_orig_root);
1da177e4
LT
950 }
951#endif
952 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
953}
954
955
956/*
957 * This is the inode flushing I/O completion routine. It is called
958 * from interrupt level when the buffer containing the inode is
959 * flushed to disk. It is responsible for removing the inode item
960 * from the AIL if it has not been re-logged, and unlocking the inode's
961 * flush lock.
962 */
963/*ARGSUSED*/
964void
965xfs_iflush_done(
966 xfs_buf_t *bp,
967 xfs_inode_log_item_t *iip)
968{
783a2f65
DC
969 xfs_inode_t *ip = iip->ili_inode;
970 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1da177e4
LT
971
972 /*
973 * We only want to pull the item from the AIL if it is
974 * actually there and its location in the log has not
975 * changed since we started the flush. Thus, we only bother
976 * if the ili_logged flag is set and the inode's lsn has not
977 * changed. First we check the lsn outside
978 * the lock since it's cheaper, and then we recheck while
979 * holding the lock before removing the inode from the AIL.
980 */
981 if (iip->ili_logged &&
982 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
783a2f65 983 spin_lock(&ailp->xa_lock);
1da177e4 984 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
783a2f65
DC
985 /* xfs_trans_ail_delete() drops the AIL lock. */
986 xfs_trans_ail_delete(ailp, (xfs_log_item_t*)iip);
1da177e4 987 } else {
783a2f65 988 spin_unlock(&ailp->xa_lock);
1da177e4
LT
989 }
990 }
991
992 iip->ili_logged = 0;
993
994 /*
995 * Clear the ili_last_fields bits now that we know that the
996 * data corresponding to them is safely on disk.
997 */
998 iip->ili_last_fields = 0;
999
1000 /*
1001 * Release the inode's flush lock since we're done with it.
1002 */
1003 xfs_ifunlock(ip);
1004
1005 return;
1006}
1007
1008/*
1009 * This is the inode flushing abort routine. It is called
1010 * from xfs_iflush when the filesystem is shutting down to clean
1011 * up the inode state.
1012 * It is responsible for removing the inode item
1013 * from the AIL if it has not been re-logged, and unlocking the inode's
1014 * flush lock.
1015 */
1016void
1017xfs_iflush_abort(
1018 xfs_inode_t *ip)
1019{
783a2f65 1020 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 1021 xfs_mount_t *mp;
1da177e4
LT
1022
1023 iip = ip->i_itemp;
1024 mp = ip->i_mount;
1025 if (iip) {
783a2f65 1026 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1da177e4 1027 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65 1028 spin_lock(&ailp->xa_lock);
1da177e4 1029 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65
DC
1030 /* xfs_trans_ail_delete() drops the AIL lock. */
1031 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
1da177e4 1032 } else
783a2f65 1033 spin_unlock(&ailp->xa_lock);
1da177e4
LT
1034 }
1035 iip->ili_logged = 0;
1036 /*
1037 * Clear the ili_last_fields bits now that we know that the
1038 * data corresponding to them is safely on disk.
1039 */
1040 iip->ili_last_fields = 0;
1041 /*
1042 * Clear the inode logging fields so no more flushes are
1043 * attempted.
1044 */
1045 iip->ili_format.ilf_fields = 0;
1046 }
1047 /*
1048 * Release the inode's flush lock since we're done with it.
1049 */
1050 xfs_ifunlock(ip);
1051}
1052
1053void
1054xfs_istale_done(
1055 xfs_buf_t *bp,
1056 xfs_inode_log_item_t *iip)
1057{
1058 xfs_iflush_abort(iip->ili_inode);
1059}
6d192a9b
TS
1060
1061/*
1062 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1063 * (which can have different field alignments) to the native version
1064 */
1065int
1066xfs_inode_item_format_convert(
1067 xfs_log_iovec_t *buf,
1068 xfs_inode_log_format_t *in_f)
1069{
1070 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1071 xfs_inode_log_format_32_t *in_f32;
1072
1073 in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1074 in_f->ilf_type = in_f32->ilf_type;
1075 in_f->ilf_size = in_f32->ilf_size;
1076 in_f->ilf_fields = in_f32->ilf_fields;
1077 in_f->ilf_asize = in_f32->ilf_asize;
1078 in_f->ilf_dsize = in_f32->ilf_dsize;
1079 in_f->ilf_ino = in_f32->ilf_ino;
1080 /* copy biggest field of ilf_u */
1081 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1082 in_f32->ilf_u.ilfu_uuid.__u_bits,
1083 sizeof(uuid_t));
1084 in_f->ilf_blkno = in_f32->ilf_blkno;
1085 in_f->ilf_len = in_f32->ilf_len;
1086 in_f->ilf_boffset = in_f32->ilf_boffset;
1087 return 0;
1088 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1089 xfs_inode_log_format_64_t *in_f64;
1090
1091 in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1092 in_f->ilf_type = in_f64->ilf_type;
1093 in_f->ilf_size = in_f64->ilf_size;
1094 in_f->ilf_fields = in_f64->ilf_fields;
1095 in_f->ilf_asize = in_f64->ilf_asize;
1096 in_f->ilf_dsize = in_f64->ilf_dsize;
1097 in_f->ilf_ino = in_f64->ilf_ino;
1098 /* copy biggest field of ilf_u */
1099 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1100 in_f64->ilf_u.ilfu_uuid.__u_bits,
1101 sizeof(uuid_t));
1102 in_f->ilf_blkno = in_f64->ilf_blkno;
1103 in_f->ilf_len = in_f64->ilf_len;
1104 in_f->ilf_boffset = in_f64->ilf_boffset;
1105 return 0;
1106 }
1107 return EFSCORRUPTED;
1108}
This page took 0.461121 seconds and 5 git commands to generate.