xfs: remove the if_ext_max field in struct xfs_ifork
[deliverable/linux.git] / fs / xfs / xfs_inode_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
1da177e4 25#include "xfs_sb.h"
a844f451 26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_trans_priv.h"
1da177e4 29#include "xfs_bmap_btree.h"
1da177e4 30#include "xfs_dinode.h"
1da177e4 31#include "xfs_inode.h"
a844f451 32#include "xfs_inode_item.h"
db7a19f2 33#include "xfs_error.h"
0b1b213f 34#include "xfs_trace.h"
1da177e4
LT
35
36
37kmem_zone_t *xfs_ili_zone; /* inode log item zone */
38
7bfa31d8
CH
39static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
40{
41 return container_of(lip, struct xfs_inode_log_item, ili_item);
42}
43
44
1da177e4
LT
45/*
46 * This returns the number of iovecs needed to log the given inode item.
47 *
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
51 */
52STATIC uint
53xfs_inode_item_size(
7bfa31d8 54 struct xfs_log_item *lip)
1da177e4 55{
7bfa31d8
CH
56 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 struct xfs_inode *ip = iip->ili_inode;
58 uint nvecs = 2;
1da177e4
LT
59
60 /*
61 * Only log the data/extents/b-tree root if there is something
62 * left to log.
63 */
64 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
65
66 switch (ip->i_d.di_format) {
67 case XFS_DINODE_FMT_EXTENTS:
68 iip->ili_format.ilf_fields &=
69 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70 XFS_ILOG_DEV | XFS_ILOG_UUID);
71 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72 (ip->i_d.di_nextents > 0) &&
73 (ip->i_df.if_bytes > 0)) {
74 ASSERT(ip->i_df.if_u1.if_extents != NULL);
75 nvecs++;
76 } else {
77 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
78 }
79 break;
80
81 case XFS_DINODE_FMT_BTREE:
1da177e4
LT
82 iip->ili_format.ilf_fields &=
83 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
84 XFS_ILOG_DEV | XFS_ILOG_UUID);
85 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
86 (ip->i_df.if_broot_bytes > 0)) {
87 ASSERT(ip->i_df.if_broot != NULL);
88 nvecs++;
89 } else {
90 ASSERT(!(iip->ili_format.ilf_fields &
91 XFS_ILOG_DBROOT));
92#ifdef XFS_TRANS_DEBUG
93 if (iip->ili_root_size > 0) {
94 ASSERT(iip->ili_root_size ==
95 ip->i_df.if_broot_bytes);
96 ASSERT(memcmp(iip->ili_orig_root,
97 ip->i_df.if_broot,
98 iip->ili_root_size) == 0);
99 } else {
100 ASSERT(ip->i_df.if_broot_bytes == 0);
101 }
102#endif
103 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
104 }
105 break;
106
107 case XFS_DINODE_FMT_LOCAL:
108 iip->ili_format.ilf_fields &=
109 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
110 XFS_ILOG_DEV | XFS_ILOG_UUID);
111 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
112 (ip->i_df.if_bytes > 0)) {
113 ASSERT(ip->i_df.if_u1.if_data != NULL);
114 ASSERT(ip->i_d.di_size > 0);
115 nvecs++;
116 } else {
117 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
118 }
119 break;
120
121 case XFS_DINODE_FMT_DEV:
122 iip->ili_format.ilf_fields &=
123 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
124 XFS_ILOG_DEXT | XFS_ILOG_UUID);
125 break;
126
127 case XFS_DINODE_FMT_UUID:
128 iip->ili_format.ilf_fields &=
129 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
130 XFS_ILOG_DEXT | XFS_ILOG_DEV);
131 break;
132
133 default:
134 ASSERT(0);
135 break;
136 }
137
138 /*
139 * If there are no attributes associated with this file,
140 * then there cannot be anything more to log.
141 * Clear all attribute-related log flags.
142 */
143 if (!XFS_IFORK_Q(ip)) {
144 iip->ili_format.ilf_fields &=
145 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
146 return nvecs;
147 }
148
149 /*
150 * Log any necessary attribute data.
151 */
152 switch (ip->i_d.di_aformat) {
153 case XFS_DINODE_FMT_EXTENTS:
154 iip->ili_format.ilf_fields &=
155 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
156 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
157 (ip->i_d.di_anextents > 0) &&
158 (ip->i_afp->if_bytes > 0)) {
159 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
160 nvecs++;
161 } else {
162 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
163 }
164 break;
165
166 case XFS_DINODE_FMT_BTREE:
167 iip->ili_format.ilf_fields &=
168 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
169 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
170 (ip->i_afp->if_broot_bytes > 0)) {
171 ASSERT(ip->i_afp->if_broot != NULL);
172 nvecs++;
173 } else {
174 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
175 }
176 break;
177
178 case XFS_DINODE_FMT_LOCAL:
179 iip->ili_format.ilf_fields &=
180 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
181 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
182 (ip->i_afp->if_bytes > 0)) {
183 ASSERT(ip->i_afp->if_u1.if_data != NULL);
184 nvecs++;
185 } else {
186 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
187 }
188 break;
189
190 default:
191 ASSERT(0);
192 break;
193 }
194
195 return nvecs;
196}
197
e828776a
DC
198/*
199 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
200 *
201 * For either the data or attr fork in extent format, we need to endian convert
202 * the in-core extent as we place them into the on-disk inode. In this case, we
203 * need to do this conversion before we write the extents into the log. Because
204 * we don't have the disk inode to write into here, we allocate a buffer and
205 * format the extents into it via xfs_iextents_copy(). We free the buffer in
206 * the unlock routine after the copy for the log has been made.
207 *
208 * In the case of the data fork, the in-core and on-disk fork sizes can be
209 * different due to delayed allocation extents. We only log on-disk extents
210 * here, so always use the physical fork size to determine the size of the
211 * buffer we need to allocate.
212 */
213STATIC void
214xfs_inode_item_format_extents(
215 struct xfs_inode *ip,
216 struct xfs_log_iovec *vecp,
217 int whichfork,
218 int type)
219{
220 xfs_bmbt_rec_t *ext_buffer;
221
222 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
223 if (whichfork == XFS_DATA_FORK)
224 ip->i_itemp->ili_extents_buf = ext_buffer;
225 else
226 ip->i_itemp->ili_aextents_buf = ext_buffer;
227
228 vecp->i_addr = ext_buffer;
229 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
230 vecp->i_type = type;
231}
232
1da177e4
LT
233/*
234 * This is called to fill in the vector of log iovecs for the
235 * given inode log item. It fills the first item with an inode
236 * log format structure, the second with the on-disk inode structure,
237 * and a possible third and/or fourth with the inode data/extents/b-tree
238 * root and inode attributes data/extents/b-tree root.
239 */
240STATIC void
241xfs_inode_item_format(
7bfa31d8
CH
242 struct xfs_log_item *lip,
243 struct xfs_log_iovec *vecp)
1da177e4 244{
7bfa31d8
CH
245 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
246 struct xfs_inode *ip = iip->ili_inode;
1da177e4 247 uint nvecs;
1da177e4 248 size_t data_bytes;
1da177e4
LT
249 xfs_mount_t *mp;
250
4e0d5f92 251 vecp->i_addr = &iip->ili_format;
1da177e4 252 vecp->i_len = sizeof(xfs_inode_log_format_t);
4139b3b3 253 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
1da177e4
LT
254 vecp++;
255 nvecs = 1;
256
257 /*
258 * Clear i_update_core if the timestamps (or any other
259 * non-transactional modification) need flushing/logging
260 * and we're about to log them with the rest of the core.
261 *
262 * This is the same logic as xfs_iflush() but this code can't
263 * run at the same time as xfs_iflush because we're in commit
264 * processing here and so we have the inode lock held in
265 * exclusive mode. Although it doesn't really matter
266 * for the timestamps if both routines were to grab the
267 * timestamps or not. That would be ok.
268 *
269 * We clear i_update_core before copying out the data.
270 * This is for coordination with our timestamp updates
271 * that don't hold the inode lock. They will always
272 * update the timestamps BEFORE setting i_update_core,
273 * so if we clear i_update_core after they set it we
274 * are guaranteed to see their updates to the timestamps
275 * either here. Likewise, if they set it after we clear it
276 * here, we'll see it either on the next commit of this
277 * inode or the next time the inode gets flushed via
278 * xfs_iflush(). This depends on strongly ordered memory
279 * semantics, but we have that. We use the SYNCHRONIZE
280 * macro to make sure that the compiler does not reorder
281 * the i_update_core access below the data copy below.
282 */
283 if (ip->i_update_core) {
284 ip->i_update_core = 0;
285 SYNCHRONIZE();
286 }
287
42fe2b1f 288 /*
f9581b14 289 * Make sure to get the latest timestamps from the Linux inode.
42fe2b1f 290 */
f9581b14 291 xfs_synchronize_times(ip);
5d51eff4 292
4e0d5f92 293 vecp->i_addr = &ip->i_d;
81591fe2 294 vecp->i_len = sizeof(struct xfs_icdinode);
4139b3b3 295 vecp->i_type = XLOG_REG_TYPE_ICORE;
1da177e4
LT
296 vecp++;
297 nvecs++;
298 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
299
300 /*
301 * If this is really an old format inode, then we need to
302 * log it as such. This means that we have to copy the link
303 * count from the new field to the old. We don't have to worry
304 * about the new fields, because nothing trusts them as long as
305 * the old inode version number is there. If the superblock already
306 * has a new version number, then we don't bother converting back.
307 */
308 mp = ip->i_mount;
51ce16d5
CH
309 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
310 if (ip->i_d.di_version == 1) {
62118709 311 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
312 /*
313 * Convert it back.
314 */
315 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
316 ip->i_d.di_onlink = ip->i_d.di_nlink;
317 } else {
318 /*
319 * The superblock version has already been bumped,
320 * so just make the conversion to the new inode
321 * format permanent.
322 */
51ce16d5 323 ip->i_d.di_version = 2;
1da177e4
LT
324 ip->i_d.di_onlink = 0;
325 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
326 }
327 }
328
329 switch (ip->i_d.di_format) {
330 case XFS_DINODE_FMT_EXTENTS:
331 ASSERT(!(iip->ili_format.ilf_fields &
332 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
333 XFS_ILOG_DEV | XFS_ILOG_UUID)));
334 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
335 ASSERT(ip->i_df.if_bytes > 0);
336 ASSERT(ip->i_df.if_u1.if_extents != NULL);
337 ASSERT(ip->i_d.di_nextents > 0);
338 ASSERT(iip->ili_extents_buf == NULL);
73523a2e
CH
339 ASSERT((ip->i_df.if_bytes /
340 (uint)sizeof(xfs_bmbt_rec_t)) > 0);
f016bad6 341#ifdef XFS_NATIVE_HOST
696123fc
DC
342 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
343 (uint)sizeof(xfs_bmbt_rec_t)) {
1da177e4
LT
344 /*
345 * There are no delayed allocation
346 * extents, so just point to the
347 * real extents array.
348 */
4e0d5f92 349 vecp->i_addr = ip->i_df.if_u1.if_extents;
1da177e4 350 vecp->i_len = ip->i_df.if_bytes;
4139b3b3 351 vecp->i_type = XLOG_REG_TYPE_IEXT;
1da177e4
LT
352 } else
353#endif
354 {
e828776a
DC
355 xfs_inode_item_format_extents(ip, vecp,
356 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
1da177e4
LT
357 }
358 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
359 iip->ili_format.ilf_dsize = vecp->i_len;
360 vecp++;
361 nvecs++;
362 }
363 break;
364
365 case XFS_DINODE_FMT_BTREE:
366 ASSERT(!(iip->ili_format.ilf_fields &
367 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
368 XFS_ILOG_DEV | XFS_ILOG_UUID)));
369 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
370 ASSERT(ip->i_df.if_broot_bytes > 0);
371 ASSERT(ip->i_df.if_broot != NULL);
4e0d5f92 372 vecp->i_addr = ip->i_df.if_broot;
1da177e4 373 vecp->i_len = ip->i_df.if_broot_bytes;
4139b3b3 374 vecp->i_type = XLOG_REG_TYPE_IBROOT;
1da177e4
LT
375 vecp++;
376 nvecs++;
377 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
378 }
379 break;
380
381 case XFS_DINODE_FMT_LOCAL:
382 ASSERT(!(iip->ili_format.ilf_fields &
383 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
384 XFS_ILOG_DEV | XFS_ILOG_UUID)));
385 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
386 ASSERT(ip->i_df.if_bytes > 0);
387 ASSERT(ip->i_df.if_u1.if_data != NULL);
388 ASSERT(ip->i_d.di_size > 0);
389
4e0d5f92 390 vecp->i_addr = ip->i_df.if_u1.if_data;
1da177e4
LT
391 /*
392 * Round i_bytes up to a word boundary.
393 * The underlying memory is guaranteed to
394 * to be there by xfs_idata_realloc().
395 */
396 data_bytes = roundup(ip->i_df.if_bytes, 4);
397 ASSERT((ip->i_df.if_real_bytes == 0) ||
398 (ip->i_df.if_real_bytes == data_bytes));
399 vecp->i_len = (int)data_bytes;
4139b3b3 400 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
1da177e4
LT
401 vecp++;
402 nvecs++;
403 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
404 }
405 break;
406
407 case XFS_DINODE_FMT_DEV:
408 ASSERT(!(iip->ili_format.ilf_fields &
409 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
410 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
411 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
412 iip->ili_format.ilf_u.ilfu_rdev =
413 ip->i_df.if_u2.if_rdev;
414 }
415 break;
416
417 case XFS_DINODE_FMT_UUID:
418 ASSERT(!(iip->ili_format.ilf_fields &
419 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
420 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
421 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
422 iip->ili_format.ilf_u.ilfu_uuid =
423 ip->i_df.if_u2.if_uuid;
424 }
425 break;
426
427 default:
428 ASSERT(0);
429 break;
430 }
431
432 /*
433 * If there are no attributes associated with the file,
434 * then we're done.
435 * Assert that no attribute-related log flags are set.
436 */
437 if (!XFS_IFORK_Q(ip)) {
1da177e4
LT
438 iip->ili_format.ilf_size = nvecs;
439 ASSERT(!(iip->ili_format.ilf_fields &
440 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
441 return;
442 }
443
444 switch (ip->i_d.di_aformat) {
445 case XFS_DINODE_FMT_EXTENTS:
446 ASSERT(!(iip->ili_format.ilf_fields &
447 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
448 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
1da177e4 449#ifdef DEBUG
73523a2e 450 int nrecs = ip->i_afp->if_bytes /
1da177e4 451 (uint)sizeof(xfs_bmbt_rec_t);
1da177e4
LT
452 ASSERT(nrecs > 0);
453 ASSERT(nrecs == ip->i_d.di_anextents);
73523a2e
CH
454 ASSERT(ip->i_afp->if_bytes > 0);
455 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
456 ASSERT(ip->i_d.di_anextents > 0);
457#endif
f016bad6 458#ifdef XFS_NATIVE_HOST
1da177e4
LT
459 /*
460 * There are not delayed allocation extents
461 * for attributes, so just point at the array.
462 */
4e0d5f92 463 vecp->i_addr = ip->i_afp->if_u1.if_extents;
1da177e4 464 vecp->i_len = ip->i_afp->if_bytes;
e828776a 465 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
1da177e4
LT
466#else
467 ASSERT(iip->ili_aextents_buf == NULL);
e828776a
DC
468 xfs_inode_item_format_extents(ip, vecp,
469 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
1da177e4
LT
470#endif
471 iip->ili_format.ilf_asize = vecp->i_len;
472 vecp++;
473 nvecs++;
474 }
475 break;
476
477 case XFS_DINODE_FMT_BTREE:
478 ASSERT(!(iip->ili_format.ilf_fields &
479 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
480 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
481 ASSERT(ip->i_afp->if_broot_bytes > 0);
482 ASSERT(ip->i_afp->if_broot != NULL);
4e0d5f92 483 vecp->i_addr = ip->i_afp->if_broot;
1da177e4 484 vecp->i_len = ip->i_afp->if_broot_bytes;
4139b3b3 485 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
1da177e4
LT
486 vecp++;
487 nvecs++;
488 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
489 }
490 break;
491
492 case XFS_DINODE_FMT_LOCAL:
493 ASSERT(!(iip->ili_format.ilf_fields &
494 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
495 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
496 ASSERT(ip->i_afp->if_bytes > 0);
497 ASSERT(ip->i_afp->if_u1.if_data != NULL);
498
4e0d5f92 499 vecp->i_addr = ip->i_afp->if_u1.if_data;
1da177e4
LT
500 /*
501 * Round i_bytes up to a word boundary.
502 * The underlying memory is guaranteed to
503 * to be there by xfs_idata_realloc().
504 */
505 data_bytes = roundup(ip->i_afp->if_bytes, 4);
506 ASSERT((ip->i_afp->if_real_bytes == 0) ||
507 (ip->i_afp->if_real_bytes == data_bytes));
508 vecp->i_len = (int)data_bytes;
4139b3b3 509 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
1da177e4
LT
510 vecp++;
511 nvecs++;
512 iip->ili_format.ilf_asize = (unsigned)data_bytes;
513 }
514 break;
515
516 default:
517 ASSERT(0);
518 break;
519 }
520
1da177e4
LT
521 iip->ili_format.ilf_size = nvecs;
522}
523
524
525/*
526 * This is called to pin the inode associated with the inode log
a14a5ab5 527 * item in memory so it cannot be written out.
1da177e4
LT
528 */
529STATIC void
530xfs_inode_item_pin(
7bfa31d8 531 struct xfs_log_item *lip)
1da177e4 532{
7bfa31d8 533 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
a14a5ab5 534
7bfa31d8
CH
535 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
536
537 trace_xfs_inode_pin(ip, _RET_IP_);
538 atomic_inc(&ip->i_pincount);
1da177e4
LT
539}
540
541
542/*
543 * This is called to unpin the inode associated with the inode log
544 * item which was previously pinned with a call to xfs_inode_item_pin().
a14a5ab5
CH
545 *
546 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
1da177e4 547 */
1da177e4
LT
548STATIC void
549xfs_inode_item_unpin(
7bfa31d8 550 struct xfs_log_item *lip,
9412e318 551 int remove)
1da177e4 552{
7bfa31d8 553 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
a14a5ab5 554
4aaf15d1 555 trace_xfs_inode_unpin(ip, _RET_IP_);
a14a5ab5
CH
556 ASSERT(atomic_read(&ip->i_pincount) > 0);
557 if (atomic_dec_and_test(&ip->i_pincount))
558 wake_up(&ip->i_ipin_wait);
1da177e4
LT
559}
560
1da177e4
LT
561/*
562 * This is called to attempt to lock the inode associated with this
563 * inode log item, in preparation for the push routine which does the actual
564 * iflush. Don't sleep on the inode lock or the flush lock.
565 *
566 * If the flush lock is already held, indicating that the inode has
567 * been or is in the process of being flushed, then (ideally) we'd like to
568 * see if the inode's buffer is still incore, and if so give it a nudge.
569 * We delay doing so until the pushbuf routine, though, to avoid holding
c41564b5 570 * the AIL lock across a call to the blackhole which is the buffer cache.
1da177e4
LT
571 * Also we don't want to sleep in any device strategy routines, which can happen
572 * if we do the subsequent bawrite in here.
573 */
574STATIC uint
575xfs_inode_item_trylock(
7bfa31d8 576 struct xfs_log_item *lip)
1da177e4 577{
7bfa31d8
CH
578 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
579 struct xfs_inode *ip = iip->ili_inode;
1da177e4 580
7bfa31d8 581 if (xfs_ipincount(ip) > 0)
1da177e4 582 return XFS_ITEM_PINNED;
1da177e4 583
7bfa31d8 584 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
1da177e4 585 return XFS_ITEM_LOCKED;
1da177e4
LT
586
587 if (!xfs_iflock_nowait(ip)) {
588 /*
d808f617
DC
589 * inode has already been flushed to the backing buffer,
590 * leave it locked in shared mode, pushbuf routine will
591 * unlock it.
1da177e4 592 */
d808f617 593 return XFS_ITEM_PUSHBUF;
1da177e4
LT
594 }
595
596 /* Stale items should force out the iclog */
597 if (ip->i_flags & XFS_ISTALE) {
598 xfs_ifunlock(ip);
d808f617
DC
599 /*
600 * we hold the AIL lock - notify the unlock routine of this
601 * so it doesn't try to get the lock again.
602 */
1da177e4
LT
603 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
604 return XFS_ITEM_PINNED;
605 }
606
607#ifdef DEBUG
608 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
609 ASSERT(iip->ili_format.ilf_fields != 0);
610 ASSERT(iip->ili_logged == 0);
7bfa31d8 611 ASSERT(lip->li_flags & XFS_LI_IN_AIL);
1da177e4
LT
612 }
613#endif
614 return XFS_ITEM_SUCCESS;
615}
616
617/*
618 * Unlock the inode associated with the inode log item.
619 * Clear the fields of the inode and inode log item that
620 * are specific to the current transaction. If the
621 * hold flags is set, do not unlock the inode.
622 */
623STATIC void
624xfs_inode_item_unlock(
7bfa31d8 625 struct xfs_log_item *lip)
1da177e4 626{
7bfa31d8
CH
627 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
628 struct xfs_inode *ip = iip->ili_inode;
898621d5 629 unsigned short lock_flags;
1da177e4 630
f3ca8738
CH
631 ASSERT(ip->i_itemp != NULL);
632 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
633
634 /*
635 * If the inode needed a separate buffer with which to log
636 * its extents, then free it now.
637 */
638 if (iip->ili_extents_buf != NULL) {
639 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
640 ASSERT(ip->i_d.di_nextents > 0);
641 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
642 ASSERT(ip->i_df.if_bytes > 0);
f0e2d93c 643 kmem_free(iip->ili_extents_buf);
1da177e4
LT
644 iip->ili_extents_buf = NULL;
645 }
646 if (iip->ili_aextents_buf != NULL) {
647 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
648 ASSERT(ip->i_d.di_anextents > 0);
649 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
650 ASSERT(ip->i_afp->if_bytes > 0);
f0e2d93c 651 kmem_free(iip->ili_aextents_buf);
1da177e4
LT
652 iip->ili_aextents_buf = NULL;
653 }
654
898621d5
CH
655 lock_flags = iip->ili_lock_flags;
656 iip->ili_lock_flags = 0;
ddc3415a 657 if (lock_flags)
f3ca8738 658 xfs_iunlock(ip, lock_flags);
1da177e4
LT
659}
660
661/*
de25c181
DC
662 * This is called to find out where the oldest active copy of the inode log
663 * item in the on disk log resides now that the last log write of it completed
664 * at the given lsn. Since we always re-log all dirty data in an inode, the
665 * latest copy in the on disk log is the only one that matters. Therefore,
666 * simply return the given lsn.
667 *
668 * If the inode has been marked stale because the cluster is being freed, we
669 * don't want to (re-)insert this inode into the AIL. There is a race condition
670 * where the cluster buffer may be unpinned before the inode is inserted into
671 * the AIL during transaction committed processing. If the buffer is unpinned
672 * before the inode item has been committed and inserted, then it is possible
1316d4da 673 * for the buffer to be written and IO completes before the inode is inserted
de25c181
DC
674 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
675 * AIL which will never get removed. It will, however, get reclaimed which
676 * triggers an assert in xfs_inode_free() complaining about freein an inode
677 * still in the AIL.
678 *
1316d4da
DC
679 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
680 * transaction committed code knows that it does not need to do any further
681 * processing on the item.
1da177e4 682 */
1da177e4
LT
683STATIC xfs_lsn_t
684xfs_inode_item_committed(
7bfa31d8 685 struct xfs_log_item *lip,
1da177e4
LT
686 xfs_lsn_t lsn)
687{
de25c181
DC
688 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
689 struct xfs_inode *ip = iip->ili_inode;
690
1316d4da
DC
691 if (xfs_iflags_test(ip, XFS_ISTALE)) {
692 xfs_inode_item_unpin(lip, 0);
693 return -1;
694 }
7bfa31d8 695 return lsn;
1da177e4
LT
696}
697
1da177e4
LT
698/*
699 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
700 * failed to get the inode flush lock but did get the inode locked SHARED.
701 * Here we're trying to see if the inode buffer is incore, and if so whether it's
d808f617
DC
702 * marked delayed write. If that's the case, we'll promote it and that will
703 * allow the caller to write the buffer by triggering the xfsbufd to run.
1da177e4 704 */
17b38471 705STATIC bool
1da177e4 706xfs_inode_item_pushbuf(
7bfa31d8 707 struct xfs_log_item *lip)
1da177e4 708{
7bfa31d8
CH
709 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
710 struct xfs_inode *ip = iip->ili_inode;
711 struct xfs_buf *bp;
17b38471 712 bool ret = true;
1da177e4 713
579aa9ca 714 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
1da177e4 715
1da177e4 716 /*
c63942d3
DC
717 * If a flush is not in progress anymore, chances are that the
718 * inode was taken off the AIL. So, just get out.
1da177e4 719 */
c63942d3 720 if (completion_done(&ip->i_flush) ||
7bfa31d8 721 !(lip->li_flags & XFS_LI_IN_AIL)) {
1da177e4 722 xfs_iunlock(ip, XFS_ILOCK_SHARED);
17b38471 723 return true;
1da177e4
LT
724 }
725
7bfa31d8
CH
726 bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
727 iip->ili_format.ilf_len, XBF_TRYLOCK);
1da177e4 728
1da177e4 729 xfs_iunlock(ip, XFS_ILOCK_SHARED);
d808f617 730 if (!bp)
17b38471 731 return true;
d808f617
DC
732 if (XFS_BUF_ISDELAYWRITE(bp))
733 xfs_buf_delwri_promote(bp);
17b38471
CH
734 if (xfs_buf_ispinned(bp))
735 ret = false;
d808f617 736 xfs_buf_relse(bp);
17b38471 737 return ret;
1da177e4
LT
738}
739
1da177e4
LT
740/*
741 * This is called to asynchronously write the inode associated with this
742 * inode log item out to disk. The inode will already have been locked by
743 * a successful call to xfs_inode_item_trylock().
744 */
745STATIC void
746xfs_inode_item_push(
7bfa31d8 747 struct xfs_log_item *lip)
1da177e4 748{
7bfa31d8
CH
749 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
750 struct xfs_inode *ip = iip->ili_inode;
1da177e4 751
579aa9ca 752 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
c63942d3 753 ASSERT(!completion_done(&ip->i_flush));
7bfa31d8 754
1da177e4
LT
755 /*
756 * Since we were able to lock the inode's flush lock and
757 * we found it on the AIL, the inode must be dirty. This
758 * is because the inode is removed from the AIL while still
759 * holding the flush lock in xfs_iflush_done(). Thus, if
760 * we found it in the AIL and were able to obtain the flush
761 * lock without sleeping, then there must not have been
762 * anyone in the process of flushing the inode.
763 */
764 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
765 iip->ili_format.ilf_fields != 0);
766
767 /*
c854363e
DC
768 * Push the inode to it's backing buffer. This will not remove the
769 * inode from the AIL - a further push will be required to trigger a
770 * buffer push. However, this allows all the dirty inodes to be pushed
1bfd8d04
DC
771 * to the buffer before it is pushed to disk. The buffer IO completion
772 * will pull the inode from the AIL, mark it clean and unlock the flush
c854363e 773 * lock.
1da177e4 774 */
1bfd8d04 775 (void) xfs_iflush(ip, SYNC_TRYLOCK);
1da177e4 776 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1da177e4
LT
777}
778
779/*
780 * XXX rcc - this one really has to do something. Probably needs
781 * to stamp in a new field in the incore inode.
782 */
1da177e4
LT
783STATIC void
784xfs_inode_item_committing(
7bfa31d8 785 struct xfs_log_item *lip,
1da177e4
LT
786 xfs_lsn_t lsn)
787{
7bfa31d8 788 INODE_ITEM(lip)->ili_last_lsn = lsn;
1da177e4
LT
789}
790
791/*
792 * This is the ops vector shared by all buf log items.
793 */
272e42b2 794static const struct xfs_item_ops xfs_inode_item_ops = {
7bfa31d8
CH
795 .iop_size = xfs_inode_item_size,
796 .iop_format = xfs_inode_item_format,
797 .iop_pin = xfs_inode_item_pin,
798 .iop_unpin = xfs_inode_item_unpin,
799 .iop_trylock = xfs_inode_item_trylock,
800 .iop_unlock = xfs_inode_item_unlock,
801 .iop_committed = xfs_inode_item_committed,
802 .iop_push = xfs_inode_item_push,
803 .iop_pushbuf = xfs_inode_item_pushbuf,
804 .iop_committing = xfs_inode_item_committing
1da177e4
LT
805};
806
807
808/*
809 * Initialize the inode log item for a newly allocated (in-core) inode.
810 */
811void
812xfs_inode_item_init(
7bfa31d8
CH
813 struct xfs_inode *ip,
814 struct xfs_mount *mp)
1da177e4 815{
7bfa31d8 816 struct xfs_inode_log_item *iip;
1da177e4
LT
817
818 ASSERT(ip->i_itemp == NULL);
819 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
820
1da177e4 821 iip->ili_inode = ip;
43f5efc5
DC
822 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
823 &xfs_inode_item_ops);
1da177e4
LT
824 iip->ili_format.ilf_type = XFS_LI_INODE;
825 iip->ili_format.ilf_ino = ip->i_ino;
92bfc6e7
CH
826 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
827 iip->ili_format.ilf_len = ip->i_imap.im_len;
828 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
1da177e4
LT
829}
830
831/*
832 * Free the inode log item and any memory hanging off of it.
833 */
834void
835xfs_inode_item_destroy(
836 xfs_inode_t *ip)
837{
838#ifdef XFS_TRANS_DEBUG
839 if (ip->i_itemp->ili_root_size != 0) {
f0e2d93c 840 kmem_free(ip->i_itemp->ili_orig_root);
1da177e4
LT
841 }
842#endif
843 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
844}
845
846
847/*
848 * This is the inode flushing I/O completion routine. It is called
849 * from interrupt level when the buffer containing the inode is
850 * flushed to disk. It is responsible for removing the inode item
851 * from the AIL if it has not been re-logged, and unlocking the inode's
852 * flush lock.
30136832
DC
853 *
854 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
855 * list for other inodes that will run this function. We remove them from the
856 * buffer list so we can process all the inode IO completions in one AIL lock
857 * traversal.
1da177e4 858 */
1da177e4
LT
859void
860xfs_iflush_done(
ca30b2a7
CH
861 struct xfs_buf *bp,
862 struct xfs_log_item *lip)
1da177e4 863{
30136832
DC
864 struct xfs_inode_log_item *iip;
865 struct xfs_log_item *blip;
866 struct xfs_log_item *next;
867 struct xfs_log_item *prev;
ca30b2a7 868 struct xfs_ail *ailp = lip->li_ailp;
30136832
DC
869 int need_ail = 0;
870
871 /*
872 * Scan the buffer IO completions for other inodes being completed and
873 * attach them to the current inode log item.
874 */
adadbeef 875 blip = bp->b_fspriv;
30136832
DC
876 prev = NULL;
877 while (blip != NULL) {
878 if (lip->li_cb != xfs_iflush_done) {
879 prev = blip;
880 blip = blip->li_bio_list;
881 continue;
882 }
883
884 /* remove from list */
885 next = blip->li_bio_list;
886 if (!prev) {
adadbeef 887 bp->b_fspriv = next;
30136832
DC
888 } else {
889 prev->li_bio_list = next;
890 }
891
892 /* add to current list */
893 blip->li_bio_list = lip->li_bio_list;
894 lip->li_bio_list = blip;
895
896 /*
897 * while we have the item, do the unlocked check for needing
898 * the AIL lock.
899 */
900 iip = INODE_ITEM(blip);
901 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
902 need_ail++;
903
904 blip = next;
905 }
906
907 /* make sure we capture the state of the initial inode. */
908 iip = INODE_ITEM(lip);
909 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
910 need_ail++;
1da177e4
LT
911
912 /*
913 * We only want to pull the item from the AIL if it is
914 * actually there and its location in the log has not
915 * changed since we started the flush. Thus, we only bother
916 * if the ili_logged flag is set and the inode's lsn has not
917 * changed. First we check the lsn outside
918 * the lock since it's cheaper, and then we recheck while
919 * holding the lock before removing the inode from the AIL.
920 */
30136832
DC
921 if (need_ail) {
922 struct xfs_log_item *log_items[need_ail];
923 int i = 0;
783a2f65 924 spin_lock(&ailp->xa_lock);
30136832
DC
925 for (blip = lip; blip; blip = blip->li_bio_list) {
926 iip = INODE_ITEM(blip);
927 if (iip->ili_logged &&
928 blip->li_lsn == iip->ili_flush_lsn) {
929 log_items[i++] = blip;
930 }
931 ASSERT(i <= need_ail);
1da177e4 932 }
30136832
DC
933 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
934 xfs_trans_ail_delete_bulk(ailp, log_items, i);
1da177e4
LT
935 }
936
1da177e4
LT
937
938 /*
30136832
DC
939 * clean up and unlock the flush lock now we are done. We can clear the
940 * ili_last_fields bits now that we know that the data corresponding to
941 * them is safely on disk.
1da177e4 942 */
30136832
DC
943 for (blip = lip; blip; blip = next) {
944 next = blip->li_bio_list;
945 blip->li_bio_list = NULL;
946
947 iip = INODE_ITEM(blip);
948 iip->ili_logged = 0;
949 iip->ili_last_fields = 0;
950 xfs_ifunlock(iip->ili_inode);
951 }
1da177e4
LT
952}
953
954/*
955 * This is the inode flushing abort routine. It is called
956 * from xfs_iflush when the filesystem is shutting down to clean
957 * up the inode state.
958 * It is responsible for removing the inode item
959 * from the AIL if it has not been re-logged, and unlocking the inode's
960 * flush lock.
961 */
962void
963xfs_iflush_abort(
964 xfs_inode_t *ip)
965{
783a2f65 966 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 967
1da177e4 968 if (iip) {
783a2f65 969 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1da177e4 970 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65 971 spin_lock(&ailp->xa_lock);
1da177e4 972 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65
DC
973 /* xfs_trans_ail_delete() drops the AIL lock. */
974 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
1da177e4 975 } else
783a2f65 976 spin_unlock(&ailp->xa_lock);
1da177e4
LT
977 }
978 iip->ili_logged = 0;
979 /*
980 * Clear the ili_last_fields bits now that we know that the
981 * data corresponding to them is safely on disk.
982 */
983 iip->ili_last_fields = 0;
984 /*
985 * Clear the inode logging fields so no more flushes are
986 * attempted.
987 */
988 iip->ili_format.ilf_fields = 0;
989 }
990 /*
991 * Release the inode's flush lock since we're done with it.
992 */
993 xfs_ifunlock(ip);
994}
995
996void
997xfs_istale_done(
ca30b2a7
CH
998 struct xfs_buf *bp,
999 struct xfs_log_item *lip)
1da177e4 1000{
ca30b2a7 1001 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
1da177e4 1002}
6d192a9b
TS
1003
1004/*
1005 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1006 * (which can have different field alignments) to the native version
1007 */
1008int
1009xfs_inode_item_format_convert(
1010 xfs_log_iovec_t *buf,
1011 xfs_inode_log_format_t *in_f)
1012{
1013 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
4e0d5f92 1014 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
6d192a9b 1015
6d192a9b
TS
1016 in_f->ilf_type = in_f32->ilf_type;
1017 in_f->ilf_size = in_f32->ilf_size;
1018 in_f->ilf_fields = in_f32->ilf_fields;
1019 in_f->ilf_asize = in_f32->ilf_asize;
1020 in_f->ilf_dsize = in_f32->ilf_dsize;
1021 in_f->ilf_ino = in_f32->ilf_ino;
1022 /* copy biggest field of ilf_u */
1023 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1024 in_f32->ilf_u.ilfu_uuid.__u_bits,
1025 sizeof(uuid_t));
1026 in_f->ilf_blkno = in_f32->ilf_blkno;
1027 in_f->ilf_len = in_f32->ilf_len;
1028 in_f->ilf_boffset = in_f32->ilf_boffset;
1029 return 0;
1030 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
4e0d5f92 1031 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
6d192a9b 1032
6d192a9b
TS
1033 in_f->ilf_type = in_f64->ilf_type;
1034 in_f->ilf_size = in_f64->ilf_size;
1035 in_f->ilf_fields = in_f64->ilf_fields;
1036 in_f->ilf_asize = in_f64->ilf_asize;
1037 in_f->ilf_dsize = in_f64->ilf_dsize;
1038 in_f->ilf_ino = in_f64->ilf_ino;
1039 /* copy biggest field of ilf_u */
1040 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1041 in_f64->ilf_u.ilfu_uuid.__u_bits,
1042 sizeof(uuid_t));
1043 in_f->ilf_blkno = in_f64->ilf_blkno;
1044 in_f->ilf_len = in_f64->ilf_len;
1045 in_f->ilf_boffset = in_f64->ilf_boffset;
1046 return 0;
1047 }
1048 return EFSCORRUPTED;
1049}
This page took 0.896155 seconds and 5 git commands to generate.