Merge remote-tracking branch 'origin/next' into kvm-ppc-next
[deliverable/linux.git] / fs / xfs / xfs_log_cil.c
CommitLineData
71e330b5
DC
1/*
2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write the Free Software Foundation,
15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
16 */
17
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
71e330b5 21#include "xfs_log.h"
71e330b5
DC
22#include "xfs_trans.h"
23#include "xfs_trans_priv.h"
24#include "xfs_log_priv.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
71e330b5
DC
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_alloc.h"
efc27b52 30#include "xfs_extent_busy.h"
e84661aa 31#include "xfs_discard.h"
71e330b5 32
71e330b5
DC
33/*
34 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
35 * recover, so we don't allow failure here. Also, we allocate in a context that
36 * we don't want to be issuing transactions from, so we need to tell the
37 * allocation code this as well.
38 *
39 * We don't reserve any space for the ticket - we are going to steal whatever
40 * space we require from transactions as they commit. To ensure we reserve all
41 * the space required, we need to set the current reservation of the ticket to
42 * zero so that we know to steal the initial transaction overhead from the
43 * first transaction commit.
44 */
45static struct xlog_ticket *
46xlog_cil_ticket_alloc(
f7bdf03a 47 struct xlog *log)
71e330b5
DC
48{
49 struct xlog_ticket *tic;
50
51 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
52 KM_SLEEP|KM_NOFS);
53 tic->t_trans_type = XFS_TRANS_CHECKPOINT;
54
55 /*
56 * set the current reservation to zero so we know to steal the basic
57 * transaction overhead reservation from the first transaction commit.
58 */
59 tic->t_curr_res = 0;
60 return tic;
61}
62
63/*
64 * After the first stage of log recovery is done, we know where the head and
65 * tail of the log are. We need this log initialisation done before we can
66 * initialise the first CIL checkpoint context.
67 *
68 * Here we allocate a log ticket to track space usage during a CIL push. This
69 * ticket is passed to xlog_write() directly so that we don't slowly leak log
70 * space by failing to account for space used by log headers and additional
71 * region headers for split regions.
72 */
73void
74xlog_cil_init_post_recovery(
f7bdf03a 75 struct xlog *log)
71e330b5 76{
71e330b5
DC
77 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
78 log->l_cilp->xc_ctx->sequence = 1;
79 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
80 log->l_curr_block);
81}
82
71e330b5
DC
83/*
84 * Format log item into a flat buffers
85 *
86 * For delayed logging, we need to hold a formatted buffer containing all the
87 * changes on the log item. This enables us to relog the item in memory and
88 * write it out asynchronously without needing to relock the object that was
89 * modified at the time it gets written into the iclog.
90 *
91 * This function builds a vector for the changes in each log item in the
92 * transaction. It then works out the length of the buffer needed for each log
93 * item, allocates them and formats the vector for the item into the buffer.
94 * The buffer is then attached to the log item are then inserted into the
95 * Committed Item List for tracking until the next checkpoint is written out.
96 *
97 * We don't set up region headers during this process; we simply copy the
98 * regions into the flat buffer. We can do this because we still have to do a
99 * formatting step to write the regions into the iclog buffer. Writing the
100 * ophdrs during the iclog write means that we can support splitting large
101 * regions across iclog boundares without needing a change in the format of the
102 * item/region encapsulation.
103 *
104 * Hence what we need to do now is change the rewrite the vector array to point
105 * to the copied region inside the buffer we just allocated. This allows us to
106 * format the regions into the iclog as though they are being formatted
107 * directly out of the objects themselves.
108 */
0244b960
CH
109static struct xfs_log_vec *
110xlog_cil_prepare_log_vecs(
111 struct xfs_trans *tp)
71e330b5 112{
0244b960
CH
113 struct xfs_log_item_desc *lidp;
114 struct xfs_log_vec *lv = NULL;
115 struct xfs_log_vec *ret_lv = NULL;
71e330b5 116
0244b960
CH
117
118 /* Bail out if we didn't find a log item. */
119 if (list_empty(&tp->t_items)) {
120 ASSERT(0);
121 return NULL;
122 }
123
124 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
125 struct xfs_log_vec *new_lv;
71e330b5
DC
126 void *ptr;
127 int index;
128 int len = 0;
b3934213 129 uint niovecs;
fd63875c 130 bool ordered = false;
71e330b5 131
0244b960
CH
132 /* Skip items which aren't dirty in this transaction. */
133 if (!(lidp->lid_flags & XFS_LID_DIRTY))
134 continue;
135
136 /* Skip items that do not have any vectors for writing */
b3934213
CH
137 niovecs = IOP_SIZE(lidp->lid_item);
138 if (!niovecs)
0244b960
CH
139 continue;
140
fd63875c
DC
141 /*
142 * Ordered items need to be tracked but we do not wish to write
143 * them. We need a logvec to track the object, but we do not
144 * need an iovec or buffer to be allocated for copying data.
145 */
146 if (niovecs == XFS_LOG_VEC_ORDERED) {
147 ordered = true;
148 niovecs = 0;
149 }
150
0244b960 151 new_lv = kmem_zalloc(sizeof(*new_lv) +
b3934213 152 niovecs * sizeof(struct xfs_log_iovec),
ac14876c 153 KM_SLEEP|KM_NOFS);
0244b960 154
fd63875c
DC
155 new_lv->lv_item = lidp->lid_item;
156 new_lv->lv_niovecs = niovecs;
157 if (ordered) {
158 /* track as an ordered logvec */
159 new_lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
160 goto next;
161 }
162
0244b960
CH
163 /* The allocated iovec region lies beyond the log vector. */
164 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
0244b960 165
71e330b5 166 /* build the vector array and calculate it's length */
0244b960
CH
167 IOP_FORMAT(new_lv->lv_item, new_lv->lv_iovecp);
168 for (index = 0; index < new_lv->lv_niovecs; index++)
169 len += new_lv->lv_iovecp[index].i_len;
71e330b5 170
0244b960
CH
171 new_lv->lv_buf_len = len;
172 new_lv->lv_buf = kmem_alloc(new_lv->lv_buf_len,
173 KM_SLEEP|KM_NOFS);
174 ptr = new_lv->lv_buf;
71e330b5 175
0244b960
CH
176 for (index = 0; index < new_lv->lv_niovecs; index++) {
177 struct xfs_log_iovec *vec = &new_lv->lv_iovecp[index];
71e330b5
DC
178
179 memcpy(ptr, vec->i_addr, vec->i_len);
180 vec->i_addr = ptr;
181 ptr += vec->i_len;
182 }
0244b960
CH
183 ASSERT(ptr == new_lv->lv_buf + new_lv->lv_buf_len);
184
fd63875c 185next:
0244b960
CH
186 if (!ret_lv)
187 ret_lv = new_lv;
188 else
189 lv->lv_next = new_lv;
190 lv = new_lv;
3b93c7aa 191 }
0244b960
CH
192
193 return ret_lv;
3b93c7aa 194}
71e330b5 195
d1583a38
DC
196/*
197 * Prepare the log item for insertion into the CIL. Calculate the difference in
198 * log space and vectors it will consume, and if it is a new item pin it as
199 * well.
200 */
201STATIC void
202xfs_cil_prepare_item(
f7bdf03a 203 struct xlog *log,
d1583a38
DC
204 struct xfs_log_vec *lv,
205 int *len,
206 int *diff_iovecs)
207{
208 struct xfs_log_vec *old = lv->lv_item->li_lv;
209
210 if (old) {
211 /* existing lv on log item, space used is a delta */
fd63875c
DC
212 ASSERT((old->lv_buf && old->lv_buf_len && old->lv_niovecs) ||
213 old->lv_buf_len == XFS_LOG_VEC_ORDERED);
214
215 /*
216 * If the new item is ordered, keep the old one that is already
217 * tracking dirty or ordered regions
218 */
219 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
220 ASSERT(!lv->lv_buf);
221 kmem_free(lv);
222 return;
223 }
d1583a38
DC
224
225 *len += lv->lv_buf_len - old->lv_buf_len;
226 *diff_iovecs += lv->lv_niovecs - old->lv_niovecs;
227 kmem_free(old->lv_buf);
228 kmem_free(old);
229 } else {
230 /* new lv, must pin the log item */
231 ASSERT(!lv->lv_item->li_lv);
d1583a38 232
fd63875c
DC
233 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
234 *len += lv->lv_buf_len;
235 *diff_iovecs += lv->lv_niovecs;
236 }
d1583a38
DC
237 IOP_PIN(lv->lv_item);
238
239 }
240
241 /* attach new log vector to log item */
242 lv->lv_item->li_lv = lv;
243
244 /*
245 * If this is the first time the item is being committed to the
246 * CIL, store the sequence number on the log item so we can
247 * tell in future commits whether this is the first checkpoint
248 * the item is being committed into.
249 */
250 if (!lv->lv_item->li_seq)
251 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
252}
253
254/*
255 * Insert the log items into the CIL and calculate the difference in space
256 * consumed by the item. Add the space to the checkpoint ticket and calculate
257 * if the change requires additional log metadata. If it does, take that space
42b2aa86 258 * as well. Remove the amount of space we added to the checkpoint ticket from
d1583a38
DC
259 * the current transaction ticket so that the accounting works out correctly.
260 */
3b93c7aa
DC
261static void
262xlog_cil_insert_items(
f7bdf03a 263 struct xlog *log,
3b93c7aa 264 struct xfs_log_vec *log_vector,
d1583a38 265 struct xlog_ticket *ticket)
3b93c7aa 266{
d1583a38
DC
267 struct xfs_cil *cil = log->l_cilp;
268 struct xfs_cil_ctx *ctx = cil->xc_ctx;
269 struct xfs_log_vec *lv;
270 int len = 0;
271 int diff_iovecs = 0;
272 int iclog_space;
3b93c7aa
DC
273
274 ASSERT(log_vector);
d1583a38
DC
275
276 /*
277 * Do all the accounting aggregation and switching of log vectors
278 * around in a separate loop to the insertion of items into the CIL.
279 * Then we can do a separate loop to update the CIL within a single
280 * lock/unlock pair. This reduces the number of round trips on the CIL
281 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall
282 * hold time for the transaction commit.
283 *
284 * If this is the first time the item is being placed into the CIL in
285 * this context, pin it so it can't be written to disk until the CIL is
286 * flushed to the iclog and the iclog written to disk.
287 *
288 * We can do this safely because the context can't checkpoint until we
289 * are done so it doesn't matter exactly how we update the CIL.
290 */
d1583a38 291 spin_lock(&cil->xc_cil_lock);
fd63875c
DC
292 for (lv = log_vector; lv; ) {
293 struct xfs_log_vec *next = lv->lv_next;
d1583a38 294
fd63875c
DC
295 ASSERT(lv->lv_item->li_lv || list_empty(&lv->lv_item->li_cil));
296 lv->lv_next = NULL;
297
298 /*
299 * xfs_cil_prepare_item() may free the lv, so move the item on
300 * the CIL first.
301 */
d1583a38 302 list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil);
fd63875c
DC
303 xfs_cil_prepare_item(log, lv, &len, &diff_iovecs);
304 lv = next;
305 }
d1583a38 306
fd63875c
DC
307 /* account for space used by new iovec headers */
308 len += diff_iovecs * sizeof(xlog_op_header_t);
d1583a38
DC
309 ctx->nvecs += diff_iovecs;
310
311 /*
312 * Now transfer enough transaction reservation to the context ticket
313 * for the checkpoint. The context ticket is special - the unit
314 * reservation has to grow as well as the current reservation as we
315 * steal from tickets so we can correctly determine the space used
316 * during the transaction commit.
317 */
318 if (ctx->ticket->t_curr_res == 0) {
319 /* first commit in checkpoint, steal the header reservation */
320 ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
321 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
322 ticket->t_curr_res -= ctx->ticket->t_unit_res;
323 }
324
325 /* do we need space for more log record headers? */
326 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
327 if (len > 0 && (ctx->space_used / iclog_space !=
328 (ctx->space_used + len) / iclog_space)) {
329 int hdrs;
330
331 hdrs = (len + iclog_space - 1) / iclog_space;
332 /* need to take into account split region headers, too */
333 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
334 ctx->ticket->t_unit_res += hdrs;
335 ctx->ticket->t_curr_res += hdrs;
336 ticket->t_curr_res -= hdrs;
337 ASSERT(ticket->t_curr_res >= len);
338 }
339 ticket->t_curr_res -= len;
340 ctx->space_used += len;
341
342 spin_unlock(&cil->xc_cil_lock);
71e330b5
DC
343}
344
345static void
346xlog_cil_free_logvec(
347 struct xfs_log_vec *log_vector)
348{
349 struct xfs_log_vec *lv;
350
351 for (lv = log_vector; lv; ) {
352 struct xfs_log_vec *next = lv->lv_next;
353 kmem_free(lv->lv_buf);
354 kmem_free(lv);
355 lv = next;
356 }
357}
358
71e330b5
DC
359/*
360 * Mark all items committed and clear busy extents. We free the log vector
361 * chains in a separate pass so that we unpin the log items as quickly as
362 * possible.
363 */
364static void
365xlog_cil_committed(
366 void *args,
367 int abort)
368{
369 struct xfs_cil_ctx *ctx = args;
e84661aa 370 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
71e330b5 371
0e57f6a3
DC
372 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
373 ctx->start_lsn, abort);
71e330b5 374
4ecbfe63
DC
375 xfs_extent_busy_sort(&ctx->busy_extents);
376 xfs_extent_busy_clear(mp, &ctx->busy_extents,
e84661aa 377 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
71e330b5
DC
378
379 spin_lock(&ctx->cil->xc_cil_lock);
380 list_del(&ctx->committing);
381 spin_unlock(&ctx->cil->xc_cil_lock);
382
383 xlog_cil_free_logvec(ctx->lv_chain);
e84661aa
CH
384
385 if (!list_empty(&ctx->busy_extents)) {
386 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
387
388 xfs_discard_extents(mp, &ctx->busy_extents);
4ecbfe63 389 xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
e84661aa
CH
390 }
391
71e330b5
DC
392 kmem_free(ctx);
393}
394
395/*
a44f13ed
DC
396 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
397 * is a background flush and so we can chose to ignore it. Otherwise, if the
398 * current sequence is the same as @push_seq we need to do a flush. If
399 * @push_seq is less than the current sequence, then it has already been
400 * flushed and we don't need to do anything - the caller will wait for it to
401 * complete if necessary.
402 *
403 * @push_seq is a value rather than a flag because that allows us to do an
404 * unlocked check of the sequence number for a match. Hence we can allows log
405 * forces to run racily and not issue pushes for the same sequence twice. If we
406 * get a race between multiple pushes for the same sequence they will block on
407 * the first one and then abort, hence avoiding needless pushes.
71e330b5 408 */
a44f13ed 409STATIC int
71e330b5 410xlog_cil_push(
f7bdf03a 411 struct xlog *log)
71e330b5
DC
412{
413 struct xfs_cil *cil = log->l_cilp;
414 struct xfs_log_vec *lv;
415 struct xfs_cil_ctx *ctx;
416 struct xfs_cil_ctx *new_ctx;
417 struct xlog_in_core *commit_iclog;
418 struct xlog_ticket *tic;
71e330b5 419 int num_iovecs;
71e330b5
DC
420 int error = 0;
421 struct xfs_trans_header thdr;
422 struct xfs_log_iovec lhdr;
423 struct xfs_log_vec lvhdr = { NULL };
424 xfs_lsn_t commit_lsn;
4c2d542f 425 xfs_lsn_t push_seq;
71e330b5
DC
426
427 if (!cil)
428 return 0;
429
71e330b5
DC
430 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
431 new_ctx->ticket = xlog_cil_ticket_alloc(log);
432
4c2d542f 433 down_write(&cil->xc_ctx_lock);
71e330b5
DC
434 ctx = cil->xc_ctx;
435
4c2d542f
DC
436 spin_lock(&cil->xc_cil_lock);
437 push_seq = cil->xc_push_seq;
438 ASSERT(push_seq <= ctx->sequence);
71e330b5 439
4c2d542f
DC
440 /*
441 * Check if we've anything to push. If there is nothing, then we don't
442 * move on to a new sequence number and so we have to be able to push
443 * this sequence again later.
444 */
445 if (list_empty(&cil->xc_cil)) {
446 cil->xc_push_seq = 0;
447 spin_unlock(&cil->xc_cil_lock);
a44f13ed 448 goto out_skip;
4c2d542f
DC
449 }
450 spin_unlock(&cil->xc_cil_lock);
451
a44f13ed
DC
452
453 /* check for a previously pushed seqeunce */
4c2d542f 454 if (push_seq < cil->xc_ctx->sequence)
df806158
DC
455 goto out_skip;
456
71e330b5
DC
457 /*
458 * pull all the log vectors off the items in the CIL, and
459 * remove the items from the CIL. We don't need the CIL lock
460 * here because it's only needed on the transaction commit
461 * side which is currently locked out by the flush lock.
462 */
463 lv = NULL;
71e330b5 464 num_iovecs = 0;
71e330b5
DC
465 while (!list_empty(&cil->xc_cil)) {
466 struct xfs_log_item *item;
71e330b5
DC
467
468 item = list_first_entry(&cil->xc_cil,
469 struct xfs_log_item, li_cil);
470 list_del_init(&item->li_cil);
471 if (!ctx->lv_chain)
472 ctx->lv_chain = item->li_lv;
473 else
474 lv->lv_next = item->li_lv;
475 lv = item->li_lv;
476 item->li_lv = NULL;
71e330b5 477 num_iovecs += lv->lv_niovecs;
71e330b5
DC
478 }
479
480 /*
481 * initialise the new context and attach it to the CIL. Then attach
482 * the current context to the CIL committing lsit so it can be found
483 * during log forces to extract the commit lsn of the sequence that
484 * needs to be forced.
485 */
486 INIT_LIST_HEAD(&new_ctx->committing);
487 INIT_LIST_HEAD(&new_ctx->busy_extents);
488 new_ctx->sequence = ctx->sequence + 1;
489 new_ctx->cil = cil;
490 cil->xc_ctx = new_ctx;
491
a44f13ed
DC
492 /*
493 * mirror the new sequence into the cil structure so that we can do
494 * unlocked checks against the current sequence in log forces without
495 * risking deferencing a freed context pointer.
496 */
497 cil->xc_current_sequence = new_ctx->sequence;
498
71e330b5
DC
499 /*
500 * The switch is now done, so we can drop the context lock and move out
501 * of a shared context. We can't just go straight to the commit record,
502 * though - we need to synchronise with previous and future commits so
503 * that the commit records are correctly ordered in the log to ensure
504 * that we process items during log IO completion in the correct order.
505 *
506 * For example, if we get an EFI in one checkpoint and the EFD in the
507 * next (e.g. due to log forces), we do not want the checkpoint with
508 * the EFD to be committed before the checkpoint with the EFI. Hence
509 * we must strictly order the commit records of the checkpoints so
510 * that: a) the checkpoint callbacks are attached to the iclogs in the
511 * correct order; and b) the checkpoints are replayed in correct order
512 * in log recovery.
513 *
514 * Hence we need to add this context to the committing context list so
515 * that higher sequences will wait for us to write out a commit record
516 * before they do.
517 */
518 spin_lock(&cil->xc_cil_lock);
519 list_add(&ctx->committing, &cil->xc_committing);
520 spin_unlock(&cil->xc_cil_lock);
521 up_write(&cil->xc_ctx_lock);
522
523 /*
524 * Build a checkpoint transaction header and write it to the log to
525 * begin the transaction. We need to account for the space used by the
526 * transaction header here as it is not accounted for in xlog_write().
527 *
528 * The LSN we need to pass to the log items on transaction commit is
529 * the LSN reported by the first log vector write. If we use the commit
530 * record lsn then we can move the tail beyond the grant write head.
531 */
532 tic = ctx->ticket;
533 thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
534 thdr.th_type = XFS_TRANS_CHECKPOINT;
535 thdr.th_tid = tic->t_tid;
536 thdr.th_num_items = num_iovecs;
4e0d5f92 537 lhdr.i_addr = &thdr;
71e330b5
DC
538 lhdr.i_len = sizeof(xfs_trans_header_t);
539 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
540 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
541
542 lvhdr.lv_niovecs = 1;
543 lvhdr.lv_iovecp = &lhdr;
544 lvhdr.lv_next = ctx->lv_chain;
545
546 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
547 if (error)
7db37c5e 548 goto out_abort_free_ticket;
71e330b5
DC
549
550 /*
551 * now that we've written the checkpoint into the log, strictly
552 * order the commit records so replay will get them in the right order.
553 */
554restart:
555 spin_lock(&cil->xc_cil_lock);
556 list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
557 /*
558 * Higher sequences will wait for this one so skip them.
559 * Don't wait for own own sequence, either.
560 */
561 if (new_ctx->sequence >= ctx->sequence)
562 continue;
563 if (!new_ctx->commit_lsn) {
564 /*
565 * It is still being pushed! Wait for the push to
566 * complete, then start again from the beginning.
567 */
eb40a875 568 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
71e330b5
DC
569 goto restart;
570 }
571 }
572 spin_unlock(&cil->xc_cil_lock);
573
7db37c5e 574 /* xfs_log_done always frees the ticket on error. */
71e330b5 575 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
7db37c5e 576 if (commit_lsn == -1)
71e330b5
DC
577 goto out_abort;
578
579 /* attach all the transactions w/ busy extents to iclog */
580 ctx->log_cb.cb_func = xlog_cil_committed;
581 ctx->log_cb.cb_arg = ctx;
582 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
583 if (error)
584 goto out_abort;
585
586 /*
587 * now the checkpoint commit is complete and we've attached the
588 * callbacks to the iclog we can assign the commit LSN to the context
589 * and wake up anyone who is waiting for the commit to complete.
590 */
591 spin_lock(&cil->xc_cil_lock);
592 ctx->commit_lsn = commit_lsn;
eb40a875 593 wake_up_all(&cil->xc_commit_wait);
71e330b5
DC
594 spin_unlock(&cil->xc_cil_lock);
595
596 /* release the hounds! */
597 return xfs_log_release_iclog(log->l_mp, commit_iclog);
598
599out_skip:
600 up_write(&cil->xc_ctx_lock);
601 xfs_log_ticket_put(new_ctx->ticket);
602 kmem_free(new_ctx);
603 return 0;
604
7db37c5e
DC
605out_abort_free_ticket:
606 xfs_log_ticket_put(tic);
71e330b5
DC
607out_abort:
608 xlog_cil_committed(ctx, XFS_LI_ABORTED);
609 return XFS_ERROR(EIO);
610}
611
4c2d542f
DC
612static void
613xlog_cil_push_work(
614 struct work_struct *work)
615{
616 struct xfs_cil *cil = container_of(work, struct xfs_cil,
617 xc_push_work);
618 xlog_cil_push(cil->xc_log);
619}
620
621/*
622 * We need to push CIL every so often so we don't cache more than we can fit in
623 * the log. The limit really is that a checkpoint can't be more than half the
624 * log (the current checkpoint is not allowed to overwrite the previous
625 * checkpoint), but commit latency and memory usage limit this to a smaller
626 * size.
627 */
628static void
629xlog_cil_push_background(
f7bdf03a 630 struct xlog *log)
4c2d542f
DC
631{
632 struct xfs_cil *cil = log->l_cilp;
633
634 /*
635 * The cil won't be empty because we are called while holding the
636 * context lock so whatever we added to the CIL will still be there
637 */
638 ASSERT(!list_empty(&cil->xc_cil));
639
640 /*
641 * don't do a background push if we haven't used up all the
642 * space available yet.
643 */
644 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
645 return;
646
647 spin_lock(&cil->xc_cil_lock);
648 if (cil->xc_push_seq < cil->xc_current_sequence) {
649 cil->xc_push_seq = cil->xc_current_sequence;
650 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
651 }
652 spin_unlock(&cil->xc_cil_lock);
653
654}
655
656static void
657xlog_cil_push_foreground(
f7bdf03a 658 struct xlog *log,
4c2d542f
DC
659 xfs_lsn_t push_seq)
660{
661 struct xfs_cil *cil = log->l_cilp;
662
663 if (!cil)
664 return;
665
666 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
667
668 /* start on any pending background push to minimise wait time on it */
669 flush_work(&cil->xc_push_work);
670
671 /*
672 * If the CIL is empty or we've already pushed the sequence then
673 * there's no work we need to do.
674 */
675 spin_lock(&cil->xc_cil_lock);
676 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
677 spin_unlock(&cil->xc_cil_lock);
678 return;
679 }
680
681 cil->xc_push_seq = push_seq;
682 spin_unlock(&cil->xc_cil_lock);
683
684 /* do the push now */
685 xlog_cil_push(log);
686}
687
a44f13ed
DC
688/*
689 * Commit a transaction with the given vector to the Committed Item List.
690 *
691 * To do this, we need to format the item, pin it in memory if required and
692 * account for the space used by the transaction. Once we have done that we
693 * need to release the unused reservation for the transaction, attach the
694 * transaction to the checkpoint context so we carry the busy extents through
695 * to checkpoint completion, and then unlock all the items in the transaction.
696 *
a44f13ed
DC
697 * Called with the context lock already held in read mode to lock out
698 * background commit, returns without it held once background commits are
699 * allowed again.
700 */
0244b960 701int
a44f13ed
DC
702xfs_log_commit_cil(
703 struct xfs_mount *mp,
704 struct xfs_trans *tp,
a44f13ed
DC
705 xfs_lsn_t *commit_lsn,
706 int flags)
707{
f7bdf03a 708 struct xlog *log = mp->m_log;
a44f13ed 709 int log_flags = 0;
0244b960 710 struct xfs_log_vec *log_vector;
a44f13ed
DC
711
712 if (flags & XFS_TRANS_RELEASE_LOG_RES)
713 log_flags = XFS_LOG_REL_PERM_RESERV;
714
3b93c7aa 715 /*
0244b960 716 * Do all the hard work of formatting items (including memory
3b93c7aa
DC
717 * allocation) outside the CIL context lock. This prevents stalling CIL
718 * pushes when we are low on memory and a transaction commit spends a
719 * lot of time in memory reclaim.
720 */
0244b960
CH
721 log_vector = xlog_cil_prepare_log_vecs(tp);
722 if (!log_vector)
723 return ENOMEM;
3b93c7aa 724
a44f13ed
DC
725 /* lock out background commit */
726 down_read(&log->l_cilp->xc_ctx_lock);
d1583a38
DC
727 if (commit_lsn)
728 *commit_lsn = log->l_cilp->xc_ctx->sequence;
729
fd63875c 730 /* xlog_cil_insert_items() destroys log_vector list */
d1583a38 731 xlog_cil_insert_items(log, log_vector, tp->t_ticket);
a44f13ed
DC
732
733 /* check we didn't blow the reservation */
734 if (tp->t_ticket->t_curr_res < 0)
735 xlog_print_tic_res(log->l_mp, tp->t_ticket);
736
737 /* attach the transaction to the CIL if it has any busy extents */
738 if (!list_empty(&tp->t_busy)) {
739 spin_lock(&log->l_cilp->xc_cil_lock);
740 list_splice_init(&tp->t_busy,
741 &log->l_cilp->xc_ctx->busy_extents);
742 spin_unlock(&log->l_cilp->xc_cil_lock);
743 }
744
745 tp->t_commit_lsn = *commit_lsn;
746 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
747 xfs_trans_unreserve_and_mod_sb(tp);
748
749 /*
750 * Once all the items of the transaction have been copied to the CIL,
751 * the items can be unlocked and freed.
752 *
753 * This needs to be done before we drop the CIL context lock because we
754 * have to update state in the log items and unlock them before they go
755 * to disk. If we don't, then the CIL checkpoint can race with us and
756 * we can run checkpoint completion before we've updated and unlocked
757 * the log items. This affects (at least) processing of stale buffers,
758 * inodes and EFIs.
759 */
760 xfs_trans_free_items(tp, *commit_lsn, 0);
761
4c2d542f 762 xlog_cil_push_background(log);
a44f13ed
DC
763
764 up_read(&log->l_cilp->xc_ctx_lock);
0244b960 765 return 0;
a44f13ed
DC
766}
767
71e330b5
DC
768/*
769 * Conditionally push the CIL based on the sequence passed in.
770 *
771 * We only need to push if we haven't already pushed the sequence
772 * number given. Hence the only time we will trigger a push here is
773 * if the push sequence is the same as the current context.
774 *
775 * We return the current commit lsn to allow the callers to determine if a
776 * iclog flush is necessary following this call.
71e330b5
DC
777 */
778xfs_lsn_t
a44f13ed 779xlog_cil_force_lsn(
f7bdf03a 780 struct xlog *log,
a44f13ed 781 xfs_lsn_t sequence)
71e330b5
DC
782{
783 struct xfs_cil *cil = log->l_cilp;
784 struct xfs_cil_ctx *ctx;
785 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
786
a44f13ed
DC
787 ASSERT(sequence <= cil->xc_current_sequence);
788
789 /*
790 * check to see if we need to force out the current context.
791 * xlog_cil_push() handles racing pushes for the same sequence,
792 * so no need to deal with it here.
793 */
4c2d542f 794 xlog_cil_push_foreground(log, sequence);
71e330b5
DC
795
796 /*
797 * See if we can find a previous sequence still committing.
71e330b5
DC
798 * We need to wait for all previous sequence commits to complete
799 * before allowing the force of push_seq to go ahead. Hence block
800 * on commits for those as well.
801 */
a44f13ed 802restart:
71e330b5 803 spin_lock(&cil->xc_cil_lock);
71e330b5 804 list_for_each_entry(ctx, &cil->xc_committing, committing) {
a44f13ed 805 if (ctx->sequence > sequence)
71e330b5
DC
806 continue;
807 if (!ctx->commit_lsn) {
808 /*
809 * It is still being pushed! Wait for the push to
810 * complete, then start again from the beginning.
811 */
eb40a875 812 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
71e330b5
DC
813 goto restart;
814 }
a44f13ed 815 if (ctx->sequence != sequence)
71e330b5
DC
816 continue;
817 /* found it! */
818 commit_lsn = ctx->commit_lsn;
819 }
820 spin_unlock(&cil->xc_cil_lock);
821 return commit_lsn;
822}
ccf7c23f
DC
823
824/*
825 * Check if the current log item was first committed in this sequence.
826 * We can't rely on just the log item being in the CIL, we have to check
827 * the recorded commit sequence number.
828 *
829 * Note: for this to be used in a non-racy manner, it has to be called with
830 * CIL flushing locked out. As a result, it should only be used during the
831 * transaction commit process when deciding what to format into the item.
832 */
833bool
834xfs_log_item_in_current_chkpt(
835 struct xfs_log_item *lip)
836{
837 struct xfs_cil_ctx *ctx;
838
ccf7c23f
DC
839 if (list_empty(&lip->li_cil))
840 return false;
841
842 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
843
844 /*
845 * li_seq is written on the first commit of a log item to record the
846 * first checkpoint it is written to. Hence if it is different to the
847 * current sequence, we're in a new checkpoint.
848 */
849 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
850 return false;
851 return true;
852}
4c2d542f
DC
853
854/*
855 * Perform initial CIL structure initialisation.
856 */
857int
858xlog_cil_init(
f7bdf03a 859 struct xlog *log)
4c2d542f
DC
860{
861 struct xfs_cil *cil;
862 struct xfs_cil_ctx *ctx;
863
864 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
865 if (!cil)
866 return ENOMEM;
867
868 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
869 if (!ctx) {
870 kmem_free(cil);
871 return ENOMEM;
872 }
873
874 INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
875 INIT_LIST_HEAD(&cil->xc_cil);
876 INIT_LIST_HEAD(&cil->xc_committing);
877 spin_lock_init(&cil->xc_cil_lock);
878 init_rwsem(&cil->xc_ctx_lock);
879 init_waitqueue_head(&cil->xc_commit_wait);
880
881 INIT_LIST_HEAD(&ctx->committing);
882 INIT_LIST_HEAD(&ctx->busy_extents);
883 ctx->sequence = 1;
884 ctx->cil = cil;
885 cil->xc_ctx = ctx;
886 cil->xc_current_sequence = ctx->sequence;
887
888 cil->xc_log = log;
889 log->l_cilp = cil;
890 return 0;
891}
892
893void
894xlog_cil_destroy(
f7bdf03a 895 struct xlog *log)
4c2d542f
DC
896{
897 if (log->l_cilp->xc_ctx) {
898 if (log->l_cilp->xc_ctx->ticket)
899 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
900 kmem_free(log->l_cilp->xc_ctx);
901 }
902
903 ASSERT(list_empty(&log->l_cilp->xc_cil));
904 kmem_free(log->l_cilp);
905}
906
This page took 0.296376 seconds and 5 git commands to generate.