xfs: rename flist/free_list to dfops
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
a844f451 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
3ab78df2 27#include "xfs_defer.h"
57062787 28#include "xfs_da_format.h"
9a2cc41c 29#include "xfs_da_btree.h"
1da177e4 30#include "xfs_inode.h"
239880ef 31#include "xfs_trans.h"
239880ef 32#include "xfs_log.h"
1da177e4 33#include "xfs_log_priv.h"
1da177e4 34#include "xfs_log_recover.h"
a4fbe6ab 35#include "xfs_inode_item.h"
1da177e4
LT
36#include "xfs_extfree_item.h"
37#include "xfs_trans_priv.h"
a4fbe6ab
DC
38#include "xfs_alloc.h"
39#include "xfs_ialloc.h"
1da177e4 40#include "xfs_quota.h"
0e446be4 41#include "xfs_cksum.h"
0b1b213f 42#include "xfs_trace.h"
33479e05 43#include "xfs_icache.h"
a4fbe6ab 44#include "xfs_bmap_btree.h"
a4fbe6ab 45#include "xfs_error.h"
2b9ab5ab 46#include "xfs_dir2.h"
1da177e4 47
fc06c6d0
DC
48#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
49
9a8d2fdb
MT
50STATIC int
51xlog_find_zeroed(
52 struct xlog *,
53 xfs_daddr_t *);
54STATIC int
55xlog_clear_stale_blocks(
56 struct xlog *,
57 xfs_lsn_t);
1da177e4 58#if defined(DEBUG)
9a8d2fdb
MT
59STATIC void
60xlog_recover_check_summary(
61 struct xlog *);
1da177e4
LT
62#else
63#define xlog_recover_check_summary(log)
1da177e4 64#endif
7088c413
BF
65STATIC int
66xlog_do_recovery_pass(
67 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
1da177e4 68
d5689eaa
CH
69/*
70 * This structure is used during recovery to record the buf log items which
71 * have been canceled and should not be replayed.
72 */
73struct xfs_buf_cancel {
74 xfs_daddr_t bc_blkno;
75 uint bc_len;
76 int bc_refcount;
77 struct list_head bc_list;
78};
79
1da177e4
LT
80/*
81 * Sector aligned buffer routines for buffer create/read/write/access
82 */
83
ff30a622
AE
84/*
85 * Verify the given count of basic blocks is valid number of blocks
86 * to specify for an operation involving the given XFS log buffer.
87 * Returns nonzero if the count is valid, 0 otherwise.
88 */
89
90static inline int
91xlog_buf_bbcount_valid(
9a8d2fdb 92 struct xlog *log,
ff30a622
AE
93 int bbcount)
94{
95 return bbcount > 0 && bbcount <= log->l_logBBsize;
96}
97
36adecff
AE
98/*
99 * Allocate a buffer to hold log data. The buffer needs to be able
100 * to map to a range of nbblks basic blocks at any valid (basic
101 * block) offset within the log.
102 */
5d77c0dc 103STATIC xfs_buf_t *
1da177e4 104xlog_get_bp(
9a8d2fdb 105 struct xlog *log,
3228149c 106 int nbblks)
1da177e4 107{
c8da0faf
CH
108 struct xfs_buf *bp;
109
ff30a622 110 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 111 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
112 nbblks);
113 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
114 return NULL;
115 }
1da177e4 116
36adecff
AE
117 /*
118 * We do log I/O in units of log sectors (a power-of-2
119 * multiple of the basic block size), so we round up the
25985edc 120 * requested size to accommodate the basic blocks required
36adecff
AE
121 * for complete log sectors.
122 *
123 * In addition, the buffer may be used for a non-sector-
124 * aligned block offset, in which case an I/O of the
125 * requested size could extend beyond the end of the
126 * buffer. If the requested size is only 1 basic block it
127 * will never straddle a sector boundary, so this won't be
128 * an issue. Nor will this be a problem if the log I/O is
129 * done in basic blocks (sector size 1). But otherwise we
130 * extend the buffer by one extra log sector to ensure
25985edc 131 * there's space to accommodate this possibility.
36adecff 132 */
69ce58f0
AE
133 if (nbblks > 1 && log->l_sectBBsize > 1)
134 nbblks += log->l_sectBBsize;
135 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 136
e70b73f8 137 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
138 if (bp)
139 xfs_buf_unlock(bp);
140 return bp;
1da177e4
LT
141}
142
5d77c0dc 143STATIC void
1da177e4
LT
144xlog_put_bp(
145 xfs_buf_t *bp)
146{
147 xfs_buf_free(bp);
148}
149
48389ef1
AE
150/*
151 * Return the address of the start of the given block number's data
152 * in a log buffer. The buffer covers a log sector-aligned region.
153 */
b2a922cd 154STATIC char *
076e6acb 155xlog_align(
9a8d2fdb 156 struct xlog *log,
076e6acb
CH
157 xfs_daddr_t blk_no,
158 int nbblks,
9a8d2fdb 159 struct xfs_buf *bp)
076e6acb 160{
fdc07f44 161 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 162
4e94b71b 163 ASSERT(offset + nbblks <= bp->b_length);
62926044 164 return bp->b_addr + BBTOB(offset);
076e6acb
CH
165}
166
1da177e4
LT
167
168/*
169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
170 */
076e6acb
CH
171STATIC int
172xlog_bread_noalign(
9a8d2fdb 173 struct xlog *log,
1da177e4
LT
174 xfs_daddr_t blk_no,
175 int nbblks,
9a8d2fdb 176 struct xfs_buf *bp)
1da177e4
LT
177{
178 int error;
179
ff30a622 180 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 181 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
182 nbblks);
183 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 184 return -EFSCORRUPTED;
3228149c
DC
185 }
186
69ce58f0
AE
187 blk_no = round_down(blk_no, log->l_sectBBsize);
188 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
189
190 ASSERT(nbblks > 0);
4e94b71b 191 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
192
193 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
0cac682f 194 bp->b_flags |= XBF_READ;
aa0e8833 195 bp->b_io_length = nbblks;
0e95f19a 196 bp->b_error = 0;
1da177e4 197
595bff75
DC
198 error = xfs_buf_submit_wait(bp);
199 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
901796af 200 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
201 return error;
202}
203
076e6acb
CH
204STATIC int
205xlog_bread(
9a8d2fdb 206 struct xlog *log,
076e6acb
CH
207 xfs_daddr_t blk_no,
208 int nbblks,
9a8d2fdb 209 struct xfs_buf *bp,
b2a922cd 210 char **offset)
076e6acb
CH
211{
212 int error;
213
214 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
215 if (error)
216 return error;
217
218 *offset = xlog_align(log, blk_no, nbblks, bp);
219 return 0;
220}
221
44396476
DC
222/*
223 * Read at an offset into the buffer. Returns with the buffer in it's original
224 * state regardless of the result of the read.
225 */
226STATIC int
227xlog_bread_offset(
9a8d2fdb 228 struct xlog *log,
44396476
DC
229 xfs_daddr_t blk_no, /* block to read from */
230 int nbblks, /* blocks to read */
9a8d2fdb 231 struct xfs_buf *bp,
b2a922cd 232 char *offset)
44396476 233{
b2a922cd 234 char *orig_offset = bp->b_addr;
4e94b71b 235 int orig_len = BBTOB(bp->b_length);
44396476
DC
236 int error, error2;
237
02fe03d9 238 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
239 if (error)
240 return error;
241
242 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
243
244 /* must reset buffer pointer even on error */
02fe03d9 245 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
246 if (error)
247 return error;
248 return error2;
249}
250
1da177e4
LT
251/*
252 * Write out the buffer at the given block for the given number of blocks.
253 * The buffer is kept locked across the write and is returned locked.
254 * This can only be used for synchronous log writes.
255 */
ba0f32d4 256STATIC int
1da177e4 257xlog_bwrite(
9a8d2fdb 258 struct xlog *log,
1da177e4
LT
259 xfs_daddr_t blk_no,
260 int nbblks,
9a8d2fdb 261 struct xfs_buf *bp)
1da177e4
LT
262{
263 int error;
264
ff30a622 265 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 266 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
267 nbblks);
268 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 269 return -EFSCORRUPTED;
3228149c
DC
270 }
271
69ce58f0
AE
272 blk_no = round_down(blk_no, log->l_sectBBsize);
273 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
274
275 ASSERT(nbblks > 0);
4e94b71b 276 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
277
278 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
72790aa1 279 xfs_buf_hold(bp);
0c842ad4 280 xfs_buf_lock(bp);
aa0e8833 281 bp->b_io_length = nbblks;
0e95f19a 282 bp->b_error = 0;
1da177e4 283
c2b006c1 284 error = xfs_bwrite(bp);
901796af
CH
285 if (error)
286 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 287 xfs_buf_relse(bp);
1da177e4
LT
288 return error;
289}
290
1da177e4
LT
291#ifdef DEBUG
292/*
293 * dump debug superblock and log record information
294 */
295STATIC void
296xlog_header_check_dump(
297 xfs_mount_t *mp,
298 xlog_rec_header_t *head)
299{
08e96e1a 300 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 301 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 302 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 303 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
304}
305#else
306#define xlog_header_check_dump(mp, head)
307#endif
308
309/*
310 * check log record header for recovery
311 */
312STATIC int
313xlog_header_check_recover(
314 xfs_mount_t *mp,
315 xlog_rec_header_t *head)
316{
69ef921b 317 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
318
319 /*
320 * IRIX doesn't write the h_fmt field and leaves it zeroed
321 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
322 * a dirty log created in IRIX.
323 */
69ef921b 324 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
325 xfs_warn(mp,
326 "dirty log written in incompatible format - can't recover");
1da177e4
LT
327 xlog_header_check_dump(mp, head);
328 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
329 XFS_ERRLEVEL_HIGH, mp);
2451337d 330 return -EFSCORRUPTED;
1da177e4 331 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
332 xfs_warn(mp,
333 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
334 xlog_header_check_dump(mp, head);
335 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
336 XFS_ERRLEVEL_HIGH, mp);
2451337d 337 return -EFSCORRUPTED;
1da177e4
LT
338 }
339 return 0;
340}
341
342/*
343 * read the head block of the log and check the header
344 */
345STATIC int
346xlog_header_check_mount(
347 xfs_mount_t *mp,
348 xlog_rec_header_t *head)
349{
69ef921b 350 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
351
352 if (uuid_is_nil(&head->h_fs_uuid)) {
353 /*
354 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
355 * h_fs_uuid is nil, we assume this log was last mounted
356 * by IRIX and continue.
357 */
a0fa2b67 358 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 359 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 360 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
361 xlog_header_check_dump(mp, head);
362 XFS_ERROR_REPORT("xlog_header_check_mount",
363 XFS_ERRLEVEL_HIGH, mp);
2451337d 364 return -EFSCORRUPTED;
1da177e4
LT
365 }
366 return 0;
367}
368
369STATIC void
370xlog_recover_iodone(
371 struct xfs_buf *bp)
372{
5a52c2a5 373 if (bp->b_error) {
1da177e4
LT
374 /*
375 * We're not going to bother about retrying
376 * this during recovery. One strike!
377 */
595bff75
DC
378 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
379 xfs_buf_ioerror_alert(bp, __func__);
380 xfs_force_shutdown(bp->b_target->bt_mount,
381 SHUTDOWN_META_IO_ERROR);
382 }
1da177e4 383 }
cb669ca5 384 bp->b_iodone = NULL;
e8aaba9a 385 xfs_buf_ioend(bp);
1da177e4
LT
386}
387
388/*
389 * This routine finds (to an approximation) the first block in the physical
390 * log which contains the given cycle. It uses a binary search algorithm.
391 * Note that the algorithm can not be perfect because the disk will not
392 * necessarily be perfect.
393 */
a8272ce0 394STATIC int
1da177e4 395xlog_find_cycle_start(
9a8d2fdb
MT
396 struct xlog *log,
397 struct xfs_buf *bp,
1da177e4
LT
398 xfs_daddr_t first_blk,
399 xfs_daddr_t *last_blk,
400 uint cycle)
401{
b2a922cd 402 char *offset;
1da177e4 403 xfs_daddr_t mid_blk;
e3bb2e30 404 xfs_daddr_t end_blk;
1da177e4
LT
405 uint mid_cycle;
406 int error;
407
e3bb2e30
AE
408 end_blk = *last_blk;
409 mid_blk = BLK_AVG(first_blk, end_blk);
410 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
411 error = xlog_bread(log, mid_blk, 1, bp, &offset);
412 if (error)
1da177e4 413 return error;
03bea6fe 414 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
415 if (mid_cycle == cycle)
416 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
417 else
418 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
419 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 420 }
e3bb2e30
AE
421 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
422 (mid_blk == end_blk && mid_blk-1 == first_blk));
423
424 *last_blk = end_blk;
1da177e4
LT
425
426 return 0;
427}
428
429/*
3f943d85
AE
430 * Check that a range of blocks does not contain stop_on_cycle_no.
431 * Fill in *new_blk with the block offset where such a block is
432 * found, or with -1 (an invalid block number) if there is no such
433 * block in the range. The scan needs to occur from front to back
434 * and the pointer into the region must be updated since a later
435 * routine will need to perform another test.
1da177e4
LT
436 */
437STATIC int
438xlog_find_verify_cycle(
9a8d2fdb 439 struct xlog *log,
1da177e4
LT
440 xfs_daddr_t start_blk,
441 int nbblks,
442 uint stop_on_cycle_no,
443 xfs_daddr_t *new_blk)
444{
445 xfs_daddr_t i, j;
446 uint cycle;
447 xfs_buf_t *bp;
448 xfs_daddr_t bufblks;
b2a922cd 449 char *buf = NULL;
1da177e4
LT
450 int error = 0;
451
6881a229
AE
452 /*
453 * Greedily allocate a buffer big enough to handle the full
454 * range of basic blocks we'll be examining. If that fails,
455 * try a smaller size. We need to be able to read at least
456 * a log sector, or we're out of luck.
457 */
1da177e4 458 bufblks = 1 << ffs(nbblks);
81158e0c
DC
459 while (bufblks > log->l_logBBsize)
460 bufblks >>= 1;
1da177e4 461 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 462 bufblks >>= 1;
69ce58f0 463 if (bufblks < log->l_sectBBsize)
2451337d 464 return -ENOMEM;
1da177e4
LT
465 }
466
467 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
468 int bcount;
469
470 bcount = min(bufblks, (start_blk + nbblks - i));
471
076e6acb
CH
472 error = xlog_bread(log, i, bcount, bp, &buf);
473 if (error)
1da177e4
LT
474 goto out;
475
1da177e4 476 for (j = 0; j < bcount; j++) {
03bea6fe 477 cycle = xlog_get_cycle(buf);
1da177e4
LT
478 if (cycle == stop_on_cycle_no) {
479 *new_blk = i+j;
480 goto out;
481 }
482
483 buf += BBSIZE;
484 }
485 }
486
487 *new_blk = -1;
488
489out:
490 xlog_put_bp(bp);
491 return error;
492}
493
494/*
495 * Potentially backup over partial log record write.
496 *
497 * In the typical case, last_blk is the number of the block directly after
498 * a good log record. Therefore, we subtract one to get the block number
499 * of the last block in the given buffer. extra_bblks contains the number
500 * of blocks we would have read on a previous read. This happens when the
501 * last log record is split over the end of the physical log.
502 *
503 * extra_bblks is the number of blocks potentially verified on a previous
504 * call to this routine.
505 */
506STATIC int
507xlog_find_verify_log_record(
9a8d2fdb 508 struct xlog *log,
1da177e4
LT
509 xfs_daddr_t start_blk,
510 xfs_daddr_t *last_blk,
511 int extra_bblks)
512{
513 xfs_daddr_t i;
514 xfs_buf_t *bp;
b2a922cd 515 char *offset = NULL;
1da177e4
LT
516 xlog_rec_header_t *head = NULL;
517 int error = 0;
518 int smallmem = 0;
519 int num_blks = *last_blk - start_blk;
520 int xhdrs;
521
522 ASSERT(start_blk != 0 || *last_blk != start_blk);
523
524 if (!(bp = xlog_get_bp(log, num_blks))) {
525 if (!(bp = xlog_get_bp(log, 1)))
2451337d 526 return -ENOMEM;
1da177e4
LT
527 smallmem = 1;
528 } else {
076e6acb
CH
529 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
530 if (error)
1da177e4 531 goto out;
1da177e4
LT
532 offset += ((num_blks - 1) << BBSHIFT);
533 }
534
535 for (i = (*last_blk) - 1; i >= 0; i--) {
536 if (i < start_blk) {
537 /* valid log record not found */
a0fa2b67
DC
538 xfs_warn(log->l_mp,
539 "Log inconsistent (didn't find previous header)");
1da177e4 540 ASSERT(0);
2451337d 541 error = -EIO;
1da177e4
LT
542 goto out;
543 }
544
545 if (smallmem) {
076e6acb
CH
546 error = xlog_bread(log, i, 1, bp, &offset);
547 if (error)
1da177e4 548 goto out;
1da177e4
LT
549 }
550
551 head = (xlog_rec_header_t *)offset;
552
69ef921b 553 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
554 break;
555
556 if (!smallmem)
557 offset -= BBSIZE;
558 }
559
560 /*
561 * We hit the beginning of the physical log & still no header. Return
562 * to caller. If caller can handle a return of -1, then this routine
563 * will be called again for the end of the physical log.
564 */
565 if (i == -1) {
2451337d 566 error = 1;
1da177e4
LT
567 goto out;
568 }
569
570 /*
571 * We have the final block of the good log (the first block
572 * of the log record _before_ the head. So we check the uuid.
573 */
574 if ((error = xlog_header_check_mount(log->l_mp, head)))
575 goto out;
576
577 /*
578 * We may have found a log record header before we expected one.
579 * last_blk will be the 1st block # with a given cycle #. We may end
580 * up reading an entire log record. In this case, we don't want to
581 * reset last_blk. Only when last_blk points in the middle of a log
582 * record do we update last_blk.
583 */
62118709 584 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 585 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
586
587 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
588 if (h_size % XLOG_HEADER_CYCLE_SIZE)
589 xhdrs++;
590 } else {
591 xhdrs = 1;
592 }
593
b53e675d
CH
594 if (*last_blk - i + extra_bblks !=
595 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
596 *last_blk = i;
597
598out:
599 xlog_put_bp(bp);
600 return error;
601}
602
603/*
604 * Head is defined to be the point of the log where the next log write
0a94da24 605 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
606 * eliminated when calculating the head. We aren't guaranteed that previous
607 * LR have complete transactions. We only know that a cycle number of
608 * current cycle number -1 won't be present in the log if we start writing
609 * from our current block number.
610 *
611 * last_blk contains the block number of the first block with a given
612 * cycle number.
613 *
614 * Return: zero if normal, non-zero if error.
615 */
ba0f32d4 616STATIC int
1da177e4 617xlog_find_head(
9a8d2fdb 618 struct xlog *log,
1da177e4
LT
619 xfs_daddr_t *return_head_blk)
620{
621 xfs_buf_t *bp;
b2a922cd 622 char *offset;
1da177e4
LT
623 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
624 int num_scan_bblks;
625 uint first_half_cycle, last_half_cycle;
626 uint stop_on_cycle;
627 int error, log_bbnum = log->l_logBBsize;
628
629 /* Is the end of the log device zeroed? */
2451337d
DC
630 error = xlog_find_zeroed(log, &first_blk);
631 if (error < 0) {
632 xfs_warn(log->l_mp, "empty log check failed");
633 return error;
634 }
635 if (error == 1) {
1da177e4
LT
636 *return_head_blk = first_blk;
637
638 /* Is the whole lot zeroed? */
639 if (!first_blk) {
640 /* Linux XFS shouldn't generate totally zeroed logs -
641 * mkfs etc write a dummy unmount record to a fresh
642 * log so we can store the uuid in there
643 */
a0fa2b67 644 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
645 }
646
647 return 0;
1da177e4
LT
648 }
649
650 first_blk = 0; /* get cycle # of 1st block */
651 bp = xlog_get_bp(log, 1);
652 if (!bp)
2451337d 653 return -ENOMEM;
076e6acb
CH
654
655 error = xlog_bread(log, 0, 1, bp, &offset);
656 if (error)
1da177e4 657 goto bp_err;
076e6acb 658
03bea6fe 659 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
660
661 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
662 error = xlog_bread(log, last_blk, 1, bp, &offset);
663 if (error)
1da177e4 664 goto bp_err;
076e6acb 665
03bea6fe 666 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
667 ASSERT(last_half_cycle != 0);
668
669 /*
670 * If the 1st half cycle number is equal to the last half cycle number,
671 * then the entire log is stamped with the same cycle number. In this
672 * case, head_blk can't be set to zero (which makes sense). The below
673 * math doesn't work out properly with head_blk equal to zero. Instead,
674 * we set it to log_bbnum which is an invalid block number, but this
675 * value makes the math correct. If head_blk doesn't changed through
676 * all the tests below, *head_blk is set to zero at the very end rather
677 * than log_bbnum. In a sense, log_bbnum and zero are the same block
678 * in a circular file.
679 */
680 if (first_half_cycle == last_half_cycle) {
681 /*
682 * In this case we believe that the entire log should have
683 * cycle number last_half_cycle. We need to scan backwards
684 * from the end verifying that there are no holes still
685 * containing last_half_cycle - 1. If we find such a hole,
686 * then the start of that hole will be the new head. The
687 * simple case looks like
688 * x | x ... | x - 1 | x
689 * Another case that fits this picture would be
690 * x | x + 1 | x ... | x
c41564b5 691 * In this case the head really is somewhere at the end of the
1da177e4
LT
692 * log, as one of the latest writes at the beginning was
693 * incomplete.
694 * One more case is
695 * x | x + 1 | x ... | x - 1 | x
696 * This is really the combination of the above two cases, and
697 * the head has to end up at the start of the x-1 hole at the
698 * end of the log.
699 *
700 * In the 256k log case, we will read from the beginning to the
701 * end of the log and search for cycle numbers equal to x-1.
702 * We don't worry about the x+1 blocks that we encounter,
703 * because we know that they cannot be the head since the log
704 * started with x.
705 */
706 head_blk = log_bbnum;
707 stop_on_cycle = last_half_cycle - 1;
708 } else {
709 /*
710 * In this case we want to find the first block with cycle
711 * number matching last_half_cycle. We expect the log to be
712 * some variation on
3f943d85 713 * x + 1 ... | x ... | x
1da177e4
LT
714 * The first block with cycle number x (last_half_cycle) will
715 * be where the new head belongs. First we do a binary search
716 * for the first occurrence of last_half_cycle. The binary
717 * search may not be totally accurate, so then we scan back
718 * from there looking for occurrences of last_half_cycle before
719 * us. If that backwards scan wraps around the beginning of
720 * the log, then we look for occurrences of last_half_cycle - 1
721 * at the end of the log. The cases we're looking for look
722 * like
3f943d85
AE
723 * v binary search stopped here
724 * x + 1 ... | x | x + 1 | x ... | x
725 * ^ but we want to locate this spot
1da177e4 726 * or
1da177e4 727 * <---------> less than scan distance
3f943d85
AE
728 * x + 1 ... | x ... | x - 1 | x
729 * ^ we want to locate this spot
1da177e4
LT
730 */
731 stop_on_cycle = last_half_cycle;
732 if ((error = xlog_find_cycle_start(log, bp, first_blk,
733 &head_blk, last_half_cycle)))
734 goto bp_err;
735 }
736
737 /*
738 * Now validate the answer. Scan back some number of maximum possible
739 * blocks and make sure each one has the expected cycle number. The
740 * maximum is determined by the total possible amount of buffering
741 * in the in-core log. The following number can be made tighter if
742 * we actually look at the block size of the filesystem.
743 */
744 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
745 if (head_blk >= num_scan_bblks) {
746 /*
747 * We are guaranteed that the entire check can be performed
748 * in one buffer.
749 */
750 start_blk = head_blk - num_scan_bblks;
751 if ((error = xlog_find_verify_cycle(log,
752 start_blk, num_scan_bblks,
753 stop_on_cycle, &new_blk)))
754 goto bp_err;
755 if (new_blk != -1)
756 head_blk = new_blk;
757 } else { /* need to read 2 parts of log */
758 /*
759 * We are going to scan backwards in the log in two parts.
760 * First we scan the physical end of the log. In this part
761 * of the log, we are looking for blocks with cycle number
762 * last_half_cycle - 1.
763 * If we find one, then we know that the log starts there, as
764 * we've found a hole that didn't get written in going around
765 * the end of the physical log. The simple case for this is
766 * x + 1 ... | x ... | x - 1 | x
767 * <---------> less than scan distance
768 * If all of the blocks at the end of the log have cycle number
769 * last_half_cycle, then we check the blocks at the start of
770 * the log looking for occurrences of last_half_cycle. If we
771 * find one, then our current estimate for the location of the
772 * first occurrence of last_half_cycle is wrong and we move
773 * back to the hole we've found. This case looks like
774 * x + 1 ... | x | x + 1 | x ...
775 * ^ binary search stopped here
776 * Another case we need to handle that only occurs in 256k
777 * logs is
778 * x + 1 ... | x ... | x+1 | x ...
779 * ^ binary search stops here
780 * In a 256k log, the scan at the end of the log will see the
781 * x + 1 blocks. We need to skip past those since that is
782 * certainly not the head of the log. By searching for
783 * last_half_cycle-1 we accomplish that.
784 */
1da177e4 785 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
786 (xfs_daddr_t) num_scan_bblks >= head_blk);
787 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
788 if ((error = xlog_find_verify_cycle(log, start_blk,
789 num_scan_bblks - (int)head_blk,
790 (stop_on_cycle - 1), &new_blk)))
791 goto bp_err;
792 if (new_blk != -1) {
793 head_blk = new_blk;
9db127ed 794 goto validate_head;
1da177e4
LT
795 }
796
797 /*
798 * Scan beginning of log now. The last part of the physical
799 * log is good. This scan needs to verify that it doesn't find
800 * the last_half_cycle.
801 */
802 start_blk = 0;
803 ASSERT(head_blk <= INT_MAX);
804 if ((error = xlog_find_verify_cycle(log,
805 start_blk, (int)head_blk,
806 stop_on_cycle, &new_blk)))
807 goto bp_err;
808 if (new_blk != -1)
809 head_blk = new_blk;
810 }
811
9db127ed 812validate_head:
1da177e4
LT
813 /*
814 * Now we need to make sure head_blk is not pointing to a block in
815 * the middle of a log record.
816 */
817 num_scan_bblks = XLOG_REC_SHIFT(log);
818 if (head_blk >= num_scan_bblks) {
819 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
820
821 /* start ptr at last block ptr before head_blk */
2451337d
DC
822 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
823 if (error == 1)
824 error = -EIO;
825 if (error)
1da177e4
LT
826 goto bp_err;
827 } else {
828 start_blk = 0;
829 ASSERT(head_blk <= INT_MAX);
2451337d
DC
830 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
831 if (error < 0)
832 goto bp_err;
833 if (error == 1) {
1da177e4 834 /* We hit the beginning of the log during our search */
3f943d85 835 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
836 new_blk = log_bbnum;
837 ASSERT(start_blk <= INT_MAX &&
838 (xfs_daddr_t) log_bbnum-start_blk >= 0);
839 ASSERT(head_blk <= INT_MAX);
2451337d
DC
840 error = xlog_find_verify_log_record(log, start_blk,
841 &new_blk, (int)head_blk);
842 if (error == 1)
843 error = -EIO;
844 if (error)
1da177e4
LT
845 goto bp_err;
846 if (new_blk != log_bbnum)
847 head_blk = new_blk;
848 } else if (error)
849 goto bp_err;
850 }
851
852 xlog_put_bp(bp);
853 if (head_blk == log_bbnum)
854 *return_head_blk = 0;
855 else
856 *return_head_blk = head_blk;
857 /*
858 * When returning here, we have a good block number. Bad block
859 * means that during a previous crash, we didn't have a clean break
860 * from cycle number N to cycle number N-1. In this case, we need
861 * to find the first block with cycle number N-1.
862 */
863 return 0;
864
865 bp_err:
866 xlog_put_bp(bp);
867
868 if (error)
a0fa2b67 869 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
870 return error;
871}
872
eed6b462
BF
873/*
874 * Seek backwards in the log for log record headers.
875 *
876 * Given a starting log block, walk backwards until we find the provided number
877 * of records or hit the provided tail block. The return value is the number of
878 * records encountered or a negative error code. The log block and buffer
879 * pointer of the last record seen are returned in rblk and rhead respectively.
880 */
881STATIC int
882xlog_rseek_logrec_hdr(
883 struct xlog *log,
884 xfs_daddr_t head_blk,
885 xfs_daddr_t tail_blk,
886 int count,
887 struct xfs_buf *bp,
888 xfs_daddr_t *rblk,
889 struct xlog_rec_header **rhead,
890 bool *wrapped)
891{
892 int i;
893 int error;
894 int found = 0;
895 char *offset = NULL;
896 xfs_daddr_t end_blk;
897
898 *wrapped = false;
899
900 /*
901 * Walk backwards from the head block until we hit the tail or the first
902 * block in the log.
903 */
904 end_blk = head_blk > tail_blk ? tail_blk : 0;
905 for (i = (int) head_blk - 1; i >= end_blk; i--) {
906 error = xlog_bread(log, i, 1, bp, &offset);
907 if (error)
908 goto out_error;
909
910 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
911 *rblk = i;
912 *rhead = (struct xlog_rec_header *) offset;
913 if (++found == count)
914 break;
915 }
916 }
917
918 /*
919 * If we haven't hit the tail block or the log record header count,
920 * start looking again from the end of the physical log. Note that
921 * callers can pass head == tail if the tail is not yet known.
922 */
923 if (tail_blk >= head_blk && found != count) {
924 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
925 error = xlog_bread(log, i, 1, bp, &offset);
926 if (error)
927 goto out_error;
928
929 if (*(__be32 *)offset ==
930 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
931 *wrapped = true;
932 *rblk = i;
933 *rhead = (struct xlog_rec_header *) offset;
934 if (++found == count)
935 break;
936 }
937 }
938 }
939
940 return found;
941
942out_error:
943 return error;
944}
945
7088c413
BF
946/*
947 * Seek forward in the log for log record headers.
948 *
949 * Given head and tail blocks, walk forward from the tail block until we find
950 * the provided number of records or hit the head block. The return value is the
951 * number of records encountered or a negative error code. The log block and
952 * buffer pointer of the last record seen are returned in rblk and rhead
953 * respectively.
954 */
955STATIC int
956xlog_seek_logrec_hdr(
957 struct xlog *log,
958 xfs_daddr_t head_blk,
959 xfs_daddr_t tail_blk,
960 int count,
961 struct xfs_buf *bp,
962 xfs_daddr_t *rblk,
963 struct xlog_rec_header **rhead,
964 bool *wrapped)
965{
966 int i;
967 int error;
968 int found = 0;
969 char *offset = NULL;
970 xfs_daddr_t end_blk;
971
972 *wrapped = false;
973
974 /*
975 * Walk forward from the tail block until we hit the head or the last
976 * block in the log.
977 */
978 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
979 for (i = (int) tail_blk; i <= end_blk; i++) {
980 error = xlog_bread(log, i, 1, bp, &offset);
981 if (error)
982 goto out_error;
983
984 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
985 *rblk = i;
986 *rhead = (struct xlog_rec_header *) offset;
987 if (++found == count)
988 break;
989 }
990 }
991
992 /*
993 * If we haven't hit the head block or the log record header count,
994 * start looking again from the start of the physical log.
995 */
996 if (tail_blk > head_blk && found != count) {
997 for (i = 0; i < (int) head_blk; i++) {
998 error = xlog_bread(log, i, 1, bp, &offset);
999 if (error)
1000 goto out_error;
1001
1002 if (*(__be32 *)offset ==
1003 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1004 *wrapped = true;
1005 *rblk = i;
1006 *rhead = (struct xlog_rec_header *) offset;
1007 if (++found == count)
1008 break;
1009 }
1010 }
1011 }
1012
1013 return found;
1014
1015out_error:
1016 return error;
1017}
1018
1019/*
1020 * Check the log tail for torn writes. This is required when torn writes are
1021 * detected at the head and the head had to be walked back to a previous record.
1022 * The tail of the previous record must now be verified to ensure the torn
1023 * writes didn't corrupt the previous tail.
1024 *
1025 * Return an error if CRC verification fails as recovery cannot proceed.
1026 */
1027STATIC int
1028xlog_verify_tail(
1029 struct xlog *log,
1030 xfs_daddr_t head_blk,
1031 xfs_daddr_t tail_blk)
1032{
1033 struct xlog_rec_header *thead;
1034 struct xfs_buf *bp;
1035 xfs_daddr_t first_bad;
1036 int count;
1037 int error = 0;
1038 bool wrapped;
1039 xfs_daddr_t tmp_head;
1040
1041 bp = xlog_get_bp(log, 1);
1042 if (!bp)
1043 return -ENOMEM;
1044
1045 /*
1046 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1047 * a temporary head block that points after the last possible
1048 * concurrently written record of the tail.
1049 */
1050 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1051 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1052 &wrapped);
1053 if (count < 0) {
1054 error = count;
1055 goto out;
1056 }
1057
1058 /*
1059 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1060 * into the actual log head. tmp_head points to the start of the record
1061 * so update it to the actual head block.
1062 */
1063 if (count < XLOG_MAX_ICLOGS + 1)
1064 tmp_head = head_blk;
1065
1066 /*
1067 * We now have a tail and temporary head block that covers at least
1068 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1069 * records were completely written. Run a CRC verification pass from
1070 * tail to head and return the result.
1071 */
1072 error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1073 XLOG_RECOVER_CRCPASS, &first_bad);
1074
1075out:
1076 xlog_put_bp(bp);
1077 return error;
1078}
1079
1080/*
1081 * Detect and trim torn writes from the head of the log.
1082 *
1083 * Storage without sector atomicity guarantees can result in torn writes in the
1084 * log in the event of a crash. Our only means to detect this scenario is via
1085 * CRC verification. While we can't always be certain that CRC verification
1086 * failure is due to a torn write vs. an unrelated corruption, we do know that
1087 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1088 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1089 * the log and treat failures in this range as torn writes as a matter of
1090 * policy. In the event of CRC failure, the head is walked back to the last good
1091 * record in the log and the tail is updated from that record and verified.
1092 */
1093STATIC int
1094xlog_verify_head(
1095 struct xlog *log,
1096 xfs_daddr_t *head_blk, /* in/out: unverified head */
1097 xfs_daddr_t *tail_blk, /* out: tail block */
1098 struct xfs_buf *bp,
1099 xfs_daddr_t *rhead_blk, /* start blk of last record */
1100 struct xlog_rec_header **rhead, /* ptr to last record */
1101 bool *wrapped) /* last rec. wraps phys. log */
1102{
1103 struct xlog_rec_header *tmp_rhead;
1104 struct xfs_buf *tmp_bp;
1105 xfs_daddr_t first_bad;
1106 xfs_daddr_t tmp_rhead_blk;
1107 int found;
1108 int error;
1109 bool tmp_wrapped;
1110
1111 /*
82ff6cc2
BF
1112 * Check the head of the log for torn writes. Search backwards from the
1113 * head until we hit the tail or the maximum number of log record I/Os
1114 * that could have been in flight at one time. Use a temporary buffer so
1115 * we don't trash the rhead/bp pointers from the caller.
7088c413
BF
1116 */
1117 tmp_bp = xlog_get_bp(log, 1);
1118 if (!tmp_bp)
1119 return -ENOMEM;
1120 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1121 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1122 &tmp_rhead, &tmp_wrapped);
1123 xlog_put_bp(tmp_bp);
1124 if (error < 0)
1125 return error;
1126
1127 /*
1128 * Now run a CRC verification pass over the records starting at the
1129 * block found above to the current head. If a CRC failure occurs, the
1130 * log block of the first bad record is saved in first_bad.
1131 */
1132 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1133 XLOG_RECOVER_CRCPASS, &first_bad);
1134 if (error == -EFSBADCRC) {
1135 /*
1136 * We've hit a potential torn write. Reset the error and warn
1137 * about it.
1138 */
1139 error = 0;
1140 xfs_warn(log->l_mp,
1141"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1142 first_bad, *head_blk);
1143
1144 /*
1145 * Get the header block and buffer pointer for the last good
1146 * record before the bad record.
1147 *
1148 * Note that xlog_find_tail() clears the blocks at the new head
1149 * (i.e., the records with invalid CRC) if the cycle number
1150 * matches the the current cycle.
1151 */
1152 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1153 rhead_blk, rhead, wrapped);
1154 if (found < 0)
1155 return found;
1156 if (found == 0) /* XXX: right thing to do here? */
1157 return -EIO;
1158
1159 /*
1160 * Reset the head block to the starting block of the first bad
1161 * log record and set the tail block based on the last good
1162 * record.
1163 *
1164 * Bail out if the updated head/tail match as this indicates
1165 * possible corruption outside of the acceptable
1166 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1167 */
1168 *head_blk = first_bad;
1169 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1170 if (*head_blk == *tail_blk) {
1171 ASSERT(0);
1172 return 0;
1173 }
1174
1175 /*
1176 * Now verify the tail based on the updated head. This is
1177 * required because the torn writes trimmed from the head could
1178 * have been written over the tail of a previous record. Return
1179 * any errors since recovery cannot proceed if the tail is
1180 * corrupt.
1181 *
1182 * XXX: This leaves a gap in truly robust protection from torn
1183 * writes in the log. If the head is behind the tail, the tail
1184 * pushes forward to create some space and then a crash occurs
1185 * causing the writes into the previous record's tail region to
1186 * tear, log recovery isn't able to recover.
1187 *
1188 * How likely is this to occur? If possible, can we do something
1189 * more intelligent here? Is it safe to push the tail forward if
1190 * we can determine that the tail is within the range of the
1191 * torn write (e.g., the kernel can only overwrite the tail if
1192 * it has actually been pushed forward)? Alternatively, could we
1193 * somehow prevent this condition at runtime?
1194 */
1195 error = xlog_verify_tail(log, *head_blk, *tail_blk);
1196 }
1197
1198 return error;
1199}
1200
65b99a08
BF
1201/*
1202 * Check whether the head of the log points to an unmount record. In other
1203 * words, determine whether the log is clean. If so, update the in-core state
1204 * appropriately.
1205 */
1206static int
1207xlog_check_unmount_rec(
1208 struct xlog *log,
1209 xfs_daddr_t *head_blk,
1210 xfs_daddr_t *tail_blk,
1211 struct xlog_rec_header *rhead,
1212 xfs_daddr_t rhead_blk,
1213 struct xfs_buf *bp,
1214 bool *clean)
1215{
1216 struct xlog_op_header *op_head;
1217 xfs_daddr_t umount_data_blk;
1218 xfs_daddr_t after_umount_blk;
1219 int hblks;
1220 int error;
1221 char *offset;
1222
1223 *clean = false;
1224
1225 /*
1226 * Look for unmount record. If we find it, then we know there was a
1227 * clean unmount. Since 'i' could be the last block in the physical
1228 * log, we convert to a log block before comparing to the head_blk.
1229 *
1230 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1231 * below. We won't want to clear the unmount record if there is one, so
1232 * we pass the lsn of the unmount record rather than the block after it.
1233 */
1234 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1235 int h_size = be32_to_cpu(rhead->h_size);
1236 int h_version = be32_to_cpu(rhead->h_version);
1237
1238 if ((h_version & XLOG_VERSION_2) &&
1239 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1240 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1241 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1242 hblks++;
1243 } else {
1244 hblks = 1;
1245 }
1246 } else {
1247 hblks = 1;
1248 }
1249 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1250 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1251 if (*head_blk == after_umount_blk &&
1252 be32_to_cpu(rhead->h_num_logops) == 1) {
1253 umount_data_blk = rhead_blk + hblks;
1254 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1255 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1256 if (error)
1257 return error;
1258
1259 op_head = (struct xlog_op_header *)offset;
1260 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1261 /*
1262 * Set tail and last sync so that newly written log
1263 * records will point recovery to after the current
1264 * unmount record.
1265 */
1266 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1267 log->l_curr_cycle, after_umount_blk);
1268 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1269 log->l_curr_cycle, after_umount_blk);
1270 *tail_blk = after_umount_blk;
1271
1272 *clean = true;
1273 }
1274 }
1275
1276 return 0;
1277}
1278
717bc0eb
BF
1279static void
1280xlog_set_state(
1281 struct xlog *log,
1282 xfs_daddr_t head_blk,
1283 struct xlog_rec_header *rhead,
1284 xfs_daddr_t rhead_blk,
1285 bool bump_cycle)
1286{
1287 /*
1288 * Reset log values according to the state of the log when we
1289 * crashed. In the case where head_blk == 0, we bump curr_cycle
1290 * one because the next write starts a new cycle rather than
1291 * continuing the cycle of the last good log record. At this
1292 * point we have guaranteed that all partial log records have been
1293 * accounted for. Therefore, we know that the last good log record
1294 * written was complete and ended exactly on the end boundary
1295 * of the physical log.
1296 */
1297 log->l_prev_block = rhead_blk;
1298 log->l_curr_block = (int)head_blk;
1299 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1300 if (bump_cycle)
1301 log->l_curr_cycle++;
1302 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1303 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1304 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1305 BBTOB(log->l_curr_block));
1306 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1307 BBTOB(log->l_curr_block));
1308}
1309
1da177e4
LT
1310/*
1311 * Find the sync block number or the tail of the log.
1312 *
1313 * This will be the block number of the last record to have its
1314 * associated buffers synced to disk. Every log record header has
1315 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1316 * to get a sync block number. The only concern is to figure out which
1317 * log record header to believe.
1318 *
1319 * The following algorithm uses the log record header with the largest
1320 * lsn. The entire log record does not need to be valid. We only care
1321 * that the header is valid.
1322 *
1323 * We could speed up search by using current head_blk buffer, but it is not
1324 * available.
1325 */
5d77c0dc 1326STATIC int
1da177e4 1327xlog_find_tail(
9a8d2fdb 1328 struct xlog *log,
1da177e4 1329 xfs_daddr_t *head_blk,
65be6054 1330 xfs_daddr_t *tail_blk)
1da177e4
LT
1331{
1332 xlog_rec_header_t *rhead;
b2a922cd 1333 char *offset = NULL;
1da177e4 1334 xfs_buf_t *bp;
7088c413 1335 int error;
7088c413 1336 xfs_daddr_t rhead_blk;
1da177e4 1337 xfs_lsn_t tail_lsn;
eed6b462 1338 bool wrapped = false;
65b99a08 1339 bool clean = false;
1da177e4
LT
1340
1341 /*
1342 * Find previous log record
1343 */
1344 if ((error = xlog_find_head(log, head_blk)))
1345 return error;
82ff6cc2 1346 ASSERT(*head_blk < INT_MAX);
1da177e4
LT
1347
1348 bp = xlog_get_bp(log, 1);
1349 if (!bp)
2451337d 1350 return -ENOMEM;
1da177e4 1351 if (*head_blk == 0) { /* special case */
076e6acb
CH
1352 error = xlog_bread(log, 0, 1, bp, &offset);
1353 if (error)
9db127ed 1354 goto done;
076e6acb 1355
03bea6fe 1356 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
1357 *tail_blk = 0;
1358 /* leave all other log inited values alone */
9db127ed 1359 goto done;
1da177e4
LT
1360 }
1361 }
1362
1363 /*
82ff6cc2
BF
1364 * Search backwards through the log looking for the log record header
1365 * block. This wraps all the way back around to the head so something is
1366 * seriously wrong if we can't find it.
1da177e4 1367 */
82ff6cc2
BF
1368 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1369 &rhead_blk, &rhead, &wrapped);
1370 if (error < 0)
1371 return error;
1372 if (!error) {
1373 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1374 return -EIO;
1375 }
1376 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
1377
1378 /*
717bc0eb 1379 * Set the log state based on the current head record.
1da177e4 1380 */
717bc0eb 1381 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
65b99a08 1382 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4
LT
1383
1384 /*
65b99a08
BF
1385 * Look for an unmount record at the head of the log. This sets the log
1386 * state to determine whether recovery is necessary.
1da177e4 1387 */
65b99a08
BF
1388 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1389 rhead_blk, bp, &clean);
1390 if (error)
1391 goto done;
1da177e4
LT
1392
1393 /*
7f6aff3a
BF
1394 * Verify the log head if the log is not clean (e.g., we have anything
1395 * but an unmount record at the head). This uses CRC verification to
1396 * detect and trim torn writes. If discovered, CRC failures are
1397 * considered torn writes and the log head is trimmed accordingly.
1da177e4 1398 *
7f6aff3a
BF
1399 * Note that we can only run CRC verification when the log is dirty
1400 * because there's no guarantee that the log data behind an unmount
1401 * record is compatible with the current architecture.
1da177e4 1402 */
7f6aff3a
BF
1403 if (!clean) {
1404 xfs_daddr_t orig_head = *head_blk;
1da177e4 1405
7f6aff3a
BF
1406 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1407 &rhead_blk, &rhead, &wrapped);
076e6acb 1408 if (error)
9db127ed 1409 goto done;
076e6acb 1410
7f6aff3a
BF
1411 /* update in-core state again if the head changed */
1412 if (*head_blk != orig_head) {
1413 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1414 wrapped);
1415 tail_lsn = atomic64_read(&log->l_tail_lsn);
1416 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1417 rhead, rhead_blk, bp,
1418 &clean);
1419 if (error)
1420 goto done;
1da177e4
LT
1421 }
1422 }
1423
65b99a08
BF
1424 /*
1425 * Note that the unmount was clean. If the unmount was not clean, we
1426 * need to know this to rebuild the superblock counters from the perag
1427 * headers if we have a filesystem using non-persistent counters.
1428 */
1429 if (clean)
1430 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1431
1432 /*
1433 * Make sure that there are no blocks in front of the head
1434 * with the same cycle number as the head. This can happen
1435 * because we allow multiple outstanding log writes concurrently,
1436 * and the later writes might make it out before earlier ones.
1437 *
1438 * We use the lsn from before modifying it so that we'll never
1439 * overwrite the unmount record after a clean unmount.
1440 *
1441 * Do this only if we are going to recover the filesystem
1442 *
1443 * NOTE: This used to say "if (!readonly)"
1444 * However on Linux, we can & do recover a read-only filesystem.
1445 * We only skip recovery if NORECOVERY is specified on mount,
1446 * in which case we would not be here.
1447 *
1448 * But... if the -device- itself is readonly, just skip this.
1449 * We can't recover this device anyway, so it won't matter.
1450 */
9db127ed 1451 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1452 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1453
9db127ed 1454done:
1da177e4
LT
1455 xlog_put_bp(bp);
1456
1457 if (error)
a0fa2b67 1458 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1459 return error;
1460}
1461
1462/*
1463 * Is the log zeroed at all?
1464 *
1465 * The last binary search should be changed to perform an X block read
1466 * once X becomes small enough. You can then search linearly through
1467 * the X blocks. This will cut down on the number of reads we need to do.
1468 *
1469 * If the log is partially zeroed, this routine will pass back the blkno
1470 * of the first block with cycle number 0. It won't have a complete LR
1471 * preceding it.
1472 *
1473 * Return:
1474 * 0 => the log is completely written to
2451337d
DC
1475 * 1 => use *blk_no as the first block of the log
1476 * <0 => error has occurred
1da177e4 1477 */
a8272ce0 1478STATIC int
1da177e4 1479xlog_find_zeroed(
9a8d2fdb 1480 struct xlog *log,
1da177e4
LT
1481 xfs_daddr_t *blk_no)
1482{
1483 xfs_buf_t *bp;
b2a922cd 1484 char *offset;
1da177e4
LT
1485 uint first_cycle, last_cycle;
1486 xfs_daddr_t new_blk, last_blk, start_blk;
1487 xfs_daddr_t num_scan_bblks;
1488 int error, log_bbnum = log->l_logBBsize;
1489
6fdf8ccc
NS
1490 *blk_no = 0;
1491
1da177e4
LT
1492 /* check totally zeroed log */
1493 bp = xlog_get_bp(log, 1);
1494 if (!bp)
2451337d 1495 return -ENOMEM;
076e6acb
CH
1496 error = xlog_bread(log, 0, 1, bp, &offset);
1497 if (error)
1da177e4 1498 goto bp_err;
076e6acb 1499
03bea6fe 1500 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1501 if (first_cycle == 0) { /* completely zeroed log */
1502 *blk_no = 0;
1503 xlog_put_bp(bp);
2451337d 1504 return 1;
1da177e4
LT
1505 }
1506
1507 /* check partially zeroed log */
076e6acb
CH
1508 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1509 if (error)
1da177e4 1510 goto bp_err;
076e6acb 1511
03bea6fe 1512 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1513 if (last_cycle != 0) { /* log completely written to */
1514 xlog_put_bp(bp);
1515 return 0;
1516 } else if (first_cycle != 1) {
1517 /*
1518 * If the cycle of the last block is zero, the cycle of
1519 * the first block must be 1. If it's not, maybe we're
1520 * not looking at a log... Bail out.
1521 */
a0fa2b67
DC
1522 xfs_warn(log->l_mp,
1523 "Log inconsistent or not a log (last==0, first!=1)");
2451337d 1524 error = -EINVAL;
5d0a6549 1525 goto bp_err;
1da177e4
LT
1526 }
1527
1528 /* we have a partially zeroed log */
1529 last_blk = log_bbnum-1;
1530 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1531 goto bp_err;
1532
1533 /*
1534 * Validate the answer. Because there is no way to guarantee that
1535 * the entire log is made up of log records which are the same size,
1536 * we scan over the defined maximum blocks. At this point, the maximum
1537 * is not chosen to mean anything special. XXXmiken
1538 */
1539 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1540 ASSERT(num_scan_bblks <= INT_MAX);
1541
1542 if (last_blk < num_scan_bblks)
1543 num_scan_bblks = last_blk;
1544 start_blk = last_blk - num_scan_bblks;
1545
1546 /*
1547 * We search for any instances of cycle number 0 that occur before
1548 * our current estimate of the head. What we're trying to detect is
1549 * 1 ... | 0 | 1 | 0...
1550 * ^ binary search ends here
1551 */
1552 if ((error = xlog_find_verify_cycle(log, start_blk,
1553 (int)num_scan_bblks, 0, &new_blk)))
1554 goto bp_err;
1555 if (new_blk != -1)
1556 last_blk = new_blk;
1557
1558 /*
1559 * Potentially backup over partial log record write. We don't need
1560 * to search the end of the log because we know it is zero.
1561 */
2451337d
DC
1562 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1563 if (error == 1)
1564 error = -EIO;
1565 if (error)
1566 goto bp_err;
1da177e4
LT
1567
1568 *blk_no = last_blk;
1569bp_err:
1570 xlog_put_bp(bp);
1571 if (error)
1572 return error;
2451337d 1573 return 1;
1da177e4
LT
1574}
1575
1576/*
1577 * These are simple subroutines used by xlog_clear_stale_blocks() below
1578 * to initialize a buffer full of empty log record headers and write
1579 * them into the log.
1580 */
1581STATIC void
1582xlog_add_record(
9a8d2fdb 1583 struct xlog *log,
b2a922cd 1584 char *buf,
1da177e4
LT
1585 int cycle,
1586 int block,
1587 int tail_cycle,
1588 int tail_block)
1589{
1590 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1591
1592 memset(buf, 0, BBSIZE);
b53e675d
CH
1593 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1594 recp->h_cycle = cpu_to_be32(cycle);
1595 recp->h_version = cpu_to_be32(
62118709 1596 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1597 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1598 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1599 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1600 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1601}
1602
1603STATIC int
1604xlog_write_log_records(
9a8d2fdb 1605 struct xlog *log,
1da177e4
LT
1606 int cycle,
1607 int start_block,
1608 int blocks,
1609 int tail_cycle,
1610 int tail_block)
1611{
b2a922cd 1612 char *offset;
1da177e4
LT
1613 xfs_buf_t *bp;
1614 int balign, ealign;
69ce58f0 1615 int sectbb = log->l_sectBBsize;
1da177e4
LT
1616 int end_block = start_block + blocks;
1617 int bufblks;
1618 int error = 0;
1619 int i, j = 0;
1620
6881a229
AE
1621 /*
1622 * Greedily allocate a buffer big enough to handle the full
1623 * range of basic blocks to be written. If that fails, try
1624 * a smaller size. We need to be able to write at least a
1625 * log sector, or we're out of luck.
1626 */
1da177e4 1627 bufblks = 1 << ffs(blocks);
81158e0c
DC
1628 while (bufblks > log->l_logBBsize)
1629 bufblks >>= 1;
1da177e4
LT
1630 while (!(bp = xlog_get_bp(log, bufblks))) {
1631 bufblks >>= 1;
69ce58f0 1632 if (bufblks < sectbb)
2451337d 1633 return -ENOMEM;
1da177e4
LT
1634 }
1635
1636 /* We may need to do a read at the start to fill in part of
1637 * the buffer in the starting sector not covered by the first
1638 * write below.
1639 */
5c17f533 1640 balign = round_down(start_block, sectbb);
1da177e4 1641 if (balign != start_block) {
076e6acb
CH
1642 error = xlog_bread_noalign(log, start_block, 1, bp);
1643 if (error)
1644 goto out_put_bp;
1645
1da177e4
LT
1646 j = start_block - balign;
1647 }
1648
1649 for (i = start_block; i < end_block; i += bufblks) {
1650 int bcount, endcount;
1651
1652 bcount = min(bufblks, end_block - start_block);
1653 endcount = bcount - j;
1654
1655 /* We may need to do a read at the end to fill in part of
1656 * the buffer in the final sector not covered by the write.
1657 * If this is the same sector as the above read, skip it.
1658 */
5c17f533 1659 ealign = round_down(end_block, sectbb);
1da177e4 1660 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1661 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1662 error = xlog_bread_offset(log, ealign, sectbb,
1663 bp, offset);
076e6acb
CH
1664 if (error)
1665 break;
1666
1da177e4
LT
1667 }
1668
1669 offset = xlog_align(log, start_block, endcount, bp);
1670 for (; j < endcount; j++) {
1671 xlog_add_record(log, offset, cycle, i+j,
1672 tail_cycle, tail_block);
1673 offset += BBSIZE;
1674 }
1675 error = xlog_bwrite(log, start_block, endcount, bp);
1676 if (error)
1677 break;
1678 start_block += endcount;
1679 j = 0;
1680 }
076e6acb
CH
1681
1682 out_put_bp:
1da177e4
LT
1683 xlog_put_bp(bp);
1684 return error;
1685}
1686
1687/*
1688 * This routine is called to blow away any incomplete log writes out
1689 * in front of the log head. We do this so that we won't become confused
1690 * if we come up, write only a little bit more, and then crash again.
1691 * If we leave the partial log records out there, this situation could
1692 * cause us to think those partial writes are valid blocks since they
1693 * have the current cycle number. We get rid of them by overwriting them
1694 * with empty log records with the old cycle number rather than the
1695 * current one.
1696 *
1697 * The tail lsn is passed in rather than taken from
1698 * the log so that we will not write over the unmount record after a
1699 * clean unmount in a 512 block log. Doing so would leave the log without
1700 * any valid log records in it until a new one was written. If we crashed
1701 * during that time we would not be able to recover.
1702 */
1703STATIC int
1704xlog_clear_stale_blocks(
9a8d2fdb 1705 struct xlog *log,
1da177e4
LT
1706 xfs_lsn_t tail_lsn)
1707{
1708 int tail_cycle, head_cycle;
1709 int tail_block, head_block;
1710 int tail_distance, max_distance;
1711 int distance;
1712 int error;
1713
1714 tail_cycle = CYCLE_LSN(tail_lsn);
1715 tail_block = BLOCK_LSN(tail_lsn);
1716 head_cycle = log->l_curr_cycle;
1717 head_block = log->l_curr_block;
1718
1719 /*
1720 * Figure out the distance between the new head of the log
1721 * and the tail. We want to write over any blocks beyond the
1722 * head that we may have written just before the crash, but
1723 * we don't want to overwrite the tail of the log.
1724 */
1725 if (head_cycle == tail_cycle) {
1726 /*
1727 * The tail is behind the head in the physical log,
1728 * so the distance from the head to the tail is the
1729 * distance from the head to the end of the log plus
1730 * the distance from the beginning of the log to the
1731 * tail.
1732 */
1733 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1734 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1735 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1736 return -EFSCORRUPTED;
1da177e4
LT
1737 }
1738 tail_distance = tail_block + (log->l_logBBsize - head_block);
1739 } else {
1740 /*
1741 * The head is behind the tail in the physical log,
1742 * so the distance from the head to the tail is just
1743 * the tail block minus the head block.
1744 */
1745 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1746 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1747 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1748 return -EFSCORRUPTED;
1da177e4
LT
1749 }
1750 tail_distance = tail_block - head_block;
1751 }
1752
1753 /*
1754 * If the head is right up against the tail, we can't clear
1755 * anything.
1756 */
1757 if (tail_distance <= 0) {
1758 ASSERT(tail_distance == 0);
1759 return 0;
1760 }
1761
1762 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1763 /*
1764 * Take the smaller of the maximum amount of outstanding I/O
1765 * we could have and the distance to the tail to clear out.
1766 * We take the smaller so that we don't overwrite the tail and
1767 * we don't waste all day writing from the head to the tail
1768 * for no reason.
1769 */
1770 max_distance = MIN(max_distance, tail_distance);
1771
1772 if ((head_block + max_distance) <= log->l_logBBsize) {
1773 /*
1774 * We can stomp all the blocks we need to without
1775 * wrapping around the end of the log. Just do it
1776 * in a single write. Use the cycle number of the
1777 * current cycle minus one so that the log will look like:
1778 * n ... | n - 1 ...
1779 */
1780 error = xlog_write_log_records(log, (head_cycle - 1),
1781 head_block, max_distance, tail_cycle,
1782 tail_block);
1783 if (error)
1784 return error;
1785 } else {
1786 /*
1787 * We need to wrap around the end of the physical log in
1788 * order to clear all the blocks. Do it in two separate
1789 * I/Os. The first write should be from the head to the
1790 * end of the physical log, and it should use the current
1791 * cycle number minus one just like above.
1792 */
1793 distance = log->l_logBBsize - head_block;
1794 error = xlog_write_log_records(log, (head_cycle - 1),
1795 head_block, distance, tail_cycle,
1796 tail_block);
1797
1798 if (error)
1799 return error;
1800
1801 /*
1802 * Now write the blocks at the start of the physical log.
1803 * This writes the remainder of the blocks we want to clear.
1804 * It uses the current cycle number since we're now on the
1805 * same cycle as the head so that we get:
1806 * n ... n ... | n - 1 ...
1807 * ^^^^^ blocks we're writing
1808 */
1809 distance = max_distance - (log->l_logBBsize - head_block);
1810 error = xlog_write_log_records(log, head_cycle, 0, distance,
1811 tail_cycle, tail_block);
1812 if (error)
1813 return error;
1814 }
1815
1816 return 0;
1817}
1818
1819/******************************************************************************
1820 *
1821 * Log recover routines
1822 *
1823 ******************************************************************************
1824 */
1825
f0a76953 1826/*
a775ad77
DC
1827 * Sort the log items in the transaction.
1828 *
1829 * The ordering constraints are defined by the inode allocation and unlink
1830 * behaviour. The rules are:
1831 *
1832 * 1. Every item is only logged once in a given transaction. Hence it
1833 * represents the last logged state of the item. Hence ordering is
1834 * dependent on the order in which operations need to be performed so
1835 * required initial conditions are always met.
1836 *
1837 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1838 * there's nothing to replay from them so we can simply cull them
1839 * from the transaction. However, we can't do that until after we've
1840 * replayed all the other items because they may be dependent on the
1841 * cancelled buffer and replaying the cancelled buffer can remove it
1842 * form the cancelled buffer table. Hence they have tobe done last.
1843 *
1844 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1845 * read the buffer and replay changes into it. For filesystems using the
1846 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1847 * treated the same as inode allocation buffers as they create and
1848 * initialise the buffers directly.
a775ad77
DC
1849 *
1850 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1851 * This ensures that inodes are completely flushed to the inode buffer
1852 * in a "free" state before we remove the unlinked inode list pointer.
1853 *
1854 * Hence the ordering needs to be inode allocation buffers first, inode items
1855 * second, inode unlink buffers third and cancelled buffers last.
1856 *
1857 * But there's a problem with that - we can't tell an inode allocation buffer
1858 * apart from a regular buffer, so we can't separate them. We can, however,
1859 * tell an inode unlink buffer from the others, and so we can separate them out
1860 * from all the other buffers and move them to last.
1861 *
1862 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1863 * - buffer_list for all buffers except cancelled/inode unlink buffers
1864 * - item_list for all non-buffer items
1865 * - inode_buffer_list for inode unlink buffers
1866 * - cancel_list for the cancelled buffers
1867 *
1868 * Note that we add objects to the tail of the lists so that first-to-last
1869 * ordering is preserved within the lists. Adding objects to the head of the
1870 * list means when we traverse from the head we walk them in last-to-first
1871 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1872 * but for all other items there may be specific ordering that we need to
1873 * preserve.
f0a76953 1874 */
1da177e4
LT
1875STATIC int
1876xlog_recover_reorder_trans(
ad223e60
MT
1877 struct xlog *log,
1878 struct xlog_recover *trans,
9abbc539 1879 int pass)
1da177e4 1880{
f0a76953 1881 xlog_recover_item_t *item, *n;
2a84108f 1882 int error = 0;
f0a76953 1883 LIST_HEAD(sort_list);
a775ad77
DC
1884 LIST_HEAD(cancel_list);
1885 LIST_HEAD(buffer_list);
1886 LIST_HEAD(inode_buffer_list);
1887 LIST_HEAD(inode_list);
f0a76953
DC
1888
1889 list_splice_init(&trans->r_itemq, &sort_list);
1890 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1891 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1892
f0a76953 1893 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1894 case XFS_LI_ICREATE:
1895 list_move_tail(&item->ri_list, &buffer_list);
1896 break;
1da177e4 1897 case XFS_LI_BUF:
a775ad77 1898 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1899 trace_xfs_log_recover_item_reorder_head(log,
1900 trans, item, pass);
a775ad77 1901 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1902 break;
1903 }
a775ad77
DC
1904 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1905 list_move(&item->ri_list, &inode_buffer_list);
1906 break;
1907 }
1908 list_move_tail(&item->ri_list, &buffer_list);
1909 break;
1da177e4 1910 case XFS_LI_INODE:
1da177e4
LT
1911 case XFS_LI_DQUOT:
1912 case XFS_LI_QUOTAOFF:
1913 case XFS_LI_EFD:
1914 case XFS_LI_EFI:
9abbc539
DC
1915 trace_xfs_log_recover_item_reorder_tail(log,
1916 trans, item, pass);
a775ad77 1917 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1918 break;
1919 default:
a0fa2b67
DC
1920 xfs_warn(log->l_mp,
1921 "%s: unrecognized type of log operation",
1922 __func__);
1da177e4 1923 ASSERT(0);
2a84108f
MT
1924 /*
1925 * return the remaining items back to the transaction
1926 * item list so they can be freed in caller.
1927 */
1928 if (!list_empty(&sort_list))
1929 list_splice_init(&sort_list, &trans->r_itemq);
2451337d 1930 error = -EIO;
2a84108f 1931 goto out;
1da177e4 1932 }
f0a76953 1933 }
2a84108f 1934out:
f0a76953 1935 ASSERT(list_empty(&sort_list));
a775ad77
DC
1936 if (!list_empty(&buffer_list))
1937 list_splice(&buffer_list, &trans->r_itemq);
1938 if (!list_empty(&inode_list))
1939 list_splice_tail(&inode_list, &trans->r_itemq);
1940 if (!list_empty(&inode_buffer_list))
1941 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1942 if (!list_empty(&cancel_list))
1943 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 1944 return error;
1da177e4
LT
1945}
1946
1947/*
1948 * Build up the table of buf cancel records so that we don't replay
1949 * cancelled data in the second pass. For buffer records that are
1950 * not cancel records, there is nothing to do here so we just return.
1951 *
1952 * If we get a cancel record which is already in the table, this indicates
1953 * that the buffer was cancelled multiple times. In order to ensure
1954 * that during pass 2 we keep the record in the table until we reach its
1955 * last occurrence in the log, we keep a reference count in the cancel
1956 * record in the table to tell us how many times we expect to see this
1957 * record during the second pass.
1958 */
c9f71f5f
CH
1959STATIC int
1960xlog_recover_buffer_pass1(
ad223e60
MT
1961 struct xlog *log,
1962 struct xlog_recover_item *item)
1da177e4 1963{
c9f71f5f 1964 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1965 struct list_head *bucket;
1966 struct xfs_buf_cancel *bcp;
1da177e4
LT
1967
1968 /*
1969 * If this isn't a cancel buffer item, then just return.
1970 */
e2714bf8 1971 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1972 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1973 return 0;
9abbc539 1974 }
1da177e4
LT
1975
1976 /*
d5689eaa
CH
1977 * Insert an xfs_buf_cancel record into the hash table of them.
1978 * If there is already an identical record, bump its reference count.
1da177e4 1979 */
d5689eaa
CH
1980 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1981 list_for_each_entry(bcp, bucket, bc_list) {
1982 if (bcp->bc_blkno == buf_f->blf_blkno &&
1983 bcp->bc_len == buf_f->blf_len) {
1984 bcp->bc_refcount++;
9abbc539 1985 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1986 return 0;
1da177e4 1987 }
d5689eaa
CH
1988 }
1989
1990 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1991 bcp->bc_blkno = buf_f->blf_blkno;
1992 bcp->bc_len = buf_f->blf_len;
1da177e4 1993 bcp->bc_refcount = 1;
d5689eaa
CH
1994 list_add_tail(&bcp->bc_list, bucket);
1995
9abbc539 1996 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1997 return 0;
1da177e4
LT
1998}
1999
2000/*
2001 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
2002 * entry in the buffer cancel record table. If it is, return the cancel
2003 * buffer structure to the caller.
1da177e4 2004 */
84a5b730
DC
2005STATIC struct xfs_buf_cancel *
2006xlog_peek_buffer_cancelled(
ad223e60 2007 struct xlog *log,
1da177e4
LT
2008 xfs_daddr_t blkno,
2009 uint len,
2010 ushort flags)
2011{
d5689eaa
CH
2012 struct list_head *bucket;
2013 struct xfs_buf_cancel *bcp;
1da177e4 2014
84a5b730
DC
2015 if (!log->l_buf_cancel_table) {
2016 /* empty table means no cancelled buffers in the log */
c1155410 2017 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 2018 return NULL;
1da177e4
LT
2019 }
2020
d5689eaa
CH
2021 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2022 list_for_each_entry(bcp, bucket, bc_list) {
2023 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 2024 return bcp;
1da177e4 2025 }
d5689eaa 2026
1da177e4 2027 /*
d5689eaa
CH
2028 * We didn't find a corresponding entry in the table, so return 0 so
2029 * that the buffer is NOT cancelled.
1da177e4 2030 */
c1155410 2031 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
2032 return NULL;
2033}
2034
2035/*
2036 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2037 * otherwise return 0. If the buffer is actually a buffer cancel item
2038 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2039 * table and remove it from the table if this is the last reference.
2040 *
2041 * We remove the cancel record from the table when we encounter its last
2042 * occurrence in the log so that if the same buffer is re-used again after its
2043 * last cancellation we actually replay the changes made at that point.
2044 */
2045STATIC int
2046xlog_check_buffer_cancelled(
2047 struct xlog *log,
2048 xfs_daddr_t blkno,
2049 uint len,
2050 ushort flags)
2051{
2052 struct xfs_buf_cancel *bcp;
2053
2054 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2055 if (!bcp)
2056 return 0;
d5689eaa 2057
d5689eaa
CH
2058 /*
2059 * We've go a match, so return 1 so that the recovery of this buffer
2060 * is cancelled. If this buffer is actually a buffer cancel log
2061 * item, then decrement the refcount on the one in the table and
2062 * remove it if this is the last reference.
2063 */
2064 if (flags & XFS_BLF_CANCEL) {
2065 if (--bcp->bc_refcount == 0) {
2066 list_del(&bcp->bc_list);
2067 kmem_free(bcp);
2068 }
2069 }
2070 return 1;
1da177e4
LT
2071}
2072
1da177e4 2073/*
e2714bf8
CH
2074 * Perform recovery for a buffer full of inodes. In these buffers, the only
2075 * data which should be recovered is that which corresponds to the
2076 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2077 * data for the inodes is always logged through the inodes themselves rather
2078 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 2079 *
e2714bf8
CH
2080 * The only time when buffers full of inodes are fully recovered is when the
2081 * buffer is full of newly allocated inodes. In this case the buffer will
2082 * not be marked as an inode buffer and so will be sent to
2083 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
2084 */
2085STATIC int
2086xlog_recover_do_inode_buffer(
e2714bf8 2087 struct xfs_mount *mp,
1da177e4 2088 xlog_recover_item_t *item,
e2714bf8 2089 struct xfs_buf *bp,
1da177e4
LT
2090 xfs_buf_log_format_t *buf_f)
2091{
2092 int i;
e2714bf8
CH
2093 int item_index = 0;
2094 int bit = 0;
2095 int nbits = 0;
2096 int reg_buf_offset = 0;
2097 int reg_buf_bytes = 0;
1da177e4
LT
2098 int next_unlinked_offset;
2099 int inodes_per_buf;
2100 xfs_agino_t *logged_nextp;
2101 xfs_agino_t *buffer_nextp;
1da177e4 2102
9abbc539 2103 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
2104
2105 /*
2106 * Post recovery validation only works properly on CRC enabled
2107 * filesystems.
2108 */
2109 if (xfs_sb_version_hascrc(&mp->m_sb))
2110 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 2111
aa0e8833 2112 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
2113 for (i = 0; i < inodes_per_buf; i++) {
2114 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2115 offsetof(xfs_dinode_t, di_next_unlinked);
2116
2117 while (next_unlinked_offset >=
2118 (reg_buf_offset + reg_buf_bytes)) {
2119 /*
2120 * The next di_next_unlinked field is beyond
2121 * the current logged region. Find the next
2122 * logged region that contains or is beyond
2123 * the current di_next_unlinked field.
2124 */
2125 bit += nbits;
e2714bf8
CH
2126 bit = xfs_next_bit(buf_f->blf_data_map,
2127 buf_f->blf_map_size, bit);
1da177e4
LT
2128
2129 /*
2130 * If there are no more logged regions in the
2131 * buffer, then we're done.
2132 */
e2714bf8 2133 if (bit == -1)
1da177e4 2134 return 0;
1da177e4 2135
e2714bf8
CH
2136 nbits = xfs_contig_bits(buf_f->blf_data_map,
2137 buf_f->blf_map_size, bit);
1da177e4 2138 ASSERT(nbits > 0);
c1155410
DC
2139 reg_buf_offset = bit << XFS_BLF_SHIFT;
2140 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
2141 item_index++;
2142 }
2143
2144 /*
2145 * If the current logged region starts after the current
2146 * di_next_unlinked field, then move on to the next
2147 * di_next_unlinked field.
2148 */
e2714bf8 2149 if (next_unlinked_offset < reg_buf_offset)
1da177e4 2150 continue;
1da177e4
LT
2151
2152 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 2153 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
2154 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2155 BBTOB(bp->b_io_length));
1da177e4
LT
2156
2157 /*
2158 * The current logged region contains a copy of the
2159 * current di_next_unlinked field. Extract its value
2160 * and copy it to the buffer copy.
2161 */
4e0d5f92
CH
2162 logged_nextp = item->ri_buf[item_index].i_addr +
2163 next_unlinked_offset - reg_buf_offset;
1da177e4 2164 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
2165 xfs_alert(mp,
2166 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2167 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
2168 item, bp);
2169 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2170 XFS_ERRLEVEL_LOW, mp);
2451337d 2171 return -EFSCORRUPTED;
1da177e4
LT
2172 }
2173
88ee2df7 2174 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
87c199c2 2175 *buffer_nextp = *logged_nextp;
0a32c26e
DC
2176
2177 /*
2178 * If necessary, recalculate the CRC in the on-disk inode. We
2179 * have to leave the inode in a consistent state for whoever
2180 * reads it next....
2181 */
88ee2df7 2182 xfs_dinode_calc_crc(mp,
0a32c26e
DC
2183 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2184
1da177e4
LT
2185 }
2186
2187 return 0;
2188}
2189
50d5c8d8
DC
2190/*
2191 * V5 filesystems know the age of the buffer on disk being recovered. We can
2192 * have newer objects on disk than we are replaying, and so for these cases we
2193 * don't want to replay the current change as that will make the buffer contents
2194 * temporarily invalid on disk.
2195 *
2196 * The magic number might not match the buffer type we are going to recover
2197 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2198 * extract the LSN of the existing object in the buffer based on it's current
2199 * magic number. If we don't recognise the magic number in the buffer, then
2200 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2201 * so can recover the buffer.
566055d3
DC
2202 *
2203 * Note: we cannot rely solely on magic number matches to determine that the
2204 * buffer has a valid LSN - we also need to verify that it belongs to this
2205 * filesystem, so we need to extract the object's LSN and compare it to that
2206 * which we read from the superblock. If the UUIDs don't match, then we've got a
2207 * stale metadata block from an old filesystem instance that we need to recover
2208 * over the top of.
50d5c8d8
DC
2209 */
2210static xfs_lsn_t
2211xlog_recover_get_buf_lsn(
2212 struct xfs_mount *mp,
2213 struct xfs_buf *bp)
2214{
2215 __uint32_t magic32;
2216 __uint16_t magic16;
2217 __uint16_t magicda;
2218 void *blk = bp->b_addr;
566055d3
DC
2219 uuid_t *uuid;
2220 xfs_lsn_t lsn = -1;
50d5c8d8
DC
2221
2222 /* v4 filesystems always recover immediately */
2223 if (!xfs_sb_version_hascrc(&mp->m_sb))
2224 goto recover_immediately;
2225
2226 magic32 = be32_to_cpu(*(__be32 *)blk);
2227 switch (magic32) {
2228 case XFS_ABTB_CRC_MAGIC:
2229 case XFS_ABTC_CRC_MAGIC:
2230 case XFS_ABTB_MAGIC:
2231 case XFS_ABTC_MAGIC:
2232 case XFS_IBT_CRC_MAGIC:
566055d3
DC
2233 case XFS_IBT_MAGIC: {
2234 struct xfs_btree_block *btb = blk;
2235
2236 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2237 uuid = &btb->bb_u.s.bb_uuid;
2238 break;
2239 }
50d5c8d8 2240 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
2241 case XFS_BMAP_MAGIC: {
2242 struct xfs_btree_block *btb = blk;
2243
2244 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2245 uuid = &btb->bb_u.l.bb_uuid;
2246 break;
2247 }
50d5c8d8 2248 case XFS_AGF_MAGIC:
566055d3
DC
2249 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2250 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2251 break;
50d5c8d8 2252 case XFS_AGFL_MAGIC:
566055d3
DC
2253 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2254 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2255 break;
50d5c8d8 2256 case XFS_AGI_MAGIC:
566055d3
DC
2257 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2258 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2259 break;
50d5c8d8 2260 case XFS_SYMLINK_MAGIC:
566055d3
DC
2261 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2262 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2263 break;
50d5c8d8
DC
2264 case XFS_DIR3_BLOCK_MAGIC:
2265 case XFS_DIR3_DATA_MAGIC:
2266 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
2267 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2268 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2269 break;
50d5c8d8 2270 case XFS_ATTR3_RMT_MAGIC:
e3c32ee9
DC
2271 /*
2272 * Remote attr blocks are written synchronously, rather than
2273 * being logged. That means they do not contain a valid LSN
2274 * (i.e. transactionally ordered) in them, and hence any time we
2275 * see a buffer to replay over the top of a remote attribute
2276 * block we should simply do so.
2277 */
2278 goto recover_immediately;
50d5c8d8 2279 case XFS_SB_MAGIC:
fcfbe2c4
DC
2280 /*
2281 * superblock uuids are magic. We may or may not have a
2282 * sb_meta_uuid on disk, but it will be set in the in-core
2283 * superblock. We set the uuid pointer for verification
2284 * according to the superblock feature mask to ensure we check
2285 * the relevant UUID in the superblock.
2286 */
566055d3 2287 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
fcfbe2c4
DC
2288 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2289 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2290 else
2291 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
566055d3 2292 break;
50d5c8d8
DC
2293 default:
2294 break;
2295 }
2296
566055d3 2297 if (lsn != (xfs_lsn_t)-1) {
fcfbe2c4 2298 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
566055d3
DC
2299 goto recover_immediately;
2300 return lsn;
2301 }
2302
50d5c8d8
DC
2303 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2304 switch (magicda) {
2305 case XFS_DIR3_LEAF1_MAGIC:
2306 case XFS_DIR3_LEAFN_MAGIC:
2307 case XFS_DA3_NODE_MAGIC:
566055d3
DC
2308 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2309 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2310 break;
50d5c8d8
DC
2311 default:
2312 break;
2313 }
2314
566055d3
DC
2315 if (lsn != (xfs_lsn_t)-1) {
2316 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2317 goto recover_immediately;
2318 return lsn;
2319 }
2320
50d5c8d8
DC
2321 /*
2322 * We do individual object checks on dquot and inode buffers as they
2323 * have their own individual LSN records. Also, we could have a stale
2324 * buffer here, so we have to at least recognise these buffer types.
2325 *
2326 * A notd complexity here is inode unlinked list processing - it logs
2327 * the inode directly in the buffer, but we don't know which inodes have
2328 * been modified, and there is no global buffer LSN. Hence we need to
2329 * recover all inode buffer types immediately. This problem will be
2330 * fixed by logical logging of the unlinked list modifications.
2331 */
2332 magic16 = be16_to_cpu(*(__be16 *)blk);
2333 switch (magic16) {
2334 case XFS_DQUOT_MAGIC:
2335 case XFS_DINODE_MAGIC:
2336 goto recover_immediately;
2337 default:
2338 break;
2339 }
2340
2341 /* unknown buffer contents, recover immediately */
2342
2343recover_immediately:
2344 return (xfs_lsn_t)-1;
2345
2346}
2347
1da177e4 2348/*
d75afeb3
DC
2349 * Validate the recovered buffer is of the correct type and attach the
2350 * appropriate buffer operations to them for writeback. Magic numbers are in a
2351 * few places:
2352 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2353 * the first 32 bits of the buffer (most blocks),
2354 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2355 */
d75afeb3 2356static void
50d5c8d8 2357xlog_recover_validate_buf_type(
9abbc539 2358 struct xfs_mount *mp,
e2714bf8 2359 struct xfs_buf *bp,
1da177e4
LT
2360 xfs_buf_log_format_t *buf_f)
2361{
d75afeb3
DC
2362 struct xfs_da_blkinfo *info = bp->b_addr;
2363 __uint32_t magic32;
2364 __uint16_t magic16;
2365 __uint16_t magicda;
2366
67dc288c
DC
2367 /*
2368 * We can only do post recovery validation on items on CRC enabled
2369 * fielsystems as we need to know when the buffer was written to be able
2370 * to determine if we should have replayed the item. If we replay old
2371 * metadata over a newer buffer, then it will enter a temporarily
2372 * inconsistent state resulting in verification failures. Hence for now
2373 * just avoid the verification stage for non-crc filesystems
2374 */
2375 if (!xfs_sb_version_hascrc(&mp->m_sb))
2376 return;
2377
d75afeb3
DC
2378 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2379 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2380 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2381 switch (xfs_blft_from_flags(buf_f)) {
2382 case XFS_BLFT_BTREE_BUF:
d75afeb3 2383 switch (magic32) {
ee1a47ab
CH
2384 case XFS_ABTB_CRC_MAGIC:
2385 case XFS_ABTC_CRC_MAGIC:
2386 case XFS_ABTB_MAGIC:
2387 case XFS_ABTC_MAGIC:
2388 bp->b_ops = &xfs_allocbt_buf_ops;
2389 break;
2390 case XFS_IBT_CRC_MAGIC:
aafc3c24 2391 case XFS_FIBT_CRC_MAGIC:
ee1a47ab 2392 case XFS_IBT_MAGIC:
aafc3c24 2393 case XFS_FIBT_MAGIC:
ee1a47ab
CH
2394 bp->b_ops = &xfs_inobt_buf_ops;
2395 break;
2396 case XFS_BMAP_CRC_MAGIC:
2397 case XFS_BMAP_MAGIC:
2398 bp->b_ops = &xfs_bmbt_buf_ops;
2399 break;
2400 default:
2401 xfs_warn(mp, "Bad btree block magic!");
2402 ASSERT(0);
2403 break;
2404 }
2405 break;
61fe135c 2406 case XFS_BLFT_AGF_BUF:
d75afeb3 2407 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
2408 xfs_warn(mp, "Bad AGF block magic!");
2409 ASSERT(0);
2410 break;
2411 }
2412 bp->b_ops = &xfs_agf_buf_ops;
2413 break;
61fe135c 2414 case XFS_BLFT_AGFL_BUF:
d75afeb3 2415 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2416 xfs_warn(mp, "Bad AGFL block magic!");
2417 ASSERT(0);
2418 break;
2419 }
2420 bp->b_ops = &xfs_agfl_buf_ops;
2421 break;
61fe135c 2422 case XFS_BLFT_AGI_BUF:
d75afeb3 2423 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2424 xfs_warn(mp, "Bad AGI block magic!");
2425 ASSERT(0);
2426 break;
2427 }
2428 bp->b_ops = &xfs_agi_buf_ops;
2429 break;
61fe135c
DC
2430 case XFS_BLFT_UDQUOT_BUF:
2431 case XFS_BLFT_PDQUOT_BUF:
2432 case XFS_BLFT_GDQUOT_BUF:
123887e8 2433#ifdef CONFIG_XFS_QUOTA
d75afeb3 2434 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2435 xfs_warn(mp, "Bad DQUOT block magic!");
2436 ASSERT(0);
2437 break;
2438 }
2439 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2440#else
2441 xfs_alert(mp,
2442 "Trying to recover dquots without QUOTA support built in!");
2443 ASSERT(0);
2444#endif
3fe58f30 2445 break;
61fe135c 2446 case XFS_BLFT_DINO_BUF:
d75afeb3 2447 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2448 xfs_warn(mp, "Bad INODE block magic!");
2449 ASSERT(0);
2450 break;
2451 }
2452 bp->b_ops = &xfs_inode_buf_ops;
2453 break;
61fe135c 2454 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2455 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2456 xfs_warn(mp, "Bad symlink block magic!");
2457 ASSERT(0);
2458 break;
2459 }
2460 bp->b_ops = &xfs_symlink_buf_ops;
2461 break;
61fe135c 2462 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2463 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2464 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2465 xfs_warn(mp, "Bad dir block magic!");
2466 ASSERT(0);
2467 break;
2468 }
2469 bp->b_ops = &xfs_dir3_block_buf_ops;
2470 break;
61fe135c 2471 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2472 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2473 magic32 != XFS_DIR3_DATA_MAGIC) {
2474 xfs_warn(mp, "Bad dir data magic!");
2475 ASSERT(0);
2476 break;
2477 }
2478 bp->b_ops = &xfs_dir3_data_buf_ops;
2479 break;
61fe135c 2480 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2481 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2482 magic32 != XFS_DIR3_FREE_MAGIC) {
2483 xfs_warn(mp, "Bad dir3 free magic!");
2484 ASSERT(0);
2485 break;
2486 }
2487 bp->b_ops = &xfs_dir3_free_buf_ops;
2488 break;
61fe135c 2489 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2490 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2491 magicda != XFS_DIR3_LEAF1_MAGIC) {
2492 xfs_warn(mp, "Bad dir leaf1 magic!");
2493 ASSERT(0);
2494 break;
2495 }
2496 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2497 break;
61fe135c 2498 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2499 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2500 magicda != XFS_DIR3_LEAFN_MAGIC) {
2501 xfs_warn(mp, "Bad dir leafn magic!");
2502 ASSERT(0);
2503 break;
2504 }
2505 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2506 break;
61fe135c 2507 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2508 if (magicda != XFS_DA_NODE_MAGIC &&
2509 magicda != XFS_DA3_NODE_MAGIC) {
2510 xfs_warn(mp, "Bad da node magic!");
2511 ASSERT(0);
2512 break;
2513 }
2514 bp->b_ops = &xfs_da3_node_buf_ops;
2515 break;
61fe135c 2516 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2517 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2518 magicda != XFS_ATTR3_LEAF_MAGIC) {
2519 xfs_warn(mp, "Bad attr leaf magic!");
2520 ASSERT(0);
2521 break;
2522 }
2523 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2524 break;
61fe135c 2525 case XFS_BLFT_ATTR_RMT_BUF:
cab09a81 2526 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2527 xfs_warn(mp, "Bad attr remote magic!");
2528 ASSERT(0);
2529 break;
2530 }
2531 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2532 break;
04a1e6c5
DC
2533 case XFS_BLFT_SB_BUF:
2534 if (magic32 != XFS_SB_MAGIC) {
2535 xfs_warn(mp, "Bad SB block magic!");
2536 ASSERT(0);
2537 break;
2538 }
2539 bp->b_ops = &xfs_sb_buf_ops;
2540 break;
f67ca6ec
DC
2541#ifdef CONFIG_XFS_RT
2542 case XFS_BLFT_RTBITMAP_BUF:
2543 case XFS_BLFT_RTSUMMARY_BUF:
bf85e099
DC
2544 /* no magic numbers for verification of RT buffers */
2545 bp->b_ops = &xfs_rtbuf_ops;
f67ca6ec
DC
2546 break;
2547#endif /* CONFIG_XFS_RT */
ee1a47ab 2548 default:
61fe135c
DC
2549 xfs_warn(mp, "Unknown buffer type %d!",
2550 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2551 break;
2552 }
1da177e4
LT
2553}
2554
d75afeb3
DC
2555/*
2556 * Perform a 'normal' buffer recovery. Each logged region of the
2557 * buffer should be copied over the corresponding region in the
2558 * given buffer. The bitmap in the buf log format structure indicates
2559 * where to place the logged data.
2560 */
2561STATIC void
2562xlog_recover_do_reg_buffer(
2563 struct xfs_mount *mp,
2564 xlog_recover_item_t *item,
2565 struct xfs_buf *bp,
2566 xfs_buf_log_format_t *buf_f)
2567{
2568 int i;
2569 int bit;
2570 int nbits;
2571 int error;
2572
2573 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2574
2575 bit = 0;
2576 i = 1; /* 0 is the buf format structure */
2577 while (1) {
2578 bit = xfs_next_bit(buf_f->blf_data_map,
2579 buf_f->blf_map_size, bit);
2580 if (bit == -1)
2581 break;
2582 nbits = xfs_contig_bits(buf_f->blf_data_map,
2583 buf_f->blf_map_size, bit);
2584 ASSERT(nbits > 0);
2585 ASSERT(item->ri_buf[i].i_addr != NULL);
2586 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2587 ASSERT(BBTOB(bp->b_io_length) >=
2588 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2589
709da6a6
DC
2590 /*
2591 * The dirty regions logged in the buffer, even though
2592 * contiguous, may span multiple chunks. This is because the
2593 * dirty region may span a physical page boundary in a buffer
2594 * and hence be split into two separate vectors for writing into
2595 * the log. Hence we need to trim nbits back to the length of
2596 * the current region being copied out of the log.
2597 */
2598 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2599 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2600
d75afeb3
DC
2601 /*
2602 * Do a sanity check if this is a dquot buffer. Just checking
2603 * the first dquot in the buffer should do. XXXThis is
2604 * probably a good thing to do for other buf types also.
2605 */
2606 error = 0;
2607 if (buf_f->blf_flags &
2608 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2609 if (item->ri_buf[i].i_addr == NULL) {
2610 xfs_alert(mp,
2611 "XFS: NULL dquot in %s.", __func__);
2612 goto next;
2613 }
2614 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2615 xfs_alert(mp,
2616 "XFS: dquot too small (%d) in %s.",
2617 item->ri_buf[i].i_len, __func__);
2618 goto next;
2619 }
9aede1d8 2620 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
d75afeb3
DC
2621 -1, 0, XFS_QMOPT_DOWARN,
2622 "dquot_buf_recover");
2623 if (error)
2624 goto next;
2625 }
2626
2627 memcpy(xfs_buf_offset(bp,
2628 (uint)bit << XFS_BLF_SHIFT), /* dest */
2629 item->ri_buf[i].i_addr, /* source */
2630 nbits<<XFS_BLF_SHIFT); /* length */
2631 next:
2632 i++;
2633 bit += nbits;
2634 }
2635
2636 /* Shouldn't be any more regions */
2637 ASSERT(i == item->ri_total);
2638
67dc288c 2639 xlog_recover_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2640}
2641
1da177e4
LT
2642/*
2643 * Perform a dquot buffer recovery.
8ba701ee 2644 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2645 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2646 * Else, treat it as a regular buffer and do recovery.
ad3714b8
DC
2647 *
2648 * Return false if the buffer was tossed and true if we recovered the buffer to
2649 * indicate to the caller if the buffer needs writing.
1da177e4 2650 */
ad3714b8 2651STATIC bool
1da177e4 2652xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2653 struct xfs_mount *mp,
2654 struct xlog *log,
2655 struct xlog_recover_item *item,
2656 struct xfs_buf *bp,
2657 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2658{
2659 uint type;
2660
9abbc539
DC
2661 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2662
1da177e4
LT
2663 /*
2664 * Filesystems are required to send in quota flags at mount time.
2665 */
ad3714b8
DC
2666 if (!mp->m_qflags)
2667 return false;
1da177e4
LT
2668
2669 type = 0;
c1155410 2670 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2671 type |= XFS_DQ_USER;
c1155410 2672 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2673 type |= XFS_DQ_PROJ;
c1155410 2674 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2675 type |= XFS_DQ_GROUP;
2676 /*
2677 * This type of quotas was turned off, so ignore this buffer
2678 */
2679 if (log->l_quotaoffs_flag & type)
ad3714b8 2680 return false;
1da177e4 2681
9abbc539 2682 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
ad3714b8 2683 return true;
1da177e4
LT
2684}
2685
2686/*
2687 * This routine replays a modification made to a buffer at runtime.
2688 * There are actually two types of buffer, regular and inode, which
2689 * are handled differently. Inode buffers are handled differently
2690 * in that we only recover a specific set of data from them, namely
2691 * the inode di_next_unlinked fields. This is because all other inode
2692 * data is actually logged via inode records and any data we replay
2693 * here which overlaps that may be stale.
2694 *
2695 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2696 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2697 * of the buffer in the log should not be replayed at recovery time.
2698 * This is so that if the blocks covered by the buffer are reused for
2699 * file data before we crash we don't end up replaying old, freed
2700 * meta-data into a user's file.
2701 *
2702 * To handle the cancellation of buffer log items, we make two passes
2703 * over the log during recovery. During the first we build a table of
2704 * those buffers which have been cancelled, and during the second we
2705 * only replay those buffers which do not have corresponding cancel
34be5ff3 2706 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2707 * for more details on the implementation of the table of cancel records.
2708 */
2709STATIC int
c9f71f5f 2710xlog_recover_buffer_pass2(
9a8d2fdb
MT
2711 struct xlog *log,
2712 struct list_head *buffer_list,
50d5c8d8
DC
2713 struct xlog_recover_item *item,
2714 xfs_lsn_t current_lsn)
1da177e4 2715{
4e0d5f92 2716 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2717 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2718 xfs_buf_t *bp;
2719 int error;
6ad112bf 2720 uint buf_flags;
50d5c8d8 2721 xfs_lsn_t lsn;
1da177e4 2722
c9f71f5f
CH
2723 /*
2724 * In this pass we only want to recover all the buffers which have
2725 * not been cancelled and are not cancellation buffers themselves.
2726 */
2727 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2728 buf_f->blf_len, buf_f->blf_flags)) {
2729 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2730 return 0;
1da177e4 2731 }
c9f71f5f 2732
9abbc539 2733 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2734
a8acad70 2735 buf_flags = 0;
611c9946
DC
2736 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2737 buf_flags |= XBF_UNMAPPED;
6ad112bf 2738
e2714bf8 2739 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2740 buf_flags, NULL);
ac4d6888 2741 if (!bp)
2451337d 2742 return -ENOMEM;
e5702805 2743 error = bp->b_error;
5a52c2a5 2744 if (error) {
901796af 2745 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2746 goto out_release;
1da177e4
LT
2747 }
2748
50d5c8d8 2749 /*
67dc288c 2750 * Recover the buffer only if we get an LSN from it and it's less than
50d5c8d8 2751 * the lsn of the transaction we are replaying.
67dc288c
DC
2752 *
2753 * Note that we have to be extremely careful of readahead here.
2754 * Readahead does not attach verfiers to the buffers so if we don't
2755 * actually do any replay after readahead because of the LSN we found
2756 * in the buffer if more recent than that current transaction then we
2757 * need to attach the verifier directly. Failure to do so can lead to
2758 * future recovery actions (e.g. EFI and unlinked list recovery) can
2759 * operate on the buffers and they won't get the verifier attached. This
2760 * can lead to blocks on disk having the correct content but a stale
2761 * CRC.
2762 *
2763 * It is safe to assume these clean buffers are currently up to date.
2764 * If the buffer is dirtied by a later transaction being replayed, then
2765 * the verifier will be reset to match whatever recover turns that
2766 * buffer into.
50d5c8d8
DC
2767 */
2768 lsn = xlog_recover_get_buf_lsn(mp, bp);
67dc288c
DC
2769 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2770 xlog_recover_validate_buf_type(mp, bp, buf_f);
50d5c8d8 2771 goto out_release;
67dc288c 2772 }
50d5c8d8 2773
e2714bf8 2774 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2775 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
ad3714b8
DC
2776 if (error)
2777 goto out_release;
e2714bf8 2778 } else if (buf_f->blf_flags &
c1155410 2779 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
ad3714b8
DC
2780 bool dirty;
2781
2782 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2783 if (!dirty)
2784 goto out_release;
1da177e4 2785 } else {
9abbc539 2786 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4 2787 }
1da177e4
LT
2788
2789 /*
2790 * Perform delayed write on the buffer. Asynchronous writes will be
2791 * slower when taking into account all the buffers to be flushed.
2792 *
2793 * Also make sure that only inode buffers with good sizes stay in
2794 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2795 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2796 * buffers in the log can be a different size if the log was generated
2797 * by an older kernel using unclustered inode buffers or a newer kernel
2798 * running with a different inode cluster size. Regardless, if the
0f49efd8
JL
2799 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2800 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2801 * the buffer out of the buffer cache so that the buffer won't
2802 * overlap with future reads of those inodes.
2803 */
2804 if (XFS_DINODE_MAGIC ==
b53e675d 2805 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2806 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
0f49efd8 2807 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2808 xfs_buf_stale(bp);
c2b006c1 2809 error = xfs_bwrite(bp);
1da177e4 2810 } else {
ebad861b 2811 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2812 bp->b_iodone = xlog_recover_iodone;
43ff2122 2813 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2814 }
2815
50d5c8d8 2816out_release:
c2b006c1
CH
2817 xfs_buf_relse(bp);
2818 return error;
1da177e4
LT
2819}
2820
638f4416
DC
2821/*
2822 * Inode fork owner changes
2823 *
2824 * If we have been told that we have to reparent the inode fork, it's because an
2825 * extent swap operation on a CRC enabled filesystem has been done and we are
2826 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2827 * owners of it.
2828 *
2829 * The complexity here is that we don't have an inode context to work with, so
2830 * after we've replayed the inode we need to instantiate one. This is where the
2831 * fun begins.
2832 *
2833 * We are in the middle of log recovery, so we can't run transactions. That
2834 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2835 * that will result in the corresponding iput() running the inode through
2836 * xfs_inactive(). If we've just replayed an inode core that changes the link
2837 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2838 * transactions (bad!).
2839 *
2840 * So, to avoid this, we instantiate an inode directly from the inode core we've
2841 * just recovered. We have the buffer still locked, and all we really need to
2842 * instantiate is the inode core and the forks being modified. We can do this
2843 * manually, then run the inode btree owner change, and then tear down the
2844 * xfs_inode without having to run any transactions at all.
2845 *
2846 * Also, because we don't have a transaction context available here but need to
2847 * gather all the buffers we modify for writeback so we pass the buffer_list
2848 * instead for the operation to use.
2849 */
2850
2851STATIC int
2852xfs_recover_inode_owner_change(
2853 struct xfs_mount *mp,
2854 struct xfs_dinode *dip,
2855 struct xfs_inode_log_format *in_f,
2856 struct list_head *buffer_list)
2857{
2858 struct xfs_inode *ip;
2859 int error;
2860
2861 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2862
2863 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2864 if (!ip)
2451337d 2865 return -ENOMEM;
638f4416
DC
2866
2867 /* instantiate the inode */
3987848c 2868 xfs_inode_from_disk(ip, dip);
638f4416
DC
2869 ASSERT(ip->i_d.di_version >= 3);
2870
2871 error = xfs_iformat_fork(ip, dip);
2872 if (error)
2873 goto out_free_ip;
2874
2875
2876 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2877 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2878 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2879 ip->i_ino, buffer_list);
2880 if (error)
2881 goto out_free_ip;
2882 }
2883
2884 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2885 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2886 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2887 ip->i_ino, buffer_list);
2888 if (error)
2889 goto out_free_ip;
2890 }
2891
2892out_free_ip:
2893 xfs_inode_free(ip);
2894 return error;
2895}
2896
1da177e4 2897STATIC int
c9f71f5f 2898xlog_recover_inode_pass2(
9a8d2fdb
MT
2899 struct xlog *log,
2900 struct list_head *buffer_list,
50d5c8d8
DC
2901 struct xlog_recover_item *item,
2902 xfs_lsn_t current_lsn)
1da177e4
LT
2903{
2904 xfs_inode_log_format_t *in_f;
c9f71f5f 2905 xfs_mount_t *mp = log->l_mp;
1da177e4 2906 xfs_buf_t *bp;
1da177e4 2907 xfs_dinode_t *dip;
1da177e4 2908 int len;
b2a922cd
CH
2909 char *src;
2910 char *dest;
1da177e4
LT
2911 int error;
2912 int attr_index;
2913 uint fields;
f8d55aa0 2914 struct xfs_log_dinode *ldip;
93848a99 2915 uint isize;
6d192a9b 2916 int need_free = 0;
1da177e4 2917
6d192a9b 2918 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2919 in_f = item->ri_buf[0].i_addr;
6d192a9b 2920 } else {
4e0d5f92 2921 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2922 need_free = 1;
2923 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2924 if (error)
2925 goto error;
2926 }
1da177e4
LT
2927
2928 /*
2929 * Inode buffers can be freed, look out for it,
2930 * and do not replay the inode.
2931 */
a1941895
CH
2932 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2933 in_f->ilf_len, 0)) {
6d192a9b 2934 error = 0;
9abbc539 2935 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2936 goto error;
2937 }
9abbc539 2938 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2939
c3f8fc73 2940 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2941 &xfs_inode_buf_ops);
ac4d6888 2942 if (!bp) {
2451337d 2943 error = -ENOMEM;
ac4d6888
CS
2944 goto error;
2945 }
e5702805 2946 error = bp->b_error;
5a52c2a5 2947 if (error) {
901796af 2948 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 2949 goto out_release;
1da177e4 2950 }
1da177e4 2951 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
88ee2df7 2952 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2953
2954 /*
2955 * Make sure the place we're flushing out to really looks
2956 * like an inode!
2957 */
69ef921b 2958 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67
DC
2959 xfs_alert(mp,
2960 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2961 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2962 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2963 XFS_ERRLEVEL_LOW, mp);
2451337d 2964 error = -EFSCORRUPTED;
638f4416 2965 goto out_release;
1da177e4 2966 }
f8d55aa0
DC
2967 ldip = item->ri_buf[1].i_addr;
2968 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67
DC
2969 xfs_alert(mp,
2970 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2971 __func__, item, in_f->ilf_ino);
c9f71f5f 2972 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2973 XFS_ERRLEVEL_LOW, mp);
2451337d 2974 error = -EFSCORRUPTED;
638f4416 2975 goto out_release;
1da177e4
LT
2976 }
2977
50d5c8d8
DC
2978 /*
2979 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
2980 * than the lsn of the transaction we are replaying. Note: we still
2981 * need to replay an owner change even though the inode is more recent
2982 * than the transaction as there is no guarantee that all the btree
2983 * blocks are more recent than this transaction, too.
50d5c8d8
DC
2984 */
2985 if (dip->di_version >= 3) {
2986 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2987
2988 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2989 trace_xfs_log_recover_inode_skip(log, in_f);
2990 error = 0;
638f4416 2991 goto out_owner_change;
50d5c8d8
DC
2992 }
2993 }
2994
e60896d8
DC
2995 /*
2996 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2997 * are transactional and if ordering is necessary we can determine that
2998 * more accurately by the LSN field in the V3 inode core. Don't trust
2999 * the inode versions we might be changing them here - use the
3000 * superblock flag to determine whether we need to look at di_flushiter
3001 * to skip replay when the on disk inode is newer than the log one
3002 */
3003 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
f8d55aa0 3004 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
3005 /*
3006 * Deal with the wrap case, DI_MAX_FLUSH is less
3007 * than smaller numbers
3008 */
81591fe2 3009 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
f8d55aa0 3010 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
3011 /* do nothing */
3012 } else {
9abbc539 3013 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 3014 error = 0;
638f4416 3015 goto out_release;
1da177e4
LT
3016 }
3017 }
e60896d8 3018
1da177e4 3019 /* Take the opportunity to reset the flush iteration count */
f8d55aa0 3020 ldip->di_flushiter = 0;
1da177e4 3021
f8d55aa0
DC
3022 if (unlikely(S_ISREG(ldip->di_mode))) {
3023 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3024 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 3025 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
f8d55aa0 3026 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67
DC
3027 xfs_alert(mp,
3028 "%s: Bad regular inode log record, rec ptr 0x%p, "
3029 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3030 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3031 error = -EFSCORRUPTED;
638f4416 3032 goto out_release;
1da177e4 3033 }
f8d55aa0
DC
3034 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3035 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3036 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3037 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 3038 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
f8d55aa0 3039 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67
DC
3040 xfs_alert(mp,
3041 "%s: Bad dir inode log record, rec ptr 0x%p, "
3042 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3043 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3044 error = -EFSCORRUPTED;
638f4416 3045 goto out_release;
1da177e4
LT
3046 }
3047 }
f8d55aa0 3048 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
c9f71f5f 3049 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
f8d55aa0 3050 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67
DC
3051 xfs_alert(mp,
3052 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3053 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3054 __func__, item, dip, bp, in_f->ilf_ino,
f8d55aa0
DC
3055 ldip->di_nextents + ldip->di_anextents,
3056 ldip->di_nblocks);
2451337d 3057 error = -EFSCORRUPTED;
638f4416 3058 goto out_release;
1da177e4 3059 }
f8d55aa0 3060 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 3061 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
f8d55aa0 3062 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67
DC
3063 xfs_alert(mp,
3064 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3065 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
f8d55aa0 3066 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
2451337d 3067 error = -EFSCORRUPTED;
638f4416 3068 goto out_release;
1da177e4 3069 }
f8d55aa0 3070 isize = xfs_log_dinode_size(ldip->di_version);
93848a99 3071 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 3072 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
f8d55aa0 3073 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67
DC
3074 xfs_alert(mp,
3075 "%s: Bad inode log record length %d, rec ptr 0x%p",
3076 __func__, item->ri_buf[1].i_len, item);
2451337d 3077 error = -EFSCORRUPTED;
638f4416 3078 goto out_release;
1da177e4
LT
3079 }
3080
3987848c
DC
3081 /* recover the log dinode inode into the on disk inode */
3082 xfs_log_dinode_to_disk(ldip, dip);
1da177e4
LT
3083
3084 /* the rest is in on-disk format */
93848a99
CH
3085 if (item->ri_buf[1].i_len > isize) {
3086 memcpy((char *)dip + isize,
3087 item->ri_buf[1].i_addr + isize,
3088 item->ri_buf[1].i_len - isize);
1da177e4
LT
3089 }
3090
3091 fields = in_f->ilf_fields;
3092 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3093 case XFS_ILOG_DEV:
81591fe2 3094 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
3095 break;
3096 case XFS_ILOG_UUID:
81591fe2
CH
3097 memcpy(XFS_DFORK_DPTR(dip),
3098 &in_f->ilf_u.ilfu_uuid,
3099 sizeof(uuid_t));
1da177e4
LT
3100 break;
3101 }
3102
3103 if (in_f->ilf_size == 2)
638f4416 3104 goto out_owner_change;
1da177e4
LT
3105 len = item->ri_buf[2].i_len;
3106 src = item->ri_buf[2].i_addr;
3107 ASSERT(in_f->ilf_size <= 4);
3108 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3109 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3110 (len == in_f->ilf_dsize));
3111
3112 switch (fields & XFS_ILOG_DFORK) {
3113 case XFS_ILOG_DDATA:
3114 case XFS_ILOG_DEXT:
81591fe2 3115 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
3116 break;
3117
3118 case XFS_ILOG_DBROOT:
7cc95a82 3119 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 3120 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
3121 XFS_DFORK_DSIZE(dip, mp));
3122 break;
3123
3124 default:
3125 /*
3126 * There are no data fork flags set.
3127 */
3128 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3129 break;
3130 }
3131
3132 /*
3133 * If we logged any attribute data, recover it. There may or
3134 * may not have been any other non-core data logged in this
3135 * transaction.
3136 */
3137 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3138 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3139 attr_index = 3;
3140 } else {
3141 attr_index = 2;
3142 }
3143 len = item->ri_buf[attr_index].i_len;
3144 src = item->ri_buf[attr_index].i_addr;
3145 ASSERT(len == in_f->ilf_asize);
3146
3147 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3148 case XFS_ILOG_ADATA:
3149 case XFS_ILOG_AEXT:
3150 dest = XFS_DFORK_APTR(dip);
3151 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3152 memcpy(dest, src, len);
3153 break;
3154
3155 case XFS_ILOG_ABROOT:
3156 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
3157 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3158 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
3159 XFS_DFORK_ASIZE(dip, mp));
3160 break;
3161
3162 default:
a0fa2b67 3163 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 3164 ASSERT(0);
2451337d 3165 error = -EIO;
638f4416 3166 goto out_release;
1da177e4
LT
3167 }
3168 }
3169
638f4416
DC
3170out_owner_change:
3171 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3172 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3173 buffer_list);
93848a99
CH
3174 /* re-generate the checksum. */
3175 xfs_dinode_calc_crc(log->l_mp, dip);
3176
ebad861b 3177 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3178 bp->b_iodone = xlog_recover_iodone;
43ff2122 3179 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
3180
3181out_release:
61551f1e 3182 xfs_buf_relse(bp);
6d192a9b
TS
3183error:
3184 if (need_free)
f0e2d93c 3185 kmem_free(in_f);
b474c7ae 3186 return error;
1da177e4
LT
3187}
3188
3189/*
9a8d2fdb 3190 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
3191 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3192 * of that type.
3193 */
3194STATIC int
c9f71f5f 3195xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
3196 struct xlog *log,
3197 struct xlog_recover_item *item)
1da177e4 3198{
c9f71f5f 3199 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
3200 ASSERT(qoff_f);
3201
3202 /*
3203 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 3204 * group/project quotaoff or both.
1da177e4
LT
3205 */
3206 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3207 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
3208 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3209 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
3210 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3211 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3212
d99831ff 3213 return 0;
1da177e4
LT
3214}
3215
3216/*
3217 * Recover a dquot record
3218 */
3219STATIC int
c9f71f5f 3220xlog_recover_dquot_pass2(
9a8d2fdb
MT
3221 struct xlog *log,
3222 struct list_head *buffer_list,
50d5c8d8
DC
3223 struct xlog_recover_item *item,
3224 xfs_lsn_t current_lsn)
1da177e4 3225{
c9f71f5f 3226 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3227 xfs_buf_t *bp;
3228 struct xfs_disk_dquot *ddq, *recddq;
3229 int error;
3230 xfs_dq_logformat_t *dq_f;
3231 uint type;
3232
1da177e4
LT
3233
3234 /*
3235 * Filesystems are required to send in quota flags at mount time.
3236 */
3237 if (mp->m_qflags == 0)
d99831ff 3238 return 0;
1da177e4 3239
4e0d5f92
CH
3240 recddq = item->ri_buf[1].i_addr;
3241 if (recddq == NULL) {
a0fa2b67 3242 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2451337d 3243 return -EIO;
0c5e1ce8 3244 }
8ec6dba2 3245 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 3246 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 3247 item->ri_buf[1].i_len, __func__);
2451337d 3248 return -EIO;
0c5e1ce8
CH
3249 }
3250
1da177e4
LT
3251 /*
3252 * This type of quotas was turned off, so ignore this record.
3253 */
b53e675d 3254 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
3255 ASSERT(type);
3256 if (log->l_quotaoffs_flag & type)
d99831ff 3257 return 0;
1da177e4
LT
3258
3259 /*
3260 * At this point we know that quota was _not_ turned off.
3261 * Since the mount flags are not indicating to us otherwise, this
3262 * must mean that quota is on, and the dquot needs to be replayed.
3263 * Remember that we may not have fully recovered the superblock yet,
3264 * so we can't do the usual trick of looking at the SB quota bits.
3265 *
3266 * The other possibility, of course, is that the quota subsystem was
3267 * removed since the last mount - ENOSYS.
3268 */
4e0d5f92 3269 dq_f = item->ri_buf[0].i_addr;
1da177e4 3270 ASSERT(dq_f);
9aede1d8 3271 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
a0fa2b67
DC
3272 "xlog_recover_dquot_pass2 (log copy)");
3273 if (error)
2451337d 3274 return -EIO;
1da177e4
LT
3275 ASSERT(dq_f->qlf_len == 1);
3276
ad3714b8
DC
3277 /*
3278 * At this point we are assuming that the dquots have been allocated
3279 * and hence the buffer has valid dquots stamped in it. It should,
3280 * therefore, pass verifier validation. If the dquot is bad, then the
3281 * we'll return an error here, so we don't need to specifically check
3282 * the dquot in the buffer after the verifier has run.
3283 */
7ca790a5 3284 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73 3285 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
ad3714b8 3286 &xfs_dquot_buf_ops);
7ca790a5 3287 if (error)
1da177e4 3288 return error;
7ca790a5 3289
1da177e4 3290 ASSERT(bp);
88ee2df7 3291 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
1da177e4 3292
50d5c8d8
DC
3293 /*
3294 * If the dquot has an LSN in it, recover the dquot only if it's less
3295 * than the lsn of the transaction we are replaying.
3296 */
3297 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3298 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3299 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3300
3301 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3302 goto out_release;
3303 }
3304 }
3305
1da177e4 3306 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
3307 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3308 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3309 XFS_DQUOT_CRC_OFF);
3310 }
1da177e4
LT
3311
3312 ASSERT(dq_f->qlf_size == 2);
ebad861b 3313 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3314 bp->b_iodone = xlog_recover_iodone;
43ff2122 3315 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 3316
50d5c8d8
DC
3317out_release:
3318 xfs_buf_relse(bp);
3319 return 0;
1da177e4
LT
3320}
3321
3322/*
3323 * This routine is called to create an in-core extent free intent
3324 * item from the efi format structure which was logged on disk.
3325 * It allocates an in-core efi, copies the extents from the format
3326 * structure into it, and adds the efi to the AIL with the given
3327 * LSN.
3328 */
6d192a9b 3329STATIC int
c9f71f5f 3330xlog_recover_efi_pass2(
9a8d2fdb
MT
3331 struct xlog *log,
3332 struct xlog_recover_item *item,
3333 xfs_lsn_t lsn)
1da177e4 3334{
e32a1d1f
BF
3335 int error;
3336 struct xfs_mount *mp = log->l_mp;
3337 struct xfs_efi_log_item *efip;
3338 struct xfs_efi_log_format *efi_formatp;
1da177e4 3339
4e0d5f92 3340 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3341
1da177e4 3342 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
e32a1d1f
BF
3343 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3344 if (error) {
6d192a9b
TS
3345 xfs_efi_item_free(efip);
3346 return error;
3347 }
b199c8a4 3348 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3349
a9c21c1b 3350 spin_lock(&log->l_ailp->xa_lock);
1da177e4 3351 /*
e32a1d1f
BF
3352 * The EFI has two references. One for the EFD and one for EFI to ensure
3353 * it makes it into the AIL. Insert the EFI into the AIL directly and
3354 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3355 * AIL lock.
1da177e4 3356 */
e6059949 3357 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
e32a1d1f 3358 xfs_efi_release(efip);
6d192a9b 3359 return 0;
1da177e4
LT
3360}
3361
3362
3363/*
e32a1d1f
BF
3364 * This routine is called when an EFD format structure is found in a committed
3365 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3366 * was still in the log. To do this it searches the AIL for the EFI with an id
3367 * equal to that in the EFD format structure. If we find it we drop the EFD
3368 * reference, which removes the EFI from the AIL and frees it.
1da177e4 3369 */
c9f71f5f
CH
3370STATIC int
3371xlog_recover_efd_pass2(
9a8d2fdb
MT
3372 struct xlog *log,
3373 struct xlog_recover_item *item)
1da177e4 3374{
1da177e4
LT
3375 xfs_efd_log_format_t *efd_formatp;
3376 xfs_efi_log_item_t *efip = NULL;
3377 xfs_log_item_t *lip;
1da177e4 3378 __uint64_t efi_id;
27d8d5fe 3379 struct xfs_ail_cursor cur;
783a2f65 3380 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3381
4e0d5f92 3382 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3383 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3384 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3385 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3386 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3387 efi_id = efd_formatp->efd_efi_id;
3388
3389 /*
e32a1d1f
BF
3390 * Search for the EFI with the id in the EFD format structure in the
3391 * AIL.
1da177e4 3392 */
a9c21c1b
DC
3393 spin_lock(&ailp->xa_lock);
3394 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3395 while (lip != NULL) {
3396 if (lip->li_type == XFS_LI_EFI) {
3397 efip = (xfs_efi_log_item_t *)lip;
3398 if (efip->efi_format.efi_id == efi_id) {
3399 /*
e32a1d1f
BF
3400 * Drop the EFD reference to the EFI. This
3401 * removes the EFI from the AIL and frees it.
1da177e4 3402 */
e32a1d1f
BF
3403 spin_unlock(&ailp->xa_lock);
3404 xfs_efi_release(efip);
a9c21c1b 3405 spin_lock(&ailp->xa_lock);
27d8d5fe 3406 break;
1da177e4
LT
3407 }
3408 }
a9c21c1b 3409 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3410 }
e32a1d1f 3411
e4a1e29c 3412 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3413 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3414
3415 return 0;
1da177e4
LT
3416}
3417
28c8e41a
DC
3418/*
3419 * This routine is called when an inode create format structure is found in a
3420 * committed transaction in the log. It's purpose is to initialise the inodes
3421 * being allocated on disk. This requires us to get inode cluster buffers that
3422 * match the range to be intialised, stamped with inode templates and written
3423 * by delayed write so that subsequent modifications will hit the cached buffer
3424 * and only need writing out at the end of recovery.
3425 */
3426STATIC int
3427xlog_recover_do_icreate_pass2(
3428 struct xlog *log,
3429 struct list_head *buffer_list,
3430 xlog_recover_item_t *item)
3431{
3432 struct xfs_mount *mp = log->l_mp;
3433 struct xfs_icreate_log *icl;
3434 xfs_agnumber_t agno;
3435 xfs_agblock_t agbno;
3436 unsigned int count;
3437 unsigned int isize;
3438 xfs_agblock_t length;
fc0d1656
BF
3439 int blks_per_cluster;
3440 int bb_per_cluster;
3441 int cancel_count;
3442 int nbufs;
3443 int i;
28c8e41a
DC
3444
3445 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3446 if (icl->icl_type != XFS_LI_ICREATE) {
3447 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
2451337d 3448 return -EINVAL;
28c8e41a
DC
3449 }
3450
3451 if (icl->icl_size != 1) {
3452 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
2451337d 3453 return -EINVAL;
28c8e41a
DC
3454 }
3455
3456 agno = be32_to_cpu(icl->icl_ag);
3457 if (agno >= mp->m_sb.sb_agcount) {
3458 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
2451337d 3459 return -EINVAL;
28c8e41a
DC
3460 }
3461 agbno = be32_to_cpu(icl->icl_agbno);
3462 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3463 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
2451337d 3464 return -EINVAL;
28c8e41a
DC
3465 }
3466 isize = be32_to_cpu(icl->icl_isize);
3467 if (isize != mp->m_sb.sb_inodesize) {
3468 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
2451337d 3469 return -EINVAL;
28c8e41a
DC
3470 }
3471 count = be32_to_cpu(icl->icl_count);
3472 if (!count) {
3473 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
2451337d 3474 return -EINVAL;
28c8e41a
DC
3475 }
3476 length = be32_to_cpu(icl->icl_length);
3477 if (!length || length >= mp->m_sb.sb_agblocks) {
3478 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
2451337d 3479 return -EINVAL;
28c8e41a
DC
3480 }
3481
7f43c907
BF
3482 /*
3483 * The inode chunk is either full or sparse and we only support
3484 * m_ialloc_min_blks sized sparse allocations at this time.
3485 */
3486 if (length != mp->m_ialloc_blks &&
3487 length != mp->m_ialloc_min_blks) {
3488 xfs_warn(log->l_mp,
3489 "%s: unsupported chunk length", __FUNCTION__);
3490 return -EINVAL;
3491 }
3492
3493 /* verify inode count is consistent with extent length */
3494 if ((count >> mp->m_sb.sb_inopblog) != length) {
3495 xfs_warn(log->l_mp,
3496 "%s: inconsistent inode count and chunk length",
3497 __FUNCTION__);
2451337d 3498 return -EINVAL;
28c8e41a
DC
3499 }
3500
3501 /*
fc0d1656
BF
3502 * The icreate transaction can cover multiple cluster buffers and these
3503 * buffers could have been freed and reused. Check the individual
3504 * buffers for cancellation so we don't overwrite anything written after
3505 * a cancellation.
3506 */
3507 blks_per_cluster = xfs_icluster_size_fsb(mp);
3508 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3509 nbufs = length / blks_per_cluster;
3510 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3511 xfs_daddr_t daddr;
3512
3513 daddr = XFS_AGB_TO_DADDR(mp, agno,
3514 agbno + i * blks_per_cluster);
3515 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3516 cancel_count++;
3517 }
3518
3519 /*
3520 * We currently only use icreate for a single allocation at a time. This
3521 * means we should expect either all or none of the buffers to be
3522 * cancelled. Be conservative and skip replay if at least one buffer is
3523 * cancelled, but warn the user that something is awry if the buffers
3524 * are not consistent.
28c8e41a 3525 *
fc0d1656
BF
3526 * XXX: This must be refined to only skip cancelled clusters once we use
3527 * icreate for multiple chunk allocations.
28c8e41a 3528 */
fc0d1656
BF
3529 ASSERT(!cancel_count || cancel_count == nbufs);
3530 if (cancel_count) {
3531 if (cancel_count != nbufs)
3532 xfs_warn(mp,
3533 "WARNING: partial inode chunk cancellation, skipped icreate.");
78d57e45 3534 trace_xfs_log_recover_icreate_cancel(log, icl);
28c8e41a 3535 return 0;
78d57e45 3536 }
28c8e41a 3537
78d57e45 3538 trace_xfs_log_recover_icreate_recover(log, icl);
fc0d1656
BF
3539 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3540 length, be32_to_cpu(icl->icl_gen));
28c8e41a
DC
3541}
3542
00574da1
ZYW
3543STATIC void
3544xlog_recover_buffer_ra_pass2(
3545 struct xlog *log,
3546 struct xlog_recover_item *item)
3547{
3548 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3549 struct xfs_mount *mp = log->l_mp;
3550
84a5b730 3551 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3552 buf_f->blf_len, buf_f->blf_flags)) {
3553 return;
3554 }
3555
3556 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3557 buf_f->blf_len, NULL);
3558}
3559
3560STATIC void
3561xlog_recover_inode_ra_pass2(
3562 struct xlog *log,
3563 struct xlog_recover_item *item)
3564{
3565 struct xfs_inode_log_format ilf_buf;
3566 struct xfs_inode_log_format *ilfp;
3567 struct xfs_mount *mp = log->l_mp;
3568 int error;
3569
3570 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3571 ilfp = item->ri_buf[0].i_addr;
3572 } else {
3573 ilfp = &ilf_buf;
3574 memset(ilfp, 0, sizeof(*ilfp));
3575 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3576 if (error)
3577 return;
3578 }
3579
84a5b730 3580 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3581 return;
3582
3583 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 3584 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
3585}
3586
3587STATIC void
3588xlog_recover_dquot_ra_pass2(
3589 struct xlog *log,
3590 struct xlog_recover_item *item)
3591{
3592 struct xfs_mount *mp = log->l_mp;
3593 struct xfs_disk_dquot *recddq;
3594 struct xfs_dq_logformat *dq_f;
3595 uint type;
7d6a13f0 3596 int len;
00574da1
ZYW
3597
3598
3599 if (mp->m_qflags == 0)
3600 return;
3601
3602 recddq = item->ri_buf[1].i_addr;
3603 if (recddq == NULL)
3604 return;
3605 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3606 return;
3607
3608 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3609 ASSERT(type);
3610 if (log->l_quotaoffs_flag & type)
3611 return;
3612
3613 dq_f = item->ri_buf[0].i_addr;
3614 ASSERT(dq_f);
3615 ASSERT(dq_f->qlf_len == 1);
3616
7d6a13f0
DC
3617 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3618 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3619 return;
3620
3621 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3622 &xfs_dquot_buf_ra_ops);
00574da1
ZYW
3623}
3624
3625STATIC void
3626xlog_recover_ra_pass2(
3627 struct xlog *log,
3628 struct xlog_recover_item *item)
3629{
3630 switch (ITEM_TYPE(item)) {
3631 case XFS_LI_BUF:
3632 xlog_recover_buffer_ra_pass2(log, item);
3633 break;
3634 case XFS_LI_INODE:
3635 xlog_recover_inode_ra_pass2(log, item);
3636 break;
3637 case XFS_LI_DQUOT:
3638 xlog_recover_dquot_ra_pass2(log, item);
3639 break;
3640 case XFS_LI_EFI:
3641 case XFS_LI_EFD:
3642 case XFS_LI_QUOTAOFF:
3643 default:
3644 break;
3645 }
3646}
3647
d0450948 3648STATIC int
c9f71f5f 3649xlog_recover_commit_pass1(
ad223e60
MT
3650 struct xlog *log,
3651 struct xlog_recover *trans,
3652 struct xlog_recover_item *item)
d0450948 3653{
c9f71f5f 3654 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3655
3656 switch (ITEM_TYPE(item)) {
3657 case XFS_LI_BUF:
c9f71f5f
CH
3658 return xlog_recover_buffer_pass1(log, item);
3659 case XFS_LI_QUOTAOFF:
3660 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3661 case XFS_LI_INODE:
d0450948 3662 case XFS_LI_EFI:
d0450948 3663 case XFS_LI_EFD:
c9f71f5f 3664 case XFS_LI_DQUOT:
28c8e41a 3665 case XFS_LI_ICREATE:
c9f71f5f 3666 /* nothing to do in pass 1 */
d0450948 3667 return 0;
c9f71f5f 3668 default:
a0fa2b67
DC
3669 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3670 __func__, ITEM_TYPE(item));
c9f71f5f 3671 ASSERT(0);
2451337d 3672 return -EIO;
c9f71f5f
CH
3673 }
3674}
3675
3676STATIC int
3677xlog_recover_commit_pass2(
ad223e60
MT
3678 struct xlog *log,
3679 struct xlog_recover *trans,
3680 struct list_head *buffer_list,
3681 struct xlog_recover_item *item)
c9f71f5f
CH
3682{
3683 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3684
3685 switch (ITEM_TYPE(item)) {
3686 case XFS_LI_BUF:
50d5c8d8
DC
3687 return xlog_recover_buffer_pass2(log, buffer_list, item,
3688 trans->r_lsn);
c9f71f5f 3689 case XFS_LI_INODE:
50d5c8d8
DC
3690 return xlog_recover_inode_pass2(log, buffer_list, item,
3691 trans->r_lsn);
c9f71f5f
CH
3692 case XFS_LI_EFI:
3693 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3694 case XFS_LI_EFD:
3695 return xlog_recover_efd_pass2(log, item);
d0450948 3696 case XFS_LI_DQUOT:
50d5c8d8
DC
3697 return xlog_recover_dquot_pass2(log, buffer_list, item,
3698 trans->r_lsn);
28c8e41a
DC
3699 case XFS_LI_ICREATE:
3700 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3701 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3702 /* nothing to do in pass2 */
3703 return 0;
d0450948 3704 default:
a0fa2b67
DC
3705 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3706 __func__, ITEM_TYPE(item));
d0450948 3707 ASSERT(0);
2451337d 3708 return -EIO;
d0450948
CH
3709 }
3710}
3711
00574da1
ZYW
3712STATIC int
3713xlog_recover_items_pass2(
3714 struct xlog *log,
3715 struct xlog_recover *trans,
3716 struct list_head *buffer_list,
3717 struct list_head *item_list)
3718{
3719 struct xlog_recover_item *item;
3720 int error = 0;
3721
3722 list_for_each_entry(item, item_list, ri_list) {
3723 error = xlog_recover_commit_pass2(log, trans,
3724 buffer_list, item);
3725 if (error)
3726 return error;
3727 }
3728
3729 return error;
3730}
3731
d0450948
CH
3732/*
3733 * Perform the transaction.
3734 *
3735 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3736 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3737 */
1da177e4
LT
3738STATIC int
3739xlog_recover_commit_trans(
ad223e60 3740 struct xlog *log,
d0450948 3741 struct xlog_recover *trans,
1da177e4
LT
3742 int pass)
3743{
00574da1
ZYW
3744 int error = 0;
3745 int error2;
3746 int items_queued = 0;
3747 struct xlog_recover_item *item;
3748 struct xlog_recover_item *next;
3749 LIST_HEAD (buffer_list);
3750 LIST_HEAD (ra_list);
3751 LIST_HEAD (done_list);
3752
3753 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 3754
f0a76953 3755 hlist_del(&trans->r_list);
d0450948
CH
3756
3757 error = xlog_recover_reorder_trans(log, trans, pass);
3758 if (error)
1da177e4 3759 return error;
d0450948 3760
00574da1 3761 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
3762 switch (pass) {
3763 case XLOG_RECOVER_PASS1:
c9f71f5f 3764 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3765 break;
3766 case XLOG_RECOVER_PASS2:
00574da1
ZYW
3767 xlog_recover_ra_pass2(log, item);
3768 list_move_tail(&item->ri_list, &ra_list);
3769 items_queued++;
3770 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3771 error = xlog_recover_items_pass2(log, trans,
3772 &buffer_list, &ra_list);
3773 list_splice_tail_init(&ra_list, &done_list);
3774 items_queued = 0;
3775 }
3776
43ff2122
CH
3777 break;
3778 default:
3779 ASSERT(0);
3780 }
3781
d0450948 3782 if (error)
43ff2122 3783 goto out;
d0450948
CH
3784 }
3785
00574da1
ZYW
3786out:
3787 if (!list_empty(&ra_list)) {
3788 if (!error)
3789 error = xlog_recover_items_pass2(log, trans,
3790 &buffer_list, &ra_list);
3791 list_splice_tail_init(&ra_list, &done_list);
3792 }
3793
3794 if (!list_empty(&done_list))
3795 list_splice_init(&done_list, &trans->r_itemq);
3796
43ff2122
CH
3797 error2 = xfs_buf_delwri_submit(&buffer_list);
3798 return error ? error : error2;
1da177e4
LT
3799}
3800
76560669
DC
3801STATIC void
3802xlog_recover_add_item(
3803 struct list_head *head)
3804{
3805 xlog_recover_item_t *item;
3806
3807 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3808 INIT_LIST_HEAD(&item->ri_list);
3809 list_add_tail(&item->ri_list, head);
3810}
3811
1da177e4 3812STATIC int
76560669
DC
3813xlog_recover_add_to_cont_trans(
3814 struct xlog *log,
3815 struct xlog_recover *trans,
b2a922cd 3816 char *dp,
76560669 3817 int len)
1da177e4 3818{
76560669 3819 xlog_recover_item_t *item;
b2a922cd 3820 char *ptr, *old_ptr;
76560669
DC
3821 int old_len;
3822
89cebc84
BF
3823 /*
3824 * If the transaction is empty, the header was split across this and the
3825 * previous record. Copy the rest of the header.
3826 */
76560669 3827 if (list_empty(&trans->r_itemq)) {
848ccfc8 3828 ASSERT(len <= sizeof(struct xfs_trans_header));
89cebc84
BF
3829 if (len > sizeof(struct xfs_trans_header)) {
3830 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3831 return -EIO;
3832 }
3833
76560669 3834 xlog_recover_add_item(&trans->r_itemq);
b2a922cd 3835 ptr = (char *)&trans->r_theader +
89cebc84 3836 sizeof(struct xfs_trans_header) - len;
76560669
DC
3837 memcpy(ptr, dp, len);
3838 return 0;
3839 }
89cebc84 3840
76560669
DC
3841 /* take the tail entry */
3842 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3843
3844 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3845 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3846
664b60f6 3847 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
76560669
DC
3848 memcpy(&ptr[old_len], dp, len);
3849 item->ri_buf[item->ri_cnt-1].i_len += len;
3850 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3851 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
3852 return 0;
3853}
3854
76560669
DC
3855/*
3856 * The next region to add is the start of a new region. It could be
3857 * a whole region or it could be the first part of a new region. Because
3858 * of this, the assumption here is that the type and size fields of all
3859 * format structures fit into the first 32 bits of the structure.
3860 *
3861 * This works because all regions must be 32 bit aligned. Therefore, we
3862 * either have both fields or we have neither field. In the case we have
3863 * neither field, the data part of the region is zero length. We only have
3864 * a log_op_header and can throw away the header since a new one will appear
3865 * later. If we have at least 4 bytes, then we can determine how many regions
3866 * will appear in the current log item.
3867 */
3868STATIC int
3869xlog_recover_add_to_trans(
3870 struct xlog *log,
3871 struct xlog_recover *trans,
b2a922cd 3872 char *dp,
76560669
DC
3873 int len)
3874{
3875 xfs_inode_log_format_t *in_f; /* any will do */
3876 xlog_recover_item_t *item;
b2a922cd 3877 char *ptr;
76560669
DC
3878
3879 if (!len)
3880 return 0;
3881 if (list_empty(&trans->r_itemq)) {
3882 /* we need to catch log corruptions here */
3883 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3884 xfs_warn(log->l_mp, "%s: bad header magic number",
3885 __func__);
3886 ASSERT(0);
3887 return -EIO;
3888 }
89cebc84
BF
3889
3890 if (len > sizeof(struct xfs_trans_header)) {
3891 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3892 ASSERT(0);
3893 return -EIO;
3894 }
3895
3896 /*
3897 * The transaction header can be arbitrarily split across op
3898 * records. If we don't have the whole thing here, copy what we
3899 * do have and handle the rest in the next record.
3900 */
3901 if (len == sizeof(struct xfs_trans_header))
76560669
DC
3902 xlog_recover_add_item(&trans->r_itemq);
3903 memcpy(&trans->r_theader, dp, len);
3904 return 0;
3905 }
3906
3907 ptr = kmem_alloc(len, KM_SLEEP);
3908 memcpy(ptr, dp, len);
3909 in_f = (xfs_inode_log_format_t *)ptr;
3910
3911 /* take the tail entry */
3912 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3913 if (item->ri_total != 0 &&
3914 item->ri_total == item->ri_cnt) {
3915 /* tail item is in use, get a new one */
3916 xlog_recover_add_item(&trans->r_itemq);
3917 item = list_entry(trans->r_itemq.prev,
3918 xlog_recover_item_t, ri_list);
3919 }
3920
3921 if (item->ri_total == 0) { /* first region to be added */
3922 if (in_f->ilf_size == 0 ||
3923 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3924 xfs_warn(log->l_mp,
3925 "bad number of regions (%d) in inode log format",
3926 in_f->ilf_size);
3927 ASSERT(0);
3928 kmem_free(ptr);
3929 return -EIO;
3930 }
3931
3932 item->ri_total = in_f->ilf_size;
3933 item->ri_buf =
3934 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3935 KM_SLEEP);
3936 }
3937 ASSERT(item->ri_total > item->ri_cnt);
3938 /* Description region is ri_buf[0] */
3939 item->ri_buf[item->ri_cnt].i_addr = ptr;
3940 item->ri_buf[item->ri_cnt].i_len = len;
3941 item->ri_cnt++;
3942 trace_xfs_log_recover_item_add(log, trans, item, 0);
3943 return 0;
3944}
b818cca1 3945
76560669
DC
3946/*
3947 * Free up any resources allocated by the transaction
3948 *
3949 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3950 */
3951STATIC void
3952xlog_recover_free_trans(
3953 struct xlog_recover *trans)
3954{
3955 xlog_recover_item_t *item, *n;
3956 int i;
3957
3958 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3959 /* Free the regions in the item. */
3960 list_del(&item->ri_list);
3961 for (i = 0; i < item->ri_cnt; i++)
3962 kmem_free(item->ri_buf[i].i_addr);
3963 /* Free the item itself */
3964 kmem_free(item->ri_buf);
3965 kmem_free(item);
3966 }
3967 /* Free the transaction recover structure */
3968 kmem_free(trans);
3969}
3970
e9131e50
DC
3971/*
3972 * On error or completion, trans is freed.
3973 */
1da177e4 3974STATIC int
eeb11688
DC
3975xlog_recovery_process_trans(
3976 struct xlog *log,
3977 struct xlog_recover *trans,
b2a922cd 3978 char *dp,
eeb11688
DC
3979 unsigned int len,
3980 unsigned int flags,
3981 int pass)
1da177e4 3982{
e9131e50
DC
3983 int error = 0;
3984 bool freeit = false;
eeb11688
DC
3985
3986 /* mask off ophdr transaction container flags */
3987 flags &= ~XLOG_END_TRANS;
3988 if (flags & XLOG_WAS_CONT_TRANS)
3989 flags &= ~XLOG_CONTINUE_TRANS;
3990
88b863db
DC
3991 /*
3992 * Callees must not free the trans structure. We'll decide if we need to
3993 * free it or not based on the operation being done and it's result.
3994 */
eeb11688
DC
3995 switch (flags) {
3996 /* expected flag values */
3997 case 0:
3998 case XLOG_CONTINUE_TRANS:
3999 error = xlog_recover_add_to_trans(log, trans, dp, len);
4000 break;
4001 case XLOG_WAS_CONT_TRANS:
4002 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4003 break;
4004 case XLOG_COMMIT_TRANS:
4005 error = xlog_recover_commit_trans(log, trans, pass);
88b863db
DC
4006 /* success or fail, we are now done with this transaction. */
4007 freeit = true;
eeb11688
DC
4008 break;
4009
4010 /* unexpected flag values */
4011 case XLOG_UNMOUNT_TRANS:
e9131e50 4012 /* just skip trans */
eeb11688 4013 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
e9131e50 4014 freeit = true;
eeb11688
DC
4015 break;
4016 case XLOG_START_TRANS:
eeb11688
DC
4017 default:
4018 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4019 ASSERT(0);
e9131e50 4020 error = -EIO;
eeb11688
DC
4021 break;
4022 }
e9131e50
DC
4023 if (error || freeit)
4024 xlog_recover_free_trans(trans);
eeb11688
DC
4025 return error;
4026}
4027
b818cca1
DC
4028/*
4029 * Lookup the transaction recovery structure associated with the ID in the
4030 * current ophdr. If the transaction doesn't exist and the start flag is set in
4031 * the ophdr, then allocate a new transaction for future ID matches to find.
4032 * Either way, return what we found during the lookup - an existing transaction
4033 * or nothing.
4034 */
eeb11688
DC
4035STATIC struct xlog_recover *
4036xlog_recover_ophdr_to_trans(
4037 struct hlist_head rhash[],
4038 struct xlog_rec_header *rhead,
4039 struct xlog_op_header *ohead)
4040{
4041 struct xlog_recover *trans;
4042 xlog_tid_t tid;
4043 struct hlist_head *rhp;
4044
4045 tid = be32_to_cpu(ohead->oh_tid);
4046 rhp = &rhash[XLOG_RHASH(tid)];
b818cca1
DC
4047 hlist_for_each_entry(trans, rhp, r_list) {
4048 if (trans->r_log_tid == tid)
4049 return trans;
4050 }
eeb11688
DC
4051
4052 /*
b818cca1
DC
4053 * skip over non-start transaction headers - we could be
4054 * processing slack space before the next transaction starts
4055 */
4056 if (!(ohead->oh_flags & XLOG_START_TRANS))
4057 return NULL;
4058
4059 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4060
4061 /*
4062 * This is a new transaction so allocate a new recovery container to
4063 * hold the recovery ops that will follow.
4064 */
4065 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4066 trans->r_log_tid = tid;
4067 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4068 INIT_LIST_HEAD(&trans->r_itemq);
4069 INIT_HLIST_NODE(&trans->r_list);
4070 hlist_add_head(&trans->r_list, rhp);
4071
4072 /*
4073 * Nothing more to do for this ophdr. Items to be added to this new
4074 * transaction will be in subsequent ophdr containers.
eeb11688 4075 */
eeb11688
DC
4076 return NULL;
4077}
4078
4079STATIC int
4080xlog_recover_process_ophdr(
4081 struct xlog *log,
4082 struct hlist_head rhash[],
4083 struct xlog_rec_header *rhead,
4084 struct xlog_op_header *ohead,
b2a922cd
CH
4085 char *dp,
4086 char *end,
eeb11688
DC
4087 int pass)
4088{
4089 struct xlog_recover *trans;
eeb11688
DC
4090 unsigned int len;
4091
4092 /* Do we understand who wrote this op? */
4093 if (ohead->oh_clientid != XFS_TRANSACTION &&
4094 ohead->oh_clientid != XFS_LOG) {
4095 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4096 __func__, ohead->oh_clientid);
4097 ASSERT(0);
4098 return -EIO;
4099 }
4100
4101 /*
4102 * Check the ophdr contains all the data it is supposed to contain.
4103 */
4104 len = be32_to_cpu(ohead->oh_len);
4105 if (dp + len > end) {
4106 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4107 WARN_ON(1);
4108 return -EIO;
4109 }
4110
4111 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4112 if (!trans) {
4113 /* nothing to do, so skip over this ophdr */
4114 return 0;
4115 }
4116
e9131e50
DC
4117 return xlog_recovery_process_trans(log, trans, dp, len,
4118 ohead->oh_flags, pass);
1da177e4
LT
4119}
4120
4121/*
4122 * There are two valid states of the r_state field. 0 indicates that the
4123 * transaction structure is in a normal state. We have either seen the
4124 * start of the transaction or the last operation we added was not a partial
4125 * operation. If the last operation we added to the transaction was a
4126 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4127 *
4128 * NOTE: skip LRs with 0 data length.
4129 */
4130STATIC int
4131xlog_recover_process_data(
9a8d2fdb 4132 struct xlog *log,
f0a76953 4133 struct hlist_head rhash[],
9a8d2fdb 4134 struct xlog_rec_header *rhead,
b2a922cd 4135 char *dp,
1da177e4
LT
4136 int pass)
4137{
eeb11688 4138 struct xlog_op_header *ohead;
b2a922cd 4139 char *end;
1da177e4 4140 int num_logops;
1da177e4 4141 int error;
1da177e4 4142
eeb11688 4143 end = dp + be32_to_cpu(rhead->h_len);
b53e675d 4144 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
4145
4146 /* check the log format matches our own - else we can't recover */
4147 if (xlog_header_check_recover(log->l_mp, rhead))
2451337d 4148 return -EIO;
1da177e4 4149
eeb11688
DC
4150 while ((dp < end) && num_logops) {
4151
4152 ohead = (struct xlog_op_header *)dp;
4153 dp += sizeof(*ohead);
4154 ASSERT(dp <= end);
4155
4156 /* errors will abort recovery */
4157 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4158 dp, end, pass);
4159 if (error)
4160 return error;
4161
67fcb7bf 4162 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
4163 num_logops--;
4164 }
4165 return 0;
4166}
4167
4168/*
4169 * Process an extent free intent item that was recovered from
4170 * the log. We need to free the extents that it describes.
4171 */
3c1e2bbe 4172STATIC int
1da177e4
LT
4173xlog_recover_process_efi(
4174 xfs_mount_t *mp,
4175 xfs_efi_log_item_t *efip)
4176{
4177 xfs_efd_log_item_t *efdp;
4178 xfs_trans_t *tp;
4179 int i;
3c1e2bbe 4180 int error = 0;
1da177e4
LT
4181 xfs_extent_t *extp;
4182 xfs_fsblock_t startblock_fsb;
4183
b199c8a4 4184 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
4185
4186 /*
4187 * First check the validity of the extents described by the
4188 * EFI. If any are bad, then assume that all are bad and
4189 * just toss the EFI.
4190 */
4191 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4192 extp = &(efip->efi_format.efi_extents[i]);
4193 startblock_fsb = XFS_BB_TO_FSB(mp,
4194 XFS_FSB_TO_DADDR(mp, extp->ext_start));
4195 if ((startblock_fsb == 0) ||
4196 (extp->ext_len == 0) ||
4197 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
4198 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
4199 /*
4200 * This will pull the EFI from the AIL and
4201 * free the memory associated with it.
4202 */
666d644c 4203 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
5e4b5386 4204 xfs_efi_release(efip);
2451337d 4205 return -EIO;
1da177e4
LT
4206 }
4207 }
4208
253f4911 4209 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
fc6149d8 4210 if (error)
253f4911 4211 return error;
1da177e4
LT
4212 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
4213
4214 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4215 extp = &(efip->efi_format.efi_extents[i]);
6bc43af3
BF
4216 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
4217 extp->ext_len);
fc6149d8
DC
4218 if (error)
4219 goto abort_error;
6bc43af3 4220
1da177e4
LT
4221 }
4222
b199c8a4 4223 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
70393313 4224 error = xfs_trans_commit(tp);
3c1e2bbe 4225 return error;
fc6149d8
DC
4226
4227abort_error:
4906e215 4228 xfs_trans_cancel(tp);
fc6149d8 4229 return error;
1da177e4
LT
4230}
4231
1da177e4
LT
4232/*
4233 * When this is called, all of the EFIs which did not have
4234 * corresponding EFDs should be in the AIL. What we do now
4235 * is free the extents associated with each one.
4236 *
4237 * Since we process the EFIs in normal transactions, they
4238 * will be removed at some point after the commit. This prevents
4239 * us from just walking down the list processing each one.
4240 * We'll use a flag in the EFI to skip those that we've already
4241 * processed and use the AIL iteration mechanism's generation
4242 * count to try to speed this up at least a bit.
4243 *
4244 * When we start, we know that the EFIs are the only things in
4245 * the AIL. As we process them, however, other items are added
4246 * to the AIL. Since everything added to the AIL must come after
4247 * everything already in the AIL, we stop processing as soon as
4248 * we see something other than an EFI in the AIL.
4249 */
3c1e2bbe 4250STATIC int
1da177e4 4251xlog_recover_process_efis(
f0b2efad 4252 struct xlog *log)
1da177e4 4253{
f0b2efad
BF
4254 struct xfs_log_item *lip;
4255 struct xfs_efi_log_item *efip;
3c1e2bbe 4256 int error = 0;
27d8d5fe 4257 struct xfs_ail_cursor cur;
a9c21c1b 4258 struct xfs_ail *ailp;
1da177e4 4259
a9c21c1b
DC
4260 ailp = log->l_ailp;
4261 spin_lock(&ailp->xa_lock);
4262 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
4263 while (lip != NULL) {
4264 /*
4265 * We're done when we see something other than an EFI.
27d8d5fe 4266 * There should be no EFIs left in the AIL now.
1da177e4
LT
4267 */
4268 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 4269#ifdef DEBUG
a9c21c1b 4270 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
4271 ASSERT(lip->li_type != XFS_LI_EFI);
4272#endif
1da177e4
LT
4273 break;
4274 }
4275
4276 /*
4277 * Skip EFIs that we've already processed.
4278 */
f0b2efad 4279 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
b199c8a4 4280 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 4281 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
4282 continue;
4283 }
4284
a9c21c1b
DC
4285 spin_unlock(&ailp->xa_lock);
4286 error = xlog_recover_process_efi(log->l_mp, efip);
4287 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
4288 if (error)
4289 goto out;
a9c21c1b 4290 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 4291 }
27d8d5fe 4292out:
e4a1e29c 4293 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 4294 spin_unlock(&ailp->xa_lock);
3c1e2bbe 4295 return error;
1da177e4
LT
4296}
4297
f0b2efad
BF
4298/*
4299 * A cancel occurs when the mount has failed and we're bailing out. Release all
4300 * pending EFIs so they don't pin the AIL.
4301 */
4302STATIC int
4303xlog_recover_cancel_efis(
4304 struct xlog *log)
4305{
4306 struct xfs_log_item *lip;
4307 struct xfs_efi_log_item *efip;
4308 int error = 0;
4309 struct xfs_ail_cursor cur;
4310 struct xfs_ail *ailp;
4311
4312 ailp = log->l_ailp;
4313 spin_lock(&ailp->xa_lock);
4314 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4315 while (lip != NULL) {
4316 /*
4317 * We're done when we see something other than an EFI.
4318 * There should be no EFIs left in the AIL now.
4319 */
4320 if (lip->li_type != XFS_LI_EFI) {
4321#ifdef DEBUG
4322 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4323 ASSERT(lip->li_type != XFS_LI_EFI);
4324#endif
4325 break;
4326 }
4327
4328 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4329
4330 spin_unlock(&ailp->xa_lock);
4331 xfs_efi_release(efip);
4332 spin_lock(&ailp->xa_lock);
4333
4334 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4335 }
4336
4337 xfs_trans_ail_cursor_done(&cur);
4338 spin_unlock(&ailp->xa_lock);
4339 return error;
4340}
4341
1da177e4
LT
4342/*
4343 * This routine performs a transaction to null out a bad inode pointer
4344 * in an agi unlinked inode hash bucket.
4345 */
4346STATIC void
4347xlog_recover_clear_agi_bucket(
4348 xfs_mount_t *mp,
4349 xfs_agnumber_t agno,
4350 int bucket)
4351{
4352 xfs_trans_t *tp;
4353 xfs_agi_t *agi;
4354 xfs_buf_t *agibp;
4355 int offset;
4356 int error;
4357
253f4911 4358 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
e5720eec 4359 if (error)
253f4911 4360 goto out_error;
1da177e4 4361
5e1be0fb
CH
4362 error = xfs_read_agi(mp, tp, agno, &agibp);
4363 if (error)
e5720eec 4364 goto out_abort;
1da177e4 4365
5e1be0fb 4366 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4367 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
4368 offset = offsetof(xfs_agi_t, agi_unlinked) +
4369 (sizeof(xfs_agino_t) * bucket);
4370 xfs_trans_log_buf(tp, agibp, offset,
4371 (offset + sizeof(xfs_agino_t) - 1));
4372
70393313 4373 error = xfs_trans_commit(tp);
e5720eec
DC
4374 if (error)
4375 goto out_error;
4376 return;
4377
4378out_abort:
4906e215 4379 xfs_trans_cancel(tp);
e5720eec 4380out_error:
a0fa2b67 4381 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 4382 return;
1da177e4
LT
4383}
4384
23fac50f
CH
4385STATIC xfs_agino_t
4386xlog_recover_process_one_iunlink(
4387 struct xfs_mount *mp,
4388 xfs_agnumber_t agno,
4389 xfs_agino_t agino,
4390 int bucket)
4391{
4392 struct xfs_buf *ibp;
4393 struct xfs_dinode *dip;
4394 struct xfs_inode *ip;
4395 xfs_ino_t ino;
4396 int error;
4397
4398 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 4399 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
4400 if (error)
4401 goto fail;
4402
4403 /*
4404 * Get the on disk inode to find the next inode in the bucket.
4405 */
475ee413 4406 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 4407 if (error)
0e446673 4408 goto fail_iput;
23fac50f 4409
54d7b5c1 4410 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 4411 ASSERT(VFS_I(ip)->i_mode != 0);
23fac50f
CH
4412
4413 /* setup for the next pass */
4414 agino = be32_to_cpu(dip->di_next_unlinked);
4415 xfs_buf_relse(ibp);
4416
4417 /*
4418 * Prevent any DMAPI event from being sent when the reference on
4419 * the inode is dropped.
4420 */
4421 ip->i_d.di_dmevmask = 0;
4422
0e446673 4423 IRELE(ip);
23fac50f
CH
4424 return agino;
4425
0e446673
CH
4426 fail_iput:
4427 IRELE(ip);
23fac50f
CH
4428 fail:
4429 /*
4430 * We can't read in the inode this bucket points to, or this inode
4431 * is messed up. Just ditch this bucket of inodes. We will lose
4432 * some inodes and space, but at least we won't hang.
4433 *
4434 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4435 * clear the inode pointer in the bucket.
4436 */
4437 xlog_recover_clear_agi_bucket(mp, agno, bucket);
4438 return NULLAGINO;
4439}
4440
1da177e4
LT
4441/*
4442 * xlog_iunlink_recover
4443 *
4444 * This is called during recovery to process any inodes which
4445 * we unlinked but not freed when the system crashed. These
4446 * inodes will be on the lists in the AGI blocks. What we do
4447 * here is scan all the AGIs and fully truncate and free any
4448 * inodes found on the lists. Each inode is removed from the
4449 * lists when it has been fully truncated and is freed. The
4450 * freeing of the inode and its removal from the list must be
4451 * atomic.
4452 */
d96f8f89 4453STATIC void
1da177e4 4454xlog_recover_process_iunlinks(
9a8d2fdb 4455 struct xlog *log)
1da177e4
LT
4456{
4457 xfs_mount_t *mp;
4458 xfs_agnumber_t agno;
4459 xfs_agi_t *agi;
4460 xfs_buf_t *agibp;
1da177e4 4461 xfs_agino_t agino;
1da177e4
LT
4462 int bucket;
4463 int error;
4464 uint mp_dmevmask;
4465
4466 mp = log->l_mp;
4467
4468 /*
4469 * Prevent any DMAPI event from being sent while in this function.
4470 */
4471 mp_dmevmask = mp->m_dmevmask;
4472 mp->m_dmevmask = 0;
4473
4474 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4475 /*
4476 * Find the agi for this ag.
4477 */
5e1be0fb
CH
4478 error = xfs_read_agi(mp, NULL, agno, &agibp);
4479 if (error) {
4480 /*
4481 * AGI is b0rked. Don't process it.
4482 *
4483 * We should probably mark the filesystem as corrupt
4484 * after we've recovered all the ag's we can....
4485 */
4486 continue;
1da177e4 4487 }
d97d32ed
JK
4488 /*
4489 * Unlock the buffer so that it can be acquired in the normal
4490 * course of the transaction to truncate and free each inode.
4491 * Because we are not racing with anyone else here for the AGI
4492 * buffer, we don't even need to hold it locked to read the
4493 * initial unlinked bucket entries out of the buffer. We keep
4494 * buffer reference though, so that it stays pinned in memory
4495 * while we need the buffer.
4496 */
1da177e4 4497 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 4498 xfs_buf_unlock(agibp);
1da177e4
LT
4499
4500 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 4501 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 4502 while (agino != NULLAGINO) {
23fac50f
CH
4503 agino = xlog_recover_process_one_iunlink(mp,
4504 agno, agino, bucket);
1da177e4
LT
4505 }
4506 }
d97d32ed 4507 xfs_buf_rele(agibp);
1da177e4
LT
4508 }
4509
4510 mp->m_dmevmask = mp_dmevmask;
4511}
4512
0e446be4 4513STATIC int
1da177e4 4514xlog_unpack_data(
9a8d2fdb 4515 struct xlog_rec_header *rhead,
b2a922cd 4516 char *dp,
9a8d2fdb 4517 struct xlog *log)
1da177e4
LT
4518{
4519 int i, j, k;
1da177e4 4520
b53e675d 4521 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 4522 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 4523 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
4524 dp += BBSIZE;
4525 }
4526
62118709 4527 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 4528 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 4529 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
4530 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4531 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 4532 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
4533 dp += BBSIZE;
4534 }
4535 }
0e446be4
CH
4536
4537 return 0;
1da177e4
LT
4538}
4539
9d94901f 4540/*
b94fb2d1 4541 * CRC check, unpack and process a log record.
9d94901f
BF
4542 */
4543STATIC int
4544xlog_recover_process(
4545 struct xlog *log,
4546 struct hlist_head rhash[],
4547 struct xlog_rec_header *rhead,
4548 char *dp,
4549 int pass)
4550{
4551 int error;
b94fb2d1
BF
4552 __le32 crc;
4553
6528250b
BF
4554 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4555
b94fb2d1 4556 /*
6528250b
BF
4557 * Nothing else to do if this is a CRC verification pass. Just return
4558 * if this a record with a non-zero crc. Unfortunately, mkfs always
4559 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4560 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4561 * know precisely what failed.
4562 */
4563 if (pass == XLOG_RECOVER_CRCPASS) {
8e0bd492 4564 if (rhead->h_crc && crc != rhead->h_crc)
6528250b
BF
4565 return -EFSBADCRC;
4566 return 0;
4567 }
4568
4569 /*
4570 * We're in the normal recovery path. Issue a warning if and only if the
4571 * CRC in the header is non-zero. This is an advisory warning and the
4572 * zero CRC check prevents warnings from being emitted when upgrading
4573 * the kernel from one that does not add CRCs by default.
b94fb2d1 4574 */
8e0bd492 4575 if (crc != rhead->h_crc) {
b94fb2d1
BF
4576 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4577 xfs_alert(log->l_mp,
4578 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4579 le32_to_cpu(rhead->h_crc),
4580 le32_to_cpu(crc));
4581 xfs_hex_dump(dp, 32);
4582 }
4583
4584 /*
4585 * If the filesystem is CRC enabled, this mismatch becomes a
4586 * fatal log corruption failure.
4587 */
4588 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4589 return -EFSCORRUPTED;
4590 }
9d94901f
BF
4591
4592 error = xlog_unpack_data(rhead, dp, log);
4593 if (error)
4594 return error;
4595
4596 return xlog_recover_process_data(log, rhash, rhead, dp, pass);
4597}
4598
1da177e4
LT
4599STATIC int
4600xlog_valid_rec_header(
9a8d2fdb
MT
4601 struct xlog *log,
4602 struct xlog_rec_header *rhead,
1da177e4
LT
4603 xfs_daddr_t blkno)
4604{
4605 int hlen;
4606
69ef921b 4607 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
4608 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4609 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4610 return -EFSCORRUPTED;
1da177e4
LT
4611 }
4612 if (unlikely(
4613 (!rhead->h_version ||
b53e675d 4614 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 4615 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 4616 __func__, be32_to_cpu(rhead->h_version));
2451337d 4617 return -EIO;
1da177e4
LT
4618 }
4619
4620 /* LR body must have data or it wouldn't have been written */
b53e675d 4621 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
4622 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4623 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4624 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4625 return -EFSCORRUPTED;
1da177e4
LT
4626 }
4627 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4628 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4629 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4630 return -EFSCORRUPTED;
1da177e4
LT
4631 }
4632 return 0;
4633}
4634
4635/*
4636 * Read the log from tail to head and process the log records found.
4637 * Handle the two cases where the tail and head are in the same cycle
4638 * and where the active portion of the log wraps around the end of
4639 * the physical log separately. The pass parameter is passed through
4640 * to the routines called to process the data and is not looked at
4641 * here.
4642 */
4643STATIC int
4644xlog_do_recovery_pass(
9a8d2fdb 4645 struct xlog *log,
1da177e4
LT
4646 xfs_daddr_t head_blk,
4647 xfs_daddr_t tail_blk,
d7f37692
BF
4648 int pass,
4649 xfs_daddr_t *first_bad) /* out: first bad log rec */
1da177e4
LT
4650{
4651 xlog_rec_header_t *rhead;
4652 xfs_daddr_t blk_no;
d7f37692 4653 xfs_daddr_t rhead_blk;
b2a922cd 4654 char *offset;
1da177e4 4655 xfs_buf_t *hbp, *dbp;
a70f9fe5 4656 int error = 0, h_size, h_len;
1da177e4
LT
4657 int bblks, split_bblks;
4658 int hblks, split_hblks, wrapped_hblks;
f0a76953 4659 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
4660
4661 ASSERT(head_blk != tail_blk);
d7f37692 4662 rhead_blk = 0;
1da177e4
LT
4663
4664 /*
4665 * Read the header of the tail block and get the iclog buffer size from
4666 * h_size. Use this to tell how many sectors make up the log header.
4667 */
62118709 4668 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
4669 /*
4670 * When using variable length iclogs, read first sector of
4671 * iclog header and extract the header size from it. Get a
4672 * new hbp that is the correct size.
4673 */
4674 hbp = xlog_get_bp(log, 1);
4675 if (!hbp)
2451337d 4676 return -ENOMEM;
076e6acb
CH
4677
4678 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4679 if (error)
1da177e4 4680 goto bread_err1;
076e6acb 4681
1da177e4
LT
4682 rhead = (xlog_rec_header_t *)offset;
4683 error = xlog_valid_rec_header(log, rhead, tail_blk);
4684 if (error)
4685 goto bread_err1;
a70f9fe5
BF
4686
4687 /*
4688 * xfsprogs has a bug where record length is based on lsunit but
4689 * h_size (iclog size) is hardcoded to 32k. Now that we
4690 * unconditionally CRC verify the unmount record, this means the
4691 * log buffer can be too small for the record and cause an
4692 * overrun.
4693 *
4694 * Detect this condition here. Use lsunit for the buffer size as
4695 * long as this looks like the mkfs case. Otherwise, return an
4696 * error to avoid a buffer overrun.
4697 */
b53e675d 4698 h_size = be32_to_cpu(rhead->h_size);
a70f9fe5
BF
4699 h_len = be32_to_cpu(rhead->h_len);
4700 if (h_len > h_size) {
4701 if (h_len <= log->l_mp->m_logbsize &&
4702 be32_to_cpu(rhead->h_num_logops) == 1) {
4703 xfs_warn(log->l_mp,
4704 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
4705 h_size, log->l_mp->m_logbsize);
4706 h_size = log->l_mp->m_logbsize;
4707 } else
4708 return -EFSCORRUPTED;
4709 }
4710
b53e675d 4711 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
4712 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4713 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4714 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4715 hblks++;
4716 xlog_put_bp(hbp);
4717 hbp = xlog_get_bp(log, hblks);
4718 } else {
4719 hblks = 1;
4720 }
4721 } else {
69ce58f0 4722 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
4723 hblks = 1;
4724 hbp = xlog_get_bp(log, 1);
4725 h_size = XLOG_BIG_RECORD_BSIZE;
4726 }
4727
4728 if (!hbp)
2451337d 4729 return -ENOMEM;
1da177e4
LT
4730 dbp = xlog_get_bp(log, BTOBB(h_size));
4731 if (!dbp) {
4732 xlog_put_bp(hbp);
2451337d 4733 return -ENOMEM;
1da177e4
LT
4734 }
4735
4736 memset(rhash, 0, sizeof(rhash));
d7f37692 4737 blk_no = rhead_blk = tail_blk;
970fd3f0 4738 if (tail_blk > head_blk) {
1da177e4
LT
4739 /*
4740 * Perform recovery around the end of the physical log.
4741 * When the head is not on the same cycle number as the tail,
970fd3f0 4742 * we can't do a sequential recovery.
1da177e4 4743 */
1da177e4
LT
4744 while (blk_no < log->l_logBBsize) {
4745 /*
4746 * Check for header wrapping around physical end-of-log
4747 */
62926044 4748 offset = hbp->b_addr;
1da177e4
LT
4749 split_hblks = 0;
4750 wrapped_hblks = 0;
4751 if (blk_no + hblks <= log->l_logBBsize) {
4752 /* Read header in one read */
076e6acb
CH
4753 error = xlog_bread(log, blk_no, hblks, hbp,
4754 &offset);
1da177e4
LT
4755 if (error)
4756 goto bread_err2;
1da177e4
LT
4757 } else {
4758 /* This LR is split across physical log end */
4759 if (blk_no != log->l_logBBsize) {
4760 /* some data before physical log end */
4761 ASSERT(blk_no <= INT_MAX);
4762 split_hblks = log->l_logBBsize - (int)blk_no;
4763 ASSERT(split_hblks > 0);
076e6acb
CH
4764 error = xlog_bread(log, blk_no,
4765 split_hblks, hbp,
4766 &offset);
4767 if (error)
1da177e4 4768 goto bread_err2;
1da177e4 4769 }
076e6acb 4770
1da177e4
LT
4771 /*
4772 * Note: this black magic still works with
4773 * large sector sizes (non-512) only because:
4774 * - we increased the buffer size originally
4775 * by 1 sector giving us enough extra space
4776 * for the second read;
4777 * - the log start is guaranteed to be sector
4778 * aligned;
4779 * - we read the log end (LR header start)
4780 * _first_, then the log start (LR header end)
4781 * - order is important.
4782 */
234f56ac 4783 wrapped_hblks = hblks - split_hblks;
44396476
DC
4784 error = xlog_bread_offset(log, 0,
4785 wrapped_hblks, hbp,
4786 offset + BBTOB(split_hblks));
1da177e4
LT
4787 if (error)
4788 goto bread_err2;
1da177e4
LT
4789 }
4790 rhead = (xlog_rec_header_t *)offset;
4791 error = xlog_valid_rec_header(log, rhead,
4792 split_hblks ? blk_no : 0);
4793 if (error)
4794 goto bread_err2;
4795
b53e675d 4796 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
4797 blk_no += hblks;
4798
4799 /* Read in data for log record */
4800 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
4801 error = xlog_bread(log, blk_no, bblks, dbp,
4802 &offset);
1da177e4
LT
4803 if (error)
4804 goto bread_err2;
1da177e4
LT
4805 } else {
4806 /* This log record is split across the
4807 * physical end of log */
62926044 4808 offset = dbp->b_addr;
1da177e4
LT
4809 split_bblks = 0;
4810 if (blk_no != log->l_logBBsize) {
4811 /* some data is before the physical
4812 * end of log */
4813 ASSERT(!wrapped_hblks);
4814 ASSERT(blk_no <= INT_MAX);
4815 split_bblks =
4816 log->l_logBBsize - (int)blk_no;
4817 ASSERT(split_bblks > 0);
076e6acb
CH
4818 error = xlog_bread(log, blk_no,
4819 split_bblks, dbp,
4820 &offset);
4821 if (error)
1da177e4 4822 goto bread_err2;
1da177e4 4823 }
076e6acb 4824
1da177e4
LT
4825 /*
4826 * Note: this black magic still works with
4827 * large sector sizes (non-512) only because:
4828 * - we increased the buffer size originally
4829 * by 1 sector giving us enough extra space
4830 * for the second read;
4831 * - the log start is guaranteed to be sector
4832 * aligned;
4833 * - we read the log end (LR header start)
4834 * _first_, then the log start (LR header end)
4835 * - order is important.
4836 */
44396476 4837 error = xlog_bread_offset(log, 0,
009507b0 4838 bblks - split_bblks, dbp,
44396476 4839 offset + BBTOB(split_bblks));
076e6acb
CH
4840 if (error)
4841 goto bread_err2;
1da177e4 4842 }
0e446be4 4843
9d94901f
BF
4844 error = xlog_recover_process(log, rhash, rhead, offset,
4845 pass);
0e446be4 4846 if (error)
1da177e4 4847 goto bread_err2;
d7f37692 4848
1da177e4 4849 blk_no += bblks;
d7f37692 4850 rhead_blk = blk_no;
1da177e4
LT
4851 }
4852
4853 ASSERT(blk_no >= log->l_logBBsize);
4854 blk_no -= log->l_logBBsize;
d7f37692 4855 rhead_blk = blk_no;
970fd3f0 4856 }
1da177e4 4857
970fd3f0
ES
4858 /* read first part of physical log */
4859 while (blk_no < head_blk) {
4860 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4861 if (error)
4862 goto bread_err2;
076e6acb 4863
970fd3f0
ES
4864 rhead = (xlog_rec_header_t *)offset;
4865 error = xlog_valid_rec_header(log, rhead, blk_no);
4866 if (error)
4867 goto bread_err2;
076e6acb 4868
970fd3f0
ES
4869 /* blocks in data section */
4870 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4871 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4872 &offset);
4873 if (error)
4874 goto bread_err2;
076e6acb 4875
9d94901f 4876 error = xlog_recover_process(log, rhash, rhead, offset, pass);
970fd3f0
ES
4877 if (error)
4878 goto bread_err2;
d7f37692 4879
970fd3f0 4880 blk_no += bblks + hblks;
d7f37692 4881 rhead_blk = blk_no;
1da177e4
LT
4882 }
4883
4884 bread_err2:
4885 xlog_put_bp(dbp);
4886 bread_err1:
4887 xlog_put_bp(hbp);
d7f37692
BF
4888
4889 if (error && first_bad)
4890 *first_bad = rhead_blk;
4891
1da177e4
LT
4892 return error;
4893}
4894
4895/*
4896 * Do the recovery of the log. We actually do this in two phases.
4897 * The two passes are necessary in order to implement the function
4898 * of cancelling a record written into the log. The first pass
4899 * determines those things which have been cancelled, and the
4900 * second pass replays log items normally except for those which
4901 * have been cancelled. The handling of the replay and cancellations
4902 * takes place in the log item type specific routines.
4903 *
4904 * The table of items which have cancel records in the log is allocated
4905 * and freed at this level, since only here do we know when all of
4906 * the log recovery has been completed.
4907 */
4908STATIC int
4909xlog_do_log_recovery(
9a8d2fdb 4910 struct xlog *log,
1da177e4
LT
4911 xfs_daddr_t head_blk,
4912 xfs_daddr_t tail_blk)
4913{
d5689eaa 4914 int error, i;
1da177e4
LT
4915
4916 ASSERT(head_blk != tail_blk);
4917
4918 /*
4919 * First do a pass to find all of the cancelled buf log items.
4920 * Store them in the buf_cancel_table for use in the second pass.
4921 */
d5689eaa
CH
4922 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4923 sizeof(struct list_head),
1da177e4 4924 KM_SLEEP);
d5689eaa
CH
4925 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4926 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4927
1da177e4 4928 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 4929 XLOG_RECOVER_PASS1, NULL);
1da177e4 4930 if (error != 0) {
f0e2d93c 4931 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4932 log->l_buf_cancel_table = NULL;
4933 return error;
4934 }
4935 /*
4936 * Then do a second pass to actually recover the items in the log.
4937 * When it is complete free the table of buf cancel items.
4938 */
4939 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 4940 XLOG_RECOVER_PASS2, NULL);
1da177e4 4941#ifdef DEBUG
6d192a9b 4942 if (!error) {
1da177e4
LT
4943 int i;
4944
4945 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4946 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4947 }
4948#endif /* DEBUG */
4949
f0e2d93c 4950 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4951 log->l_buf_cancel_table = NULL;
4952
4953 return error;
4954}
4955
4956/*
4957 * Do the actual recovery
4958 */
4959STATIC int
4960xlog_do_recover(
9a8d2fdb 4961 struct xlog *log,
1da177e4
LT
4962 xfs_daddr_t head_blk,
4963 xfs_daddr_t tail_blk)
4964{
a798011c 4965 struct xfs_mount *mp = log->l_mp;
1da177e4
LT
4966 int error;
4967 xfs_buf_t *bp;
4968 xfs_sb_t *sbp;
4969
4970 /*
4971 * First replay the images in the log.
4972 */
4973 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4974 if (error)
1da177e4 4975 return error;
1da177e4
LT
4976
4977 /*
4978 * If IO errors happened during recovery, bail out.
4979 */
a798011c 4980 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 4981 return -EIO;
1da177e4
LT
4982 }
4983
4984 /*
4985 * We now update the tail_lsn since much of the recovery has completed
4986 * and there may be space available to use. If there were no extent
4987 * or iunlinks, we can free up the entire log and set the tail_lsn to
4988 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4989 * lsn of the last known good LR on disk. If there are extent frees
4990 * or iunlinks they will have some entries in the AIL; so we look at
4991 * the AIL to determine how to set the tail_lsn.
4992 */
a798011c 4993 xlog_assign_tail_lsn(mp);
1da177e4
LT
4994
4995 /*
4996 * Now that we've finished replaying all buffer and inode
98021821 4997 * updates, re-read in the superblock and reverify it.
1da177e4 4998 */
a798011c 4999 bp = xfs_getsb(mp, 0);
1157b32c 5000 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
b68c0821 5001 ASSERT(!(bp->b_flags & XBF_WRITE));
0cac682f 5002 bp->b_flags |= XBF_READ;
1813dd64 5003 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3 5004
595bff75 5005 error = xfs_buf_submit_wait(bp);
d64e31a2 5006 if (error) {
a798011c 5007 if (!XFS_FORCED_SHUTDOWN(mp)) {
595bff75
DC
5008 xfs_buf_ioerror_alert(bp, __func__);
5009 ASSERT(0);
5010 }
1da177e4
LT
5011 xfs_buf_relse(bp);
5012 return error;
5013 }
5014
5015 /* Convert superblock from on-disk format */
a798011c 5016 sbp = &mp->m_sb;
98021821 5017 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4
LT
5018 xfs_buf_relse(bp);
5019
a798011c
DC
5020 /* re-initialise in-core superblock and geometry structures */
5021 xfs_reinit_percpu_counters(mp);
5022 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5023 if (error) {
5024 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5025 return error;
5026 }
5478eead 5027
1da177e4
LT
5028 xlog_recover_check_summary(log);
5029
5030 /* Normal transactions can now occur */
5031 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5032 return 0;
5033}
5034
5035/*
5036 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5037 *
5038 * Return error or zero.
5039 */
5040int
5041xlog_recover(
9a8d2fdb 5042 struct xlog *log)
1da177e4
LT
5043{
5044 xfs_daddr_t head_blk, tail_blk;
5045 int error;
5046
5047 /* find the tail of the log */
a45086e2
BF
5048 error = xlog_find_tail(log, &head_blk, &tail_blk);
5049 if (error)
1da177e4
LT
5050 return error;
5051
a45086e2
BF
5052 /*
5053 * The superblock was read before the log was available and thus the LSN
5054 * could not be verified. Check the superblock LSN against the current
5055 * LSN now that it's known.
5056 */
5057 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5058 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5059 return -EINVAL;
5060
1da177e4
LT
5061 if (tail_blk != head_blk) {
5062 /* There used to be a comment here:
5063 *
5064 * disallow recovery on read-only mounts. note -- mount
5065 * checks for ENOSPC and turns it into an intelligent
5066 * error message.
5067 * ...but this is no longer true. Now, unless you specify
5068 * NORECOVERY (in which case this function would never be
5069 * called), we just go ahead and recover. We do this all
5070 * under the vfs layer, so we can get away with it unless
5071 * the device itself is read-only, in which case we fail.
5072 */
3a02ee18 5073 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
5074 return error;
5075 }
5076
e721f504
DC
5077 /*
5078 * Version 5 superblock log feature mask validation. We know the
5079 * log is dirty so check if there are any unknown log features
5080 * in what we need to recover. If there are unknown features
5081 * (e.g. unsupported transactions, then simply reject the
5082 * attempt at recovery before touching anything.
5083 */
5084 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5085 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5086 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5087 xfs_warn(log->l_mp,
f41febd2 5088"Superblock has unknown incompatible log features (0x%x) enabled.",
e721f504
DC
5089 (log->l_mp->m_sb.sb_features_log_incompat &
5090 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
f41febd2
JP
5091 xfs_warn(log->l_mp,
5092"The log can not be fully and/or safely recovered by this kernel.");
5093 xfs_warn(log->l_mp,
5094"Please recover the log on a kernel that supports the unknown features.");
2451337d 5095 return -EINVAL;
e721f504
DC
5096 }
5097
2e227178
BF
5098 /*
5099 * Delay log recovery if the debug hook is set. This is debug
5100 * instrumention to coordinate simulation of I/O failures with
5101 * log recovery.
5102 */
5103 if (xfs_globals.log_recovery_delay) {
5104 xfs_notice(log->l_mp,
5105 "Delaying log recovery for %d seconds.",
5106 xfs_globals.log_recovery_delay);
5107 msleep(xfs_globals.log_recovery_delay * 1000);
5108 }
5109
a0fa2b67
DC
5110 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5111 log->l_mp->m_logname ? log->l_mp->m_logname
5112 : "internal");
1da177e4
LT
5113
5114 error = xlog_do_recover(log, head_blk, tail_blk);
5115 log->l_flags |= XLOG_RECOVERY_NEEDED;
5116 }
5117 return error;
5118}
5119
5120/*
5121 * In the first part of recovery we replay inodes and buffers and build
5122 * up the list of extent free items which need to be processed. Here
5123 * we process the extent free items and clean up the on disk unlinked
5124 * inode lists. This is separated from the first part of recovery so
5125 * that the root and real-time bitmap inodes can be read in from disk in
5126 * between the two stages. This is necessary so that we can free space
5127 * in the real-time portion of the file system.
5128 */
5129int
5130xlog_recover_finish(
9a8d2fdb 5131 struct xlog *log)
1da177e4
LT
5132{
5133 /*
5134 * Now we're ready to do the transactions needed for the
5135 * rest of recovery. Start with completing all the extent
5136 * free intent records and then process the unlinked inode
5137 * lists. At this point, we essentially run in normal mode
5138 * except that we're still performing recovery actions
5139 * rather than accepting new requests.
5140 */
5141 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
5142 int error;
5143 error = xlog_recover_process_efis(log);
5144 if (error) {
a0fa2b67 5145 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
5146 return error;
5147 }
1da177e4
LT
5148 /*
5149 * Sync the log to get all the EFIs out of the AIL.
5150 * This isn't absolutely necessary, but it helps in
5151 * case the unlink transactions would have problems
5152 * pushing the EFIs out of the way.
5153 */
a14a348b 5154 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 5155
4249023a 5156 xlog_recover_process_iunlinks(log);
1da177e4
LT
5157
5158 xlog_recover_check_summary(log);
5159
a0fa2b67
DC
5160 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5161 log->l_mp->m_logname ? log->l_mp->m_logname
5162 : "internal");
1da177e4
LT
5163 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5164 } else {
a0fa2b67 5165 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
5166 }
5167 return 0;
5168}
5169
f0b2efad
BF
5170int
5171xlog_recover_cancel(
5172 struct xlog *log)
5173{
5174 int error = 0;
5175
5176 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5177 error = xlog_recover_cancel_efis(log);
5178
5179 return error;
5180}
1da177e4
LT
5181
5182#if defined(DEBUG)
5183/*
5184 * Read all of the agf and agi counters and check that they
5185 * are consistent with the superblock counters.
5186 */
5187void
5188xlog_recover_check_summary(
9a8d2fdb 5189 struct xlog *log)
1da177e4
LT
5190{
5191 xfs_mount_t *mp;
5192 xfs_agf_t *agfp;
1da177e4
LT
5193 xfs_buf_t *agfbp;
5194 xfs_buf_t *agibp;
1da177e4
LT
5195 xfs_agnumber_t agno;
5196 __uint64_t freeblks;
5197 __uint64_t itotal;
5198 __uint64_t ifree;
5e1be0fb 5199 int error;
1da177e4
LT
5200
5201 mp = log->l_mp;
5202
5203 freeblks = 0LL;
5204 itotal = 0LL;
5205 ifree = 0LL;
5206 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
5207 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5208 if (error) {
a0fa2b67
DC
5209 xfs_alert(mp, "%s agf read failed agno %d error %d",
5210 __func__, agno, error);
4805621a
FCH
5211 } else {
5212 agfp = XFS_BUF_TO_AGF(agfbp);
5213 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5214 be32_to_cpu(agfp->agf_flcount);
5215 xfs_buf_relse(agfbp);
1da177e4 5216 }
1da177e4 5217
5e1be0fb 5218 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
5219 if (error) {
5220 xfs_alert(mp, "%s agi read failed agno %d error %d",
5221 __func__, agno, error);
5222 } else {
5e1be0fb 5223 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 5224
5e1be0fb
CH
5225 itotal += be32_to_cpu(agi->agi_count);
5226 ifree += be32_to_cpu(agi->agi_freecount);
5227 xfs_buf_relse(agibp);
5228 }
1da177e4 5229 }
1da177e4
LT
5230}
5231#endif /* DEBUG */
This page took 1.775024 seconds and 5 git commands to generate.